WO2022260122A1 - Liquefied carbon dioxide press-fitting system and liquefied carbon dioxide press-fitting method - Google Patents

Liquefied carbon dioxide press-fitting system and liquefied carbon dioxide press-fitting method Download PDF

Info

Publication number
WO2022260122A1
WO2022260122A1 PCT/JP2022/023261 JP2022023261W WO2022260122A1 WO 2022260122 A1 WO2022260122 A1 WO 2022260122A1 JP 2022023261 W JP2022023261 W JP 2022023261W WO 2022260122 A1 WO2022260122 A1 WO 2022260122A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
liquefied carbon
floating body
dioxide gas
transport ship
Prior art date
Application number
PCT/JP2022/023261
Other languages
French (fr)
Japanese (ja)
Inventor
孝 平川
紀之 国分
和仁 市原
賢兒 金
哲也 安田
治樹 吉本
Original Assignee
ジャパンマリンユナイテッド株式会社
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパンマリンユナイテッド株式会社, 千代田化工建設株式会社 filed Critical ジャパンマリンユナイテッド株式会社
Priority to AU2022289804A priority Critical patent/AU2022289804A1/en
Priority to EP22820301.4A priority patent/EP4353582A1/en
Publication of WO2022260122A1 publication Critical patent/WO2022260122A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines

Definitions

  • the present invention relates to a system and method for injecting liquefied carbon dioxide gas (liquefied CO 2 ) in CCS (Carbon Capture and Storage).
  • CCS carbon dioxide capture and storage
  • CCS liquefied carbon dioxide transportation/injection method
  • the separated and recovered CO2 is compressed and liquefied, temporarily stored in a land tank in the form of liquefied carbon dioxide, loaded from the tank on a liquefied carbon dioxide transport ship, and transported to the storage point.
  • the liquefied carbon dioxide gas is injected from a liquefied carbon dioxide transport ship into the aquifer under the seabed (see, for example, Patent Document 1).
  • liquefied carbon dioxide for example, -10 ° C / 2.289 MPa ⁇ -50°C/0.684 MPa
  • a predetermined pressure 10 MPa or more
  • the temperature is raised to 0°C or more and press-fitting is performed.
  • the present invention has been made in view of such circumstances, and its object is to provide a liquefied carbon dioxide injection system and a liquefied carbon dioxide injection method that can inject liquefied carbon dioxide into the seabed at low cost. .
  • a liquefied carbon dioxide gas injection system includes a floating body moored offshore and a temperature raising and pressurizing facility mounted on the floating body for raising the temperature and pressure of the liquefied carbon dioxide gas. , a loading hose for sending liquefied carbon dioxide from the liquefied carbon dioxide gas storage tank in the liquefied carbon dioxide transport ship to the temperature raising and pressurizing equipment of the floating body, and liquefaction whose temperature and pressure are raised by the temperature raising and pressurizing equipment connected to the floating body. and a flexible riser pipe for sending and injecting carbon dioxide into the seabed.
  • This floating body does not have a tank to store liquefied carbon dioxide gas, and the injection system is operated remotely from the transport ship and is operated unmanned.
  • Another aspect of the present invention is a liquefied carbon dioxide injection method.
  • This method includes the steps of approaching a floating body moored off the ocean with a liquefied carbon dioxide transport ship, and connecting a gangway provided on the liquefied carbon dioxide transport ship to the floating body so that a worker can reach the floating body from the liquefied carbon dioxide transport ship.
  • a step of raising the temperature and pressure of the liquefied carbon dioxide by a temperature raising and pressurizing equipment and a step of sending the raised and pressurized liquefied carbon dioxide to the seabed through a flexible riser pipe and injecting it into the seabed.
  • FIG. 1 is a diagram showing a schematic flow of CCS using a liquefied carbon dioxide gas injection system according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram of a liquefied carbon dioxide injection system according to an embodiment of the present invention
  • FIG. 1 is a diagram showing a schematic flow of CCS using a liquefied carbon dioxide gas injection system according to an embodiment of the present invention.
  • FIG. 1 shows a liquefied carbon dioxide transport/injection type CCS.
  • CO 2 is separated and captured from a CO 2 generating source such as flue gas of a coal-fired power plant using, for example, a chemical absorption method.
  • a CO 2 generating source such as flue gas of a coal-fired power plant using, for example, a chemical absorption method.
  • the collected CO 2 is compressed and liquefied by the compression/liquefaction device 101 and stored in the tank 102 on land in the form of liquefied carbon dioxide.
  • the liquefied carbon dioxide gas is loaded from the tank 102 onto the liquefied carbon dioxide transport vessel 100 using the loading arm 103 and transported to the floating body 12 moored on the ocean 110 .
  • the liquefied carbon dioxide loaded on the liquefied carbon dioxide transport ship 100 is sent by the loading hose 14 to the temperature raising and pressurizing equipment mounted on the floating body 12 .
  • the liquefied carbon dioxide gas which has been heated and pressurized by the temperature raising and pressurizing equipment, is sent to the wellhead equipment 104 installed on the seabed 112 via the flexible riser pipe 16 .
  • the liquefied carbon dioxide gas is injected into the subseafloor reservoir 114 by wellhead equipment 104 .
  • FIG. 2 is a schematic diagram of the liquefied carbon dioxide injection system 10 according to the embodiment of the present invention.
  • the liquefied carbon dioxide gas injection system 10 includes a floating body 12 moored on the ocean 110, a temperature raising and pressurizing device 18 mounted on the floating body 12, a loading hose 14 connecting the liquefied carbon dioxide transport ship 100 and the floating body 12, A flexible riser pipe 16 always connected to the floating body 12 and a gangway 24 spanned between the liquefied carbon dioxide transport ship 100 and the floating body 12 are provided.
  • the liquefied carbon dioxide transport ship 100 includes a liquefied carbon dioxide storage tank 20 and a gangway 24 .
  • the liquefied carbon dioxide storage tank 20 stores liquefied carbon dioxide (liquefied CO 2 ).
  • the temperature of liquefied carbon dioxide may be, for example, ⁇ 10° C. to ⁇ 50° C.
  • the pressure of liquefied carbon dioxide may be, for example, 2.289 MPa to 0.684 MPa.
  • the gangway 24 is a movable connecting bridge (telescopic gangway) for enabling workers to come and go between the liquefied carbon dioxide gas transport ship 100 and the floating body 12, and has the functions of moving, ascending, descending, and expanding and contracting. .
  • the gangway 24 is installed on the liquefied carbon dioxide transport ship 100 .
  • the gangway 24 spans from the liquefied carbon dioxide gas transport ship 100 to the floating body 12 when the liquefied carbon dioxide gas transport ship 100 approaches the floating body 12 .
  • the floating body 12 is an advanced spar (SPAR (cylindrical)) type simple floating offshore base.
  • the advanced spar type floating body is characterized by its small size and low vibration.
  • the floating body 12 includes an upper hull portion 30 located in the sea, a lower hull portion 32 located in the sea, and a column portion 34 connecting the upper hull portion 30 and the lower hull portion 32 .
  • the advanced spar-type floating body reduces sway by canceling out the wave pressure between the upper hull section 30 and the lower hull section 32 .
  • the advanced spar-type floating structure since the advanced spar-type floating structure has a smaller draft than normal spar-type floating structures, it can be constructed and transported in an upright position and installed in relatively shallow water.
  • a mooring cable 36 extending from the seabed is connected to the lower hull section 32 .
  • a turntable 38 is provided on the upper portion of the upper hull portion 30, and a loading hose reel 40 and a mooring hawser winch 42 are installed on the turntable 38. As shown in FIG. 2,
  • An upper hull portion 30 of the floating body 12 is provided with a temperature raising/boosting equipment 18 and a power generating equipment 19 that supplies power to the temperature raising/boosting equipment 18 .
  • the temperature raising and pressurizing equipment 18 injects liquefied carbon dioxide (for example, ⁇ 10° C./2.289 MPa to ⁇ 50° C./0.684 MPa) received through the loading hose 14 into the seabed reservoir 114 (see FIG. 1). and to raise the temperature to prevent clogging due to freezing of surrounding water and formation of CO 2 hydrate when liquefied carbon dioxide gas is injected into the reservoir 114 .
  • liquefied carbon dioxide for example, ⁇ 10° C./2.289 MPa to ⁇ 50° C./0.684 MPa
  • injection pressure varies depending on the depth of the reservoir 114, the permeability, etc., but is generally indicated by "Static Head + 3 MPa to the breaking pressure of the shielding layer" at the injection point.
  • Static Head + 3 MPa to the breaking pressure of the shielding layer at the injection point.
  • the injection pressure is preferably about 10 MPa to 20 MPa at the seabed wellhead facility 104 (see FIG. 1). becomes.
  • the injection temperature of liquefied carbon dioxide is preferably 0°C or higher.
  • the loading hose 14 is a hose for sending the liquefied carbon dioxide 22 stored in the liquefied carbon dioxide storage tank 20 inside the liquefied carbon dioxide transport ship 100 to the temperature raising and pressurizing equipment 18 of the floating body 12 .
  • the loading hose 14 connects the liquefied carbon dioxide gas storage tank 20 and the temperature raising/pressurizing equipment 18 .
  • a hose other than the loading hose 14 may be interposed between the liquefied carbon dioxide gas storage tank 20 and the temperature raising/pressurizing equipment 18 . Transfer of the liquefied carbon dioxide gas 22 is performed using a cargo pump 21 .
  • a drum (not shown) for temporarily storing the liquefied carbon dioxide 22 from the liquefied carbon dioxide storage tank 20 may be arranged before the temperature raising and pressurizing equipment 18 .
  • the liquefied carbon dioxide gas that has been heated and pressurized by the temperature raising and pressurizing equipment 18 is sent to the wellhead equipment 104 on the seabed via the flexible riser pipe 16 and injected into the reservoir 114 .
  • One end of the flexible riser pipe 16 is permanently connected to the upper hull portion 30 of the floating body 12, and the other end of the flexible riser pipe 16 is connected to the subsea wellhead facility 104 (see FIG. 1).
  • one flexible riser pipe 16 is illustrated in FIG. 2, a plurality of flexible riser pipes 16 may be arranged as shown in FIG.
  • the liquefied carbon dioxide transport ship 100 approaches the floating body 12 moored offshore. Then, the mooring hawser 44 is used to bring the liquefied carbon dioxide transport ship 100 close to the floating body 12 to a position of about 30 m.
  • the gangway 24 provided on the liquefied carbon dioxide transport ship 100 is connected to the floating body 12 .
  • a worker moves from the liquefied carbon dioxide transport ship 100 to the floating body 12 via the gangway.
  • the loading hose 14 wound around the loading hose reel 40 of the floating body 12 is let out and connected to the bow loading system 48 provided on the liquefied carbon dioxide transport ship 100 .
  • the liquefied carbon dioxide gas storage tank 20 in the liquefied carbon dioxide transport ship 100 and the temperature raising and pressurizing equipment 18 mounted on the floating body 12 are connected.
  • the worker who has moved to the floating body 12 activates the power generation equipment 19 and the temperature raising/boosting equipment 18 of the floating body 12 .
  • the liquefied carbon dioxide gas is sent from the liquefied carbon dioxide gas storage tank 20 to the heating and pressurizing equipment 18 via the loading hose 14 .
  • the temperature raising/pressurizing equipment 18 raises the temperature (approximately 0° C.) and pressurizes (approximately 10 MPaG) the received liquefied carbon dioxide gas.
  • the liquefied carbon dioxide gas heated and pressurized by the temperature raising and pressurizing equipment 18 is sent to the seabed by the flexible riser pipe 16, and injection into the reservoir 114 is started.
  • the worker uses the gangway 24 to return to the liquefied carbon dioxide transport ship 100.
  • the floating body 12 becomes unmanned.
  • the gangway 24 is separated from the floating body 12.
  • the liquefied carbon dioxide transport ship 100 is moved to a position away from the floating body 12 .
  • the liquefied carbon dioxide transport ship 100 is moored at a position about 100 m to 120 m away from the floating body 12 by a mooring hawser 44 .
  • the steady injection operation of liquefied carbon dioxide gas begins. Until the submarine injection of the liquefied carbon dioxide 22 stored in the liquefied carbon dioxide storage tank 20 of the liquefied carbon dioxide transport ship 100 is completed, the power generation equipment 19 and the temperature raising and pressurizing equipment 18 of the floating body 12 are operated unmanned, and the liquefied carbon dioxide is transported. Monitor and operate remotely from ship 100 .
  • the liquefied carbon dioxide gas transport ship 100 is brought close to the floating body, the gangway 24 is connected to the floating body 12, and an operator moves from the liquefied carbon dioxide gas transport ship 100 to the floating body 12 to perform inspection work. After completing the inspection work, the worker returns to the liquefied carbon dioxide transport ship 100 from the floating body 12 . After that, the gangway 24 is separated from the floating body 12, and the liquefied carbon dioxide transport ship 100 is moved to a position away from the floating body 12 and moored. The same applies when a failure occurs in the equipment of the floating body 12 or the like.
  • the liquefied carbon dioxide gas transport ship 100 is brought close to the floating body, the gangway 24 is connected to the floating body 12, the worker moves from the liquefied carbon dioxide gas transport ship 100 to the floating body 12, stops the power generation equipment 19 and the temperature raising and boosting equipment 18, Stop injecting liquefied carbon dioxide.
  • the loading hose 14 is separated from the liquefied carbon dioxide transport ship 100 and wound up by the loading hose reel 40 on the turntable 38 of the floating body 12 .
  • the gangway 24 is separated from the floating body 12.
  • the liquefied carbon dioxide transport vessel 100 is separated from the floating body 12 using the propulsion device.
  • the mooring hawser 44 is kept floating on the sea until the next liquefied carbon dioxide transport vessel 100 comes.
  • the liquefied carbon dioxide injection system 10 has been described above.
  • the liquefied carbon dioxide gas injection system 10 according to the present embodiment the liquefied carbon dioxide gas is directly supplied from the liquefied carbon dioxide storage tank 20 of the liquefied carbon dioxide transport ship 100 to the temperature raising and pressurizing equipment 18 of the floating body 12.
  • the liquefied carbon dioxide gas storage tank 20 originally provided in the liquefied carbon dioxide gas transport ship 100 is diverted as a storage tank. Therefore, the size of the floating body 12 can be reduced, and the construction cost of the floating body 12 can be significantly reduced.
  • the liquefied carbon dioxide gas injection system 10 uses an advanced spar type floating body because the floating body 12 can be made smaller. Since the advanced spar-type floating body has a feature that it does not easily sway even in waves, it is possible to stably continue operation without stopping the operation of the temperature raising and pressurizing equipment 18 even in ocean waves. Further, since the advanced spar-type floating body is low in swaying even in waves, the load applied to the connecting portion between the flexible riser pipe 16 and the floating body 12 is reduced. As a result, the useful life of the flexible riser pipe 16 can be increased.
  • the worker moves from the liquefied carbon dioxide transport ship 100 to the floating body 12 using the gangway 24 only when necessary, such as when the temperature raising and pressurizing equipment 18 is started. Since the work is carried out by using the floating body 12, there is no need to stay permanently on the floating body 12, and the floating body 12 can be unmanned. After starting the steady injection operation, the facility of the floating body 12 is remotely monitored and operated from the liquefied carbon dioxide transport ship 100 . As a result, there is no need to provide the floating body 12 with facilities (housing facilities, etc.) for workers to stay permanently, and the construction cost of the floating body 12 can be reduced. In addition, since it is possible to reduce labor costs by not requiring permanent residence on the floating body 12, further cost reduction is possible.
  • the sway-absorbing gangway facility enables workers to move without hindrance even under ocean waves.
  • the gangway 24 is used to move workers from the liquefied carbon dioxide transport ship 100 to the floating body 12 .
  • the gangway 24 is used to move workers from the liquefied carbon dioxide transport ship 100 to the floating body 12 .
  • it is possible to transfer under high waves, so it is possible to improve the efficiency of the loading hose connection work and the operating rate of the entire press-in work process.
  • safety can be improved.
  • the pressure of the liquefied carbon dioxide gas when transferred from the liquefied carbon dioxide transport ship 100 to the floating body 12 is Low pressures (eg, 0.684 MPa to 2.289 MPa) can be used. This eliminates the need for attaching and detaching the high-pressure pipe, thereby improving workability.
  • the temperature raising and pressurizing equipment 18 is mounted on the floating body 12, the liquefied carbon dioxide transport ship 100 does not need to be equipped with the temperature raising and pressurizing equipment, so the construction cost of the liquefied carbon dioxide transport ship 100 can be greatly reduced.
  • the flexible riser pipe 16 which is a high-pressure pipe, is always connected to the floating body 12. Therefore, there is no need to attach or detach the flexible riser pipe 16 at the start or end of the submarine injection work of liquefied carbon dioxide gas, and the need for a special and expensive submarine system connecting the transport ship and the seabed is eliminated, improving the work efficiency.
  • an advanced spar type floating body is used as the floating body, but the floating body is not limited to the advanced spar type, and may be a normal spar type floating body.
  • the present invention can be used for CCS (carbon dioxide capture and storage).

Abstract

This liquefied carbon dioxide press-fitting system 10 comprises: a floating body 12 moored on the sea; temperature raising/pressure raising equipment 18 that is installed on the floating body 12 and is for raising the temperature and raising the pressure of liquefied carbon dioxide; a loading hose 14 for sending the liquefied carbon dioxide to the temperature raising/pressure raising equipment 18 of the floating body 12 from a liquefied carbon dioxide storage tank 20 inside a liquefied carbon dioxide transport vessel 100; and a flexible riser pipe 16 that is connected to the floating body 12 and is for sending the liquefied carbon dioxide, that has been raised in temperature and raised in pressure by the temperature raising/pressure raising equipment 18, to the seabed and press fitting the same into the seabed.

Description

液化炭酸ガス圧入システムおよび液化炭酸ガス圧入方法Liquefied carbon dioxide injection system and liquefied carbon dioxide injection method
 本発明は、CCS(Carbon Capture and Storage)における液化炭酸ガス(液化CO)の圧入システムおよび圧入方法に関する。 TECHNICAL FIELD The present invention relates to a system and method for injecting liquefied carbon dioxide gas (liquefied CO 2 ) in CCS (Carbon Capture and Storage).
 CCS(二酸化炭素回収・貯留)は、COの発生源(例えば石炭火力発電所の燃焼排ガス)からCOを化学吸収法などで回収し、圧縮・液化して超臨界状態で岩盤などで遮蔽された地下の滞水層(貯留層)に圧入し、貯留するものであり、地球温暖化対策の一つである。 CCS (carbon dioxide capture and storage) recovers CO2 from the source of CO2 (e.g. flue gas from a coal-fired power plant) by chemical absorption, compresses and liquefies it, and shields it with bedrock in a supercritical state. This is one of the countermeasures against global warming.
 CCSには様々な方式があるが、その一つに液化炭酸ガス輸送・圧入方式がある。この方式では、分雛・回収されたCOは圧縮・液化され、一旦、液化炭酸ガスの形で陸上のタンクに貯蔵し、タンクから液化炭酸ガス輸送船に積載し、貯留地点まで船舶輸送される。貯留地点で液化炭酸ガスは、液化炭酸ガス輸送船から海底下の滞水層に圧入される(例えば特許文献1参照)。 There are various methods of CCS, one of which is the liquefied carbon dioxide transportation/injection method. In this method, the separated and recovered CO2 is compressed and liquefied, temporarily stored in a land tank in the form of liquefied carbon dioxide, loaded from the tank on a liquefied carbon dioxide transport ship, and transported to the storage point. be. At the storage point, the liquefied carbon dioxide gas is injected from a liquefied carbon dioxide transport ship into the aquifer under the seabed (see, for example, Patent Document 1).
特開2016-84630号公報JP 2016-84630 A
 液化炭酸ガスを貯留層(滞水層)に圧入する際には、周囲の水の凍結防止とCOハイドレート形成による閉塞を防止するために、液化炭酸ガス(例えば-10℃/2.289MPa~-50℃/0.684MPa)を所定圧力(10MPa以上)に昇圧後、0℃以上に昇温して圧入が行われる。 When injecting liquefied carbon dioxide into the reservoir (aqueous layer), in order to prevent freezing of the surrounding water and blockage due to CO 2 hydrate formation, liquefied carbon dioxide (for example, -10 ° C / 2.289 MPa ~-50°C/0.684 MPa) is raised to a predetermined pressure (10 MPa or more), and then the temperature is raised to 0°C or more and press-fitting is performed.
 液化炭酸ガスを液化炭酸ガス輸送船上で昇温・昇圧して海底に圧入する場合、圧入開始前に高圧の液化炭酸ガスを海底に導くためのフレキシブルライザーパイプを輸送船に引き込んで接続し、圧入完了後に輸送船から外す作業を輸送船の到着毎に行う必要がある。しかしながら、この方法の場合、信頼性と耐久性に優れた特殊な海中システムの製作・海中設置・保守にかかるコストが増大するという課題がある。 When liquefied carbon dioxide is heated and pressurized on board a liquefied carbon dioxide gas transport ship and injected into the seabed, a flexible riser pipe for guiding the high pressure liquefied carbon dioxide gas to the seabed is pulled into the transport ship and injected before starting injection. The operation of removing from the transport vessel after completion must be performed each time the transport vessel arrives. However, in the case of this method, there is a problem that the cost of manufacturing, subsea installation, and maintenance of a special subsea system with excellent reliability and durability increases.
 本発明は、こうした状況を鑑みてなされたものであり、その目的は、低コストで液化炭酸ガスを海底に圧入することのできる液化炭酸ガス圧入システムおよび液化炭酸ガス圧入方法を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and its object is to provide a liquefied carbon dioxide injection system and a liquefied carbon dioxide injection method that can inject liquefied carbon dioxide into the seabed at low cost. .
 上記課題を解決するために、本発明のある態様の液化炭酸ガス圧入システムは、洋上に係留された浮体と、浮体に搭載された、液化炭酸ガスを昇温および昇圧するための昇温昇圧設備と、液化炭酸ガス輸送船内の液化炭酸ガス貯蔵タンクから浮体の昇温昇圧設備へ液化炭酸ガスを送るためのローディングホースと、浮体に接続された、昇温昇圧設備によって昇温および昇圧された液化炭酸ガスを海底に送って圧入するためのフレキシブルライザーパイプと、を備える。本浮体は液化炭酸ガスを貯蔵するタンクを持たず、また、圧入システムは輸送船から遠隔で操作して無人運転する。 In order to solve the above problems, a liquefied carbon dioxide gas injection system according to one aspect of the present invention includes a floating body moored offshore and a temperature raising and pressurizing facility mounted on the floating body for raising the temperature and pressure of the liquefied carbon dioxide gas. , a loading hose for sending liquefied carbon dioxide from the liquefied carbon dioxide gas storage tank in the liquefied carbon dioxide transport ship to the temperature raising and pressurizing equipment of the floating body, and liquefaction whose temperature and pressure are raised by the temperature raising and pressurizing equipment connected to the floating body. and a flexible riser pipe for sending and injecting carbon dioxide into the seabed. This floating body does not have a tank to store liquefied carbon dioxide gas, and the injection system is operated remotely from the transport ship and is operated unmanned.
 本発明の別の態様は、液化炭酸ガス圧入方法である。この方法は、液化炭酸ガス輸送船で洋上に係留された浮体に接近するステップと、液化炭酸ガス輸送船に備えられたギャングウェイを浮体に接続して作業員が液化炭酸ガス輸送船から浮体に乗り移るステップと、ローディングホースによって液化炭酸ガス輸送船内の液化炭酸ガス貯蔵タンクと浮体に搭載された昇温昇圧設備とを接続するステップと、ローディングホースを介して液化炭酸ガス貯蔵タンクから昇温昇圧設備に液化炭酸ガスを送るステップと、昇温昇圧設備によって液化炭酸ガスを昇温および昇圧するステップと、昇温および昇圧された液化炭酸ガスをフレキシブルライザーパイプによって海底に送り、圧入するステップと、を備える。 Another aspect of the present invention is a liquefied carbon dioxide injection method. This method includes the steps of approaching a floating body moored off the ocean with a liquefied carbon dioxide transport ship, and connecting a gangway provided on the liquefied carbon dioxide transport ship to the floating body so that a worker can reach the floating body from the liquefied carbon dioxide transport ship. A step of transferring, a step of connecting the liquefied carbon dioxide storage tank in the liquefied carbon dioxide gas transport ship and the temperature raising and pressurizing equipment mounted on the floating body by a loading hose, and a step of connecting the temperature raising and pressurizing equipment from the liquefied carbon dioxide storage tank via the loading hose. a step of raising the temperature and pressure of the liquefied carbon dioxide by a temperature raising and pressurizing equipment; and a step of sending the raised and pressurized liquefied carbon dioxide to the seabed through a flexible riser pipe and injecting it into the seabed. Prepare.
 本発明によれば、低コストで液化炭酸ガスを海底に圧入することのできる液化炭酸ガス圧入システムおよび液化炭酸ガス圧入方法を提供できる。 According to the present invention, it is possible to provide a liquefied carbon dioxide injection system and a liquefied carbon dioxide injection method that can inject liquefied carbon dioxide into the seabed at low cost.
本発明の実施形態に係る液化炭酸ガス圧入システムが用いられるCCSの概略フローを示す図である。1 is a diagram showing a schematic flow of CCS using a liquefied carbon dioxide gas injection system according to an embodiment of the present invention; FIG. 本発明の実施形態に係る液化炭酸ガス圧入システムの概略図である。1 is a schematic diagram of a liquefied carbon dioxide injection system according to an embodiment of the present invention; FIG.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。以下の構成は本開示を理解するための例示を目的とするものであり、本開示の範囲は、添付の請求の範囲によってのみ定まる。各図面に示される同一または同等の構成要素、部材には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The following arrangements are intended as examples for understanding the present disclosure, the scope of which is defined solely by the appended claims. The same or equivalent constituent elements and members shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. In addition, the dimensions of the members in each drawing are appropriately enlarged or reduced for easy understanding. Also, in each drawing, some of the members that are not important for explaining the embodiments are omitted.
 図1は、本発明の実施形態に係る液化炭酸ガス圧入システムが用いられるCCSの概略フローを示す図である。図1は、液化炭酸ガス輸送・圧入方式のCCSを示す。 FIG. 1 is a diagram showing a schematic flow of CCS using a liquefied carbon dioxide gas injection system according to an embodiment of the present invention. FIG. 1 shows a liquefied carbon dioxide transport/injection type CCS.
 CCSにおいては、例えば石炭火力発電所の燃焼排ガスなどのCO発生源から、例えば化学吸収法などを用いてCOを分離・回収する。その後、圧縮・液化装置101によって回収したCOを圧縮して液化し、液化炭酸ガスの形で陸上のタンク102に貯蔵する。液化炭酸ガスは、タンク102からローディングアーム103を用いて液化炭酸ガス輸送船100に積載され、海洋110上に係留された浮体12まで船舶輸送される。 In CCS, for example, CO 2 is separated and captured from a CO 2 generating source such as flue gas of a coal-fired power plant using, for example, a chemical absorption method. After that, the collected CO 2 is compressed and liquefied by the compression/liquefaction device 101 and stored in the tank 102 on land in the form of liquefied carbon dioxide. The liquefied carbon dioxide gas is loaded from the tank 102 onto the liquefied carbon dioxide transport vessel 100 using the loading arm 103 and transported to the floating body 12 moored on the ocean 110 .
 液化炭酸ガス輸送船100に積載された液化炭酸ガスは、ローディングホース14によって浮体12に搭載された昇温昇圧設備に送られる。昇温昇圧設備で昇温および昇圧された液化炭酸ガスは、フレキシブルライザーパイプ16を介して海底112に設置された坑口設備104に送られる。液化炭酸ガスは、坑口設備104によって海底下の貯留層114に圧入される。 The liquefied carbon dioxide loaded on the liquefied carbon dioxide transport ship 100 is sent by the loading hose 14 to the temperature raising and pressurizing equipment mounted on the floating body 12 . The liquefied carbon dioxide gas, which has been heated and pressurized by the temperature raising and pressurizing equipment, is sent to the wellhead equipment 104 installed on the seabed 112 via the flexible riser pipe 16 . The liquefied carbon dioxide gas is injected into the subseafloor reservoir 114 by wellhead equipment 104 .
 図2は、本発明の実施形態に係る液化炭酸ガス圧入システム10の概略図である。液化炭酸ガス圧入システム10は、海洋110上に係留された浮体12と、浮体12に搭載された昇温昇圧設備18と、液化炭酸ガス輸送船100と浮体12とを接続するローディングホース14と、浮体12に常時接続されたフレキシブルライザーパイプ16と、液化炭酸ガス輸送船100と浮体12との間に架けられたギャングウェイ24と、を備える。 FIG. 2 is a schematic diagram of the liquefied carbon dioxide injection system 10 according to the embodiment of the present invention. The liquefied carbon dioxide gas injection system 10 includes a floating body 12 moored on the ocean 110, a temperature raising and pressurizing device 18 mounted on the floating body 12, a loading hose 14 connecting the liquefied carbon dioxide transport ship 100 and the floating body 12, A flexible riser pipe 16 always connected to the floating body 12 and a gangway 24 spanned between the liquefied carbon dioxide transport ship 100 and the floating body 12 are provided.
 液化炭酸ガス輸送船100は、液化炭酸ガス貯蔵タンク20と、ギャングウェイ24とを備える。液化炭酸ガス貯蔵タンク20は、液化炭酸ガス(液化CO)を貯蔵する。液化炭酸ガスの温度は例えば-10℃~-50℃であってよく、液化炭酸ガスの圧力は例えば2.289MPa~0.684MPaであってよい The liquefied carbon dioxide transport ship 100 includes a liquefied carbon dioxide storage tank 20 and a gangway 24 . The liquefied carbon dioxide storage tank 20 stores liquefied carbon dioxide (liquefied CO 2 ). The temperature of liquefied carbon dioxide may be, for example, −10° C. to −50° C., and the pressure of liquefied carbon dioxide may be, for example, 2.289 MPa to 0.684 MPa.
 ギャングウェイ24は、液化炭酸ガス輸送船100と浮体12との間で作業員の往来を可能とするための可動式連絡橋(テレスコピックギャングウェイ)であり、移動、上昇、下降、伸縮機能を有する。ギャングウェイ24は、液化炭酸ガス輸送船100に設置されている。ギャングウェイ24は、液化炭酸ガス輸送船100が浮体12に接近した際に、液化炭酸ガス輸送船100から浮体12に架け渡される。 The gangway 24 is a movable connecting bridge (telescopic gangway) for enabling workers to come and go between the liquefied carbon dioxide gas transport ship 100 and the floating body 12, and has the functions of moving, ascending, descending, and expanding and contracting. . The gangway 24 is installed on the liquefied carbon dioxide transport ship 100 . The gangway 24 spans from the liquefied carbon dioxide gas transport ship 100 to the floating body 12 when the liquefied carbon dioxide gas transport ship 100 approaches the floating body 12 .
 浮体12は、アドバンストスパー(SPAR(円筒))型の簡易浮体型洋上基地である。アドバンストスパー型の浮体は、小型且つ低動揺という特徴がある。浮体12は、海上に位置するアッパーハル部30と、海中に位置するロワーハル部32と、アッパーハル部30とロワーハル部32とを接続するコラム部34とを備える。アドバンストスパー型浮体は、アッパーハル部30とロワーハル部32が波の圧力を打ち消しあうことで動揺を低減している。また、アドバンストスパー型浮体は、通常のスパー型浮体と比較して喫水が小さいため、直立状態での建造・輸送と、比較的浅い水深での設置が可能である。 The floating body 12 is an advanced spar (SPAR (cylindrical)) type simple floating offshore base. The advanced spar type floating body is characterized by its small size and low vibration. The floating body 12 includes an upper hull portion 30 located in the sea, a lower hull portion 32 located in the sea, and a column portion 34 connecting the upper hull portion 30 and the lower hull portion 32 . The advanced spar-type floating body reduces sway by canceling out the wave pressure between the upper hull section 30 and the lower hull section 32 . In addition, since the advanced spar-type floating structure has a smaller draft than normal spar-type floating structures, it can be constructed and transported in an upright position and installed in relatively shallow water.
 図2に示すように、ロワーハル部32には、海底から延びる係留索36が接続されている。アッパーハル部30の上部にはターンテーブル38が設けられており、ターンテーブル38上にはローディングホースリール40および係留ホーサーウィンチ42が設置されている。 As shown in FIG. 2, a mooring cable 36 extending from the seabed is connected to the lower hull section 32 . A turntable 38 is provided on the upper portion of the upper hull portion 30, and a loading hose reel 40 and a mooring hawser winch 42 are installed on the turntable 38. As shown in FIG.
 浮体12のアッパーハル部30には、昇温昇圧設備18および昇温昇圧設備18に動力を供給する発電設備19が設けられている。昇温昇圧設備18は、ローディングホース14を介して受け取った液化炭酸ガス(例えば-10℃/2.289MPa~-50℃/0.684MPa)を海底の貯留層114(図1参照)に圧入するための昇圧、および貯留層114に液化炭酸ガスが圧入されたとき、周囲の水の凍結とCOハイドレート形成による閉塞を防止するための昇温を行う設備である。 An upper hull portion 30 of the floating body 12 is provided with a temperature raising/boosting equipment 18 and a power generating equipment 19 that supplies power to the temperature raising/boosting equipment 18 . The temperature raising and pressurizing equipment 18 injects liquefied carbon dioxide (for example, −10° C./2.289 MPa to −50° C./0.684 MPa) received through the loading hose 14 into the seabed reservoir 114 (see FIG. 1). and to raise the temperature to prevent clogging due to freezing of surrounding water and formation of CO 2 hydrate when liquefied carbon dioxide gas is injected into the reservoir 114 .
 ここで、CCSにおける液化炭酸ガスの圧入条件について説明する。
(1)圧入圧力
 圧入圧力は、貯留層114の深さ、浸透率などにより異なるが、一般的には圧入地点の「Static Head+3MPa~遮蔽層の破壊圧力」で示される。海底の貯留層114でのCCSの場合、圧入深度、液化炭酸ガスの密度、坑井での圧力損失を考慮すると、海底の坑口設備104(図1参照)で10MPa~20MPa程度が好適な圧入圧力となる。
(2)圧入温度
 液化炭酸ガスが貯留層114に圧入されたとき、周囲の水の凍結防止(0℃以上)とCOハイドレート形成(5℃以下)による閉塞を防止するために昇温して圧入をする必要がある。過去のCCSの実例において0℃で圧入時にCOハイドレート形成による閉塞が起きていないことを考慮すると、液化炭酸ガスの圧入温度は0℃以上が好適である。
Here, conditions for injecting liquefied carbon dioxide in CCS will be described.
(1) Injection pressure The injection pressure varies depending on the depth of the reservoir 114, the permeability, etc., but is generally indicated by "Static Head + 3 MPa to the breaking pressure of the shielding layer" at the injection point. In the case of CCS in the seabed reservoir 114, considering the injection depth, the density of liquefied carbon dioxide, and the pressure loss in the well, the injection pressure is preferably about 10 MPa to 20 MPa at the seabed wellhead facility 104 (see FIG. 1). becomes.
(2) Injection temperature When liquefied carbon dioxide gas is injected into the reservoir 114, the temperature is raised to prevent freezing of the surrounding water (0°C or higher) and blockage due to CO 2 hydrate formation (5°C or lower). must be press-fitted. Considering that no clogging due to CO 2 hydrate formation occurred during injection at 0°C in past CCS examples, the injection temperature of liquefied carbon dioxide is preferably 0°C or higher.
 ローディングホース14は、液化炭酸ガス輸送船100内の液化炭酸ガス貯蔵タンク20に貯蔵された液化炭酸ガス22を、浮体12の昇温昇圧設備18へ送るためのホースである。ローディングホース14により、液化炭酸ガス貯蔵タンク20と昇温昇圧設備18とが接続される。液化炭酸ガス貯蔵タンク20と昇温昇圧設備18との間には、ローディングホース14以外のホースが介在してもよい。液化炭酸ガス22の移送は、カーゴポンプ21を用いて行われる。昇温昇圧設備18の手前に、液化炭酸ガス貯蔵タンク20からの液化炭酸ガス22を一時的に収容するためのドラム(図示せず)が配置されてもよい。 The loading hose 14 is a hose for sending the liquefied carbon dioxide 22 stored in the liquefied carbon dioxide storage tank 20 inside the liquefied carbon dioxide transport ship 100 to the temperature raising and pressurizing equipment 18 of the floating body 12 . The loading hose 14 connects the liquefied carbon dioxide gas storage tank 20 and the temperature raising/pressurizing equipment 18 . A hose other than the loading hose 14 may be interposed between the liquefied carbon dioxide gas storage tank 20 and the temperature raising/pressurizing equipment 18 . Transfer of the liquefied carbon dioxide gas 22 is performed using a cargo pump 21 . A drum (not shown) for temporarily storing the liquefied carbon dioxide 22 from the liquefied carbon dioxide storage tank 20 may be arranged before the temperature raising and pressurizing equipment 18 .
 昇温昇圧設備18によって昇温および昇圧された液化炭酸ガスは、フレキシブルライザーパイプ16を介して海底の坑口設備104に送られ、貯留層114に圧入される。フレキシブルライザーパイプ16の一方の端部は、浮体12のアッパーハル部30に常時接続され、フレキシブルライザーパイプ16の他方の端部は、海底の坑口設備104に接続されている(図1参照)。なお、図2では1つのフレキシブルライザーパイプ16が図示されているが、図1に示すように複数のフレキシブルライザーパイプ16が配置されてもよい。 The liquefied carbon dioxide gas that has been heated and pressurized by the temperature raising and pressurizing equipment 18 is sent to the wellhead equipment 104 on the seabed via the flexible riser pipe 16 and injected into the reservoir 114 . One end of the flexible riser pipe 16 is permanently connected to the upper hull portion 30 of the floating body 12, and the other end of the flexible riser pipe 16 is connected to the subsea wellhead facility 104 (see FIG. 1). Although one flexible riser pipe 16 is illustrated in FIG. 2, a plurality of flexible riser pipes 16 may be arranged as shown in FIG.
 次に、液化炭酸ガス圧入システム10を用いた液化炭酸ガスの圧入方法について説明する。 Next, a method for injecting liquefied carbon dioxide using the liquefied carbon dioxide injection system 10 will be described.
 まず、液化炭酸ガス輸送船100で洋上に係留された浮体12に接近する。そして、係留ホーサー44を用いて液化炭酸ガス輸送船100を浮体12から30m程度の位置まで接近させる。 First, the liquefied carbon dioxide transport ship 100 approaches the floating body 12 moored offshore. Then, the mooring hawser 44 is used to bring the liquefied carbon dioxide transport ship 100 close to the floating body 12 to a position of about 30 m.
 次に、液化炭酸ガス輸送船100に備えられたギャングウェイ24を浮体12に接続する。作業員は、ギャングウェイ経由で液化炭酸ガス輸送船100から浮体12に移動する。 Next, the gangway 24 provided on the liquefied carbon dioxide transport ship 100 is connected to the floating body 12 . A worker moves from the liquefied carbon dioxide transport ship 100 to the floating body 12 via the gangway.
 次に、浮体12のローディングホースリール40に巻かれたローディングホース14を繰り出し、液化炭酸ガス輸送船100に備えられたバウローディングシステム48に接続する。これにより、液化炭酸ガス輸送船100内の液化炭酸ガス貯蔵タンク20と浮体12に搭載された昇温昇圧設備18とが接続される。 Next, the loading hose 14 wound around the loading hose reel 40 of the floating body 12 is let out and connected to the bow loading system 48 provided on the liquefied carbon dioxide transport ship 100 . As a result, the liquefied carbon dioxide gas storage tank 20 in the liquefied carbon dioxide transport ship 100 and the temperature raising and pressurizing equipment 18 mounted on the floating body 12 are connected.
 浮体12に移動した作業員は、浮体12の発電設備19と昇温昇圧設備18を起動する。ローディングホース14を介して液化炭酸ガス貯蔵タンク20から昇温昇圧設備18に液化炭酸ガスを送る。昇温昇圧設備18は、受け入れた液化炭酸ガスの昇温(約0℃)および昇圧(約10MPaG)を行う。昇温昇圧設備18によって昇温および昇圧された液化炭酸ガスを、フレキシブルライザーパイプ16によって海底に送り、貯留層114への圧入を開始する。 The worker who has moved to the floating body 12 activates the power generation equipment 19 and the temperature raising/boosting equipment 18 of the floating body 12 . The liquefied carbon dioxide gas is sent from the liquefied carbon dioxide gas storage tank 20 to the heating and pressurizing equipment 18 via the loading hose 14 . The temperature raising/pressurizing equipment 18 raises the temperature (approximately 0° C.) and pressurizes (approximately 10 MPaG) the received liquefied carbon dioxide gas. The liquefied carbon dioxide gas heated and pressurized by the temperature raising and pressurizing equipment 18 is sent to the seabed by the flexible riser pipe 16, and injection into the reservoir 114 is started.
 液化炭酸ガスの圧入が開始された後、作業員はギャングウェイ24を使って液化炭酸ガス輸送船100に戻る。浮体12は無人となる。作業員が液化炭酸ガス輸送船100に戻った後、ギャングウェイ24を浮体12から離す。そして、液化炭酸ガス輸送船100を浮体12から離れた位置に移動させる。液化炭酸ガス輸送船100は、係留ホーサー44によって浮体12から約100m~120m離れた位置に係船される。 After the injection of liquefied carbon dioxide starts, the worker uses the gangway 24 to return to the liquefied carbon dioxide transport ship 100. The floating body 12 becomes unmanned. After the worker returns to the liquefied carbon dioxide transport vessel 100, the gangway 24 is separated from the floating body 12. Then, the liquefied carbon dioxide transport ship 100 is moved to a position away from the floating body 12 . The liquefied carbon dioxide transport ship 100 is moored at a position about 100 m to 120 m away from the floating body 12 by a mooring hawser 44 .
 その後、液化炭酸ガスの定常圧入運転に入る。液化炭酸ガス輸送船100の液化炭酸ガス貯蔵タンク20に貯蔵された液化炭酸ガス22の海底圧入が完了するまで、浮体12の発電設備19および昇温昇圧設備18は無人運転とし、液化炭酸ガス輸送船100から遠隔で監視・操作する。 After that, the steady injection operation of liquefied carbon dioxide gas begins. Until the submarine injection of the liquefied carbon dioxide 22 stored in the liquefied carbon dioxide storage tank 20 of the liquefied carbon dioxide transport ship 100 is completed, the power generation equipment 19 and the temperature raising and pressurizing equipment 18 of the floating body 12 are operated unmanned, and the liquefied carbon dioxide is transported. Monitor and operate remotely from ship 100 .
 一定時間(8~12時間)毎に、作業員により浮体12の設備、機器、器具等の運転状況の点検を行う。点検の際には、液化炭酸ガス輸送船100を浮体に近づけ、ギャングウェイ24を浮体12に接続し、作業員が液化炭酸ガス輸送船100から浮体12に移動して点検作業を行う。点検作業終了後に作業員は浮体12から液化炭酸ガス輸送船100に戻る。その後、ギャングウェイ24を浮体12から離し、液化炭酸ガス輸送船100を浮体12から離れた位置に移動させ、係船する。浮体12の設備等に故障が発生したときも同様である。 At regular intervals (8 to 12 hours), workers will inspect the operating status of the facilities, equipment, instruments, etc. of the floating body 12. During inspection, the liquefied carbon dioxide gas transport ship 100 is brought close to the floating body, the gangway 24 is connected to the floating body 12, and an operator moves from the liquefied carbon dioxide gas transport ship 100 to the floating body 12 to perform inspection work. After completing the inspection work, the worker returns to the liquefied carbon dioxide transport ship 100 from the floating body 12 . After that, the gangway 24 is separated from the floating body 12, and the liquefied carbon dioxide transport ship 100 is moved to a position away from the floating body 12 and moored. The same applies when a failure occurs in the equipment of the floating body 12 or the like.
 液化炭酸ガス貯蔵タンク20に貯蔵された液化炭酸ガス22の全量の海底圧入が完了した後、離脱作業を開始する。液化炭酸ガス輸送船100を浮体に近づけ、ギャングウェイ24を浮体12に接続し、作業員が液化炭酸ガス輸送船100から浮体12に移動して発電設備19および昇温昇圧設備18を停止させ、液化炭酸ガスの圧入を停止する。その後、ローディングホース14を液化炭酸ガス輸送船100から切り離し、浮体12のターンテーブル38上のローディングホースリール40で巻き取る。作業員が液化炭酸ガス輸送船100に戻った後、ギャングウェイ24を浮体12から離す。係留ホーサー44を液化炭酸ガス輸送船100から切り離した後、液化炭酸ガス輸送船100は推進装置を使って浮体12から離脱する。係留ホーサー44は、次の液化炭酸ガス輸送船100が来るまで海上に浮遊させておく。 After all the liquefied carbon dioxide 22 stored in the liquefied carbon dioxide storage tank 20 has been injected into the seabed, the detachment work will start. The liquefied carbon dioxide gas transport ship 100 is brought close to the floating body, the gangway 24 is connected to the floating body 12, the worker moves from the liquefied carbon dioxide gas transport ship 100 to the floating body 12, stops the power generation equipment 19 and the temperature raising and boosting equipment 18, Stop injecting liquefied carbon dioxide. After that, the loading hose 14 is separated from the liquefied carbon dioxide transport ship 100 and wound up by the loading hose reel 40 on the turntable 38 of the floating body 12 . After the worker returns to the liquefied carbon dioxide transport vessel 100, the gangway 24 is separated from the floating body 12. After the mooring hawser 44 is separated from the liquefied carbon dioxide transport vessel 100, the liquefied carbon dioxide transport vessel 100 is separated from the floating body 12 using the propulsion device. The mooring hawser 44 is kept floating on the sea until the next liquefied carbon dioxide transport vessel 100 comes.
 以上、本発明の実施形態に係る液化炭酸ガス圧入システム10について説明した。本実施形態に係る液化炭酸ガス圧入システム10では、液化炭酸ガス輸送船100の液化炭酸ガス貯蔵タンク20から浮体12の昇温昇圧設備18に直接液化炭酸ガスを供給しているので、浮体12に液化炭酸ガスを貯蔵するためのタンクを設ける必要がない。言い換えると、液化炭酸ガス輸送船100に本来備わっている液化炭酸ガス貯蔵タンク20を、貯蔵タンクとして流用している。そのため、浮体12の小型化を図ることができるとともに、浮体12の建設コストを大幅に低減することができる。 The liquefied carbon dioxide injection system 10 according to the embodiment of the present invention has been described above. In the liquefied carbon dioxide gas injection system 10 according to the present embodiment, the liquefied carbon dioxide gas is directly supplied from the liquefied carbon dioxide storage tank 20 of the liquefied carbon dioxide transport ship 100 to the temperature raising and pressurizing equipment 18 of the floating body 12. There is no need to provide a tank for storing liquefied carbon dioxide. In other words, the liquefied carbon dioxide gas storage tank 20 originally provided in the liquefied carbon dioxide gas transport ship 100 is diverted as a storage tank. Therefore, the size of the floating body 12 can be reduced, and the construction cost of the floating body 12 can be significantly reduced.
 本実施形態に係る液化炭酸ガス圧入システム10では、浮体12の小型化が可能なことから、アドバンストスパー型浮体を採用している。アドバンストスパー型浮体は、波浪中でも揺れにくいという特徴を有するため、洋上波浪のもとでも昇温昇圧設備18の運転を止めることなく、安定して運転を継続することができる。また、アドバンストスパー型浮体は波浪中でも低動揺であることから、フレキシブルライザーパイプ16と浮体12との接続部にかかる負荷荷重が低減される。その結果、フレキシブルライザーパイプ16の耐用年数を増やすことができる。 The liquefied carbon dioxide gas injection system 10 according to this embodiment uses an advanced spar type floating body because the floating body 12 can be made smaller. Since the advanced spar-type floating body has a feature that it does not easily sway even in waves, it is possible to stably continue operation without stopping the operation of the temperature raising and pressurizing equipment 18 even in ocean waves. Further, since the advanced spar-type floating body is low in swaying even in waves, the load applied to the connecting portion between the flexible riser pipe 16 and the floating body 12 is reduced. As a result, the useful life of the flexible riser pipe 16 can be increased.
 また、本実施形態に係る液化炭酸ガス圧入システム10では、作業員は昇温昇圧設備18の起動時などの必要なときにだけギャングウェイ24を使って液化炭酸ガス輸送船100から浮体12に移動して作業を行うので、浮体12に常駐する必要がなく、浮体12の無人化が可能である。定常圧入運転に入った後は、液化炭酸ガス輸送船100から遠隔で浮体12の設備を監視・操作する。その結果、作業員が常駐するための設備(居住設備等)を浮体12に設ける必要がなく、浮体12の建設コストを低減できる。また、浮体12への常駐が不要となることにより人件費の削減が可能となるため、さらなる低コスト化が可能である。動揺吸収型のギャングウェイ設備は、洋上波浪のもとでも作業員の移動を支障なく行うことを可能とする。 In addition, in the liquefied carbon dioxide gas injection system 10 according to the present embodiment, the worker moves from the liquefied carbon dioxide transport ship 100 to the floating body 12 using the gangway 24 only when necessary, such as when the temperature raising and pressurizing equipment 18 is started. Since the work is carried out by using the floating body 12, there is no need to stay permanently on the floating body 12, and the floating body 12 can be unmanned. After starting the steady injection operation, the facility of the floating body 12 is remotely monitored and operated from the liquefied carbon dioxide transport ship 100 . As a result, there is no need to provide the floating body 12 with facilities (housing facilities, etc.) for workers to stay permanently, and the construction cost of the floating body 12 can be reduced. In addition, since it is possible to reduce labor costs by not requiring permanent residence on the floating body 12, further cost reduction is possible. The sway-absorbing gangway facility enables workers to move without hindrance even under ocean waves.
 また、本実施形態に係る液化炭酸ガス圧入システム10では、液化炭酸ガス輸送船100から浮体12への作業員の移動にギャングウェイ24を使用している。小型船による作業員の移動に比べ高波高下での乗り移りが可能となるため、ローディングホースの接続作業の効率化、圧入作業工程全体の稼働率向上が図れる。また、作業員が長期間浮体に取り残されるリスクも低減できるため、安全性を向上することができる。 Also, in the liquefied carbon dioxide gas injection system 10 according to this embodiment, the gangway 24 is used to move workers from the liquefied carbon dioxide transport ship 100 to the floating body 12 . Compared to the movement of workers by small boats, it is possible to transfer under high waves, so it is possible to improve the efficiency of the loading hose connection work and the operating rate of the entire press-in work process. Moreover, since the risk of workers being left behind on the floating body for a long period of time can be reduced, safety can be improved.
 また、本実施形態に係る液化炭酸ガス圧入システム10では、浮体12に昇温昇圧設備18を搭載しているため、液化炭酸ガス輸送船100から浮体12に移送する際の液化炭酸ガスの圧力を低圧(例えば0.684MPa~2.289MPa)にすることができる。これにより、高圧管の着脱作業が不要となるため、作業性を向上することができる。また、浮体12に昇温昇圧設備18を搭載したことにより、液化炭酸ガス輸送船100に昇温昇圧設備を搭載する必要がなくなるため、液化炭酸ガス輸送船100の建造コストを大幅に低減できる。 Further, in the liquefied carbon dioxide gas injection system 10 according to the present embodiment, since the floating body 12 is equipped with the temperature raising and pressurizing equipment 18, the pressure of the liquefied carbon dioxide gas when transferred from the liquefied carbon dioxide transport ship 100 to the floating body 12 is Low pressures (eg, 0.684 MPa to 2.289 MPa) can be used. This eliminates the need for attaching and detaching the high-pressure pipe, thereby improving workability. Moreover, since the temperature raising and pressurizing equipment 18 is mounted on the floating body 12, the liquefied carbon dioxide transport ship 100 does not need to be equipped with the temperature raising and pressurizing equipment, so the construction cost of the liquefied carbon dioxide transport ship 100 can be greatly reduced.
 また、本実施形態に係る液化炭酸ガス圧入システム10では、高圧管であるフレキシブルライザーパイプ16が浮体12に常時接続されている。そのため、液化炭酸ガスの海底圧入作業開始時や作業終了時にフレキシブルライザーパイプ16を着脱する必要がなく、また輸送船と海底を結ぶ特殊で高価な海中システムが不要となり、作業効率を向上できる。 In addition, in the liquefied carbon dioxide gas injection system 10 according to this embodiment, the flexible riser pipe 16, which is a high-pressure pipe, is always connected to the floating body 12. Therefore, there is no need to attach or detach the flexible riser pipe 16 at the start or end of the submarine injection work of liquefied carbon dioxide gas, and the need for a special and expensive submarine system connecting the transport ship and the seabed is eliminated, improving the work efficiency.
 以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the examples. It should be understood by those skilled in the art that this embodiment is merely an example, and that various modifications can be made to combinations of each component and each treatment process, and such modifications are within the scope of the present invention. .
 例えば、上述の実施形態では、浮体としてアドパンストスパー型の浮体を採用したが、浮体はアドバンストスパー型に限定されず、通常のスパー型浮体であってもよい。 For example, in the above-described embodiment, an advanced spar type floating body is used as the floating body, but the floating body is not limited to the advanced spar type, and may be a normal spar type floating body.
 本発明は、CCS(二酸化炭素回収・貯留)に利用できる。 The present invention can be used for CCS (carbon dioxide capture and storage).
 10 液化炭酸ガス圧入システム、 12 浮体、 14 ローディングホース、 16 フレキシブルライザーパイプ、 18 昇温昇圧設備、 19 発電設備、 20 液化炭酸ガス貯蔵タンク、 21 カーゴポンプ、 22 液化炭酸ガス、 24 ギャングウェイ、 30 アッパーハル部、 32 ロワーハル部、 34 コラム部、 36 係留索、 38 ターンテーブル、 40 ローディングホースリール、 42 係留ホーサーウィンチ、 44 係留ホーサー、 48 バウローディングシステム、 100 液化炭酸ガス輸送船、 101 圧縮・液化装置、 102 タンク、 103 ローディングアーム、 104 坑口設備。 10 Liquefied carbon dioxide gas injection system, 12 Floating body, 14 Loading hose, 16 Flexible riser pipe, 18 Temperature raising and boosting equipment, 19 Power generation equipment, 20 Liquefied carbon dioxide storage tank, 21 Cargo pump, 22 Liquefied carbon dioxide gas, 24 Gangway, 30 Upper hull section, 32 Lower hull section, 34 Column section, 36 Mooring rope, 38 Turntable, 40 Loading hose reel, 42 Mooring hawser winch, 44 Mooring hawser, 48 Bow loading system, 100 Liquefied carbon dioxide transport ship, 101 Compression/liquefaction Equipment, 102 tank, 103 loading arm, 104 wellhead equipment.

Claims (6)

  1.  洋上に係留された浮体と、
     前記浮体に搭載された、液化炭酸ガスを昇温および昇圧するための昇温昇圧設備と、
     液化炭酸ガス輸送船内の液化炭酸ガス貯蔵タンクから前記浮体の前記昇温昇圧設備へ液化炭酸ガスを送るためのローディングホースと、
     前記浮体に接続された、前記昇温昇圧設備によって昇温および昇圧された液化炭酸ガスを海底に送って圧入するためのフレキシブルライザーパイプと、
     を備えることを特徴とする液化炭酸ガス圧入システム。
    a floating body moored offshore;
    a temperature raising and pressurizing equipment for raising the temperature and pressurizing the liquefied carbon dioxide gas mounted on the floating body;
    a loading hose for sending liquefied carbon dioxide from a liquefied carbon dioxide storage tank in the liquefied carbon dioxide transport ship to the temperature raising and pressurizing equipment of the floating body;
    a flexible riser pipe connected to the floating body for sending and injecting liquefied carbon dioxide gas heated and pressurized by the temperature raising and pressurizing equipment to the seabed;
    A liquefied carbon dioxide injection system comprising:
  2.  前記浮体はアドバンストスパー型浮体であり、液化炭酸ガスの貯蔵タンクを持たないことを特徴とする請求項1に記載の液化炭酸ガス圧入システム。 The liquefied carbon dioxide gas injection system according to claim 1, wherein the floating body is an advanced spar type floating body and does not have a liquefied carbon dioxide gas storage tank.
  3.  前記浮体に装備された前記昇温昇圧設備は、前記液化炭酸ガス輸送船からの遠隔操作により無人運転され、前記浮体には作業員用の居住設備が装備されないことを特徴とする請求項1または2に記載の液化炭酸ガス圧入システム。 2. The floating body is equipped with the temperature raising and pressurizing equipment, which is operated unmanned by remote control from the liquefied carbon dioxide transport ship, and the floating body is not equipped with living facilities for workers. 3. The liquefied carbon dioxide injection system according to 2.
  4.  前記液化炭酸ガス輸送船と前記浮体との間で作業員の往来を可能とするギャングウェイをさらに備えることを特徴とする請求項1から3のいずれかに記載の液化炭酸ガス圧入システム。 The liquefied carbon dioxide gas injection system according to any one of claims 1 to 3, further comprising a gangway that allows workers to come and go between the liquefied carbon dioxide transport ship and the floating body.
  5.  前記フレキシブルライザーパイプは、前記浮体に常時接続されることを特徴とする請求項1から4のいずれかに記載の液化炭酸ガス圧入システム。 The liquefied carbon dioxide injection system according to any one of claims 1 to 4, characterized in that said flexible riser pipe is always connected to said floating body.
  6.  液化炭酸ガス輸送船で洋上に係留された浮体に接近するステップと、
     前記液化炭酸ガス輸送船に備えられたギャングウェイを前記浮体に接続して作業員が液化炭酸ガス輸送船から浮体に乗り移るステップと、
     ローディングホースによって前記液化炭酸ガス輸送船内の液化炭酸ガス貯蔵タンクと前記浮体に搭載された昇温昇圧設備とを接続するステップと、
     前記ローディングホースを介して前記液化炭酸ガス貯蔵タンクから前記昇温昇圧設備に液化炭酸ガスを送るステップと、
     前記昇温昇圧設備によって液化炭酸ガスを昇温および昇圧するステップと、
     昇温および昇圧された液化炭酸ガスをフレキシブルライザーパイプによって海底に送り、圧入するステップと、
     を備えることを特徴とする液化炭酸ガス圧入方法。
    a step of approaching a floating body moored offshore with a liquefied carbon dioxide gas carrier;
    a step of connecting a gangway provided on the liquefied carbon dioxide gas transport ship to the floating body and having a worker transfer from the liquefied carbon dioxide gas transport ship to the floating body;
    a step of connecting a liquefied carbon dioxide gas storage tank in the liquefied carbon dioxide gas transport vessel and a temperature raising and pressurizing device mounted on the floating body by a loading hose;
    sending liquefied carbon dioxide from the liquefied carbon dioxide storage tank to the heating and pressurizing equipment through the loading hose;
    a step of raising the temperature and pressure of the liquefied carbon dioxide gas by the temperature raising and pressurizing equipment;
    a step of sending and injecting the liquefied carbon dioxide whose temperature and pressure has been raised to the seabed through a flexible riser pipe;
    A method for injecting liquefied carbon dioxide, comprising:
PCT/JP2022/023261 2021-06-10 2022-06-09 Liquefied carbon dioxide press-fitting system and liquefied carbon dioxide press-fitting method WO2022260122A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022289804A AU2022289804A1 (en) 2021-06-10 2022-06-09 Liquefied carbon dioxide press-fitting system and liquefied carbon dioxide press-fitting method
EP22820301.4A EP4353582A1 (en) 2021-06-10 2022-06-09 Liquefied carbon dioxide press-fitting system and liquefied carbon dioxide press-fitting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021097626A JP2022189193A (en) 2021-06-10 2021-06-10 Liquified carbon dioxide gas press-injection system and liquefied carbon dioxide gas press-injection method
JP2021-097626 2021-06-10

Publications (1)

Publication Number Publication Date
WO2022260122A1 true WO2022260122A1 (en) 2022-12-15

Family

ID=84424570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023261 WO2022260122A1 (en) 2021-06-10 2022-06-09 Liquefied carbon dioxide press-fitting system and liquefied carbon dioxide press-fitting method

Country Status (4)

Country Link
EP (1) EP4353582A1 (en)
JP (1) JP2022189193A (en)
AU (1) AU2022289804A1 (en)
WO (1) WO2022260122A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191634A1 (en) * 2022-03-30 2023-10-05 Stena Power & Lng Solutions As Offshore carbon capture and injection method and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072675A (en) * 2001-09-04 2003-03-12 Mitsubishi Heavy Ind Ltd Hydrogen recovery system provided with hydrogen manufacturing plant
JP2012132141A (en) * 2010-12-17 2012-07-12 Mitsubishi Heavy Ind Ltd Columnar structure and method of extending columnar structure at sea bottom
JP2016084630A (en) 2014-10-27 2016-05-19 三菱重工業株式会社 Riser pipe device, riser pipe lifting system and riser pipe lifting method
KR20160141532A (en) * 2015-06-01 2016-12-09 대우조선해양 주식회사 Natural gas incoming system of flng and incoming method of natural gas
KR20170139846A (en) * 2016-06-10 2017-12-20 대우조선해양 주식회사 Offshore plant
JP2020172872A (en) * 2019-04-09 2020-10-22 三菱重工業株式会社 Semi-sub floating body and method for installing wind mill on ocean using semi-sub floating body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003072675A (en) * 2001-09-04 2003-03-12 Mitsubishi Heavy Ind Ltd Hydrogen recovery system provided with hydrogen manufacturing plant
JP2012132141A (en) * 2010-12-17 2012-07-12 Mitsubishi Heavy Ind Ltd Columnar structure and method of extending columnar structure at sea bottom
JP2016084630A (en) 2014-10-27 2016-05-19 三菱重工業株式会社 Riser pipe device, riser pipe lifting system and riser pipe lifting method
KR20160141532A (en) * 2015-06-01 2016-12-09 대우조선해양 주식회사 Natural gas incoming system of flng and incoming method of natural gas
KR20170139846A (en) * 2016-06-10 2017-12-20 대우조선해양 주식회사 Offshore plant
JP2020172872A (en) * 2019-04-09 2020-10-22 三菱重工業株式会社 Semi-sub floating body and method for installing wind mill on ocean using semi-sub floating body

Also Published As

Publication number Publication date
JP2022189193A (en) 2022-12-22
AU2022289804A1 (en) 2024-01-25
EP4353582A1 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
AU2007275960B2 (en) System and vessel hydrocarbon production and method for intervention on subsea equipment
CN101297144B (en) A system using a catenary flexible conduit for transferring a cryogenic fluid
JP5726743B2 (en) Multifunctional unit for offshore transfer of hydrocarbons
US7690434B2 (en) Offshore vessel mooring and riser inboarding system
US8449341B2 (en) Floating support comprising a drum equipped with two buoys to which to fasten tethers and pipes connecting between the sea bed and the surface
US7513208B1 (en) Disconnectable mooring system with vessel-mounted tensioning device
CN102498259A (en) Downhole intervention
CN102561997A (en) Subsea tree workover control system
WO2022260122A1 (en) Liquefied carbon dioxide press-fitting system and liquefied carbon dioxide press-fitting method
US8141645B2 (en) Offshore gas recovery
CA2182293C (en) A vessel for production and/or loading/unloading and transport of hydrocarbons from offshore fields, and/or for carrying out well operations
WO2022096264A1 (en) Subsea fluid handling system and method for long term storage of fluids in a subterranean void
RU2489303C2 (en) Hydrocarbons transfer system with rotary jig
CA3167125A1 (en) Wind powered offshore water production facility and method for manufacturing such a facility
KR102426330B1 (en) Movable subsea carbon dioxide storage system
US20240068332A1 (en) Buoy for injecting fluid in a subterranean void and methods for connecting and disconnecting a fluid passage from a vessel to the buoy
US10823311B2 (en) Method of emptying an undersea fluid transport pipe that is submerged and full of water
Leverette Design of the Disconnectable Buoy Turret Mooring for the Turritella FPSO
CA2751810A1 (en) System and method for hydrocarbon production
CN217148567U (en) Emergency rapid transportation system for shipborne liquid medium
AU2021400933B2 (en) A ship and a method for bringing liquified gas from an onshore terminal across a sea to a subsurface permanent storage reservoir
CN217673094U (en) Ship with functions of transporting and storing liquefied carbon dioxide
EP4067616A1 (en) Fluid injection system and related methods
Wyllie Fast Track FPSO's for Deepwater and Ultra-Deepwater
Drawe III et al. Technical and economic considerations in developing offshore oil and gas prospects using floating production systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820301

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022289804

Country of ref document: AU

Ref document number: AU2022289804

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022820301

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022289804

Country of ref document: AU

Date of ref document: 20220609

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022820301

Country of ref document: EP

Effective date: 20240110