WO2022259537A1 - Terminal and wireless base station - Google Patents

Terminal and wireless base station Download PDF

Info

Publication number
WO2022259537A1
WO2022259537A1 PCT/JP2021/022364 JP2021022364W WO2022259537A1 WO 2022259537 A1 WO2022259537 A1 WO 2022259537A1 JP 2021022364 W JP2021022364 W JP 2021022364W WO 2022259537 A1 WO2022259537 A1 WO 2022259537A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
radio
radio base
data
quality
Prior art date
Application number
PCT/JP2021/022364
Other languages
French (fr)
Japanese (ja)
Inventor
天楊 閔
アニール ウメシュ
眞人 谷口
皓平 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/022364 priority Critical patent/WO2022259537A1/en
Priority to JP2023526816A priority patent/JPWO2022259537A1/ja
Publication of WO2022259537A1 publication Critical patent/WO2022259537A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to terminals and wireless base stations that support dual connectivity.
  • the 3rd Generation Partnership Project (3GPP) has specified Long Term Evolution (LTE) and 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and Beyond 5G, 5G Evolution Alternatively, the next-generation specifications called 6G are also being developed.
  • LTE Long Term Evolution
  • NR New Radio
  • NG Next Generation
  • 6G next-generation specifications
  • Uplink (UL) packet data and ULDataSplitThreshold which is a convergence protocol layer (PDCP) flow control parameter, is defined (Non-Patent Document 1).
  • ULDataSplitThreshold can be set as a threshold for the amount of data that can be sent to the UL on the secondary node (SN) side, and the amount of data that can be sent to the master node (MN) and SN can be controlled by the value of ULDataSplitThreshold.
  • PDCP Packet Data Convergence Protocol
  • the maximum amount of data that the UE transmits to the SN can be controlled by the value of ULDataSplitThreshold, the distribution of UL data to the MN and SN depends on the implementation of the UE.
  • the following disclosure is made in view of this situation, and aims to provide a terminal and a radio base station that can realize more efficient allocation of UL data to MN and SN in dual connectivity.
  • One aspect of the present disclosure is the transmission unit (PDU processing unit 220) that transmits uplink data units via the first radio link control entity and the second radio link control entity, the communication quality with the first radio base station, and A control unit (control unit 240) that controls submission of the uplink data unit to the first radio link control entity and the second radio link control entity based on at least one of communication quality with the second radio base station and a terminal (UE 200).
  • PDU processing unit 220 that transmits uplink data units via the first radio link control entity and the second radio link control entity, the communication quality with the first radio base station
  • a control unit control unit 240 that controls submission of the uplink data unit to the first radio link control entity and the second radio link control entity based on at least one of communication quality with the second radio base station and a terminal (UE 200).
  • One aspect of the present disclosure is a receiving unit (radio communication unit 110) that receives reference signals from terminals connected to a plurality of radio base stations;
  • a radio base station for example, eNB100A
  • control unit 150 that instructs the terminal to change the destination radio base station.
  • One aspect of the present disclosure is a receiving unit (control information processing unit 140) that receives a report of communication quality related to uplink from a terminal connected to a plurality of radio base stations, and based on the report, an uplink data unit and a control unit (control unit 150) for instructing the terminal to change the destination radio base station (eNB100A, for example).
  • a receiving unit control information processing unit 140
  • receives a report of communication quality related to uplink from a terminal connected to a plurality of radio base stations and based on the report, an uplink data unit and a control unit (control unit 150) for instructing the terminal to change the destination radio base station (eNB100A, for example).
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. 2 is a functional block configuration diagram of the eNB100A.
  • FIG. 3 is a functional block configuration diagram of UE200.
  • FIG. 4 is a figure which shows the transmission example (part 1) of UL data at the time of dual connectivity execution of UE200.
  • FIG. 5 is a figure which shows the transmission example (part 2) of UL data at the time of dual connectivity execution of UE200.
  • FIG. 6 is a figure which shows the example (3) of transmission of UL data at the time of dual connectivity execution of UE200.
  • FIG. 7 is a diagram illustrating an example of a transmission sequence of a buffer status report (BSR) according to operation example 4;
  • BSR buffer status report
  • FIG. 8 is a diagram illustrating a sequence example of changing the Primary RLC entity (Primary UL path) according to Operation Example 5.
  • FIG. 9 is a diagram illustrating a sequence example of changing the Primary RLC entity (Primary UL path) according to Operation Example 6.
  • FIG. 10 is a diagram showing an example of the hardware configuration of eNB100A, gNB100B and UE200.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment.
  • the radio communication system 10 is a radio communication system according to Long Term Evolution (LTE) and 5G New Radio (NR). Note that LTE may be called 4G, and NR may be called 5G. Also, the radio communication system 10 may be a radio communication system conforming to a scheme called Beyond 5G, 5G Evolution, or 6G.
  • LTE Long Term Evolution
  • NR 5G New Radio
  • 6G 6G
  • LTE and NR may be interpreted as radio access technology (RAT), and in this embodiment, LTE may be referred to as the first radio access technology and NR may be referred to as the second radio access technology.
  • RAT radio access technology
  • the wireless communication system 10 includes an Evolved Universal Terrestrial Radio Access Network 20 (hereinafter E-UTRAN 20) and a Next Generation-Radio Access Network 30 (hereinafter NG RAN 30).
  • E-UTRAN 20 Evolved Universal Terrestrial Radio Access Network 20
  • NG RAN 30 Next Generation-Radio Access Network 30
  • the wireless communication system 10 also includes a terminal 200 (hereafter UE 200, User Equipment).
  • E-UTRAN20 includes eNB100A, which is a radio base station conforming to LTE.
  • NG RAN30 includes gNB100B, a radio base station according to 5G (NR).
  • E-UTRAN 20 and NG RAN 30 (which may be eNB100A or gNB100B) may simply be referred to as networks.
  • the eNB100A, gNB100B, and UE200 can support carrier aggregation (CA) using multiple component carriers (CC), and dual connectivity that simultaneously transmits component carriers between multiple NG-RAN Nodes and UEs. .
  • CA carrier aggregation
  • CC component carriers
  • dual connectivity that simultaneously transmits component carriers between multiple NG-RAN Nodes and UEs.
  • eNB100A, gNB100B and UE200 perform radio communication via radio bearers, specifically Signaling Radio Bearer (SRB) or DRB Data Radio Bearer (DRB).
  • SRB Signaling Radio Bearer
  • DRB DRB Data Radio Bearer
  • eNB100A configures the master node (MN) and gNB100B configures the secondary node (SN) Multi-Radio Dual Connectivity (MR-DC), specifically E-UTRA-NR Dual Connectivity ( EN-DC) or NR-E-UTRA Dual Connectivity (NE-DC) in which the gNB 100B configures the MN and the eNB 100A configures the SN.
  • MR-DC Multi-Radio Dual Connectivity
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E-UTRA Dual Connectivity
  • NR-DC may be implemented in which the gNB configures the MN and SN.
  • the UE200 supports dual connectivity connecting to multiple wireless communication units 110 (eNB100A, gNB100B).
  • eNB100A is included in the master cell group (MCG) and gNB100B is included in the secondary cell group (SCG).
  • MCG master cell group
  • SCG secondary cell group
  • gNB100B is an SN included in the SCG.
  • the eNB100A and gNB100B may be called radio base stations or network devices.
  • parameters may be introduced that control UL data that the UE 200 transmits to the eNB 100A (E-UTRAN 20) and gNB 100B (NG RAN 30) in dual connectivity.
  • the threshold of UL data that the UE 200 can transmit to the E-UTRAN 20 (which may be interpreted as the primary side (or secondary side)) or the NG RAN 30 (which may be interpreted as the secondary side (or primary side))
  • a parameter (ULDataSplitThreshold) indicating (upper limit) may be introduced.
  • ULDataSplitThreshold is specified in 3GPP TS38.323 and TS38.331.
  • ULDataSplitThreshold may be interpreted as a Packet Data Convergence Protocol Layer (PDCP) flow control parameter.
  • PDCP Packet Data Convergence Protocol Layer
  • ULDataSplitThreshold may define the threshold of the amount of data that can be transmitted to the UL on the SN side, but may also define the threshold of the amount of data that can be transmitted to the UL on the MN side.
  • ULDataSplitThreshold may be defined by the number of bytes (eg, 0 bytes, 100 bytes, 200 bytes, etc.), but may also be defined by the number of protocol data units (PDUs), throughput, etc.
  • PDUs protocol data units
  • FIG. 2 is a functional block configuration diagram of the eNB100A.
  • the eNB 100A includes a wireless communication unit 110, a NW connection unit 120, a PDU processing unit 130, a control information processing unit 140 and a control unit 150.
  • the gNB100B may also have the same functions as the eNB100A, although the gNB100B is different in that it supports NR.
  • the radio communication unit 110 transmits downlink signals (DL signals) according to LTE.
  • Radio communication section 110 also receives an uplink signal (UL signal) according to LTE.
  • the radio communication unit 110 can receive a reference signal (RS) from the UE200.
  • radio communication section 110 can receive SRS (Sounding reference signal) and DMRS (Demodulation reference signal), which are UL reference signals transmitted from UE 200 .
  • RS reference signal
  • SRS Sounding reference signal
  • DMRS Demodulation reference signal
  • a sounding reference signal is a UL reference signal for measuring UL channel quality, reception timing, etc. on the radio base station side.
  • a demodulation reference signal is a known reference signal between a terminal-specific base station and a terminal for estimating a fading channel used for data demodulation.
  • the NW connection unit 120 provides interfaces required for connection with other RAN nodes and core network nodes that make up the network.
  • the NW connection unit 120 can provide connection interfaces (X2/Xn, etc.) with the gNB 100B via the E-UTRAN 20 and NG RAN 30.
  • data (mainly user data) transmitted and received between the UE 200 and the network may be relayed via the interface.
  • a PDU data PDU, control PDU
  • a PDU may be broadly interpreted as an IP (Internet Protocol) packet or simply a packet.
  • the PDU processing unit 130 executes processing related to assembly and disassembly of PDUs. Specifically, the PDU processing unit 130 processes PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). (service data unit) assembly/disassembly, etc.
  • MAC medium access control layer
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • service data unit assembly/disassembly, etc.
  • the control information processing unit 140 executes processing related to various control signals transmitted and received by the eNB 100A and processing related to various reference signals transmitted and received by the eNB 100A.
  • control information processing unit 140 receives various control signals transmitted from the UE 200 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control information processing unit 140 transmits various control signals to the UE 200 via a predetermined control channel.
  • RRC radio resource control layer
  • the control information processing unit 140 may execute various processes in the radio resource control layer (RRC). Specifically, control information processing section 140 can transmit RRC Reconfiguration to UE 200 . Also, control information processing section 140 can receive RRC Reconfiguration Complete, which is a response to RRC Reconfiguration, from UE 200 .
  • RRC radio resource control layer
  • the eNB 100A supports LTE, but in this case, the name of the RRC message may be RRC Connection Reconfiguration or RRC Connection Reconfiguration Complete.
  • control information processing unit 140 may receive a communication quality report related to UL from the UE 200 .
  • the control information processing unit 140 may constitute a receiving unit that receives communication quality reports.
  • the control information processing unit 140 may report UL RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality) or SINR (Signal-to-Interference plus Noise power Ratio).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • UE200 cell-specific reference signal power and , which may be interpreted as the ratio of the total power within the receive bandwidth. That is, the reported communication quality (which may be referred to as radio quality) is not necessarily measured at the UL receiver side, but may be estimated based on measurements at the downlink (DL) side. .
  • Layer 1 may be interpreted to include lower layers such as the physical layer.
  • Layer 3 is a higher layer than layer 1 .
  • the upper layer may include at least one of RLC, PDCP, and RRC, and MAC may be located between the lower layer and the upper layer.
  • the layer on which UL-related communication quality reporting is performed is not particularly limited, but may be included in UE Assistance Information (see 3GPP TS38.331) and transmitted from UE 200, for example.
  • the control unit 150 controls each functional block that configures the eNB 100A. In particular, in the present embodiment, the control unit 150 executes control regarding the transmission destination of UL data transmitted from the UE200.
  • control unit 150 may control the destination of the UL-direction PDU (which may be called an uplink data unit) transmitted from the UE 200 .
  • PDU which may be called an uplink data unit
  • control section 150 can instruct UE 200 to change the radio base station to which the PDU is transmitted.
  • the control unit 150 can also instruct the UE 200 to change the PDU transmission destination radio base station based on the UL-related communication quality report received from the UE 200 .
  • control unit 150 changes the transmission destination of the PDU in the UL direction from gNB100B to eNB100A (or vice versa) for the UE200 executing DC. may be instructed to do so.
  • channels include control channels and data channels.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), and PBCH (Physical Broadcast Channel).
  • data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • Reference signals include demodulation reference signal (DMRS), sounding reference signal (SRS), phase tracking reference signal (PTRS), and channel state information-reference signal (CSI-RS). Channels and reference signals are included. Data may also refer to data transmitted over a data channel.
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • PTRS phase tracking reference signal
  • CSI-RS channel state information-reference signal
  • FIG. 3 is a functional block configuration diagram of UE200. As shown in FIG. 3, the UE 200 includes a radio communication section 210, a PDU processing section 220, a quality measurement section 230 and a control section 240.
  • the radio communication unit 210 transmits an uplink signal (UL signal) according to LTE or NR. Also, the radio communication unit 210 receives a downlink signal (DL signal) according to LTE. That is, UE200 can access eNB100A (E-UTRAN20) and gNB100B (NG RAN30), and can support dual connectivity (specifically, EN-DC).
  • UL signal uplink signal
  • DL signal downlink signal
  • the PDU processing unit 220 executes processing related to assembly and disassembly of PDUs. Specifically, the PDU processing unit 220 assembles/disassembles PDU/SDU in MAC, RLC, PDCP, and the like.
  • the PDU processing unit 220 can transmit PDUs (uplink data units) in the UL direction via multiple radio link control entities (RLC entities). Specifically, the PDU processing unit 220 performs UL direction PDU processing via a radio link control entity for eNB 100A (first radio link control entity) and a radio link control entity for gNB 100B (second radio link control entity). can be sent.
