WO2022259478A1 - 演算装置、光通信システム、演算方法およびプログラム - Google Patents

演算装置、光通信システム、演算方法およびプログラム Download PDF

Info

Publication number
WO2022259478A1
WO2022259478A1 PCT/JP2021/022171 JP2021022171W WO2022259478A1 WO 2022259478 A1 WO2022259478 A1 WO 2022259478A1 JP 2021022171 W JP2021022171 W JP 2021022171W WO 2022259478 A1 WO2022259478 A1 WO 2022259478A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical communication
accommodation
branching
communication service
Prior art date
Application number
PCT/JP2021/022171
Other languages
English (en)
French (fr)
Inventor
唯史 藤井
寛 吉田
朋子 柴田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/022171 priority Critical patent/WO2022259478A1/ja
Publication of WO2022259478A1 publication Critical patent/WO2022259478A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks

Definitions

  • Embodiments of the present invention relate to arithmetic devices, optical communication systems, arithmetic methods, and programs.
  • TDM time division multiplexing
  • network topology based on a double star type has been introduced.
  • WDM Widelength Division Multiplexing
  • an unequal branch/distribution optical splitter (hereinafter referred to as an unequal branch optical splitter) ) has been proposed.
  • a PON system using a unequal branching optical splitter capable of adjusting a branching ratio, which is a ratio of an output ratio of an optical signal to each of a plurality of second ports to an incident optical signal.
  • an optical network unit which is a so-called subscriber-side terminal connected to the output side of the unequal branching optical splitter, and a so-called optical network unit (ONU) connected to the output side of the unequal branching optical splitter
  • An optimum branching ratio is calculated based on the distance to an optical line terminal (OLT), which is a central office equipment, and the actual branching ratio is adjusted. This makes it possible to more efficiently distribute optical signals according to the locations of customers, thereby extending the propagation distance and increasing the accommodation efficiency.
  • the present invention has been made in view of the above circumstances, and aims to provide an arithmetic device, an optical communication system, and an optical communication system capable of realizing appropriate adjustment of the branching ratio of an unequal branching optical splitter. It is to provide an arithmetic method and a program.
  • An arithmetic device is an unequal branching optical signal that branches an optical signal from a first port, which is a plurality of ports on the input side, to a second port, which is a plurality of ports on the output side, at a predetermined branching ratio.
  • a model creation unit for creating a model to be used for predicting the accommodation status of communication equipment used in the optical communication service in the future based on information about the subscription status of users to the optical communication service using the splitter; a prediction processing unit that predicts the accommodation status of the communication equipment in the future based on the model created by the creating unit and information related to the current accommodation status of the communication equipment used for the optical communication service.
  • An optical communication system provides unequal branching for branching an optical signal from a first port, which is a plurality of ports on the input side, to a second port, which is a plurality of ports on the output side, at a predetermined branch ratio.
  • a model creation unit for creating a model used for predicting the accommodation status of communication equipment used for the optical communication service in the future, the model created by the model creation unit, and the model used for the optical communication service and a prediction processing unit for predicting future accommodation conditions of the communication equipment based on information relating to current accommodation conditions of the communication equipment between the optical network equipment and the optical terminal equipment.
  • a computing method is a method performed by a computing device, in which optical signals from first ports, which are a plurality of ports on the input side, are split at a predetermined branch ratio to a plurality of ports on the output side.
  • FIG. 1 is a diagram illustrating an example of an unequal branching optical splitter provided in an optical communication system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of an optical communication system according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing an example of the functional configuration of the branching ratio calculation device applied to the optical communication system according to the first embodiment of the present invention.
  • FIG. 4 is a flow chart showing an example of the procedure of processing operations by the branching ratio calculation device applied to the optical communication system according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram showing a functional configuration example of a branching ratio calculation device applied to the optical communication system according to the second embodiment of the present invention.
  • FIG. 6 is a flow chart showing an example of the procedure of processing operations by the branching ratio calculation device applied to the optical communication system according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram showing an example of a hardware configuration of a branching ratio calculation device applied to an optical communication system according to one embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of an unequal branching optical splitter provided in an optical communication system according to a first embodiment of the present invention.
  • the unequal branching optical splitter according to the first embodiment of the present invention has four input ports consisting of "port 1" to "port 4" and "port A" to "port D".
  • the unequal branching optical splitter 11 has four output ports.
  • Branch points 12-1, 12-2, and 12-3 are provided in the unequal branching optical splitter 11, which are locations where optical fibers are melted and drawn.
  • An output fiber 13-1 connected to "port A” and an output fiber 13-2 connected to the branch point 12-1 are branched from the branch point 12-1.
  • An output fiber 13-3 connected to "port B” and an output fiber 13-4 connected to the branch point 12-3 are branched from the branch point 12-2.
  • From the branch point 12-3, an output fiber 13-5 connected to "port C” and an output fiber 13-6 connected to "port D” are branched.
  • optical fibers from "port 1" and “port 2" are connected to branch point 12-1, and the output fiber 13-2 from branch point 12-1 and the optical fiber from “port 3” are connected to branch point 12-2. , and the output fiber 13-4 from the branch point 12-2 and the optical fiber from "port 4" are connected to the branch point 12-3. Note that "port 3" and "port 4" shown in FIG. 1 may be blocked.
  • the branch ratio for the optical signal of wavelength ⁇ 1 input from "port 1 " at the three branch points 12-1 to 12-3 shown in FIG. 1 is as follows. (Branch ratio at branch point 302-1) X: 100-X, (Branch ratio at branch point 302-2) Y: 100-Y, (Branch ratio at branch point 302-3) Z: 100-Z That is, the input optical signal is demultiplexed so that the intensity of the input optical signal at the branch point 12-1 is X% to the output fiber 13-1 and 100-X% to the output fiber 13-2. At the point 12-2, the input optical signal is demultiplexed so that Y% goes to the output fiber 13-3 and 100-Y% goes to the output fiber 13-4. 5 and 100-Z% to the output fiber 13-6.
  • the branching ratio for the optical signal of wavelength ⁇ 2 input from "port 2 " at the branching points 12-1 to 12-3 is as follows.
  • the branching ratios X′, Y′, and Z′ for the optical signal with wavelength ⁇ 2 are adjusted to the branching ratios X, Y, and Z for the optical signal with wavelength ⁇ 1 by adjusting the melt-drawing distance of the unequal branching optical splitter 11. can be set to a value different from
  • FIG. 2 is a diagram illustrating an example of an optical communication system according to the first embodiment of the present invention.
  • the example shown in FIG. 2 shows an optical communication system to which a passive double-star network model is applied, in which a four-branch unequal branch optical splitter 11 is applied in the first stage.
  • an OLT (wavelength ⁇ 1 ) 21 providing "service 1" is connected to the "port A" of the unequal branch optical splitter 11, and an OLT (wavelength ⁇ 1 ) providing "service 2" is connected.
  • 2 ) 22 is connected to the “port B” of the unequal branching optical splitter 11;
  • Main subscriber optical fiber lines 23-1 and 23-2 are connected to "port A", "port B", “port C” and "port D" of the unequal branching optical splitter 11 shown in FIG. , 23-3, and 23-4 are connected one-to-one.
  • 8-branch optical splitters 24-1, 24-2, and 24, which are second stage optical splitters, are connected.
  • -3 and 24-4 are connected one-to-one.
  • Eight branch subscriber optical fiber lines 26 are connected from the eight branch optical splitters 24-1, 24-2, 24-3 and 24-4.
  • ONUs 25-1, 25-2, 25-3, and 25-4 shown in FIG. is the ONU installed furthest from the OLTs 401 and 402, which are the office buildings of the telecommunications carrier.
  • the distances from the receivers (Rx) of the OLTs 21 and 22 to the farthest ONUs 25-1 to 25-4 connected to each port are L1, L2, and L3.
  • L4 (km) correspond one-to-one
  • the minimum reception sensitivities of the OLT 21 that provides “service 1” and the OLT 22 that provides “service 2” are P rec [dBm] and P′ rec [dBm], respectively.
  • ⁇ P is the decrease in optical output due to deterioration over time of the LD (Laser Diode) installed inside the ONU, fluctuations in optical output due to current instability in the LD driver, and return light at the optical splitter or fiber connection point. That is, the margin is set to a value of 5% to 10% of the minimum reception sensitivity in consideration of the optical output fluctuation of the LD due to Fresnel reflection accompanying the refractive index change.
  • FIG. 3 is a block diagram showing a functional configuration example of the branching ratio calculation device applied to the optical communication system according to the first embodiment of the present invention.
  • FIG. 4 is a flow chart showing an example of the procedure of processing operations by the branching ratio calculation device applied to the optical communication system according to the first embodiment of the present invention.
  • the branch ratio calculation device 100 according to the first embodiment of the present invention includes an accommodation situation prediction model creation unit 101 , an accommodation situation prediction execution unit 102 and a branch ratio calculation unit 103 .
  • the accommodation situation prediction execution unit 102 has an accommodation situation prediction model execution unit 102a.
  • the accommodation situation prediction model creation unit 101 prepares a user (hereinafter referred to as a subscriber) of an optical communication service (hereinafter sometimes simply referred to as a communication service) by an optical communication system including the unequal branching optical splitter 11. (S11).
  • a user hereinafter referred to as a subscriber
  • an optical communication service hereinafter sometimes simply referred to as a communication service
  • S11 the unequal branching optical splitter 11.
  • the past applicant information includes, for example, the date of past application for subscription to the communication service by the user of the communication service by the optical communication system shown in FIG. mentioned.
  • the accommodation situation prediction model creation unit 101 Based on the past applicant information input in S11, the accommodation situation prediction model creation unit 101 provides the communication service according to the communication service applied for by the user and by the new user in the future.
  • a capacity prediction model used for predicting the future capacity of the communication equipment for the purpose is created by a model creation algorithm (S12).
  • This model creation algorithm is, for example, an algorithm related to machine learning or deep learning.
  • the accommodation status prediction execution unit 102 calculates facility information of the wiring section (hereinafter sometimes referred to as accommodation wiring section information), which is information of communication equipment in the accommodation wiring section in the optical communication system shown in FIG. is input from the outside, for example, according to the operation of the input device by the operator (S13).
  • accommodation wiring section information is information of communication equipment in the accommodation wiring section in the optical communication system shown in FIG. is input from the outside, for example, according to the operation of the input device by the operator (S13).
  • the facility information of the wiring section is, for example, the current accommodation wiring status in the wiring section, which is the section from the OLT to the ONU in the optical communication system shown in FIG. 2, and each communication line laid in the wiring section Among them, the status of current vacant lines, which are communication lines that can be provided to new subscribers to the communication service, can be mentioned.
  • the accommodation situation prediction model execution unit 102a of the accommodation situation prediction execution unit 102 applies the facility information of the wiring section input in S13 to the accommodation situation prediction model generated in S12, thereby predicting future accommodation of the wiring section.
  • the wiring situation is predicted (S14).
  • the branching ratio calculation unit 103 calculates the unequal branching optical splitter in the optical communication system shown in FIG. 11 is calculated (S15).
  • This branching ratio means the branching ratio of the unequal branching optical splitter 11, which is expected to be necessary for providing optical communication services in the future.
  • a model for predicting the future accommodation wiring status of the wiring section that is, the demand that can occur in the future in the wiring section is created from the existing accommodation wiring situation and the information of past applicants, Using this model, branching ratios needed in the future can be calculated. At this time, the work related to the unequal branching optical splitter can be efficiently carried out by paying attention only to the final state of the accommodation wiring without considering the stage of the process where it is assumed that there will be a comparative margin in the band. obtain.
  • limited information such as facility information under the unequal branching optical splitter and past applicant information is used as information used to create a model necessary for prediction. It is possible to reduce the cost required for managing large scale information or analyzing such information.
  • the present invention can also be applied to prediction in a system using, for example, a single OLT without using information related to higher-level devices in the network.
  • FIG. 5 is a block diagram showing a functional configuration example of a branching ratio calculation device applied to the optical communication system according to the second embodiment of the present invention.
  • FIG. 6 is a flow chart showing an example of the procedure of processing operations by the branching ratio calculation device applied to the optical communication system according to the second embodiment of the present invention.
  • the branch ratio calculation device 200 includes an accommodation situation prediction model creation unit 201, an accommodation situation prediction execution unit 202, and a branch ratio calculation unit 203.
  • the accommodation situation prediction execution unit 202 has a model selection function unit 202a and an accommodation situation prediction model execution unit 202b.
  • the capacity prediction model creation unit 201 prepares information on past applications for communication services by users of the optical communication system including the unequal branching optical splitter 11 shown in FIG. Input is made from the outside according to the operation of the input device, etc. (S21).
  • the past applicant information includes, for example, the date of past application for subscription to the communication service by the user of the communication service by the optical communication system shown in FIG. The type of service and the address of the user are listed.
  • the accommodation situation prediction model creation unit 201 inputs characteristic information of each of a plurality of areas where users of the communication service live, that is, areas where the optical communication service is provided, from the outside in accordance with the operation of the input device ( S22).
  • the characteristic information of the area is, for example, information corresponding to an area related to a municipality, and includes a trend of desired start date of use of communication services by users living in the municipality, a type of communication service desired by the user, and a user Examples include answering when applying for communication services by.
  • the accommodation situation prediction model creation unit 201 responds to communication services applied by users and new users in the future.
  • the accommodation situation prediction model for each area which is used to predict the future accommodation situation of communication facilities for providing the communication service, is created by a model creation algorithm (S23).
  • the model selection function unit 202a in the accommodation situation prediction execution unit 202 selects the accommodation situation prediction model for the specific area that is the target of accommodation situation prediction among the accommodation situation prediction models for each area created in S23. Select and acquire this (S24).
  • a specific area for which the accommodation situation is to be predicted can be set, for example, by an operator's input operation.
  • the accommodation status prediction execution unit 202 inputs the equipment information of the wiring section, which is the information of the communication equipment in the accommodation wiring section in the optical communication system shown in FIG. S25).
  • the information input here is the equipment information of the wiring section within the selected area.
  • the accommodation situation prediction model execution unit 202b of the accommodation situation prediction execution unit 202 applies the facility information of the wiring section input in S25 to the accommodation situation prediction model selected and acquired in S24, thereby predicting the wiring section in the future. is predicted (S26).
  • the branching ratio calculation unit 203 calculates the unequal branching optical splitter in the optical communication system shown in FIG. 11 is calculated (S27).
  • the accommodation situation is predicted using a single accommodation situation prediction model, and the characteristics of the area where the user resides are not particularly reflected.
  • a housing situation prediction model for the area where the user resides is created, and the above prediction is performed using this model, so the accuracy of prediction can be improved.
  • FIG. 7 is a block diagram showing an example of the hardware configuration of a branching ratio calculation device applied to an optical communication system according to one embodiment of the present invention.
  • the branch ratio calculation device 100 shown in FIG. (hardware processor) 501 the branch ratio calculation device 100 shown in FIG. (hardware processor) 501 .
  • a program memory 501B, a data memory 502, an input/output interface 503 and a communication interface 504 are connected to the hardware processor 501 via a bus 510.
  • the communication interface 504 includes, for example, one or more wireless communication interface units, enabling information to be sent and received to and from the communication network NW.
  • the radio interface for example, an interface adopting a low-power radio data communication standard such as a radio LAN (Local Area Network) can be used.
  • the input/output interface 503 is connected to an operator input device 600 and an output device 700 that are attached to the branching ratio calculation device 100 .
  • the input/output interface 503 captures operation data input by the operator through an input device 600 such as a keyboard, touch panel, touchpad, mouse, etc., and outputs data to a liquid crystal or organic
  • a process of outputting to an output device 700 including a display device using EL (organic electro-luminescence) and the like for display is performed.
  • Devices built in the branch ratio calculation devices 100 and 200 may be used as the input device 600 and the output device 700, and are capable of communicating with the branch ratio calculation devices 100 and 200 via the communication network NW. Other information terminal input and output devices may be used. The same applies to the branch ratio calculation device 200.
  • the program memory 501B is a non-temporary tangible storage medium, for example, a non-volatile memory such as a HDD (Hard Disk Drive) or SSD (Solid State Drive) that can be written and read at any time, and a ROM (Read Only Memory). It is used in combination with a non-volatile memory such as a non-volatile memory, and can store a program necessary for executing various processes according to one embodiment.
  • a non-volatile memory such as a HDD (Hard Disk Drive) or SSD (Solid State Drive) that can be written and read at any time
  • ROM Read Only Memory
  • the data memory 502 is used as a tangible storage medium, for example, by combining the above-described nonvolatile memory and a volatile memory such as RAM (random access memory), and various processes are performed. It can be used to store various data acquired and created in the process.
  • the data memory 502 can store various data or information such as the model generated by the accommodation situation prediction model generator 101 shown in FIG.
  • the branch ratio calculation device 100 includes a storage situation prediction model creation unit 101, a storage situation prediction execution unit 102, and a branch It can be configured as a data processing device having a ratio calculation unit 103 .
  • the branch ratio calculation device 200 according to the second embodiment of the present invention includes, as processing function units by software, an accommodation situation prediction model creation unit 201, an accommodation situation prediction execution unit 202, and a branch It can be configured as a data processing device having a ratio calculation unit 203 .
  • each information storage unit used as a work memory or the like by each unit of the branching ratio calculation devices 100 and 200 can be configured using the data memory 502 shown in FIG.
  • the various databases described above are not essential components in the branching ratio calculation devices 100 and 200.
  • an external storage medium such as a USB (Universal Serial Bus) memory, or a database server ( It may be provided in a storage device such as a database server).
  • Processing function units in each unit of the accommodation situation prediction model creation unit 101, the accommodation situation prediction execution unit 102, and the branch ratio calculation unit 103 shown in FIG. 3 above, and the accommodation situation prediction model creation shown in FIG. 5 above The processing function units in each unit of the unit 201, the accommodation status prediction execution unit 202, and the branch ratio calculation unit 203 are all realized by causing the hardware processor to read and execute the program stored in the program memory 501B.
  • the processing function units in each unit of the unit 201, the accommodation status prediction execution unit 202, and the branch ratio calculation unit 203 are all realized by causing the hardware processor to read and execute the program stored in the program memory 501B.
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field-Programmable Gate Arrays
  • each embodiment can be applied to a program (software means) that can be executed by a computer (computer), for example, a magnetic disk (floppy disk, hard disk) etc.), optical discs (CD-ROM, DVD, MO, etc.), semiconductor memory (ROM, RAM, flash memory, etc.) and other recording media, or transmitted and distributed via communication media can be
  • the programs stored on the medium also include a setting program for configuring software means (including not only execution programs but also tables and data structures) to be executed by the computer.
  • a computer that realizes this device reads a program recorded on a recording medium, and optionally constructs software means by a setting program, and executes the above-described processing by controlling the operation by this software means.
  • the term "recording medium” as used herein is not limited to those for distribution, and includes storage media such as magnetic disks, semiconductor memories, etc. provided in computers or devices connected via a network.
  • the present invention is not limited to the above-described embodiments, and can be variously modified in the implementation stage without departing from the gist of the present invention. Further, each embodiment may be implemented in combination as appropriate, in which case the combined effect can be obtained. Furthermore, various inventions are included in the above embodiments, and various inventions can be extracted by combinations selected from a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiments, if the problem can be solved and effects can be obtained, the configuration with the constituent elements deleted can be extracted as an invention.
  • Reference Signs List 100 200... Branching ratio calculation device 101, 201... Containment situation prediction model creation unit 102, 202... Containment situation prediction execution unit 102a, 202b... Containment situation prediction model execution unit 202a... Model selection function unit 103, 203... Branch ratio calculation Department

