WO2022261969A1 - 影像撷取系统及影像撷取方法 - Google Patents

影像撷取系统及影像撷取方法 Download PDF

Info

Publication number
WO2022261969A1
WO2022261969A1 PCT/CN2021/101037 CN2021101037W WO2022261969A1 WO 2022261969 A1 WO2022261969 A1 WO 2022261969A1 CN 2021101037 W CN2021101037 W CN 2021101037W WO 2022261969 A1 WO2022261969 A1 WO 2022261969A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
laser
image capture
signal
capture system
Prior art date
Application number
PCT/CN2021/101037
Other languages
English (en)
French (fr)
Inventor
林圣富
尤秋林
韩凯伦
沈帛宽
颜俊强
王郁钧
张正阳
伍茂仁
Original Assignee
合圣科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合圣科技股份有限公司 filed Critical 合圣科技股份有限公司
Priority to PCT/CN2021/101037 priority Critical patent/WO2022261969A1/zh
Publication of WO2022261969A1 publication Critical patent/WO2022261969A1/zh

Links

Images

Definitions

  • This case relates to an image capture system and image processing method, and in particular to the image capture system performing live detection and related signal processing based on images captured at short distances to achieve live recognition, which can be applied to fingerprints and general biometrics.
  • biometric technology In order to enhance the security of consumers using electronic products and electronic payments, biometric technology has received increasing attention.
  • the advantage of biometric technology is that it can be identified by special biometric characteristics between different people, which greatly improves security.
  • a technical aspect of the content of this case relates to an image capture system, which includes a motherboard, a laser device, an image sensing device, and a data processing device.
  • the laser device is electrically connected to the main board, and the laser device includes a laser source.
  • the laser source is used to emit laser light.
  • the image sensing device is electrically connected to the motherboard, and the image sensing device includes a hole and an image sensor. The reflected light or scattered light of the laser passes through the hole to form an image.
  • the image sensor generates an image signal according to the image.
  • the data processing device is electrically connected to the main board, and is used to generate a living body detection signal according to the image signal.
  • the diameter of the hole is between 0.1 mm and 3 mm.
  • the distance between the hole and the object to be tested is between 0.1 mm and 5 mm.
  • the shape of the hole includes at least one of circle and polygon.
  • any two holes in the plural holes have the same or different sizes.
  • the data processing device compares the image signal with the living body threshold value, and when the image signal meets the living body threshold value, the data processing device generates a living body detection signal.
  • the image capture system further includes a database, and the database is used to store the living body threshold value.
  • the laser light emitted by the laser source includes coherent light
  • the image formed by the reflected light or scattered light of the laser light passing through the hole includes an interference pattern
  • the image signal generated by the image sensor based on the image includes an interference signal
  • the data processing device generates the living body detection signal according to the image signal including the interference signal.
  • the interference pattern of the image includes light spots.
  • the laser device further includes a first conductive layer, the first conductive layer is disposed on the main board, and is electrically connected to the main board, wherein the laser source is disposed on the first conductive layer, and is electrically connected to the first conductive layer .
  • the image sensing device further includes a second conductive layer disposed on the main board and electrically connected to the main board, wherein the image sensor is disposed on the second conductive layer and electrically connected to the main board second conductive layer.
  • the image sensing device further includes a filter, which is disposed above or below the hole and is used to filter out ambient light and allow reflected light or scattered light of the laser to pass through the filter.
  • the motherboard includes at least one of a printed circuit board and a flexible printed circuit board.
  • the laser source includes at least one of an edge emitting laser source and a vertical cavity surface emitting laser.
  • the laser device further includes a substrate and a laser source.
  • the substrate has a flat surface and an inclined surface.
  • the laser source is arranged on a flat surface, wherein the laser light emitted by the laser source is reflected from the inclined surface.
  • the inner angle between the flat surface and the sloped surface is between 25 degrees and 75 degrees.
  • the laser device stops emitting laser light, and the image sensor continues to sense ambient light to generate an ambient signal.
  • the data processing device calibrates the image signal according to the environment signal, so as to generate the living body detection signal.
  • the image capture method includes: using a laser source to emit laser light; the reflected light or scattered light of the laser light passes through the hole of the image sensing device to form an image; The image sensor generates an image signal according to the image; and the data processing device generates a living body detection signal according to the image signal.
  • the diameter of the hole is between 0.1 mm and 3 mm.
  • the distance between the hole and the object to be tested is between 0.1 mm and 5 mm.
  • the shape of the hole includes at least one of circle and polygon.
  • any two holes in the plural holes have the same or different sizes.
  • the step of using the data processing device to generate the living body detection signal according to the image signal includes: using the data processing device to compare the image signal and the living body threshold value; and when the image signal meets the living body threshold value, using the data The processing device generates a living body detection signal.
  • the laser light emitted by the laser source contains coherent light.
  • the image signal generated by the image sensor according to the image contains The interference signal, wherein the living body detection signal is generated by the data processing device according to the image signal including the interference signal.
  • the image capturing method further includes: filtering ambient light through a filter, and allowing reflected light or scattered light of the laser to pass through the filter.
  • the image capture method further includes: in the calibration phase, the laser device stops emitting laser light, and the image sensor continues to sense ambient light to generate an ambient signal.
  • the step of generating the living body detection signal according to the image signal by the data processing device includes: using the data processing device to calibrate the image signal according to the environment signal, so as to generate the living body detection signal.
  • the image capture system and image capture method of this case use the image capture system and image capture method of this case to confirm whether the object under test is a living body, such as whether the object under test is a real human being, rather than a camouflaged prop with biological characteristics (such as fabric Glue or rubber fingerprints... etc.), to avoid being imitated by unscrupulous people with biometric camouflage props, and then log in to the user's electronic device or account, which seriously affects the safety of use.
  • biological characteristics such as fabric Glue or rubber fingerprints... etc.
  • FIG. 1 is a schematic diagram illustrating an image capture system according to an embodiment of the present disclosure.
  • FIG. 2 is a circuit block diagram illustrating an image capture system according to an embodiment of the present disclosure.
  • FIG. 3 is a circuit block diagram of an image capture system according to an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram illustrating the operation of some components of an image capture system according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating the operation of some components of an image capture system according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating a control sequence of an image capture system according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating a control sequence of an image capture system according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating a control sequence of an image capture system according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram illustrating a control sequence of an image capture system according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram illustrating a control sequence of an image capture system according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating an image capture system according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram illustrating an image capture system according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram illustrating an image sensing device of the image capture system shown in FIG. 1 according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram illustrating an image sensing device of the image capture system shown in FIG. 1 according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram illustrating an image sensing device of the image capture system shown in FIG. 1 according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of an aperture of an image sensing device of the image capture system shown in FIG. 1 according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of an aperture of an image sensing device of the image capture system shown in FIG. 1 according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of an aperture of an image sensing device of the image capture system shown in FIG. 1 according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram illustrating the operation of an image sensing device of the image capture system shown in FIG. 1 according to an embodiment of the present disclosure.
  • FIG. 20A is a schematic diagram illustrating a detection of a user's finger according to an embodiment of the present disclosure.
  • FIG. 20B is a schematic diagram illustrating a living body signal of a user's finger as shown in FIG. 20A according to an embodiment of the present disclosure.
  • FIG. 21A is a schematic diagram illustrating a detection of a non-living body according to an embodiment of the present disclosure.
  • FIG. 21B is a schematic diagram illustrating a detection signal of a non-living body as shown in FIG. 21A according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram illustrating an operation flow of an image capture method according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram illustrating an image capture system 100 according to an embodiment of the present disclosure.
  • the image capture system 100 includes a motherboard 110 , a laser device 120 , an image sensing device 130 and a data processing device 140 .
  • the laser device 120 is electrically connected to the main board 110
  • the image sensing device 130 is electrically connected to the main board 110
  • the data processing device 140 is also electrically connected to the main board 110 .
  • the laser device 120 includes a laser source 121 .
  • the laser source 121 is used to emit laser light.
  • the image sensing device 130 includes a hole 131 and an image sensor 133 . Once the laser light from the laser source 121 hits the object under test, reflected light of the laser light will be formed, and the reflected light will pass through the hole 131 to form an image on the image sensor 133 . Next, the image sensor 133 generates an image signal according to the above image, and then the data processing device 140 generates a living body detection signal according to the image signal. Another thing to mention is that the reflected light mentioned in the specification of this case refers to the phenomenon of returning light when light hits the surface of an object.
  • the reflected light mentioned in this text generally refers to the reflected light generated when the light is irradiated on the surface of an object with a uniform reflection angle, and the scattered light when the light is irradiated on the surface of an object with a non-uniform reflection angle and uneven reflection angle.
  • the illustrated illustration takes reflected light as an example, but the possibility of simultaneous existence of scattered light is not excluded.
  • the image capture system 100 of this case can be used to confirm whether the object to be tested is a living body, for example, whether the object to be tested is a real human being, rather than a disguised prop with biological characteristics (such as rubber fingerprints), so as to avoid being Unscrupulous people use biometric disguised props to imitate users, and then log in to users' electronic devices or accounts, which seriously affects the safety of use.
  • the main board 110 may be a flexible printed circuit board (Flexible Printed Circuit, FPC).
  • FPC Flexible Printed Circuit
  • the flexible printed circuit board can be used to conduct electricity and transmit signals. Therefore, the data processing device 140 can be directly disposed on the main board 110 , and the main board 110 assists in power supply and signal transmission.
  • the image capture system 100 further includes a connection part 150 for connecting with an external device.
  • the present application is not limited to the embodiment shown in FIG. 1 , which is only used to illustrate one of the implementations of the present application. Without departing from the spirit of the present application, other appropriate components can be used to implement Make the main board 110 of this case.
  • the laser device 120 further includes a conductive layer 123 .
  • the conductive layer 123 is disposed on the main board 110 and electrically connected to the main board 110 .
  • the laser source 121 is disposed on the conductive layer 123 and electrically connected to the conductive layer 123 .
  • the laser source 121 can be electrically connected to the main board 110 through the conductive layer 123 .
  • the laser source 121 can be distributed feedback (Distributed Feedback, DFB) laser, distributed Bragg reflector (Distributed Bragg reflector, DBR) laser, Fabry-Perot (Fabry-Perot) laser, Vertical cavity surface emitting laser (Vertical Cavity Surface Emitting Laser, VCSEL) or light emitting diode.
  • DFB distributed Feedback
  • DBR distributed Bragg reflector
  • Fabry-Perot Fabry-Perot
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the laser source 121 can be a vertical cavity surface emitting laser (VCSEL).
  • VCSEL vertical cavity surface emitting laser
  • the present application is not limited to the embodiment shown in FIG. 1 , which is only used to illustrate one of the implementations of the present application. Without departing from the spirit of the present application, other appropriate components can be used to implement Make the laser source 121 of this case.
  • the image capture system 100 further includes a bonding wire 160 .
  • the laser device 120 can be electrically connected to the main board 110 through the bonding wire 160 .
  • the image sensing device 130 further includes a conductive layer 135 .
  • the conductive layer 135 is disposed on the main board 110 and electrically connected to the main board 110 .
  • the image sensor 133 is disposed on the conductive layer 135 and electrically connected to the conductive layer 135 .
  • the image sensor 133 can be electrically connected to the motherboard 110 through the conductive layer 135 .
  • the image sensing device 130 further includes a filter 137 .
  • the filter 137 is arranged on the top of the hole 131, and is used to filter out the ambient light, so that the reflected light of the laser passes through the filter 137, so that the ambient light can be prevented from affecting the detection accuracy, so as to obtain accurate living body detection Signal.
  • the image sensing device 130 further includes a packaging structure 139 .
  • the image sensor 133 may be in a complementary metal oxide semiconductor (CMOS) array, a charge coupled device (CDD) array or a photodiode (photodiode, PD) array.
  • CMOS complementary metal oxide semiconductor
  • CDD charge coupled device
  • PD photodiode
  • the present application is not limited to the embodiment shown in FIG.
  • the image sensor 133 of the present application may be realized by disposing the optical filter 137 in other appropriate positions or using other appropriate components, depending on actual requirements.
  • FIG. 2 is a circuit block diagram of an image capture system 100 according to an embodiment of the present disclosure.
  • the data processing device 140 includes a control circuit 141 , a logical arithmetic circuit 143 , a judgment circuit 145 and a database 147 .
  • the control circuit 141 and the logic arithmetic circuit 143 are electrically connected to the image sensing device 130 .
  • the image sensing device 130 is electrically connected to the laser device 120 .
  • the judging circuit 145 is electrically connected to the control circuit 141 , the logic arithmetic circuit 143 and the database 147 .
  • the laser light from the laser source 121 of the laser device 120 hits the object to be measured, it will form reflected light of the laser light, which will pass through the hole 131 of the image sensing device 130 and appear on the image.
  • An image is formed on the image sensor 133 of the sensing device 130 .
  • the image sensor 133 of the image sensing device 130 generates an image signal according to the above image.
  • the image signal is sent to the logic arithmetic circuit 143 , and after being processed by the logic arithmetic circuit 143 , it is sent to the judgment circuit 145 .
  • the judging circuit 145 obtains the living body threshold value stored in the database 147 and compares whether the image signal meets the living body threshold value. If the image signal meets the living body threshold, the data processing device 140 generates a living body detection signal. For example, the critical value of the living body can be stored in the database 147.
  • the threshold value of the living body is set to be 80, the value of the living body corresponding to the image signal must be higher than 80 before it can be judged as a living body by the judgment circuit 145, and then the data The processing device 140 generates a living body detection signal.
  • the critical range of the living body can also be set between 70 and 90. If the living body value corresponding to the image signal must be 85, the judgment circuit 145 will determine that the living body value of the image signal meets the critical range of the living body. , so it is determined as a living body, and then the data processing device 140 generates a living body detection signal.
  • the data processing device 140 may be an Application Specific Integrated Circuit (ASIC).
  • ASIC Application Specific Integrated Circuit
  • FIG. 3 is a circuit block diagram of the image capture system 100 shown in FIG. 1 according to an embodiment of the present disclosure.
  • the laser device 120 may include an optical element 125 .
  • the optical element 125 can be disposed on the laser source 121 and can be used to adjust the laser source 121 .
  • the image sensing device 130 may also include an optical element 131 (for example, the hole 131 ). The image is initially processed by the optical element 131 , and then the image is further processed by the image sensor 133 to generate an image signal.
  • the present application is not limited to the embodiment shown in FIG. 3 , which is only used to exemplarily illustrate one of the implementation manners of the present application.
  • FIG. 4 is a schematic diagram illustrating the operation of some components of an image capture system 100 according to an embodiment of the present disclosure.
  • the laser light 122 emitted by the laser source 121 can be coherence light.
  • reflected light 124 will be generated.
  • the laser 122 irradiates the blood in the living body
  • the blood in the living body will flow, so that the laser 122 irradiates these blood cells and produces an interference effect, which is similar to that produced by water waves hitting stones.
  • the water wave phenomenon, the dynamic water wave phenomenon further disturbs another water wave, and the dynamic blood cell flow will also cause the disturbance between the light, so that the reflected light 124 of the living body will form a difference in brightness and darkness from the reflected light 124 of the non-living body.
  • an image with an interference pattern will be formed.
  • the image sensor 133 generates an image signal with an interference signal according to the image, and then the data processing device 140 generates an image signal based on the interference signal. Generate a living body detection signal.
  • the interference pattern of the image includes speckle.
  • the present application is not limited to the embodiment shown in FIG. 4 , which is only used to exemplarily depict one of the implementation manners of the present application.
  • FIG. 5 is a schematic diagram illustrating the operation of some components of the image capture system 100 shown in FIG. 1 according to an embodiment of the present disclosure.
  • the laser light 126 emitted by the laser source 121 in FIG. 5 hits different points of the object under test 900 to generate reflected light 128 .
  • the laser light 126 irradiates a living body, interference effects will also occur.
  • the reflected light 128 passes through the hole 131 shown in FIG.
  • the data processing device 140 generates a living body detection signal according to the image signal with the interference signal.
  • the present application is not limited to the embodiment shown in FIG. 5 , which is only used to exemplarily illustrate one of the implementation manners of the present application.
  • FIG. 6 is a schematic diagram illustrating a control sequence of an image capture system 100 according to an embodiment of the present disclosure.
  • the image capture system 100 controls the laser device 120 to turn on and emit laser light
  • the image capture system 100 also controls the image sensing device 130 to turn on to receive the reflected light of the laser.
  • the image sensing device 130 may receive noise and affect the detection accuracy. Therefore, this case also proposes a method to solve the above-mentioned impact on the detection accuracy due to noise, which is described below.
  • FIG. 7 is a schematic diagram illustrating a control sequence of an image capture system 100 according to an embodiment of the present disclosure.
  • the image capture system 100 controls the image sensing device 130 to continuously sense light while controlling the laser device 120 to stop emitting laser light. Since the laser device 120 does not emit laser light at this time, the light sensed by the image sensing device 130 is ambient light.
  • the image sensing device 130 generates an environmental signal according to the ambient light.
  • the data processing device 140 precisely calibrates the image signal according to the environmental signal, so as to generate the living body detection signal.
  • the laser device 120 stops emitting laser light, and at this time, the image sensing device 130 generates an environmental signal according to the ambient light.
  • the environmental signal can be regarded as noise, and is filtered out by the data processing device 140, so as to obtain an accurate living body detection signal.
  • FIG. 8 shows an aspect in which the image sensing device 130 senses a plurality of ambient lights for calibration.
  • 9 shows that the laser device 120 first emits laser light for a long time, and then stops emitting laser light for a long time, and the image sensing device 130 is turned on intermittently to sense light.
  • the image capture system 100 can use the above-mentioned different control methods To obtain more accurate ambient light, and then calibrate the image signal to generate the living body detection signal.
  • FIG. 10 shows that the laser device 120 emits laser light for a long time, and the image sensing device 130 is turned on intermittently to sense light.
  • the image capture system 100 can obtain more accurate ambient light through the above-mentioned different control methods. Further, the image signal is calibrated to generate a living body detection signal.
  • the present application is not limited to the embodiments shown in FIG. 6 to FIG. 10 , which are only used to exemplarily depict one of the implementation manners of the present application.
  • FIG. 11 is a schematic diagram illustrating an image capture system 100A according to an embodiment of the present disclosure.
  • the main board 110A of the image capture system 100A in FIG. 11 can be a printed circuit board (PCB), and the reference numeral 150A in the figure can be a solder joint.
  • PCB printed circuit board
  • the reference numeral 150A in the figure can be a solder joint.
  • the component numbers are similar to those in FIG. 1 , and have similar structural and electrical operation features. For the sake of brevity, details are not repeated here.
  • the present application is not limited to the embodiment shown in FIG. 11 , which is only used to exemplarily depict one of the implementation manners of the present application.
  • FIG. 12 is a schematic diagram illustrating an image capture system 100B according to an embodiment of the present disclosure. Compared with the image capture system 100 shown in FIG. 1 , the laser device 120B of the image capture system 100B in FIG. 12 is different, which will be described in detail later.
  • the laser device 120B includes a laser source 121B and a substrate 127B.
  • the substrate 127B has a flat surface 127B1 and a sloped surface 127B2.
  • the laser source 121B is disposed on the flat surface 127B1. In operation, the laser light emitted by the laser source 121B is reflected by the inclined surface 127B2.
  • the inner angle ⁇ between the flat surface 127B1 and the inclined surface 127B2 ranges from 25 degrees to 75 degrees.
  • the laser device 120B further includes an optical element 125B and a packaging structure 129B.
  • the laser source 121B may be a distributed feedback (Distributed Feedback, DFB) laser, a distributed Bragg reflector (Distributed Bragg reflector, DBR) laser, a Fabry-Perot (Fabry-Perot) laser, Vertical cavity surface emitting laser (Vertical Cavity Surface Emitting Laser, VCSEL) or light emitting diode.
  • the laser source 121B may be an edge-emitting laser source.
  • the image capture system 100B further includes bonding wires 160B and 170B.
  • the laser device 120B can be electrically connected to the main board 110B through bonding wires 160B and 170B.
  • the component numbers are similar to those in FIG. 1 , and have similar structural and electrical operation features. For the sake of brevity, details are not repeated here.
  • the present application is not limited to the embodiment shown in FIG. 12 , which is only used to illustrate one of the implementations of the present application. Without departing from the spirit of the present application, other appropriate elements can be used to implement Make the laser source 121B of this case.
  • FIG. 13 is a schematic diagram illustrating an image sensing device 130 of the image capture system 100 shown in FIG. 1 according to an embodiment of the present disclosure.
  • the hole 131 of the image sensing device 130 can be a through hole instead of an optical lens, so that light can directly pass through the hole 131 .
  • the diameter D1 of the hole 131 is between 0.1 mm and 3 mm. It should be noted that the present application is not limited to the embodiment shown in FIG. 13 , which is only used to exemplarily depict one of the implementation manners of the present application. Without departing from the spirit of the present case, the diameter of the hole 131 can be set to other appropriate values, depending on actual needs.
  • FIG. 14 is a schematic diagram illustrating an image sensing device 130 of the image capture system 100 shown in FIG. 1 according to an embodiment of the present disclosure.
  • the distance D2 between the hole 131 and the object under test 900 ranges from 0.1 mm to 5 mm. It should be noted that the present application is not limited to the embodiment shown in FIG. 14 , which is only used to exemplarily illustrate one of the implementation manners of the present application. Without departing from the spirit of the present case, the distance D2 between the hole 131 and the object under test 900 can be set to other appropriate values, depending on actual needs.
  • FIG. 15 is a schematic diagram illustrating an image sensing device 130C of the image capture system 100 shown in FIG. 1 according to an embodiment of the present disclosure.
  • the optical filter 137C of the image sensing device 130C in FIG. 15 is disposed under the hole 131C.
  • the optical filter 137C is used to filter out ambient light and allow reflected laser light to pass through the optical filter 137C.
  • the present application is not limited to the embodiment shown in FIG. 15 , which is only used to exemplarily illustrate one of the implementation manners of the present application. Without departing from the spirit of this project, the filter 137C can be placed in other appropriate positions, depending on actual needs.
  • FIG. 16 is a schematic diagram illustrating a hole 131 of the image sensing device 130 of the image capture system 100 shown in FIG. 1 according to an embodiment of the present disclosure.
  • the shape of the hole 131 can be circular, but the present application is not limited to the shape shown in FIG. 16 , and the shape of the hole 131 can also be polygonal.
  • FIG. 17 is a schematic diagram illustrating an aperture of an image sensing device 130 of the image capture system 100 shown in FIG. 1 according to an embodiment of the present disclosure.
  • the number of holes can be plural, such as the first hole 131I and the second hole 133II, and the shapes of the first hole 131I and the second hole 133II can be the same or different.
  • FIG. 18 is a schematic diagram of an aperture of an image sensing device 130 of the image capture system 100 shown in FIG. 1 according to an embodiment of the present disclosure.
  • the number of holes can be plural, such as the first hole 131III and the second hole 131IV, and the sizes of the first hole 131III and the second hole 131IV can be the same or different.
  • FIG. 19 is a schematic diagram illustrating the operation of an image sensing device of the image capture system shown in FIG. 1 according to an embodiment of the present disclosure.
  • the image sensing device 130D in FIG. 19 may have two holes.
  • the present application is not limited to the embodiment shown in FIG. 19 , which is only used to exemplarily illustrate one of the implementation manners of the present application. Without departing from the spirit of the present application, other appropriate numbers and positions of the holes of the image sensing device 130D may be configured, depending on actual needs.
  • FIG. 20A is a schematic diagram illustrating a detection of a user's finger according to an embodiment of the present disclosure.
  • FIG. 20B is a schematic diagram illustrating a living body signal of a user's finger as shown in FIG. 20A according to an embodiment of the present disclosure.
  • FIG. 20A is a photo of a user's finger on the hole 131 in FIG. 1 . It has been found through experiments that when the reflected light of the laser passes through the hole 131 and the image sensor 133 generates a mutual interference pattern according to the image (such as the spot image circled in Figure 20A), the spot image is caused by the flow of blood cells between the light rays. Therefore, when the data processing device 140 in FIG. 1 compares the light spot image signal with the living body threshold value, a living body detection signal as shown in FIG. 20B is generated.
  • FIG. 21A is a schematic diagram illustrating a detection of a non-living body according to an embodiment of the present disclosure.
  • FIG. 21B is a schematic diagram illustrating a detection signal of a non-living body as shown in FIG. 21A according to an embodiment of the present disclosure.
  • FIG. 21A is a photograph of a non-living finger positioned over hole 131 of FIG. 1 .
  • the image sensor 133 when the reflected light of the laser passes through the hole 131, the image sensor 133 generates a mutual interference pattern according to the image (such as the spot image circled in Figure 21A), so the spot image is bright and contrasty, and there is no blood flow Due to the generated interference, when the data processing device 140 compares the light spot image signal with the living body threshold value, a non-living body detection signal as shown in FIG. 21B is generated.
  • FIG. 22 is a schematic diagram illustrating an operation flow of an image capture method 2200 according to an embodiment of the present disclosure.
  • the image capture method 2200 includes the following steps: (step 2210) emit laser light by a laser source; (step 2220) the reflected light of the laser light passes through the hole of the image sensing device to form an image; (step 2230) by The image sensor generates an image signal according to the image; and (step 2240 ) the data processing device generates a living body detection signal according to the image signal.
  • step 2210 laser light can be emitted by the laser source 121 . Once the laser light from the laser source 121 hits the object under test, reflected light of the laser light will be formed.
  • step 2220 the reflected light of the laser passes through the hole 131 of the image sensing device 130 to form an image on the image sensor 133 .
  • step 2230 an image signal can be generated according to the image by the image sensor 133 .
  • the data processing device 140 can generate a living body detection signal according to the image signal.
  • step 2240 the step of generating the living body detection signal according to the image signal by the data processing device 140 can be further described as follows. First, the data processing device 140 compares the image signal with the living body threshold value, and secondly, when the image signal meets the living body threshold value, the data processing device 140 generates a living body detection signal.
  • the laser light emitted by the laser source 121 includes coherent light.
  • the image formed by the reflected light of the laser light passing through the hole 131 includes an interference pattern
  • the image signal generated by the image sensor 133 according to the image will include
  • the interference signal is then used by the data processing device 140 to generate a living body detection signal according to the image signal including the interference signal.
  • the image capture method 2200 further includes the following steps: filter out the ambient light by the filter 170 , and let the reflected light of the laser pass through the filter 170 .
  • the image capture method 2200 further includes the following steps: during the calibration phase, the laser device 120 stops emitting laser light, and the image sensor 133 continues to sense ambient light to generate an ambient signal.
  • step 2240 the step of generating the living body detection signal according to the image signal by the data processing device 140 can be further described as follows. Since the environmental signal has been obtained, the image signal can be calibrated by the data processing device 140 according to the environmental signal, so as to generate the living body detection signal. It should be noted that the present application is not limited to the process steps of the embodiment shown in FIG. 22 , which is only used to exemplarily illustrate one of the implementation manners of the present application.
  • the application of the present case has the following advantages.
  • Use the image capture system and image capture method in this case to confirm whether the object under test is a living body, for example, whether the object under test is a real human being, rather than a disguised prop with biological characteristics (such as rubber fingerprints), so as to avoid being detected by illegal persons
  • biometric disguised props to imitate the user, and then log into the user's electronic device or account, seriously affects the safety of use.
  • 131, 131A, 131B, 131C holes, optical elements

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请公开一种影像撷取系统,此影像撷取系统包含主板、激光装置、影像感测装置及数据处理装置。激光装置电性连接主板,且激光装置包含激光源,激光源用以发射激光。影像感测装置电性连接主板,且影像感测装置包含孔洞及影像感测器。激光的反射光或散射光通过孔洞而形成影像。影像感测器依据影像产生影像信号。数据处理装置电性连接主板,并用以依据影像信号产生活体侦测信号。本申请的影像撷取系统可确认待测物是否为活体,而非具有生物特征的伪装道具,以避免被不法人士以具有生物特征的伪装道具来模仿使用者,进而登入使用者的电子装置或账号,严重影响使用安全性。

Description

影像撷取系统及影像撷取方法 技术领域
本案有关于一种影像撷取系统及图像处理方法,且特别是有关于影像撷取系统根据近距离撷取的影像进行活体侦测及相关信号处理,来达到活体辨识,可运用于指纹及一般生物辨识。
背景技术
随着科技的发展,各式电子产品与付费机制陆续出现,以满足消费者的使用习惯与需求。因此,消费者对于个人资料越加重视,近年来,使用这些电子产品的安全性升级也成为业界的研究课题。
为加强消费者使用电子产品及电子付费的安全性,生物辨识技术日益受到重视。生物辨识技术的优点在于其可通过不同人之间的特殊生物特征来进行身份识别,大幅度地增进了安全性。
然而,不法人士通过制作具有生物特征的相关道具来蒙骗电子产品,例如对于采用指纹辨识的电子装置,不法人士利用模具或相关材料伪造复制具有使用者指纹特征的道具,使其得以通过身份验证。由此可知,即便采用生物辨识技术,依旧有被不法人士破解的疑虑,据此,如何有效判别解锁指纹是活体指纹或假体指纹在指纹验证过程中极为重要,为了提升电子产品的使用安全性,相关防伪科技的研究刻不容缓。
发明内容
本案内容的一技术态样关于一种影像撷取系统,此影像撷取系统包含主板、激光装置、影像感测装置及数据处理装置。激光装置电性连接主板,且激光装置包含激光源。激光源用以发射激光。影像感测装置电性连接主板,且影像感测装置包含孔洞及影像感测器。激光的反射光或散射光通过孔洞而形成影像。影像感测器依据影像产生影像信号。数据处理装置电性连接主板,并用以依据影像信号产生活体侦测信号。
在一实施例中,孔洞的直径介于0.1毫米至3毫米。
在另一实施例中,激光射到待测物后,形成反射光或散射光,其中孔洞与待测物的距离介于0.1毫米至5毫米。
在又一实施例中,孔洞的形状包含圆形及多边形的其中至少一者。
于再一实施例中,孔洞的数量为复数个,且复数个孔洞中的任两个孔洞的形状相同或不相同。
在一实施例中,孔洞的数量为复数个,且复数个孔洞中的任两个孔洞的大小相同或不相同。
在另一实施例中,数据处理装置比较影像信号以及活体门槛值,当影像信号符合活体门槛值,则数据处理装置产生活体侦测信号。
在又一实施例中,影像撷取系统还包含数据库,数据库用以储存活体门槛值。
于再一实施例中,激光源所发射的激光包含同调光,当激光的反射光或散射光通过孔洞而形成的影像包含干涉图样时,影像感测器根据影像产生的影像信号包含干涉信号,其中数据处理装置依据包含干涉信号的影像信号以产生活体侦测信号。
在一实施例中,影像的干涉图样包含光斑。
在另一实施例中,激光装置还包含第一导电层,第一导电层设置于主板上,并电性连接主板,其中激光源设置于第一导电层上,并电性连接第一导电层。
在又一实施例中,影像感测装置还包含第二导电层,第二导电层设置于主板上,并电性连接主板,其中影像感测器设置于第二导电层上,并电性连接第二导电层。
于再一实施例中,影像感测装置还包含滤光片,滤光片设置于孔洞的上方或下方,并用以滤除环境光,使激光的反射光或散射光通过滤光片。
在一实施例中,主板包含印刷电路板及软性印刷电路板的其中至少一者。
在另一实施例中,激光源包含边缘发射激光源及垂直腔面发射激光器的其中至少一者。
在又一实施例中,激光装置还包含基板及激光源。基板具有平坦表面与斜表面。激光源,设置于平坦表面上,其中激光源发射的激光经由斜表面反射而出。
于再一实施例中,平坦表面和斜表面之间的内夹角介于25度到75度。
在一实施例中,于校准阶段,激光装置停止发射激光,且影像感测器持续感测环境光以产生环境信号。
在另一实施例中,数据处理装置依据环境信号校准影像信号,借以产生活体侦测信号。
本案内容的又一技术态样关于一种影像撷取方法,此影像撷取方法包含:借由激光源发射激光;激光的反射光或散射光通过影像感测装置的孔洞而形成影像;借由影像感测器依据影像产生影像信号;以及借由数据处理装置依据影像信号产生活体侦测信号。
在一实施例中,孔洞的直径介于0.1毫米至3毫米。
在另一实施例中,激光射到待测物后,形成反射光或散射光,其中孔洞与待测物的距离介于0.1毫米至5毫米。
在又一实施例中,孔洞的形状包含圆形及多边形的其中至少一者。
于再一实施例中,孔洞的数量为复数个,且复数个孔洞中的任两个孔洞的形状相同或不相同。
在一实施例中,孔洞的数量为复数个,且复数个孔洞中的任两个孔洞的大小相同或不相同。
在另一实施例中,借由数据处理装置依据影像信号产生活体侦测信号的步骤包含:借由数据处理装置比较影像信号以及活体门槛值;以及当影像信号符合活体门槛值,则借由数据处理装置产生活体侦测信号。
在又一实施例中,激光源所发射的激光包含同调光,当激光的反射光或散射光通过孔洞而形成的影像包含干涉图样时,借由影像感测器根据影像产生的影像信号包含干涉信号,其中借由数据处理装置依据包含干涉信号的影像信号以产生活体侦测信号。
于再一实施例中,影像撷取方法还包含:借由滤光片滤除环境光,使激光的反射光或散射光通过滤光片。
在一实施例中,影像撷取方法还包含:于校准阶段,雷射装置停止发射激光,且影像感测器持续感测环境光以产生环境信号。
在另一实施例中,借由数据处理装置依据影像信号产生活体侦测信号的步骤包含:借由数据处理装置依据环境信号校准影像信号,借以产生活体侦测信号。
因此,根据本案的技术内容,通过本案的影像撷取系统及影像撷取方法来确认待测物是否为活体,例如待测物是否为真实的人类,而非具有生物特征的伪装道具(例如织物胶水或橡皮指纹…等等),以避免被不法人士以具有生物特征的伪装道具来模仿使用者,进而登入使用者的电子装置或账号,严重影响使用安全性。
附图说明
为让本揭露的上述和其他目的、特征、优点与实施例能更明显易懂,所附附图的说明如下:
图1为依照本揭露一实施例绘示一种影像撷取系统的示意图。
图2为依照本揭露一实施例绘示一种影像撷取系统的电路方框图。
图3为依照本揭露一实施例绘示一种影像撷取系统的电路方框图。
图4为依照本揭露一实施例绘示一种影像撷取系统的部分元件操作示意图。
图5为依照本揭露一实施例绘示一种影像撷取系统的部分元件操作示意图。
图6为依照本揭露一实施例绘示一种影像撷取系统的控制时序示意图。
图7为依照本揭露一实施例绘示一种影像撷取系统的控制时序示意图。
图8为依照本揭露一实施例绘示一种影像撷取系统的控制时序示意图。
图9为依照本揭露一实施例绘示一种影像撷取系统的控制时序示意图。
图10为依照本揭露一实施例绘示一种影像撷取系统的控制时序示意图。
图11为依照本揭露一实施例绘示一种影像撷取系统的示意图。
图12为依照本揭露一实施例绘示一种影像撷取系统的示意图。
图13为依照本揭露一实施例绘示一种如图1所示的影像撷取系统的影像感测装置的示意图。
图14为依照本揭露一实施例绘示一种如图1所示的影像撷取系统的影像感测装置的示意图。
图15为依照本揭露一实施例绘示一种如图1所示的影像撷取系统的影像感测装置的示意图。
图16为依照本揭露一实施例绘示一种如图1所示的影像撷取系统的影像感测装置的孔洞示意图。
图17为依照本揭露一实施例绘示一种如图1所示的影像撷取系统的影像感测装置的孔洞示意图。
图18为依照本揭露一实施例绘示一种如图1所示的影像撷取系统的影像感测装置的孔洞示意图。
图19为依照本揭露一实施例绘示一种如图1所示的影像撷取系统的影像感测装置的操作示意图。
图20A为依照本揭露一实施例绘示一种使用者手指的侦测示意图。
图20B为依照本揭露一实施例绘示一种如图20A的使用者手指的活体信号示意图。
图21A为依照本揭露一实施例绘示一种非活体的侦测示意图。
图21B为依照本揭露一实施例绘示一种如图21A的非活体的侦测信号示意图。
图22为依照本揭露一实施例绘示一种影像撷取方法的操作流程示意图。
根据惯常的作业方式,图中各种特征与元件并未依比例绘制,其绘制方式是为了以最佳的方式呈现与本揭露相关的具体特征与元件。此外,在不同图式间,以相同或相似的元件符号来指称相似的元件/部件。
具体实施方式
为了使本揭示内容的叙述更加详尽与完备,下文针对了本案的实施态样与具体实施例提出了说明性的描述;但这并非实施或运用本案具体实施例的唯一形式。实施方式中涵盖了多个具体实施例的特征以及用以建构与操作这些具体实施例的方法步骤与其顺序。然而,也可利用其他具体实施例来达成相同或均等的功能与步骤顺序。
除非本说明书另有定义,此处所用的科学与技术词汇的含义与本案所 属技术领域技术人员所理解与惯用的意义相同。此外,在不和上下文冲突的情形下,本说明书所用的单数名词涵盖该名词的复数型;而所用的复数名词时也涵盖该名词的单数型。
图1为依照本揭露一实施例绘示一种影像撷取系统100的示意图。如图所示,影像撷取系统100包含主板110、激光装置120、影像感测装置130及数据处理装置140。于连接关系上,激光装置120电性连接主板110,影像感测装置130电性连接主板110,且数据处理装置140也电性连接主板110。
如图1所示,激光装置120包含激光源121。此激光源121用以发射激光。影像感测装置130包含孔洞131及影像感测器133。一旦激光源121的激光射到待测物,就会形成激光的反射光,此反射光会通过孔洞131而于影像感测器133上形成影像。接着,影像感测器133依据上述影像以产生影像信号,再由数据处理装置140依据影像信号产生活体侦测信号。另外一提的是,本案说明书提及的反射光指光照射物体表面,会产生返回的光现象。此内文中提及的反射光泛指当光线照射于具有一致性反射角度的物体表面所产生的反射光,以及,光线照射于具有非一致性反射角度且凹凸不平整的反射角度的散射光。为使说明简洁,图示说明以反射光为例,但不排除散射光同时存在的可能性。
如此一来,即可通过本案的影像撷取系统100来确认待测物是否为活体,例如待测物是否为真实的人类,而非具有生物特征的伪装道具(例如橡皮指纹),以避免被不法人士以具有生物特征的伪装道具来模仿使用者,进而登入使用者的电子装置或账号,严重影响使用安全性。
在一实施例中,主板110可为软性印刷电路板(Flexible Printed Circuit,FPC)。在本实施例中,软性印刷电路板可用以导电及传输信号,因此,数据处理装置140可直接设置于主板110上,由主板110协助供电及传输信号。在另一实施例中,影像撷取系统100还包含连接部150,此连接部150用以与外部装置连接。然而,本案不以图1所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一,在不脱离本案的精神的状况下,当可使用其余适当的元件来实作本案的主板110。
在一实施例中,激光装置120还包含导电层123。导电层123设置于主板110上,并电性连接主板110。此外,激光源121设置于导电层123上,并电性连接导电层123。换言之,激光源121可通过导电层123而电性连接于主板110。在另一实施例中,激光源121可为分布式反馈(Distributed Feedback,DFB)激光、分布式布拉格反射器(Distributed Bragg reflector,DBR)激光、法布里-珀罗(Fabry-Perot)激光、垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser,VCSEL)或是发光二极管。举例而言,激光源121可为垂直腔面发射激光器(VCSEL)。然而,本案不以图1所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一,在不脱离本案的精神的状况 下,当可使用其余适当的元件来实作本案的激光源121。
在一实施例中,影像撷取系统100还包含接合线160。如图所示,激光装置120可通过接合线160而电性连接于主板110。
在一实施例中,影像感测装置130还包含导电层135。导电层135设置于主板110上,并电性连接主板110。此外,影像感测器133设置于导电层135上,并电性连接导电层135。换言之,影像感测器133可通过导电层135而电性连接于主板110。
在一实施例中,影像感测装置130还包含滤光片137。滤光片137设置于孔洞131的上方,并用以滤除环境光,使激光的反射光通过滤光片137,如此,可避免环境光影响到侦测的准确性,借以获得精确的活体侦测信号。在另一实施例中,影像感测装置130还包含封装结构139。在一实施例中,影像感测器133可为互补型金属氧化物半导体(complementary metal oxide semiconductor,CMOS)阵列、电荷耦合装置(charged coupled device,CDD)阵列或光电二极管(photodiode,PD)阵列中。然而,本案不以图1所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一。在不脱离本案的精神的状况下,当可将滤光片137设置于其余适当的位置,或使用其余适当的元件来实作本案的影像感测器133,端视实际需求而定。
图2为依照本揭露一实施例绘示一种影像撷取系统100的电路方框图。如图所示,数据处理装置140包含控制电路141、逻辑算术电路143、判断电路145及数据库147。于连接关系上,控制电路141及逻辑算术电路143电性连接影像感测装置130。影像感测装置130电性连接激光装置120。此外,判断电路145电性连接控制电路141、逻辑算术电路143及数据库147。
请一并参阅图1及图2,当激光装置120的激光源121的激光射到待测物时,会形成激光的反射光,此反射光会通过影像感测装置130的孔洞131而于影像感测装置130的影像感测器133上形成影像。接着,影像感测装置130的影像感测器133依据上述影像以产生影像信号。
随后,影像信号被传送到逻辑算术电路143,由逻辑算术电路143对其进行处理后,传送至判断电路145。此时,判断电路145会取得数据库147所储存的活体门槛值,并比较影像信号是否符合活体门槛值。如若影像信号符合活体门槛值,则由数据处理装置140产生活体侦测信号。举例而言,数据库147内可储存活体的临界值,若设定活体的临界值为80,则影像信号所相对的活体数值须高于80,才会由判断电路145判定为活体,再由数据处理装置140产生活体侦测信号。
在另一实施例中,也可设定活体的临界范围介于70至90,若影像信号所相对的活体数值须为85,则判断电路145会判定影像信号的活体数值有符合活体的临界范围,因此判定为活体,后续再由数据处理装置140产生活体侦测信号。在一实施例中,数据处理装置140可为特殊应用集成电路(Application Specific Integrated circuit,ASIC)。需说明的是,本案不以图2所 示的实施例为限,其仅用以例示性地绘示本案的实现方式之一。在不脱离本案的精神的状况下,当可将活体的临界值或临界范围设定为其余适当的数值或范围,或使用其余适当的元件来实作本案的数据处理装置140,端视实际需求而定。
图3为依照本揭露一实施例绘示一种如图1所示的影像撷取系统100的电路方框图。如图所示,激光装置120可包含光学元件125。光学元件125可设置于激光源121之上,并可用以调节激光源121。此外,影像感测装置130也可包含光学元件131(例如孔洞131),借由光学元件131来对影像进行初步处理,再由影像感测器133对影像进一步处理以产生影像信号。然而,本案不以图3所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一。
图4为依照本揭露一实施例绘示一种影像撷取系统100的部分元件操作示意图。如图所示,激光源121所发射的激光122可为同调光(coherence light),激光122射到待测物900的同一点时,会产生反射光124。以待测物900是人为例,激光122照射到活体内的血液时,因活体内的血液会有流动现象,使得激光122照射到这些血球即产生干涉效应,此干涉效应类似水波撞击石头产生的水波现象,动态的水波现象进一步扰动另一水波,动态的血球流动也会造成光线间的扰动,使得活体的反射光124会形成与非活体的反射光124有明暗上的差异。
一旦反射光124通过图1所示的孔洞131,会形成具有干涉图样的影像,影像感测器133根据影像产生具有干涉信号的影像信号,再由数据处理装置140依据具有干涉信号的影像信号以产生活体侦测信号。在另一实施例中,上述影像的干涉图样包含光斑(speckle)。然而,本案不以图4所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一。
图5为依照本揭露一实施例绘示一种如图1所示的影像撷取系统100的部分元件操作示意图。相较于图4,图5中的激光源121所发射的激光126射到待测物900的不同点上,而产生反射光128。同理,激光126照射到活体时也会产生干涉效应,反射光128通过图1所示的孔洞131,会形成具有干涉图样的影像,影像感测器133根据影像产生具有干涉信号的影像信号,再由数据处理装置140依据具有干涉信号的影像信号以产生活体侦测信号。然而,本案不以图5所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一。
图6为依照本揭露一实施例绘示一种影像撷取系统100的控制时序示意图。如图所示,当影像撷取系统100控制激光装置120开启并射出激光时,影像撷取系统100也会控制影像感测装置130开启以接收激光的反射光。然而,由于噪声(如环境光)的影响,影像感测装置130可能会接收到噪声而影响侦测的精确度。因此,本案还提出解决上述因噪声而影响到侦测精确度的方式,说明如后。
图7为依照本揭露一实施例绘示一种影像撷取系统100的控制时序示意图。如图所示,于校准阶段,影像撷取系统100会于控制激光装置120停止发射激光时,同时控制影像感测装置130持续感测光线。由于此时激光装置120并未发射激光,影像感测装置130所感测到光线为环境光。影像感测装置130会根据环境光以产生环境信号。随后,数据处理装置140依据环境信号精确地校准影像信号,借以产生活体侦测信号。
简言之,于校准阶段,激光装置120停止发射激光,此时,影像感测装置130会根据环境光以产生环境信号。此环境信号可视为噪声,而由数据处理装置140将其滤除,借以获得精确的活体侦测信号。
后续图8、图9及图10则分别绘示不同的校准态样。例如图8绘示影像感测装置130感测到多个环境光以进行校准的态样。图9绘示激光装置120先长时间发射激光,后长时间停止发射激光,且影像感测装置130间歇性地开启以感测光线的方式,影像撷取系统100可借由上述不同的控制方式而取得更加精确的环境光,进而校准影像信号以产生活体侦测信号。图10绘示激光装置120长时间发射激光,且影像感测装置130间歇性地开启以感测光线的方式,影像撷取系统100可借由上述不同的控制方式而取得更加精确的环境光,进而校准影像信号以产生活体侦测信号。然而,本案不以图6至图10所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一。
图11为依照本揭露一实施例绘示一种影像撷取系统100A的示意图。相较于第1图所示的影像撷取系统100,图11的影像撷取系统100A的主板110A可为印刷电路板(Printed Circuit Board,PCB),图中的标号150A则可为焊点。需说明的是,于图11的实施例中,元件标号类似于图1中的元件标号者,具备类似的结构及电性操作特征,为使说明书简洁,于此不作赘述。此外,本案不以图11所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一。
图12为依照本揭露一实施例绘示一种影像撷取系统100B的示意图。相较于图1所示的影像撷取系统100,图12的影像撷取系统100B的激光装置120B有所不同,详述如后。
如图所示,激光装置120B包含激光源121B及基板127B。上述基板127B具有平坦表面127B1与斜表面127B2。于结构上,激光源121B设置于平坦表面127B1上。于操作上,激光源121B发射的激光经由斜表面127B2反射而出。
在一实施例中,平坦表面127B1和斜表面127B2之间的内夹角θ介于25度到75度。在另一实施例中,激光装置120B还包含光学元件125B及封装结构129B。在另一实施例中,激光源121B可为分布式反馈(Distributed Feedback,DFB)激光、分布式布拉格反射器(Distributed Bragg reflector,DBR)激光、法布里-珀罗(Fabry-Perot)激光、垂直腔面发射激光器(Vertical Cavity  Surface Emitting Laser,VCSEL)或是发光二极管。举例而言,激光源121B可为边缘发射激光源。
在一实施例中,影像撷取系统100B还包含接合线160B及170B。如图所示,激光装置120B可通过接合线160B及170B而电性连接于主板110B。需说明的是,于图12的实施例中,元件标号类似于图1中的元件标号者,具备类似的结构及电性操作特征,为使说明书简洁,于此不作赘述。此外,本案不以图12所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一,在不脱离本案的精神的状况下,当可使用其余适当的元件来实作本案的激光源121B。
图13为依照本揭露一实施例绘示一种如图1所示的影像撷取系统100的影像感测装置130的示意图。如图所示,影像感测装置130的孔洞131可为贯通开孔而非光学透镜,使光线得以直接通过孔洞131。在另一实施例中,孔洞131的直径D1介于0.1毫米至3毫米。需说明的是,本案不以图13所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一。在不脱离本案的精神的状况下,当可将孔洞131的直径设定为其余适当的数值,端视实际需求而定。
图14为依照本揭露一实施例绘示一种如图1所示的影像撷取系统100的影像感测装置130的示意图。如图所示,孔洞131与待测物900的距离D2介于0.1毫米至5毫米。需说明的是,本案不以图14所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一。在不脱离本案的精神的状况下,当可将孔洞131与待测物900的距离D2设定为其余适当的数值,端视实际需求而定。
图15为依照本揭露一实施例绘示一种如图1所示的影像撷取系统100的影像感测装置130C的示意图。相较于图1,图15的影像感测装置130C的滤光片137C设置于孔洞131C的下方,滤光片137C用以滤除环境光,使激光的反射光通过滤光片137C。然而,本案不以图15所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一。在不脱离本案的精神的状况下,当可将滤光片137C设置于其余适当的位置,端视实际需求而定。
图16为依照本揭露一实施例绘示一种如图1所示的影像撷取系统100的影像感测装置130的孔洞131示意图。如图所示,孔洞131的形状可为圆形,然本案不以图16所示的形状为限,孔洞131的形状也可为多边形。
图17为依照本揭露一实施例绘示一种如图1所示的影像撷取系统100的影像感测装置130的孔洞示意图。如图所示,孔洞的数量可为复数个,例如第一孔洞131I及第二孔洞131II,且第一孔洞131I及第二孔洞131II的形状可相同或不相同。
图18为依照本揭露一实施例绘示一种如图1所示的影像撷取系统100的影像感测装置130的孔洞示意图。如图所示,孔洞的数量可为复数个,例如第一孔洞131III及第二孔洞131IV,且第一孔洞131III及第二孔洞131IV 的大小可相同或不相同。
图19为依照本揭露一实施例绘示一种如图1所示的影像撷取系统的影像感测装置的操作示意图。如图所示,相较于图1,图19的影像感测装置130D的孔洞可为两个。然而,本案不以图19所示的实施例为限,其仅用以例示性地绘示本案的实现方式之一。在不脱离本案的精神的状况下,当可将影像感测装置130D的孔洞配置为其余适当的数量以及位置,端视实际需求而定。
图20A为依照本揭露一实施例绘示一种使用者手指的侦测示意图。图20B为依照本揭露一实施例绘示一种如图20A的使用者手指的活体信号示意图。图20A为使用者的手指位于图1的孔洞131上的照片。经实验发现,当激光的反射光通过该孔洞131而使影像感测器133根据该影像产生互相干涉图样(如图20A圈起处的光斑影像)时,此光斑影像因血球流动造成光线间的扰动而变得较为模糊,因此,当图1的数据处理装置140比较该光斑影像信号及活体门槛值,即产生如图20B的活体侦测信号。
图21A为依照本揭露一实施例绘示一种非活体的侦测示意图。图21B为依照本揭露一实施例绘示一种如图21A的非活体的侦测信号示意图。图21A为非活体手指位于图1的孔洞131上的照片。经实验发现,当激光的反射光通过该孔洞131而使影像感测器133根据该影像产生互相干涉图样(如图21A圈起处的光斑影像)时,因此光斑影像明亮对比度高,无血液流动产生的干涉情况,从而当数据处理装置140比较该光斑影像信号及活体门槛值时,即产生如图21B的非活体侦测信号。
图22为依照本揭露一实施例绘示一种影像撷取方法2200的操作流程示意图。如图所示,影像撷取方法2200包含以下步骤:(步骤2210)借由激光源发射激光;(步骤2220)激光的反射光通过影像感测装置的孔洞而形成影像;(步骤2230)借由影像感测器依据影像产生影像信号;以及(步骤2240)借由数据处理装置依据影像信号产生活体侦测信号。
为使本案的影像撷取方法2200易于理解,请一并参阅图1。于步骤2210,可借由激光源121发射激光。一旦激光源121的激光射到待测物,就会形成激光的反射光。于步骤2220,激光的反射光通过影像感测装置130的孔洞131而于影像感测器133上形成影像。接着,于步骤2230,可借由影像感测器133依据影像产生影像信号。此外,于步骤2240,可借由数据处理装置140依据影像信号产生活体侦测信号。
在另一实施例中,请参阅步骤2240,借由数据处理装置140依据影像信号产生活体侦测信号的步骤可进一步说明如后。首先,借由数据处理装置140比较影像信号以及活体门槛值,其次,当影像信号符合活体门槛值,则借由数据处理装置140产生活体侦测信号。
在一实施例中,激光源121所发射的激光包含同调光,当激光的反射光通过孔洞131而形成的影像包含干涉图样时,借由影像感测器133根据 影像产生的影像信号会包含干涉信号,再借由数据处理装置140依据包含干涉信号的影像信号以产生活体侦测信号。
于另一实施例中,影像撷取方法2200还包含以下步骤:借由滤光片170滤除环境光,使激光的反射光通过滤光片170。
在一实施例中,影像撷取方法2200还包含以下步骤:于校准阶段,激光装置120停止发射激光,且影像感测器133持续感测环境光以产生环境信号。
在另一实施例中,请参阅步骤2240,借由数据处理装置140依据影像信号产生活体侦测信号的步骤可进一步说明如后。由于已取得环境信号,因此,可借由数据处理装置140依据环境信号校准影像信号,借以产生活体侦测信号。需说明的是,本案不以图22所示的实施例的流程步骤为限,其仅用以例示性地绘示本案的实现方式之一。
由上述本案实施方式可知,应用本案具有下列优点。通过本案的影像撷取系统及影像撷取方法来确认待测物是否为活体,例如待测物是否为真实的人类,而非具有生物特征的伪装道具(例如橡胶指纹),以避免被不法人士以具有生物特征的伪装道具来模仿使用者,进而登入使用者的电子装置或账号,严重影响使用安全性。
【符号说明】
100、100A:影像撷取系统
110、110A、110B:主板
120、120A、120B:激光装置
121、121A、121B:激光源
122:激光
123、123A:导电层
124:反射光
125、125B:光学元件
126:激光
127B:基板
127B1:平坦表面
127B2:斜表面
128:反射光
129B:封装结构
130、130A、130B、130C、130D:影像感测装置
131、131A、131B、131C:孔洞、光学元件
131I、131II、131III、131IV:孔洞
133、133A、133B、133C、133D:影像感测器
135、135A、135B、135C、135D:导电层
137、137A、137B、137C、137D:滤光片
139、139A、139B、139C、139D:封装结构
140、140A、140B:数据处理装置
141:控制电路
143:逻辑算术电路
145:判断电路
147:数据库
150、150B:连接部
150A:焊点
900:待测物
2200:方法
2210~2240:步骤
D1:直径
D2:距离。

Claims (30)

  1. 一种影像撷取系统,其特征在于,包含:
    主板;
    激光装置,电性连接该主板,包含:
    激光源,用以发射激光;
    影像感测装置,电性连接该主板,包含:
    孔洞,其中该激光的反射光或散射光通过该孔洞而形成影像;以及
    影像感测器,用以依据该影像产生影像信号;以及
    数据处理装置,电性连接该主板,用以依据该影像信号产生活体侦测信号。
  2. 根据权利要求1所述的影像撷取系统,其特征在于,该孔洞的直径介于0.1毫米至3毫米。
  3. 根据权利要求1所述的影像撷取系统,其特征在于,该激光射到待测物后,形成该反射光或该散射光,其中该孔洞与该待测物的距离介于0.1毫米至5毫米。
  4. 根据权利要求1所述的影像撷取系统,其特征在于,该孔洞的形状包含圆形及多边形的其中至少一者。
  5. 根据权利要求1所述的影像撷取系统,其特征在于,该孔洞的数量为复数个,且复数个孔洞中的任两个孔洞的形状相同或不相同。
  6. 根据权利要求1所述的影像撷取系统,其特征在于,该孔洞的数量为复数个,且复数个孔洞中的任两个孔洞的大小相同或不相同。
  7. 根据权利要求1所述的影像撷取系统,其特征在于,该数据处理装置比较该影像信号以及活体门槛值,当该影像信号符合该活体门槛值,则该数据处理装置产生该活体侦测信号。
  8. 根据权利要求1所述的影像撷取系统,其特征在于,该影像撷取系统还包含:
    数据库,用以储存该活体门槛值。
  9. 根据权利要求1所述的影像撷取系统,其特征在于,该激光源所发射的该激光包含同调光,当该激光的该反射光或该散射光通过该孔洞而形成的该影像包含干涉图样时,该影像感测器根据该影像产生的该影像信号包含干涉信号,其中该数据处理装置依据包含该干涉信号的该影像信号以产生该活体侦测信号。
  10. 根据权利要求9所述的影像撷取系统,其特征在于,该影像的该干涉图样包含光斑。
  11. 根据权利要求1所述的影像撷取系统,其特征在于,该激光装 置还包含:
    第一导电层,设置于该主板上,并电性连接该主板,其中该激光源设置于该第一导电层上,并电性连接该第一导电层。
  12. 根据权利要求11所述的影像撷取系统,其特征在于,该影像感测装置还包含:
    第二导电层,设置于该主板上,并电性连接该主板,其中该影像感测器设置于该第二导电层上,并电性连接该第二导电层。
  13. 根据权利要求1所述的影像撷取系统,其特征在于,该影像感测装置还包含:
    滤光片,设置于该孔洞的上方或下方,并用以滤除环境光,使该激光的该反射光或该散射光通过该滤光片。
  14. 根据权利要求1所述的影像撷取系统,其特征在于,该主板包含印刷电路板及软性印刷电路板的其中至少一者。
  15. 根据权利要求1所述的影像撷取系统,其特征在于,该激光源包含边缘发射激光源及垂直腔面发射激光器的其中至少一者。
  16. 根据权利要求1所述的影像撷取系统,其特征在于,该激光装置还包含:
    基板,具有平坦表面与斜表面;以及
    激光源,设置于该平坦表面上,其中该激光源发射的该激光经由该斜表面反射而出。
  17. 根据权利要求16所述的影像撷取系统,其特征在于,该平坦表面和该斜表面之间的内夹角介于25度到75度。
  18. 根据权利要求1所述的影像撷取系统,其特征在于,于校准阶段,该激光装置停止发射该激光,且该影像感测装置持续感测环境光以产生环境信号。
  19. 根据权利要求18所述的影像撷取系统,其特征在于,该数据处理装置依据该环境信号校准该影像信号,借以产生该活体侦测信号。
  20. 一种影像撷取方法,其特征在于,包含:
    借由激光源发射激光;
    该激光的反射光或散射光通过影像感测装置的孔洞而形成影像;
    借由影像感测器依据该影像产生影像信号;以及
    借由数据处理装置依据该影像信号产生活体侦测信号。
  21. 根据权利要求20所述的影像撷取方法,其特征在于,该孔洞的直径介于0.1毫米至3毫米。
  22. 根据权利要求20所述的影像撷取方法,其特征在于,该激光射到待测物后,形成该反射光或该散射光,其中该孔洞与该待测物的距离介于0.1毫米至5毫米。
  23. 根据权利要求20所述的影像撷取方法,其特征在于,该孔洞的 形状包含圆形及多边形的其中至少一者。
  24. 根据权利要求20所述的影像撷取方法,其特征在于,该孔洞的数量为复数个,且复数个孔洞中的任两个孔洞的形状相同或不相同。
  25. 根据权利要求20所述的影像撷取方法,其特征在于,该孔洞的数量为复数个,且复数个孔洞中的任两个孔洞的大小相同或不相同。
  26. 根据权利要求20所述的影像撷取方法,其特征在于,借由该数据处理装置依据该影像信号产生该活体侦测信号的步骤包含:
    借由该数据处理装置比较该影像信号以及活体门槛值;以及
    当该影像信号符合该活体门槛值,则借由该数据处理装置产生该活体侦测信号。
  27. 根据权利要求20所述的影像撷取方法,其特征在于,该激光源所发射的该激光包含同调光,当该激光的该反射光或该散射光通过该孔洞而形成的该影像包含干涉图样时,借由该影像感测器根据该影像产生的该影像信号包含干涉信号,其中借由该数据处理装置依据包含该干涉信号的该影像信号以产生该活体侦测信号。
  28. 根据权利要求20所述的影像撷取方法,其特征在于,还包含:
    借由滤光片滤除环境光,使该激光的该反射光或该散射光通过该滤光片。
  29. 根据权利要求20所述的影像撷取方法,其特征在于,还包含:
    于校准阶段,该激光源停止发射该激光,且该影像感测器持续感测环境光以产生环境信号。
  30. 根据权利要求29所述的影像撷取方法,其特征在于,借由该数据处理装置依据该影像信号产生该活体侦测信号的步骤包含:
    借由该数据处理装置依据该环境信号校准该影像信号,借以产生该活体侦测信号。
PCT/CN2021/101037 2021-06-18 2021-06-18 影像撷取系统及影像撷取方法 WO2022261969A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101037 WO2022261969A1 (zh) 2021-06-18 2021-06-18 影像撷取系统及影像撷取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101037 WO2022261969A1 (zh) 2021-06-18 2021-06-18 影像撷取系统及影像撷取方法

Publications (1)

Publication Number Publication Date
WO2022261969A1 true WO2022261969A1 (zh) 2022-12-22

Family

ID=84526643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101037 WO2022261969A1 (zh) 2021-06-18 2021-06-18 影像撷取系统及影像撷取方法

Country Status (1)

Country Link
WO (1) WO2022261969A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062199A2 (en) * 2006-11-24 2008-05-29 Ucl Business Plc Imaging method and apparatus
US20100007855A1 (en) * 2008-07-11 2010-01-14 Taisuke Murata Projection-type image display apparatus
CN101782506A (zh) * 2010-03-05 2010-07-21 华南师范大学 共焦—光声双模显微成像方法及其装置
CN205405544U (zh) * 2016-02-27 2016-07-27 南京福瑞林生物科技有限公司 活体指纹识别装置
CN109799602A (zh) * 2018-12-24 2019-05-24 清华大学 一种基于线扫描时空聚焦的光显微成像装置及方法
CN111652115A (zh) * 2020-05-29 2020-09-11 上海天马微电子有限公司 显示模组、显示装置以及显示装置的指纹识别方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062199A2 (en) * 2006-11-24 2008-05-29 Ucl Business Plc Imaging method and apparatus
US20100007855A1 (en) * 2008-07-11 2010-01-14 Taisuke Murata Projection-type image display apparatus
CN101782506A (zh) * 2010-03-05 2010-07-21 华南师范大学 共焦—光声双模显微成像方法及其装置
CN205405544U (zh) * 2016-02-27 2016-07-27 南京福瑞林生物科技有限公司 活体指纹识别装置
CN109799602A (zh) * 2018-12-24 2019-05-24 清华大学 一种基于线扫描时空聚焦的光显微成像装置及方法
CN111652115A (zh) * 2020-05-29 2020-09-11 上海天马微电子有限公司 显示模组、显示装置以及显示装置的指纹识别方法

Similar Documents

Publication Publication Date Title
KR101923335B1 (ko) 지문 위조 방지 광 감지를 갖는 다기능 지문 센서
EP3262568B1 (en) Multifunction fingerprint sensor
TWI536272B (zh) 生物辨識裝置及方法
KR930002346B1 (ko) 생체(biological object)검지 장치
CN102804229B (zh) 确定设备、指纹输入设备、确定方法以及确定程序
CN108604289B (zh) 用于身份验证的有机体检测系统和方法
US11194992B2 (en) Fingerprint sensor with liveness detection
JP2003006627A (ja) 指紋入力装置
KR102146089B1 (ko) 지문 센서를 포함하는 디바이스의 안티-스푸핑 방법 및 시스템
US20200250448A1 (en) Spoof detection using dual-band near-infrared (nir) imaging
US11089255B2 (en) Fingerprint recognition system and identification method thereof
CN109739344B (zh) 基于眼球运动轨迹的解锁方法、装置、设备和存储介质
US20230334897A1 (en) Biometrics sensor
US10380408B2 (en) Method of detecting fraud
US20210334505A1 (en) Image capturing system and method for capturing image
WO2022261969A1 (zh) 影像撷取系统及影像撷取方法
CN110544424A (zh) 具有检测标识的随机纹理防伪标识结构
TW202301183A (zh) 影像擷取系統及影像擷取方法
CN212135455U (zh) 生物特征检测装置、电子设备
CN114008687A (zh) 基于镜面反射和漫反射的欺骗检测
US11468712B2 (en) Liveness detection apparatus, system and method
CN115775396B (zh) 用于利用显示器下的指纹传感器检测伪造指纹的方法
US11928889B2 (en) Photographing apparatus and authentication apparatus
TWI623229B (zh) 相機模組
CN114676403A (zh) 认证系统、设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21945552

Country of ref document: EP

Kind code of ref document: A1