WO2022258810A1 - Procédé de fabrication d'un assemblage horloger et assemblage horloger - Google Patents

Procédé de fabrication d'un assemblage horloger et assemblage horloger Download PDF

Info

Publication number
WO2022258810A1
WO2022258810A1 PCT/EP2022/065840 EP2022065840W WO2022258810A1 WO 2022258810 A1 WO2022258810 A1 WO 2022258810A1 EP 2022065840 W EP2022065840 W EP 2022065840W WO 2022258810 A1 WO2022258810 A1 WO 2022258810A1
Authority
WO
WIPO (PCT)
Prior art keywords
timepiece
component
components
watch
timepiece component
Prior art date
Application number
PCT/EP2022/065840
Other languages
English (en)
Inventor
Florian Calame
Stefano HENIN
Xavier Multone
Benoît VINCENT-FALQUET
Original Assignee
Rolex Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH00159/22A external-priority patent/CH718733A2/fr
Application filed by Rolex Sa filed Critical Rolex Sa
Priority to EP22734544.4A priority Critical patent/EP4352573A1/fr
Priority to CN202280040774.XA priority patent/CN117441137A/zh
Publication of WO2022258810A1 publication Critical patent/WO2022258810A1/fr

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0069Watchmakers' or watch-repairers' machines or tools for working materials for working with non-mechanical means, e.g. chemical, electrochemical, metallising, vapourising; with electron beams, laser beams
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0074Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment
    • G04D3/0079Watchmakers' or watch-repairers' machines or tools for working materials for treatment of the material, e.g. surface treatment for gearwork components
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel

Definitions

  • the present invention relates to a horological assembly of at least two horological components. It also relates to a watch movement and to a timepiece comprising at least one such watch assembly. It also relates to a process for manufacturing such a watch assembly.
  • Ceramic is increasingly used in watchmaking, for example to form watch axes, because its intrinsic mechanical properties, in particular hardness, and its insensitivity to magnetic fields are very advantageous for many watch components.
  • the present invention aims to improve watch assemblies, and in particular to define a watch assembly solution particularly suited to the use of ceramics. More specifically, the object of the invention is to define a watch assembly solution that is reliable, durable, easy to implement.
  • the invention is based on a timepiece assembly comprising a first timepiece component assembled with a second distinct timepiece component, the first timepiece component comprising a reception opening or connection hole, the wall delimiting said reception opening or connection hole forming a first connecting surface, the second timepiece component comprising a second connection surface and being assembled integrally with the first timepiece component by direct or indirect contact of the respective first and second connection surfaces of the said first and second timepiece components at the level of an attachment surface, characterized in that at least one of the first and second bonding surfaces, or a third bonding surface of an optional third intermediate component, is made of silicon oxidized by heat treatment so that the first and second timepiece components are secured together by growth of a layer of oxidized silicon.
  • the first timepiece component may comprise at least one functional part and a reception opening separate from said functional part.
  • the outline of the reception opening of the first timepiece component is closed, and this reception opening or connecting hole may have a constant section over the whole of its first connecting surface.
  • the contour of the receiving opening opens onto the outer circumference of the first timepiece component and the receiving opening or connecting hole may have a constant section over the whole of its first connecting surface, the height is between a portion of the total thickness and the total thickness of the first timepiece component.
  • the second timepiece component may have a portion of variable section, in particular which increases continuously from a border with its second connecting surface, this portion of section increasing continuously outside the receiving opening , or connecting hole, in close proximity to one end of said receiving opening.
  • the invention also relates to a method for manufacturing a timepiece assembly comprising a first timepiece component and a second distinct timepiece component, characterized in that it comprises the following steps: o Assemble said two watch components in an intermediate configuration with less play, so that the second watch component is positioned in a connecting hole or opening for receiving the first watch component, a first connecting surface of the first watch component being positioned opposite -in relation to a second connecting surface of the second timepiece component, optionally via a third inner and outer connecting surface of a third intermediate sleeve-type component, at least one of the first and second surfaces of bond or an optional third inner and outer bonding surface being made of silicon; o Carry out a heat treatment of the watch assembly in its intermediate configuration, so as to obtain the growth of an oxidized silicon layer of the at least one silicon bonding surface, until obtaining a predefined joining of the two components watchmakers.
  • Figures 1a and 1b show a first step in a watch assembly process according to one embodiment of the invention.
  • Figures 2a and 2b represent a second step of the watch assembly process according to one embodiment of the invention.
  • FIG. 3 represents a third step of the watch assembly method according to one embodiment of the invention.
  • FIGS. 4a and 4b represent enlarged views of the third step of the watch assembly method according to one embodiment of the invention.
  • FIG. 5 represents the evolution of the tightening of the assembly in a fourth step of the watch assembly process according to one embodiment of the invention.
  • FIG. 6 represents a part of a watch movement comprising watch assemblies according to a first embodiment of the invention.
  • FIG. 7 represents a part of a watch movement comprising watch assemblies according to a second embodiment of the invention.
  • FIG. 8 represents a first variant of the third step of the watch assembly method according to one embodiment of the invention.
  • FIG. 9 represents a second variant of the third step of the watch assembly process according to one embodiment of the invention.
  • FIG. 10 represents a third variant of the third step of the watch assembly method according to one embodiment of the invention.
  • FIG. 11 represents a fourth variant of the third step of the watch assembly process according to one embodiment of the invention.
  • Figures 12 and 13 represent, in enlarged schematic views, the third step and the assembly obtained by implementing the fourth step of the watch assembly method according to the fourth variant of the embodiment of the invention.
  • FIG. 14 represents a fifth variant of the third step of the watch assembly method according to one embodiment of the invention.
  • Figure 15 shows a balance plate provided with a receiving opening for receiving a plate pin.
  • Figure 16 shows a plate pin assembled to a balance plate of Figure 15 according to one embodiment of the invention.
  • Figure 17 shows a balance plate with a receiving opening for receiving a pulse finger.
  • Figure 18 shows a pulse finger assembled to a balance plate of Figure 17 according to one embodiment of the invention.
  • Figure 19 shows a jumper with a receiving opening for receiving a jumper beak.
  • Figure 20 shows a jumper mouthpiece assembled to a jumper of Figure 19 according to one embodiment of the invention.
  • Figure 21 shows a first component comprising a female part forming an open receiving opening according to another embodiment of the invention.
  • Figure 22 shows a second component comprising a male part assembled to the first component of Figure 21 according to this other embodiment of the invention.
  • Figures 23 to 26 show connecting surfaces having grooves according to embodiments of the invention.
  • the invention advantageously relates to a method of manufacturing a timepiece assembly.
  • the purpose of such a process is to assemble together in an integral manner at least two distinct horological components, to form an integral assembly. which we will call watchmaking assembly.
  • At least one of the horological components of the horological assembly is advantageously predominantly made of ceramic, that is to say it is wholly or partly made of ceramic, and/or advantageously comprises at least 50% by weight of ceramic.
  • the ceramic is advantageously present at the level of the connection surface of said watch component, which is predominantly made of ceramic.
  • the ceramic may especially be a zirconia, in particular a yttria zirconia, especially a 3% molar yttria zirconia or a 2% molar yttria zirconia, or a monocrystalline or polycrystalline alumina, or an alumina-zirconia combination.
  • the ceramic may be composed of nitride, carbide and/or boride of refractory metals, alone or in combination with each other, as well as in combination with oxides such as the aforementioned zirconia and alumina.
  • a first step of the method according to the embodiment consists in obtaining two distinct horological components, which one wishes to assemble to form an integral assembly.
  • FIG. 1a thus illustrates a first timepiece component 10, which is a silicon wheel according to the example embodiment. It includes a receiving opening 11 in its central part, also called a “connection hole”, corresponding to a hub of the wheel.
  • the receiving opening 11 (connection hole)
  • this section could have another shape, for example ellipsoidal, ovoid, polygonal, etc. and/or comprise, along its circumference, at least one groove, the section of which may have any sort of geometries.
  • the at least one groove is provided to facilitate both the growth of the layer of silicon oxide and the pre-assembly of the two timepiece components.
  • the wall delimiting this receiving opening forms a connecting surface 12, as will be specified later.
  • the wheel includes moreover a peripheral part comprising notches or teeth 13, intended to cooperate with another horological assembly within a horological movement.
  • This peripheral part forms a functional part of the first timepiece component 10.
  • this first timepiece component 10 can be made of silicon from a standard silicon wafer, etched by a traditional process of deep reactive ion etching (known by the acronym DRIE in English). In this process, several identical wheels are formed simultaneously on the same silicon wafer.
  • FIG. 1b illustrates a second timepiece component 20, distinct from the first timepiece component, which is a ceramic axle according to the example embodiment, intended for assembly in the hub of the wheel of FIG. 1a, to allow the rotating arrangement of the wheel within a watch movement.
  • the second timepiece component 20 is therefore intended for mounting through the receiving opening 11 (the connection hole) of the first timepiece component 10.
  • the second watchmaking component 20 shows a cross section, that is to say perpendicular to its axis of rotation, which is circular.
  • this section could have another shape, for example, ellipsoidal, ovoid, polygonal, etc.
  • the two ends 21 of the shaft are intended for mounting within a watch movement allowing the shaft to rotate with less friction.
  • the watch axis can be made of ceramic using a bar and a laser cutting process followed by tribofinishing, which makes it possible to obtain precise geometry and a controlled surface finish.
  • the peripheral surface of the second timepiece component 20 comprises a second connection surface 22, intended for attachment to the first connection surface 12 of the first timepiece component 10 to form the timepiece assembly of the two timepiece components, as will be detailed.
  • the second timepiece component 20 has a connecting surface 22 of the male type, intended to cooperate with a connection surface 12 of the female type of the first timepiece component 10.
  • FIG. 2a represents an intermediate phase of the second step of the assembly method, in which several second timepiece components 20 are moved closer to a support 40 pierced with blind holes 41 .
  • This support 40 is an intermediate element, used by the manufacturing process on a temporary basis. It is not part of the watch assembly. It comes in any material resistant to the silicon oxidation temperature. Advantageously, it is also made of a material with a coefficient of thermal expansion similar to that of the second timepiece component 20.
  • Each second timepiece component 20 is inserted into a respective blind hole 41 of the support 40, the diameter of which corresponds to that of the second timepiece component 20, so that the latter is held in a stable and precise manner by the support 40 in the position illustrated by Figure 2b.
  • FIG. 3 represents a third step of the timepiece assembly method according to the embodiment of the invention, in which a first timepiece component 10 is assembled on each second timepiece component 20.
  • the reception opening 11 (the connection hole) of the first timepiece component 10 is positioned opposite the upper end 21 of the second timepiece component 20, then the first timepiece component 10 is slid downwards along the second timepiece component 20, until to come to rest on the upper surface 42 of the support 40.
  • FIG. 4a illustrates in an enlarged manner the configuration obtained at the end of the third step, which forms an intermediate assembly configuration of the two timepiece components.
  • the two timepiece components 10, 20 are positioned in their final relative position relative to each other, but are not yet secured together. Indeed, their respective connecting surfaces 12, 22 are facing each other, but separated by a small distance d, as shown in FIG. 4b, which represents a clearance between the two components. At this stage, the two timepiece components therefore do not come into contact with each other.
  • This clearance allows easy relative positioning of the two watch components, while guaranteeing minimal mobility between the two watchmaking components in this non-unitary temporary assembly positioning.
  • the distance d is less than or equal to 4 miti, or even less than or equal to 2 miti.
  • the distance d is greater than or equal to 1 miti, or even greater than or equal to 1.5 miti.
  • the depth of the blind holes 41 of the support 40 is therefore chosen so that the second connecting surface 22 of the second timepiece component is located just above the upper surface 42 of the support, so as to be able to be located opposite of the first connecting surface 12 of the first timepiece component 10 after the positioning of the latter.
  • the same support 40 advantageously allows the simultaneous manufacture of several timepiece assemblies.
  • the first timepiece components 10 are produced by microfabrication from a wafer, in particular a silicon wafer, and these components are still attached to the wafer, for example by fasteners, which makes it possible to produce the assemblies simultaneously for all or part of the components attached to the wafer.
  • the invention is not limited to such an embodiment, and also covers an embodiment in which a single watch assembly would be produced.
  • the watchmaking assembly process implements a fourth step of securing the two watchmaking components.
  • the assembly obtained at the end of the third step is subjected to a heat treatment such that it generates growth of a layer of silicon oxide on the surface of the first timepiece component 10 which is made of silicon.
  • the assembly is advantageously placed in an oxidation furnace, and brought to a temperature of approximately 1100° C., or more generally to any temperature sufficient to generate oxidation of the silicon.
  • this temperature is between 800 and 1200° C., preferably in an oxidizing atmosphere (steam for example).
  • the treatment time is chosen so as to achieve a sufficient oxidation thickness for the satisfactory attachment of the two timepiece components.
  • t is the heat treatment time
  • e 0 x represents the thickness of the oxidation layer
  • A, B, C are constants.
  • the ceramic withstands the silicon oxidation temperature, and is not affected, either in terms of its dimensions or in terms of its properties, by the heat treatment implemented.
  • the support 40 is made of a material which also supports this heat treatment, to ensure the support of the assembly in a constant manner throughout the heat treatment.
  • the growth of the layer of oxidized silicon at the level of the bonding surface 12 therefore makes it possible to achieve direct tightening between the two respective bonding surfaces 12, 22, which is continued until sufficient joining is achieved, compatible with the constraints which will be undergone by the watch assembly in a watch movement, thus ensuring the maintenance of the two watch components in a durable manner during the operation of the watch assembly.
  • the two connecting surfaces therefore come into contact with each other, at the level of a joining surface, which is cylindrical in shape in this embodiment.
  • the geometry of the parts will advantageously be chosen to allow sufficient play before the heat treatment, allowing in all cases their assembly with less play, while achieving satisfactory joining in an acceptable time by the heat treatment.
  • an oxidized silicon bonding surface of the watch assembly will advantageously be chosen after heat treatment comprising a layer of oxidized silicon with an average thickness greater than or equal to 1 miti, or even greater than or equal to 1.5 ⁇ m and/or less than or equal to 4 pm.
  • the geometry of the parts will be chosen so that there is no contact between the first and second components before the oxidation heat treatment, while achieving satisfactory joining in an acceptable time by the heat treatment of oxidation.
  • the use of a support 40 is advantageous, as illustrated by figures 2 and 3.
  • the wall delimiting the receiving opening 11 (the connection hole) of the first timepiece component 10 is connected to the peripheral functional part of said first timepiece component 10 by a rigid connection in the embodiment described. More specifically, the hub of the wheel is connected by four rigid arms to the functional peripheral part according to the example produced. In other words, the wall of the receiving opening 11 is immobile relative to this functional part.
  • this connection between the receiving opening and the functional part is rigid, and more generally of a timepiece component of the rigid type such a timepiece component.
  • this rigid connection can be formed by any other number of rigid arms than the four aforementioned arms, and by any other connecting structure not necessarily in the form of arms.
  • Such a rigid connection has a significant advantage during the implementation of the watch assembly method of the invention, particularly during the final phase of tightening between them the two connecting surfaces by growth of a layer of oxidized silicon. Indeed, during this growth, a force is exerted on the connecting surfaces in contact: if the wall of the receiving opening (connecting hole) is mounted to move relative to the rest of the first watch component, in particular relative to the part functional, the force exerted during the growth of oxide would be likely to move this wall of the receiving opening (of the connection hole), and thus to be absorbed by this movement, to the detriment of the tightening sought at the level of the surfaces in contact. For this reason, a watch component of the rigid type, within the meaning of the preceding definition, is particularly suitable for the watch assembly according to the invention.
  • FIG. 6 represents by way of example part of a watch movement comprising several watch assemblies of the rigid type, in the sense described above.
  • This part of the watch movement more precisely forms a regulator device 1, comprising in particular an escapement wheel 2 pivoted about an axis A2, and a blocker 3 comprising a first blocker mobile 3a pivoted about a third axis A3a and a second mobile blocker 3b pivoted around a fourth axis A3b, all three arranged in the same plane P and made of silicon, and assembled to their respective ceramic axes by the watchmaking assembly method according to the invention.
  • a regulator device 1 comprising in particular an escapement wheel 2 pivoted about an axis A2
  • a blocker 3 comprising a first blocker mobile 3a pivoted about a third axis A3a and a second mobile blocker 3b pivoted around a fourth axis A3b, all three arranged in the same plane P and made of silicon, and assembled to their respective ceramic axes by the watchmaking assembly method according
  • a balance plate 60 with a plate pin 65 as encountered in Swiss lever escapements.
  • the balance plate 60 mainly made of silicon, comprises an opening 62 for receiving the plate pin 65.
  • the contour of the receiving opening is closed and its geometry is complementary to that of the plate 65.
  • the plate peg 65 preferably made of monocrystalline or polycrystalline alumina, is introduced with reduced clearance into the balance plate 60, perpendicular to its first face, until the engagement end of the peg plate 65 is flush with the second face of the balance plate 60, parallel to the first face.
  • the two timepiece components being positioned relative to each other, they are then assembled by the timepiece assembly method according to the invention.
  • a balance plate 70 with an impulse finger 75 like those that can be encountered in other types of escapement than the Swiss lever escapement.
  • the balance plate 70 the two faces of which delimiting its height are parallel and mostly made of silicon, has an opening 72 for receiving the impulse finger 75.
  • the profile of the receiving opening 72 is open , emerging on the periphery of the balance plate 70.
  • the impulse finger 75 preferably made of monocrystalline or polycrystalline alumina, is engaged with reduced play in the balance plate 70, parallel to the faces of the balance plate 70.
  • FIGS. 21 and 22 illustrate another assembly solution between a first component comprising a female part and a second component comprising a male part, making it possible to confer a seat on the male part projecting over the periphery of the female part.
  • the assembly involves, in the first timepiece component 90, a reception opening 92 whose profile is open and does not pass through the thickness of the first timepiece component 90.
  • the depth of the reception opening 92 is limited to a portion, which can reach 40% of the total thickness of the first timepiece component 90, in order to provide a seat 93 for the second timepiece component 95.
  • the reception opening is blind, closed off along the thickness of the first component, so that the second timepiece component 95 does not pass through the first timepiece component 90 right through.
  • the applicant's studies have shown that the mechanical strength of the assembly increases by splitting the connecting surface 12 intended for guiding the second timepiece component, by inserting at least one groove 110, as illustrated by the figures 17, 18, 19, 20, 23, 24, 25 and 26.
  • the at least one groove 110 is provided for various purposes, such as facilitating both the pre-assembly of watch components, by reducing the contact surface, and the access of oxygen to the bonding surface 12 during the oxidation heat treatment, or even, in particular in the case of a receiving opening whose outline is open, to allow the preservation of the pre-positioning of the watch components after oxidation, avoiding any displacement of the male part induced by the growth of the layer of silicon oxide.
  • the at least one spline 110 can have any kind of geometries, including those making it possible to obtain a succession of convex lobes inside the connection opening, as illustrated by FIG. 25.
  • the at least one spline 110 could also be arranged on the connecting surface 22, as shown in Figure 26.
  • the section of the receiving opening can be open or closed, blind or through, and have a circular or U-shaped geometry, or another shape, for example ellipsoidal, ovoid, polygonal, etc.
  • the invention is particularly suitable for the manufacture of a watch assembly comprising a ceramic axis.
  • it is particularly suitable for assembling this ceramic axle with a first silicon watch component, in particular a silicon wheel.
  • silicon is now increasingly used to manufacture watch components thanks to its very advantageous properties.
  • it has the disadvantage of being fragile, in particular brittle, which makes it very difficult to assemble it with another component.
  • the invention is thus particularly advantageous for forming a watch assembly between a first silicon watch component and a second ceramic watch component.
  • the second watch component in particular a watch pin, could be made of a material other than ceramic, for example of another material that is very hard and resistant to the aforementioned oxidation temperature.
  • the embodiment described previously even though specifically adapted to ceramics, could as a variant also be used for a timepiece component presented in a material other than ceramic.
  • the second component could be made of metal, in particular a metal alloy resistant to the oxidation temperature.
  • This metal can be, without limitation, Ti, Zr, Nb, Mo, Ta, W and their respective alloys.
  • the first and second components could be made of silicon Si.
  • This configuration has the advantages of reducing the oxidation time (the dimensions of the opening for receiving the first component decreasing and that of the body of the second component then increasing simultaneously) and/or to allow working with larger initial clearances.
  • the invention is particularly suitable for producing a watch assembly of two watch components of the rigid type.
  • timepiece components of the flexible type the expression “flexible type” being opposed to the expression “rigid type”.
  • a second embodiment of the invention is therefore based on a timepiece assembly comprising at least one timepiece component of the flexible type, particularly with elastically movable parts.
  • the first timepiece component could comprise a wall of the receiving opening (connection hole) connected by an elastically movable connection with the functional part.
  • Such a solution according to the second embodiment would be less advantageous for the realization of the assembly as such, that is to say for the function of fixing between them the two watch components, but would bring an additional advantage of facilitating the temporary assembly in the temporary assembly configuration of FIG. 3 of the two timepiece components. Indeed, thanks to a slight elastic mobility of one or more walls of the receiving opening (of the connection hole) relative to a functional part of the first timepiece component, it is possible to move this wall during the temporary assembly of the two timepiece components, which makes it possible to reduce the play separating their respective connecting surfaces, and therefore to reduce the heat treatment time necessary to achieve their joining.
  • FIG. 7 illustrates an alternative embodiment of the regulator device of FIG. 6, comprising the same horological components, which thus retain the same references to facilitate reading, but whose geometry of the wheels is modified to introduce greater flexibility.
  • said wheels each comprise a central reception opening (said connection hole), delimited by elastic arms. The dimensioning of the elastic arms is defined so as to provide an adequate holding torque for each of the wheels on each of their respective axes.
  • the second timepiece component 20 comprises a bearing surface 23.
  • this bearing surface 23 can be formed by a larger diameter portion of the 'axis.
  • FIG. 8 illustrates for this purpose the third step of the method of manufacturing a timepiece assembly according to this embodiment variant.
  • the support 40 still holds at least a second timepiece component, but the depth of its blind holes 41 is reduced, since the connecting surfaces of the two respective timepiece components are positioned spaced apart above the upper surface 42 of the support 40.
  • any other geometry of the second timepiece component forming a surface for receiving a first timepiece component fulfilling the bearing function could be implemented.
  • the presence of such a bearing can facilitate assembly operations, but is not advantageous for the manufacture of the component, because it involves additional machining operations as well as a larger footprint.
  • the first timepiece component retains the same shape as in the embodiments described above. Its connecting surface remains as simple as possible, cylindrical. For example, preferably, no counterbore is added at its surface resting on the bearing surface 23.
  • FIG. 9 represents a second embodiment variant of the first or of the second embodiment, in which the temporary assembly of the third step of the horological assembly method is implemented without support, for example directly on a silicon wafer 5 comprising at least one blank of the first timepiece component 10, not completely detached from the wafer 5.
  • the second timepiece component or components also have a surface 23 which comes to rest on the upper surface 6 of the wafer 5, the latter thus also fulfilling a support function in this configuration.
  • the assembly formed in this configuration illustrated by FIG. 9 and resulting from the third step of the method is then oxidized in the fourth step of the method.
  • the wafer 5 as a whole is thus oxidized, its blanks of first timepiece components 10 intended to be detached thus being oxidized in this way before a subsequent step of detachment of each first timepiece component 10, already assembled with its respective second timepiece component 20 .
  • the oxidation of the wafer as a whole is not limited to this mode, but can be carried out in any configuration, in particular the configuration illustrated in FIGS. 3 and/or 4.
  • the first timepiece component retains the same shape as in the embodiments described above. Its connecting surface remains as simple as possible, cylindrical. For example, preferably, no counterbore is added at its surface resting on bearing surface 23.
  • FIG. 10 illustrates a third embodiment variant, which is likewise compatible with the first and second embodiments of the invention and their various variants.
  • This third embodiment variant differs from all the variants described above in that it uses a third intermediate silicon component, separate from the two watch components to be assembled, whose function is to participate in the watch assembly of said two watch components to be assembled.
  • This third intermediate component comprises a third connecting zone, comprising on the one hand a third internal connecting surface, intended to come into contact with the second connecting surface of the second timepiece component 20, and on the one hand a third connecting surface exterior, intended to come into contact with the first bonding surface of the first timepiece component 10.
  • the third bonding zone of the third intermediate component will oxidize, causing the growth two layers of oxidized silicon, respectively inner and outer, which will respectively come into contact with the first bonding surface of the first timepiece component and with the second bonding surface of the second timepiece component, until the desired joining of the three components.
  • the two connection surfaces 12, 22 of respectively the two timepiece components 10, 20 are in indirect contact, connected by a continuity of material via the connection zone of the third intermediate component, whereas they are in direct contact in the embodiments described above.
  • the third intermediate component 30 is in the form of a sleeve, arranged around the second timepiece component at its connecting surface on the one hand, and inside the receiving opening (Connection hole) of the first timepiece component, vis-à-vis the first connection surface on the other hand.
  • This third intermediate component is assembled in the intermediate assembly configuration with a clearance vis-à-vis each of the two timepiece components to be assembled.
  • This game features the same dimensions as the clearance mentioned above between the two watch components.
  • the surface for joining the two timepiece components is double, at the level of the exterior and interior surfaces respectively. These two joining surfaces are cylindrical in shape in this case, but could have an open contour, or take shapes, for example ellipsoidal, ovoid, polygonal, etc.
  • This third embodiment variant is, for example, suitable when neither of the two timepiece components is made of silicon. They can thus for example both be totally or mainly made of ceramic. Alternatively, one of them is mostly ceramic, the other being in another material. According to another example, it can be adapted if the respective connecting surfaces of the two timepiece components to be assembled do not have directly compatible dimensions, the receiving opening (the connecting hole) having for example a diameter that is too large relative to the second watchmaking component to achieve direct assembly between the two watchmaking components.
  • FIGS. 11 to 14 respectively illustrate a fourth and a fifth alternative embodiment, in which the second timepiece component 20 comprises a variable transverse or radial section 25, that is to say a section whose surface is variable 25, preferably of continuous way. In addition, it is located in the immediate vicinity of the connecting surface 22, as will be specified below.
  • FIGS. 11 to 13 illustrate a fourth variant embodiment, which is similar to the first variant embodiment of FIG. 8, in which the bearing surface 23 is replaced by a variable radial section 25, continuously between a border at the level of the second connecting surface 22 and a larger section. As represented by FIGS.
  • this variable radial section 25 is presented as a portion of evolving radial section, evolving continuously from a surface of minimum radial section Se1, at the level of the border with the second connecting surface 22 , up to a maximum radial cross-sectional area Se2.
  • the second timepiece component thus globally comprises a first cylindrical part, with a section surface Se1, and a second cylindrical part, with a larger section surface Se2, these two cylindrical parts being linked together by the portion of variable radial section 25 which is intercalated.
  • this aforementioned section variation is linear. As a variant, it could have any other shape.
  • the second connecting surface 22 is located on the first cylindrical part, in the immediate vicinity of the variable radial section 25.
  • the first timepiece component 10 remains unchanged, comprises a reception opening 11 (a connecting hole). According to the embodiments, this reception opening 11 has a constant section.
  • FIG. 12 particularly illustrates the advantage of such a construction during the implementation of the third step of the method.
  • the receiving opening 11 (connecting hole) is slid with reduced clearance along the second timepiece component 20, according to a clearance in the ranges of values specified previously with reference to FIG. 4b, until its inlet end comes to rest against the portion of variable radial section 25 of the second timepiece component 20, to reach the intermediate assembly configuration, not secured, such as represented by FIG. 12.
  • the contact thus formed between the two timepiece components is therefore of the linear type.
  • the variation in section of the variable radial section portion 25 is such that the maximum section Se2 is greater than the section of the reception opening 11.
  • the minimum section Se1 is such that the reception opening 11 can cooperate with less clearance with this minimum section of the second timepiece component 20, the clearance being that mentioned between the two connecting surfaces 12, 22, as described in the previous variants.
  • the assembly is advantageously positioned in a support 40, as in the first variant represented by FIG. 8.
  • This support 40 in particular holds the second watch component(s) 20 in a vertical orientation, so as to keep the line of contact between the two timepiece components in a substantially horizontal plane, perpendicular to the axis of the second timepiece component 20, under the effect of gravity.
  • the line contact between the two components is of circular shape, but could take on any sort of geometries, or an open outline, and/or have grooves, forming a discontinuous line contact.
  • FIG. 13 represents the assembly obtained after the implementation of the fourth step, which involves joining together the two timepiece components by a thermal oxidation treatment of the silicon, as described previously.
  • a silicon oxide layer 15 of uniform thickness e 0 x is formed on the surface of the silicon component, here the first timepiece component 10.
  • the formation of this layer of silicon oxide is accompanied by an increase in volume, which moves the first bonding surface 12 of the first timepiece component 10 until it comes into contact with the second bonding surface 22 of the second timepiece component 20, so as to induce the connection of the two watch components.
  • the uniformity of the thickness of the layer of silicon oxide 15 is also at the origin of a rounding of the edges of the first timepiece component 10 in silicon, schematized by circular arcs in FIG. 13 .
  • the section of the reception opening 11 decreases, which involves the movement of the first timepiece component 10 relative to the second timepiece component 20.
  • the linear contact zone rises progressively (in FIG. 12, more generally moves along the axis of the second timepiece component), depending on the reduction of his section.
  • variable radial section portion 25 of the second timepiece component 20 therefore forms a guide ramp for the relative movement of the first timepiece component during the fourth step, that of oxidation, of the process. This phenomenon continues until the first timepiece component 10, more mainly its line of contact with the second timepiece component 20, reaches the boundary between the variable radial section portion 25 and the second connecting surface 22. At this level , the growth of the layer of silicon oxide no longer causes the displacement of the first timepiece component 10 but finalizes the securing of their two respective connection surfaces 12, 22, according to the final configuration of FIG. 13.
  • the relative movement of the two timepiece components 10, 20 according to this fourth embodiment promotes movement in two directions, an axial direction, as described above, but also a radial direction, which allows the relative recentering of the two components. watchmakers 10, 20 if there has been a possible shift in the intermediate configuration.
  • this conformation of the second timepiece component 20 advantageously makes it possible on the one hand to form a means for pre-positioning the first timepiece component 10 and on the other hand to avoid an abrupt variation in section of the second timepiece component 10, harmful in terms of mechanical resistance, in particular if the material used is not very resistant to shocks and/or if the sections involved are small. It also appears that this embodiment is very favorable to obtaining a uniform silicon oxide layer 15, as well as to precise relative positioning of the two timepiece components after heat treatment.
  • This variant embodiment thus optimizes the reinforcement of the robustness of the method of shrinking by oxidation.
  • An advantage of this variant embodiment involving a line contact before heat treatment stems in particular from the fact of the uniformity of the layer of silicon oxide obtained, as mentioned above, which can be explained by the fact that at With the exception of the contact line, all of the surfaces of the silicon timepiece component remain exposed in the same way to the oxidizing atmosphere prevailing during the heat treatment.
  • variable radial section portion 25 of the second timepiece component 20 can be produced by a turning operation, in particular if this second timepiece component is entirely or partly made of ceramic, as mentioned above.
  • this variable radial section 25 may have a linear variation, in which case it has a frustoconical shape.
  • it may have an opening angle "a" of the frustoconical portion, which represents a compromise between a small value, which favors the mechanical resistance of the watch component by the absence of sudden variation of its radial section , and therefore the absence of a concentration of stresses in this zone, and a higher value, which favors the relative positioning of the two watchmaking components, due to less sensitivity to manufacturing tolerances, since dimensional deviations of the reception opening 11 of the first timepiece component 10 or of the variable radial section portion 25 of the second timepiece component 20 are compensated by small axial displacements.
  • the angle "a” can be between 10 and 80 degrees, or even between 30 and 60 degrees.
  • FIG. 14 represents a fifth embodiment variant, which is similar to the second variant of FIG. 9, in which the bearing surface has been replaced by a variable radial section portion 25, similar to that of the fourth variant described above. .
  • the operation obtained during the oxidation step is similar to that described for the previous variant, and the advantages obtained are likewise very similar.
  • the invention also relates to a watch assembly as such resulting from the watch assembly process described above.
  • This timepiece assembly therefore comprises a first timepiece component assembled with a second distinct timepiece component, the first timepiece component comprising at least one functional part and a reception opening (connection hole) distinct from said functional part, the wall delimiting said reception opening forming a first connection surface, the second timepiece component comprising a second connection surface and being assembled integrally with the first timepiece component by the direct or indirect contact of the respective first and second connection surfaces of said first and second timepiece components.
  • At least one of the first and second bonding surfaces or of a third interior and/or exterior bonding surface of a third optional intermediate component is made of silicon oxidized by heat treatment so that the first and second timepiece components are joined together by growth of a layer of oxidized silicon.
  • the surface of oxidized silicon is sufficient by its growth to come into engagement on a corresponding connecting surface, to form sufficient clamping at the level of the connecting surfaces to secure the two timepiece components together.
  • the two watch components are first positioned in an intermediate assembly configuration, before the growth of a layer of oxidized silicon by heat treatment which secures the two watch components in their final position corresponding to their intermediate configuration. 'assembly.
  • Such a watch assembly is therefore different from a watch assembly which could include a component in oxidized silicon, but bonded to another component by a traditional means such as bonding or driving in and not through the intermediary of oxidized silicon.
  • the oxidized silicon would necessarily be deteriorated in a detectable manner, by the presence of defects, by a mechanical connection made subsequently to the oxidation, at the level of the connection between the two components, which would entail the risk of chipping. or cracks in the oxidized silicon layer, in addition to its deformation.
  • the layer of oxidized silicon remains free of defects at the level of the bonding surface of the watch components, more precisely at the level of their joining surface.
  • the addition of any other means of fixing the two watch components is not necessary, unlike a traditional solution, even if the invention is not not incompatible with the optional use of a second separate complementary fastening means.
  • the horological components described above are of the wheel type, such as an escape wheel, or of the pinion type, such as an escape pinion, or can be a balance spiral spring, on the one hand, and a clock axis on the other. go.
  • the invention applies more generally to any first “female” type watch component assembled with any second “male” type watch component.
  • the invention is particularly suitable for at least one of the watch components made of ceramic, or predominantly made of ceramic.
  • This timepiece component can be the first and/or the second timepiece component.
  • This timepiece component can be the “female” type timepiece component and/or the second “male” type timepiece component.
  • said at least one bonding surface in silicon oxidized by heat treatment or more generally the bonding surface of the female-type timepiece component may completely surround the second male-type timepiece component, or over at least 70% of its periphery, or over at least 40% of its periphery, considering at least one of its sections in a transverse plane, that is to say substantially perpendicular to its axis or to its direction of longitudinal extension.
  • the mechanical connection between the two components is made over the entire height of the connection surface delimiting the opening for receiving the first watch component.
  • the growth of oxidized silicon is therefore carried out between the two bonding surfaces, that is to say in the transverse direction, as defined above, which is also a radial direction in the case where the second component is present as the shape of an axis.
  • the resulting joining surface between the two watch components extends perpendicular to this transverse or radial growth of oxidized silicon, at the level of the surface of the receiving opening of the female-type component.
  • the reception opening (connection hole) of the first watch component may have a first circular section and the connecting surface of the second watch component may present a second circular section, the diameter of the first circular section being strictly greater than or equal to the diameter of the second circular section before said oxidation by heat treatment.
  • one of the first or second connecting surfaces may have a first circular section, the other having a non-circular section, in particular ovoid or elliptical or polygonal, to allow self-centering of the assembly of said two timepiece components during their positioning in the intermediate assembly configuration.
  • said two first and second sections of respectively the first and second connecting surfaces may have a section of the same non-circular shape, in particular ovoid or elliptical or polygonal.
  • the first and/or second connecting surfaces may have a section of non-continuous shape, and/or constant or not over the height of the reception opening. It emerges that the joining surface or surfaces of the two watch components are preferably cylindrical, even ovoid or elliptical or polygonal, or inscribed in a cylindrical shape when a joining surface is not continuous, even ovoid or elliptical. or polygonal.
  • the reception opening 11 (connection hole) of the first timepiece component 10 can be a through opening or a blind opening.
  • connection surface 12 of the first timepiece component 10, complementary to the connection surface 22 of the second timepiece component 20, can advantageously be divided by the insertion of grooves 110 provided in particular to facilitate the access of oxygen to the surface of link 12 during the oxidation heat treatment.
  • the development of the alternation of guide portions and splines can be made on the connecting surface 22 of the second timepiece component 20, as illustrated by FIG. 26.
  • the bonding surface of a timepiece component from among the first timepiece component and the second timepiece component which is not made of oxidized silicon, but for example of ceramic, can comprise a structuring to make it rougher, or can comprise knurling or splines or keying and/or flat.
  • the bonding surface of a predominantly ceramic watch component can be treated to make it chemically compatible with silicon oxide.
  • the second timepiece component may include a support bearing.
  • the second component may have a portion of variable section, in particular which increases continuously from a border with its second connecting surface, this portion of section which increases continuously being thus positioned outside the opening of reception of the first timepiece component, in close proximity to one end of said reception opening.
  • This portion of variable section has been described in more detail in the variant embodiments with reference to FIGS. 11 to 14.
  • Said oxidized silicon bonding surface may comprise an average thickness greater than or equal to 1 miti, or even greater than or equal to 1.5 ⁇ m. It may comprise an average thickness less than or equal to 4 ⁇ m.
  • the invention also relates to a watch movement which comprises one or more watch assemblies as described above.
  • the invention also relates to a timepiece, which comprises at least one timepiece assembly as described previously or such a timepiece movement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Products (AREA)

Abstract

Assemblage horloger comprenant un premier composant horloger (10) assemblé à un deuxième composant horloger (20) distinct, le premier composant horloger (10) comprenant au moins une partie fonctionnelle et une ouverture de réception (11) pouvant constituer un trou de liaison distinct de ladite partie fonctionnelle, la paroi délimitant ladite ouverture de réception (11) formant une première surface de liaison (12), le deuxième composant horloger (20) comprenant une deuxième surface de liaison (22) et étant assemblé de manière solidaire au premier composant horloger par le contact direct ou indirect des première et deuxième surfaces de liaison (12, 22) respectives desdits premier et deuxième composants horlogers (10, 20) au niveau d'une surface de solidarisation, caractérisé en ce qu'au moins une des première et deuxième surfaces de liaison (12, 22), ou une troisième surface de liaison d'un troisième composant intermédiaire (30) optionnel, est en silicium oxydé par traitement thermique de sorte que les premier et deuxième composants horlogers sont solidarisés entre eux par croissance d'une couche de silicium oxydé.

Description

Procédé de fabrication d’un assemblaqe horloqer et assemblaqe horloqer
La présente invention concerne un assemblage horloger d’au moins deux composants horlogers. Elle porte aussi sur un mouvement horloger et sur une pièce d’horlogerie comprenant au moins un tel assemblage horloger. Elle porte aussi sur un procédé de fabrication d’un tel assemblage horloger.
La céramique est de plus en plus utilisée dans l’horlogerie, par exemple pour former des axes horlogers, car ses propriétés mécaniques intrinsèques, notamment de dureté, et son insensibilité aux champs magnétiques sont très avantageuses pour de nombreux composants horlogers.
Les solutions d’assemblage traditionnelles de composants horlogers, conçues pour des matériaux métalliques, ne sont toutefois pas toujours adaptées ou optimales pour la céramique. En complément, le silicium est de même de plus en plus utilisé pour fabriquer des composants horlogers, et du fait de sa fragilité, les solutions d’assemblage traditionnelles de composants horlogers ne sont de même pas toujours adaptées ou optimales pour le silicium.
Ainsi, la présente invention a pour objet d’améliorer les assemblages horlogers, et notamment de définir une solution d’assemblage horloger particulièrement adaptée à l’utilisation de la céramique. Plus précisément, l’invention a pour objet de définir une solution d’assemblage horloger fiable, durable, facile à mettre en oeuvre.
A cet effet, l’invention repose sur un assemblage horloger comprenant un premier composant horloger assemblé à un deuxième composant horloger distinct, le premier composant horloger comprenant une ouverture de réception ou trou de liaison, la paroi délimitant ladite ouverture de réception ou trou de liaison formant une première surface de liaison, le deuxième composant horloger comprenant une deuxième surface de liaison et étant assemblé de manière solidaire au premier composant horloger par le contact direct ou indirect des première et deuxième surfaces de liaison respectives desdits premier et deuxième composants horlogers au niveau d’une surface de solidarisation, caractérisé en ce qu’au moins une des première et deuxième surfaces de liaison, ou une troisième surface de liaison d’un troisième composant intermédiaire optionnel, est en silicium oxydé par traitement thermique de sorte que les premier et deuxième composants horlogers sont solidarisés entre eux par croissance d’une couche de silicium oxydé.
Le premier composant horloger peut comprendre au moins une partie fonctionnelle et une ouverture de réception distincte de ladite partie fonctionnelle.
Selon un premier mode de réalisation, le contour de l’ouverture de réception du premier composant horloger est fermé, et cette ouverture de réception ou trou de liaison peut présenter une section constante sur la totalité de sa première surface de liaison.
Selon un deuxième mode de réalisation, le contour de l’ouverture de réception débouche sur le pourtour extérieur du premier composant horloger et l’ouverture de réception ou trou de liaison peut présenter une section constante sur la totalité de sa première surface de liaison dont la hauteur est comprise entre une portion de l’épaisseur totale et l’épaisseur totale du premier composant horloger.
D’autre part, le deuxième composant horloger peut présenter une portion de section variable, notamment qui augmente continûment à partir d’une frontière avec sa deuxième surface de liaison, cette portion de section augmentant continûment à l’extérieur de l’ouverture de réception, ou trou de liaison, à proximité immédiate avec une extrémité de ladite ouverture de réception.
L’invention porte aussi sur un procédé de fabrication d’un assemblage horloger comprenant un premier composant horloger et un deuxième composant horloger distinct, caractérisé en ce qu’il comprend les étapes suivantes : o Assembler dans une configuration intermédiaire à moindre jeu lesdits deux composants horlogers, de sorte que le deuxième composant horloger soit positionné dans un trou de liaison ou ouverture de réception du premier composant horloger, une première surface de liaison du premier composant horloger étant positionnée en vis-à-vis d’une deuxième surface de liaison du deuxième composant horloger, optionnellement par l’intermédiaire d’une troisième surface de liaison intérieure et extérieure d’un troisième composant intermédiaire de type manchon, au moins une des première et deuxième surfaces de liaison ou une troisième surface de liaison intérieure et extérieure optionnelle étant en silicium ; o Procéder à un traitement thermique de l’assemblage horloger dans sa configuration intermédiaire, de sorte à obtenir la croissance d’une couche de silicium oxydé de la au moins une surface de liaison en silicium, jusqu’à obtenir une solidarisation prédéfinie des deux composants horlogers.
L’invention est plus particulièrement définie par les revendications.
Ces objets, caractéristiques et avantages de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faits à titre non-limitatif en relation avec les figures jointes parmi lesquelles :
Les figures 1 a et 1 b représentent une première étape d’un procédé d’assemblage horloger selon un mode de réalisation de l’invention.
Les figures 2a et 2b représentent une deuxième étape du procédé d’assemblage horloger selon un mode de réalisation de l’invention.
La figure 3 représente une troisième étape du procédé d’assemblage horloger selon un mode de réalisation de l’invention. Les figures 4a et 4b représentent des vues agrandies de la troisième étape du procédé d’assemblage horloger selon un mode de réalisation de l’invention.
La figure 5 représente l’évolution du serrage de l’assemblage dans une quatrième étape du procédé d’assemblage horloger selon un mode de réalisation de l’invention.
La figure 6 représente une partie de mouvement horloger comprenant des assemblages horlogers selon un premier mode de réalisation de l’invention.
La figure 7 représente une partie de mouvement horloger comprenant des assemblages horlogers selon un deuxième mode de réalisation de l’invention.
La figure 8 représente une première variante de la troisième étape du procédé d’assemblage horloger selon un mode de réalisation de l’invention.
La figure 9 représente une deuxième variante de la troisième étape du procédé d’assemblage horloger selon un mode de réalisation de l’invention.
La figure 10 représente une troisième variante de la troisième étape du procédé d’assemblage horloger selon un mode de réalisation de l’invention.
La figure 11 représente une quatrième variante de la troisième étape du procédé d’assemblage horloger selon un mode de réalisation de l’invention.
Les figures 12 et 13 représentent, en vues schématiques agrandies, la troisième étape et l’assemblage obtenu par la mise en oeuvre de la quatrième étape du procédé d’assemblage horloger selon la quatrième variante du mode de réalisation de l’invention.
La figure 14 représente une cinquième variante de la troisième étape du procédé d’assemblage horloger selon un mode de réalisation de l’invention. La figure 15 représente un plateau de balancier doté d’une ouverture de réception pour la réception d’une cheville de plateau.
La figure 16 représente une cheville de plateau assemblée à un plateau de balancier de la figure 15 selon un mode de réalisation de l’invention.
La figure 17 représente un plateau de balancier doté d’une ouverture de réception pour la réception d’un doigt d’impulsion.
La figure 18 représente un doigt d’impulsion assemblé à un plateau de balancier de la figure 17 selon un mode de réalisation de l’invention.
La figure 19 représente un sautoir doté d’une ouverture de réception pour la réception d’un bec de sautoir.
La figure 20 représente un bec de sautoir assemblé à un sautoir de la figure 19 selon un mode de réalisation de l’invention.
La figure 21 représente un premier composant comprenant une partie femelle formant une ouverture de réception ouverte selon un autre mode de réalisation de l’invention.
La figure 22 représente un deuxième composant comprenant une partie mâle assemblée au premier composant de la figure 21 selon cet autre mode de réalisation de l’invention.
Les figure 23 à 26 représentent des surfaces de liaison présentant des cannelures selon des modes de réalisation de l’invention.
L’invention porte avantageusement sur un procédé de fabrication d’un assemblage horloger. Un tel procédé a pour objectif d’assembler entre eux de manière solidaire au moins deux composants horlogers distincts, pour former un ensemble solidaire que nous appellerons assemblage horloger. Au moins l’un des composants horlogers de l’assemblage horloger se présente avantageusement majoritairement en céramique, c’est-à-dire qu’il se présente en tout ou partie en céramique, et/ou comprend avantageusement au moins 50% en poids de céramique. La céramique est avantageusement présente au niveau de la surface de liaison dudit composant horloger majoritairement en céramique.
La céramique peut notamment être une zircone, en particulier une zircone yttriée, notamment une zircone yttriée 3% molaire ou une zircone yttriée 2% molaire, ou une alumine monocristalline ou polycristalline, ou une combinaison alumine- zircone. En variante, la céramique peut être composée de nitrure, carbure et/ou borure de métaux réfractaires, seuls ou en combinaison entre eux, ainsi qu’en combinaison avec des oxydes comme la zircone et l’alumine précitées.
Un procédé de fabrication d’un assemblage horloger va maintenant être décrit.
Une première étape du procédé selon le mode de réalisation consiste à se munir de deux composants horlogers distincts, qu’on souhaite assembler pour former un ensemble solidaire.
La figure 1 a illustre ainsi un premier composant horloger 10, qui est une roue en silicium selon l’exemple de réalisation. Il comprend une ouverture de réception 11 dans sa partie centrale, aussi appelée « trou de liaison », correspondant à un moyeu de la roue. Selon ce mode de réalisation, l’ouverture de réception 11 (trou de liaison), présente une section transversale, c’est-à-dire perpendiculaire à son axe central, de forme circulaire. En variante, cette section pourrait présenter une autre forme, par exemple ellipsoïdale, ovoïde, polygonale, etc. et/ou comporter, le long de sa circonférence, au moins une cannelure dont la section peut présenter toute sorte de géométries. La au moins une cannelure est prévue pour faciliter à la fois la croissance de la couche d’oxyde de silicium et le pré-assemblage des deux composants horlogers. La paroi délimitant cette ouverture de réception forme une surface de liaison 12, comme cela sera précisé par la suite. La roue comprend de plus une partie périphérique comprenant des entailles ou dents 13, destinées à coopérer avec un autre assemblage horloger au sein d’un mouvement horloger. Cette partie périphérique forme une partie fonctionnelle du premier composant horloger 10. Avantageusement, ce premier composant horloger 10 peut être fabriqué en silicium à partir d’une plaquette de silicium standard, gravée par un procédé traditionnel de gravure ionique réactive profonde (connue par le sigle DRIE en anglais). Dans ce procédé, plusieurs roues identiques sont formées simultanément sur une même plaquette de silicium.
La figure 1 b illustre un deuxième composant horloger 20, distinct du premier composant horloger, qui est un axe en céramique selon l’exemple de réalisation, destiné à un assemblage dans le moyeu de la roue de la figure 1 a, pour permettre l’agencement en rotation de la roue au sein d’un mouvement horloger. Selon ce mode de réalisation, le deuxième composant horloger 20 est donc destiné à un montage au travers de l’ouverture de réception 11 (le trou de liaison) du premier composant horloger 10. A cet effet, dans ce mode de réalisation, le deuxième composant horloger 20 montre une section transversale, c’est-à-dire perpendiculaire à son axe de rotation, qui est circulaire. En variante, cette section pourrait présenter une autre forme, par exemple, ellipsoïdale, ovoïde, polygonale, etc. Les deux extrémités 21 de l’axe sont destinées à un montage au sein d’un mouvement horloger permettant la rotation à moindre frottement de l’axe. L’axe horloger peut être fabriqué en céramique à partir d’un barreau et d’un procédé de décolletage laser suivi d’une tribofinition, ce qui permet d’obtenir une géométrie précise et un état de surface maîtrisé. La surface périphérique du deuxième composant horloger 20 comprend une deuxième surface de liaison 22, destinée à une fixation à la première surface de liaison 12 du premier composant horloger 10 pour former l’assemblage horloger des deux composants horlogers, comme cela va être détaillé. Ainsi, le deuxième composant horloger 20 présente une surface de liaison 22 de type mâle, destinée à coopérer avec une surface de liaison 12 de type femelle du premier composant horloger 10. La figure 2a représente une phase intermédiaire de la deuxième étape du procédé d’assemblage, dans laquelle plusieurs deuxièmes composants horlogers 20 sont rapprochés d’un support 40 percé de trous borgnes 41 . Ce support 40 est un élément intermédiaire, utilisé par le procédé de fabrication de manière temporaire. Il ne fait pas partie de l’assemblage horloger. Il se présente en tout matériau résistant à la température d’oxydation du silicium. Avantageusement, il se présente aussi en un matériau au coefficient d’expansion thermique similaire à celui du deuxième composant horloger 20.
Chaque deuxième composant horloger 20 est inséré dans un trou borgne 41 respectif du support 40, dont le diamètre correspond à celui du deuxième composant horloger 20, de sorte que ce dernier soit maintenu de manière stable et précise par le support 40 dans la position illustrée par la figure 2b.
La figure 3 représente une troisième étape du procédé d’assemblage horloger selon le mode de réalisation de l’invention, dans lequel un premier composant horloger 10 est assemblé sur chaque deuxième composant horloger 20. Pour cela, l’ouverture de réception 11 (le trou de liaison) du premier composant horloger 10 est positionné en vis-à-vis de l’extrémité 21 haute du deuxième composant horloger 20, puis le premier composant horloger 10 est coulissé vers le bas le long du deuxième composant horloger 20, jusqu’à venir reposer sur la surface supérieure 42 du support 40.
La figure 4a illustre de manière agrandie la configuration obtenue à la fin de la troisième étape, qui forme une configuration intermédiaire d’assemblage des deux composants horlogers. Les deux composants horlogers 10, 20 sont positionnés dans leur position relative finale l’un par rapport à l’autre, mais ne sont pas encore solidarisés entre eux. En effet, leurs surfaces de liaison 12, 22 respectives sont en vis-à-vis, mais séparées par une faible distance d, comme représenté par la figure 4b, qui représente un jeu entre les deux composants. A ce stade, les deux composants horlogers n’entrent donc pas en contact l’un avec l’autre. Ce jeu permet le positionnement relatif facile des deux composants horlogers, tout en garantissant une mobilité minimale entre les deux composants horlogers dans ce positionnement d’assemblage temporaire non solidaire. Avantageusement, la distance d est inférieure ou égale à 4 miti, voire inférieure ou égale à 2 miti. Avantageusement aussi, la distance d est supérieure ou égale à 1 miti, voire supérieure ou égale à 1 .5 miti. La profondeur des trous borgnes 41 du support 40 est donc choisie pour que la deuxième surface de liaison 22 du deuxième composant horloger se trouve juste au-dessus de la surface supérieure 42 du support, de sorte à pouvoir se trouver en vis-à-vis de la première surface de liaison 12 du premier composant horloger 10 après le positionnement de ce dernier.
En remarque, comme illustré par les figures 2 et 3, un même support 40 permet avantageusement la fabrication simultanée de plusieurs assemblages horlogers. Cela peut être particulièrement avantageux si les premiers composants horlogers 10 sont réalisés par microfabrication à partir d’un wafer, notamment un wafer de silicium, et que ces composants sont encore solidaires du wafer, par exemple par des attaches, ce qui permet de réaliser les assemblages de façon simultanée pour tout ou partie des composants attachés au wafer. Naturellement, l’invention ne se limite pas à une telle réalisation, et couvre aussi une réalisation dans laquelle un seul assemblage horloger serait réalisé.
Ensuite, le procédé d’assemblage horloger met en oeuvre une quatrième étape de solidarisation des deux composants horlogers. Pour cela, l’ensemble obtenu à la fin de la troisième étape est soumis à un traitement thermique tel qu’il génère une croissance d’une couche d’oxyde de silicium à la surface du premier composant horloger 10 qui est en silicium. Pour cela, l’ensemble est avantageusement placé dans un four d’oxydation, et porté à une température d’environ 1100 °C, ou plus généralement à toute température suffisante pour générer l’oxydation du silicium. Ainsi, avantageusement, cette température est comprise entre 800 et 1200 °C, de préférence dans une atmosphère oxydante (de la vapeur d’eau par exemple). De plus, le temps de traitement est choisi de sorte à atteindre l’épaisseur d’oxydation suffisante pour la fixation satisfaisante des deux composants horlogers. En effet, lors de l’oxydation du silicium, une couche de silicium oxydé se forme en surface du premier composant horloger, ce qui augmente son volume global, y compris au niveau de sa surface de liaison, qui entoure totalement ou partiellement le deuxième composant horloger. Ainsi, en poursuivant l’opération sur une période suffisante, la distance d séparant les deux surfaces de liaison respectives entre les deux composants horlogers est comblée par l’oxyde de silicium, jusqu’à atteindre un serrage suffisant entre les deux composants horlogers au niveau du contact direct entre leurs deux surfaces de liaison respectives. Ce phénomène est illustré par la figure 5, dont la première courbe 51 illustre l’évolution du diamètre de l’ouverture de réception 11 , qui se présente dans ce cas comme un trou de liaison de section circulaire, avec le temps durant cette opération d’oxydation. Il apparaît que ce diamètre diminue de manière significative. Selon l’exemple représenté, ce diamètre a diminué de 2 pm en 10 heures de traitement, pour devenir égal au diamètre du deuxième composant horloger 20 au niveau de sa surface de liaison 22, ce diamètre restant constant et représenté par la deuxième courbe 52.
L’évolution de l’épaisseur de la couche d’oxyde de silicium en fonction du temps obéit à la loi suivante :
Log(eox ) = A Log2(t) + B Log(t ) + C
Où t est le temps de traitement thermique, e0x représente l’épaisseur de la couche d’oxydation, et A, B, C sont des constantes.
On s’aperçoit ainsi sur la figure 5 qu’un traitement d’une durée de 40 heures permet d’atteindre une réduction du diamètre de l’ouverture de réception 11 de 4 pm.
En remarque, la céramique supporte la température d’oxydation du silicium, et n’est pas affectée, ni au niveau de ses dimensions, ni au niveau de ses propriétés, par le traitement thermique mis en oeuvre. De plus, le support 40 est réalisé dans un matériau qui supporte de même ce traitement thermique, pour assurer le support de l’ensemble de manière constante durant tout le traitement thermique. La croissance de la couche de silicium oxydé au niveau de la surface de liaison 12 permet donc de réaliser un serrage direct entre les deux surfaces de liaison 12, 22 respectives, qui est poursuivi jusqu’à atteindre une solidarisation suffisante, compatible avec les contraintes qui vont être subies par l’assemblage horloger dans un mouvement horloger, en assurant donc le maintien des deux composants horlogers de manière durable lors du fonctionnement de l’assemblage horloger. En remarque, dans cette réalisation, les deux surfaces de liaison viennent donc en contact l’une avec l’autre, au niveau d’une surface de solidarisation, qui est de forme cylindrique dans ce mode de réalisation.
La géométrie des pièces sera avantageusement choisie pour permettre un jeu suffisant avant le traitement thermique, permettant dans tous les cas leur assemblage à moindre jeu, tout en atteignant une solidarisation satisfaisante en un temps acceptable par le traitement thermique. Pour cela, on choisira avantageusement une surface de liaison en silicium oxydé de l’assemblage horloger après traitement thermique comprenant une couche de silicium oxydé d’épaisseur moyenne supérieure ou égale à 1 miti, voire supérieure ou égale à 1 .5 pm et/ou inférieure ou égale à 4 pm. En variante, la géométrie des pièces sera choisie pour qu’il n’y ait pas de contact entre les premier et deuxième composants avant le traitement thermique d’oxydation, tout en atteignant une solidarisation satisfaisante en un temps acceptable par le traitement thermique d’oxydation. Dans ce cas, l’utilisation d’un support 40 est avantageuse, comme illustré par les figures 2 et 3.
En remarque, il est notable que la paroi délimitant l’ouverture de réception 11 (le trou de liaison) du premier composant horloger 10 est reliée à la partie fonctionnelle périphérique dudit premier composant horloger 10 par une liaison rigide dans le mode de réalisation décrit. Plus précisément, le moyeu de la roue est relié par quatre bras rigides à la partie périphérique fonctionnelle selon l’exemple réalisé. Autrement dit, la paroi de l’ouverture de réception 11 est immobile relativement à cette partie fonctionnelle. Nous qualifierons de liaison rigide cette liaison entre l’ouverture de réception et la partie fonctionnelle, et plus généralement de composant horloger de type rigide un tel composant horloger. Naturellement, cette liaison rigide peut être formée par tout autre nombre de bras rigides que les quatre bras susmentionnés, et par toute autre structure de liaison non nécessairement sous forme de bras.
Une telle liaison rigide présente un avantage important lors de la mise en oeuvre du procédé d’assemblage horloger de l’invention, particulièrement lors de la phase finale de serrage entre elles des deux surfaces de liaison par croissance d’une couche de silicium oxydé. En effet, lors de cette croissance, un effort est exercé sur les surfaces de liaison en contact : si la paroi de l’ouverture de réception (trou de liaison) est montée mobile relativement au reste du premier composant horloger, notamment relativement à la partie fonctionnelle, l’effort exercé lors de la croissance d’oxyde serait susceptible de déplacer cette paroi de l’ouverture de réception (du trou de liaison), et d’être ainsi absorbé par ce déplacement, au détriment du serrage recherché au niveau des surfaces en contact. Pour cette raison, un composant horloger de type rigide, au sens de la définition précédente, est particulièrement adapté à l’assemblage horloger selon l’invention.
La figure 6 représente à titre d’exemple une partie d’un mouvement horloger comprenant plusieurs assemblages horlogers de type rigide, au sens décrit précédemment. Cette partie de mouvement horloger forme plus précisément un dispositif de régulateur 1 , comprenant notamment une roue d’échappement 2 pivotée autour d’un axe A2, et un bloqueur 3 comprenant un premier mobile de bloqueur 3a pivoté autour d’un troisième axe A3a et un deuxième mobile de bloqueur 3b pivoté autour d’un quatrième axe A3b, tous trois disposés dans le même plan P et réalisés en silicium, et assemblés à leurs axes respectifs en céramique par le procédé d’assemblage horloger selon l’invention.
D’autres parties de mouvement horloger peuvent bénéficier de l’assemblage horloger selon l’invention, comme par exemple : - Selon les figures 15 et 16, un plateau de balancier 60 avec une cheville de plateau 65, tels que rencontrés dans les échappements à ancre suisse. Dans ce mode de réalisation, le plateau de balancier 60, majoritairement en silicium, comporte une ouverture de réception 62 de la cheville de plateau 65. Le contour de l’ouverture de réception est fermé et sa géométrie est complémentaire à celle de la cheville de plateau 65. La cheville de plateau 65, faite préférentiellement d’alumine monocristalline ou polycristalline, est introduite à jeu réduit dans le plateau de balancier 60, perpendiculairement à sa première face, jusqu’à ce que l’extrémité d’engagement de la cheville de plateau 65 affleure la deuxième face du plateau de balancier 60, parallèle à la première face. Les deux composants horlogers étant positionnés relativement l’un à l’autre, ils sont ensuite assemblés par le procédé d’assemblage horloger selon l’invention.
- Selon les figures 17 et 18, un plateau de balancier 70 avec un doigt d’impulsion 75, comme ceux pouvant être rencontrés dans d’autres types d’échappement que celui à ancre suisse. Dans ce mode de réalisation, le plateau de balancier 70, dont les deux faces délimitant sa hauteur sont parallèles et majoritairement en silicium, présente une ouverture de réception 72 du doigt d’impulsion 75. Le profil de l’ouverture de réception 72 est ouvert, débouchant sur le pourtour du plateau de balancier 70. Le doigt d’impulsion 75, préférentiellement en alumine monocristalline ou polycristalline, est engagé à jeu réduit dans le plateau de balancier 70, parallèlement aux faces du plateau de balancier 70. Lorsque la longueur saillante du doigt d’impulsion 75 est ajustée, les deux composants horlogers sont assemblés par le procédé d’assemblage selon l’invention.
- Selon les figures 19 et 20, la conformation comportant une ouverture de réception 82 à contour ouvert, telle que l’ouverture 72 décrite ci-dessus, se prête également par exemple à l’assemblage d’un bec de sautoir 85 avec un sautoir 80, tels que ceux utilisés dans les mécanismes de quantième par exemple. Les figures 21 et 22 illustrent une autre solution d’assemblage entre un premier composant comprenant une partie femelle et un deuxième composant comprenant une partie mâle, permettant de conférer une assise à la partie mâle faisant saillie sur le pourtour de la partie femelle. Selon ce mode de réalisation, l’assemblage fait intervenir, dans le premier composant horloger 90, une ouverture de réception 92 dont le profil est ouvert et ne traverse pas l’épaisseur du premier composant horloger 90. La profondeur de l’ouverture de réception 92 est limitée à une portion, pouvant atteindre 40% de l’épaisseur totale du premier composant horloger 90, afin d’offrir une assise 93 au deuxième composant horloger 95. Dans cette conformation, l’ouverture de réception est borgne, obturée selon l’épaisseur du premier composant, de sorte que le deuxième composant horloger 95 ne traverse pas le premier composant horloger 90 de part en part.
De façon tout à fait surprenante, les études de la demanderesse ont montré que la résistance mécanique de l’assemblage augmentait en fractionnant la surface de liaison 12 destinée au guidage du deuxième composant horloger, en insérant au moins une cannelure 110, comme illustré par les figures 17, 18, 19, 20, 23, 24, 25 et 26. La au moins une cannelure 110 est prévue à diverses fins, comme faciliter aussi bien le pré-assemblage des composants horlogers, par réduction de la surface de contact, que l’accès de l’oxygène à la surface de liaison 12 lors du traitement thermique d’oxydation, ou encore, notamment dans le cas d’une ouverture de réception dont le contour est ouvert, de permettre la conservation intacte du pré-positionnement des composants horlogers après oxydation, en évitant tout déplacement de la partie mâle induit par la croissance de la couche d’oxyde de silicium. La au moins une cannelure 110 peut présenter toute sorte de géométries, y compris celles permettant d’obtenir une succession de lobes convexes à l’intérieur de l’ouverture de liaison, comme illustré par la figure 25. La au moins une cannelure 110 pourrait aussi être aménagée sur la surface de liaison 22, comme illustré par la figure 26. Comme mentionné précédemment, la section de l’ouverture de réception peut être ouverte ou fermée, borgne ou traversante, et présenter une géométrie circulaire, ou en U, ou encore une autre forme, par exemple ellipsoïdale, ovoïde, polygonale, etc.
Comme cela a été décrit précédemment, l’invention est particulièrement adaptée à la fabrication d’un assemblage horloger comprenant un axe en céramique. En complément, elle est particulièrement adaptée à l’assemblage de cet axe en céramique avec un premier composant horloger en silicium, notamment une roue en silicium. En effet, le silicium est maintenant de plus en plus utilisé pour fabriquer des composants horlogers grâce à ses propriétés très avantageuses. Toutefois, il présente l’inconvénient d’être fragile, notamment cassant, ce qui rend très délicat son assemblage avec un autre composant. L’invention est ainsi particulièrement avantageuse pour former un assemblage horloger entre un premier composant horloger en silicium et un deuxième composant horloger en céramique.
Naturellement, en variante de réalisation, le deuxième composant horloger, notamment un axe horloger, pourrait se trouver en un autre matériau que la céramique, par exemple en un autre matériau très dur et résistant à la température d’oxydation susmentionnée. Ainsi, le mode de réalisation décrit précédemment, quand bien même spécifiquement adapté à la céramique, pourrait en variante être aussi utilisé pour un composant horloger se présentant dans un autre matériau que la céramique.
Par exemple, le deuxième composant pourrait être en métal, notamment en alliage métallique résistant à la température d’oxydation. Ce métal peut être, de façon non limitative, le Ti, Zr, Nb, Mo, Ta, W et leurs alliages respectifs.
Selon un autre exemple, les premier et deuxième composants pourraient être en silicium Si. Cette configuration présente les avantages de réduire le temps d’oxydation (les dimensions de l’ouverture de réception du premier composant diminuant et celui du corps du deuxième composant augmentant alors simultanément) et/ou de permettre de travailler avec des jeux initiaux plus importants.
D’autre part, comme expliqué précédemment, l’invention est particulièrement adaptée à la réalisation d’un assemblage horloger de deux composants horlogers de type rigide. Toutefois, il peut rester avantageux d’utiliser des composants horlogers de type flexible, l’expression « de type flexible » étant opposée à l’expression « de type rigide ». Un deuxième mode de réalisation de l’invention repose donc sur un assemblage horloger comprenant au moins un composant horloger de type flexible, particulièrement avec des parties mobiles élastiquement. Notamment, le premier composant horloger pourrait comprendre une paroi de l’ouverture de réception (trou de liaison) reliée par une liaison mobile élastiquement avec la partie fonctionnelle. Une telle solution selon le deuxième mode de réalisation serait moins avantageuse pour la réalisation de l’assemblage en tant que tel, c’est-à-dire pour la fonction de fixation entre eux des deux composants horlogers, mais apporterait un avantage supplémentaire de faciliter l’assemblage temporaire dans la configuration d’assemblage provisoire de la figure 3 des deux composants horlogers. En effet, grâce à une légère mobilité élastique d’une ou plusieurs parois de l’ouverture de réception (du trou de liaison) relativement à une partie fonctionnelle du premier composant horloger, il est possible de déplacer cette paroi lors de l’assemblage temporaire des deux composants horlogers, ce qui permet de réduire le jeu séparant leurs surfaces de liaison respectives, et donc de réduire le temps de traitement thermique nécessaire pour atteindre leur solidarisation.
Une telle réalisation à base d’au moins un composant horloger de type flexible représente alors un compromis. Cette flexibilité (très faible) sera choisie de sorte à permettre l’agencement temporaire des deux composants horlogers tout en limitant le déplacement possible des surfaces de liaison pour atteindre une solidarisation suffisante par la croissance de la couche de silicium oxydé. A cet effet, la figure 7 illustre une variante de réalisation du dispositif de régulateur de la figure 6, comprenant les mêmes composants horlogers, qui conservent ainsi les mêmes références pour faciliter la lecture, mais dont la géométrie des roues est modifiée pour introduire une flexibilité, par une liaison élastique reliant les parois du trou de liaison des roues, dans lequel un axe en céramique est solidarisé par un assemblage horloger selon l’invention, avec leurs parties fonctionnelles périphériques respectives. Plus précisément, de manière privilégiée, lesdites roues comportent chacune une ouverture de réception centrale (ledit trou de liaison), délimitée par des bras élastiques. Le dimensionnement des bras élastiques est défini de sorte à fournir un couple de tenue adéquat de chacune des roues sur chacun de leur axe respectif.
Naturellement, l’invention ne se limite pas aux modes de réalisation décrits précédemment.
A cet effet, selon une première variante du premier ou du deuxième mode de réalisation, le deuxième composant horloger 20 comprend une portée 23. Dans le cas d’un axe, cette portée 23 peut être formée par une portion de diamètre plus important de l’axe. La figure 8 illustre à cet effet la troisième étape du procédé de fabrication d’un assemblage horloger selon cette variante de réalisation. En comparant cette réalisation à la figure 3 correspondante du premier mode de réalisation décrit précédemment, il apparaît que la différence principale provient du fait qu’un premier composant horloger repose sur la portée 23 d’un deuxième composant horloger, et non plus sur la surface 42 du support 40. Le support 40 maintient toujours au moins un deuxième composant horloger, mais la profondeur de ses trous borgnes 41 est réduite, puisque les surfaces de liaison des deux composants horlogers respectifs sont positionnées de manière espacée au- dessus de la surface supérieure 42 du support 40. Naturellement, en variante, toute autre géométrie du deuxième composant horloger formant une surface de réception d’un premier composant horloger remplissant la fonction de portée pourrait être implémentée. La présence d’une telle portée peut faciliter les opérations d’assemblage, mais n’est pas avantageuse pour la fabrication du composant, car elle implique des opérations d’usinage supplémentaires ainsi qu’un encombrement plus élevé. En remarque complémentaire, le premier composant horloger conserve la même forme que dans les modes de réalisation décrits précédemment. Sa surface de liaison reste la plus simple possible, cylindrique. Par exemple, de préférence, aucun lamage n’est ajouté au niveau de sa surface reposant sur la portée 23.
La figure 9 représente une deuxième variante de réalisation du premier ou du deuxième mode de réalisation, dans laquelle l’assemblage temporaire de la troisième étape du procédé d’assemblage horloger est mis en oeuvre sans support, par exemple directement sur une plaquette 5 de silicium comprenant au moins une ébauche de premier composant horloger 10, non complètement détachée de la plaquette 5. Dans cette deuxième variante de réalisation, le ou les deuxièmes composants horlogers présentent aussi une portée 23 qui vient reposer sur la surface supérieure 6 de la plaquette 5, cette dernière remplissant ainsi aussi une fonction de support dans cette configuration. En remarque, lors de la mise en oeuvre de cette deuxième variante de réalisation, l’ensemble formé dans cette configuration illustrée par la figure 9 et résultant de la troisième étape du procédé est ensuite oxydée dans la quatrième étape du procédé. La plaquette 5 dans son ensemble est ainsi oxydée, ses ébauches de premiers composants horlogers 10 destinées à être détachées étant ainsi oxydées de cette manière avant une étape ultérieure de détachement de chaque premier composant horloger 10, déjà assemblé à son deuxième composant horloger 20 respectif. L’oxydation de la plaquette dans son ensemble n’est pas limitée à ce mode, mais peut être réalisée dans toute configuration, notamment la configuration illustrée aux figures 3 et/ou 4. Comme dans la variante précédente, le premier composant horloger conserve la même forme que dans les modes de réalisation décrits précédemment. Sa surface de liaison reste la plus simple possible, cylindrique. Par exemple, de préférence, aucun lamage n’est ajouté au niveau de sa surface reposant sur la portée 23. En remarque, quand bien même il y a aussi une croissance de silicium oxydé au niveau de la portée 23 formant une surface de contact entre les deux composants horlogers, il n’y a pas de fonction de solidarisation au niveau de cette surface de contact. Ainsi, la surface de solidarisation des deux composants reste la surface cylindrique identique à celle des variantes décrites précédemment.
La figure 10 illustre une troisième variante de réalisation, qui est de même compatible avec le premier et le deuxième mode de réalisation de l’invention et leurs différentes variantes. Cette troisième variante de réalisation diffère de toutes les variantes décrites précédemment en ce qu’elle utilise un troisième composant intermédiaire en silicium, distinct des deux composants horlogers à assembler, dont la fonction est de participer à l’assemblage horloger desdits deux composants horlogers à assembler. Ce troisième composant intermédiaire comprend une troisième zone de liaison, comprenant d’une part une troisième surface de liaison intérieure, destinée à venir en contact avec la deuxième surface de liaison du deuxième composant horloger 20, et d’une part une troisième surface de liaison extérieure, destinée à venir en contact avec la première surface de liaison du premier composant horloger 10. Lors de la quatrième étape d’oxydation du procédé d’assemblage, la troisième zone de liaison du troisième composant intermédiaire va s’oxyder, entraînant la croissance de deux couches de silicium oxydé, respectivement intérieure et extérieure, qui vont venir respectivement en contact avec la première surface de liaison du premier composant horloger et avec la deuxième surface de liaison du deuxième composant horloger, jusqu’à la solidarisation souhaitée des trois composants. Dans cette troisième variante de réalisation, les deux surfaces de liaison 12, 22 de respectivement les deux composants horlogers 10, 20 sont en contact indirect, reliées par une continuité de matière par la zone de liaison du troisième composant intermédiaire, alors qu’elles sont en contact direct dans les modes de réalisation décrits précédemment. Selon l’exemple illustré, le troisième composant intermédiaire 30 se présente sous la forme d’un manchon, disposé autour du deuxième composant horloger au niveau de sa surface de liaison d’une part, et à l’intérieur de l’ouverture de réception (trou de liaison) du premier composant horloger, en vis-à-vis de la première surface de liaison d’autre part. Ce troisième composant intermédiaire est assemblé dans la configuration intermédiaire d’assemblage avec un jeu vis-à-vis de chacun des deux composants horlogers à assembler. Ce jeu présente les mêmes dimensions que le jeu mentionné précédemment entre les deux composants horlogers. Dans cette variante de réalisation, la surface de solidarisation des deux composants horlogers est double, au niveau respectivement des surfaces extérieure et intérieure. Ces deux surfaces de solidarisation sont de forme cylindrique dans ce cas, mais pourraient présenter un contour ouvert, ou prendre des formes par exemple ellipsoïdale, ovoïde, polygonale, etc. et/ou être munies de cannelures. En remarque, quand bien même il y a aussi une croissance de silicium oxydé au niveau de la portée 23 formant une surface de contact entre les deux composants horlogers, il n’y a pas de fonction de solidarisation au niveau de cette surface de contact. Ainsi, les surfaces de solidarisation des deux composants restent bien cylindriques, comme dans les variantes décrites précédemment.
Cette troisième variante de réalisation est par exemple adaptée lorsqu’aucun des deux composants horlogers n’est en silicium. Ils peuvent ainsi par exemple être tous les deux totalement ou majoritairement en céramique. En variante, l’un d’entre eux est majoritairement en céramique, l’autre se trouvant dans un autre matériau. Selon un autre exemple, elle peut être adaptée si les surfaces de liaison respectives des deux composants horlogers à assembler ne présentent pas des dimensions directement compatibles, l’ouverture de réception (le trou de liaison) présentant par exemple un diamètre trop grand relativement au deuxième composant horloger pour atteindre un assemblage direct entre les deux composants horlogers.
Les figures 11 à 14 illustrent respectivement une quatrième et une cinquième variante de réalisation, dans lesquelles le deuxième composant horloger 20 comprend une section transversale ou radiale variable 25, c’est-à-dire une section dont la surface est variable 25, préférablement de manière continue. De plus, elle se trouve aux abords immédiats de la surface de liaison 22, comme cela va être précisé ci-dessous. Les figures 11 à 13 illustrent une quatrième variante de réalisation, qui s’apparente à la première variante de réalisation de la figure 8, dans laquelle la portée 23 est remplacée par une section radiale variable 25, de manière continue entre une frontière au niveau de la deuxième surface de liaison 22 et une section plus importante. Comme représenté par les figures 12 et 13, cette section radiale variable 25 se présente comme une portion de section radiale évolutive, évoluant de manière continue d’une surface de section radiale minimale Se1 , au niveau de la frontière avec la deuxième surface de liaison 22, jusqu’à une surface de section radiale maximale Se2. Dans ce mode de réalisation, le deuxième composant horloger comprend ainsi globalement une première partie cylindrique, de surface de section Se1 , et une deuxième partie cylindrique, de surface de section Se2 plus grande, ces deux parties cylindriques étant liées entre elles par la portion de section radiale variable 25 qui est intercalée. De préférence, cette variation de section susmentionnée est linéaire. En variante, elle pourrait présenter toute autre forme. La deuxième surface de liaison 22 se trouve sur la première partie cylindrique, aux abords immédiats de la section radiale variable 25.
Le premier composant horloger 10 reste inchangé, comprend une ouverture de réception 11 (un trou de liaison). Selon les modes de réalisation, cette ouverture de réception 11 présente une section constante.
La figure 12 illustre particulièrement l’avantage d’une telle construction lors de la mise en oeuvre de la troisième étape du procédé. Lors de l’assemblage temporaire du premier composant horloger 10 avec le deuxième composant horloger 20, l’ouverture de réception 11 (trou de liaison) est glissée à jeu réduit le long du deuxième composant horloger 20, selon un jeu dans les plages de valeurs précisées précédemment en référence à la figure 4b, jusqu’à ce que son extrémité d’entrée vienne en appui contre la portion de section radiale variable 25 du deuxième composant horloger 20, pour atteindre la configuration d’assemblage intermédiaire, non solidarisée, telle que représentée par la figure 12. Le contact ainsi formé entre les deux composants horlogers est donc de type linéique. En remarque, la variation de section de la portion de section radiale variable 25 est telle que la section maximale Se2 est supérieure à la section de l’ouverture de réception 11. Au contraire, la section minimale Se1 est telle que l’ouverture de réception 11 peut coopérer à moindre jeu avec cette section minimale du deuxième composant horloger 20, le jeu étant celui mentionné entre les deux surfaces de liaison 12, 22, comme décrit dans les variantes précédentes.
Dans cette configuration d’assemblage intermédiaire, l’ensemble est avantageusement positionné dans un support 40, comme dans la première variante représentée par la figure 8. Ce support 40 maintient notamment le (ou les) deuxième composant horloger 20 selon une orientation verticale, de sorte à conserver la ligne de contact entre les deux composants horlogers dans un plan sensiblement horizontal, perpendiculaire à l’axe du deuxième composant horloger 20, sous l’effet de la gravité. Selon la quatrième variante de réalisation, le contact linéique entre les deux composants est de forme circulaire, mais pourrait prendre toute sorte de géométries, ou un contour ouvert, et/ou présenter des cannelures, formant un contact linéique discontinu.
La figure 13 représente l’assemblage obtenu après la mise en oeuvre de la quatrième étape, qui implique une solidarisation des deux composants horlogers par un traitement d’oxydation thermique du silicium, tel que décrit précédemment. A l’issue de cette quatrième étape, une couche d’oxyde de silicium 15 d’épaisseur uniforme e0x est formée à la surface du composant en silicium, ici le premier composant horloger 10. Comme expliqué précédemment, la formation de cette couche d’oxyde de silicium s’accompagne d’une augmentation du volume, qui déplace la première surface de liaison 12 du premier composant horloger 10 jusqu’au contact de la deuxième surface de liaison 22 du deuxième composant horloger 20, de sorte à induire la solidarisation des deux composants horlogers. En remarque, l’uniformité de l’épaisseur de la couche d’oxyde de silicium 15 est en outre à l’origine d’un arrondissement des arêtes du premier composant horloger 10 en silicium, schématisé par des arcs de cercle sur la figure 13. Selon cette variante de réalisation, au fur et à mesure que la couche d’oxyde de silicium se développe à la surface du premier composant horloger 10, la section de l’ouverture de réception 11 , (le trou de liaison) diminue, ce qui implique le déplacement du premier composant horloger 10 relativement au deuxième composant horloger 20. En effet, la zone de contact linéique remonte progressivement (sur la figure 12, plus généralement se déplace selon l’axe du deuxième composant horloger), en fonction de la réduction de sa section. La portion de section radiale variable 25 du deuxième composant horloger 20 forme donc une rampe de guidage pour le déplacement relatif du premier composant horloger au cours de la quatrième étape, celle d’oxydation, du procédé. Ce phénomène se poursuit jusqu’à ce que le premier composant horloger 10, plus principalement sa ligne de contact avec le deuxième composant horloger 20, atteigne la frontière entre la portion de section radiale variable 25 et la deuxième surface de liaison 22. A ce niveau, la croissance de la couche d’oxyde de silicium n’entraîne plus le déplacement du premier composant horloger 10 mais finalise la solidarisation de leurs deux surfaces de liaison 12, 22 respectives, selon la configuration finale de la figure 13.
En remarque, le déplacement relatif des deux composants horlogers 10, 20 selon cette quatrième variante de réalisation favorise un déplacement selon deux directions, une direction axiale, comme décrit ci-dessus, mais aussi une direction radiale, qui permet le recentrage relatif des deux composants horlogers 10, 20 s’il y a eu un décalage éventuel dans la configuration intermédiaire.
Finalement, cette conformation du deuxième composant horloger 20 permet avantageusement d’une part de former un moyen de pré-positionnement du premier composant horloger 10 et d’autre part d’éviter une variation brusque de section du deuxième composant horloger 10, néfaste en termes de résistance mécanique, notamment si le matériau utilisé est peu résistant aux chocs et/ou si les sections impliquées sont faibles. Il apparaît de plus que cette réalisation est très favorable à l’obtention d’une couche d’oxyde de silicium 15 uniforme, ainsi qu’à un positionnement relatif précis des deux composants horlogers après traitement thermique. Ces avantages susmentionnés sont particulièrement constatés relativement à une configuration qui utilise une portée du deuxième composant horloger, par exemple selon les figures 8 et 9, et encore plus avec une configuration combinant une telle portée avec un lamage qui serait agencé au niveau de l’ouverture de réception 1 1 du premier composant horloger 10. Cette variante de réalisation optimise ainsi le renforcement de la robustesse du procédé de frettage par oxydation. Un avantage de cette variante de réalisation impliquant un contact linéique avant traitement thermique provient notamment du fait de l’uniformité de la couche d’oxyde de silicium obtenue, comme mentionné ci- dessus, ce qui peut s’expliquer par le fait qu’à l’exception de la ligne de contact, l’intégralité des surfaces du composant horloger en silicium reste exposée de la même manière à l’atmosphère oxydante régnant durant le traitement thermique.
Selon un mode de réalisation, la portion de section radiale variable 25 du deuxième composant horloger 20 peut être réalisée par une opération de tournage, notamment si ce deuxième composant horloger est en tout ou partie en céramique, comme mentionné précédemment. De plus, cette section radiale variable 25 peut présenter une variation linéaire, auquel cas elle présente une forme tronconique. Selon un mode de réalisation, elle peut présenter un angle d’ouverture « a » de la portion tronconique, qui représente un compromis entre une petite valeur, qui favorise la résistance mécanique du composant horloger par l’absence de variation brusque de sa section radiale, et donc l’absence d’une concentration de contraintes dans cette zone, et une plus forte valeur, qui favorise le positionnement relatif des deux composants horlogers, en raison d’une sensibilité moindre aux tolérances de fabrication, puisque des écarts dimensionnels de l’ouverture de réception 11 du premier composant horloger 10 ou de la portion de section radiale variable 25 du deuxième composant horloger 20 sont compensés par de faibles déplacements axiaux. Avantageusement, l’angle « a » peut être compris entre 10 et 80 degrés, voire entre 30 et 60 degrés. Le choix d’un angle « a » égal ou proche de 45 degrés représente par exemple un bon compromis. La figure 14 représente une cinquième variante de réalisation, qui s’apparente à la deuxième variante de la figure 9, dans laquelle la portée a été remplacée par une portion de section radiale variable 25, similaire à celle de la quatrième variante décrite ci-dessus. Le fonctionnement obtenu lors de l’étape d’oxydation est similaire à celui décrit pour la variante précédente, et les avantages obtenus sont de même très similaires.
L’invention ne se limite pas aux modes de réalisation décrits. Par exemple, certaines variantes de réalisation décrites précédemment pourraient être combinées entre elles pour former d’autres variantes de réalisation.
L’invention porte aussi sur un assemblage horloger en tant que tel résultant du procédé d’assemblage horloger décrit précédemment. Cet assemblage horloger comprend donc un premier composant horloger assemblé à un deuxième composant horloger distinct, le premier composant horloger comprenant au moins une partie fonctionnelle et une ouverture de réception (trou de liaison) distincte de ladite partie fonctionnelle, la paroi délimitant ladite ouverture de réception formant une première surface de liaison, le deuxième composant horloger comprenant une deuxième surface de liaison et étant assemblé de manière solidaire au premier composant horloger par le contact direct ou indirect des première et deuxième surfaces de liaison respectives desdits premier et deuxième composants horlogers.
Nous appellerons contact indirect entre lesdites deux surfaces de liaison une configuration dans laquelle une ou plusieurs autres couches de matériaux, distinctes desdits deux composants horlogers, sont intercalées entre lesdites deux surfaces de liaison, formant une continuité de matière entre lesdites deux surfaces de liaison, qui permet la solidarisation des deux composants horlogers.
Dans tous les cas, au moins une des première et deuxième surfaces de liaison ou d’une troisième surface de liaison intérieure et/ou extérieure d’un troisième composant intermédiaire optionnel est en silicium oxydé par traitement thermique de sorte que les premier et deuxième composants horlogers sont solidarisés entre eux par croissance d’une couche de silicium oxydé.
Il apparaît donc que la surface de silicium oxydé suffit par sa croissance à venir en prise sur une surface de liaison correspondante, pour former un serrage suffisant au niveau des surfaces de liaison pour solidariser les deux composants horlogers. Comme exposé précédemment, les deux composants horlogers sont d’abord positionnés dans une configuration intermédiaire d’assemblage, avant la croissance d’une couche de silicium oxydé par traitement thermique qui solidarise les deux composants horlogers dans leur position finale correspondant à leur configuration intermédiaire d’assemblage. Un tel assemblage horloger est donc différent d’un assemblage horloger qui pourrait comprendre un composant en silicium oxydé, mais lié à un autre composant par un moyen traditionnel comme le collage ou le chassage et non pas par l’intermédiaire du silicium oxydé. Dans ce dernier cas, le silicium oxydé serait nécessairement détérioré de manière détectable, par la présence de défauts, par une liaison mécanique réalisée ultérieurement à l’oxydation, au niveau de la liaison entre les deux composants, ce qui entraînerait le risque d’ébréchures ou de fissurations dans la couche de silicium oxydé, outre sa déformation. Au contraire, avec la mise en oeuvre de l’invention, la couche de silicium oxydé reste exempte de défauts au niveau de la surface de liaison des composants horlogers, plus précisément au niveau de leur surface de solidarisation. D’autre part, avec la mise en oeuvre de l’invention, l’ajout de tout autre moyen de fixation des deux composants horlogers n’est pas nécessaire, au contraire d’une solution traditionnelle, même si l’invention n’est pas incompatible avec l’utilisation optionnelle d’un deuxième moyen de fixation complémentaire distinct.
Les composants horlogers décrits précédemment sont de type roue, comme une roue d’échappement, ou de type pignon, comme un pignon d’échappement, ou peuvent être un ressort spiral de balancier, d’une part, et un axe horloger d’autre part. Naturellement, l’invention s’applique plus généralement à tout premier composant horloger de type « femelle » assemblé à tout deuxième composant horloger de type « mâle ».
D’autre part, comme décrit précédemment, l’invention est particulièrement adaptée à au moins un des composants horlogers en céramique, ou majoritairement en céramique. Ce composant horloger peut être le premier et/ou le deuxième composant horloger. Ce composant horloger peut être le composant horloger de type « femelle » et/ou le deuxième composant horloger de type « mâle ».
En remarque, ladite au moins une surface de liaison en silicium oxydé par traitement thermique ou plus généralement la surface de liaison du composant horloger de type femelle peut entourer complètement le deuxième composant horloger de type mâle, ou sur au moins 70% de sa périphérie, ou sur au moins 40% de sa périphérie, en considérant au moins une de ses sections dans un plan transversal, c’est-à-dire sensiblement perpendiculaire à son axe ou à sa direction d’extension longitudinale.
D’autre part, la liaison mécanique entre les deux composants est réalisée sur toute la hauteur de la surface de liaison délimitant l’ouverture de réception du premier composant horloger. La croissance de silicium oxydé est donc réalisée entre les deux surfaces de liaison, c’est-à-dire dans la direction transversale, telle que défini ci-dessus, qui est aussi une direction radiale dans le cas où le deuxième composant se présente sous la forme d’un axe. La surface de solidarisation résultante entre les deux composants horlogers s’étend de manière perpendiculaire à cette croissance transversale ou radiale de silicium oxydé, au niveau de la surface de l’ouverture de réception du composant de type femelle.
En considérant toujours une section transversale (radiale) au niveau de la liaison entre les deux composants horlogers, l’ouverture de réception (trou de liaison) du premier composant horloger peut présenter une première section circulaire et la surface de liaison du deuxième composant horloger peut présenter une deuxième section circulaire, le diamètre de la première section circulaire étant strictement supérieur ou égal au diamètre de la deuxième section circulaire avant ladite oxydation par traitement thermique. En variante, l’une des première ou deuxième surface de liaison peut présenter une première section circulaire, l’autre présentant une section non circulaire, notamment ovoïde ou elliptique ou polygonale, pour permettre un autocentrage de l’assemblage desdits deux composants horlogers lors de leur positionnement en configuration intermédiaire d’assemblage. En variante encore, lesdites deux première et deuxième sections de respectivement les première et deuxième surfaces de liaison peuvent présenter une section de même forme non circulaire, notamment ovoïde ou elliptique ou polygonale. En variante encore, les première et/ou deuxième surfaces de liaison peuvent présenter une section de forme non continue, et/ou constante ou non sur la hauteur de l’ouverture de réception. Il en ressort que la ou les surfaces de solidarisation des deux composants horlogers sont de préférence de forme cylindrique, voire ovoïde ou elliptique ou polygonale, ou inscrite dans une forme cylindrique lorsqu’une surface de solidarisation n’est pas continue, voire ovoïde ou elliptique ou polygonale.
L’ouverture de réception 11 (trou de liaison) du premier composant horloger 10 peut être une ouverture traversante ou une ouverture borgne.
La surface de liaison 12 du premier composant horloger 10, complémentaire à la surface de liaison 22 du deuxième composant horloger 20, peut avantageusement être fractionnée par l’insertion de cannelures 110 prévues notamment pour faciliter l’accès de l’oxygène à la surface de liaison 12 lors du traitement thermique d’oxydation.
En variante, l’aménagement de l’alternance de portions de guidage et de cannelures peut se faire à la surface de liaison 22 du deuxième composant horloger 20, comme illustré par la figure 26. La surface de liaison d’un composant horloger parmi le premier composant horloger et le deuxième composant horloger qui n’est pas en silicium oxydé, mais par exemple en céramique, peut comprendre une structuration pour la rendre plus rugueuse, ou peut comprendre un moletage ou des cannelures ou un clavetage et/ou un plat.
La surface de liaison d’un composant horloger majoritairement en céramique peut être traitée de manière à être rendue compatible chimiquement avec l’oxyde de silicium.
Le deuxième composant horloger peut comprendre une portée de soutien.
En variante, le deuxième composant peut présenter une portion de section variable, notamment qui augmente continûment à partir d’une frontière avec sa deuxième surface de liaison, cette portion de section qui augmente continûment étant ainsi positionnée à l’extérieur de l’ouverture de réception du premier composant horloger, à proximité immédiate avec une extrémité de ladite ouverture de réception. Cette portion de section variable a été décrite plus en détail dans les variantes de réalisation en référence avec les figures 11 à 14.
Ladite surface de liaison en silicium oxydé peut comprendre une épaisseur moyenne supérieure ou égale à 1 miti, voire supérieure ou égale à 1.5 pm. Elle peut comprend une épaisseur moyenne inférieure ou égale à 4 pm. L’invention porte aussi sur un mouvement horloger qui comprend un ou plusieurs assemblages horlogers tels que décrits précédemment.
L’invention porte aussi sur une pièce d’horlogerie, qui comprend au moins un assemblage horloger tel que décrits précédemment ou un tel mouvement horloger.

Claims

REVENDICATIONS
Assemblage horloger comprenant un premier composant horloger (10) assemblé à un deuxième composant horloger (20) distinct, le premier composant horloger (10) comprenant une ouverture de réception (11 ) ou trou de liaison, la paroi délimitant ladite ouverture de réception (11 ) ou ledit trou de liaison formant une première surface de liaison (12), le deuxième composant horloger (20) comprenant une deuxième surface de liaison (22) et étant assemblé de manière solidaire au premier composant horloger par le contact direct ou indirect des première et deuxième surfaces de liaison (12, 22) respectives desdits premier et deuxième composants horlogers (10, 20) au niveau d’une surface de solidarisation, caractérisé en ce qu’au moins une des première et deuxième surfaces de liaison (12, 22), ou une troisième surface de liaison d’un troisième composant intermédiaire (30) optionnel, est en silicium oxydé par traitement thermique de sorte que les premier et deuxième composants horlogers sont solidarisés entre eux par croissance d’une couche de silicium oxydé.
Assemblage horloger selon la revendication précédente, caractérisé en ce que l’ouverture de réception (11 ) du premier composant horloger (10) présente une section constante sur la totalité de sa première surface de liaison (12).
Assemblage horloger selon l’une des revendications précédentes, caractérisé en ce que le deuxième composant horloger présente une portion de section radiale variable (25) qui augmente continûment à partir d’une frontière avec sa deuxième surface de liaison (22), cette portion de section radiale variable (25) étant ainsi positionnée à l’extérieur de l’ouverture de réception (11 ), à proximité immédiate avec une extrémité de ladite ouverture de réception (11 ).
4. Assemblage horloger selon l’une des revendications précédentes, caractérisé en ce que qu’au moins un desdits premier et deuxième composants horlogers (10, 20) est majoritairement en céramique. 5. Assemblage horloger selon l’une des revendications précédentes, caractérisé en ce que la ou les surfaces de solidarisation desdits premier et deuxième composants horlogers (10, 20) est ou sont de forme cylindrique, voire ovoïde ou elliptique ou polygonale, ou inscrite(s) dans une forme cylindrique, voire ovoïde ou elliptique ou polygonale.
6. Assemblage horloger selon l’une des revendications précédentes, caractérisé en ce qu’au moins un desdits premier et deuxième composants horlogers (10, 20) est majoritairement en silicium et en ce que la première surface de liaison (12) du premier composant horloger (10) et la deuxième surface de liaison (22) du deuxième composant horloger (20) sont en contact direct, la surface de liaison dudit composant majoritairement en silicium étant en silicium oxydé par traitement thermique.
7. Assemblage horloger selon l’une des revendications 1 ou 2, caractérisé en ce qu’il comprend un troisième composant intermédiaire (30) majoritairement en silicium, de type manchon, comprenant une zone de liaison formant une troisième surface de liaison extérieure et une troisième surface de liaison intérieure en silicium oxydé par traitement thermique, la troisième surface de liaison intérieure étant en contact direct avec la deuxième surface de liaison (22) du deuxième composant horloger (20) et la troisième surface de liaison extérieure étant en contact direct avec la première surface de liaison (12) du premier composant horloger (10).
8. Assemblage horloger selon l’une des revendications précédentes, caractérisé en ce que le premier composant horloger (10) comprend au moins une partie fonctionnelle, distincte de l’ouverture de réception (11), et en ce que la paroi délimitant l’ouverture de réception (11) du premier composant horloger (10) est reliée à ladite partie fonctionnelle dudit premier composant horloger (10) par une liaison rigide de sorte à rester sensiblement immobile relativement à cette partie fonctionnelle, ou en ce que la paroi délimitant l’ouverture de réception du premier composant horloger est reliée à la partie fonctionnelle par une liaison flexible, notamment mobile élastiquement.
9. Assemblage horloger selon l’une des revendications précédentes, caractérisé en ce que la surface de solidarisation desdits premier et deuxième composants horlogers (10, 20) entoure complètement, ou sur au moins 70% de sa périphérie, ou sur au moins 40% de sa périphérie, le deuxième composant horloger (20).
10. Assemblage horloger selon l’une des revendications précédentes, caractérisé en ce que lesdits premier et deuxième composant horlogers (10, 20) présentent des géométries telles que leur assemblage se fait à moindre jeu avant l’oxydation d’au moins une des surfaces de liaison en silicium par traitement thermique.
11. Assemblage horloger selon la revendication précédente, caractérisé en ce que ladite ouverture de réception (11) du premier composant horloger (10) présente une première section circulaire, en ce que ladite surface de liaison (22) du deuxième composant horloger (20) présente une deuxième section circulaire, le diamètre de la première section circulaire étant strictement supérieur au diamètre de la deuxième section circulaire avant ladite oxydation par traitement thermique, ou en ce que l’une des première ou deuxième surface de liaison présente une section circulaire, l’autre présentant une section non circulaire, notamment ovoïde ou elliptique ou polygonale, pour permettre un autocentrage de l’assemblage desdits deux composants, ou en ce que lesdites deux première et deuxième sections de respectivement les première et deuxième surfaces de liaison (12, 22) présentent une section de même forme non circulaire, notamment ovoïde ou elliptique ou polygonale.
12. Assemblage horloger selon l’une des revendications précédentes, caractérisé en ce que l’ouverture de réception (11) du premier composant horloger (10) est traversante ou un borgne.
13. Assemblage horloger selon l’une des revendications précédentes, caractérisé en ce qu’il comprend au moins une surface de liaison (12, 22) d’un composant horloger parmi le premier composant horloger (10) et le deuxième composant horloger (20) qui comprend une structuration pour la rendre plus rugueuse, ou comprend un moletage ou des cannelures ou un clavetage et/ou un plat, et/ou en ce que le deuxième composant horloger (20) comprend une portée (23) de soutien.
14. Assemblage horloger selon l’une des revendications précédentes, caractérisé en ce que ladite surface de liaison en silicium oxydé comprend une couche d’oxyde d’épaisseur moyenne supérieure ou égale à 1 miti, voire supérieure ou égale à 1.5 pm et/ou inférieure ou égale à 4 pm.
15. Assemblage horloger selon l’une des revendications précédentes, caractérisé en ce que le deuxième composant horloger (20) est un axe, qui permet le montage en rotation de l’assemblage horloger au sein d’un mouvement horloger.
16. Assemblage horloger selon l’une des revendications précédentes, caractérisé en ce que le premier composant horloger (10) est une roue, comme une roue d’échappement, ou un pignon, comme un pignon d’échappement, ou un ressort spiral de balancier.
17. Mouvement horloger, caractérisé en ce qu’il comprend au moins un assemblage horloger selon l’une des revendications précédentes.
18. Pièce d’horlogerie, caractérisée en ce qu’elle comprend au moins un assemblage horloger selon l’une des revendications 1 à 16 ou un mouvement horloger selon la revendication précédente.
19. Procédé de fabrication d’un assemblage horloger comprenant un premier composant horloger (10) et un deuxième composant horloger (20) distinct, caractérisé en ce qu’il comprend les étapes suivantes : o Assembler dans une configuration intermédiaire à moindre jeu lesdits deux composants horlogers (10, 20), de sorte que le deuxième composant horloger (20) soit positionné dans une ouverture de réception (11 ) ou trou de liaison du premier composant horloger (10), une première surface de liaison (12) du premier composant horloger (10) étant positionnée en vis-à-vis d’une deuxième surface de liaison (22) du deuxième composant horloger (20), optionnellement par l’intermédiaire d’une troisième surface de liaison intérieure et extérieure d’un troisième composant intermédiaire (30) de type manchon, au moins une des première et deuxième surfaces de liaison (12, 22) ou une troisième surface de liaison intérieure et extérieure optionnelle étant en silicium ; o Procéder à un traitement thermique de l’assemblage horloger dans sa configuration intermédiaire, de sorte à obtenir la croissance d’une couche de silicium oxydé de la au moins une surface de liaison en silicium, jusqu’à obtenir une solidarisation prédéfinie des deux composants horlogers (10, 20).
20. Procédé de fabrication d’un assemblage horloger selon la revendication précédente, caractérisé en ce que la configuration intermédiaire est telle qu’un jeu radial entre lesdits deux composants horlogers (10, 20) est inférieur ou égal à 2 miti, voire inférieur ou égal à 1.5 miti, et/ou en ce que : le deuxième composant horloger (20) est inséré et maintenu dans l’ouverture (41) d’un support (40) résistant à la température du traitement thermique de manière à le maintenir ; ou • plusieurs deuxièmes composants horlogers (20) sont assemblés à plusieurs ébauches de premiers composants horlogers (10) respectifs liés entre eux de manière temporaire sur une plaquette (5) ayant servi à leur fabrication.
21. Procédé de fabrication d’un assemblage horloger selon la revendication 19 ou 20, caractérisé en ce que dans la configuration intermédiaire, une extrémité de l’ouverture de réception (11) du premier composant horloger (10) est en appui linéique, continu ou discontinu, sur une portion de section radiale variable du deuxième composant horloger (10).
22. Procédé de fabrication d’un assemblage horloger selon l’une des revendications 19 à 21 , caractérisé en ce que le traitement thermique est réalisé à une température comprise entre 800 et 1200°C.
PCT/EP2022/065840 2021-06-11 2022-06-10 Procédé de fabrication d'un assemblage horloger et assemblage horloger WO2022258810A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22734544.4A EP4352573A1 (fr) 2021-06-11 2022-06-10 Procédé de fabrication d'un assemblage horloger et assemblage horloger
CN202280040774.XA CN117441137A (zh) 2021-06-11 2022-06-10 制造钟表组件的方法和钟表组件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP21178990.4 2021-06-11
EP21178990 2021-06-11
CH00159/22A CH718733A2 (fr) 2021-06-11 2022-02-18 Assemblage horloger, mouvement horloger et pièce d'horlogerie comprenant au moins un tel assemblage horloger, ainsi que procédé de fabrication d'un tel assemblage horloger.
CHCH000159/2022 2022-02-18

Publications (1)

Publication Number Publication Date
WO2022258810A1 true WO2022258810A1 (fr) 2022-12-15

Family

ID=82270769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/065840 WO2022258810A1 (fr) 2021-06-11 2022-06-10 Procédé de fabrication d'un assemblage horloger et assemblage horloger

Country Status (2)

Country Link
EP (1) EP4352573A1 (fr)
WO (1) WO2022258810A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952976A1 (fr) * 2014-06-03 2015-12-09 The Swatch Group Research and Development Ltd. Pièce d'habillage d'une pièce d'horlogerie en matériaux soudés
EP3462249A1 (fr) * 2017-09-14 2019-04-03 Seiko Epson Corporation Composant de pièce d'horlogerie, mouvement d'horlogerie et pièce d'horlogerie
CH716692A2 (fr) * 2019-10-14 2021-04-15 Patek Philippe Sa Geneve Procédé de fabrication d'un composant en silicium, typiquement horloger.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952976A1 (fr) * 2014-06-03 2015-12-09 The Swatch Group Research and Development Ltd. Pièce d'habillage d'une pièce d'horlogerie en matériaux soudés
EP3462249A1 (fr) * 2017-09-14 2019-04-03 Seiko Epson Corporation Composant de pièce d'horlogerie, mouvement d'horlogerie et pièce d'horlogerie
CH716692A2 (fr) * 2019-10-14 2021-04-15 Patek Philippe Sa Geneve Procédé de fabrication d'un composant en silicium, typiquement horloger.

Also Published As

Publication number Publication date
EP4352573A1 (fr) 2024-04-17

Similar Documents

Publication Publication Date Title
EP1991916B1 (fr) Piece de micro-mecanique avec ouverture de forme pour assemblage sur un axe
EP2196868B1 (fr) Spiral à élévation de courbe en matériau à base de silicium
EP2142965B1 (fr) Dispositif de pivotement d'un arbre dans une piece d'horlogerie
EP2326995B1 (fr) Système d'engrenage pour une pièce d'horlogerie
EP2469354B1 (fr) Assemblage d'une pièce ne comportant pas de domaine plastique
EP2437125B1 (fr) Pièce d'horlogerie
EP2442189A1 (fr) Assemblage d'une pièce ne comportant pas de domaine plastique
EP2104006A1 (fr) Double spiral monobloc et son procédé de fabrication
WO2012084383A2 (fr) Assemblage d'une pièce ne comportant pas de domaine plastique
EP2230570A2 (fr) Composant d'une pièce d'horlogerie allégé et renforcé
EP2930572A2 (fr) Assortiment horloger utilisant un alliage metallique amorphe
EP2796940A2 (fr) Composant horloger destiné à recevoir un organe par chassage
WO2013011032A1 (fr) Ensemble fonctionnel de micromecanique
EP2107433B1 (fr) Procédé d'assemblage d'une pièce sur un axe
EP3252542A1 (fr) Pièce de fixation d'un ressort-spiral horloger
EP4352573A1 (fr) Procédé de fabrication d'un assemblage horloger et assemblage horloger
CH718733A2 (fr) Assemblage horloger, mouvement horloger et pièce d'horlogerie comprenant au moins un tel assemblage horloger, ainsi que procédé de fabrication d'un tel assemblage horloger.
EP3853672B1 (fr) Organe de maintien élastique pour la fixation d'un composant d'horlogerie sur un élément de support
CH716692B1 (fr) Procédé de fabrication d'un composant, typiquement horloger, en silicium.
CH704283B1 (fr) Assemblage d'une pièce ne comportant pas de domaine plastique.
EP3391154B1 (fr) Système oscillant pour montre
EP3252541A1 (fr) Pièce de fixation d'un ressort-spiral horloger
EP2581794A1 (fr) Ensemble fonctionnel de micromécanique
WO2024074517A1 (fr) Axe horloger
CH700585B1 (fr) Mouvement d'horlogerie à échappement à ancre.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22734544

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280040774.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2023575706

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022734544

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022734544

Country of ref document: EP

Effective date: 20240111