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一実施形態に係る演算装置は、入力側の複数のポートである第1ポートからの光信号を所定の分岐比率で出力側の複数のポートである第2ポートへ分岐させる不等分岐光スプリッタが用いられる光通信サービスへのユーザの加入状況に係る情報に基づいて、将来における前記光通信サービスに用いられる通信設備の収容状況の予測に用いられるモデルを作成するモデル作成部と、前記モデル作成部により作成されたモデル、および前記光通信サービスに用いられる現在の通信設備の収容状況に係る情報に基づいて、前記将来における前記通信設備の収容状況を予測する予測処理部と、を有する。

Description

演算装置、光通信システム、演算方法およびプログラム
 本発明の実施形態は、演算装置、光通信システム、演算方法およびプログラムに関する。
 インターネット(internet)の爆発的な普及に伴ない、高速の光通信サービス(service)を提供するFTTH(Fiber to the Home)サービスの加入者数が増加している。現行のFTTHサービスでは、通信速度が1Gbit/sである1G-EPON(Gigabit-Ethernet(登録商標) Passive Optical Network)が利用されている。
 そして、今後、インターネットの更なる普及による加入者数増大への対応、第5世代移動通信システム(system)のバックホール(backhaul)回線とIoT(Internet of Things)への適用、および4K/8K高精細映像の配信サービスなどへの対応に向け、更なる広帯域化が要求されている。
 現在、これらの要求に対して、既に標準化が完了した10G-EPONおよび40Gbit/s級PON(ITU-T Rec G.989シリーズ)、更には100Gbit/s級の次世代PONシステム(IEEE 802.3ca)に関する検討がIEEEおよびITU等の標準化団体で活発に議論されている。
 一般的にFTTHサービスでは、面的に展開されている加入者を効率良く、かつ経済的に収容するために、多重化技術として時分割多重技術(TDM:Time Division Multiplexing)、および網トポロジー(topology)としてダブルスター(double star)型をベース(base)とするTDM-PONシステムが導入されている。また、ユーザ(user)が複数のサービスを同時に享受するため、波長分割多重技術(WDM:Wavelength Division Multiplexing)を活用し、データ(data)通信、およびその他のサービスを異なる波長帯の光信号(以下、単に光と称されることがある。)を用いて提供することでサービスの多重化が実現される。
 PONシステムにおいては、伝搬距離の長延化によるサービスエリア(area)拡大を実現することと、装置数を削減することによりユーザあたりの装置に係るコスト(cost)を削減することと、局統合により使用電力を削減することとが望まれている。そこで、ユーザの分布に偏りが生じているエリアへの伝搬距離の長延化の手法として、不等分岐/分配光スプリッタ(以下、不等分岐光スプリッタ(unequal branch optical splitter)と称されることがある。)が活用されたPONシステムの方式が提案されている。
日本国特開2020-155910号公報
 上記特許文献1には、入力側の複数のポート(port)である第1ポートからの光信号を所定の分岐比率で出力側の複数のポートである第2ポートへ分岐させ、第1ポートから入射した光信号に対する複数の第2ポートの各々への光信号の出力割合の比率である分岐比率を調整可能である不等分岐光スプリッタが用いられたPONシステムが開示される。
 このシステムでは、不等分岐光スプリッタの出力側に接続される、いわゆる加入者側端末である光終端装置(ONU:Optical Network Unit)と、不等分岐光スプリッタの出力側に接続される、いわゆる局舎側装置である光回線終端装置(OLT:Optical Line Terminal)との間の距離に基づいて最適な分岐比率が計算されて、実際の分岐比率が調整される。これにより、顧客の所在位置に合わせて、より効率的に光信号を分配することを可能として、伝搬距離の長延化および収容効率の増加を可能としている。
 一方で、上記のように分岐比率の最適化が適宜実施されるため、現状では、新規の顧客が加わる度に分岐比率が調整されるための工事が必要となる。この場合、工事費用の増加、および工事の実施に伴なう顧客へのサービス提供に係る影響などが生じ得る。
 この発明は、上記事情に着目してなされたもので、その目的とするところは、不等分岐光スプリッタの分岐比率の適切な調整を実現することができるようにした演算装置、光通信システム、演算方法およびプログラムを提供することにある。
 本発明の一態様に係る演算装置は、入力側の複数のポートである第1ポートからの光信号を所定の分岐比率で出力側の複数のポートである第2ポートへ分岐させる不等分岐光スプリッタが用いられる光通信サービスへのユーザの加入状況に係る情報に基づいて、将来における前記光通信サービスに用いられる通信設備の収容状況の予測に用いられるモデルを作成するモデル作成部と、前記モデル作成部により作成されたモデル、および前記光通信サービスに用いられる現在の通信設備の収容状況に係る情報に基づいて、前記将来における前記通信設備の収容状況を予測する予測処理部と、を備える。
 本発明の一態様に係る光通信システムは、入力側の複数のポートである第1ポートからの光信号を所定の分岐比率で出力側の複数のポートである第2ポートへ分岐させる不等分岐光スプリッタと、前記不等分岐光スプリッタの前記第1ポートに通信可能に接続される光回線終端装置と、前記不等分岐光スプリッタの前記第2ポートに通信可能に接続される光終端装置と、演算装置と、を備えるシステムであって、前記演算装置は、前記不等分岐光スプリッタ、前記光回線終端装置、および前記光終端装置が用いられる光通信サービスへのユーザの加入状況に係る情報に基づいて、将来における前記光通信サービスに用いられる通信設備の収容状況の予測に用いられるモデルを作成するモデル作成部と、前記モデル作成部により作成されたモデル、および前記光通信サービスに用いられる、前記光回線終端装置と前記光終端装置との間の現在の通信設備の収容状況に係る情報に基づいて、将来における前記通信設備の収容状況を予測する予測処理部と、を備える。
 本発明の一態様に係る演算方法は、演算装置により行なわれる方法であって、入力側の複数のポートである第1ポートからの光信号を所定の分岐比率で出力側の複数のポートである第2ポートへ分岐させる不等分岐光スプリッタが用いられる光通信サービスへのユーザの加入状況に係る情報に基づいて、将来における前記光通信サービスに用いられる通信設備の収容状況の予測に用いられるモデルを作成することと、前記作成されたモデル、および前記光通信サービスに用いられる現在の通信設備の収容状況に係る情報に基づいて、前記将来における前記通信設備の収容状況を予測することと、を備える。
 本発明によれば、不等分岐光スプリッタの分岐比率の適切な調整を実現することができる。
図1は、本発明の第1の実施形態に係る光通信システムに備えられる不等分岐光スプリッタの一例を説明する図である。 図2は、本発明の第1の実施形態に係る光通信システムの一例を説明する図である。 図3は、本発明の第1の実施形態に係る光通信システムに適用される分岐比率演算装置の機能構成例を示すブロック図(block diagram)である。 図4は、本発明の第1の実施形態に係る光通信システムに適用される分岐比率演算装置による処理動作の手順の一例を示すフローチャート(flow chart)である。 図5は、本発明の第2の実施形態に係る光通信システムに適用される分岐比率演算装置の機能構成例を示すブロック図である。 図6は、本発明の第2の実施形態に係る光通信システムに適用される分岐比率演算装置による処理動作の手順の一例を示すフローチャートである。 図7は、本発明の一実施形態に係る光通信システムに適用される分岐比率演算装置のハードウエア(hardware)構成の一例を示すブロック図である。
 以下、図面を参照しながら、この発明に係わる一実施形態を説明する。 
 (第1の実施形態)
 まず、第1の実施形態について説明する。 
 図1は、本発明の第1の実施形態に係る光通信システムに備えられる不等分岐光スプリッタの一例を説明する図である。 
 図1に示されるように、本発明の第1の実施形態に係る不等分岐光スプリッタは、「ポート1」乃至「ポート4」でなる4つの入力ポート及び「ポートA」乃至「ポートD」でなる4つの出力ポートを備える不等分岐光スプリッタ11であるとする。不等分岐光スプリッタ11内には光ファイバ(optical fiber)の溶融延伸箇所である分岐点12-1、12-2、および12-3が設けられる。
 分岐点12-1からは、「ポートA」に接続される出力ファイバ13-1および分岐点12-1に接続される出力ファイバ13-2が分岐する。分岐点12-2からは、「ポートB」に接続される出力ファイバ13-3および分岐点12-3に接続される出力ファイバ13-4が分岐する。分岐点12-3からは、「ポートC」に接続される出力ファイバ13-5および「ポートD」に接続される出力ファイバ13-6が分岐する。
 「ポート1」および「ポート2」からの光ファイバは分岐点12-1に接続され、分岐点12-1からの出力ファイバ13-2と「ポート3」からの光ファイバは分岐点12-2に接続され、分岐点12-2からの出力ファイバ13-4と「ポート4」からの光ファイバは分岐点12-3に接続される。 
 なお、図1に示された「ポート3」および「ポート4」は閉塞されていても良い。
 図1に示された上記の3か所の分岐点12-1~12-3における、「ポート1」から入力する波長λの光信号に対する分岐比率は以下の通りである。
 (分岐点302-1における分岐比率) X:100-X、
 (分岐点302-2における分岐比率) Y:100-Y、
 (分岐点302-3における分岐比率) Z:100-Z
 すなわち、入力光信号の強度が、分岐点12-1では、出力ファイバ13-1へX%、出力ファイバ13-2へ100-X%の割合となるように入力光信号が分波し、分岐点12-2では、出力ファイバ13-3へY%、出力ファイバ13-4へ100-Y%の割合となるように入力光信号が分波し、分岐点12-3では、出力ファイバ13-5へZ%、出力ファイバ13-6へ100-Z%の割合となるように入力光信号が分波することが示される。
 一方で、分岐点12-1~12-3における、「ポート2」から入力する波長λの光信号に対する分岐比率は以下の通りである。 
 (分岐点302-1における分岐比率) X’:100-X’、
 (分岐点302-2における分岐比率) Y’:100-Y’、
 (分岐点302-3における分岐比率) Z’:100-Z’
 すなわち、入力光信号の強度が、分岐点12-1では、出力ファイバ13-1へ100-X’%、出力ファイバ13-2へX’%の割合となるように入力光信号が分波し、分岐点12-2では、出力ファイバ13-3へY’%、出力ファイバ13-4へ100-Y’%、分岐点12-3では、出力ファイバ13-5へZ’%、出力ファイバ13-6へ100-Z’%、の割合となるように入力光信号が分波することが示される。
 波長λの光信号に対する分岐比率X’、Y’、Z’は、不等分岐光スプリッタ11の溶融延伸距離が調整されることで、波長λの光信号に対する分岐比率X、Y、Zとは異なる値に設定され得る。
 光通信システムでは、波長λで提供される「サービス1」及び波長λで提供される「サービス2」に対して、「ポートB」の配下に接続される最遠の光終端装置、「ポートC」の配下に接続される最遠ONU、及び「ポートD」の配下に接続される最遠ONUから出力された各々の光信号が、光回線終端装置側の受信器に最小受信感度で到着することが求められる。 
 そこで、ファイバ型光スプリッタの分岐点12-1~12-3での分岐比率X、Y、Z、及びX’、Y’、Z’が所望の値となるように、それぞれの溶融延伸距離が定められることで、OLT配下の全てのONUとの通信が確立され、且つ「ポートA」に係る伝搬距離の長延化が実現される。分岐比率および溶融延伸距離の設定に係る技術は、例えば上記特許文献1に開示されるような既知の技術である。
 図2は、本発明の第1の実施形態に係る光通信システムの一例を説明する図である。 
 図2に示された例では、初段に4分岐の不等分岐光スプリッタ11が適用されたパッシブ(passive)ダブルスター型のネットワークモデル(network model)が適用された光通信システムが示される。 
 図2に示された例では、「サービス1」を提供するOLT(波長λ)21が不等分岐光スプリッタ11の「ポートA」に接続され、「サービス2」を提供するOLT(波長λ)22が不等分岐光スプリッタ11の「ポートB」に接続される。
 図1にも示された不等分岐光スプリッタ11の「ポートA」、「ポートB」、「ポートC」、および「ポートD」には、主加入者光ファイバ回線23-1,23-2,23-3,および23-4の一端部が1対1で接続される。 
 主加入者光ファイバ回線23-1,23-2,23-3,および23-4の他端部には、二段目の光スプリッタである8分岐光スプリッタ24-1,24-2,24-3,および24-4が1対1で接続される。8分岐光スプリッタ24-1,24-2,24-3,および24-4からは8本の分岐加入者光ファイバ回線26が接続される。
 図2に示されたONU25-1,25-2,25-3,および25-4は、それぞれ「ポートA」~「ポートD」に対して1対1で設けられ、ポートA~Dの配下で通信事業者の局舎であるOLT401および402から最も遠くに設置されたONUである。
 また、図2に示された例では、OLT21及び22の受信機(Rx)から各ポートに接続される最遠のONUであるONU25-1~25-4までの距離は、L1、L2、L3、およびL4(km)が1対1で対応し、「サービス1」を提供するOLT21、「サービス2」を提供するOLT22の最小受信感度を、それぞれPrec[dBm]、P’rec[dBm]とする。
 「ポートB」配下の最遠のONU25-2までの距離L2[km]、「ポートC」配下の最遠のONU25-3までの距離L3[km]、「ポートD」配下の最遠のONU25-4までの距離L4[km]に基づいて、ポートB配下の最遠のONU25-2、ポートC配下の最遠のONU25-3、およびポートD配下の最遠のONU25-4から出力された光信号がOLT21の受信機における最小受信感度がPrec+ΔP[dBm]となり、OLT22の受信機における最小受信感度がP’rec+ΔP[dBm]となるように、上記分岐比率X、Y、Z、及びX’、Y’、Z’が設定されることで、ポートAの伝搬距離の長延化が図られる。
 ここで、ΔPは、ONU内部に設置されるLD(Laser Diode)の経年劣化による光出力低下、LDドライバ(driver)の電流不安定性による光出力変動、および光スプリッタもしくはファイバ接続箇所での戻り光すなわち屈折率変化に伴なうフレネル反射(Fresnel reflection)によるLDの光出力変動が考慮されて、最小受信感度の5%乃至10%の値として設定されるマージン(margin)である。
 図3は、本発明の第1の実施形態に係る光通信システムに適用される分岐比率演算装置の機能構成例を示すブロック図である。図4は、本発明の第1の実施形態に係る光通信システムに適用される分岐比率演算装置による処理動作の手順の一例を示すフローチャートである。 
 図3に示されるように、本発明の第1の実施形態に係る分岐比率演算装置100は、収容状況予測モデル作成部101、収容状況予測実行部102、および分岐比率計算部103を備える。収容状況予測実行部102は、収容状況予測モデル実行部102aを有する。
 まず、収容状況予測モデル作成部101は、上記不等分岐光スプリッタ11が含まれる光通信システムによる光通信サービス(以下、単に通信サービスと称されることがある。)の利用者(以下、加入者と称されることがある。)による当該通信サービスの過去の申込みの情報を、例えばオペレータ(operator)による図示しない入力装置への操作などに従って外部から入力する(S11)。 
 上記過去の申込者の情報は、例えば、図2に示される光通信システムによる通信サービスの利用者による、当該通信サービスへの過去の加入申し込みの日付、および加入が申し込まれた通信サービスの種別が挙げられる。
 収容状況予測モデル作成部101は、S11で入力した、過去の申込者の情報に基づいて、利用者による、将来の新たな利用者により申し込まれる通信サービスに応じた、当該通信サービスが提供されるための通信設備の将来の収容状況の予測に用いられる収容状況予測モデルをモデル作成アルゴリズム(algorithm)により作成する(S12)。このモデル作成アルゴリズムは、例えば機械学習またはディープラーニング(deep learning)などに係るアルゴリズムである。
 収容状況予測実行部102は、図2に示される光通信システムにおける収容配線区画のおける通信設備の情報である、配線区画の設備情報(以下、収容配線区画情報と称されることがある。)を、例えばオペレータによる入力装置への操作に従って外部から入力する(S13)。
 上記の、配線区画の設備情報は、例えば、図2に示される光通信システムでのOLTからONUまでの区画である配線区画における現在の収容配線状況と、配線区画内で敷設される各通信回線のうち、通信サービスへの新たな加入者への提供が可能な通信回線である現在の空き回線の状況とが挙げられる。 
 収容状況予測実行部102の収容状況予測モデル実行部102aは、S13で入力した、配線区画の設備情報を、S12で生成された収容状況予測モデルに適用することで、上記配線区画について将来における収容配線状況を予測する(S14)。
 そして、分岐比率計算部103は、S14で予測された、将来における収容配線状況に基づいて、この収容配線状況が考慮されたときの、図2に示される光通信システムでの不等分岐光スプリッタ11に係る分岐比率を計算する(S15)。この分岐比率は、将来における光通信サービスの提供に必要であると予測される、不等分岐光スプリッタ11の分岐比率を意味する。
 本発明の第1の実施形態では、既存の収容配線状況、過去の申込者の情報から、配線区画について将来における収容配線状況、すなわち配線区画で将来発生し得る需要を予測するモデルを作成し、このモデルを用いて、将来的に必要となる分岐比率が計算され得る。
 この際、帯域に比較的余裕が生じると想定される過程の段階は考慮されずに、最終的な収容配線状況にのみ着目することで、不等分岐光スプリッタに係る工事が効率的に実施され得る。
 また、予測に必要なモデルの作成に利用される情報として、不等分岐光スプリッタの配下の設備情報、過去の申込者情報という限られた情報が用いられるので、例えば市中データのような大規模な情報の管理、またはこれらの情報の分析に要するコストが削減可能である。また、将来的にネットワークにおける上位の装置に係る情報が利用されることなく、例えば単体のOLTが用いられたシステムでの予測にも適用され得る。
 本実施形態では、将来の収容配線状況の予測結果に応じた、将来において設定される必要がある分岐比率を事前に計算し、この計算結果に応じて、分岐比率の調整を事前に行なうことが可能になるので、将来にかけて加入者の増加に伴なって、収容される設備を増強させる必要がある場合でも、工事の回数を削減することが可能となる。
 (第2の実施形態)
 次に、第2の実施形態について説明する。この実施形態における、第1の実施形態と同様の部分についての詳細な説明は省略する。第2の実施形態に係る分岐比率演算装置が適用される光通信システムの構成は第1の実施形態と同じとする。
 図5は、本発明の第2の実施形態に係る光通信システムに適用される分岐比率演算装置の機能構成例を示すブロック図である。図6は、本発明の第2の実施形態に係る光通信システムに適用される分岐比率演算装置による処理動作の手順の一例を示すフローチャートである。
 図5に示されるように、本発明の第2の実施形態に係る分岐比率演算装置200は、収容状況予測モデル作成部201、収容状況予測実行部202、および分岐比率計算部203を備える。収容状況予測実行部202は、モデル選択機能部202aおよび収容状況予測モデル実行部202bを有する。
 まず、収容状況予測モデル作成部201は、図2に示される不等分岐光スプリッタ11が含まれる光通信システムによる通信サービスの利用者による当該通信サービスの過去の申込みの情報を、例えばオペレータによる図示しない入力装置への操作などに従って外部から入力する(S21)。
 本実施形態では、上記過去の申込者の情報は、例えば、図2に示される光通信システムによる通信サービスの利用者による、当該通信サービスへの過去の加入申し込みの日付、加入が申し込まれた通信サービスの種別、および上記利用者の住所が挙げられる。
 続いて、収容状況予測モデル作成部201は、通信サービスのユーザが居住する複数のエリア、すなわち光通信サービスの提供エリアの各々の特徴情報を、上記入力装置への操作などに従って外部から入力する(S22)。
 上記エリアの特徴情報は、例えば自治体に係るエリアに対応する情報であり、この自治体に居住するユーザによる通信サービスの利用開始の希望日の傾向、ユーザが利用を希望する通信サービスの種別、およびユーザによる通信サービス申し込み時の受け答えなどが挙げられる。
 収容状況予測モデル作成部201は、S21で入力した、過去の申込者の情報、およびS22で入力した特徴情報に基づいて、利用者による、将来の新たな利用者により申し込まれる通信サービスに応じた、当該通信サービスが提供されるための通信設備の将来の収容状況の予測に用いられる、上記エリアごとの収容状況予測モデルをモデル作成アルゴリズムにより作成する(S23)。
 そして、収容状況予測実行部202内のモデル選択機能部202aは、S23で作成された、エリアごとの収容状況予測モデルのうち収容状況の予測の対象である特定のエリアに係る収容状況予測モデルを選択して、これを取得する(S24)。収容状況の予測の対象である特定のエリアは、例えばオペレータによる入力操作などにより設定され得る。
 収容状況予測実行部202は、図2に示される光通信システムにおける収容配線区画のおける通信設備の情報である、配線区画の設備情報を、例えばオペレータによる入力装置への操作に従って外部から入力する(S25)。ここで入力される情報は、上記選択されたエリア内の配線区画の設備情報である。
 収容状況予測実行部202の収容状況予測モデル実行部202bは、S25で入力した、配線区画の設備情報を、S24で選択および取得された収容状況予測モデルに適用することで、上記配線区画について将来における収容配線状況を予測する(S26)。
 そして、分岐比率計算部203は、S26で予測された、将来における収容配線状況に基づいて、この収容配線状況が考慮されたときの、図2に示される光通信システムでの不等分岐光スプリッタ11に係る分岐比率を計算する(S27)。
 上記説明第1の実施形態では、過去の申込者情報から不等分岐光スプリッタにおいて将来的に必要になる分岐比率を計算することで、発生する工事に係る稼働を削減することを図っている。
 ところで、ユーザによる通信サービスの申し込みには、一定の傾向があり、特に同一エリアなどでは、この傾向が強いことが多い。また、配線状況においても、例えばエリアが都心部であるときと、郊外などであるときとでは、上記の傾向が異なることがある。
 一方で、上記第1の実施形態では、単一の収容状況予測モデルを用いて収容状況の予測を実施しており、ユーザが居住するエリアの特徴は特に反映されていない。
 そこで、本発明の第2の実施形態では、ユーザが居住するエリアに係る収容状況予測モデルを作成し、このモデルを用いて上記予測を実施するので、予測に係る精度を向上させることができる。
 図7は、本発明の一実施形態に係る光通信システムに適用される分岐比率演算装置のハードウエア構成の一例を示すブロック図である。 
 同図に示された例では、図3に示される分岐比率演算装置100は、例えばサーバコンピュータ(server computer)またはパーソナルコンピュータ(personal computer)により構成され、CPU(Central Processing Unit)等のハードウエアプロセッサ(hardware processor)501を有する。そして、このハードウエアプロセッサ501に対し、プログラムメモリ(program memory)501B、データメモリ(data memory)502、入出力インタフェース(interface)503及び通信インタフェース504が、バス(bus)510を介して接続される。図5に示される分岐比率演算装置200についても同様である。
 通信インタフェース504は、例えば1つ以上の無線の通信インタフェースユニット(interface unit)を含んでおり、通信ネットワークNWとの間で情報の送受信を可能にする。無線インタフェースとしては、例えば無線LAN(Local Area Network)などの小電力無線データ通信規格が採用されたインタフェースが使用され得る。
 入出力インタフェース503には、分岐比率演算装置100に付設される、オペレータ用の入力デバイス(device)600及び出力デバイス700が接続される。入出力インタフェース503は、キーボード(keyboard)、タッチパネル(touch panel)、タッチパッド(touchpad)、マウス(mouse)等の入力デバイス600を通じてオペレータにより入力された操作データを取り込むと共に、出力データを液晶または有機EL(organic electro-luminescence)等が用いられた表示デバイスを含む出力デバイス700へ出力して表示させる処理を行う。なお、入力デバイス600及び出力デバイス700には、分岐比率演算装置100,200に内蔵されたデバイスが使用されても良く、また、通信ネットワークNWを介して分岐比率演算装置100,200と通信可能な他の情報端末の入力デバイス及び出力デバイスが使用されても良い。分岐比率演算装置200についても同様である。
 プログラムメモリ501Bは、非一時的な有形の記憶媒体として、例えば、HDD(Hard Disk Drive)またはSSD(Solid State Drive)等の随時書込み及び読出しが可能な不揮発性メモリと、ROM(Read Only Memory)等の不揮発性メモリ(non-volatile memory)とが組み合わせて使用されたもので、一実施形態に係る各種処理を実行するために必要なプログラムが格納され得る。
 データメモリ502は、有形の記憶媒体として、例えば、上記の不揮発性メモリと、RAM(Random Access Memory)等の揮発性メモリ(volatile memory)とが組み合わせて使用されたもので、各種処理が行なわれる過程で取得及び作成された各種データが記憶されるために用いられ得る。データメモリ502には、図1に示される収容状況予測モデル作成部101により生成されたモデルなどの各種データまたは情報が記憶され得る。
 本発明の第1の実施形態に係る分岐比率演算装置100は、ソフトウエア(software)による処理機能部として、図3に示される収容状況予測モデル作成部101、収容状況予測実行部102、および分岐比率計算部103を有するデータ処理装置として構成され得る。同様に、本発明の第2の実施形態に係る分岐比率演算装置200は、ソフトウエアによる処理機能部として、図5に示される収容状況予測モデル作成部201、収容状況予測実行部202、および分岐比率計算部203を有するデータ処理装置として構成され得る。
 また、分岐比率演算装置100,200の各部によるワークメモリなどとして用いられる各情報記憶部は、図7に示されたデータメモリ502を用いて構成され得る。ただし、上記の各種データベースは分岐比率演算装置100,200内に必須の構成ではなく、例えば、USB(Universal Serial Bus)メモリなどの外付け記憶媒体、またはクラウド(cloud)に配置されたデータベースサーバ(database server)等の記憶装置に設けられたものであっても良い。
 上記の図3に示された収容状況予測モデル作成部101、収容状況予測実行部102、および分岐比率計算部103の各部における処理機能部、ならびに上記の図5に示された収容状況予測モデル作成部201、収容状況予測実行部202、および分岐比率計算部203の各部における処理機能部は、何れも、プログラムメモリ501Bに格納されたプログラムを上記ハードウエアプロセッサにより読み出させて実行させることにより実現され得る。なお、これらの処理機能部の一部または全部は、特定用途向け集積回路(ASIC(Application Specific Integrated Circuit))またはFPGA(Field-Programmable Gate Array)などの集積回路を含む、他の多様な形式によって実現されても良い。
 また、各実施形態に記載された手法は、計算機(コンピュータ)に実行させることができるプログラム(ソフトウエア手段)として、例えば磁気ディスク(フロッピー(登録商標)ディスク(Floppy disk)、ハードディスク(hard disk)等)、光ディスク(optical disc)(CD-ROM、DVD、MO等)、半導体メモリ(ROM、RAM、フラッシュメモリ(Flash memory)等)等の記録媒体に格納し、また通信媒体により伝送して頒布され得る。なお、媒体側に格納されるプログラムには、計算機に実行させるソフトウエア手段(実行プログラムのみならずテーブル(table)、データ構造も含む)を計算機内に構成させる設定プログラムをも含む。本装置を実現する計算機は、記録媒体に記録されたプログラムを読み込み、また場合により設定プログラムによりソフトウエア手段を構築し、このソフトウエア手段によって動作が制御されることにより上述した処理を実行する。なお、本明細書でいう記録媒体は、頒布用に限らず、計算機内部あるいはネットワークを介して接続される機器に設けられた磁気ディスク、半導体メモリ等の記憶媒体を含むものである。
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
  100,200…分岐比率演算装置
  101,201…収容状況予測モデル作成部
  102,202…収容状況予測実行部
  102a,202b…収容状況予測モデル実行部
  202a…モデル選択機能部
  103,203…分岐比率計算部

Claims (8)

  1.  入力側の複数のポートである第1ポートからの光信号を所定の分岐比率で出力側の複数のポートである第2ポートへ分岐させる不等分岐光スプリッタが用いられる光通信サービスへのユーザの加入状況に係る情報に基づいて、将来における前記光通信サービスに用いられる通信設備の収容状況の予測に用いられるモデルを作成するモデル作成部と、
     前記モデル作成部により作成されたモデル、および前記光通信サービスに用いられる現在の通信設備の収容状況に係る情報に基づいて、前記将来における前記通信設備の収容状況を予測する予測処理部と、
     を備える演算装置。
  2.  前記予測処理部により予測された収容状況に基づいて、前記将来における光通信サービスの提供に必要であると予測される、前記不等分岐光スプリッタの分岐比率を計算する計算部をさらに備える、
     請求項1に記載の演算装置。
  3.  前記モデル作成部は、
      前記加入状況に係る情報、および前記ユーザが居住するエリアにおける、前記光通信サービスへの加入に係る特徴を示す情報に基づいて、前記エリアに対する将来における前記光通信サービスに用いられる通信設備の収容状況の予測に用いられるモデルを作成する、
     請求項1に記載の演算装置。
  4.  入力側の複数のポートである第1ポートからの光信号を所定の分岐比率で出力側の複数のポートである第2ポートへ分岐させる不等分岐光スプリッタと、前記不等分岐光スプリッタの前記第1ポートに通信可能に接続される光回線終端装置と、前記不等分岐光スプリッタの前記第2ポートに通信可能に接続される光終端装置と、演算装置と、を備えるシステムであって、
     前記演算装置は、
      前記不等分岐光スプリッタ、前記光回線終端装置、および前記光終端装置が用いられる光通信サービスへのユーザの加入状況に係る情報に基づいて、将来における前記光通信サービスに用いられる通信設備の収容状況の予測に用いられるモデルを作成するモデル作成部と、
      前記モデル作成部により作成されたモデル、および前記光通信サービスに用いられる、前記光回線終端装置と前記光終端装置との間の現在の通信設備の収容状況に係る情報に基づいて、将来における前記通信設備の収容状況を予測する予測処理部と、
     を備える、光通信システム。
  5.  前記演算装置は、
      前記予測処理部により予測された収容状況に基づいて、前記将来における光通信サービスの提供に必要であると予測される、前記不等分岐光スプリッタの分岐比率を計算する計算部をさらに備える、
     請求項4に記載の光通信システム。
  6.  演算装置により行なわれる方法であって、
     入力側の複数のポートである第1ポートからの光信号を所定の分岐比率で出力側の複数のポートである第2ポートへ分岐させる不等分岐光スプリッタが用いられる光通信サービスへのユーザの加入状況に係る情報に基づいて、将来における前記光通信サービスに用いられる通信設備の収容状況の予測に用いられるモデルを作成することと、
     前記作成されたモデル、および前記光通信サービスに用いられる現在の通信設備の収容状況に係る情報に基づいて、前記将来における前記通信設備の収容状況を予測することと、
     を備える演算方法。
  7.   前記予測された収容状況に基づいて、前記将来における光通信サービスの提供に必要であると予測される、前記不等分岐光スプリッタの分岐比率を計算することをさらに備える、
     請求項6に記載の演算方法。
  8.  請求項1乃至3のいずれか1項に記載の演算装置の前記各部としてプロセッサを機能させる演算処理プログラム。
PCT/JP2021/022171 2021-06-10 2021-06-10 演算装置、光通信システム、演算方法およびプログラム WO2022259478A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022171 WO2022259478A1 (ja) 2021-06-10 2021-06-10 演算装置、光通信システム、演算方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/022171 WO2022259478A1 (ja) 2021-06-10 2021-06-10 演算装置、光通信システム、演算方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2022259478A1 true WO2022259478A1 (ja) 2022-12-15

Family

ID=84425788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022171 WO2022259478A1 (ja) 2021-06-10 2021-06-10 演算装置、光通信システム、演算方法およびプログラム

Country Status (1)

Country Link
WO (1) WO2022259478A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157311A (ja) * 2017-03-16 2018-10-04 日本電信電話株式会社 通信帯域算出装置、通信帯域算出方法、及びプログラム
WO2020045185A1 (ja) * 2018-08-27 2020-03-05 日本電信電話株式会社 光通信システム及び光通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157311A (ja) * 2017-03-16 2018-10-04 日本電信電話株式会社 通信帯域算出装置、通信帯域算出方法、及びプログラム
WO2020045185A1 (ja) * 2018-08-27 2020-03-05 日本電信電話株式会社 光通信システム及び光通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAWAKITA, ATSUKO, 2 PROCEEDINGS OF THE 2019 IEICE COMMUNICATIONS SOCIETY CONFERENCE., 27 August 2019 (2019-08-27) *

Similar Documents

Publication Publication Date Title
DeSanti et al. Super-PON: an evolution for access networks
Lam et al. Fiber optic communication technologies: What's needed for datacenter network operations
CN102474356B (zh) 调度具有调谐时间不同的可调谐激光器的波分复用无源光网络
EP2767017B1 (en) Method and system for managing optical distribution network
US8447181B2 (en) Method and apparatus for displaying and identifying available wavelength paths across a network
CN105393476B (zh) 访问内存的系统、装置及方法
US9197350B2 (en) Systems and methods for routing and wavelength assignment for network virtualization
Mitcsenkov et al. Geography-and infrastructure-aware topology design methodology for broadband access networks (FTTx)
Mahloo et al. Protection cost evaluation of WDM-based next generation optical access networks
Żotkiewicz et al. Profitable areas in large-scale FTTH network optimization
Sánchez et al. Provisioning 1 Gb/s symmetrical services with next-generation passive optical network technologies
Jaumard et al. An efficient optimization scheme for WDM/TDM PON network planning
Lord et al. Flexible technologies to increase optical network capacity
WO2022259478A1 (ja) 演算装置、光通信システム、演算方法およびプログラム
JP6285885B2 (ja) トランシーバ設計装置、トランシーバ設計方法およびトランシーバ設計プログラム
Kipouridis et al. Street-aware infrastructure planning tool for next generation optical access networks
Nonde et al. Cloud virtual network embedding: Profit, power and acceptance
US10505659B2 (en) Reconfigurable interconnected nodes
Chowdhury et al. A cross layer optimization scheme for WDM PON network design and dimensioning
CN102907053B (zh) 波分网络规划方法及设备
US8718475B2 (en) Transponder pool sizing in highly dynamic translucent WDM optical networks
CN101800594A (zh) 光通道保护配置方法及系统
Gu et al. Physical-aware long reach PON planning
Birkan et al. Practical integrated design strategies for opaque and all-optical DWDM networks: optimization models and solution procedures
US10820071B2 (en) Reconfigurable interconnected nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE