WO2022259971A1 - Drive circuit and solid-state imaging element - Google Patents

Drive circuit and solid-state imaging element Download PDF

Info

Publication number
WO2022259971A1
WO2022259971A1 PCT/JP2022/022599 JP2022022599W WO2022259971A1 WO 2022259971 A1 WO2022259971 A1 WO 2022259971A1 JP 2022022599 W JP2022022599 W JP 2022022599W WO 2022259971 A1 WO2022259971 A1 WO 2022259971A1
Authority
WO
WIPO (PCT)
Prior art keywords
coils
coil
differential
signal
differential signal
Prior art date
Application number
PCT/JP2022/022599
Other languages
French (fr)
Japanese (ja)
Inventor
重明 川井
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2023527835A priority Critical patent/JPWO2022259971A1/ja
Publication of WO2022259971A1 publication Critical patent/WO2022259971A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • This technology relates to drive circuits. More specifically, the present invention relates to a driver circuit for transmitting differential signals and single-phase signals, and a solid-state imaging device.
  • a driver such as a differential driver is arranged in the transmission side circuit in an interface such as MIPI (Mobile Industry Processor Interface).
  • MIPI Mobile Industry Processor Interface
  • the transmission speed is improved by inserting a coil.
  • the inductance of the coil is large, the rising and falling edges become steep, making it difficult to suppress noise due to EMI (Electro Magnetic Interference).
  • EMI Electro Magnetic Interference
  • This technology was created in view of this situation, and aims to achieve both improved transmission speed and noise suppression in circuits where drivers are arranged.
  • a first aspect thereof is a transformer provided with a plurality of magnetically coupled coils, a non-differential signal and a differential signal to the transformer, wherein the plurality of coils includes first and second coils that are magnetically coupled, and the drive unit supplies one of the first coil and One end of each of the first and second coils is connected to one end of the second coil, and when a common-mode current is caused to flow into each of the one ends of the first and second coils, the magnetic flux generated by each of the first and second coils is They are drive circuits that weaken each other. This brings about the effect of reducing the inductance during non-differential signal transmission.
  • the driving section supplies the differential signal to one end of the first coil and one end of the second coil, and the driving section supplies one end of the first coil. and one end of the second coil may be supplied with the differential signal. This brings about the effect that the signal is transmitted via two lines.
  • An ESD protection diode may also be provided. This brings about the effect of improving the waveform.
  • the driving section includes a shared driver that supplies either the differential signal or the non-differential signal, and an output voltage control section that controls the output voltage of the shared driver.
  • the driving section may be arranged on a predetermined semiconductor chip, and the transformer may be arranged outside the semiconductor chip. This brings about the effect of reducing the circuit scale of the semiconductor chip.
  • the driving section may include a differential driver that supplies the differential signal and a non-differential driver that supplies the non-differential signal. This has the effect of eliminating the need to control the output voltage of the driver.
  • the output terminal of the non-differential driver may be connected to a node between either end of the first and second coils. This has the effect of eliminating the need for connection to the center tap.
  • the output terminal of the non-differential driver may be connected to one end of the first and second coils. This brings about the effect of improving the waveform.
  • the driving section may be arranged on a predetermined semiconductor chip, and the transformer may be arranged outside the semiconductor chip. This brings about the effect of reducing the circuit scale of the semiconductor chip.
  • the plurality of coils includes first, second, and third coils that are magnetically coupled
  • the driving section includes one end of the first coil and the second coil.
  • the differential signal is supplied to one end of the coil of and the one end of the third coil, and a common-mode current is caused to flow into the one end of each of the second and third coils
  • the second and third coils are supplied with the differential signal.
  • the magnetic fluxes created by each of the coils may weaken each other. This brings about the effect that the signal is transmitted through the three lines.
  • the first aspect further includes a receiving section that receives differential signals via the first and second signal lines
  • the driving section includes first and second output terminals, and the The one end of the first coil is connected to the first output terminal, the other end is connected to the first signal line, and the one end of the second coil is connected to the second output terminal. and the other end may be connected to the second signal line.
  • the first and second coils share a predetermined winding axis, and when viewed from the direction of the winding axis, the output terminal of the wiring of the first coil
  • the winding direction around the winding axis from one connected end to the other end connected to the signal line is from the one end connected to the output terminal of the wiring of the second coil to the other end connected to the signal line. It may be in a direction opposite to the winding direction around the winding axis up to.
  • a second aspect of the present technology is a transformer provided with a plurality of magnetically coupled coils, and supplying either a non-differential signal or a differential signal to the transformer according to a predetermined control signal. and a logic circuit that designates either the non-differential signal or the differential signal according to the control signal and supplies the signal to the driving unit, wherein the plurality of coils are magnetically coupled.
  • the driver includes first and second coils, and the driver is connected to one end of the first coil and one end of the second coil and is in phase with the one end of each of the first and second coils.
  • This is a solid-state imaging device in which magnetic fluxes generated by the first and second coils weaken each other when a current is supplied. This brings about the effect of reducing the inductance with respect to the non-differential signal when the logic circuit transmits the non-differential signal.
  • FIG. 4 is a circuit diagram showing a configuration example of a drive circuit in a comparative example; It is a figure for comparing the inductance of a 1st embodiment of this art, and a comparative example.
  • 4A and 4B are timing charts showing an example of the operation of the drive circuit in the first embodiment and the comparative example of the present technology; It is a circuit diagram which shows one structural example of the drive circuit in 2nd Embodiment of this technique. It is a circuit diagram which shows one structural example of the drive circuit in 3rd Embodiment of this technique. It is a circuit diagram which shows one structural example of the drive circuit in 4th Embodiment of this technique. It is a circuit diagram which shows one structural example of the drive circuit in 5th Embodiment of this technique. It is a circuit diagram which shows one structural example of the drive circuit in 6th Embodiment of this technique. It is a circuit diagram which shows one structural example of the drive circuit in 7th Embodiment of this technique.
  • FIG. 1 is a block diagram showing a schematic configuration example of a vehicle control system
  • FIG. 4 is an explanatory diagram showing an example of an installation position of an imaging unit
  • First embodiment (example of providing two magnetically coupled coils) 2.
  • Second embodiment (an example in which two magnetically coupled coils are provided and a driver is connected to the center tap) 3.
  • Third embodiment (an example in which two magnetically coupled coils are provided and a diode is connected) 4.
  • Fourth Embodiment (Example of providing two magnetically coupled coils sharing a driver) 5.
  • Fifth embodiment (an example in which two magnetically coupled coils are arranged outside the chip) 6.
  • Sixth Embodiment (Example of applying the third embodiment to the second embodiment) 7.
  • FIG. 1 is a block diagram showing a configuration example of an imaging device 100 according to the first embodiment of the present technology.
  • This imaging device 100 is a device for capturing image data, and includes a solid-state imaging device 200 provided on a mounting substrate 110 and a receiving section 130 .
  • the solid-state imaging device 200 generates image data by photoelectric conversion.
  • the solid-state imaging device 200 supplies image data to the receiving section 130 via the transmission line 120 on the mounting board 110 .
  • MIPI for example, is used as a standard for a communication interface between the solid-state imaging device 200 and the receiving section 130 .
  • a communication interface other than MIPI can also be used.
  • the receiving unit 130 receives image data and performs predetermined image processing on the image data.
  • an application processor is used as the receiving unit 130 .
  • Image recognition processing and the like are executed as the image processing.
  • FIG. 2 is a block diagram showing a configuration example of the solid-state imaging device 200 according to the first embodiment of the present technology.
  • This solid-state imaging device 200 comprises a pixel chip 201 and a circuit chip 202 which are stacked. These chips are electrically connected through connections such as vias. In addition to vias, Cu--Cu bonding or bumps may be used for connection. These other methods (magnetic coupling, etc.) can also be used for connection. Also, although two chips are stacked, three or more layers can be stacked.
  • a plurality of pixels 210 are arranged in a two-dimensional grid on the pixel chip 201 .
  • a vertical signal line 219 is wired for each column of the pixels 210.
  • FIG. The pixel 210 generates an analog pixel signal by a photoelectric conversion element.
  • the pixels 210 supply pixel signals to the circuit chip 202 via vertical signal lines 219 .
  • the circuit chip 202 includes an analog-to-digital converter 220 , a logic circuit 230 , a serializer 240 and a drive circuit 300 .
  • the analog-to-digital converter 220 performs AD (Analog to Digital) conversion on each pixel signal.
  • AD Analog to Digital
  • an ADC Analog to Digital Converter
  • the analog-to-digital converter 220 supplies the digital signal for each pixel to the logic circuit 230 .
  • the logic circuit 230 performs predetermined signal processing on digital signals. CDS (Correlated Double Sampling) processing and the like are executed as the signal processing.
  • the logic circuit 230 outputs the processed digital signal to the serializer 240 in parallel.
  • the logic circuit 230 also supplies control signals DIF and SC to the drive circuit 300 . These control signals are signals for controlling the drive circuit 300 to either a differential signal output state or a non-differential signal output state.
  • the differential signal output state is an operating state in which the drive circuit 300 supplies differential signals.
  • a non-differential signal output state is an operating state in which the drive circuit 300 provides a pair of signals with in-phase transitions or single-phase transitions.
  • a common mode transition means that both of a pair of signals transition to a high or low level at the same time.
  • a monophasic transition means that only one of a pair of signals transitions to a high or low level.
  • a signal that undergoes a common-phase transition will be referred to as a "common-phase signal,” and a signal that undergoes a single-phase transition will be referred to as a “single-phase signal.”
  • In-phase signals and single-phase signals are collectively referred to as "non-differential signals”.
  • the drive circuit 300 supplies both a single-phase signal and an in-phase signal, but it is also possible to supply only one of them.
  • the serializer 240 performs parallel-serial conversion on the digital signal from the logic circuit 230 .
  • the serializer 240 sequentially supplies the digital signal after parallel-serial conversion to the drive circuit 300 via signal lines 241 to 244 bit by bit.
  • a differential signal, a common-mode signal, or a single-phase signal is provided according to the control of the logic circuit 230 . Two of these four signal lines are used for differential signal transmission, and the remaining two are used for non-differential signal transmission (in-phase signal or single-phase signal). It is assumed that the transmission speed of differential signals from the serializer 240 is faster than that of non-differential signals.
  • the drive circuit 300 adjusts the amplitude, fall time, and rise time of the digital signal from the serializer 240, and drives the transmission line 120 and the receiving circuit.
  • the technique of adjusting the fall time or rise time is called peaking.
  • the driving circuit 300 supplies the peaked digital signal to the receiving section 130 via the signal lines 121 and 122 in the transmission line 120 .
  • Either a differential signal or a non-differential signal is supplied according to the control of the logic circuit 230 . It is also assumed that the amplitude of the differential signal from drive circuit 300 is smaller than that of the non-differential signal.
  • FIG. 3 is a circuit diagram showing a configuration example of the drive circuit 300 according to the first embodiment of the present technology.
  • This drive circuit 300 comprises a drive section 305 and a transformer 360 .
  • the driving section 305 supplies either a non-differential signal (in-phase signal or single-phase signal) having a larger amplitude than the differential signal or a differential signal to the transformer 360 according to the control signals DIF and SC.
  • This drive section 305 comprises non-differential drivers 310 and 320 and a differential driver 330 .
  • Differential driver 330 comprises drivers 331 and 332 .
  • the transformer 360 is also provided with magnetically coupled coils 361 and 362 . Also, the inductances of the coils 361 and 362 are substantially the same.
  • coils 361 and 362 are not used as primary and secondary sides.
  • One end of the coil 361 is connected to the output terminal of the driver 331, and the other end is connected to the signal line 121 on the output side.
  • One end of the coil 362 is connected to the output terminal of the driver 332, and the other end is connected to the signal line 122 on the output side.
  • the drive unit 305 supplies a differential signal to one end of the coil 361 and one end of the coil 362, and causes common-mode currents to flow into one end of the coil 361 connected to the drive unit 305 and one end of the coil 362 connected to the drive unit 305, respectively. , the magnetic fluxes produced by each coil weaken each other. Further, when a differential current is caused to flow into one end of the coil 361 connected to the driving section 305 and one end of the coil 362 connected to the driving section 305, the magnetic fluxes generated by the respective coils strengthen each other.
  • the coil 361 is an example of the first coil described in the claims, and the coil 362 is an example of the second coil described in the claims.
  • Coils 361 and 362 share a predetermined winding axis W, and their respective wires are wound around that axis.
  • One end of the wiring 361-1 forming the coil 361 is designated as 361-2, and the other end is designated as 361-3.
  • One end of the wiring 362-1 forming the coil 362 is designated as 362-2, and the other end is designated as 362-3.
  • One ends 361 - 2 and 362 - 2 are connected to drive section 305 .
  • the other ends 361-3 and 362-3 are connected to the receiving section .
  • This figure is a plan view of the coils 361 and 362 viewed from the direction of the winding axis W.
  • winding direction of the wiring 361-1 of the coil 361 around the winding axis W is opposite to the winding direction of the wiring 362-1 of the coil 362 around the winding axis W.
  • the wire 361-1 is wound clockwise as illustrated in the figure, while the wire 362-1 is wound counterclockwise.
  • the non-differential driver 310 adjusts the amplitude of the non-differential signal from the serializer 240 and supplies it to one end of the coil 361.
  • the non-differential driver 310 includes, for example, an inverter 311 , switches 312 to 315 , a p-channel Metal Oxide Semiconductor (p-channel) transistor 316 and an n-channel MOS (n-channel MOS) transistor 317 .
  • Inverter 311 inverts the signal input to non-differential driver 310 .
  • the switch 312 opens and closes the path between the output terminal of the inverter 311 and the gate of the pMOS transistor 316 according to the control signal SC.
  • the switch 313 opens and closes the path between the output terminal of the inverter 311 and the gate of the nMOS transistor 317 according to the control signal SC.
  • the switch 314 opens and closes the path between the power supply terminal and the gate of the pMOS transistor 316 according to the control signal SC.
  • the switch 315 opens and closes the path between the ground terminal and the gate of the nMOS transistor 317 according to the control signal SC.
  • PMOS transistor 316 and nMOS transistor 317 are connected in series between the power supply terminal and the ground terminal, and the voltage at their connection node is output as the output signal of non-differential driver 310 .
  • switches 312 and 313 are closed, switches 314 and 315 are open and non-differential driver 310 is activated.
  • Non-differential signals are input to non-differential drivers 310 and 320 via signal lines 241 and 244 .
  • Differential signals are input to drivers 331 and 332 via signal lines 242 and 243 .
  • the logic circuit 230 drives the drivers 331 and 332 with the control signal DIF and stops the non-differential drivers 310 and 320 with the control signal SC when transmitting in the differential signal output state.
  • the logic circuit 230 drives the non-differential drivers 310 and 320 with the control signal SC, and stops the drivers 331 and 332 with the control signal DIF.
  • the non-differential drivers 310 and 320 supply a non-differential signal Dsc consisting of ?sc1 and Dsc2.
  • the driver 331 adjusts the amplitude of the positive phase signal Dp of the differential signals and supplies it to one end of the coil 361 .
  • the driver 332 adjusts the amplitude of the anti-phase signal Dn of the differential signals and supplies it to one end of the coil 362 .
  • the differential driver 330 in the differential signal output state, the differential driver 330 is driven to supply a high-speed, small-amplitude differential signal to the receiving section 130 via the transformer 360 .
  • non-differential drivers 310 and 320 are driven to provide low-speed, large-amplitude in-phase or single-phase signals to receiver 130 via transformer 360 .
  • the rise time and fall time of the differential signal can be shortened in the differential signal output state. This peaking can improve the transmission speed of the differential signal compared to the case where the coils 361 and 362 are not inserted. Also, in the non-differential signal output state, the insertion of coils 361 and 362 shortens the rise time and fall time, but the inductance of these coils is smaller than when these coils are not magnetically coupled. . As a result, the amount of decrease in rise time and fall time is smaller than in the case of no magnetic coupling, and noise due to EMI can be sufficiently suppressed. The reason why the inductance in the non-differential signal output state is relatively small will be described later.
  • a drive circuit in which a pair of magnetically uncoupled coils is inserted instead of the magnetically coupled coils 361 and 362 is assumed as a comparative example.
  • FIG. 5 is a circuit diagram showing a configuration example of a drive circuit in a comparative example. As illustrated in the figure, in the comparative example, a pair of coils that are not magnetically coupled are inserted between the output terminals of drivers 331 and 332 and signal lines 121 and 122 .
  • FIG. 6 is a diagram for comparing inductances between the first embodiment of the present technology and a comparative example.
  • the inductance of transformer 360 for differential signals corresponds to the combined inductance of coils 361 and 362 .
  • the inductance L diff of transformer 360 for differential signals is expressed by the following equation.
  • L diff 2L+2M Equation 1
  • M is mutual inductance and is represented by the following formula.
  • M kL Expression 2
  • k is a coupling coefficient, eg, a positive real number less than 1. Substituting Equation 2 into Equation 1 yields the following equation.
  • L diff 2(1+k)L Equation 3
  • the total inductance of the pair of coils for the differential signal is 2L.
  • the combined inductance of the transformer 360 with respect to the common-mode signal is expressed by the following equation because the polarities of the mutual inductances are reversed. (1 ⁇ k) L/2 Expression 4
  • the inductance of the pair of coils for the common-mode signal is L/2.
  • the inductances of the differential mode first embodiment and the comparative example are matched.
  • the inductance of coils 361 and 362 in the first embodiment is adjusted to L' expressed by the following equation.
  • L' L/(1+k) Expression 5
  • the inductance with respect to the common-mode signal is smaller than L/2 in the comparative example.
  • the rise time and fall time are increased compared to the comparative example, and noise due to EMI can be suppressed.
  • the inductance for a single-phase signal is L/(1+k), noise due to EMI can be similarly suppressed even in the single-phase mode.
  • FIG. 7 is a timing chart showing an example of the operation of the drive circuit in the first embodiment and the comparative example of the present technology.
  • a in FIG. 4 is a timing chart showing an example of the operation of the drive circuit 300 according to the first embodiment.
  • b in the figure is a timing chart showing an example of the operation of the comparative example.
  • the differential signal output state is set during the period up to timing T1, and the non-differential signal output state is set after timing T1.
  • a differential signal of a positive phase signal Dp and a negative phase signal Dn having a smaller amplitude than the in-phase signal and the single-phase signal and having a high speed is transmitted.
  • a non-differential signal Dsc having a larger amplitude and a lower speed than the differential signal is transmitted.
  • a common-mode signal is transmitted as a non-differential signal.
  • the rise time and fall time of the differential signal in the comparative example are the same as in the first embodiment.
  • the rise time dT1 of the common-mode signal is shorter than the rise time dT0 of the first embodiment.
  • Transformer 360 can also act as an inductor only for differential waveforms, as described above, to reduce the contribution of output capacitance. Therefore, it is possible to suppress the peaking of low-speed, large-amplitude single-phase and common-mode signals while sharpening the rise of high-speed, small-amplitude differential signals, thereby achieving both high-speed operation and EMI suppression.
  • the inductance for a common-mode signal and the inductance for a single-phase signal are higher than when coils that are not magnetically coupled are used. Inductance can be lowered. As a result, it is possible to suppress the peaking of the common-phase transition and the single-phase transition, thereby improving the transmission speed and suppressing noise.
  • Second Embodiment> In the first embodiment described above, the output terminals of non-differential drivers 310 and 320 are connected to one ends of coils 361 and 362 . However, this configuration may not be able to sufficiently reduce the influence of the output capacitance of non-differential drivers 310 and 320 on the waveform.
  • the drive circuit 300 of the second embodiment differs from the first embodiment in that the connection destinations of the output terminals of the non-differential drivers 310 and 320 are changed.
  • FIG. 8 is a circuit diagram showing a configuration example of the drive circuit 300 according to the second embodiment of the present technology.
  • the drive circuit 300 of this second embodiment differs from the first embodiment in that the output terminals of the non-differential drivers 310 and 320 are connected to the center taps 365 and 366 of the coils 361 and 362. . This connection can sufficiently reduce the influence of the output capacitance of non-differential drivers 310 and 320 on the waveform.
  • connection destination is not limited to the center tap as long as it is a node between both ends of the coils 361 and 362.
  • the non-differential driver 310 and the like are connected to nodes (such as center taps) between both ends of the coil, the non-differential driver 310 and 320 can be sufficiently reduced.
  • the magnetically coupled coils 361 and 362 are used to reduce the inductance in the non-differential signal output state. However, this configuration may not be able to sufficiently reduce the influence of the output capacitance of the driver on the waveform.
  • the drive circuit 300 of the third embodiment differs from the first embodiment in that ESD (Electro-Static Discharge) protection diodes are connected to coils 361 and 362 .
  • FIG. 9 is a circuit diagram showing one configuration example of the drive circuit 300 according to the third embodiment of the present technology.
  • the drive circuit 300 of this third embodiment differs from the first embodiment in that it further includes ESD protection diodes 371 to 374 .
  • the ESD protection diodes 371 and 372 are connected in series between the power terminal and the ground terminal.
  • the connection node of these ESD protection diodes 371 and 372 is connected to the center tap 365 of coil 361 .
  • the ESD protection diodes 373 and 374 are connected in series between the power terminal and the ground terminal.
  • the connection node of these ESD protection diodes 373 and 374 is connected to the center tap 366 of coil 362 .
  • ESD protection diodes 371 and 372 are examples of the first ESD protection diodes described in the claims.
  • ESD protection diodes 373 and 374 are an example of the claimed second ESD protection diodes.
  • connection destination is not limited to the center tap as long as it is a node between both ends of the coils 361 and 362.
  • FIG. 10 is a circuit diagram showing one configuration example of the drive circuit 300 according to the fourth embodiment of the present technology.
  • the driving circuit 300 of the fourth embodiment differs from the first embodiment in that an output voltage control section 341, switches 353 to 356, and shared drivers 351 and 352 are arranged in the driving section 305. different.
  • the output voltage control section 341 controls the DC output voltages of the shared drivers 351 and 352 according to the control signal DIF. This output voltage control section 341 lowers the output voltage in the differential signal output state than in the non-differential signal output state.
  • the shared driver 351 supplies a differential signal (such as a positive phase signal) or a non-differential signal from the serializer 240 to one end of the coil 361 .
  • Shared driver 352 supplies a differential signal (such as an anti-phase signal) or a non-differential signal from serializer 240 to one end of coil 362 .
  • the switch 353 opens and closes the path between the signal line 241 on the input side and the input terminal of the shared driver 351 according to the control signal SC.
  • the switch 352 opens and closes the path between the signal line 242 on the input side and the input terminal of the shared driver 351 according to the control signal DIF.
  • the switch 353 opens and closes the path between the signal line 243 on the input side and the input terminal of the shared driver 352 according to the control signal DIF.
  • the switch 354 opens and closes the path between the signal line 244 on the input side and the input terminal of the common driver 352 according to the control signal SC.
  • the logic circuit 230 When transmitting in a non-differential signal output state, the logic circuit 230 closes the switches 353 and 356 with the control signal SC and opens the switches 354 and 355 with the control signal DIF. In addition, the logic circuit 230 closes the switches 354 and 355 by the control signal DIF and opens the switches 353 and 356 by the control signal SC when transmitting in the differential signal output state.
  • the shared drivers 351 and 352 are commonly used in each operating state, the number of drivers can be reduced compared to the case where different drivers are used in each operating state. can be done.
  • the driving section 305 and the transformer 360 are arranged on the circuit chip 202, but with this configuration, it is difficult to further reduce the circuit scale of the circuit chip 202.
  • FIG. The drive circuit 300 of the fifth embodiment differs from the first embodiment in that the transformer 360 is arranged outside the circuit chip 202 .
  • FIG. 11 is a circuit diagram showing one configuration example of the drive circuit 300 according to the fifth embodiment of the present technology.
  • the drive circuit 300 of the fifth embodiment differs from the first embodiment in that the transformer 360 is arranged in the transmission line 120 outside the circuit chip 202 . Squares in the figure indicate pads. By disposing the transformer 360 outside the circuit chip 202, the circuit scale of the circuit chip 202 can be reduced. Note that the circuit chip 202 is an example of the semiconductor chip described in the claims.
  • the transformer 360 is arranged outside the circuit chip 202, the circuit scale of the circuit chip 202 can be reduced.
  • the magnetically coupled coils 361 and 362 are used to reduce the inductance in the non-differential signal output state.
  • this configuration may not be able to sufficiently reduce the influence of the output capacitance of the driver on the waveform.
  • the drive circuit 300 of the sixth embodiment differs from the second embodiment in that the third embodiment is applied to the second embodiment.
  • FIG. 12 is a circuit diagram showing one configuration example of the drive circuit 300 according to the sixth embodiment of the present technology.
  • the driving circuit 300 of the sixth embodiment differs from the second embodiment in that it further includes the ESD protection diodes 371 to 374 of the third embodiment.
  • connection destination is not limited to the center tap as long as it is a node between both ends of the coils 361 and 362. The same is true for the ESD protection diodes 371-374.
  • FIG. 13 is a circuit diagram showing one configuration example of the drive circuit 300 according to the seventh embodiment of the present technology.
  • the output voltage control section 341 of the fourth embodiment, the switches 353 to 356, and the shared drivers 351 and 352 are arranged in the drive section 305. It differs from the third embodiment.
  • the shared drivers 351 and 352 are commonly used in each operating state, the number of drivers can be reduced compared to the case where different drivers are used in each operating state. can be done.
  • FIG. 8. Eighth Embodiment> In the fourth embodiment described above, the driving section 305 and the transformer 360 are arranged on the circuit chip 202, but with this configuration, it is difficult to further reduce the circuit scale of the circuit chip 202.
  • FIG. The drive circuit 300 of the eighth embodiment differs from the fourth embodiment in that the fifth embodiment is applied to the fourth embodiment.
  • FIG. 14 is a circuit diagram showing one configuration example of the drive circuit 300 according to the eighth embodiment of the present technology.
  • the drive circuit 300 of the eighth embodiment differs from the fourth embodiment in that the transformer 360 is arranged in the transmission line 120 outside the circuit chip 202. FIG. Thereby, the circuit scale of the circuit chip 202 can be reduced.
  • the transformer 360 is arranged outside the circuit chip 202, the circuit scale of the circuit chip 202 can be reduced.
  • the drive circuit 300 outputs signals to the two signal lines 121 and 122, but it is also possible to output the signals to three lines.
  • the drive circuit 300 of the ninth embodiment differs from the first embodiment in that it outputs signals to three lines.
  • FIG. 15 is a circuit diagram showing one configuration example of the drive circuit 300 according to the ninth embodiment of the present technology.
  • the drive circuit 300 of the ninth embodiment differs from the first embodiment in that it further includes a non-differential driver 321 , a driver 333 and a coil 363 .
  • a driver 333 constitutes a differential driver together with drivers 331 and 332 .
  • the output voltage of the non-differential driver 321 is higher than the differential driver.
  • the driver 333 and the non-differential driver 321 supply Dq forming a differential signal or Dsc3 forming a non-differential signal to one end of the coil 363 .
  • the coil 363 is magnetically coupled with the coil 362 and the other end is connected to the receiving section 130 via the signal line 123 . Also, the inductance of the coil 363 is substantially the same as that of the coil 362 , and the winding direction of the coil 363 from the driver 333 to the signal line 123 is different from the winding direction of the coil 362 from the driver 332 to the signal line 122 .
  • the logic circuit 230 drives the drivers 331 to 333 with the control signal DIF and stops the non-differential drivers 310, 320, 321 with the control signal SC when transmitting in the differential signal output state.
  • the logic circuit 230 stops the drivers 331 to 333 with the control signal DIF and drives the non-differential drivers 310, 320, 321 with the control signal SC when transmitting in the non-differential signal output state.
  • the drive circuit 300 transmits signals via three lines, it is also possible to transmit signals via four or more lines. Moreover, each of the second to eighth embodiments can be applied to the ninth embodiment.
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 16 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an exterior information detection unit 12030, an interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 17 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • the imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 17 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above.
  • the imaging device 100 in FIG. 1 can be applied to the imaging unit 12031 .
  • the technology according to the present disclosure it is possible to improve the transmission speed, reduce noise, and obtain a more viewable captured image, thereby reducing driver fatigue.
  • the present technology can also have the following configuration.
  • a transformer provided with a plurality of magnetically coupled coils; a driver that supplies either a non-differential signal or a differential signal to the transformer; the plurality of coils includes first and second coils that are magnetically coupled;
  • the drive unit is connected to one end of the first coil and one end of the second coil, A drive circuit in which magnetic fluxes generated by the first and second coils weaken each other when a common-mode current is caused to flow into the one end of each of the first and second coils.
  • the drive unit supplies the differential signal to one end of the first coil and one end of the second coil, and the drive unit supplies the differential signal to one end of the first coil and one end of the second coil.
  • the drive circuit according to (1) above which supplies the differential signal to one end of (3) a first ESD protection diode connected to a node across the first coil;
  • the driving circuit according to (2) further comprising a second ESD protection diode connected to a node between both ends of the second coil.
  • the driving unit a shared driver that provides one of the differential signal and the non-differential signal;
  • the driving circuit according to (2) or (3) further comprising an output voltage control section that controls the output voltage of the shared driver.
  • the driving unit is arranged on a predetermined semiconductor chip;
  • the driving unit a differential driver that supplies the differential signal;
  • the driving circuit according to (2) further comprising a non-differential driver that supplies the non-differential signal.
  • the drive circuit according to (6) wherein the output terminal of the non-differential driver is connected to a node between either end of the first and second coils.
  • the driving unit is arranged on a predetermined semiconductor chip;
  • the plurality of coils includes first, second and third coils that are magnetically coupled;
  • the drive unit supplies the differential signal to one end of the first coil, one end of the second coil, and one end of the third coil,
  • (11) further comprising a receiver that receives differential signals via the first and second signal lines;
  • the drive unit has first and second output terminals, the one end of the first coil is connected to the first output terminal and the other end is connected to the first signal line;
  • the first and second coils share a predetermined winding axis;
  • the winding direction about the winding axis from one end connected to the output terminal of the wiring of the first coil to the other end connected to the signal line is 2 is opposite to the winding direction about the winding axis from one end connected to the output terminal of the wiring of the coil to the other end connected to the signal line.
  • a transformer provided with a plurality of magnetically coupled coils; a driving unit that supplies either a non-differential signal or a differential signal to the transformer according to a predetermined control signal; a logic circuit that designates either the non-differential signal or the differential signal according to the control signal and supplies the signal to the drive unit;
  • the plurality of coils includes first and second coils that are magnetically coupled;
  • the drive unit is connected to one end of the first coil and one end of the second coil, A solid-state imaging device in which magnetic fluxes generated by the first and second coils weaken each other when a common-mode current is caused to flow into the one end of each of the first and second coils.
  • Imaging Device 110 Mounting Board 120 Transmission Line 130 Receiving Section 200 Solid-State Imaging Device 201 Pixel Chip 202 Circuit Chip 210 Pixel 220 Analog-to-Digital Conversion Section 230 Logic Circuit 240 Serializer 300 Driving Circuit 305 Driving Section 310, 320, 321 Non-Differential Driver 311 Inverter 312-315, 353-356 Switch 316 pMOS transistor 317 nMOS transistor 330 Differential driver 331-333 Driver 341 Output voltage controller 351, 352 Shared driver 360 Transformer 361-363 Coil 371-374 ESD protection diode 12031 Imaging unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)

Abstract

The present invention achieves both an increase in transmission speed and noise suppression in a circuit in which a driver is disposed. This drive circuit comprises a drive unit and a transformer. In the drive circuit comprising the drive unit and the transformer, the transformer is provided with a plurality of magnetically coupled coils. Further, in the drive circuit, the drive unit supplies a non-differential signal or a differential signal to the transformer provided with the plurality of magnetically coupled coils.

Description

駆動回路、および、固体撮像素子Driving circuit and solid-state imaging device
 本技術は、駆動回路に関する。詳しくは、差動信号や単相信号を伝送する駆動回路、および、固体撮像素子に関する。 This technology relates to drive circuits. More specifically, the present invention relates to a driver circuit for transmitting differential signals and single-phase signals, and a solid-state imaging device.
 従来より、MIPI(Mobile Industry Processor Interface)などのインターフェースにおいて送信側の回路には、差動ドライバなどのドライバが配置されている。この回路の出力容量が多いほど、伝送する信号の立上り時間や立下り時間が長くなり、伝送速度が低下してしまう。そこで、立上り時間や立下り時間を短くするために、差動ドライバの出力側の伝送路にコイルを挿入した電子部品が提案されている(例えば、特許文献1参照。)。 Conventionally, a driver such as a differential driver is arranged in the transmission side circuit in an interface such as MIPI (Mobile Industry Processor Interface). The larger the output capacity of this circuit, the longer the rise time and fall time of the signal to be transmitted, and the lower the transmission speed. Therefore, in order to shorten the rise time and fall time, there has been proposed an electronic component in which a coil is inserted in the transmission line on the output side of the differential driver (see, for example, Patent Document 1).
特許第5872710号公報Japanese Patent No. 5872710
 上述の従来技術では、コイルを挿入することにより、伝送速度の向上を図っている。しかしながら、コイルのインダクタンスが大きいと、立上りや立下りが急峻になり、EMI(Electro Magnetic Interference)によるノイズの抑制が困難となる。このように、上述の電子部品では、伝送速度の向上と、ノイズの抑制との両立が困難である。 In the conventional technology described above, the transmission speed is improved by inserting a coil. However, if the inductance of the coil is large, the rising and falling edges become steep, making it difficult to suppress noise due to EMI (Electro Magnetic Interference). As described above, it is difficult to improve the transmission speed and suppress noise at the same time with the above-described electronic component.
 本技術はこのような状況に鑑みて生み出されたものであり、ドライバを配置した回路において、伝送速度の向上とノイズの抑制とを両立することを目的とする。 This technology was created in view of this situation, and aims to achieve both improved transmission speed and noise suppression in circuits where drivers are arranged.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、磁気的に結合された複数のコイルが設けられたトランスフォーマーと、非差動信号と差動信号とのいずれかを上記トランスフォーマーに供給する駆動部とを具備し、上記複数のコイルは、磁気的に結合された第1および第2のコイルを含み、前記駆動部は、上記第1のコイルの一端と上記第2のコイルの一端とに接続され、上記第1および第2のコイルのそれぞれの上記一端に同相電流を流入させたとき、上記第1および第2のコイルのそれぞれの作る磁束が互いに弱めあう駆動回路である。これにより、非差動信号伝送時のインダクタンスが小さくなるという作用をもたらす。 The present technology has been made to solve the above-described problems, and a first aspect thereof is a transformer provided with a plurality of magnetically coupled coils, a non-differential signal and a differential signal to the transformer, wherein the plurality of coils includes first and second coils that are magnetically coupled, and the drive unit supplies one of the first coil and One end of each of the first and second coils is connected to one end of the second coil, and when a common-mode current is caused to flow into each of the one ends of the first and second coils, the magnetic flux generated by each of the first and second coils is They are drive circuits that weaken each other. This brings about the effect of reducing the inductance during non-differential signal transmission.
 また、この第1の側面において、上記駆動部は上記第1のコイルの一端と上記第2のコイルの一端とに上記差動信号を供給し、上記駆動部は、上記第1のコイルの一端と上記第2のコイルの一端とに上記差動信号を供給してもよい。これにより、2線を介して信号が伝送されるという作用をもたらす。 Further, in this first aspect, the driving section supplies the differential signal to one end of the first coil and one end of the second coil, and the driving section supplies one end of the first coil. and one end of the second coil may be supplied with the differential signal. This brings about the effect that the signal is transmitted via two lines.
 また、この第1の側面において、上記第1のコイルの両端の間のノードに接続された第1のESD保護ダイオードと、上記第2のコイルの両端の間のノードに接続された第2のESD保護ダイオードとをさらに具備してもよい。これにより、波形が改善するという作用をもたらす。 Also, in this first aspect, a first ESD protection diode connected to a node between both ends of the first coil and a second ESD protection diode connected to a node between both ends of the second coil. An ESD protection diode may also be provided. This brings about the effect of improving the waveform.
 また、この第1の側面において、上記駆動部は、上記差動信号および上記非差動信号のいずれかを供給する共用ドライバと、上記共用ドライバの出力電圧を制御する出力電圧制御部とを備えてもよい。これにより、ドライバが削減されるという作用をもたらす。 Further, in this first aspect, the driving section includes a shared driver that supplies either the differential signal or the non-differential signal, and an output voltage control section that controls the output voltage of the shared driver. may This brings about the effect of reducing the number of drivers.
 また、この第1の側面において、上記駆動部は、所定の半導体チップに配置され、上記トランスフォーマーは、上記半導体チップの外部に配置されてもよい。これにより、半導体チップの回路規模が削減されるという作用をもたらす。 Further, in this first aspect, the driving section may be arranged on a predetermined semiconductor chip, and the transformer may be arranged outside the semiconductor chip. This brings about the effect of reducing the circuit scale of the semiconductor chip.
 また、この第1の側面において、上記駆動部は、上記差動信号を供給する差動ドライバと、上記非差動信号を供給する非差動ドライバとを備えてもよい。これにより、ドライバの出力電圧の制御が不要になるという作用をもたらす。 Further, in this first aspect, the driving section may include a differential driver that supplies the differential signal and a non-differential driver that supplies the non-differential signal. This has the effect of eliminating the need to control the output voltage of the driver.
 また、この第1の側面において、上記非差動ドライバの出力端子は、上記第1および第2のコイルのいずれかの両端の間のノードに接続されてもよい。これにより、センタータプへの接続が不要になるという作用をもたらす。 Also, in this first aspect, the output terminal of the non-differential driver may be connected to a node between either end of the first and second coils. This has the effect of eliminating the need for connection to the center tap.
 また、この第1の側面において、上記非差動ドライバの出力端子は、上記第1および第2のコイルのいずれかの上記一端に接続されてもよい。これにより、波形が改善するという作用をもたらす。 Also, in this first aspect, the output terminal of the non-differential driver may be connected to one end of the first and second coils. This brings about the effect of improving the waveform.
 また、この第1の側面において、上記駆動部は、所定の半導体チップに配置され、上記トランスフォーマーは、上記半導体チップの外部に配置されてもよい。これにより、半導体チップの回路規模が削減されるという作用をもたらす。 Further, in this first aspect, the driving section may be arranged on a predetermined semiconductor chip, and the transformer may be arranged outside the semiconductor chip. This brings about the effect of reducing the circuit scale of the semiconductor chip.
 また、この第1の側面において、上記複数のコイルは、磁気的に結合された第1、第2および第3のコイルを含み、上記駆動部は、前記第1のコイルの一端と上記第2のコイルの一端と上記第3のコイルの一端とに上記差動信号を供給し、上記第2および第3のコイルのそれぞれの上記一端に同相電流を流入させたとき、上記第2および第3のコイルのそれぞれの作る磁束が互いに弱めあってもよい。これにより、3線を介して信号が伝送されるという作用をもたらす。 Also, in this first aspect, the plurality of coils includes first, second, and third coils that are magnetically coupled, and the driving section includes one end of the first coil and the second coil. When the differential signal is supplied to one end of the coil of and the one end of the third coil, and a common-mode current is caused to flow into the one end of each of the second and third coils, the second and third coils are supplied with the differential signal. The magnetic fluxes created by each of the coils may weaken each other. This brings about the effect that the signal is transmitted through the three lines.
 また、この第1の側面において、第1および第2の信号線を介して差動信号を受信する受信部をさらに具備し、上記駆動部は、第1および第2の出力端子を備え、上記第1のコイルの上記一端は、上記第1の出力端子に接続され、他端は、上記第1の信号線に接続され、上記第2のコイルの上記一端は、上記第2の出力端子に接続され、他端は、上記第2の信号線に接続されてもよい。これにより、駆動部からの差動信号が第1および第2のコイルを介して受信部に入力されるという作用をもたらす。 Further, the first aspect further includes a receiving section that receives differential signals via the first and second signal lines, the driving section includes first and second output terminals, and the The one end of the first coil is connected to the first output terminal, the other end is connected to the first signal line, and the one end of the second coil is connected to the second output terminal. and the other end may be connected to the second signal line. This brings about the effect that the differential signal from the driving section is input to the receiving section via the first and second coils.
 また、この第1の側面において、上記第1および第2のコイルは、所定の巻回軸を共有し、上記巻回軸の方向から見た際に上記第1のコイルの配線の出力端子に接続される一端から信号線に接続される他端までの上記巻回軸周りの巻回方向は、上記第2のコイルの配線の出力端子に接続される一端から信号線に接続される他端までの上記巻回軸周りの巻回方向と逆方向であってもよい。これにより、第1のコイルの駆動につながる一端と第2のコイルの駆動部につながる一端にそれぞれ同相電流を流入させたとき、各々のコイルが作る磁束が弱めあうという作用をもたらす。 Further, in this first aspect, the first and second coils share a predetermined winding axis, and when viewed from the direction of the winding axis, the output terminal of the wiring of the first coil The winding direction around the winding axis from one connected end to the other end connected to the signal line is from the one end connected to the output terminal of the wiring of the second coil to the other end connected to the signal line. It may be in a direction opposite to the winding direction around the winding axis up to. As a result, when in-phase currents flow into one end connected to the drive of the first coil and one end connected to the drive section of the second coil, the magnetic fluxes generated by the coils weaken each other.
 また、本技術の第2の側面は、磁気的に結合された複数のコイルが設けられたトランスフォーマーと、所定の制御信号に従って非差動信号と差動信号とのいずれかを上記トランスフォーマーに供給する駆動部と、上記制御信号により上記非差動信号および上記差動信号のいずれかを指定して上記駆動部に供給させるロジック回路とを具備し、上記複数のコイルは、磁気的に結合された第1および第2のコイルを含み、上記駆動部は、上記第1のコイルの一端と上記第2のコイルの一端とに接続され、上記第1および第2のコイルのそれぞれの上記一端に同相電流を流入させたとき、上記第1および第2のコイルのそれぞれの作る磁束が互いに弱めあう固体撮像素子である。これにより、ロジック回路が非差動信号を伝送させた際の非差動信号に対するインダクタンスが小さくなるという作用をもたらす。 A second aspect of the present technology is a transformer provided with a plurality of magnetically coupled coils, and supplying either a non-differential signal or a differential signal to the transformer according to a predetermined control signal. and a logic circuit that designates either the non-differential signal or the differential signal according to the control signal and supplies the signal to the driving unit, wherein the plurality of coils are magnetically coupled. The driver includes first and second coils, and the driver is connected to one end of the first coil and one end of the second coil and is in phase with the one end of each of the first and second coils. This is a solid-state imaging device in which magnetic fluxes generated by the first and second coils weaken each other when a current is supplied. This brings about the effect of reducing the inductance with respect to the non-differential signal when the logic circuit transmits the non-differential signal.
本技術の第1の実施の形態における撮像装置の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of an imaging device in a 1st embodiment of this art. 本技術の第1の実施の形態における固体撮像素子の一構成例を示すブロック図である。It is a block diagram showing an example of 1 composition of a solid-state image sensing device in a 1st embodiment of this art. 本技術の第1の実施の形態における駆動回路の一構成例を示す回路図である。1 is a circuit diagram showing a configuration example of a drive circuit according to a first embodiment of the present technology; FIG. 本技術の第1の実施の形態におけるコイルの巻回方向を示す平面図である。It is a top view showing the winding direction of the coil in a 1st embodiment of this art. 比較例における駆動回路の一構成例を示す回路図である。FIG. 4 is a circuit diagram showing a configuration example of a drive circuit in a comparative example; 本技術の第1の実施の形態と比較例とのインダクタンスを比較するための図である。It is a figure for comparing the inductance of a 1st embodiment of this art, and a comparative example. 本技術の第1の実施の形態と比較例とにおける駆動回路の動作の一例を示すタイミングチャートである。4A and 4B are timing charts showing an example of the operation of the drive circuit in the first embodiment and the comparative example of the present technology; 本技術の第2の実施の形態における駆動回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the drive circuit in 2nd Embodiment of this technique. 本技術の第3の実施の形態における駆動回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the drive circuit in 3rd Embodiment of this technique. 本技術の第4の実施の形態における駆動回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the drive circuit in 4th Embodiment of this technique. 本技術の第5の実施の形態における駆動回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the drive circuit in 5th Embodiment of this technique. 本技術の第6の実施の形態における駆動回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the drive circuit in 6th Embodiment of this technique. 本技術の第7の実施の形態における駆動回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the drive circuit in 7th Embodiment of this technique. 本技術の第8の実施の形態における駆動回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the drive circuit in 8th Embodiment of this technique. 本技術の第9の実施の形態における駆動回路の一構成例を示す回路図である。It is a circuit diagram which shows one structural example of the drive circuit in 9th Embodiment of this technique. 車両制御システムの概略的な構成例を示すブロック図である。1 is a block diagram showing a schematic configuration example of a vehicle control system; FIG. 撮像部の設置位置の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of an installation position of an imaging unit;
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(磁気的に結合された2つのコイルを設けた例)
 2.第2の実施の形態(磁気的に結合された2つのコイルを設け、ドライバをセンタータップに接続した例)
 3.第3の実施の形態(磁気的に結合された2つのコイルを設け、ダイオードを接続した例)
 4.第4の実施の形態(ドライバを共用し、磁気的に結合された2つのコイルを設けた例)
 5.第5の実施の形態(磁気結合された2つのコイルをチップ外に配置した例)
 6.第6の実施の形態(第2の実施の形態に第3の実施の形態を適用した例)
 7.第7の実施の形態(第3の実施の形態に第4の実施の形態を適用した例)
 8.第8の実施の形態(第4の実施の形態に第5の実施の形態を適用した例)
 9.第9の実施の形態(磁気的に結合された3つのコイルを設けた例)
 10.移動体への応用例
Hereinafter, a form for carrying out the present technology (hereinafter referred to as an embodiment) will be described. Explanation will be given in the following order.
1. First embodiment (example of providing two magnetically coupled coils)
2. Second embodiment (an example in which two magnetically coupled coils are provided and a driver is connected to the center tap)
3. Third embodiment (an example in which two magnetically coupled coils are provided and a diode is connected)
4. Fourth Embodiment (Example of providing two magnetically coupled coils sharing a driver)
5. Fifth embodiment (an example in which two magnetically coupled coils are arranged outside the chip)
6. Sixth Embodiment (Example of applying the third embodiment to the second embodiment)
7. Seventh Embodiment (Example of applying the fourth embodiment to the third embodiment)
8. Eighth embodiment (an example in which the fifth embodiment is applied to the fourth embodiment)
9. Ninth embodiment (example in which three magnetically coupled coils are provided)
10. Example of application to mobile objects
 <1.第1の実施の形態>
 [撮像装置の構成例]
 図1は、本技術の第1の実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、画像データを撮像するための装置であり、実装基板110に設けられた固体撮像素子200および受信部130を備える。
<1. First Embodiment>
[Configuration example of imaging device]
FIG. 1 is a block diagram showing a configuration example of an imaging device 100 according to the first embodiment of the present technology. This imaging device 100 is a device for capturing image data, and includes a solid-state imaging device 200 provided on a mounting substrate 110 and a receiving section 130 .
 固体撮像素子200は、光電変換により画像データを生成するものである。この固体撮像素子200は、実装基板110上の伝送路120を介して、画像データを受信部130に供給する。固体撮像素子200と受信部130との間の通信インターフェースの規格として、例えば、MIPIが用いられる。なお、MIPI以外の通信インターフェースを用いることもできる。 The solid-state imaging device 200 generates image data by photoelectric conversion. The solid-state imaging device 200 supplies image data to the receiving section 130 via the transmission line 120 on the mounting board 110 . MIPI, for example, is used as a standard for a communication interface between the solid-state imaging device 200 and the receiving section 130 . A communication interface other than MIPI can also be used.
 受信部130は、画像データを受信し、その画像データに対して所定の画像処理を行うものである。この受信部130として、例えば、アプリケーションプロセッサが用いられる。画像処理として、画像認識処理などが実行される。 The receiving unit 130 receives image data and performs predetermined image processing on the image data. For example, an application processor is used as the receiving unit 130 . Image recognition processing and the like are executed as the image processing.
 [固体撮像素子の構成例]
 図2は、本技術の第1の実施の形態における固体撮像素子200の一構成例を示すブロック図である。この固体撮像素子200は、積層された画素チップ201および回路チップ202を備える。これらのチップは、ビアなどの接続部を介して電気的に接続される。なお、ビアの他、Cu-Cu接合やバンプにより接続することもできる。これらの他の方式(磁気結合など)により接続することもできる。また、2つのチップを積層しているが、3層以上を積層することもできる。
[Configuration example of solid-state imaging device]
FIG. 2 is a block diagram showing a configuration example of the solid-state imaging device 200 according to the first embodiment of the present technology. This solid-state imaging device 200 comprises a pixel chip 201 and a circuit chip 202 which are stacked. These chips are electrically connected through connections such as vias. In addition to vias, Cu--Cu bonding or bumps may be used for connection. These other methods (magnetic coupling, etc.) can also be used for connection. Also, although two chips are stacked, three or more layers can be stacked.
 画素チップ201には、複数の画素210が二次元格子状に配列される。また、画素チップ201には、画素210の列毎に垂直信号線219が配線される。画素210は、光電変換素子により、アナログの画素信号を生成するものである。この画素210は、垂直信号線219を介して画素信号を回路チップ202に供給する。 A plurality of pixels 210 are arranged in a two-dimensional grid on the pixel chip 201 . In the pixel chip 201, a vertical signal line 219 is wired for each column of the pixels 210. FIG. The pixel 210 generates an analog pixel signal by a photoelectric conversion element. The pixels 210 supply pixel signals to the circuit chip 202 via vertical signal lines 219 .
 回路チップ202には、アナログデジタル変換部220、ロジック回路230、シリアライザ240および駆動回路300を備える。アナログデジタル変換部220は、画素信号のそれぞれに対して、AD(Analog to Digital)変換を行うものである。アナログデジタル変換部220には、例えば、列毎にADC(Analog to Digital Converter)が配列され、列毎に、アナログの画素信号をデジタル信号に変換する。アナログデジタル変換部220は、画素ごとのデジタル信号をロジック回路230に供給する。 The circuit chip 202 includes an analog-to-digital converter 220 , a logic circuit 230 , a serializer 240 and a drive circuit 300 . The analog-to-digital converter 220 performs AD (Analog to Digital) conversion on each pixel signal. In the analog-to-digital converter 220, for example, an ADC (Analog to Digital Converter) is arranged for each column, and converts analog pixel signals into digital signals for each column. The analog-to-digital converter 220 supplies the digital signal for each pixel to the logic circuit 230 .
 ロジック回路230は、デジタル信号に対して所定の信号処理を行うものである。信号処理として、CDS(Correlated Double Sampling)処理などが実行される。ロジック回路230は、信号処理後のデジタル信号をシリアライザ240にパラレル出力する。 The logic circuit 230 performs predetermined signal processing on digital signals. CDS (Correlated Double Sampling) processing and the like are executed as the signal processing. The logic circuit 230 outputs the processed digital signal to the serializer 240 in parallel.
 また、ロジック回路230は、駆動回路300に制御信号DIF、SCを供給する。これらの制御信号は、差動信号出力状態、非差動信号出力状態のいずれかに駆動回路300を制御するための信号である。 The logic circuit 230 also supplies control signals DIF and SC to the drive circuit 300 . These control signals are signals for controlling the drive circuit 300 to either a differential signal output state or a non-differential signal output state.
 差動信号出力状態は、駆動回路300が差動信号を供給する動作状態である。非差動信号出力状態は、駆動回路300が、同相遷移または単相遷移する一対の信号を供給する動作状態である。同相遷移は、一対の信号の両方が同時に、ハイレベルまたはローレベルに遷移することを意味する。単相遷移は、一対の信号の一方のみがハイレベルまたはローレベルに遷移することを意味する。以下、同相遷移する信号を「同相信号」と称し、単相遷移する信号を「単相信号」と称する。また、同相信号および単相信号をまとめて「非差動信号」と称する。なお、非差動信号出力状態において、駆動回路300は、単相信号、同相信号の両方を供給しているが、それらの一方のみを供給することもできる。 The differential signal output state is an operating state in which the drive circuit 300 supplies differential signals. A non-differential signal output state is an operating state in which the drive circuit 300 provides a pair of signals with in-phase transitions or single-phase transitions. A common mode transition means that both of a pair of signals transition to a high or low level at the same time. A monophasic transition means that only one of a pair of signals transitions to a high or low level. Hereinafter, a signal that undergoes a common-phase transition will be referred to as a "common-phase signal," and a signal that undergoes a single-phase transition will be referred to as a "single-phase signal." In-phase signals and single-phase signals are collectively referred to as "non-differential signals". In the non-differential signal output state, the drive circuit 300 supplies both a single-phase signal and an in-phase signal, but it is also possible to supply only one of them.
 シリアライザ240は、ロジック回路230からのデジタル信号に対して、パラレル-シリアル変換を行うものである。このシリアライザ240は、パラレル-シリアル変換後のデジタル信号を信号線241乃至244を介して駆動回路300に1ビットずつ順に供給する。ロジック回路230の制御に従って、差動信号、同相信号または単相信号が供給される。これらの4本の信号線のうち2本が差動信号の伝送に用いられ、残りの2本が非差動信号(同相信号または単相信号)の伝送に用いられる。シリアライザ240からの差動信号の伝送速度は、非差動信号よりも早いものとする。 The serializer 240 performs parallel-serial conversion on the digital signal from the logic circuit 230 . The serializer 240 sequentially supplies the digital signal after parallel-serial conversion to the drive circuit 300 via signal lines 241 to 244 bit by bit. A differential signal, a common-mode signal, or a single-phase signal is provided according to the control of the logic circuit 230 . Two of these four signal lines are used for differential signal transmission, and the remaining two are used for non-differential signal transmission (in-phase signal or single-phase signal). It is assumed that the transmission speed of differential signals from the serializer 240 is faster than that of non-differential signals.
 駆動回路300は、シリアライザ240からのデジタル信号の振幅、立下り時間や立上り時間を調整し、伝送路120及び受信回路を駆動するものである。立下り時間や立上り時間を調整する技術は、ピーキングと呼ばれる。駆動回路300は、ピーキング後のデジタル信号を、伝送路120内の信号線121および122を介して受信部130に供給する。ロジック回路230の制御に従って、差動信号、非差動信号のいずれかが供給される。また、駆動回路300からの差動信号の振幅は、非差動信号よりも小さいものとする。 The drive circuit 300 adjusts the amplitude, fall time, and rise time of the digital signal from the serializer 240, and drives the transmission line 120 and the receiving circuit. The technique of adjusting the fall time or rise time is called peaking. The driving circuit 300 supplies the peaked digital signal to the receiving section 130 via the signal lines 121 and 122 in the transmission line 120 . Either a differential signal or a non-differential signal is supplied according to the control of the logic circuit 230 . It is also assumed that the amplitude of the differential signal from drive circuit 300 is smaller than that of the non-differential signal.
 [駆動回路の構成例]
 図3は、本技術の第1の実施の形態における駆動回路300の一構成例を示す回路図である。この駆動回路300は、駆動部305およびトランスフォーマー360を備える。
[Configuration example of drive circuit]
FIG. 3 is a circuit diagram showing a configuration example of the drive circuit 300 according to the first embodiment of the present technology. This drive circuit 300 comprises a drive section 305 and a transformer 360 .
 駆動部305は、制御信号DIF、SCに従って、差動信号より振幅の大きな非差動信号(同相信号または単相信号)と差動信号とのいずれかをトランスフォーマー360に供給するものである。この駆動部305は、非差動ドライバ310および320と、差動ドライバ330とを備える。差動ドライバ330は、ドライバ331および332を備える。 The driving section 305 supplies either a non-differential signal (in-phase signal or single-phase signal) having a larger amplitude than the differential signal or a differential signal to the transformer 360 according to the control signals DIF and SC. This drive section 305 comprises non-differential drivers 310 and 320 and a differential driver 330 . Differential driver 330 comprises drivers 331 and 332 .
 また、トランスフォーマー360には、磁気的に結合されたコイル361および362が設けられる。また、コイル361および362のそれぞれのインダクタンスは略同一である。 The transformer 360 is also provided with magnetically coupled coils 361 and 362 . Also, the inductances of the coils 361 and 362 are substantially the same.
 ここで、コイル361を仮に1次側として、その両端に1次電圧を印加した際に、その1次電圧と極性が異なる2次電圧がコイル362の両端に生じるものとする。ただし、トランスフォーマー360において、コイル361および362は、1次側、2次側として使用されることはない。コイル361の一端がドライバ331の出力端子に接続され、他端は、出力側の信号線121に接続される。コイル362の一端がドライバ332の出力端子に接続され、他端は、出力側の信号線122に接続される。駆動部305は、コイル361の一端とコイル362の一端とに差動信号を供給し、そのコイル361の駆動部305につながる一端とコイル362の駆動部305につながる一端にそれぞれ同相電流を流入させたとき、各々のコイルが作る磁束が弱めあう。また、コイル361の駆動部305につながる一端とコイル362の駆動部305につながる一端とに差動電流を流入させたときは、各々のコイルの作る磁束は強め合うことになる。 Here, it is assumed that when the coil 361 is assumed to be the primary side and a primary voltage is applied across it, a secondary voltage having a polarity different from that of the primary voltage is generated across the coil 362 . However, in transformer 360, coils 361 and 362 are not used as primary and secondary sides. One end of the coil 361 is connected to the output terminal of the driver 331, and the other end is connected to the signal line 121 on the output side. One end of the coil 362 is connected to the output terminal of the driver 332, and the other end is connected to the signal line 122 on the output side. The drive unit 305 supplies a differential signal to one end of the coil 361 and one end of the coil 362, and causes common-mode currents to flow into one end of the coil 361 connected to the drive unit 305 and one end of the coil 362 connected to the drive unit 305, respectively. , the magnetic fluxes produced by each coil weaken each other. Further, when a differential current is caused to flow into one end of the coil 361 connected to the driving section 305 and one end of the coil 362 connected to the driving section 305, the magnetic fluxes generated by the respective coils strengthen each other.
 なお、コイル361は、特許請求の範囲に記載の第1のコイルの一例であり、コイル362は、特許請求の範囲に記載の第2のコイルの一例である。 The coil 361 is an example of the first coil described in the claims, and the coil 362 is an example of the second coil described in the claims.
 図4を参照して、コイル361および362のそれぞれの巻回方向について詳細に説明する。コイル361および362は、所定の巻回軸Wを共有し、それぞれの配線は、その軸周りに巻かれている。コイル361を構成する配線361-1の一端を361-2とし、他端を361-3とする。コイル362を構成する配線362-1の一端を362-2とし、他端を362-3とする。一端361-2および362-2は、駆動部305に接続される。また、他端361-3および362-3は、受信部130に接続される。同図は、巻回軸Wの方向から見たコイル361および362の平面図である。また、矢印は361-2及び362-2から同相電流が流入したときの電流の流れる方向を示す。コイル361の配線361-1の巻回軸W周りの巻回方向は、コイル362の配線362-1の巻回軸W周りの巻回方向と逆方向である。例えば、配線361-1は同図に例示するように時計回りに巻かれているのに対し、配線362-1は反時計回りに巻かれている。 The winding directions of the coils 361 and 362 will be described in detail with reference to FIG. Coils 361 and 362 share a predetermined winding axis W, and their respective wires are wound around that axis. One end of the wiring 361-1 forming the coil 361 is designated as 361-2, and the other end is designated as 361-3. One end of the wiring 362-1 forming the coil 362 is designated as 362-2, and the other end is designated as 362-3. One ends 361 - 2 and 362 - 2 are connected to drive section 305 . Also, the other ends 361-3 and 362-3 are connected to the receiving section . This figure is a plan view of the coils 361 and 362 viewed from the direction of the winding axis W. FIG. Arrows indicate the direction of current flow when common-mode currents flow from 361-2 and 362-2. The winding direction of the wiring 361-1 of the coil 361 around the winding axis W is opposite to the winding direction of the wiring 362-1 of the coil 362 around the winding axis W. For example, the wire 361-1 is wound clockwise as illustrated in the figure, while the wire 362-1 is wound counterclockwise.
 図3に戻り、非差動ドライバ310は、シリアライザ240からの非差動信号の振幅を調整し、コイル361の一端に供給するものである。この非差動ドライバ310は、例えば、インバータ311と、スイッチ312乃至315と、pMOS(p-channel Metal Oxide Semiconductor)トランジスタ316と、nMOS(n-channel MOS)トランジスタ317とを備える。インバータ311は、非差動ドライバ310に入力される信号を反転するものである。スイッチ312は、インバータ311の出力端子とpMOSトランジスタ316のゲートとの間の経路を制御信号SCに従って開閉するものである。スイッチ313は、インバータ311の出力端子とnMOSトランジスタ317のゲートとの間の経路を制御信号SCに従って開閉するものである。スイッチ314は、電源端子とpMOSトランジスタ316のゲートとの間の経路を制御信号SCに従って、開閉するものである。スイッチ315は、接地端子とnMOSトランジスタ317のゲートとの間の経路を制御信号SCに従って、開閉するものである。pMOSトランジスタ316およびnMOSトランジスタ317は、電源端子と接地端子との間において直列に接続され、それらの接続ノードの電圧が非差動ドライバ310の出力信号として出力される。スイッチ312および313が閉状態の際は、スイッチ314および315は開状態であり、非差動ドライバ310が駆動した状態である。スイッチ312および313が開状態の際は、スイッチ314および315は閉状態であり、非差動ドライバ310が停止した状態である。なお、非差動ドライバ320、ドライバ331、ドライバ332の回路構成は、非差動ドライバ310と同様である。非差動ドライバ310および320には、信号線241および244を介して非差動信号が入力される。ドライバ331および332には、信号線242および243を介して差動信号が入力される。 Returning to FIG. 3, the non-differential driver 310 adjusts the amplitude of the non-differential signal from the serializer 240 and supplies it to one end of the coil 361. The non-differential driver 310 includes, for example, an inverter 311 , switches 312 to 315 , a p-channel Metal Oxide Semiconductor (p-channel) transistor 316 and an n-channel MOS (n-channel MOS) transistor 317 . Inverter 311 inverts the signal input to non-differential driver 310 . The switch 312 opens and closes the path between the output terminal of the inverter 311 and the gate of the pMOS transistor 316 according to the control signal SC. The switch 313 opens and closes the path between the output terminal of the inverter 311 and the gate of the nMOS transistor 317 according to the control signal SC. The switch 314 opens and closes the path between the power supply terminal and the gate of the pMOS transistor 316 according to the control signal SC. The switch 315 opens and closes the path between the ground terminal and the gate of the nMOS transistor 317 according to the control signal SC. PMOS transistor 316 and nMOS transistor 317 are connected in series between the power supply terminal and the ground terminal, and the voltage at their connection node is output as the output signal of non-differential driver 310 . When switches 312 and 313 are closed, switches 314 and 315 are open and non-differential driver 310 is activated. When switches 312 and 313 are open, switches 314 and 315 are closed and non-differential driver 310 is deactivated. The circuit configurations of the non-differential driver 320 , the driver 331 , and the driver 332 are similar to that of the non-differential driver 310 . Non-differential signals are input to non-differential drivers 310 and 320 via signal lines 241 and 244 . Differential signals are input to drivers 331 and 332 via signal lines 242 and 243 .
 ロジック回路230は、差動信号出力状態で伝送させる際に、制御信号DIFによりドライバ331および332を駆動し、制御信号SCにより非差動ドライバ310および320を停止する。 The logic circuit 230 drives the drivers 331 and 332 with the control signal DIF and stops the non-differential drivers 310 and 320 with the control signal SC when transmitting in the differential signal output state.
 また、ロジック回路230は、非差動信号出力状態で伝送させる際に、制御信号SCにより非差動ドライバ310および320を駆動し、制御信号DIFによりドライバ331および332を停止する。 Also, when transmitting in a non-differential signal output state, the logic circuit 230 drives the non-differential drivers 310 and 320 with the control signal SC, and stops the drivers 331 and 332 with the control signal DIF.
 非差動信号出力状態において、非差動ドライバ310および320は、?sc1及びDsc2からなる非差動信号Dscを供給する。 In the non-differential signal output state, the non-differential drivers 310 and 320 supply a non-differential signal Dsc consisting of ?sc1 and Dsc2.
 ドライバ331は、差動信号のうち正相信号Dpの振幅を調整し、コイル361の一端に供給するものである。ドライバ332は、差動信号のうち逆相信号Dnの振幅を調整し、コイル362の一端に供給するものである。 The driver 331 adjusts the amplitude of the positive phase signal Dp of the differential signals and supplies it to one end of the coil 361 . The driver 332 adjusts the amplitude of the anti-phase signal Dn of the differential signals and supplies it to one end of the coil 362 .
 また、非差動ドライバ310および320のDC(Direct Current)の出力電圧は、差動ドライバ330内のドライバ331および332よりも高いものとする。これにより、低速の非差動信号の振幅は、高速の差動信号の振幅より大きくなる。 It is also assumed that the DC (Direct Current) output voltages of the non-differential drivers 310 and 320 are higher than the drivers 331 and 332 in the differential driver 330 . This causes the amplitude of the slow non-differential signal to be greater than the amplitude of the fast differential signal.
 同図に例示した回路構成により、差動信号出力状態において、差動ドライバ330が駆動して、高速で小振幅の差動信号をトランスフォーマー360を介して受信部130に供給する。非差動信号出力状態において、非差動ドライバ310および320が駆動して、低速で大振幅の同相信号または単相信号をトランスフォーマー360を介して受信部130に供給する。 With the circuit configuration illustrated in the figure, in the differential signal output state, the differential driver 330 is driven to supply a high-speed, small-amplitude differential signal to the receiving section 130 via the transformer 360 . In the non-differential signal output state, non-differential drivers 310 and 320 are driven to provide low-speed, large-amplitude in-phase or single-phase signals to receiver 130 via transformer 360 .
 また、コイル361および362の挿入により、差動信号出力状態において、差動信号の立上り時間や立下り時間を短くすることができる。このピーキングにより、コイル361および362を挿入しない場合よりも、差動信号の伝送速度を向上させることができる。また、非差動信号出力状態においても、コイル361および362の挿入により立上り時間や立下り時間が短くなるものの、それらのコイルのインダクタンスは、それらのコイルが磁気結合していない場合よりも小さくなる。このため、磁気結合していない場合と比べて立上り時間や立下り時間の減少量が小さくなり、EMIによるノイズを十分に抑制することができる。非差動信号出力状態のインダクタンスが比較的小さい理由については後述する。 Also, by inserting the coils 361 and 362, the rise time and fall time of the differential signal can be shortened in the differential signal output state. This peaking can improve the transmission speed of the differential signal compared to the case where the coils 361 and 362 are not inserted. Also, in the non-differential signal output state, the insertion of coils 361 and 362 shortens the rise time and fall time, but the inductance of these coils is smaller than when these coils are not magnetically coupled. . As a result, the amount of decrease in rise time and fall time is smaller than in the case of no magnetic coupling, and noise due to EMI can be sufficiently suppressed. The reason why the inductance in the non-differential signal output state is relatively small will be described later.
 ここで、磁気的に結合されたコイル361および362の代わりに、磁気的に結合されていない一対のコイルを挿入した駆動回路を比較例として想定する。 Here, a drive circuit in which a pair of magnetically uncoupled coils is inserted instead of the magnetically coupled coils 361 and 362 is assumed as a comparative example.
 図5は、比較例における駆動回路の一構成例を示す回路図である。同図に例示するように、比較例では、ドライバ331および332の出力端子と信号線121および122との間に、磁気的に結合されていない一対のコイルが挿入される。 FIG. 5 is a circuit diagram showing a configuration example of a drive circuit in a comparative example. As illustrated in the figure, in the comparative example, a pair of coils that are not magnetically coupled are inserted between the output terminals of drivers 331 and 332 and signal lines 121 and 122 .
 図6は、本技術の第1の実施の形態と比較例とのインダクタンスを比較するための図である。第1の実施の形態において、差動信号に対するトランスフォーマー360のインダクタンスは、コイル361および362の合成インダクタンスに該当する。コイル361および362のそれぞれのインダクタンスをLとすると、差動信号に対するトランスフォーマー360のインダクタンスLdiffは次の式により表される。
  Ldiff=2L+2M                ・・・式1
上式において、Mは相互インダクタンスであり、次の式により表される。
  M=kL                     ・・・式2
上式において、kは、結合係数であり、例えば、1未満の正の実数である。式2を式1に代入すると、次の式が得られる。
  Ldiff=2(1+k)L              ・・・式3
FIG. 6 is a diagram for comparing inductances between the first embodiment of the present technology and a comparative example. In the first embodiment, the inductance of transformer 360 for differential signals corresponds to the combined inductance of coils 361 and 362 . Assuming that the inductance of each of coils 361 and 362 is L, the inductance L diff of transformer 360 for differential signals is expressed by the following equation.
L diff =2L+2M Equation 1
In the above formula, M is mutual inductance and is represented by the following formula.
M=kL Expression 2
In the above equation, k is a coupling coefficient, eg, a positive real number less than 1. Substituting Equation 2 into Equation 1 yields the following equation.
L diff =2(1+k)L Equation 3
 一方、比較例では、差動信号に対する一対のコイルのインダクタンスは、合計で2Lとなる。 On the other hand, in the comparative example, the total inductance of the pair of coils for the differential signal is 2L.
 次に、第1の実施の形態において、同相信号に対するトランスフォーマー360の合成インダクタンスは、相互インダクタンスの極性が逆になるため、次の式により表される。
  (1-k)L/2                  ・・・式4
Next, in the first embodiment, the combined inductance of the transformer 360 with respect to the common-mode signal is expressed by the following equation because the polarities of the mutual inductances are reversed.
(1−k) L/2 Expression 4
 一方、比較例では、同相信号に対する一対のコイルのインダクタンスは、L/2となる。 On the other hand, in the comparative example, the inductance of the pair of coils for the common-mode signal is L/2.
 同相信号に対するインダクタンスを対比するために、差動モードの第1の実施の形態と比較例とのインダクタンスを一致させてみる。例えば、第1の実施の形態のコイル361および362のインダクタンスを、次の式により表されるL'に調整する。
  L'=L/(1+k)               ・・・式5
In order to compare the inductance with respect to the common-mode signal, the inductances of the differential mode first embodiment and the comparative example are matched. For example, the inductance of coils 361 and 362 in the first embodiment is adjusted to L' expressed by the following equation.
L'=L/(1+k) Expression 5
 式5より、調整後の第1の実施の形態のインダクタンスLcomは、次の式により表される。
  Lcom={(1-k)/(1+k)}L/2      ・・・式6
From Equation 5, the inductance L com of the first embodiment after adjustment is expressed by the following equation.
L com = {(1−k)/(1+k)}L/2 Equation 6
 式6より、磁気結合したコイル361および362を用いた第1の実施の形態では、同相信号に対するインダクタンスが、比較例のL/2よりも小さくなる。これにより、比較例よりも立上り時間および立下り時間が増加し、EMIによるノイズを抑制することができる。単相信号に対するインダクタンスは、L/(1+k)となるため、単相モードにおいても同様にEMIによるノイズを抑制することができる。 According to Equation 6, in the first embodiment using the magnetically coupled coils 361 and 362, the inductance with respect to the common-mode signal is smaller than L/2 in the comparative example. As a result, the rise time and fall time are increased compared to the comparative example, and noise due to EMI can be suppressed. Since the inductance for a single-phase signal is L/(1+k), noise due to EMI can be similarly suppressed even in the single-phase mode.
 一方、調整後において差動信号に対する第1の実施の形態のインダクタンスは、比較例と同一であるため、比較例と同様に、コイルの挿入により伝送速度を向上させることができる。 On the other hand, since the inductance of the first embodiment with respect to the differential signal after adjustment is the same as that of the comparative example, it is possible to improve the transmission speed by inserting the coil as in the comparative example.
 上述したように、磁気結合したコイル361および362を用いることにより、ノイズの抑制と伝送速度の向上とを両立することができる。 As described above, by using the magnetically coupled coils 361 and 362, both noise suppression and transmission speed improvement can be achieved.
 [駆動回路の動作例]
 図7は、本技術の第1の実施の形態と比較例とにおける駆動回路の動作の一例を示すタイミングチャートである。同図におけるaは、第1の実施の形態の駆動回路300の動作の一例を示すタイミングチャートである。同図におけるbは、比較例の動作の一例を示すタイミングチャートである。
[Example of drive circuit operation]
FIG. 7 is a timing chart showing an example of the operation of the drive circuit in the first embodiment and the comparative example of the present technology. A in FIG. 4 is a timing chart showing an example of the operation of the drive circuit 300 according to the first embodiment. b in the figure is a timing chart showing an example of the operation of the comparative example.
 タイミングT1までの期間において差動信号出力状態が設定され、タイミングT1以降に非差動信号出力状態が設定されたものとする。同図におけるaに例示するように、差動信号出力状態において、同相信号や単相信号よりも振幅が小さく、高速な正相信号Dpおよび逆相信号Dnの差動信号が伝送される。また、非差動信号出力状態において、差動信号よりも振幅が大きく、低速な非差動信号Dscが伝送される。同図では、非差動信号として、同相信号が伝送されている。 It is assumed that the differential signal output state is set during the period up to timing T1, and the non-differential signal output state is set after timing T1. As exemplified by a in the figure, in the differential signal output state, a differential signal of a positive phase signal Dp and a negative phase signal Dn having a smaller amplitude than the in-phase signal and the single-phase signal and having a high speed is transmitted. Further, in the non-differential signal output state, a non-differential signal Dsc having a larger amplitude and a lower speed than the differential signal is transmitted. In the figure, a common-mode signal is transmitted as a non-differential signal.
 同図におけるbに例示するように、比較例の差動信号の立上り時間および立下り時間は、第1の実施の形態と同様である。しかし、同相信号の立上り時間dTは、第1の実施の形態の立上り時間dTよりも短くなる。 As illustrated in b in the figure, the rise time and fall time of the differential signal in the comparative example are the same as in the first embodiment. However, the rise time dT1 of the common-mode signal is shorter than the rise time dT0 of the first embodiment.
 同図に例示したように、低速で大振幅の信号は差動遷移が禁止され、単相遷移または同相遷移で伝送される。また、トランスフォーマー360は、前述のように差動波形にのみインダクタとして働き、出力容量の寄与を減らすことができる。このため、高速で小振幅の差動信号の立上りを急峻にしながら、低速で大振幅の単相、同相信号のピーキングを抑制し、高速動作とEMI抑制との両立が可能となる。 As shown in the figure, low-speed, large-amplitude signals are prohibited from differential transitions and are transmitted by single-phase transitions or common-phase transitions. Transformer 360 can also act as an inductor only for differential waveforms, as described above, to reduce the contribution of output capacitance. Therefore, it is possible to suppress the peaking of low-speed, large-amplitude single-phase and common-mode signals while sharpening the rise of high-speed, small-amplitude differential signals, thereby achieving both high-speed operation and EMI suppression.
 このように、本技術の第1の実施の形態によれば、磁気結合されたコイル361および362を設けたため、磁気結合されていないコイルを用いる場合よりも同相信号に対するインダクタンスや単相信号に対するインダクタンスを低下させることができる。これにより、同相遷移や単相遷移のピーキングを抑制して、伝送速度の向上とノイズの抑制とを両立することができる。 Thus, according to the first embodiment of the present technology, since the magnetically coupled coils 361 and 362 are provided, the inductance for a common-mode signal and the inductance for a single-phase signal are higher than when coils that are not magnetically coupled are used. Inductance can be lowered. As a result, it is possible to suppress the peaking of the common-phase transition and the single-phase transition, thereby improving the transmission speed and suppressing noise.
 <2.第2の実施の形態>
 上述の第1の実施の形態では、非差動ドライバ310および320の出力端子をコイル361および362の一端に接続していた。しかし、この構成では非差動ドライバ310および320の出力容量が波形に与える影響を十分に低減することができないことがある。この第2の実施の形態の駆動回路300は、非差動ドライバ310および320の出力端子の接続先を変更した点において第1の実施の形態と異なる。
<2. Second Embodiment>
In the first embodiment described above, the output terminals of non-differential drivers 310 and 320 are connected to one ends of coils 361 and 362 . However, this configuration may not be able to sufficiently reduce the influence of the output capacitance of non-differential drivers 310 and 320 on the waveform. The drive circuit 300 of the second embodiment differs from the first embodiment in that the connection destinations of the output terminals of the non-differential drivers 310 and 320 are changed.
 図8は、本技術の第2の実施の形態における駆動回路300の一構成例を示す回路図である。この第2の実施の形態の駆動回路300は、非差動ドライバ310および320の出力端子が、コイル361および362のセンタータップ365および366に接続されている点において第1の実施の形態と異なる。この接続により、非差動ドライバ310および320の出力容量が波形に与える影響を十分に低減することができる。 FIG. 8 is a circuit diagram showing a configuration example of the drive circuit 300 according to the second embodiment of the present technology. The drive circuit 300 of this second embodiment differs from the first embodiment in that the output terminals of the non-differential drivers 310 and 320 are connected to the center taps 365 and 366 of the coils 361 and 362. . This connection can sufficiently reduce the influence of the output capacitance of non-differential drivers 310 and 320 on the waveform.
 非差動ドライバ310および320の出力端子をセンタータップ365および366に接続した場合、同相信号に対するインダクタンスLcomは、次の式により表される。
  Lcom=(1-k){L/4}           ・・・式7
When the output terminals of non-differential drivers 310 and 320 are connected to center taps 365 and 366, the inductance Lcom for common mode signals is given by the following equation.
L com = (1−k) {L/4} Equation 7
 なお、非差動ドライバ310および320の出力端子をセンタータップ365および366に接続しているが、コイル361、362の両端の間のノードであれば、接続先はセンタータップに限定されない。 Although the output terminals of the non-differential drivers 310 and 320 are connected to the center taps 365 and 366, the connection destination is not limited to the center tap as long as it is a node between both ends of the coils 361 and 362.
 このように、本技術の第2の実施の形態によれば、非差動ドライバ310等の出力端子を、コイルの両端の間のノード(センタータップなど)に接続したため、非差動ドライバ310および320の出力容量の影響を十分に低減することことができる。 In this way, according to the second embodiment of the present technology, since the output terminals of the non-differential driver 310 and the like are connected to nodes (such as center taps) between both ends of the coil, the non-differential driver 310 and 320 can be sufficiently reduced.
 <3.第3の実施の形態>
 上述の第1の実施の形態では、磁気結合したコイル361および362を用いて非差動信号出力状態のインダクタンスを小さくしていた。しかし、この構成では、ドライバの出力容量が波形に与える影響を十分に低減できないことがある。この第3の実施の形態の駆動回路300は、ESD(Electro-Static Discharge)保護ダイオードをコイル361および362に接続した点において第1の実施の形態と異なる。
<3. Third Embodiment>
In the first embodiment described above, the magnetically coupled coils 361 and 362 are used to reduce the inductance in the non-differential signal output state. However, this configuration may not be able to sufficiently reduce the influence of the output capacitance of the driver on the waveform. The drive circuit 300 of the third embodiment differs from the first embodiment in that ESD (Electro-Static Discharge) protection diodes are connected to coils 361 and 362 .
 図9は、本技術の第3の実施の形態における駆動回路300の一構成例を示す回路図である。この第3の実施の形態の駆動回路300は、ESD保護ダイオード371乃至374をさらに備える点において第1の実施の形態と異なる。 FIG. 9 is a circuit diagram showing one configuration example of the drive circuit 300 according to the third embodiment of the present technology. The drive circuit 300 of this third embodiment differs from the first embodiment in that it further includes ESD protection diodes 371 to 374 .
 ESD保護ダイオード371および372は、電源端子と接地端子との間に直列に接続される。これらのESD保護ダイオード371および372の接続ノードは、コイル361のセンタータップ365に接続される。 The ESD protection diodes 371 and 372 are connected in series between the power terminal and the ground terminal. The connection node of these ESD protection diodes 371 and 372 is connected to the center tap 365 of coil 361 .
 ESD保護ダイオード373および374は、電源端子と接地端子との間に直列に接続される。これらのESD保護ダイオード373および374の接続ノードは、コイル362のセンタータップ366に接続される。 The ESD protection diodes 373 and 374 are connected in series between the power terminal and the ground terminal. The connection node of these ESD protection diodes 373 and 374 is connected to the center tap 366 of coil 362 .
 なお、ESD保護ダイオード371および372は、特許請求の範囲に記載の第1のESD保護ダイオードの一例である。ESD保護ダイオード373および374は、特許請求の範囲に記載の第2のESD保護ダイオードの一例である。 The ESD protection diodes 371 and 372 are examples of the first ESD protection diodes described in the claims. ESD protection diodes 373 and 374 are an example of the claimed second ESD protection diodes.
 ESD保護ダイオード371乃至374の接続により、ドライバの出力容量が波形に与える影響を十分に低減し、第2の実施の形態と同様に波形を改善することができる。 By connecting the ESD protection diodes 371 to 374, the influence of the output capacitance of the driver on the waveform can be sufficiently reduced, and the waveform can be improved as in the second embodiment.
 なお、ESD保護ダイオード371乃至374をセンタータップに接続しているが、コイル361、362の両端の間のノードであれば、接続先はセンタータップに限定されない。 Although the ESD protection diodes 371 to 374 are connected to the center tap, the connection destination is not limited to the center tap as long as it is a node between both ends of the coils 361 and 362.
 このように、本技術の第3の実施の形態によれば、ESD保護ダイオード371乃至374をコイル361および362に接続したため、ドライバの出力容量が波形に与える影響を十分に低減することができる。 Thus, according to the third embodiment of the present technology, since the ESD protection diodes 371 to 374 are connected to the coils 361 and 362, it is possible to sufficiently reduce the influence of the output capacitance of the driver on the waveform.
 <4.第4の実施の形態>
 上述の第1の実施の形態では、差動信号出力状態と、非差動信号出力状態とで異なるドライバを用いていたが、それらの状態で共通のドライバを用いることもできる。この第4の実施の形態の駆動回路300は、各動作状態で共通のドライバを用いる点において第1の実施の形態と異なる。
<4. Fourth Embodiment>
In the first embodiment described above, different drivers are used in the differential signal output state and the non-differential signal output state, but a common driver can be used in those states. The drive circuit 300 of the fourth embodiment differs from the first embodiment in that a common driver is used in each operating state.
 図10は、本技術の第4の実施の形態における駆動回路300の一構成例を示す回路図である。この第4の実施の形態の駆動回路300は、駆動部305内に、出力電圧制御部341と、スイッチ353乃至356と、共用ドライバ351および352とを配置した点において第1の実施の形態と異なる。 FIG. 10 is a circuit diagram showing one configuration example of the drive circuit 300 according to the fourth embodiment of the present technology. The driving circuit 300 of the fourth embodiment differs from the first embodiment in that an output voltage control section 341, switches 353 to 356, and shared drivers 351 and 352 are arranged in the driving section 305. different.
 出力電圧制御部341は、制御信号DIFに従って共用ドライバ351および352のDCの出力電圧を制御するものである。この出力電圧制御部341は、差動信号出力状態の出力電圧を非差動信号出力状態の場合よりも低下させる。 The output voltage control section 341 controls the DC output voltages of the shared drivers 351 and 352 according to the control signal DIF. This output voltage control section 341 lowers the output voltage in the differential signal output state than in the non-differential signal output state.
 共用ドライバ351は、シリアライザ240からの差動信号(正相信号など)または非差動信号をコイル361の一端に供給するものである。共用ドライバ352は、シリアライザ240からの差動信号(逆相信号など)または非差動信号をコイル362の一端に供給するものである。 The shared driver 351 supplies a differential signal (such as a positive phase signal) or a non-differential signal from the serializer 240 to one end of the coil 361 . Shared driver 352 supplies a differential signal (such as an anti-phase signal) or a non-differential signal from serializer 240 to one end of coil 362 .
 スイッチ353は、制御信号SCに従って、入力側の信号線241と共用ドライバ351の入力端子との間の経路を開閉するものである。スイッチ352は、制御信号DIFに従って、入力側の信号線242と共用ドライバ351の入力端子との間の経路を開閉するものである。スイッチ353は、制御信号DIFに従って、入力側の信号線243と共用ドライバ352の入力端子との間の経路を開閉するものである。スイッチ354は、制御信号SCに従って、入力側の信号線244と共用ドライバ352の入力端子との間の経路を開閉するものである。 The switch 353 opens and closes the path between the signal line 241 on the input side and the input terminal of the shared driver 351 according to the control signal SC. The switch 352 opens and closes the path between the signal line 242 on the input side and the input terminal of the shared driver 351 according to the control signal DIF. The switch 353 opens and closes the path between the signal line 243 on the input side and the input terminal of the shared driver 352 according to the control signal DIF. The switch 354 opens and closes the path between the signal line 244 on the input side and the input terminal of the common driver 352 according to the control signal SC.
 ロジック回路230は、非差動信号出力状態で伝送させる際に、制御信号SCによりスイッチ353および356を閉状態にし、制御信号DIFによりスイッチ354および355を開状態にする。また、ロジック回路230は、差動信号出力状態で伝送させる際に、制御信号DIFによりスイッチ354および355を閉状態にし、制御信号SCによりスイッチ353および356を開状態にする。 When transmitting in a non-differential signal output state, the logic circuit 230 closes the switches 353 and 356 with the control signal SC and opens the switches 354 and 355 with the control signal DIF. In addition, the logic circuit 230 closes the switches 354 and 355 by the control signal DIF and opens the switches 353 and 356 by the control signal SC when transmitting in the differential signal output state.
 各動作状態で共用ドライバ351および352を共通に用いることにより、第1の実施の形態と比較してドライバを削減することができる。 By using shared drivers 351 and 352 in common in each operating state, the number of drivers can be reduced compared to the first embodiment.
 このように、本技術の第4の実施の形態によれば、各動作状態で共用ドライバ351および352を共通に用いるため、各動作状態で異なるドライバを用いる場合と比較してドライバを削減することができる。 In this way, according to the fourth embodiment of the present technology, since the shared drivers 351 and 352 are commonly used in each operating state, the number of drivers can be reduced compared to the case where different drivers are used in each operating state. can be done.
 <5.第5の実施の形態>
 上述の第1の実施の形態では、回路チップ202に駆動部305およびトランスフォーマー360を配置していたが、この構成では、回路チップ202の回路規模をさらに削減することが困難である。この第5の実施の形態の駆動回路300は、トランスフォーマー360は、回路チップ202の外部に配置した点において第1の実施の形態と異なる。
<5. Fifth Embodiment>
In the first embodiment described above, the driving section 305 and the transformer 360 are arranged on the circuit chip 202, but with this configuration, it is difficult to further reduce the circuit scale of the circuit chip 202. FIG. The drive circuit 300 of the fifth embodiment differs from the first embodiment in that the transformer 360 is arranged outside the circuit chip 202 .
 図11は、本技術の第5の実施の形態における駆動回路300の一構成例を示す回路図である。この第5の実施の形態の駆動回路300は、トランスフォーマー360が、回路チップ202の外部の伝送路120に配置される点において第1の実施の形態と異なる。同図における四角は、パッドを示す。トランスフォーマー360を回路チップ202の外部に配置することにより、回路チップ202の回路規模を削減することができる。なお、回路チップ202は、特許請求の範囲に記載の半導体チップの一例である。 FIG. 11 is a circuit diagram showing one configuration example of the drive circuit 300 according to the fifth embodiment of the present technology. The drive circuit 300 of the fifth embodiment differs from the first embodiment in that the transformer 360 is arranged in the transmission line 120 outside the circuit chip 202 . Squares in the figure indicate pads. By disposing the transformer 360 outside the circuit chip 202, the circuit scale of the circuit chip 202 can be reduced. Note that the circuit chip 202 is an example of the semiconductor chip described in the claims.
 このように、本技術の第5の実施の形態によれば、トランスフォーマー360を回路チップ202の外部に配置したため、回路チップ202の回路規模を削減することができる。 Thus, according to the fifth embodiment of the present technology, since the transformer 360 is arranged outside the circuit chip 202, the circuit scale of the circuit chip 202 can be reduced.
 <6.第6の実施の形態>
 上述の第2の実施の形態では、磁気結合したコイル361および362を用いて非差動信号出力状態のインダクタンスを小さくしていた。しかし、この構成では、ドライバの出力容量が波形に与える影響を十分に低減できないことがある。この第6の実施の形態の駆動回路300は、第2の実施の形態に第3の実施の形態を適用した点において第2の実施の形態と異なる。
<6. Sixth Embodiment>
In the second embodiment described above, the magnetically coupled coils 361 and 362 are used to reduce the inductance in the non-differential signal output state. However, this configuration may not be able to sufficiently reduce the influence of the output capacitance of the driver on the waveform. The drive circuit 300 of the sixth embodiment differs from the second embodiment in that the third embodiment is applied to the second embodiment.
 図12は、本技術の第6の実施の形態における駆動回路300の一構成例を示す回路図である。この第6の実施の形態の駆動回路300は、第3の実施の形態のESD保護ダイオード371乃至374をさらに備える点において第2の実施の形態と異なる。 FIG. 12 is a circuit diagram showing one configuration example of the drive circuit 300 according to the sixth embodiment of the present technology. The driving circuit 300 of the sixth embodiment differs from the second embodiment in that it further includes the ESD protection diodes 371 to 374 of the third embodiment.
 ESD保護ダイオード371乃至374の接続により、ドライバの出力容量が波形に与える影響を十分に低減することができる。 By connecting the ESD protection diodes 371 to 374, the influence of the output capacitance of the driver on the waveform can be sufficiently reduced.
 なお、非差動ドライバ310および320の出力端子をセンタータップに接続しているが、コイル361、362の両端の間のノードであれば、接続先はセンタータップに限定されない。ESD保護ダイオード371乃至374についても同様である。 Although the output terminals of the non-differential drivers 310 and 320 are connected to the center tap, the connection destination is not limited to the center tap as long as it is a node between both ends of the coils 361 and 362. The same is true for the ESD protection diodes 371-374.
 このように、本技術の第6の実施の形態によれば、ESD保護ダイオード371乃至374をコイル361および362に接続したため、ドライバの出力容量が波形に与える影響を十分に低減することができる。 Thus, according to the sixth embodiment of the present technology, since the ESD protection diodes 371 to 374 are connected to the coils 361 and 362, it is possible to sufficiently reduce the influence of the output capacitance of the driver on the waveform.
 <7.第7の実施の形態>
 上述の第3の実施の形態では、差動信号出力状態と、非差動信号出力状態とで異なるドライバを用いていたが、それらの動作状態で共通のドライバを用いることもできる。この第7の実施の形態の駆動回路300は、第3の実施の形態に第4の実施の形態を適用した点において第3の実施の形態と異なる。
<7. Seventh Embodiment>
In the third embodiment described above, different drivers are used in the differential signal output state and the non-differential signal output state, but a common driver can be used in those operating states. The drive circuit 300 of the seventh embodiment differs from the third embodiment in that the fourth embodiment is applied to the third embodiment.
 図13は、本技術の第7の実施の形態における駆動回路300の一構成例を示す回路図である。この第7の実施の形態の駆動回路300は、駆動部305内に、第4の実施の形態の出力電圧制御部341と、スイッチ353乃至356と、共用ドライバ351および352とを配置した点において第3の実施の形態と異なる。 FIG. 13 is a circuit diagram showing one configuration example of the drive circuit 300 according to the seventh embodiment of the present technology. In the drive circuit 300 of the seventh embodiment, the output voltage control section 341 of the fourth embodiment, the switches 353 to 356, and the shared drivers 351 and 352 are arranged in the drive section 305. It differs from the third embodiment.
 各動作状態で共用ドライバ351および352を共通に用いることにより、第3の実施の形態と比較してドライバを削減することができる。 By using shared drivers 351 and 352 in common in each operating state, the number of drivers can be reduced compared to the third embodiment.
 このように、本技術の第7の実施の形態によれば、各動作状態で共用ドライバ351および352を共通に用いるため、各動作状態で異なるドライバを用いる場合と比較してドライバを削減することができる。 As described above, according to the seventh embodiment of the present technology, since the shared drivers 351 and 352 are commonly used in each operating state, the number of drivers can be reduced compared to the case where different drivers are used in each operating state. can be done.
 <8.第8の実施の形態>
 上述の第4の実施の形態では、回路チップ202に駆動部305およびトランスフォーマー360を配置していたが、この構成では、回路チップ202の回路規模をさらに削減することが困難である。この第8の実施の形態の駆動回路300は、第4の実施の形態に第5の実施の形態を適用した点において第4の実施の形態と異なる。
<8. Eighth Embodiment>
In the fourth embodiment described above, the driving section 305 and the transformer 360 are arranged on the circuit chip 202, but with this configuration, it is difficult to further reduce the circuit scale of the circuit chip 202. FIG. The drive circuit 300 of the eighth embodiment differs from the fourth embodiment in that the fifth embodiment is applied to the fourth embodiment.
 図14は、本技術の第8の実施の形態における駆動回路300の一構成例を示す回路図である。この第8の実施の形態の駆動回路300は、トランスフォーマー360が、回路チップ202の外部の伝送路120に配置される点において第4の実施の形態と異なる。これにより、回路チップ202の回路規模を削減することができる。 FIG. 14 is a circuit diagram showing one configuration example of the drive circuit 300 according to the eighth embodiment of the present technology. The drive circuit 300 of the eighth embodiment differs from the fourth embodiment in that the transformer 360 is arranged in the transmission line 120 outside the circuit chip 202. FIG. Thereby, the circuit scale of the circuit chip 202 can be reduced.
 このように、本技術の第8の実施の形態によれば、トランスフォーマー360を回路チップ202の外部に配置したため、回路チップ202の回路規模を削減することができる。 Thus, according to the eighth embodiment of the present technology, since the transformer 360 is arranged outside the circuit chip 202, the circuit scale of the circuit chip 202 can be reduced.
 <9.第9の実施の形態>
 上述の第1の実施の形態では、駆動回路300が信号線121および122の2線に信号を出力していたが、3線に信号を出力することもできる。この第9の実施の形態の駆動回路300は、3線に信号を出力する点において第1の実施の形態と異なる。
<9. Ninth Embodiment>
In the first embodiment described above, the drive circuit 300 outputs signals to the two signal lines 121 and 122, but it is also possible to output the signals to three lines. The drive circuit 300 of the ninth embodiment differs from the first embodiment in that it outputs signals to three lines.
 図15は、本技術の第9の実施の形態における駆動回路300の一構成例を示す回路図である。この第9の実施の形態の駆動回路300は、非差動ドライバ321と、ドライバ333と、コイル363とをさらに備える点において第1の実施の形態と異なる。 FIG. 15 is a circuit diagram showing one configuration example of the drive circuit 300 according to the ninth embodiment of the present technology. The drive circuit 300 of the ninth embodiment differs from the first embodiment in that it further includes a non-differential driver 321 , a driver 333 and a coil 363 .
 ドライバ333は、ドライバ331および332とともに差動ドライバを構成する。非差動ドライバ321の出力電圧は、差動ドライバより高い。ドライバ333および非差動ドライバ321は、コイル363の一端に差動信号を構成するDq、または、非差動信号を構成するDsc3を供給する。 A driver 333 constitutes a differential driver together with drivers 331 and 332 . The output voltage of the non-differential driver 321 is higher than the differential driver. The driver 333 and the non-differential driver 321 supply Dq forming a differential signal or Dsc3 forming a non-differential signal to one end of the coil 363 .
 コイル363は、コイル362と磁気的に結合されており、その他端は信号線123を介して受信部130に接続される。また、コイル363のインダクタンスは、コイル362と略同一であり、コイル363のドライバ333から信号線123までの巻回方向は、コイル362のドライバ332から信号線122までの巻回方向と異なる。 The coil 363 is magnetically coupled with the coil 362 and the other end is connected to the receiving section 130 via the signal line 123 . Also, the inductance of the coil 363 is substantially the same as that of the coil 362 , and the winding direction of the coil 363 from the driver 333 to the signal line 123 is different from the winding direction of the coil 362 from the driver 332 to the signal line 122 .
 ロジック回路230は、差動信号出力状態で伝送させる際に、制御信号DIFによりドライバ331乃至333を駆動し、制御信号SCにより非差動ドライバ310、320、321を停止する。 The logic circuit 230 drives the drivers 331 to 333 with the control signal DIF and stops the non-differential drivers 310, 320, 321 with the control signal SC when transmitting in the differential signal output state.
 また、ロジック回路230は、非差動信号出力状態で伝送させる際に、制御信号DIFによりドライバ331乃至333を停止し、制御信号SCにより非差動ドライバ310、320、321を駆動する。 In addition, the logic circuit 230 stops the drivers 331 to 333 with the control signal DIF and drives the non-differential drivers 310, 320, 321 with the control signal SC when transmitting in the non-differential signal output state.
 なお、駆動回路300は、3線を介して信号を伝送しているが、4線以上を介して信号を伝送することもできる。また、第9の実施の形態に、第2乃至第8の実施の形態のそれぞれを適用することができる。 Although the drive circuit 300 transmits signals via three lines, it is also possible to transmit signals via four or more lines. Moreover, each of the second to eighth embodiments can be applied to the ninth embodiment.
 このように、本技術の第9の実施の形態によれば、非差動ドライバ321と、ドライバ333と、コイル363とをさらに設けたため、3線で信号を伝送することができる。 Thus, according to the ninth embodiment of the present technology, since the non-differential driver 321, the driver 333, and the coil 363 are further provided, signals can be transmitted through three lines.
 <10.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<10. Example of application to moving objects>
The technology (the present technology) according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
 図16は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 16 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図16に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 A vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001. In the example shown in FIG. 16, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an exterior information detection unit 12030, an interior information detection unit 12040, and an integrated control unit 12050. Also, as the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps. In this case, the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches. The body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed. For example, the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 . The vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light. The imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information. Also, the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects in-vehicle information. The in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver. The driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit. A control command can be output to 12010 . For example, the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 In addition, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Also, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図16の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle. In the example of FIG. 16, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices. The display unit 12062 may include at least one of an on-board display and a head-up display, for example.
 図17は、撮像部12031の設置位置の例を示す図である。 FIG. 17 is a diagram showing an example of the installation position of the imaging unit 12031. FIG.
 図17では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 17, the imaging unit 12031 has imaging units 12101, 12102, 12103, 12104, and 12105.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example. An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 . Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 . An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 . The imaging unit 12105 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
 なお、図17には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 17 shows an example of the imaging range of the imaging units 12101 to 12104. FIG. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively, and the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, based on the distance information obtained from the imaging units 12101 to 12104, the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 . Such recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. This is done by a procedure that determines When the microcomputer 12051 determines that a pedestrian exists in the images captured by the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、図1の撮像装置100は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、伝送速度を向上しつつ、ノイズを低減し、より見やすい撮影画像を得ることができるため、ドライバの疲労を軽減することが可能になる。 An example of a vehicle control system to which the technology according to the present disclosure can be applied has been described above. The technology according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above. Specifically, the imaging device 100 in FIG. 1 can be applied to the imaging unit 12031 . By applying the technology according to the present disclosure to the imaging unit 12031, it is possible to improve the transmission speed, reduce noise, and obtain a more viewable captured image, thereby reducing driver fatigue.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 It should be noted that the above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the matters specifying the invention in the scope of claims have corresponding relationships. Similarly, the matters specifying the invention in the scope of claims and the matters in the embodiments of the present technology with the same names have corresponding relationships. However, the present technology is not limited to the embodiments, and can be embodied by various modifications to the embodiments without departing from the scope of the present technology.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in this specification are only examples and are not limited, and other effects may also occur.
 なお、本技術は以下のような構成もとることができる。
(1)磁気的に結合された複数のコイルが設けられたトランスフォーマーと、
 非差動信号と差動信号とのいずれかを前記トランスフォーマーに供給する駆動部と
を具備し、
 前記複数のコイルは、磁気的に結合された第1および第2のコイルを含み、
 前記駆動部は、前記第1のコイルの一端と前記第2のコイルの一端とに接続され、
 前記第1および第2のコイルのそれぞれの前記一端に同相電流を流入させたとき、前記第1および第2のコイルのそれぞれの作る磁束が互いに弱めあう
駆動回路。
(2)前記駆動部は前記第1のコイルの一端と前記第2のコイルの一端とに前記差動信号を供給し、前記駆動部は、前記第1のコイルの一端と前記第2のコイルの一端とに前記差動信号を供給する
前記(1)記載の駆動回路。
(3)前記第1のコイルの両端の間のノードに接続された第1のESD保護ダイオードと、
 前記第2のコイルの両端の間のノードに接続された第2のESD保護ダイオードと
をさらに具備する前記(2)記載の駆動回路。
(4)前記駆動部は、
 前記差動信号および前記非差動信号のいずれかを供給する共用ドライバと、
 前記共用ドライバの出力電圧を制御する出力電圧制御部と
を備える前記(2)または(3)に記載の駆動回路。
(5)前記駆動部は、所定の半導体チップに配置され、
 前記トランスフォーマーは、前記半導体チップの外部に配置される
前記(4)記載の駆動回路。
(6)前記駆動部は、
 前記差動信号を供給する差動ドライバと、
 前記非差動信号を供給する非差動ドライバと
を備える前記(2)記載の駆動回路。
(7)前記非差動ドライバの出力端子は、前記第1および第2のコイルのいずれかの両端の間のノードに接続される
前記(6)記載の駆動回路。
(8)前記非差動ドライバの出力端子は、前記第1および第2のコイルのいずれかの前記一端に接続される
前記(7)記載の駆動回路。
(9)前記駆動部は、所定の半導体チップに配置され、
 前記トランスフォーマーは、前記半導体チップの外部に配置される
前記(8)記載の駆動回路。
(10)前記複数のコイルは、磁気的に結合された第1、第2および第3のコイルを含み、
 前記駆動部は、前記第1のコイルの一端と前記第2のコイルの一端と前記第3のコイルの一端とに前記差動信号を供給し、
 前記第2および第3のコイルのそれぞれの前記一端に同相電流を流入させたとき、前記第2および第3のコイルのそれぞれの作る磁束が互いに弱めあう前記(1)記載の駆動回路。
(11)第1および第2の信号線を介して差動信号を受信する受信部をさらに具備し、
 前記駆動部は、第1および第2の出力端子を備え、
 前記第1のコイルの前記一端は、前記第1の出力端子に接続され、他端は、前記第1の信号線に接続され、
 前記第2のコイルの前記一端は、前記第2の出力端子に接続され、他端は、前記第2の信号線に接続される
前記(1)記載の駆動回路。
(12)前記第1および第2のコイルは、所定の巻回軸を共有し、
 前記巻回軸の方向から見た際に前記第1のコイルの配線の出力端子に接続される一端から信号線に接続される他端までの前記巻回軸周りの巻回方向は、前記第2のコイルの配線の出力端子に接続される一端から信号線に接続される他端までの前記巻回軸周りの巻回方向と逆方向である 
前記(1)記載の駆動回路。
(13)磁気的に結合された複数のコイルが設けられたトランスフォーマーと、
 所定の制御信号に従って非差動信号と差動信号とのいずれかを前記トランスフォーマーに供給する駆動部と、
 前記制御信号により前記非差動信号および前記差動信号のいずれかを指定して前記駆動部に供給させるロジック回路と
を具備し、
 前記複数のコイルは、磁気的に結合された第1および第2のコイルを含み、
 前記駆動部は、前記第1のコイルの一端と前記第2のコイルの一端とに接続され、
 前記第1および第2のコイルのそれぞれの前記一端に同相電流を流入させたとき、前記第1および第2のコイルのそれぞれの作る磁束が互いに弱めあう固体撮像素子。
Note that the present technology can also have the following configuration.
(1) a transformer provided with a plurality of magnetically coupled coils;
a driver that supplies either a non-differential signal or a differential signal to the transformer;
the plurality of coils includes first and second coils that are magnetically coupled;
The drive unit is connected to one end of the first coil and one end of the second coil,
A drive circuit in which magnetic fluxes generated by the first and second coils weaken each other when a common-mode current is caused to flow into the one end of each of the first and second coils.
(2) The drive unit supplies the differential signal to one end of the first coil and one end of the second coil, and the drive unit supplies the differential signal to one end of the first coil and one end of the second coil. The drive circuit according to (1) above, which supplies the differential signal to one end of
(3) a first ESD protection diode connected to a node across the first coil;
The driving circuit according to (2), further comprising a second ESD protection diode connected to a node between both ends of the second coil.
(4) the driving unit,
a shared driver that provides one of the differential signal and the non-differential signal;
The driving circuit according to (2) or (3), further comprising an output voltage control section that controls the output voltage of the shared driver.
(5) the driving unit is arranged on a predetermined semiconductor chip;
The driving circuit according to (4), wherein the transformer is arranged outside the semiconductor chip.
(6) the driving unit,
a differential driver that supplies the differential signal;
The driving circuit according to (2), further comprising a non-differential driver that supplies the non-differential signal.
(7) The drive circuit according to (6), wherein the output terminal of the non-differential driver is connected to a node between either end of the first and second coils.
(8) The drive circuit according to (7), wherein the output terminal of the non-differential driver is connected to one end of the first and second coils.
(9) the driving unit is arranged on a predetermined semiconductor chip;
The driving circuit according to (8), wherein the transformer is arranged outside the semiconductor chip.
(10) the plurality of coils includes first, second and third coils that are magnetically coupled;
The drive unit supplies the differential signal to one end of the first coil, one end of the second coil, and one end of the third coil,
The drive circuit according to (1) above, wherein the magnetic fluxes generated by the second and third coils weaken each other when a common-mode current is caused to flow into the one end of each of the second and third coils.
(11) further comprising a receiver that receives differential signals via the first and second signal lines;
The drive unit has first and second output terminals,
the one end of the first coil is connected to the first output terminal and the other end is connected to the first signal line;
The driving circuit according to (1), wherein the one end of the second coil is connected to the second output terminal and the other end is connected to the second signal line.
(12) the first and second coils share a predetermined winding axis;
When viewed from the direction of the winding axis, the winding direction about the winding axis from one end connected to the output terminal of the wiring of the first coil to the other end connected to the signal line is 2 is opposite to the winding direction about the winding axis from one end connected to the output terminal of the wiring of the coil to the other end connected to the signal line.
The driving circuit according to (1) above.
(13) a transformer provided with a plurality of magnetically coupled coils;
a driving unit that supplies either a non-differential signal or a differential signal to the transformer according to a predetermined control signal;
a logic circuit that designates either the non-differential signal or the differential signal according to the control signal and supplies the signal to the drive unit;
the plurality of coils includes first and second coils that are magnetically coupled;
The drive unit is connected to one end of the first coil and one end of the second coil,
A solid-state imaging device in which magnetic fluxes generated by the first and second coils weaken each other when a common-mode current is caused to flow into the one end of each of the first and second coils.
 100 撮像装置
 110 実装基板
 120 伝送路
 130 受信部
 200 固体撮像素子
 201 画素チップ
 202 回路チップ
 210 画素
 220 アナログデジタル変換部
 230 ロジック回路
 240 シリアライザ
 300 駆動回路
 305 駆動部
 310、320、321 非差動ドライバ
 311 インバータ
 312~315、353~356 スイッチ
 316 pMOSトランジスタ
 317 nMOSトランジスタ
 330 差動ドライバ
 331~333 ドライバ
 341 出力電圧制御部
 351、352 共用ドライバ
 360 トランスフォーマー
 361~363 コイル
 371~374 ESD保護ダイオード
 12031 撮像部
REFERENCE SIGNS LIST 100 Imaging Device 110 Mounting Board 120 Transmission Line 130 Receiving Section 200 Solid-State Imaging Device 201 Pixel Chip 202 Circuit Chip 210 Pixel 220 Analog-to-Digital Conversion Section 230 Logic Circuit 240 Serializer 300 Driving Circuit 305 Driving Section 310, 320, 321 Non-Differential Driver 311 Inverter 312-315, 353-356 Switch 316 pMOS transistor 317 nMOS transistor 330 Differential driver 331-333 Driver 341 Output voltage controller 351, 352 Shared driver 360 Transformer 361-363 Coil 371-374 ESD protection diode 12031 Imaging unit

Claims (13)

  1.  磁気的に結合された複数のコイルが設けられたトランスフォーマーと、
     非差動信号と差動信号とのいずれかを前記トランスフォーマーに供給する駆動部と
    を具備し、
     前記複数のコイルは、磁気的に結合された第1および第2のコイルを含み、
     前記駆動部は、前記第1のコイルの一端と前記第2のコイルの一端と接続され、
     前記第1および第2のコイルのそれぞれの前記一端に同相電流を流入させたとき、前記第1および第2のコイルのそれぞれの作る磁束が互いに弱めあう
    駆動回路。
    a transformer provided with a plurality of magnetically coupled coils;
    a driver that supplies either a non-differential signal or a differential signal to the transformer;
    the plurality of coils includes first and second coils that are magnetically coupled;
    The drive unit is connected to one end of the first coil and one end of the second coil,
    A drive circuit in which magnetic fluxes generated by the first and second coils weaken each other when a common-mode current is caused to flow into the one end of each of the first and second coils.
  2.  前記駆動部は前記第1のコイルの一端と前記第2のコイルの一端とに前記差動信号を供給し、前記第1および第2のコイルのそれぞれの他端から差動信号が出力される請求項1記載の駆動回路。 The drive unit supplies the differential signal to one end of the first coil and one end of the second coil, and the differential signal is output from the other ends of the first and second coils. 2. A drive circuit according to claim 1.
  3.  前記第1のコイルの両端の間のノードに接続された第1のESD保護ダイオードと、
     前記第2のコイルの両端の間のノードに接続された第2のESD保護ダイオードと
    をさらに具備する請求項1記載の駆動回路。
    a first ESD protection diode connected to a node across the first coil;
    2. The drive circuit of claim 1, further comprising a second ESD protection diode connected to a node across said second coil.
  4.  前記駆動部は、
     前記差動信号および前記非差動信号のいずれかを供給する共用ドライバと、
     前記共用ドライバの出力電圧を制御する出力電圧制御部と
    を備える請求項1記載の駆動回路。
    The drive unit
    a shared driver that provides one of the differential signal and the non-differential signal;
    2. The driving circuit according to claim 1, further comprising an output voltage control section for controlling an output voltage of said shared driver.
  5.  前記駆動部は、所定の半導体チップに配置され、
     前記トランスフォーマーは、前記半導体チップの外部に配置される
    請求項4記載の駆動回路。
    The driving unit is arranged on a predetermined semiconductor chip,
    5. The driving circuit according to claim 4, wherein said transformer is arranged outside said semiconductor chip.
  6.  前記駆動部は、
     前記差動信号を供給する差動ドライバと、
     前記非差動信号を供給する非差動ドライバと
    を備える請求項1記載の駆動回路。
    The drive unit
    a differential driver that supplies the differential signal;
    2. The drive circuit of claim 1, further comprising a non-differential driver for supplying said non-differential signal.
  7.  前記非差動ドライバの出力端子は、前記第1および第2のコイルのいずれかの両端の間のノードに接続される
    請求項6記載の駆動回路。
    7. The drive circuit according to claim 6, wherein the output terminal of said non-differential driver is connected to a node between either end of said first and second coils.
  8.  前記非差動ドライバの出力端子は、前記第1および第2のコイルのいずれかの前記一端に接続される
    請求項7記載の駆動回路。
    8. The drive circuit according to claim 7, wherein the output terminal of said non-differential driver is connected to said one end of either said first or second coil.
  9.  前記駆動部は、所定の半導体チップに配置され、
     前記トランスフォーマーは、前記半導体チップの外部に配置される
    請求項8記載の駆動回路。
    The driving unit is arranged on a predetermined semiconductor chip,
    9. The drive circuit according to claim 8, wherein said transformer is arranged outside said semiconductor chip.
  10.  前記複数のコイルは、磁気的に結合された第1、第2および第3のコイルを含み、
     前記駆動部は、前記第1のコイルの一端と前記第2のコイルの一端と前記第3のコイルの一端とに前記差動信号を供給し、
     前記第2および第3のコイルのそれぞれの前記一端に同相電流を流入させたとき、前記第2および第3のコイルのそれぞれの作る磁束が互いに弱めあう
    請求項1記載の駆動回路。
    the plurality of coils includes first, second and third coils that are magnetically coupled;
    The drive unit supplies the differential signal to one end of the first coil, one end of the second coil, and one end of the third coil,
    2. The drive circuit according to claim 1, wherein when a common-mode current is caused to flow into said one end of each of said second and third coils, the magnetic fluxes generated by said second and third coils weaken each other.
  11.  第1および第2の信号線を介して差動信号を受信する受信部をさらに具備し、
     前記駆動部は、第1および第2の出力端子を備え、
     前記第1のコイルの前記一端は、前記第1の出力端子に接続され、他端は、前記第1の信号線に接続され、
     前記第2のコイルの前記一端は、前記第2の出力端子に接続され、他端は、前記第2の信号線に接続される
    請求項1記載の駆動回路。
    further comprising a receiving unit that receives differential signals via the first and second signal lines;
    The drive unit has first and second output terminals,
    the one end of the first coil is connected to the first output terminal and the other end is connected to the first signal line;
    2. The drive circuit according to claim 1, wherein said one end of said second coil is connected to said second output terminal, and the other end is connected to said second signal line.
  12.  前記第1および第2のコイルは、所定の巻回軸を共有し、
     前記巻回軸の方向から見た際に前記第1のコイルの配線の出力端子に接続される一端から信号線に接続される他端までの前記巻回軸周りの巻回方向は、前記第2のコイルの配線の出力端子に接続される一端から信号線に接続される他端までの前記巻回軸周りの巻回方向と逆方向である
    請求項1記載の駆動回路。
    the first and second coils share a predetermined winding axis;
    When viewed from the direction of the winding axis, the winding direction about the winding axis from one end connected to the output terminal of the wiring of the first coil to the other end connected to the signal line is 2. The drive circuit according to claim 1, wherein the winding direction about the winding axis from one end connected to the output terminal of the wiring of the second coil to the other end connected to the signal line is opposite to the winding direction.
  13.  磁気的に結合された複数のコイルが設けられたトランスフォーマーと、
     所定の制御信号に従って非差動信号と差動信号とのいずれかを前記トランスフォーマーに供給する駆動部と、
     前記制御信号により前記非差動信号および前記差動信号のいずれかを指定して前記駆動部に供給させるロジック回路と
    を具備し、
     前記複数のコイルは、磁気的に結合された第1および第2のコイルを含み、
     前記駆動部は、前記第1のコイルの一端と前記第2のコイルの一端とに接続され、
     前記第1および第2のコイルのそれぞれの前記一端に同相電流を流入させたとき、前記第1および第2のコイルのそれぞれの作る磁束が互いに弱めあう
    固体撮像素子。
    a transformer provided with a plurality of magnetically coupled coils;
    a driving unit that supplies either a non-differential signal or a differential signal to the transformer according to a predetermined control signal;
    a logic circuit that designates either the non-differential signal or the differential signal according to the control signal and supplies the signal to the drive unit;
    the plurality of coils includes first and second coils that are magnetically coupled;
    The drive unit is connected to one end of the first coil and one end of the second coil,
    A solid-state imaging device in which magnetic fluxes generated by the first and second coils weaken each other when a common-mode current is caused to flow into the one end of each of the first and second coils.
PCT/JP2022/022599 2021-06-09 2022-06-03 Drive circuit and solid-state imaging element WO2022259971A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023527835A JPWO2022259971A1 (en) 2021-06-09 2022-06-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021096268 2021-06-09
JP2021-096268 2021-06-09

Publications (1)

Publication Number Publication Date
WO2022259971A1 true WO2022259971A1 (en) 2022-12-15

Family

ID=84425603

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/048837 WO2022259586A1 (en) 2021-06-09 2021-12-28 Drive circuit, and solid-state imaging element
PCT/JP2022/022599 WO2022259971A1 (en) 2021-06-09 2022-06-03 Drive circuit and solid-state imaging element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048837 WO2022259586A1 (en) 2021-06-09 2021-12-28 Drive circuit, and solid-state imaging element

Country Status (2)

Country Link
JP (1) JPWO2022259971A1 (en)
WO (2) WO2022259586A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111794A (en) * 2007-10-31 2009-05-21 Panasonic Corp Interface circuit that can switch between single-ended transmission and differential transmission
JP2016165081A (en) * 2015-03-06 2016-09-08 株式会社村田製作所 Noise filter
JP2016171163A (en) * 2015-03-12 2016-09-23 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit, communication module, and smart meter
WO2020152926A1 (en) * 2019-01-25 2020-07-30 ソニーセミコンダクタソリューションズ株式会社 Transmission device, interface, and transmission method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362346A (en) * 2003-06-05 2004-12-24 Sony Corp Output device and bidirectional i/o device
JP5277595B2 (en) * 2006-09-26 2013-08-28 セイコーエプソン株式会社 Apparatus, device, transmission / reception system, and control method including circuit
US7551014B1 (en) * 2007-02-01 2009-06-23 Altera Corporation Differential output with low output skew
JP2009165043A (en) * 2008-01-09 2009-07-23 Alpine Electronics Inc Asymmetric full-duplex transmission device
US8705637B2 (en) * 2011-02-23 2014-04-22 Panasonic Corporation Signal transmission device
JP5966159B2 (en) * 2013-04-26 2016-08-10 パナソニックIpマネジメント株式会社 Signal transmission apparatus, signal transmission system, signal transmission method, and computer apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111794A (en) * 2007-10-31 2009-05-21 Panasonic Corp Interface circuit that can switch between single-ended transmission and differential transmission
JP2016165081A (en) * 2015-03-06 2016-09-08 株式会社村田製作所 Noise filter
JP2016171163A (en) * 2015-03-12 2016-09-23 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit, communication module, and smart meter
WO2020152926A1 (en) * 2019-01-25 2020-07-30 ソニーセミコンダクタソリューションズ株式会社 Transmission device, interface, and transmission method

Also Published As

Publication number Publication date
WO2022259586A1 (en) 2022-12-15
JPWO2022259971A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
JP7311423B2 (en) Solid-state image sensor
CN208848911U (en) Solid-state imager
JP7227926B2 (en) Solid-state imaging device, imaging device, and control method for solid-state imaging device
US11936996B2 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
US11677319B2 (en) Voltage conversion circuit, solid-state imaging element, and method of controlling voltage conversion circuit
WO2019017092A1 (en) Analog-digital converter, solid-state imaging element, and control method for analog-digital converter
WO2020066245A1 (en) Solid-state imaging element and imaging device
WO2019187685A1 (en) Solid-state imaging element, imaging device, and control method for solid-state imaging element
US11558571B2 (en) Solid-state imaging element and imaging device
US11575545B2 (en) Transmission device, interface, and transmission method
WO2022259971A1 (en) Drive circuit and solid-state imaging element
WO2021131831A1 (en) Solid-state imaging element and imaging device
JP2020107932A (en) Solid-state imaging element and imaging apparatus
JP7129983B2 (en) Imaging device
WO2022064867A1 (en) Solid-state imaging element, and imaging device
WO2022269953A1 (en) Drive circuit
WO2022259585A1 (en) Semiconductor integrated circuit, electronic device, and semiconductor integrated circuit control method
WO2023132129A1 (en) Light detection device
WO2022168514A1 (en) Semiconductor device and imaging device
US11722804B2 (en) Imaging device and imaging system having a stacked structure for pixel portion and signal processing circuit portion
WO2024070523A1 (en) Light detection element and electronic device
WO2022209368A1 (en) Solid-state imaging element and solid-state imaging device
US20240064433A1 (en) Imaging element and imaging device
JP2020072316A (en) Electronic circuit, solid-state image sensor, and electronic circuit control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527835

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE