WO2022258623A1 - Batteriemodul, verfahren zur herstellung eines solchen und kraftfahrzeug - Google Patents

Batteriemodul, verfahren zur herstellung eines solchen und kraftfahrzeug Download PDF

Info

Publication number
WO2022258623A1
WO2022258623A1 PCT/EP2022/065409 EP2022065409W WO2022258623A1 WO 2022258623 A1 WO2022258623 A1 WO 2022258623A1 EP 2022065409 W EP2022065409 W EP 2022065409W WO 2022258623 A1 WO2022258623 A1 WO 2022258623A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery
electrical contact
contact element
voltage tap
Prior art date
Application number
PCT/EP2022/065409
Other languages
English (en)
French (fr)
Inventor
Alexander Goerzen
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP22733345.7A priority Critical patent/EP4352817A1/de
Priority to CN202280041568.0A priority patent/CN117461196A/zh
Publication of WO2022258623A1 publication Critical patent/WO2022258623A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention is based on a battery module according to the species of the independent claim.
  • the present invention also relates to a method for producing such a vehicle and to a vehicle.
  • battery modules can consist of a plurality of individual battery cells which can be electrically conductively connected to one another in series and/or in parallel, so that the individual battery cells are connected together to form the battery module. Furthermore, such battery modules are interconnected to form batteries or entire battery systems.
  • the battery cells are designed as lithium-ion battery cells. Comparably high energy densities can be achieved with such lithium-ion battery cells, which allow a more compact design of the battery.
  • An electrical interconnection of the plurality of battery cells is predominantly formed by so-called cell connectors.
  • Cell connectors are used to connect smaller battery cells (e.g. 18650 cells) to larger battery modules, thus scaling both energy and power.
  • the cell connectors are permanently connected to the battery cells, e.g. using technology such as resistance welding or bonding.
  • a battery module with the features of the independent claim offers the advantage that a plurality of battery cells can be electrically connected in series and/or in parallel in a comparatively quick and easy manner.
  • a battery module with a plurality of battery cells which are designed in particular as lithium-ion battery cells, is made available.
  • These battery cells each include a housing in which electrochemical components of the battery cell are accommodated, and which also forms a first voltage tap of the battery cell, such as a negative voltage tap of the battery cell.
  • the battery module includes a cell holder with a plurality of cell receptacles. A battery cell is accommodated in each of these cell receptacles.
  • an electrical contact element is also accommodated in each of the cell receptacles, which is arranged between the cell holder and the battery cell. At this point it should be noted that the electrical contact element can also be integrated into the cell receptacle.
  • the electrical contact element makes mechanical and electrical contact with the first voltage tap of the respective battery cell.
  • the electrical contact element also comprises a plurality of spring elements which are connected to one another and are designed to be elastic.
  • the invention offers the particular advantage that the battery cells can be electrically conductively contacted at their first voltage tap, for example simply by being accommodated in a cell receptacle in which an electrical contact element is already accommodated. This enables a comparably high level of flexibility during assembly and, at the same time, simple disassembly of the battery cells that are to be removed from the cell receptacle or cell holder. In particular, on more expensive and complex Process techniques for a material connection, such as bonding or welding, are dispensed with.
  • the electrical contact element can be designed in a simple manner as a stamped and bent part.
  • the battery cells also each have a second voltage tap which is electrically insulated from the housing, such as a positive voltage tap, for example.
  • a first cell connector can electrically conductively connect the electrical contact elements of at least two battery cells to one another and a second cell connector can electrically conductively connect the second voltage taps of the at least two battery cells.
  • an electrically parallel interconnection of the at least two battery cells is formed.
  • the first cell connector is integrated into the cell holder and/or is mechanically connected to the respective electrical contact element.
  • this mechanical connection can be formed in a material-to-material and/or form-fitting manner.
  • simple assembly is possible, for example, in that an electrically conductive connection can be formed between the first cell connector and the electrical contact element, in particular simply by receiving the electrical contact element in the respective cell receptacle.
  • an integration also includes mechanically reversible and thus detachable connections between the first cell connector and the cell holder.
  • this connection can be made before the electrical contact element is received in the cell receptacle be formed.
  • these two embodiments can also be combined in such a way that a first cell connector integrated into the cell holder is mechanically connected to this electrical contact element after the electrical contact element has been received.
  • a third cell connector can electrically conductively connect the electrical contact element of a battery cell to the second voltage tap of another battery cell.
  • one battery cell is electrically connected in series below the other battery cell.
  • both the one battery cell and/or the other battery cell can be electrically conductively connected in parallel to a further battery cell in each case by means of a first cell connector or a second cell connector.
  • the second cell connector is electrically conductively connected to the second voltage tap of the respective at least one battery cell.
  • the third cell connector is electrically conductively connected to the electrical contact element of one battery cell and/or the second voltage tap of the other battery cell.
  • Such an integral connection can be formed, for example, by means of techniques known from the prior art, such as bonding, ultrasonic welding, laser beam welding, or spot welding.
  • the battery cells are each designed as cylindrical battery cells.
  • Cylindrical battery cells usually include a lateral surface and two opposing base surfaces arranged parallel to one another. Furthermore, these two base areas each have a circular shape and close off the outer surface.
  • the lateral surface is designed as the first voltage tap of the respective cylindrical battery cell and the second voltage tap is designed on a base area of the respective cylindrical battery cell.
  • the cylindrical battery cells can be designed as so-called 18650 cells or 20700 cells.
  • the cell receptacles are each designed as an opening in the cell holder and, in particular, have a round cross-sectional area.
  • the electrical contact elements and the plurality of battery cells can be accommodated in a simple manner.
  • cylindrical battery cells can be accommodated in a simple manner.
  • the spring elements of the electrical contact element are expediently designed as lamellae.
  • the electrical contact element can, for example, comprise at least two ring-shaped base bodies, which are arranged opposite one another and between which the spring elements designed as lamellae extend in such a way that one end of the respective lamella is connected to one of the two base bodies and the other end of the respective slat is connected to the other of the two base bodies.
  • the slats can be arranged in any design.
  • the lamellae are arranged at regular intervals from one another and/or are arranged, for example, running essentially parallel to one another. Furthermore, it is also preferred if the lamellae have a curvature or development, which are directed in the direction of an interior of the respective electrical contact element, so that a spring force can be exerted on the respective battery cell, which in the respective electrical contact element or the respective electrical contact element associated cell recordings are included.
  • the spring elements can be designed in a wide variety of ways, as long as electrical and mechanical contacting of a battery cell can be formed.
  • such spring elements offer the advantage that a comparable number of contact points are formed, thereby ensuring electrical contacting of the battery cell over the service life.
  • this offers the particular advantage that the shape of the electrical contact element or the properties of the individual spring elements can influence the force exerted on the battery cell by the electrical contact element, whereby comparably firm or loose connections can be formed according to the respective requirements.
  • the subject matter of the present invention is also a method for producing a battery module according to the invention just described, having a plurality of battery cells, in particular lithium-ion battery cells.
  • the battery cells each include a housing in which electrochemical components of the battery cell are accommodated and which forms a first voltage tap of the battery cell.
  • An electrical contact element and a battery cell are accommodated in the cell receptacles of a cell holder, so that the electrical contact element is arranged between the cell holder and the battery cell and mechanically and electrically contacts a first voltage tap of the respective battery cell.
  • the electrical contact element comprises a plurality of spring elements which are connected to one another and are designed to be elastic.
  • Figure 1 in a perspective view an embodiment of a
  • FIG. 2 shows a plan view of an embodiment of a cell holder of a battery module according to the invention, in which electrical contact elements are accommodated,
  • FIG. 3 shows a detailed view of an embodiment of a cell holder of a battery module according to the invention, in which electrical contact elements are accommodated and
  • FIG. 1 shows a perspective view of an embodiment of a cell holder 2 of a battery module 1 according to the invention, in which electrical contact elements 4 and a battery cell 5 are accommodated.
  • FIG. 2 shows a plan view and FIG. 3 a detailed view of the embodiment of a cell holder 2 of a battery module 1 according to the invention as shown in FIG. 1, in which electrical contact elements 4 are accommodated.
  • Figures 1 to 3 each show a cell holder 2 of a battery module 1.
  • the cell holder 2 comprises a plurality of cell receptacles 3.
  • FIG. 1 shows a battery cell 5 being accommodated in a cell receptacle 3 .
  • the cell receptacles 3 are in particular each formed as an opening 30 in the cell holder 2 and in particular have a round cross-sectional area 35 .
  • the battery cell 5 is designed in particular as a lithium-ion battery cell 50 and also includes, for example, a housing 51 in which electrochemical components of the battery cell 5 that cannot be seen in the figures are accommodated.
  • the housing 51 of the battery cell 5 forms a first voltage tap 61 of the battery cell 5 .
  • the battery cells 5 also each have a second voltage tap 62 that is electrically insulated from the housing 51.
  • the battery cells 5 are designed as cylindrical battery cells 10 .
  • a lateral surface 11 of the housing 51 forms the first voltage tap 61 and a base surface 12 of the housing 51 forms the second voltage tap 62 .
  • the electrical contact element 4 is arranged between the cell holder 2 and the battery cell 5 . Furthermore, the electrical contact element 4 contacts the first voltage tap 61 of the respective battery cell 5 mechanically and electrically.
  • the electrical contact element 4 comprises a plurality of spring elements 7 which are connected to one another and are designed to be elastic.
  • the spring elements 7 of the electrical contact element 4 are designed in particular as lamellae 70 .
  • First cell connectors 81 can connect the electrical contact elements 4 of at least two battery cells 5 to one another in an electrically conductive manner.
  • Second cell connectors 82 which cannot be seen in the figures, can connect the second voltage taps 62 of the at least two battery cells 5 to one another in an electrically conductive manner. As a result, the at least two battery cells 5 are electrically connected in parallel.
  • the first cell connectors 81 are integrated into the cell holder 2 and are also mechanically connected to the respective electrical contact element 4 . This connection is preferably formed as a material bond.
  • a third cell connector 83 to electrically conductively connect the electrical contact element 4 of a battery cell 5 to a second voltage tap 62 of another battery cell 5 . As a result, an electrically parallel connection of one battery cell 5 to the other battery cell 5 is formed.
  • the second cell connector 82 can be electrically conductively connected to the second voltage tap 62 of the respective at least one battery cell 5 and/or the third cell connector 83 to the electrical contact element 4 of one battery cell 5 and/or the second voltage tap 62 of the other battery cell 5.
  • FIG. 2 shows different embodiments of electrical contact elements 4, each of which includes a plurality of spring elements 7.
  • the electrical contact element 4 can, for example, comprise at least two ring-shaped base bodies 75 which are arranged opposite one another and between which the spring elements 7 embodied as lamellae 70 extend in such a way that one end of the respective lamella 70 is connected to one of the two base bodies 75 and another end of the respective lamella 7 is connected to the other of the two base bodies 75 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Die Erfindung betrifft ein Batteriemodul mit einer Mehrzahl an Batteriezellen (5), insbesondere Lithium-Ionen-Batteriezellen (50), die jeweils ein Gehäuse (51) umfassen, in welchem elektrochemische Komponenten der Batteriezelle (5) aufgenommen sind, und das einen ersten Spannungsabgriff (61) der Batteriezelle (5) ausbildet, wobei das Batteriemodul (1) zudem einen Zellhalter (2) mit einer Mehrzahl an Zellaufnahmen (3) umfasst, in welchen jeweils eine Batteriezelle (5) aufgenommen ist, wobei in den Zellaufnahmen (3) jeweils ein elektrisches Kontaktelement (4) aufgenommen ist, welches zwischen dem Zellhalter (2) und der Batteriezelle (5) angeordnet ist und einen ersten Spannungsabgriff (61) der jeweiligen Batteriezelle (5) mechanisch und elektrisch kontaktiert, wobei das elektrische Kontaktelement (4) eine Mehrzahl an miteinander verbundenen und elastisch ausgebildeten Federelementen (7) umfasst.

Description

Beschreibung
Titel
Batteriemodul, Verfahren zur Herstellung eines solchen und Kraftfahrzeug
Stand der Technik
Die Erfindung geht aus von einem Batteriemodul nach Gattung des unabhängigen Anspruchs. Gegenstand der vorliegenden Erfindung sind auch ein Verfahren zu einer Herstellung eines solchen und ein Fahrzeug.
Aus dem Stand der Technik ist es bekannt, dass Batteriemodule aus einer Mehrzahl an einzelnen Batteriezellen bestehen können, welche seriell und/oder parallel elektrisch leitend miteinander verschaltet sein können, so dass die einzelnen Batteriezellen zu dem Batteriemodul zusammengeschaltet sind. Weiterhin werden solche Batteriemodule zu Batterien bzw. zu gesamten Batteriesystemen zusammengeschaltet. Insbesondere sind die Batteriezellen dabei als Lithium-Ionen-Batteriezellen ausgebildet. Mit solchen Lithium-Ionen- Batteriezellen können vergleichbar hohe Energiedichten erreicht werden, die eine kompaktere Bauweise der Batterie erlauben.
Eine elektrische Verschaltung der Mehrzahl an Batteriezellen ist überwiegend durch sogenannte Zellverbinder ausgebildet. Zellverbinder werden dazu verwendet, um kleinere Batteriezellen (z.B. 18650 Zellen) zu größeren Batteriemodulen zu verbinden und somit sowohl Energie als auch Leistung zu skalieren. Insbesondere werden die Zellverbinder mit den Batteriezellen fest verbunden, z.B. durch Technik wie Widerstandsschweißen oder Bonding.
Stand der Technik sind bspw. WO 2020/102833 und US 2007/0232154. Offenbarung der Erfindung
Ein Batteriemodul mit den Merkmalen des unabhängigen Anspruchs bietet den Vorteil, dass eine vergleichbar schnell und einfach auszubildende elektrisch serielle und/oder parallele Verschaltung einer Mehrzahl an Batteriezellen ausgebildet werden kann.
Dazu wird ein Batteriemodul mit einer Mehrzahl an Batteriezellen, welche insbesondere als Lithium-Ionen-Batteriezellen ausgebildet sind, zur Verfügung gestellt. Diese Batteriezellen umfassen dabei jeweils ein Gehäuse, in welchem elektrochemische Komponenten der Batteriezelle aufgenommen sind, und das weiterhin einen ersten Spannungsabgriff der Batteriezelle, wie beispielsweise einen negativen Spannungsabgriff der Batteriezelle, ausbildet. Zudem umfasst das Batteriemodul einen Zellhalter mit einer Mehrzahl an Zellaufnahmen. In diesen Zellaufnahmen ist jeweils eine Batteriezelle aufgenommen. Dabei ist in den Zellaufnahmen weiterhin jeweils ein elektrisches Kontaktelement aufgenommen, welches dabei zwischen dem Zellhalter und der Batteriezelle angeordnet ist. An dieser Stelle sei angemerkt, dass das elektrische Kontaktelement auch in die Zellaufnahme integriert sein kann. Das elektrische Kontaktelement kontaktiert dabei den ersten Spannungsabgriff der jeweiligen Batteriezelle mechanisch und elektrisch. Das elektrische Kontaktelement umfasst weiterhin eine Mehrzahl an miteinander verbundenen und elastisch ausgebildeten Federelementen.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im unabhängigen Anspruch angegebenen Vorrichtung möglich.
Die Erfindung bietet dabei insbesondere den Vorteil, dass die Batteriezellen beispielsweise durch einfaches Aufnehmen in einer Zellaufnahme, in welcher bereits ein elektrisches Kontaktelement aufgenommen ist, an ihrem ersten Spannungsabgriff elektrisch leitend kontaktiert werden können. Dies ermöglicht eine vergleichbar hohe Flexibilität während der Montage und zugleich auch eine einfache Demontage der Batteriezellen, welche aus der Zellaufnahme bzw. dem Zellhalter entfernt werden sollen. Insbesondere kann auf teurere und aufwendige Prozesstechniken für eine stoffschlüssige Verbindung, wie beispielsweise Bonden oder Schweißen, verzichtet werden.
Besonders bevorzugt kann das elektrische Kontaktelement auf einfache Weise als Stanzbiegeteil ausgebildet werden.
Es ist zweckmäßig, wenn die Batteriezellen weiterhin jeweils einen elektrisch von dem Gehäuse isolierten zweiten Spannungsabgriff, wie beispielsweise einen positiven Spannungsabgriff, aufweisen.
Dabei kann ein erster Zellverbinder die elektrischen Kontaktelemente zumindest von zwei Batteriezellen elektrisch leitend miteinander verbinden und kann ein zweiter Zellverbinder die zweiten Spannungsabgriffe der zumindest zwei Batteriezellen elektrisch leitend verbinden. Hierdurch ist eine elektrisch parallele Verschaltung der zumindest zwei Batteriezellen ausgebildet. Mit anderen Worten ausgedrückt bedeutet dies, dass zum einen die zumindest zwei elektrischen Kontaktelemente, welche jeweils mit dem ersten Spannungsabgriff der jeweiligen Batteriezelle, und zum anderen die zumindest zwei zweiten Spannungsabgriffe unmittelbar elektrisch leitend mit einander verbunden sind, wodurch die elektrisch parallele Verschaltung ausgebildet ist.
Hierbei ist es bevorzugt, wenn der erste Zellverbinder in den Zellhalter integriert ist und/oder mit dem jeweiligen elektrischen Kontaktelement mechanisch verbunden ist. Insbesondere kann diese mechanische Verbindung stoffschlüssig und oder formschlüssig ausgebildet sein. Bei einer Integration des ersten Zellverbinders in den Zellhalter ist eine einfache Montage in der Art beispielsweise möglich, dass eine elektrisch leitende Verbindung zwischen dem ersten Zellverbinder und dem elektrischen Kontaktelement insbesondere allein durch Aufnahme des elektrischen Kontaktelements in der jeweiligen Zellaufnahme ausgebildet werden kann. An dieser Stelle sei angemerkt, dass eine Integration auch mechanisch reversibel und damit lösbar ausgebildete Verbindungen zwischen dem ersten Zellverbinder und dem Zellhalter umfasst.
Bei einer mechanischen Verbindung des ersten Zellverbinders mit dem jeweiligen elektrischen Kontaktelement kann beispielsweise diese Verbindung vor einer Aufnahme des elektrischen Kontaktelements in der Zellaufnahme ausgebildet werden. Selbstverständlich können diese beiden Ausführungsformen auch in der Art kombiniert werden, dass ein in den Zellhalter integrierter erster Zellverbinder nach einer Aufnahme des elektrischen Kontaktelements mechanisch mit diesem elektrischen Kontaktelement verbunden wird.
Weiterhin kann ein dritter Zellverbinder das elektrische Kontaktelement einer Batteriezelle mit dem zweiten Spannungsabgriff einer anderen Batteriezelle elektrisch leitend verbinden. Hierdurch ist eine elektrisch serielle Verschaltung der einen Batteriezelle unter der anderen Batteriezelle ausgebildet. An dieser Stelle sei angemerkt, dass sowohl die eine Batteriezelle und/oder die andere Batteriezelle mittels eines ersten Zellverbinders bzw. eines zweiten Zellverbinders parallel mit jeweils einer weiteren Batteriezelle elektrisch leitend verbunden sein können.
Es ist bevorzugt, wenn der zweite Zellverbinder mit dem zweiten Spannungsabgriff der jeweiligen zumindest einen Batteriezelle stoffschlüssig elektrisch leitend verbunden ist. Zudem ist es auch bevorzugt, wenn der dritte Zellverbinder mit dem elektrischen Kontaktelement der einen Batteriezelle und/oder dem zweiten Spannungsabgriff der anderen Batteriezelle stoffschlüssig elektrisch leitend verbunden ist. Eine solche stoffschlüssige Verbindung kann beispielsweise mittels aus dem Stand der Technik bekannten Techniken, wie Bonding, Ultraschall-, Laserstrahl- oder Punktschweißen ausgebildet werden.
Gemäß einem besonders bevorzugten Aspekt der Erfindung sind die Batteriezellen jeweils als zylindrische Batteriezellen ausgebildet. Zylindrische Batteriezellen umfassen üblicherweise eine Mantelfläche und zwei gegenüberliegende und parallel zueinander angeordnete Grundflächen. Des Weiteren weisen diese beiden Grundflächen jeweils eine kreisförmige Gestalt auf und schließen die Mantelfläche ab. Besonders bevorzugt ist dabei insbesondere die Mantelfläche als erster Spannungsabgriff der jeweiligen zylindrischen Batteriezelle ausgebildet und ist der zweite Spannungsabgriff an einer Grundfläche der jeweiligen zylindrischen Batteriezelle ausgebildet. Eine solche Ausführungsform bietet den Vorteil, dass der erste Spannungsabgriff über die gesamte Mantelfläche kontaktiert werden kann. An dieser Stelle sei angemerkt, dass der zweite Spannungsabgriff von dem ersten Spannungsabgriff elektrisch isoliert ist. Beispielsweise können die zylindrischen Batteriezellen als sogenannte 18650-Zellen oder 20700-Zellen ausgebildet sein.
Von Vorteil ist es, wenn die Zellaufnahmen jeweils als Öffnung im Zellhalter ausgebildet sind und insbesondere eine runde Querschnittsfläche aufweisen. Dadurch kann eine einfache Aufnahme der elektrischen Kontaktelemente und der Mehrzahl an Batteriezellen ausgebildet werden. Insbesondere können bei einer Ausführungsform mit einer runden Querschnittsfläche zylindrisch ausgebildete Batteriezellen auf einfache Weise aufgenommen werden.
Zweckmäßigerweise sind die Federelemente des elektrischen Kontaktelements als Lamellen ausgebildet. Dabei kann das elektrische Kontaktelement beispielsweise zumindest zwei ringförmig ausgebildete Grundkörper umfassen, welche gegenüberliegend angeordnet sind, und zwischen welchen sich die als Lamellen ausgebildeten Federelemente in der Art erstrecken, dass ein Ende der jeweiligen Lamelle mit dem einem der beiden Grundkörper verbunden ist und ein anderes Ende der jeweiligen Lamelle mit dem anderen der beiden Grundkörper verbunden ist. Ferner können die Lamellen in beliebiger Ausführung angeordnet werden.
Auch bevorzugt ist, wenn die Lamellen in regelmäßigen Abständen zueinander angeordnet sind und/oder bspw. im Wesentlichen parallel verlaufend zueinander angeordnet sind. Ferner ist es auch bevorzugt, wenn die Lamellen eine Krümmung oder Abwicklung aufweisen, welche in Richtung eines Inneren des jeweiligen elektrischen Kontaktelements gerichtet sind, sodass hierdurch eine Federkraft auf die jeweilige Batteriezelle ausgeübt werden kann, welche in dem jeweiligen elektrischen Kontaktelement bzw. der dem jeweiligen elektrischen Kontaktelement zugeordneten Zellaufnahmen aufgenommen sind.
Grundsätzlich können die Federelemente in unterschiedlichster Art ausgebildet sein, solange eine elektrische und mechanische Kontaktierung einer Batteriezelle ausgebildet werden kann.
Insgesamt bieten solche Federelemente den Vorteil, dass vergleichbar viele Kontaktpunkte ausgebildet werden und dadurch eine elektrische Kontaktierung der Batteriezelle über Lebensdauer gewährleistet ist. Zudem bietet dies den besonderen Vorteil, dass durch die Form des elektrischen Kontaktelements bzw. die Eigenschaften der einzelnen Federelemente die durch das elektrische Kontaktelement auf die Batteriezelle ausgeübte Kraft beeinflusst werden kann, wodurch entsprechend den jeweiligen Anforderungen vergleichbar feste oder lose Verbindungen ausgebildet werden können.
Zudem können hierdurch Toleranzen vergleichbar einfach ausgeglichen werden.
Gegenstand der vorliegenden Erfindung ist auch Verfahren zur Herstellung eines eben beschriebenen erfindungsgemäßen Batteriemoduls mit einer Mehrzahl an Batteriezellen, insbesondere Lithium-Ionen-Batteriezellen. Dabei umfassen die Batteriezellen jeweils ein Gehäuse, in welchem elektrochemische Komponenten der Batteriezelle aufgenommen sind, und das einen ersten Spannungsabgriff der Batteriezelle ausbildet. Dabei werden in den Zellaufnahmen eines Zellhalters jeweils ein elektrisches Kontaktelement und eine Batteriezelle aufgenommen, sodass das elektrische Kontaktelement zwischen dem Zellhalter und der Batteriezelle angeordnet ist und einen ersten Spannungsabgriff der jeweiligen Batteriezelle mechanisch und elektrisch kontaktiert. Dabei umfasst das elektrische Kontaktelement eine Mehrzahl an miteinander verbundenen und elastisch ausgebildeten Federelementen.
Ferner ist auch ein Kraftfahrzeug, welches ein eben beschriebenes erfindungsgemäßes Batteriemodul und/oder welches nach dem eben beschriebenen erfindungsgemäßen Verfahren hergestellt worden ist,
Gegenstand der Erfindung.
Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Es zeigt
Figur 1 in einer perspektivischen Ansicht eine Ausführungsform eines
Zellhalters eines erfindungsgemäßen Batteriemoduls, in welchem elektrische Kontaktelemente und eine Batteriezelle aufgenommen sind und
Figur 2 in einer Draufsicht eine Ausführungsform eines Zellhalters eines erfindungsgemäßen Batteriemoduls, in welchem elektrische Kontaktelemente aufgenommen sind,
Figur 3 in einer Detailansicht eine Ausführungsform eines Zellhalters eines erfindungsgemäßen Batteriemoduls, in welchem elektrische Kontaktelemente aufgenommen sind und
Figur 4 unterschiedliche Ausführungsformen elektrische
Kontaktelemente.
Die Figur 1 zeigt in einer perspektivischen Ansicht eine Ausführungsform eines Zellhalters 2 eines erfindungsgemäßen Batteriemoduls 1, in welchem elektrische Kontaktelemente 4 und eine Batteriezelle 5 aufgenommen sind. Die Figur 2 zeigt in einer Draufsicht und die Figur 3 an Detailansicht jeweils der Ausführungsform eines Zellhalters 2 eines erfindungsgemäßen Batteriemoduls 1 gemäß Figur 1, in welchem elektrische Kontaktelemente 4 aufgenommen sind.
Die Figuren 1 bis 3 zeigen jeweils einen Zellhalter 2 eines Batteriemoduls 1. Der Zellhalter 2 umfasst dabei eine Mehrzahl an Zellaufnahmen 3.
In den Zellaufnahmen 3 kann dabei jeweils ein elektrisches Kontaktelement 4 aufgenommen sein. In den Zellaufnahmen 3 kann dabei weiterhin jeweils eine Batteriezelle 5 aufgenommen sein. In der Figur 1 ist dabei die Aufnahme einer Batteriezelle 5 in einer Zellaufnahmen 3 gezeigt. Die Zellaufnahmen 3 sind dabei insbesondere jeweils als Öffnung 30 in dem Zellhalter 2 ausgebildet und weisen insbesondere eine runde Querschnittsfläche 35 auf. Die Batteriezelle 5 ist dabei insbesondere als Lithium-Ion-Batteriezelle 50 ausgebildet und umfasst weiterhin beispielsweise ein Gehäuse 51, in welchem in den Figuren nicht zu erkennende elektrochemische Komponenten der Batteriezelle 5 aufgenommen sind. Das Gehäuse 51 der Batteriezelle 5 bildet dabei einen ersten Spannungsabgriff 61 der Batteriezelle 5 aus. Ferner umfassen die Batteriezellen 5 weiterhin jeweils einen elektrisch von dem Gehäuse 51 isolierten zweiten Spannungsabgriff 62.
Insbesondere sind die Batteriezellen 5 als zylindrische Batteriezellen 10 ausgebildet. Dabei bildet insbesondere eine Mantelfläche 11 des Gehäuses 51 den ersten Spannungsabgriff 61 aus und bildet einen Grundfläche 12 des Gehäuses 51 den zweiten Spannungsabgriff 62 aus.
Das elektrische Kontaktelement 4 ist dabei, wie insbesondere aus der Figur 1 zu erkennen ist, zwischen dem Zellhalter 2 und der Batteriezelle 5 angeordnet. Weiterhin kontaktiert das elektrische Kontaktelement 4 den ersten Spannungsabgriff 61 der jeweiligen Batteriezelle 5 mechanisch und elektrisch.
Aus den Figuren 1 bis 3 ist dabei zu erkennen, dass das elektrische Kontaktelement 4 eine Mehrzahl an miteinander verbundenen und elastisch ausgebildeten Federelementen 7 umfasst. Die Federelemente 7 des elektrischen Kontaktelements 4 sind dabei insbesondere als Lamellen 70 ausgebildet.
Erste Zellverbinder 81 können dabei die elektrischen Kontaktelemente 4 zumindest von zwei Batteriezellen 5 elektrisch leitend miteinander verbinden.
In den Figuren nicht zu erkennende zweite Zellverbinder 82 können dabei die zweiten Spannungsabgriffen 62 der zumindest 2 Batteriezellen 5 elektrisch leitend miteinander verbinden. Dadurch ist eine elektrisch parallele Verschaltung der zumindest zwei Batteriezellen 5 ausgebildet. Gemäß dem in der Figur 1 gezeigten Ausführungsbeispiel sind die ersten Zellverbinder 81 in den Zellhalter 2 integriert und weiterhin mit dem jeweiligen elektrischen Kontaktelement 4 mechanisch verbunden. Bevorzugt ist diese Verbindung stoffschlüssig ausgebildet.
Ferner ist es auch möglich, ein dritter Zellverbinder 83 das elektrische Kontaktelement 4 einer Batteriezelle 5 mit einem zweiten Spannungsabgriff 62 einer anderen Batteriezelle 5 elektrisch leitend verbindet. Dadurch ist eine elektrisch parallele Verschaltung der einen Batteriezelle 5 mit der anderen Batteriezelle 5 ausgebildet.
Insbesondere können der zweite Zellverbinder 82 mit dem zweiten Spannungsabgriff 62 der jeweiligen zumindest einen Batteriezelle 5 und oder der dritte Zellverbinder 83 mit dem elektrischen Kontaktelement 4 der einen Batteriezelle 5 und/oder dem zweiten Spannungsabgriff 62 der anderen Batteriezelle 5 stoffschlüssig elektrisch leitend verbunden sein.
Die Figur 2 zeigt unterschiedliche Ausführungsformen elektrischer Kontaktelemente 4, welche jeweils eine Mehrzahl an Federelementen 7 umfassen.
Dabei kann das elektrische Kontaktelement 4 beispielsweise zumindest zwei ringförmig ausgebildete Grundkörper 75 umfassen, welche gegenüberliegend angeordnet sind, und zwischen welchen sich die als Lamellen 70 ausgebildeten Federelemente 7 in der Art erstrecken, dass ein Ende der jeweiligen Lamelle 70 mit einem der beiden Grundkörper 75 verbunden ist und ein anderes Ende der jeweiligen Lamelle 7 mit dem anderen der beiden Grundkörper 75 verbunden ist.

Claims

Ansprüche
1. Batteriemodul mit einer Mehrzahl an Batteriezellen (5), insbesondere Lithium-Ionen-Batteriezellen (50), die jeweils ein Gehäuse (51) umfassen, in welchem elektrochemische Komponenten der Batteriezelle (5) aufgenommen sind, und das einen ersten Spannungsabgriff (61) der Batteriezelle (5) ausbildet, wobei das Batteriemodul (1) zudem einen Zellhalter (2) mit einer Mehrzahl an Zellaufnahmen (3) umfasst, in welchen jeweils eine Batteriezelle (5) aufgenommen ist, wobei in den Zellaufnahmen
(3) jeweils ein elektrisches Kontaktelement (4) aufgenommen ist, welches zwischen dem Zellhalter (2) und der Batteriezelle (5) angeordnet ist und einen ersten Spannungsabgriff (61) der jeweiligen Batteriezelle (5) mechanisch und elektrisch kontaktiert, wobei das elektrische Kontaktelement (4) eine Mehrzahl an miteinander verbundenen und elastisch ausgebildeten Federelementen (7) umfasst.
2. Batteriemodul nach dem vorhergehenden Anspruch 1, dadurch gekennzeichnet, dass die Batteriezellen (5) weiterhin jeweils einen elektrisch von dem Gehäuse (51) isolierten zweiten Spannungsabgriff (62) aufweisen, wobei ein erster Zellverbinder (81) die elektrischen Kontaktelemente (4) zumindest von zwei Batteriezellen (5) elektrisch leitend verbindet und ein zweiter Zellverbinder (82) die zweiten Spannungsabgriffe (62) der zumindest zwei Batteriezellen (5) elektrisch leitend verbindet, sodass eine elektrisch parallele Verschaltung der zumindest zwei Batteriezellen (5) ausgebildet ist.
3. Batteriemodul nach dem vorhergehenden Anspruch 2, dadurch gekennzeichnet, dass der erste Zellverbinder (81) in den Zellhalter (2) integriert ist und/oder mit dem jeweiligen elektrischen Kontaktelement (4) mechanisch verbunden ist, insbesondere stoffschlüssig und/oder formschlüssig verbunden ist.
4. Batteriemodul nach einem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Batteriezellen (5) weiterhin jeweils einen elektrisch von dem Gehäuse (51) isolierten zweiten Spannungsabgriff (62) aufweisen, wobei ein dritter Zellverbinder (83) das elektrische Kontaktelement (4) einer Batteriezelle (5) mit dem zweiten Spannungsabgriff (62) einer anderen Batteriezelle (5) elektrisch leitend verbindet, sodass eine elektrisch serielle Verschaltung der einen Batteriezelle (5) und der anderen Batteriezelle (5) ausgebildet ist.
5. Batteriemodul nach einem der vorhergehenden Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der zweite Zellverbinder (82) mit dem zweiten Spannungsabgriff (62) der jeweiligen zumindest einen Batteriezelle (5) und/oder der dritte Zellverbinder (83) mit dem elektrischen Kontaktelement (4) der einen Batteriezelle (5) und/oder dem zweiten Spannungsabgriff (62) der anderen Batteriezelle (5) stoffschlüssig elektrisch leitend verbunden ist.
6. Batteriemodul nach den vorhergehenden Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die Batteriezellen (5) als zylindrische Batteriezellen (10) ausgebildet sind, wobei insbesondere eine Mantelfläche (101) den ersten Spannungsabgriff (61) und eine Grundfläche (102) den zweiten Spannungsabgriff (62) ausbilden.
7. Batteriemodul nach einem der vorhergehenden Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Zellaufnahmen (3) als Öffnung (30) in dem Zellhalter (2) ausgebildet sind und insbesondere eine runde Querschnittsfläche (35) aufweisen.
8. Batteriemodul nach einem vorhergehenden Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Federelemente (7) des elektrischen Kontaktelements (4) als Lamellen (70) ausgebildet sind.
9. Verfahren zur Herstellung eines Batteriemoduls (1) mit einer Mehrzahl an Batteriezellen (5), insbesondere Lithium-Ionen-Batteriezellen (50), nach einem der vorhergehenden Ansprüche 1 bis 8, wobei die Batteriezellen (5) jeweils ein Gehäuse (51) umfassen, in welchem elektrochemische Komponenten der Batteriezelle (5) aufgenommen sind, und das einen ersten Spannungsabgriff (61) der Batteriezelle (5) ausbildet, wobei in den Zellaufnahmen (3) eines Zellhalters (2) jeweils ein elektrisches Kontaktelement (4) und eine Batteriezelle (5) aufgenommen werden, sodass das elektrische Kontaktelement (4) zwischen dem Zellhalter (2) und der Batteriezelle (5) angeordnet ist und einen ersten Spannungsabgriff (61) der jeweiligen Batteriezelle (5) mechanisch und elektrisch kontaktiert, wobei das elektrische Kontaktelement (4) eine Mehrzahl an miteinander verbundenen und elastisch ausgebildeten Federelementen (7) umfasst.
10. Kraftfahrzeug umfassend ein Batteriemodul (1) nach einem der Ansprüche 1 bis 8 und/oder hergestellt nach Anspruch 9.
PCT/EP2022/065409 2021-06-11 2022-06-07 Batteriemodul, verfahren zur herstellung eines solchen und kraftfahrzeug WO2022258623A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22733345.7A EP4352817A1 (de) 2021-06-11 2022-06-07 Batteriemodul, verfahren zur herstellung eines solchen und kraftfahrzeug
CN202280041568.0A CN117461196A (zh) 2021-06-11 2022-06-07 电池模块、用于制造这种电池模块的方法以及机动车

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021205961.9 2021-06-11
DE102021205961.9A DE102021205961A1 (de) 2021-06-11 2021-06-11 Batteriemodul, Verfahren zur Herstellung eines solchen und Kraftfahrzeug

Publications (1)

Publication Number Publication Date
WO2022258623A1 true WO2022258623A1 (de) 2022-12-15

Family

ID=82196536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/065409 WO2022258623A1 (de) 2021-06-11 2022-06-07 Batteriemodul, verfahren zur herstellung eines solchen und kraftfahrzeug

Country Status (4)

Country Link
EP (1) EP4352817A1 (de)
CN (1) CN117461196A (de)
DE (1) DE102021205961A1 (de)
WO (1) WO2022258623A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070232154A1 (en) 2005-05-25 2007-10-04 Weiping Zhao Canted coil spring power terminal and sequence connection system
WO2020102833A1 (de) 2018-11-19 2020-05-28 Raiffeisenlandesbank Oberösterreich Aktiengesellschaft Kontaktierungsvorrichtung
DE102019208949A1 (de) * 2019-06-19 2020-12-24 Robert Bosch Gmbh Batteriemodul
DE102019218763A1 (de) * 2019-12-03 2021-06-10 Robert Bosch Gmbh Batteriemodul mit einer Mehrzahl an Batteriezellen und elektrisches Verbindungselement eines solchen Batteriemoduls

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206639851U (zh) 2017-03-15 2017-11-14 深圳市沃特玛电池有限公司 一种电池模组
CN107230752A (zh) 2017-06-30 2017-10-03 苏州安靠电源有限公司 用于电池模组的电池夹具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070232154A1 (en) 2005-05-25 2007-10-04 Weiping Zhao Canted coil spring power terminal and sequence connection system
WO2020102833A1 (de) 2018-11-19 2020-05-28 Raiffeisenlandesbank Oberösterreich Aktiengesellschaft Kontaktierungsvorrichtung
DE102019208949A1 (de) * 2019-06-19 2020-12-24 Robert Bosch Gmbh Batteriemodul
DE102019218763A1 (de) * 2019-12-03 2021-06-10 Robert Bosch Gmbh Batteriemodul mit einer Mehrzahl an Batteriezellen und elektrisches Verbindungselement eines solchen Batteriemoduls

Also Published As

Publication number Publication date
EP4352817A1 (de) 2024-04-17
CN117461196A (zh) 2024-01-26
DE102021205961A1 (de) 2022-12-15

Similar Documents

Publication Publication Date Title
EP2989669B1 (de) Verfahren zum herstellen eines batterienkontaktierungssystems und batterienkontaktierungssystem
EP2989676A2 (de) Zellkontaktierungssystem für eine elektrochemische vorrichtung
DE102015218727A1 (de) Batteriemodul und Batteriepack
DE102017205774A1 (de) Batteriemodul mit Hochstromfederkontakt
DE102016204681A1 (de) Batterie und Verfahren zur Herstellung einer Batterie
DE102015008985A1 (de) Zellmodul, Batteriemodul und elektrische Batterie
DE102018208896A1 (de) Batteriemodul
DE102013019468B4 (de) Batterie mit einer Mehrzahl von Batteriezellen
EP4352817A1 (de) Batteriemodul, verfahren zur herstellung eines solchen und kraftfahrzeug
DE102017117590B4 (de) Positionier-Hilfsvorrichtung
DE102015110308B4 (de) Akkupack für ein Elektrohandwerkzeuggerät
WO2020099359A1 (de) Verfahren zum stoffschlüssigen verbinden eines terminals einer batteriezelle mit mindestens einem zellverbinder und batteriemodul
WO2004054024A1 (de) Rahmenelemente für monopolare brennstoffzellenstacks
DE102018124322A1 (de) Baugruppe einer elektrischen Einrichtung und Verfahren zum Herstellen einer solchen Baugruppe
DE10040893B4 (de) Struktur von elektrischen Anschlüssen zum Herstellen eines elektrischen Kontakts zwischen einem Batterieteil und einer elektrischen Vorrichtung
DE102019206486A1 (de) Zellverbindungselement und Batteriemodul
DE102019218763A1 (de) Batteriemodul mit einer Mehrzahl an Batteriezellen und elektrisches Verbindungselement eines solchen Batteriemoduls
DE19541255A1 (de) Galvanische Zelle
DE102022125074B3 (de) Kontaktelement zum elektrisch leitfähigen kontaktieren eines batteriezellengehäuses
DE102021205610A1 (de) Batteriemodul, Verfahren zur Herstellung eines solchen und Kraftfahrzeug
DE202018006814U1 (de) Elektrischer Steckverbinder zur Ausbildung eines Leiterplattensteckverbinders an einer Leiterplatte
DE102022106554B3 (de) Batteriezelle und Batterieanordnung
DE102021006201B4 (de) Batteriemodul mit mehreren zylindrischen Batterieeinzelzellen
DE102016208589A1 (de) Elektrodenanordnung einer Batteriezelle, Elektrodenschicht und Batteriezelle sowie Verfahren zu deren Herstellung
DE102010029494A1 (de) Verbindungssystem mit einer Leiterplatte und einer Kontaktstruktur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22733345

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280041568.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022733345

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022733345

Country of ref document: EP

Effective date: 20240111