  • the PDU processing unit 220 may constitute a transmitting unit for transmitting upstream data units.
  • a first radio link control entity may be called a Primary RLC entity.
  • the secondary radio link control entity may be called a secondary RLC entity.
  • PDCP data (PDU) located above RLC may be submitted to any RLC entity.
  • the quality measurement unit 230 measures the communication quality (radio quality) of radio signals transmitted and received by the UE200. Specifically, quality measuring section 230 can measure the RSRP and RSRQ of the reference signal received by UE 200 or the SINR of the radio signal in the frequency band received by UE 200 . Also, the quality measurement unit 230 may report the communication quality measurement result to the network. As described above, the report may use, for example, UE Assistance Information.
  • the quality measurement unit 230 may report to the network a report indicating the status of the buffer provided in the UE 200 (the amount of UL data retained, etc.), specifically, a buffer status report (BSR).
  • BSR buffer status report
  • the quality measurement unit 230 may estimate the distance to the radio base station based on information on transmission power (PHR: power headroom) or timing information (TA: Timing Advance). Specifically, quality measurement section 230 determines that the distance is short if the PHR (the difference between the estimated value of the required transmission power of PUSCH and the maximum transmission power) is large, and that the distance is long if the PHR is small. You can Also, the quality measuring section 230 may determine that the distance is longer as the value of TA is larger.
  • PHR power headroom
  • TA Timing Advance
  • the control unit 240 controls each functional block that configures the UE200.
  • the control unit 240 executes control related to transmission of PDUs (uplink data units) in the UL direction when dual connectivity (DC) is executed.
  • PDUs uplink data units
  • the control unit 240 controls the first radio link control entity (Primary RLC entity) and the submission of PDUs to the secondary radio link control entity (Secondary RLC entity).
  • control unit 240 may perform control so that PDUs are preferentially submitted to RLC entities with good communication quality. In other words, control may be performed so that more PDUs are submitted to RLC entities with good communication quality.
  • the amount of PDUs in the UL direction exceeds, for example, the UL data threshold (ULDataSplitThreshold) with gNB100B (second radio base station), eNB100A (first radio base station and gNB100B) UL direction PDUs may be indicated to MAC entities associated with RLC entities for radio base stations with good communication quality.
  • the UL data threshold UDLSplitThreshold
  • gNB100B second radio base station
  • eNB100A first radio base station and gNB100B
  • UL direction PDUs may be indicated to MAC entities associated with RLC entities for radio base stations with good communication quality.
  • control unit 240 converts PDCP data (PDU, which may be referred to as data volume) to the MAC entity associated with the Primary RLC entity or the MAC entity associated with the Secondary RLC entity.
  • PDU PDCP data
  • the control unit 240 converts PDCP data (PDU, which may be referred to as data volume) to the MAC entity associated with the Primary RLC entity or the MAC entity associated with the Secondary RLC entity.
  • PDU which may be referred to as data volume
  • control unit 240 may preferentially submit UL-direction PDUs (uplink data units) with high required quality of service (QoS) to the RLC entity. For example, the control unit 240 may determine the QoS required for the PDU based on the QoS level of the data flow in the UL direction or the network slice information.
  • QoS quality of service
  • control unit 240 can control transmission of a buffer status report (BSR) to a radio base station with good communication quality among eNB100A and gNB100B. Specifically, control section 240 can cause quality measuring section 230 to transmit BSR to a radio base station with good communication quality.
  • BSR buffer status report
  • FIG. 4 shows an example (part 1) of transmission of UL data when the UE 200 performs dual connectivity.
  • UE200 can transmit UL data (PDU) toward NR (gNB100B), but if NR communication quality (for example, radio link quality between UE200 and gNB100B) is poor (UE200 NR cell edge), gNB 100B cannot receive UL data normally, and an event may occur in which UL data is retained or discarded.
  • PDU UL data
  • gNB100B NR communication quality
  • ULDataSplitThreshold which is a type of UL PDCP flow control parameter
  • UL data retention may be called packet clogging, etc.
  • queuing in the PDCP layer can be reduced by sending UL data only to NR where higher throughput can be expected. In such a case, if UL data is also sent to LTE, there is a concern that the delay will increase.
  • FIG. 5 shows an example (part 2) of UL data transmission when the UE 200 executes dual connectivity. As shown in Figure 5, even if the value of ULDataSplitThreshold is set low, UL PDCP flow control in UE200 does not consider UL quality, so UL data may flow to NR with poor quality, and UL data Stagnation can occur.
  • FIG. 6 shows an example (part 3) of UL data transmission when the UE 200 executes dual connectivity.
  • the UE 200 may flow the UL data to the LTE side, thereby assembling the PDU in the PDCP layer. , resulting in an increase in delay.
  • the UE 200 determines the communication quality of the Primary RLC entity or the Secondary RLC entity (hereinafter, abbreviated to quality as appropriate) in the UL PDCP data transfer transmit operation, and determines the UL direction PDU, specifically, PDCP The data PDUs may be sent (submitted) to the RLC entity with better quality.
  • the UE 200 refers to the DL layer 1 (L1) or layer 3 (L3) quality measurement result in the cell (primary cell (PCell) or secondary cell (SCell)), and estimates the UL quality in the cell.
  • L1 DL layer 1
  • L3 layer 3
  • PCell primary cell
  • SCell secondary cell
  • the quality may be at least one of RSRP, RSRQ, or SINR.
  • the UE 200 may estimate the distance to the radio base station based on the PHR (power headroom) or TA (timing advance) value, and estimate the UL quality according to the estimated distance.
  • PHR power headroom
  • TA timing advance
  • the UL quality information estimated in this way may be provided from the PHY or RRC layer of the UE 200 to the PDCP layer as assistance information.
  • the PHR is the difference between the estimated PUSCH transmission power requirement and the maximum transmission power. If the PHR is large, it may be determined that the distance is short, and if the PHR is small, it may be determined that the distance is long. Since TA increases in conjunction with the distance to the radio base station, it may be determined that the greater the value of TA, the longer the distance.
  • the UE 200 may set a threshold for UL quality (the UE 200 itself may hold the threshold). The UE 200 may determine that the UL quality of the cell (RLC entity) is good when the UL quality exceeds the threshold.
  • the UE 200 may transmit a PDCP data PDU to the RLC entity estimated to have good UL quality. Also, when the UL quality of both the NR cell and the LTE cell (RLC entity) is good, the UE 200 may preferentially transmit (submit) the PDCP data PDU to the NR cell (RLC entity).
  • 3GPP TS 38.323 5.2.1 describes ULDataSplitThreshold as follows.
  • - submit the PDCP PDU to either the primary RLC entity or the split secondary RLC entity;
  • a PDCP data PDU (PDCP data volume) is submitted to the RLC entity whose quality is estimated to be good.
  • up to four RLC entities can be set, and three secondary RLC entities can be set. It may be taken to refer to an entity, i.e. an RLC entity that is responsible for Split bearer operations in one or more Secondary RLC entities.
  • UE 200 preferentially presents PDCP data PDU (PDCP data volume) to a MAC entity associated with an RLC entity (which may be interpreted as a cell) with good UL quality. You may (indicate).
  • PDCP data PDU PDCP data volume
  • RLC entity which may be interpreted as a cell
  • the UE 200 calculates the Primary RLC entity and (Split) Secondary RLC entity if the total amount value of the PDCP data volume and RLC data volume pending for initial transmission is greater than ULDataSplitThreshold.
  • the PDCP data volume may be indicated for the MAC entity associated with the RLC entity with good quality.
  • the UE 200 gives priority to the MAC entity associated with the RLC entity on the NR side (higher throughput can be expected) You may indicate the PDCP data volume.
  • the UE 200 may indicate all PDCP data volumes to the MAC entity associated with the NR-side RLC entity, or indicate to the MAC entity associated with the NR-side RLC entity the LTE-side RLC entity. MAY indicate more PDCP data volumes than MAC entities associated with it.
  • the UE 200 may indicate the PDCP data volume as "0" for MAC entities associated with RLC entities with poor quality (below the threshold).
  • 3GPP TS 38.323 Chapter 5.6 describes the PDCP data volume and MAC entity as follows.
  • the PDCP data volume may be preferentially indicated to MAC entities associated with RLC entities (cells) with good quality.
  • the UE 200 may determine the RLC entity to which the PDCP data PDU is transmitted (submitted) based on the quality of service (QoS) of the UL data.
  • QoS quality of service
  • the UE 200 gives priority to PDCP data PDUs assigned to radio bearers with high QoS requirements, taking into consideration the QoS of the UL data flow or network slice (which may be simply referred to as slice) information. may be (first) submitted to the RLC entity.
  • a network slice is a platform that provides functions and performance adapted to the characteristics of the services provided (e.g., enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low Latency Communications (URLLC), etc.).
  • the required QoS (delay, etc.) can be different.
  • QoS information may be obtained from Service Data Adaptation Protocol (SDAP) entities.
  • SDAP Service Data Adaptation Protocol
  • the UE 200 may first submit PDCP data PDUs with high QoS requirements to RLC entities with good quality.
  • the UE 200 may determine the RLC entity to which the buffer status report (BSR) is to be transmitted (submitted) based on the quality (UL quality) of the RLC entity.
  • BSR buffer status report
  • FIG. 7 shows a transmission sequence example of a buffer status report (BSR) according to operation example 4.
  • the UE 200 may estimate the UL quality according to the quality estimation method of the operation example described above when transmitting the BSR from the MAC entity to the network (step 1).
  • the UE 200 may select any RLC entity with good quality and transmit the BSR via that RLC entity (steps 2 and 3).
  • a threshold for UL quality determination that is applied when the UE 200 selects an RLC entity may be set. Note that the threshold may be preset in the UE 200, or may be notified by signaling from the network.
  • the UE 200 may preferentially transmit the BSR to the NR cell.
  • the estimated UL quality information may be provided from the PHY or RRC layer of the UE 200 to the MAC layer as assistance information.
  • the network may change the Primary RLC entity (Primary UL path) used for transmitting UL data based on the quality of the reference signal (RS) from UE200.
  • Primary RLC entity Primary UL path
  • RS reference signal
  • FIG. 8 shows a sequence example of changing the Primary RLC entity (Primary UL path) according to Operation Example 5.
  • UE200 transmits SRS and/or DMRS to the network (eNB100A, gNB100B) (step 1).
  • the network (here, the eNB 100A) decides to change the Primary RLC entity (Primary UL path) used for UL data transmission when the quality of the RS falls below the threshold (step 2).
  • the Primary RLC entity Primary UL path
  • the NR side is changed to the LTE side.
  • the network transmits RRC Reconfiguration including the change instruction to the UE 200 (step 3).
  • the UE 200 switches the Primary RLC entity (Primary UL path) used for UL data transmission from NR to LTE based on the change instruction included in RRC Reconfiguration (step 4).
  • Primary RLC entity Primary UL path
  • the network may change the Primary RLC entity (Primary UL path) used for UL data transmission based on the UL quality report from the UE 200 .
  • Primary RLC entity Primary UL path
  • FIG. 9 shows a sequence example of changing the Primary RLC entity (Primary UL path) according to Operation Example 6.
  • UE200 transmits UE Assistance Information to the network (here, eNB100A) (step 1).
  • UE Assistance Information may include information indicating that the UL quality on the Primary RLC entity side is poor. Note that, as described above, the UE 200 may estimate the UL quality from the DL quality.
  • the network (here, the eNB 100A) decides to change the Primary RLC entity (Primary UL path) used for UL data transmission based on the contents of the UE Assistance Information (step 2).
  • the NR side is changed to the LTE side.
  • the network transmits RRC Reconfiguration including the change instruction to the UE 200 (step 3).
  • the UE 200 switches the Primary RLC entity (Primary UL path) used for UL data transmission from NR to LTE based on the change instruction included in RRC Reconfiguration (step 4).
  • Primary RLC entity Primary UL path
  • the UE 200 and the network can control the RLC entity to which PDCP data PDUs in the UL direction are transmitted (submitted) based on the UL quality.
  • the UE 200 can also indicate PDCP data volume for MAC entities associated with RLC entities with good quality.
  • the UE200 can control the flow of UL data according to the UL quality, and more reliably avoid UL data retention (packet clogging) when located in a location (area) with poor NR quality. obtain.
  • ULDataSplitThreshold is set to a low value, and even if the UL quality on the NR side recovers, UL data continues to be transmitted to the LTE side, resulting in an increase in delay due to waiting in the PDCP layer between NR and LTE. can also be avoided.
  • the UE 200 may preferentially submit to the RLC entity UL-direction PDCP data PDUs with higher required QoS. Also, the UE 200 can transmit a buffer status report (BSR) to a radio base station with good communication quality. Therefore, more efficient allocation of UL data to MN and SN can be achieved.
  • BSR buffer status report
  • the network can instruct UE200 to change the transmission destination of PDCP data PDU in the UL direction based on the quality of the reference signal (RS) received from UE200 or the UL quality reported from UE200. Therefore, it is possible to efficiently distribute UL data to MN and SN according to UL quality.
  • RS reference signal
  • the EN-DC in which the MN is the eNB and the SN is the gNB was described as an example, but other DCs may be used as described above.
  • NR-DC in which MN is gNB and SN is gNB, or NE-DC in which MN is gNB and SN is eNB may be used.
  • configure, activate, update, indicate, enable, specify, and select may be read interchangeably.
  • link, associate, correspond, and map may be read interchangeably to allocate, assign, monitor. , map, may also be read interchangeably.
  • each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separate devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computing device including a processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006, bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the device (see Fig. 2.3) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, R
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum scheduling time unit.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • a TTI having a TTI length greater than or equal to this value may be read as a replacement.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
  • PRB Physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for a UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” can include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Radio communication system 20 E-UTRAN 30NG RAN 100A eNB 100B gNB 110 wireless communication unit 120 NW connection unit 130 PDU processing unit 140 control information processing unit 150 control unit 200 UE 210 wireless communication unit 220 PDU processing unit 230 quality measurement unit 240 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Abstract

This terminal transmits an uplink data unit via a first wireless link control entity and a second wireless link control entity, and controls the submission of the uplink data unit to the first wireless link control entity and the second wireless link control entity, on the basis of the quality of communication with a first wireless base station and/or the quality of communication with a second wireless base station.

Description

端末及び無線基地局Terminal and radio base station
 本開示は、デュアルコネクティビティに対応した端末及び無線基地局に関する。 The present disclosure relates to terminals and wireless base stations that support dual connectivity.
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)、及び5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) has specified Long Term Evolution (LTE) and 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and Beyond 5G, 5G Evolution Alternatively, the next-generation specifications called 6G are also being developed.
 3GPPのRelease 16では、端末(User Equipment, UE)が複数の無線基地局(eNBまたはgNB)それぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)に関して、上りリンク(UL)のパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)のフロー制御のパラメータであるULDataSplitThresholdが規定されている(非特許文献1)。ULDataSplitThresholdは、セカンダリーノード(SN)側のULに送信可能なデータ量の閾値として設定可能であり、ULDataSplitThresholdの値によって、マスターノード(MN)及びSNに送信されるデータ量を制御できる。 In Release 16 of 3GPP, uplink (UL) packet data and ULDataSplitThreshold, which is a convergence protocol layer (PDCP) flow control parameter, is defined (Non-Patent Document 1). ULDataSplitThreshold can be set as a threshold for the amount of data that can be sent to the UL on the secondary node (SN) side, and the amount of data that can be sent to the master node (MN) and SN can be controlled by the value of ULDataSplitThreshold.
 しかしながら、ULDataSplitThresholdの値によって、UEがSNに送信する最大のデータ量は、制御できるものの、MNとSNとへのULデータの配分は、UEの実装に依存する。  However, although the maximum amount of data that the UE transmits to the SN can be controlled by the value of ULDataSplitThreshold, the distribution of UL data to the MN and SN depends on the implementation of the UE.
 このため、SN(例えば、NR)とのULの通信品質(無線品質と呼ばれてもよい)が悪化しているのに多くのULデータを送信すればデータの破棄が発生し得る。一方、SNとのULの通信品質が良好なのにMNとSNとにULデータを振り分けようとすると、PDCPでの待ち合わせが増え、結果的に遅延時間が増大する可能性がある。 Therefore, if a large amount of UL data is transmitted while the UL communication quality (which can be called radio quality) with the SN (for example, NR) is deteriorating, data may be discarded. On the other hand, if UL data is distributed between the MN and the SN even though the UL communication quality with the SN is good, the waiting time in PDCP increases, and as a result, there is a possibility that the delay time increases.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、デュアルコネクティビティにおいて、より効率的なULデータのMN及びSNへの振り分けを実現し得る端末及び無線基地局の提供を目的とする。 Therefore, the following disclosure is made in view of this situation, and aims to provide a terminal and a radio base station that can realize more efficient allocation of UL data to MN and SN in dual connectivity. and
 本開示の一態様は、第1無線リンク制御エンティティ及び第2無線リンク制御エンティティを介して上りデータユニットを送信する送信部(PDU処理部220)と、第1無線基地局との通信品質、及び第2無線基地局との通信品質の少なくとも何れかに基づいて、前記第1無線リンク制御エンティティ及び前記第2無線リンク制御エンティティへの前記上りデータユニットの提出を制御する制御部(制御部240)とを備える端末(UE200)である。 One aspect of the present disclosure is the transmission unit (PDU processing unit 220) that transmits uplink data units via the first radio link control entity and the second radio link control entity, the communication quality with the first radio base station, and A control unit (control unit 240) that controls submission of the uplink data unit to the first radio link control entity and the second radio link control entity based on at least one of communication quality with the second radio base station and a terminal (UE 200).
 本開示の一態様は、複数の無線基地局に接続する端末からの参照信号を受信する受信部(無線通信部110)と、前記参照信号の通信品質が特定閾値を下回る場合、上りデータユニットの送信先の無線基地局の変更を前記端末に指示する制御部(制御部150)とを備える無線基地局(例えば、eNB100A)である。 One aspect of the present disclosure is a receiving unit (radio communication unit 110) that receives reference signals from terminals connected to a plurality of radio base stations; A radio base station (for example, eNB100A) including a control unit (control unit 150) that instructs the terminal to change the destination radio base station.
 本開示の一態様は、複数の無線基地局に接続する端末から、上りリンクに関連する通信品質の報告を受信する受信部(制御情報処理部140)と、前記報告に基づいて、上りデータユニットの送信先の無線基地局の変更を前記端末に指示する制御部(制御部150)と
を備える無線基地局(例えば、eNB100A)である。
One aspect of the present disclosure is a receiving unit (control information processing unit 140) that receives a report of communication quality related to uplink from a terminal connected to a plurality of radio base stations, and based on the report, an uplink data unit and a control unit (control unit 150) for instructing the terminal to change the destination radio base station (eNB100A, for example).
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a radio communication system 10. As shown in FIG. 図2は、eNB100Aの機能ブロック構成図である。FIG. 2 is a functional block configuration diagram of the eNB100A. 図3は、UE200の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of UE200. 図4は、UE200のデュアルコネクティビティ実行時におけるULデータの送信例(その1)を示す図である。FIG. 4 : is a figure which shows the transmission example (part 1) of UL data at the time of dual connectivity execution of UE200. 図5は、UE200のデュアルコネクティビティ実行時におけるULデータの送信例(その2)を示す図である。FIG. 5 : is a figure which shows the transmission example (part 2) of UL data at the time of dual connectivity execution of UE200. 図6は、UE200のデュアルコネクティビティ実行時におけるULデータの送信例(その3)を示す図である。FIG. 6 : is a figure which shows the example (3) of transmission of UL data at the time of dual connectivity execution of UE200. 図7は、動作例4に係るバッファ状態報告(BSR)の送信シーケンス例を示す図である。FIG. 7 is a diagram illustrating an example of a transmission sequence of a buffer status report (BSR) according to operation example 4; 図8は、動作例5に係るPrimary RLC entity(Primary UL path)変更のシーケンス例を示す図である。FIG. 8 is a diagram illustrating a sequence example of changing the Primary RLC entity (Primary UL path) according to Operation Example 5. In FIG. 図9は、動作例6に係るPrimary RLC entity(Primary UL path)変更のシーケンス例を示す図である。FIG. 9 is a diagram illustrating a sequence example of changing the Primary RLC entity (Primary UL path) according to Operation Example 6. In FIG. 図10は、eNB100A, gNB100B及びUE200のハードウェア構成の一例を示す図である。FIG. 10 is a diagram showing an example of the hardware configuration of eNB100A, gNB100B and UE200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same or similar reference numerals are given to the same functions and configurations, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、Long Term Evolution(LTE)及び5G New Radio(NR)に従った無線通信システムである。なお、LTEは4Gと呼ばれてもよいし、NRは、5Gと呼ばれてもよい。また、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
(1) Overall Schematic Configuration of Radio Communication System FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment. The radio communication system 10 is a radio communication system according to Long Term Evolution (LTE) and 5G New Radio (NR). Note that LTE may be called 4G, and NR may be called 5G. Also, the radio communication system 10 may be a radio communication system conforming to a scheme called Beyond 5G, 5G Evolution, or 6G.
 LTE及びNRは、無線アクセス技術(RAT)と解釈されてもよく、本実施形態では、LTEは、第1無線アクセス技術と呼ばれ、NRは、第2無線アクセス技術と呼ばれてもよい。 LTE and NR may be interpreted as radio access technology (RAT), and in this embodiment, LTE may be referred to as the first radio access technology and NR may be referred to as the second radio access technology.
 無線通信システム10は、Evolved Universal Terrestrial Radio Access Network 20(以下、E-UTRAN20)、及びNext Generation-Radio Access Network 30(以下、NG RAN30)を含む。また、無線通信システム10は、端末200(以下、UE200, User Equipment)を含む。 The wireless communication system 10 includes an Evolved Universal Terrestrial Radio Access Network 20 (hereinafter E-UTRAN 20) and a Next Generation-Radio Access Network 30 (hereinafter NG RAN 30). The wireless communication system 10 also includes a terminal 200 (hereafter UE 200, User Equipment).
 E-UTRAN20は、LTEに従った無線基地局であるeNB100Aを含む。NG RAN30は、5G(NR)に従った無線基地局であるgNB100Bを含む。なお、E-UTRAN20及びNG RAN30(eNB100AまたはgNB100Bでもよい)は、単にネットワークと呼ばれてもよい。  E-UTRAN20 includes eNB100A, which is a radio base station conforming to LTE. NG RAN30 includes gNB100B, a radio base station according to 5G (NR). Note that E-UTRAN 20 and NG RAN 30 (which may be eNB100A or gNB100B) may simply be referred to as networks.
 eNB100A、gNB100B及びUE200は、複数のコンポーネントキャリア(CC)を用いるキャリアアグリゲーション(CA)、及び複数のNG-RAN NodeとUEとの間においてコンポーネントキャリアを同時送信するデュアルコネクティビティなどに対応することができる。 The eNB100A, gNB100B, and UE200 can support carrier aggregation (CA) using multiple component carriers (CC), and dual connectivity that simultaneously transmits component carriers between multiple NG-RAN Nodes and UEs. .
 eNB100A、gNB100B及びUE200は、無線ベアラ、具体的には、Signalling Radio Bearer(SRB)またはDRB Data Radio Bearer(DRB)を介して無線通信を実行する。 eNB100A, gNB100B and UE200 perform radio communication via radio bearers, specifically Signaling Radio Bearer (SRB) or DRB Data Radio Bearer (DRB).
 本実施形態では、eNB100Aがマスターノード(MN)を構成し、gNB100Bがセカンダリーノード(SN)を構成するMulti-Radio Dual Connectivity(MR-DC)、具体的には、E-UTRA-NR Dual Connectivity(EN-DC)を実行してもよいし、gNB100BがMNを構成し、eNB100AがSNを構成するNR-E-UTRA Dual Connectivity(NE-DC)を実行してもよい。或いは、gNBがMN及びSNを構成する NR-NR Dual Connectivity(NR-DC)が実行されてもよい。 In this embodiment, eNB100A configures the master node (MN) and gNB100B configures the secondary node (SN) Multi-Radio Dual Connectivity (MR-DC), specifically E-UTRA-NR Dual Connectivity ( EN-DC) or NR-E-UTRA Dual Connectivity (NE-DC) in which the gNB 100B configures the MN and the eNB 100A configures the SN. Alternatively, NR-NR Dual Connectivity (NR-DC) may be implemented in which the gNB configures the MN and SN.
 このように、UE200は、複数の無線通信部110(eNB100A, gNB100B)に接続するデュアルコネクティビティに対応している。 In this way, the UE200 supports dual connectivity connecting to multiple wireless communication units 110 (eNB100A, gNB100B).
 eNB100Aは、マスターセルグループ(MCG)に含まれ、gNB100Bは、セカンダリーセルグループ(SCG)に含まれる。つまり、gNB100Bは、SCGに含まれるSNである。 eNB100A is included in the master cell group (MCG) and gNB100B is included in the secondary cell group (SCG). In other words, gNB100B is an SN included in the SCG.
 eNB100A及びgNB100Bは、無線基地局或いはネットワーク装置と呼ばれてもよい。 The eNB100A and gNB100B may be called radio base stations or network devices.
 また、無線通信システム10では、UE200が、デュアルコネクティビティにおいて、eNB100A(E-UTRAN20)及びgNB100B(NG RAN30)に送信するULデータを制御するパラメータが導入されてよい。 Also, in the radio communication system 10, parameters may be introduced that control UL data that the UE 200 transmits to the eNB 100A (E-UTRAN 20) and gNB 100B (NG RAN 30) in dual connectivity.
 具体的には、UE200がE-UTRAN20(プライマリ側(またはセカンダリ側)と解釈されてもよい)またはNG RAN30(セカンダリ側(またはプライマリ側)と解釈されてもよい)に送信できるULデータの閾値(上限値)を示すパラメータ(ULDataSplitThreshold)が導入されてよい。 Specifically, the threshold of UL data that the UE 200 can transmit to the E-UTRAN 20 (which may be interpreted as the primary side (or secondary side)) or the NG RAN 30 (which may be interpreted as the secondary side (or primary side)) A parameter (ULDataSplitThreshold) indicating (upper limit) may be introduced.
 ULDataSplitThresholdは、3GPP TS38.323及びTS38.331などにおいて規定されている。ULDataSplitThresholdは、パケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)のフロー制御のパラメータと解釈されてもよい。ULDataSplitThresholdは、SN側のULに送信可能なデータ量の閾値を規定するものであってよいが、MN側のULに送信可能なデータ量の閾値を規定するものであってもよい。  ULDataSplitThreshold is specified in 3GPP TS38.323 and TS38.331. ULDataSplitThreshold may be interpreted as a Packet Data Convergence Protocol Layer (PDCP) flow control parameter. ULDataSplitThreshold may define the threshold of the amount of data that can be transmitted to the UL on the SN side, but may also define the threshold of the amount of data that can be transmitted to the UL on the MN side.
 ULDataSplitThresholdは、バイト数(例えば、0バイト、100バイト、200バイトなど)によって規定されてよいが、プロトコルデータユニット(PDU)数、スループットなどによって規定されてもよい。  ULDataSplitThreshold may be defined by the number of bytes (eg, 0 bytes, 100 bytes, 200 bytes, etc.), but may also be defined by the number of protocol data units (PDUs), throughput, etc.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、eNB100A及びUE200の機能ブロック構成について説明する。
(2) Functional Block Configuration of Radio Communication System Next, the functional block configuration of the radio communication system 10 will be described. Specifically, functional block configurations of eNB 100A and UE 200 will be described.
 (2.1)eNB100A
 図2は、eNB100Aの機能ブロック構成図である。図2に示すように、eNB100Aは、無線通信部110、NW接続部120、PDU処理部130、制御情報処理部140及び制御部150を備える。なお、gNB100Bも、NRをサポートする点が異なるが、eNB100Aと同様の機能を有してよい。
(2.1) eNB100A
FIG. 2 is a functional block configuration diagram of the eNB100A. As shown in FIG. 2, the eNB 100A includes a wireless communication unit 110, a NW connection unit 120, a PDU processing unit 130, a control information processing unit 140 and a control unit 150. The gNB100B may also have the same functions as the eNB100A, although the gNB100B is different in that it supports NR.
 無線通信部110は、LTEに従った下りリンク信号(DL信号)を送信する。また、無線通信部110は、LTEに従った上りリンク信号(UL信号)を受信する。 The radio communication unit 110 transmits downlink signals (DL signals) according to LTE. Radio communication section 110 also receives an uplink signal (UL signal) according to LTE.
 無線通信部110は、UE200からの参照信号(RS)を受信できる。具体的には、無線通信部110は、UE200から送信されるULの参照信号であるSRS(Sounding reference signal)及びDMRS(Demodulation reference signal)を受信できる。 The radio communication unit 110 can receive a reference signal (RS) from the UE200. Specifically, radio communication section 110 can receive SRS (Sounding reference signal) and DMRS (Demodulation reference signal), which are UL reference signals transmitted from UE 200 .
 サウンディング参照信号(SRS)は、無線基地局側でULのチャネル品質や受信タイミングなどを測定するためのUL参照信号である。復調用参照信号(DMRS)は、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号である。 A sounding reference signal (SRS) is a UL reference signal for measuring UL channel quality, reception timing, etc. on the radio base station side. A demodulation reference signal (DMRS) is a known reference signal between a terminal-specific base station and a terminal for estimating a fading channel used for data demodulation.
 NW接続部120は、ネットワークを構成する他のRANノード、コアネットワークノードとの接続に必要なインターフェースなどを提供する。特に、本実施形態では、NW接続部120は、E-UTRAN20及びNG RAN30を介したgNB100Bとの接続インターフェース(X2/Xnなど)を提供できる。また、UE200とネットワークとの間において送受信されるデータ(主にユーザデータ)は、当該インターフェースを介して中継されてよい。具体的には、ユーザデータ(または制御データ)が格納されたPDU(データPDU、制御PDU)は、当該インターフェースを介して中継されてよい。なお、PDUは、広義には、IP(Internet Protocol)パケット或いは単にパケットなどと解釈されてもよい。 The NW connection unit 120 provides interfaces required for connection with other RAN nodes and core network nodes that make up the network. In particular, in this embodiment, the NW connection unit 120 can provide connection interfaces (X2/Xn, etc.) with the gNB 100B via the E-UTRAN 20 and NG RAN 30. Also, data (mainly user data) transmitted and received between the UE 200 and the network may be relayed via the interface. Specifically, a PDU (data PDU, control PDU) storing user data (or control data) may be relayed via the interface. A PDU may be broadly interpreted as an IP (Internet Protocol) packet or simply a packet.
 PDU処理部130は、PDUの組み立て、分解などに関する処理を実行する。具体的には、PDU処理部130は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDU(サービスデータユニット)の組み立て/分解などを実行する。 The PDU processing unit 130 executes processing related to assembly and disassembly of PDUs. Specifically, the PDU processing unit 130 processes PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). (service data unit) assembly/disassembly, etc.
 制御情報処理部140は、eNB100Aが送受信する各種の制御信号に関する処理、及びeNB100Aが送受信する各種の参照信号に関する処理を実行する。 The control information processing unit 140 executes processing related to various control signals transmitted and received by the eNB 100A and processing related to various reference signals transmitted and received by the eNB 100A.
 具体的には、制御情報処理部140は、UE200から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御情報処理部140は、UE200に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Specifically, the control information processing unit 140 receives various control signals transmitted from the UE 200 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control information processing unit 140 transmits various control signals to the UE 200 via a predetermined control channel.
 制御情報処理部140は、無線リソース制御レイヤ(RRC)における各種処理を実行してよい。具体的には、制御情報処理部140は、RRC ReconfigurationをUE200に送信できる。また、制御情報処理部140は、RRC Reconfigurationに対する応答であるRRC Reconfiguration CompleteをUE200から受信できる。 The control information processing unit 140 may execute various processes in the radio resource control layer (RRC). Specifically, control information processing section 140 can transmit RRC Reconfiguration to UE 200 . Also, control information processing section 140 can receive RRC Reconfiguration Complete, which is a response to RRC Reconfiguration, from UE 200 .
 なお、本実施形態では、eNB100AがLTEをサポートするが、この場合、当該RRCメッセージの名称は、RRC Connection Reconfiguration、RRC Connection Reconfiguration Completeでもよい。 In addition, in this embodiment, the eNB 100A supports LTE, but in this case, the name of the RRC message may be RRC Connection Reconfiguration or RRC Connection Reconfiguration Complete.
 また、制御情報処理部140は、UE200から、ULに関連する通信品質の報告を受信してもよい。本実施形態において、制御情報処理部140は、通信品質の報告を受信する受信部を構成してよい。具体的には、制御情報処理部140は、ULのRSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)またはSINR(Signal-to-Interference plus Noise power Ratio)を報告してよい。 Also, the control information processing unit 140 may receive a communication quality report related to UL from the UE 200 . In this embodiment, the control information processing unit 140 may constitute a receiving unit that receives communication quality reports. Specifically, the control information processing unit 140 may report UL RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality) or SINR (Signal-to-Interference plus Noise power Ratio).
 RSRP(Reference Signal Received Power)は、UE200において測定される参照信号の受信レベルであり、RSRQ(Reference Signal Received Quality)は、UE200において測定される参照信号の受信品質(セル固有の参照信号の電力と、受信帯域幅内の総電力との比と解釈されてよい)である。つまり、報告される通信品質(無線品質と呼ばれてもよい)は、必ずしもUL受信側で測定されたものではなく、下りリンク(DL)側での測定結果に基づいて推定されたものでもよい。 RSRP (Reference Signal Received Power) is the received level of the reference signal measured by UE200, and RSRQ (Reference Signal Received Quality) is the received quality of the reference signal measured by UE200 (cell-specific reference signal power and , which may be interpreted as the ratio of the total power within the receive bandwidth). That is, the reported communication quality (which may be referred to as radio quality) is not necessarily measured at the UL receiver side, but may be estimated based on measurements at the downlink (DL) side. .
 また、通信品質は、レイヤ1(L1)またはレイヤ3(L3)において測定されてよい。レイヤ1とは、物理レイヤなどの下位レイヤが含まれると解釈されてよい。レイヤ3とは、レイヤ1よりも上位レイヤである。上位レイヤには、RLC、PDCP、RRCの少なくとも何れかが含まれてもよく、MACは、下位レイヤと上位レイヤとの中間に位置付けられてもよい。 Also, communication quality may be measured at Layer 1 (L1) or Layer 3 (L3). Layer 1 may be interpreted to include lower layers such as the physical layer. Layer 3 is a higher layer than layer 1 . The upper layer may include at least one of RLC, PDCP, and RRC, and MAC may be located between the lower layer and the upper layer.
 なお、ULに関連する通信品質の報告が実行されるレイヤは、特に限定されないが、例えば、UE Assistance Information(3GPP TS38.331参照)に含めてUE200から送信されてよい。 The layer on which UL-related communication quality reporting is performed is not particularly limited, but may be included in UE Assistance Information (see 3GPP TS38.331) and transmitted from UE 200, for example.
 制御部150は、eNB100Aを構成する各機能ブロックを制御する。特に、本実施形態では、制御部150は、UE200から送信されるULデータの送信先に関する制御を実行する。 The control unit 150 controls each functional block that configures the eNB 100A. In particular, in the present embodiment, the control unit 150 executes control regarding the transmission destination of UL data transmitted from the UE200.
 具体的には、制御部150は、UE200から送信されるUL方向のPDU(上りデータユニットと呼ばれてもよい)の送信先を制御してよい。制御部150は、UE200から受信した参照信号(SRSまたはDMRS)の通信品質が特定閾値を下回る場合、PDUの送信先の無線基地局の変更をUE200に指示できる。 Specifically, the control unit 150 may control the destination of the UL-direction PDU (which may be called an uplink data unit) transmitted from the UE 200 . When the communication quality of the reference signal (SRS or DMRS) received from UE 200 is below a specific threshold, control section 150 can instruct UE 200 to change the radio base station to which the PDU is transmitted.
 また、制御部150は、UE200から受信したULに関連する通信品質の報告に基づいて、PDUの送信先の無線基地局の変更をUE200に指示することもできる。 The control unit 150 can also instruct the UE 200 to change the PDU transmission destination radio base station based on the UL-related communication quality report received from the UE 200 .
 例えば、制御部150は、当該通信品質がネットワークで設定されている閾値を下回る場合、DCを実行中のUE200に対して、UL方向のPDUの送信先をgNB100BからeNB100A(またはその逆)に変更するよう指示してよい。 For example, when the communication quality is below the threshold set in the network, the control unit 150 changes the transmission destination of the PDU in the UL direction from gNB100B to eNB100A (or vice versa) for the UE200 executing DC. may be instructed to do so.
 なお、本実施形態では、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、PRACH(Physical Random Access Channel)、及びPBCH(Physical Broadcast Channel)などが含まれる。 Note that in the present embodiment, channels include control channels and data channels. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), and PBCH (Physical Broadcast Channel).
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。 In addition, data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
 なお、参照信号には、Demodulation reference signal(DMRS)、Sounding Reference Signal(SRS)、Phase Tracking Reference Signal (PTRS)、及びChannel State Information-Reference Signal(CSI-RS)などが含まれ、信号には、チャネル及び参照信号が含まれる。また、データとは、データチャネルを介して送信されるデータを意味してよい。 Reference signals include demodulation reference signal (DMRS), sounding reference signal (SRS), phase tracking reference signal (PTRS), and channel state information-reference signal (CSI-RS). Channels and reference signals are included. Data may also refer to data transmitted over a data channel.
 (2.2)UE200
 図3は、UE200の機能ブロック構成図である。図3に示すように、UE200は、無線通信部210、PDU処理部220、品質測定部230及び制御部240を備える。
(2.2) UE200
FIG. 3 is a functional block configuration diagram of UE200. As shown in FIG. 3, the UE 200 includes a radio communication section 210, a PDU processing section 220, a quality measurement section 230 and a control section 240.
 無線通信部210は、LTEまたはNRに従った上りリンク信号(UL信号)を送信する。また、無線通信部210は、LTEに従った下りリンク信号(DL信号)を受信する。つまり、UE200は、eNB100A(E-UTRAN20)及びgNB100B(NG RAN30)にアクセスすることができ、デュアルコネクティビティ(具体的には、EN-DC)に対応できる。 The radio communication unit 210 transmits an uplink signal (UL signal) according to LTE or NR. Also, the radio communication unit 210 receives a downlink signal (DL signal) according to LTE. That is, UE200 can access eNB100A (E-UTRAN20) and gNB100B (NG RAN30), and can support dual connectivity (specifically, EN-DC).
 PDU処理部220は、PDUの組み立て、分解などに関する処理を実行する。具体的には、PDU処理部220は、MAC、RLC、PDCPなどおけるPDU/SDUの組み立て/分解などを実行する。 The PDU processing unit 220 executes processing related to assembly and disassembly of PDUs. Specifically, the PDU processing unit 220 assembles/disassembles PDU/SDU in MAC, RLC, PDCP, and the like.
 PDU処理部220は、複数の無線リンク制御エンティティ(RLCエンティティ)を介してUL方向のPDU(上りデータユニット)を送信できる。具体的には、PDU処理部220は、eNB100A向けの無線リンク制御エンティティ(第1無線リンク制御エンティティ)、及びgNB100B向けの無線リンク制御エンティティ(第2無線リンク制御エンティティ)を介してUL方向のPDUを送信できる。本実施形態において、PDU処理部220は、上りデータユニットを爽雨心する送信部を構成してよい。 The PDU processing unit 220 can transmit PDUs (uplink data units) in the UL direction via multiple radio link control entities (RLC entities). Specifically, the PDU processing unit 220 performs UL direction PDU processing via a radio link control entity for eNB 100A (first radio link control entity) and a radio link control entity for gNB 100B (second radio link control entity). can be sent. In the present embodiment, the PDU processing unit 220 may constitute a transmitting unit for transmitting upstream data units.
 第1無線リンク制御エンティティは、Primary RLC entityと呼ばれてもよい。また、第2無線リンク制御エンティティは、Secondary RLC entityと呼ばれてもよい。RLCの上位に位置するPDCPのデータ(PDU)は、何れかのRLC entityに提出(submit)されてよい。 A first radio link control entity may be called a Primary RLC entity. Also, the secondary radio link control entity may be called a secondary RLC entity. PDCP data (PDU) located above RLC may be submitted to any RLC entity.
 品質測定部230は、UE200が送受信する無線信号に関する通信品質(無線品質)を測定する。具体的には、品質測定部230は、UE200が受信する参照信号のRSRP、RSRQ、またはUE200が受信する周波数帯における無線信号のSINRを測定できる。また、品質測定部230は、当該通信品質の測定結果をネットワークに報告してよい。上述したように、当該報告には、例えば、UE Assistance Informationが用いられてよい。 The quality measurement unit 230 measures the communication quality (radio quality) of radio signals transmitted and received by the UE200. Specifically, quality measuring section 230 can measure the RSRP and RSRQ of the reference signal received by UE 200 or the SINR of the radio signal in the frequency band received by UE 200 . Also, the quality measurement unit 230 may report the communication quality measurement result to the network. As described above, the report may use, for example, UE Assistance Information.
 また、品質測定部230は、UE200が備えるバッファの状態(ULデータの滞留量など)を示す報告、具体的には、バッファ状態報告(BSR)をネットワークに報告してよい。 In addition, the quality measurement unit 230 may report to the network a report indicating the status of the buffer provided in the UE 200 (the amount of UL data retained, etc.), specifically, a buffer status report (BSR).
 さらに、品質測定部230は、送信電力に関する情報(PHR:power headroom)またはタイミング情報(TA: Timing Advance)に基づいて、無線基地局との距離を推定してよい。具体的には、品質測定部230は、PHR(PUSCHの所要送信電力の推定値と最大送信電力との差分)が大きければ、距離が短いと判定し、PHRが小さければ、距離が長いと判定してよい。また、品質測定部230は、TAの値が大きい程、当該距離が長いと判定してよい。 Furthermore, the quality measurement unit 230 may estimate the distance to the radio base station based on information on transmission power (PHR: power headroom) or timing information (TA: Timing Advance). Specifically, quality measurement section 230 determines that the distance is short if the PHR (the difference between the estimated value of the required transmission power of PUSCH and the maximum transmission power) is large, and that the distance is long if the PHR is small. You can Also, the quality measuring section 230 may determine that the distance is longer as the value of TA is larger.
 制御部240は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部240は、デュアルコネクティビティ(DC)実行時におけるUL方向のPDU(上りデータユニット)の送信に関する制御を実行する。 The control unit 240 controls each functional block that configures the UE200. In particular, in this embodiment, the control unit 240 executes control related to transmission of PDUs (uplink data units) in the UL direction when dual connectivity (DC) is executed.
 具体的には、制御部240は、eNB100A(第1無線基地局)との通信品質、及びgNB100B(第2無線基地局)との通信品質の少なくとも何れかに基づいて、第1無線リンク制御エンティティ(Primary RLC entity)及び第2無線リンク制御エンティティ(Secondary RLC entity)へのPDUの提出(submit)を制御してよい。 Specifically, based on at least one of the communication quality with eNB 100A (first radio base station) and the communication quality with gNB 100B (second radio base station), the control unit 240 controls the first radio link control entity (Primary RLC entity) and the submission of PDUs to the secondary radio link control entity (Secondary RLC entity).
 より具体的には、制御部240は、通信品質が良好なRLCエンティティに優先的にPDUを提出するように制御してよい。つまり、通信品質が良好なRLCエンティティにより多くのPDUが提出されるように制御してよい。 More specifically, the control unit 240 may perform control so that PDUs are preferentially submitted to RLC entities with good communication quality. In other words, control may be performed so that more PDUs are submitted to RLC entities with good communication quality.
 また、制御部240は、UL方向のPDUの量が、例えば、gNB100B(第2無線基地局)とのULデータの閾値(ULDataSplitThreshold)を超える場合、eNB100A(第1無線基地局及びgNB100Bのうち、通信品質が良好な無線基地局向けのRLCエンティティと関連付けられているMACのエンティティに対して、UL方向のPDUを提示(indicate)してもよい。 In addition, when the amount of PDUs in the UL direction exceeds, for example, the UL data threshold (ULDataSplitThreshold) with gNB100B (second radio base station), eNB100A (first radio base station and gNB100B) UL direction PDUs may be indicated to MAC entities associated with RLC entities for radio base stations with good communication quality.
 具体的には、制御部240は、PDCPのデータ(PDU、data volumeと呼ばれてもよい)を、Primary RLC entityと関連付けられているMACエンティティ、またはSecondary RLC entityと関連付けられているMACエンティティの何れかに提示することができる。これにより、通信品質が良好なRLCエンティティと関連付けられているMACエンティティに優先的にPDCP PDUを提示できる。 Specifically, the control unit 240 converts PDCP data (PDU, which may be referred to as data volume) to the MAC entity associated with the Primary RLC entity or the MAC entity associated with the Secondary RLC entity. can be presented to any This makes it possible to preferentially present PDCP PDUs to MAC entities associated with RLC entities with good communication quality.
 また、制御部240は、要求されるサービス品質(QoS)が高いUL方向のPDU(上りデータユニット)を優先的にRLCエンティティに提出するようにしてもよい。例えば、制御部240は、UL方向のデータフローのQoSレベル、或いはネットワークスライスの情報に基づいて、当該PDUに要求されるQoSを判定してよい。 Also, the control unit 240 may preferentially submit UL-direction PDUs (uplink data units) with high required quality of service (QoS) to the RLC entity. For example, the control unit 240 may determine the QoS required for the PDU based on the QoS level of the data flow in the UL direction or the network slice information.
 また、制御部240は、eNB100A及びgNB100Bのうち、通信品質が良好な無線基地局に向けて、バッファ状態報告(BSR)を送信するように制御できる。具体的には、制御部240は、通信品質が良好な無線基地局に向けて、品質測定部230からBSRを送信させることができる。 Also, the control unit 240 can control transmission of a buffer status report (BSR) to a radio base station with good communication quality among eNB100A and gNB100B. Specifically, control section 240 can cause quality measuring section 230 to transmit BSR to a radio base station with good communication quality.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、UE200のデュアルコネクティビティ実行時におけるUL方向のスループット改善に関する動作について説明する。
(3) Operation of Radio Communication System Next, the operation of the radio communication system 10 will be described. Specifically, operations related to throughput improvement in the UL direction when UE 200 executes dual connectivity will be described.
 (3.1)前提
 図4は、UE200のデュアルコネクティビティ実行時におけるULデータの送信例(その1)を示す。図4に示すように、UE200は、NR(gNB100B)に向けてULデータ(PDU)を送信できるが、NRの通信品質(例えば、UE200とgNB100Bとの無線リンクの品質)が悪い場合(UE200がNRセルエッジに位置する場合など)、ULデータをgNB100Bが正常に受信できず、ULデータの滞留または破棄が発生する事象が起こり得る。
(3.1) Premise FIG. 4 shows an example (part 1) of transmission of UL data when the UE 200 performs dual connectivity. As shown in FIG. 4, UE200 can transmit UL data (PDU) toward NR (gNB100B), but if NR communication quality (for example, radio link quality between UE200 and gNB100B) is poor (UE200 NR cell edge), gNB 100B cannot receive UL data normally, and an event may occur in which UL data is retained or discarded.
 上述したように、UL PDCPフロー制御パラメータの一種であるULDataSplitThresholdの値を引き下げることによって、ULデータをLTE(eNB100A)側に流すことができ、ULデータ滞留(パケット詰まりなどと呼ばれてもよい)などの解消に一定の効果はある。 As described above, by lowering the value of ULDataSplitThreshold, which is a type of UL PDCP flow control parameter, UL data can be flowed to the LTE (eNB100A) side, and UL data retention (may be called packet clogging, etc.) There is a certain effect in eliminating such as.
 しかしながら、依然として次のような問題がある。具体的には、UE200が、LTE/NRにどのようにULデータを振り分けるかについては、UE200の実装に依存する。このため、NRに大量のULデータを流すと、ULデータ滞留が発生する。 However, there are still the following problems. Specifically, how UE200 distributes UL data to LTE/NR depends on the implementation of UE200. Therefore, when a large amount of UL data is sent to NR, UL data retention occurs.
 また、NRの通信品質が良好な場合(UE200がNRセル中央に位置する場合など)、より高いスループットが期待できるNRのみにULデータを流すことによって、PDCPレイヤでの待ち合わせを低減できるが、このような場合にLTEにもULデータを流すと、反って遅延増大が懸念される。 Also, when the communication quality of NR is good (such as when the UE 200 is located in the center of the NR cell), queuing in the PDCP layer can be reduced by sending UL data only to NR where higher throughput can be expected. In such a case, if UL data is also sent to LTE, there is a concern that the delay will increase.
 このように、UE200がNRの通信品質が悪い場所(エリア)に位置する場合、ULデータ滞留が発生し易い。 Thus, when the UE 200 is located in a place (area) where NR communication quality is poor, UL data retention is likely to occur.
 図5は、UE200のデュアルコネクティビティ実行時におけるULデータの送信例(その2)を示す。図5に示すように、ULDataSplitThresholdの値を低く設定しても、UE200におけるUL PDCPフロー制御は、ULの品質を考慮しないため、品質の悪いNRにULデータを流す可能性があり、依然としてULデータ滞留が発生する可能性がある。 FIG. 5 shows an example (part 2) of UL data transmission when the UE 200 executes dual connectivity. As shown in Figure 5, even if the value of ULDataSplitThreshold is set low, UL PDCP flow control in UE200 does not consider UL quality, so UL data may flow to NR with poor quality, and UL data Stagnation can occur.
 図6は、UE200のデュアルコネクティビティ実行時におけるULデータの送信例(その3)を示す。図6に示すように、NRの通信品質が回復した場合(例えば、UE200がNRセル中央に移動)でも、UE200は、ULデータをLTE側に流すこともあり、これによりPDCPレイヤでのPDU組み立てに関する待ち合わせが増え、結果的に遅延が増大する。 FIG. 6 shows an example (part 3) of UL data transmission when the UE 200 executes dual connectivity. As shown in FIG. 6, even when the NR communication quality recovers (for example, the UE 200 moves to the center of the NR cell), the UE 200 may flow the UL data to the LTE side, thereby assembling the PDU in the PDCP layer. , resulting in an increase in delay.
 以下では、このような問題を解消し、UE200のデュアルコネクティビティ実行時におけるより効率的なULデータのMN及びSNへの振り分けを実現し、UL方向のスループットを改善し得る動作例について説明する。 In the following, an operation example that can solve such problems, achieve more efficient allocation of UL data to MN and SN when executing dual connectivity of UE 200, and improve throughput in the UL direction will be described.
 (3.2)動作例
 (3.2.1)動作例1
 本動作例では、UE200は、UL PDCP data transfer transmit operationにおいて、Primary RLC entityまたはSecondary RLC entityの通信品質(以下、品質と適宜省略する)を判定し、UL方向のPDU、具体的には、PDCP data PDUを、品質がより良好なRLCエンティティに送信(提出)してよい。
(3.2) Operation example (3.2.1) Operation example 1
In this operation example, the UE 200 determines the communication quality of the Primary RLC entity or the Secondary RLC entity (hereinafter, abbreviated to quality as appropriate) in the UL PDCP data transfer transmit operation, and determines the UL direction PDU, specifically, PDCP The data PDUs may be sent (submitted) to the RLC entity with better quality.
 この場合、UE200は、当該セル(プライマリーセル(PCell)またはセカンダリーセル(SCell))におけるDLのレイヤ1(L1)またはレイヤ3(L3)の品質測定結果を参照し、当該セルにおけるUL品質を推定してよい。 In this case, the UE 200 refers to the DL layer 1 (L1) or layer 3 (L3) quality measurement result in the cell (primary cell (PCell) or secondary cell (SCell)), and estimates the UL quality in the cell. You can
 なお、上述したように、当該品質は、RSRP、RSRQまたはSINRの少なくとも何れかでよい。或いは、UE200は、PHR(power headroom)またはTA(Timing advance))の値に基づいて、無線基地局との距離を推定し、推定した距離に応じたUL品質を推定してもよい。 Note that, as described above, the quality may be at least one of RSRP, RSRQ, or SINR. Alternatively, the UE 200 may estimate the distance to the radio base station based on the PHR (power headroom) or TA (timing advance) value, and estimate the UL quality according to the estimated distance.
 また、このように推定したULの品質情報は、UE200のPHYまたはRRCレイヤから、assistance informationとしてPDCPレイヤに提供されてよい。 Also, the UL quality information estimated in this way may be provided from the PHY or RRC layer of the UE 200 to the PDCP layer as assistance information.
 PHRは、PUSCHの所要送信電力の推定値と最大送信電力との差分であり、PHRが大きければ、当該距離が短いと判定し、PHRが小さければ、当該距離が長いと判定してよい。TAは、無線基地局との距離と連動して大きくなるため、TAの値が大きい程、当該距離が長いと判定してよい。 The PHR is the difference between the estimated PUSCH transmission power requirement and the maximum transmission power. If the PHR is large, it may be determined that the distance is short, and if the PHR is small, it may be determined that the distance is long. Since TA increases in conjunction with the distance to the radio base station, it may be determined that the greater the value of TA, the longer the distance.
 また、UE200は、UL品質に関して閾値を設定してもよい(UE200自体が当該閾値を保持していてもよい)。UE200は、UL品質が当該閾値を超える場合、当該セル(RLCエンティティ)のUL品質が良好であると判定してよい。 Also, the UE 200 may set a threshold for UL quality (the UE 200 itself may hold the threshold). The UE 200 may determine that the UL quality of the cell (RLC entity) is good when the UL quality exceeds the threshold.
 UE200は、UL品質が良好と推定したRLCエンティティにPDCP data PDUを送信してもよい。また、UE200は、NRセル及びLTEセル(RLCエンティティ)両方のUL品質が良好な場合、PDCP data PDUをNRセル(RLCエンティティ)に優先的に送信(提出)してもよい。  UE 200 may transmit a PDCP data PDU to the RLC entity estimated to have good UL quality. Also, when the UL quality of both the NR cell and the LTE cell (RLC entity) is good, the UE 200 may preferentially transmit (submit) the PDCP data PDU to the NR cell (RLC entity).
 3GPP TS 38.323 5.2.1章では、ULDataSplitThresholdに関して以下のように記載されている。  3GPP TS 38.323 5.2.1 describes ULDataSplitThreshold as follows.
  - if the total amount of PDCP data volume and RLC data volume pending for initial transmission (as specified in TS 38.322 [5]) in the primary RLC entity and the split secondary RLC entity is equal to or larger than ul-DataSplitThreshold:
    - submit the PDCP PDU to either the primary RLC entity or the split secondary RLC entity;
 本動作例では、上述したように、品質が良好と推定されたRLCエンティティにPDCP data PDU(PDCP data volume)が提出(submit)される。
- if the total amount of PDCP data volume and RLC data volume pending for initial transmission (as specified in TS 38.322 [5]) in the primary RLC entity and the split secondary RLC entity is equal to or larger than ul-DataSplitThreshold:
- submit the PDCP PDU to either the primary RLC entity or the split secondary RLC entity;
In this operation example, as described above, a PDCP data PDU (PDCP data volume) is submitted to the RLC entity whose quality is estimated to be good.
 なお、3GPP Release 16では、最大4つのRLCエンティティを設定でき、3つのSecondary RLC entityが設定され得るが、"split secondary RLC entity"とは、当該3つのSecondary RLC entityのうち、プライマリに相当するRLCエンティティ、つまり、1つ以上のSecondary RLC entity中にSplit bearer operationを担うRLC entityのことを指すと解釈されてよい。 In 3GPP Release 16, up to four RLC entities can be set, and three secondary RLC entities can be set. It may be taken to refer to an entity, i.e. an RLC entity that is responsible for Split bearer operations in one or more Secondary RLC entities.
 (3.2.2)動作例2
 本動作例では、UE200は、UL品質が良好なRLCエンティティ(セルと解釈されてもい)と関連付けられている(associated)MACエンティティに対して、優先的にPDCP data PDU(PDCP data volume)を提示(indicate)してよい。
(3.2.2) Operation example 2
In this operation example, UE 200 preferentially presents PDCP data PDU (PDCP data volume) to a MAC entity associated with an RLC entity (which may be interpreted as a cell) with good UL quality. You may (indicate).
 具体的には、UE200は、PDCP data volumeの計算時において、PDCP data volume and RLC data volume pending for initial transmissionのtotal amountの値が、ULDataSplitThresholdよりも大きい場合、Primary RLC entity及び(Split)Secondary RLC entityのうち、品質が良好なRLCエンティティと関連付けられているMACエンティティに対してPDCP data volumeをindicateしてよい。 Specifically, when calculating the PDCP data volume, the UE 200 calculates the Primary RLC entity and (Split) Secondary RLC entity if the total amount value of the PDCP data volume and RLC data volume pending for initial transmission is greater than ULDataSplitThreshold. Among them, the PDCP data volume may be indicated for the MAC entity associated with the RLC entity with good quality.
 一方、UE200は、Primary RLC entity及び(Split)Secondary RLC entity両方の品質が良好の場合には、NR側(より高いスループットが期待できる)RLCエンティティと関連付けられているMACエンティティに対して優先的にPDCP data volumeをindicateしてよい。 On the other hand, when the quality of both the Primary RLC entity and (Split) Secondary RLC entity is good, the UE 200 gives priority to the MAC entity associated with the RLC entity on the NR side (higher throughput can be expected) You may indicate the PDCP data volume.
 具体的には、UE200は、NR側RLCエンティティと関連付けられているMACエンティティに全てのPDCP data volumeをindicateしてもよいし、NR側RLCエンティティと関連付けられているMACエンティティに、LTE側RLCエンティティと関連付けられているMACエンティティよりも多くのPDCP data volumeをindicateしてもよい。 Specifically, the UE 200 may indicate all PDCP data volumes to the MAC entity associated with the NR-side RLC entity, or indicate to the MAC entity associated with the NR-side RLC entity the LTE-side RLC entity. MAY indicate more PDCP data volumes than MAC entities associated with it.
 また、UE200は、品質が悪い(閾値を下回る)RLCエンティティと関連付けられているMACエンティティに対しては、PDCP data volumeを"0"としてindicateしてもよい。 Also, the UE 200 may indicate the PDCP data volume as "0" for MAC entities associated with RLC entities with poor quality (below the threshold).
 3GPP TS 38.323 5.6章では、PDCP data volumeとMACエンティティとに関して以下のように記載されている。  3GPP TS 38.323 Chapter 5.6 describes the PDCP data volume and MAC entity as follows.
  - indicate the PDCP data volume to both the MAC entity associated with the primary RLC entity and the MAC entity associated with the split secondary RLC entity;
 本動作例では、上述したように、品質が良好なRLCエンティティ(セル)と関連付けられているMACエンティティに優先的にPDCP data volumeがindicateされてよい。
- indicate the PDCP data volume to both the MAC entity associated with the primary RLC entity and the MAC entity associated with the split secondary RLC entity;
In this operation example, as described above, the PDCP data volume may be preferentially indicated to MAC entities associated with RLC entities (cells) with good quality.
 (3.2.3)動作例3
 本動作例では、UE200は、ULデータのサービス品質(QoS)に基づいて、PDCP data PDUの送信(提出)先のRLCエンティティを決定してよい。
(3.2.3) Operation example 3
In this operation example, the UE 200 may determine the RLC entity to which the PDCP data PDU is transmitted (submitted) based on the quality of service (QoS) of the UL data.
 具体的には、UE200は、UL data flowのQoS、またはネットワークスライス(単にsliceと呼ばれてもよい)の情報を考慮して、QoSの要求条件が高い無線ベアラに割り当てられるPDCP data PDUを優先して(先に)RLCエンティティに提出してよい。 Specifically, the UE 200 gives priority to PDCP data PDUs assigned to radio bearers with high QoS requirements, taking into consideration the QoS of the UL data flow or network slice (which may be simply referred to as slice) information. may be (first) submitted to the RLC entity.
 なお、ネットワークスライスは、提供されるサービス(例えば、enhanced Mobile Broadband(eMBB)、Ultra-Reliable and Low Latency Communications(URLLC)など)の特徴に適応した機能及び性能を提供する基盤であり、スライス毎に要求されるQoS(遅延など)が異なり得る。QoSの情報は、Service Data Adaptation Protocol(SDAP)のエンティティから取得されてもよい。 A network slice is a platform that provides functions and performance adapted to the characteristics of the services provided (e.g., enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low Latency Communications (URLLC), etc.). The required QoS (delay, etc.) can be different. QoS information may be obtained from Service Data Adaptation Protocol (SDAP) entities.
 また、UE200は、QoSの要求条件が高いPDCP data PDUを先に、品質が良好なRLCエンティティに提出してもよい。 Also, the UE 200 may first submit PDCP data PDUs with high QoS requirements to RLC entities with good quality.
 (3.2.4)動作例4
 本動作例では、UE200は、RLCエンティティの品質(UL品質)に基づいて、バッファ状態報告(BSR)の送信(提出)先のRLCエンティティを決定してよい。
(3.2.4) Operation example 4
In this operation example, the UE 200 may determine the RLC entity to which the buffer status report (BSR) is to be transmitted (submitted) based on the quality (UL quality) of the RLC entity.
 図7は、動作例4に係るバッファ状態報告(BSR)の送信シーケンス例を示す。図7に示すように、UE200は、MACエンティティからBSRをネットワークに送信する場合、上述した動作例の品質推定方法に従って、UL品質を推定してよい(ステップ1)。 FIG. 7 shows a transmission sequence example of a buffer status report (BSR) according to operation example 4. As shown in FIG. 7, the UE 200 may estimate the UL quality according to the quality estimation method of the operation example described above when transmitting the BSR from the MAC entity to the network (step 1).
 UE200は、品質が良好な何れかのRLCエンティティを選択し、当該RLCエンティティを介してBSRを送信してよい(ステップ2,3)。 The UE 200 may select any RLC entity with good quality and transmit the BSR via that RLC entity (steps 2 and 3).
 なお、UE200がRLCエンティティを選択する場合に適用されるUL品質判定用の閾値が設定されてもよい。なお、当該閾値は、UE200に予め設定されてもよいし、ネットワークからのシグナリングによって通知されてもよい。 Note that a threshold for UL quality determination that is applied when the UE 200 selects an RLC entity may be set. Note that the threshold may be preset in the UE 200, or may be notified by signaling from the network.
 Primary RLC entity及びSecondary RLC entity両方、つまり、NRセル及びLTEセル両方のUL品質が当該閾値を上回り、品質が良好な場合、UE200は、NRセルに優先的にBSRを送信してもよい。 When the UL quality of both the primary RLC entity and the secondary RLC entity, that is, both the NR cell and the LTE cell exceeds the threshold and the quality is good, the UE 200 may preferentially transmit the BSR to the NR cell.
 また、推定したULの品質情報は、UE200のPHYまたはRRCレイヤから、assistance informationとしてMACレイヤに提供されてよい。 Also, the estimated UL quality information may be provided from the PHY or RRC layer of the UE 200 to the MAC layer as assistance information.
 (3.2.5)動作例5
 本動作例では、ネットワークは、UE200からの参照信号(RS)の品質に基づいて、ULデータの送信に用いられるPrimary RLC entity(Primary UL path)を変更してよい。
(3.2.5) Operation example 5
In this operation example, the network may change the Primary RLC entity (Primary UL path) used for transmitting UL data based on the quality of the reference signal (RS) from UE200.
 図8は、動作例5に係るPrimary RLC entity(Primary UL path)変更のシーケンス例を示す。図8に示すように、UE200は、SRS及び/またはDMRSをネットワーク(eNB100A, gNB100B)に送信する(ステップ1)。 FIG. 8 shows a sequence example of changing the Primary RLC entity (Primary UL path) according to Operation Example 5. As shown in FIG. 8, UE200 transmits SRS and/or DMRS to the network (eNB100A, gNB100B) (step 1).
 ネットワーク(ここでは、eNB100A)は、当該RSの品質が閾値を下回った場合、ULデータの送信に用いられるPrimary RLC entity(Primary UL path)の変更を決定する(ステップ2)。ここでは、NRからLTE側に変更されることを想定する。 The network (here, the eNB 100A) decides to change the Primary RLC entity (Primary UL path) used for UL data transmission when the quality of the RS falls below the threshold (step 2). Here, it is assumed that the NR side is changed to the LTE side.
 ネットワークは、当該変更の指示を含むRRC ReconfigurationをUE200に送信する(ステップ3)。 The network transmits RRC Reconfiguration including the change instruction to the UE 200 (step 3).
 UE200は、RRC Reconfigurationに含まれる、当該変更の指示に基づいて、ULデータの送信に用いられるPrimary RLC entity(Primary UL path)をNRからLTE側に切り替える(ステップ4)。 The UE 200 switches the Primary RLC entity (Primary UL path) used for UL data transmission from NR to LTE based on the change instruction included in RRC Reconfiguration (step 4).
 (3.2.6)動作例6
 本動作例では、ネットワークは、UE200からのUL品質の報告に基づいて、ULデータの送信に用いられるPrimary RLC entity(Primary UL path)を変更してよい。
(3.2.6) Operation example 6
In this operation example, the network may change the Primary RLC entity (Primary UL path) used for UL data transmission based on the UL quality report from the UE 200 .
 図9は、動作例6に係るPrimary RLC entity(Primary UL path)変更のシーケンス例を示す。図9に示すように、UE200は、UE Assistance Informationをネットワーク(ここでは、eNB100A)に送信する(ステップ1)。 FIG. 9 shows a sequence example of changing the Primary RLC entity (Primary UL path) according to Operation Example 6. As shown in FIG. 9, UE200 transmits UE Assistance Information to the network (here, eNB100A) (step 1).
 UE Assistance Informationには、Primary RLC entity側のUL品質が悪いことを示す情報が含まれてよい。なお、上述したように、UE200は、UL品質をDL品質から推定してよい。  UE Assistance Information may include information indicating that the UL quality on the Primary RLC entity side is poor. Note that, as described above, the UE 200 may estimate the UL quality from the DL quality.
 ネットワーク(ここでは、eNB100A)は、UE Assistance Informationの内容に基づいて、ULデータの送信に用いられるPrimary RLC entity(Primary UL path)の変更を決定する(ステップ2)。ここでは、NRからLTE側に変更されることを想定する。 The network (here, the eNB 100A) decides to change the Primary RLC entity (Primary UL path) used for UL data transmission based on the contents of the UE Assistance Information (step 2). Here, it is assumed that the NR side is changed to the LTE side.
 ネットワークは、当該変更の指示を含むRRC ReconfigurationをUE200に送信する(ステップ3)。 The network transmits RRC Reconfiguration including the change instruction to the UE 200 (step 3).
 UE200は、RRC Reconfigurationに含まれる、当該変更の指示に基づいて、ULデータの送信に用いられるPrimary RLC entity(Primary UL path)をNRからLTE側に切り替える(ステップ4)。 The UE 200 switches the Primary RLC entity (Primary UL path) used for UL data transmission from NR to LTE based on the change instruction included in RRC Reconfiguration (step 4).
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200及びネットワークによれば、UL品質に基づいて、UL方向のPDCP data PDUの送信(提出)先のRLCエンティティを制御できる。また、UE200は、品質が良好なRLCエンティティと関連付けられているMACエンティティに対してPDCP data volumeをindicateすることもできる。
(4) Functions and Effects According to the above-described embodiment, the following functions and effects are obtained. Specifically, the UE 200 and the network can control the RLC entity to which PDCP data PDUs in the UL direction are transmitted (submitted) based on the UL quality. The UE 200 can also indicate PDCP data volume for MAC entities associated with RLC entities with good quality.
 このため、UE200は、UL品質に応じてULデータのフロー制御ができるようになり、NR品質が悪い場所(エリア)に位置している場合のULデータ滞留(パケット詰まり)をより確実に回避し得る。 Therefore, the UE200 can control the flow of UL data according to the UL quality, and more reliably avoid UL data retention (packet clogging) when located in a location (area) with poor NR quality. obtain.
 また、例えば、ULDataSplitThresholdが低い値に設定されており、NR側のUL品質が回復してもLTE側にULデータが送信され続けることによるNRとLTEとのPDCPレイヤでの待ち合わせに起因する遅延増大も回避できる。 Also, for example, ULDataSplitThreshold is set to a low value, and even if the UL quality on the NR side recovers, UL data continues to be transmitted to the LTE side, resulting in an increase in delay due to waiting in the PDCP layer between NR and LTE. can also be avoided.
 すなわち、本実施形態によれば、デュアルコネクティビティにおいて、より効率的なULデータのMN及びSN(例えば、LTEとNR側)への振り分けを実現し得る。 That is, according to this embodiment, more efficient distribution of UL data to MN and SN (for example, LTE and NR sides) can be realized in dual connectivity.
 本実施形態では、UE200は、要求されるQoSが高いUL方向のPDCP data PDUを優先的にRLCエンティティに提出するようにしてもよい。また、UE200は、通信品質が良好な無線基地局に向けて、バッファ状態報告(BSR)を送信できる。このため、さらに効率的なULデータのMN及びSNへの振り分けを実現し得る。 In this embodiment, the UE 200 may preferentially submit to the RLC entity UL-direction PDCP data PDUs with higher required QoS. Also, the UE 200 can transmit a buffer status report (BSR) to a radio base station with good communication quality. Therefore, more efficient allocation of UL data to MN and SN can be achieved.
 本実施形態では、ネットワークは、UE200から受信した参照信号(RS)の品質、或いはUE200から報告されたUL品質に基づいて、UL方向のPDCP data PDUの送信先の変更をUE200に指示できる。このため、UL品質に即した効率的なULデータのMN及びSNへの振り分けを実現し得る。 In this embodiment, the network can instruct UE200 to change the transmission destination of PDCP data PDU in the UL direction based on the quality of the reference signal (RS) received from UE200 or the UL quality reported from UE200. Therefore, it is possible to efficiently distribute UL data to MN and SN according to UL quality.
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that the present invention is not limited to the description of the embodiments, and that various modifications and improvements are possible.
 例えば、上述した実施形態では、MNがeNBであり、SNがgNBであるEN-DCを例として説明したが、上述したように、他のDCであってもよい。具体的には、MNがgNBであり、SNがgNBであるNR-DC、或いはMNがgNBであり、SNがeNBであるNE-DCであってもよい。 For example, in the above-described embodiment, the EN-DC in which the MN is the eNB and the SN is the gNB was described as an example, but other DCs may be used as described above. Specifically, NR-DC in which MN is gNB and SN is gNB, or NE-DC in which MN is gNB and SN is eNB may be used.
 上述した記載において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。 In the above description, configure, activate, update, indicate, enable, specify, and select may be read interchangeably. Similarly, link, associate, correspond, and map may be read interchangeably to allocate, assign, monitor. , map, may also be read interchangeably.
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 Furthermore, specific, dedicated, UE-specific, and UE-specific may be read interchangeably. Similarly, common, shared, group-common, UE common, and UE shared may be read interchangeably.
 また、上述した実施形態の説明に用いたブロック構成図(図2,3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Also, the block configuration diagrams (FIGS. 2 and 3) used to describe the above-described embodiment show blocks in units of functions. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separate devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 さらに、上述したeNB100A, gNB100B及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、当該装置のハードウェア構成の一例を示す図である。図10に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the above-described eNB100A, gNB100B and UE200 (applicable device) may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 10 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 10, the device may be configured as a computing device including a processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006, bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
 当該装置の各機能ブロック(図2.3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see Fig. 2.3) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 A processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Further, the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. Storage 1003 may also be referred to as an auxiliary storage device. The recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD). may consist of
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor:DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. A part or all of each functional block may be implemented by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 In addition, notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom. may be applied to Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 A specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases. In a network consisting of one or more network nodes with a base station, various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to). Although the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various designations assigned to these various channels and information elements are in no way restrictive designations. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", " Terms such as "carrier", "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the base station has. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, mobile stations in the present disclosure may be read as base stations. In this case, the base station may have the functions that the mobile station has.
A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 In addition, long TTI (for example, normal TTI, subframe, etc.) may be read as TTI having a time length exceeding 1 ms, and short TTI (for example, shortened TTI, etc.) is less than the TTI length of long TTI and 1 ms. A TTI having a TTI length greater than or equal to this value may be read as a replacement.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each consist of one or more resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 In addition, a resource block may be composed of one or more resource elements (Resource Element: RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be configured in one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures such as radio frames, subframes, slots, minislots and symbols described above are only examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configuration of each device described above may be replaced with "unit", "circuit", "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may encompass a wide variety of actions. "Judgement" and "determination" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "determination" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment" or "decision" has been made. In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" can include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
 10 無線通信システム
 20 E-UTRAN
 30 NG RAN
 100A eNB
 100B gNB
 110 無線通信部
 120 NW接続部
 130 PDU処理部
 140 制御情報処理部
 150 制御部
 200 UE
 210 無線通信部
 220 PDU処理部
 230 品質測定部
 240 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 E-UTRAN
30NG RAN
100A eNB
100B gNB
110 wireless communication unit 120 NW connection unit 130 PDU processing unit 140 control information processing unit 150 control unit 200 UE
210 wireless communication unit 220 PDU processing unit 230 quality measurement unit 240 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Claims (6)

  1.  第1無線リンク制御エンティティ及び第2無線リンク制御エンティティを介して上りデータユニットを送信する送信部と、
     第1無線基地局との通信品質、及び第2無線基地局との通信品質の少なくとも何れかに基づいて、前記第1無線リンク制御エンティティ及び前記第2無線リンク制御エンティティへの前記上りデータユニットの提出を制御する制御部と
    を備える端末。
    a transmitter for transmitting uplink data units via the first radio link control entity and the second radio link control entity;
    transmitting the uplink data unit to the first radio link control entity and the second radio link control entity based on at least one of communication quality with the first radio base station and communication quality with the second radio base station; and a control unit for controlling submission.
  2.  前記制御部は、前記上りデータユニットの量が前記第2無線基地局との上りリンクデータの閾値を超える場合、前記第1無線基地局及び前記第2無線基地局のうち、通信品質が良好な無線基地局向けの無線リンク制御エンティティと関連付けられている媒体アクセス制御レイヤのエンティティに対して、前記上りデータユニットを提示する請求項1に記載の端末。 When the amount of the uplink data unit exceeds a threshold value for uplink data with the second radio base station, the control unit determines which of the first radio base station and the second radio base station has better communication quality. The terminal according to claim 1, wherein the uplink data unit is presented to a medium access control layer entity associated with a radio link control entity intended for a radio base station.
  3.  前記制御部は、要求されるサービス品質が高い前記上りデータユニットを優先的に提出する請求項1に記載の端末。  The terminal according to claim 1, wherein the control unit preferentially submits the uplink data unit for which the required service quality is high.
  4.  前記制御部は、前記第1無線基地局及び前記第2無線基地局のうち、通信品質が良好な無線基地局にバッファ状態報告を送信するように制御する請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit controls transmission of the buffer status report to a radio base station with good communication quality among the first radio base station and the second radio base station.
  5.  複数の無線基地局に接続する端末からの参照信号を受信する受信部と、
     前記参照信号の通信品質が特定閾値を下回る場合、上りデータユニットの送信先の無線基地局の変更を前記端末に指示する制御部と
    を備える無線基地局。
    a receiving unit that receives reference signals from terminals connected to a plurality of wireless base stations;
    and a control unit that instructs the terminal to change the radio base station to which the uplink data unit is transmitted when the communication quality of the reference signal is below a specific threshold.
  6.  複数の無線基地局に接続する端末から、上りリンクに関連する通信品質の報告を受信する受信部と、
     前記報告に基づいて、上りデータユニットの送信先の無線基地局の変更を前記端末に指示する制御部と
    を備える無線基地局。
    a receiving unit that receives uplink-related communication quality reports from terminals connected to a plurality of radio base stations;
    and a control unit that instructs the terminal to change the destination radio base station of the uplink data unit based on the report.
PCT/JP2021/022364 2021-06-11 2021-06-11 Terminal and wireless base station WO2022259537A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/022364 WO2022259537A1 (en) 2021-06-11 2021-06-11 Terminal and wireless base station
JP2023526816A JPWO2022259537A1 (en) 2021-06-11 2021-06-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022364 WO2022259537A1 (en) 2021-06-11 2021-06-11 Terminal and wireless base station

Publications (1)

Publication Number Publication Date
WO2022259537A1 true WO2022259537A1 (en) 2022-12-15

Family

ID=84424529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022364 WO2022259537A1 (en) 2021-06-11 2021-06-11 Terminal and wireless base station

Country Status (2)

Country Link
JP (1) JPWO2022259537A1 (en)
WO (1) WO2022259537A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017507583A (en) * 2014-01-29 2017-03-16 インターデイジタル パテント ホールディングス インコ Uplink transmission in wireless communication
WO2021030970A1 (en) * 2019-08-16 2021-02-25 Qualcomm Incorporated Ul transmission method for endc dual connection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017507583A (en) * 2014-01-29 2017-03-16 インターデイジタル パテント ホールディングス インコ Uplink transmission in wireless communication
WO2021030970A1 (en) * 2019-08-16 2021-02-25 Qualcomm Incorporated Ul transmission method for endc dual connection device

Also Published As

Publication number Publication date
JPWO2022259537A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
WO2021144976A1 (en) Communication device
WO2021144972A1 (en) Communication device
WO2022097686A1 (en) Wireless base station, wireless communication system, and wireless communication method
KR20210042114A (en) User terminal and wireless communication method
WO2021205572A1 (en) Terminal, wireless communication method and base station
JP7273859B2 (en) User equipment and base station equipment
JP7170842B2 (en) User equipment and base station equipment
WO2021192306A1 (en) Terminal
WO2022259537A1 (en) Terminal and wireless base station
CN114375587B (en) Terminal
JP6850311B2 (en) Base stations, wireless communication systems and wireless communication methods
US20220394580A1 (en) Access control apparatus and user plane apparatus
WO2020194562A1 (en) Terminal and wireless communication method
JP2020155874A (en) Base station and radio communication control method
WO2022264410A1 (en) Base station and terminal
JP7273160B2 (en) Terminal, base station and communication method
WO2023022150A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023007636A1 (en) Radio base station and radio communication method
WO2022195782A1 (en) Wireless base station
WO2022190334A1 (en) Terminal and communication method
WO2022224766A1 (en) Wireless base station
WO2022208817A1 (en) Wireless base station and user equipment
WO2022039189A1 (en) Terminal and wireless communication system
JP7440538B2 (en) Terminal and measurement report sending method
WO2023013028A1 (en) Terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945209

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023526816

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE