WO2022257586A1 - 一种飞行船 - Google Patents

一种飞行船 Download PDF

Info

Publication number
WO2022257586A1
WO2022257586A1 PCT/CN2022/085878 CN2022085878W WO2022257586A1 WO 2022257586 A1 WO2022257586 A1 WO 2022257586A1 CN 2022085878 W CN2022085878 W CN 2022085878W WO 2022257586 A1 WO2022257586 A1 WO 2022257586A1
Authority
WO
WIPO (PCT)
Prior art keywords
airbag
shaft body
cockpit
power device
airship
Prior art date
Application number
PCT/CN2022/085878
Other languages
English (en)
French (fr)
Inventor
刘焕章
Original Assignee
刘焕章
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘焕章 filed Critical 刘焕章
Publication of WO2022257586A1 publication Critical patent/WO2022257586A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • B64B1/22Arrangement of cabins or gondolas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/06Rigid airships; Semi-rigid airships
    • B64B1/24Arrangement of propulsion plant
    • B64B1/30Arrangement of propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/58Arrangements or construction of gas-bags; Filling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/66Mooring attachments

Definitions

  • the embodiments of the present application relate to the technical field of aviation devices, and in particular to a flying ship.
  • flying boat is a kind of aircraft that puts gas with density less than air in the airbag to generate buoyancy and fly.
  • the shape of the airbag is mostly spherical or thick cylinder, and the empennage is often provided to adjust or change the course.
  • the airbag and the cockpit need to be centered on a point outside the flying boat and rotate around this point, resulting in poor maneuverability and poor stability of the flying boat.
  • An embodiment of the present application provides a flying boat, including: an airbag, a cockpit, and a first shaft body;
  • the shafts are arranged in sequence in the axial direction and fixed with the first shaft, and there is a space between the air bag and the cockpit, at least one of the air bag and the cockpit is connected to the first shaft.
  • the shaft body is rotatably connected, wherein, after the airbag contains the gas that controls the ascent of the flying ship, any cross-sectional shape of the airbag perpendicular to the axial direction of the first shaft body is circular or ring-shaped, so The axial direction of the first shaft is in the same direction as the direction of gravity.
  • Fig. 1 is a schematic structural diagram of the airship provided by the embodiment of the present application.
  • Figure 2 is a schematic structural view of an embodiment of the airbag in the flying boat provided by the embodiment of the present application;
  • Fig. 3 is a force analysis diagram of the airbag provided by the embodiment of the present application when it is subjected to a crosswind;
  • Fig. 4 is a schematic structural diagram of the airbag provided by the embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of an embodiment of the fixed part of the airship provided by the embodiment of the present application.
  • Fig. 6 is a structural schematic diagram of the ring wing provided by the embodiment of the present application and the airbag when no gas is contained;
  • Fig. 7 is a schematic structural diagram of a fixing part, a second rigid ring and a plurality of connecting parts provided by the embodiment of the present application;
  • Fig. 8 is a schematic structural view of the ring wing, the second rigid ring, a plurality of connecting parts and the airbag when no gas is contained in the embodiment of the present application;
  • Fig. 9 is a structural schematic diagram of the first power unit, the baffle plate, the first shaft body, the second shaft body, the second power unit and the cockpit provided by the embodiment of the present application;
  • Fig. 10 is a structural schematic diagram of another state of the first power unit, the baffle plate, the first shaft body, the second shaft body, the second power unit and the cockpit provided by the embodiment of the present application;
  • Fig. 11 is a structural schematic diagram of the airbag, the second rigid ring, the ring wing, the connection part, the hollow rod and the functional cabin provided by the embodiment of the present application;
  • Fig. 12 is a structural schematic diagram of an embodiment of the functional cabin and the cockpit in the flying boat provided by the embodiment of the present application;
  • Fig. 13 is a structural schematic diagram of another embodiment of the functional cabin and the cockpit in the flying boat provided by the embodiment of the present application;
  • Fig. 14 is a structural schematic diagram of another embodiment of the functional cabin and the cockpit in the flying boat provided by the embodiment of the present application;
  • Fig. 15 is a schematic structural diagram of an embodiment of the flying ship provided by the embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of the flight ship removing the stairs provided by the embodiment of the present application.
  • Fig. 17 is a structural schematic diagram of another viewing angle of the airship provided by the embodiment of the present application to remove the stairs;
  • Figure 18 is a schematic structural view of the cockpit and the anchoring device provided by the embodiment of the present application.
  • Fig. 19 is a schematic structural view of another state of the cockpit and the anchoring device provided by the embodiment of the present application.
  • An embodiment of the present application provides a flying boat, including: an airbag, a cockpit, and a first shaft; the airbag is used to contain the gas that controls the ascent of the flying boat, and the airbag and the cockpit are sequentially arranged along the axial direction of the first shaft.
  • the airbag It is fixed with the first shaft body, and there is a space between the airbag and the cockpit, at least one of the airbag and the cockpit is rotatably connected with the first shaft body, and then after the airbag contains the gas that controls the flight ship to rise, when the flight When the ship needs to turn, it is only necessary to rotate the cockpit relative to the airbag, which can avoid the operator in the cockpit from being limited in the operating angle of view, thereby avoiding the need to turn the airbag at the same time when the flying boat needs to turn, so as to improve the flight performance. Maneuverability, maneuverability and stability of the boat during operation.
  • the embodiment of the present application provides a flying boat, including: an airbag 110, a cockpit 120 and a first shaft body 130;
  • the shaft body 130 is arranged in sequence in the axial direction and fixed with the first shaft body 130, and there is a space between the airbag 110 and the cockpit 120, at least one of the airbag 110 and the cockpit 120 is rotatably connected to the first shaft body 130 , wherein, after the airbag 110 accommodates the gas for controlling the ascension of the flying ship, any cross-sectional shape of the airbag 110 in the axial direction perpendicular to the first shaft body 130 is circular or annular, and the axial direction of the first shaft body 130 is the same as the direction of gravity.
  • any cross-sectional shape of the airbag 110 in the axial direction perpendicular to the first shaft body 130 is circular or annular, and the axial direction of the first shaft body 130 is the same as the direction of gravity.
  • the airbag 110 is made of flexible and airtight material; in one embodiment, the airbag 110 is made of reinforced nylon; in another embodiment, the airbag is made of polyester.
  • the cockpit 120 is used to carry the driver.
  • the shell of the cockpit 120 is made of aluminum alloy; in another embodiment, the shell of the cockpit 120 is made of alloy steel; In another embodiment, in order to reduce the weight of the airship, the shell of the cockpit 120 is made of carbon fiber.
  • the first shaft body 130 is made of rigid material; in one embodiment, the first shaft body 130 is made of aluminum alloy; in another embodiment, the first shaft body 130 is made of alloy steel; In another embodiment, in order to reduce the weight of the airship, the first shaft body 130 is made of carbon fiber.
  • the cockpit 120 is rigidly connected to the first shaft 130, and the airbag 110 is rotatably connected to the first shaft 130, so that when the flying ship needs to turn, it is only necessary to rotate the cockpit 120 and the first shaft at the same time. body 130, and the airbag 110 can remain still; in yet another embodiment, the cockpit 120 is rotatably connected to the first shaft body 130, and the airbag 110 is rigidly connected to the first shaft body 130, so that when the airship needs to turn At this time, it is only necessary to rotate the cockpit 120, and the airbag 110 and the first shaft body 130 can remain stationary; in another embodiment, the cockpit 120 and the airbag 110 can be rotatably fixed on the first shaft body 130 Therefore, when the airship needs to rotate, only the cockpit 120 can be rotated, and the cockpit 120 and the first shaft 130 can also be rotated at the same time. At this time, the airbag 110 can still remain still.
  • any cross-sectional shape of the airbag 110 perpendicular to the axial direction of the first shaft body 130 is circular. In one embodiment, referring to FIG. 2 , after the airbag 110 contains gas for controlling the ascent of the airship, any cross-sectional shape of the airbag 110 perpendicular to the axial direction of the first shaft body 130 is ring-shaped.
  • the above-mentioned airship also includes: a fixing part 140; the fixing part 140 is used to pull the airbag 110, support the airbag 110, or restrict the airbag 110 after the airbag 110 contains the gas that controls the ascent of the airship. Inflating in the direction of gravity, so that the maximum dimension of the airbag 110 in the direction perpendicular to the gravity is larger than the maximum dimension of the airbag 110 in the direction of gravity.
  • the airbag 110 provided by this embodiment reduces the second component force F2 generated by the crosswind on the airbag 110 compared with the airbag of the related art (that is, the airbag is a spherical airship), thereby reducing the impact of the crosswind on the airbag 110. impact, to avoid a large deviation of the flying ship.
  • the maximum dimension of the airbag 110 in the axial direction perpendicular to the first shaft body 130 is the first dimension W
  • the maximum dimension of the airbag 110 in the axial direction of the first shaft body 130 is the second dimension H, that is, during the flight of the above-mentioned airship, the maximum dimension of the airbag 110 in the direction perpendicular to the gravity is the first dimension W
  • the airbag 110 The largest dimension in the direction of gravity is the second dimension H.
  • the first size W is 4-9 times the second size H; in this way, the maximum size of the airbag 110 in the direction of gravity during the flight of the above-mentioned airship can be further reduced, so that the airship When a crosswind is encountered during flight, the influence of the crosswind on the airbag 110 is further reduced, thereby further avoiding a large deviation of the airship.
  • the first dimension W is 5-7 times the second dimension H. In one embodiment, the first dimension W is 6 times the second dimension H.
  • the fixed portion 140 is a first rigid ring
  • the inner or outer annular surface of the first rigid ring i.e. the fixed portion 140
  • the first rigid ring accommodates the airbag 110 to control the airship to rise.
  • the first rigid ring is made of rigid material; in one embodiment, the first rigid ring is made of aluminum alloy; in another embodiment, the first rigid ring is made of alloy steel In another embodiment, in order to reduce the weight of the airship, the first rigid ring is made of carbon fiber.
  • the fixing portion 140 may not be the first rigid ring, as long as the fixing portion 140 can be used to pull the airbag 110, support the airbag 110, or It only needs to limit the expansion of the airbag 110 in the direction of gravity so that the maximum dimension of the airbag 110 in the direction perpendicular to the gravity is larger than the maximum dimension of the airbag 110 in the direction of gravity.
  • the fixing part 140 is a plurality of ropes, and the two ends of each rope (that is, the fixing part 140 ) are all fixed to the inner wall of the airbag 110 , and the plurality of ropes hold the airbag 110 to control the ascent of the airship. After the gas, the airbag 110 is pulled, so that the maximum dimension of the airbag 110 in the direction perpendicular to the gravity is larger than the maximum dimension of the airbag 110 in the direction of gravity.
  • the fixing part 140 is a frame, and the airbag 110 is located in the frame. After the airbag 110 contains the gas that controls the airship to rise, the frame restricts the expansion of the airbag 110 in the direction of gravity, so that the maximum size of the airbag 110 is perpendicular to the direction of gravity. greater than the maximum dimension of the airbag 110 in the direction of gravity.
  • the airship above further includes: a ring wing 150 surrounding the airbag, the first rigid ring is fixed to the ring wing 150 and pulls the airbag 110 through the ring wing 150 .
  • the ring wing 150 is fixed to the first rigid ring, and the ring wing 150 is also fixed to the airbag 110, the ring wing 150 is located between the first rigid ring and the airbag 110. The part between them is flattened.
  • the contact area between the airship and the air is increased through the ring wings 150, thereby increasing the resistance of the air to the airship, and further avoiding the turbulence of the airship.
  • the inner edge of the ring wing 150 is fixed to the outer edge of the airbag 110, and the outer edge of the ring wing 150 is provided with a wrapping part 151 for wrapping the first rigid ring, and the wrapping part 151 wraps the first rigid ring, so that The first rigid ring is fixed to the ring wing 150, and the airbag 110 is pulled by the ring wing 150, and then after the airbag 110 contains the gas used to control the ascent of the airship, the airbag 110 is perpendicular to the axis of the first rigid ring (that is, the first rigid ring axis).
  • the maximum dimension of the shaft body 130 in the axial direction is greater than the maximum dimension of the airbag 110 in the axial direction of the first rigid ring, and makes the entire ring wing 150 flat; in another embodiment, the ring wing 150 is hollow structure, the first rigid ring is located inside the ring wing 150, so that the first rigid ring supports the ring wing from the inside of the ring wing 150, and pulls the airbag 110 through the ring wing 150, and then after the airbag 110 contains the gas used to control the ascent of the airship , the maximum dimension of the airbag 110 perpendicular to the axial direction of the first rigid ring may be larger than the maximum dimension of the airbag 110 in the axial direction of the first rigid ring, or the entire ring wing 150 may be in a flattened state.
  • first rigid ring and the airbag 110 may be provided, and the first rigid ring directly pulls or supports the airbag 110, so that the airbag 110 is perpendicular to the first rigid ring.
  • the maximum dimension in the axial direction of the ring is greater than the maximum dimension of the airbag 110 in the axial direction of the first rigid ring;
  • the inner wall surface is fitted and fixed, so that the first rigid ring supports the airbag from the inside of the airbag 110; , so that the first rigid ring pulls the airbag from the outside of the airbag 110 .
  • the ring wings 150 are made of flexible materials; in one embodiment, the ring wings 150 are made of reinforced nylon; in yet another embodiment, the ring wings 150 are made of polyester.
  • the above-mentioned airship further includes: two second rigid rings 161 and a plurality of connecting parts 162, the two second rigid rings 161 are connected to the first rigid ring Coaxially arranged, and two second rigid rings 161 are arranged in sequence along the axial direction of the first rigid ring, the first rigid ring is located between the two second rigid rings 161, and a plurality of connecting parts 162 are distributed along the circumferential direction of the first rigid ring , and each connecting portion 162 is connected to the first rigid ring and the two second rigid rings 161 .
  • the first rigid ring when a force is applied to the first rigid ring, the first rigid ring can transmit the force to the two second rigid rings 161 through the plurality of connecting parts 162, thereby reducing the force on the first rigid ring, thereby avoiding The first rigid ring is prone to deformation when stressed.
  • the airship can also include other structures, so that when the first rigid ring is stressed, the first rigid ring can transmit the force to other structures, thereby preventing the first rigid ring from being stressed. Deformation occurs when a force is applied; in one embodiment, the above-mentioned airship includes a plurality of connecting columns (not shown in the figure) and a plurality of ropes (not shown in the figure), and the plurality of connecting columns are distributed along the circumferential direction of the first rigid ring , and the position between the two ends of each connecting post is fixed with the first rigid ring, any end of any connecting post is fixed with one end of two ropes, and the other ends of the two ropes are located on both sides of the connecting post and fixed on the first rigid ring, so that the first rigid ring, the plurality of connecting columns and the plurality of ropes form a tension structure, so that when the first rigid ring is stressed, the first rigid ring can transmit the force to the ropes and On the connecting column, avoid the
  • the airbag 110 includes: a top 111 , a connecting portion 112 , and a bottom 113 arranged in sequence along the axial direction of the first shaft 130 , the top 111 is opposite to the bottom 113 , and the connecting portion 112 It is connected with the top 111 and the bottom 113 and jointly encloses the airbag 110.
  • the first rigid ring is fixed with the connection part 112.
  • the maximum dimension of the connection part 112 in the direction perpendicular to the axis of the first rigid ring is larger than that of either the top 111 or the bottom 113.
  • the largest dimension perpendicular to the axis of the first rigid ring is fixed to the connecting portion 112 by the ring wings 150 .
  • the surface area of the top 111 is 1-1.3 times the surface area of the bottom 113 .
  • the surface area of the top 111 is the same as the surface area of the bottom 113; in this way, when the above-mentioned airship encounters a side wind during flight, the distance passed when the side wind blows over the top 111 is the same as that of the side wind blowing over the bottom 113.
  • the distance passed by is the same, so that the flow velocity when the crosswind passes through the top 111 is the same as the flow velocity when the crosswind passes through the bottom 113, so that the air pressure received by the outer surface of the top 111 is the same as that received by the outer surface of the bottom 113, so as to further improve the flight performance.
  • the crosswind can flow through the gap between the airbag 110 and the cockpit 120 through the bottom 113. On the surface, it is still possible to make the distance traveled when the crosswind blows through the top 111 and the distance passed when the crosswind blows through the bottom 113 remain the same.
  • the surface area of the top 111 can also be larger than the surface area of the bottom 113, and not more than 1.3 times the surface area of the bottom 113; , the distance traveled by the crosswind when it blows over the top 111 is slightly greater than the distance that the crosswind passes when it blows over the bottom 113, so that the flow velocity when the crosswind passes through the top 111 is slightly greater than the flow velocity when the crosswind passes through the bottom 113, so that the top 111
  • the air pressure received by the outer surface is slightly smaller than the air pressure received by the outer surface of the bottom 113 , thereby providing upward power for the airship.
  • the surface area of the top 111 is 1.3 times the surface area of the bottom 113 .
  • the surface area of the top 111 is 1.1 times the surface area of the bottom 113 .
  • the above airship may further include: a second shaft body 171 , a first power unit 172 and a second power unit 173 ; the second shaft body 171 is coaxially arranged with the first shaft body 130 , the second shaft 171 and the first power unit 172 are located on the side of the airbag 110 away from the cockpit 120 , the first power unit 172 is fixed to the second shaft 171 , and the second power unit 173 is located between the airbag 110 and the cockpit 120 , and fixed with the first shaft body 130, wherein, the first power device 172 and the second power device 173 are used to drive the airship to move axially perpendicular to the first shaft body 130, or, the first power device 172 and the second power device 172 The power device 173 is used to drive the airship to move axially along the first shaft body 130 ; the cockpit 120 is used to control the first power device 172 and the second power device 173 to rotate along the first shaft body 130 circumferentially.
  • the resultant force generated by the first power unit 172 and the second power unit 173 is located at the center of the airship. At the center of gravity, thereby improving the stability of the airship during operation.
  • the first shaft body 130 passes through the airbag 110 and is connected to the second shaft body 171 .
  • the first shaft is located on the side of the airbag close to the cockpit and is fixed to the airbag. At this time, the first shaft is not connected to the second shaft.
  • both the first power device 172 and the second power device 173 include: a third shaft body 174 , a paddle 175 and a rotating part 176 , and the paddle 175
  • One end of the third shaft body 174 is rotatably fixed by the rotating part 176, wherein the third shaft body 174 of the first power device 172 is fixed to the second shaft body 171, and the third shaft body 174 of the second power device 173 is fixed to the second shaft body 171.
  • the first shaft body 130 is fixed.
  • the blades 175 of the first power device 172 and the second power device 173 rotate through the rotating part 176 until the blade surfaces of the blades 175 and the first shaft body 130 At this time, when the blades 175 are in operation, the airship can be driven to move axially perpendicular to the first shaft body 130.
  • the first power device 172 and the second power device 172 can also be controlled through the cockpit 120.
  • the device 173 rotates along the circumferential direction of the first shaft body 130 , so that the first power device 172 and the second power device 173 provide power to drive the airship along any direction perpendicular to the axial direction of the first shaft body 130 .
  • the blade 175 of the first power device 172 rotates through the rotating part 176 so that the blade surface of the blade 175 and the first The axial direction of the shaft body 130 is vertical.
  • the airship can be driven to move along the axial direction of the first shaft body 130 and close to the ground;
  • the paddle 175 of the second power unit 173 rotates through the rotating part 176 until the blade surface of the paddle 175 is perpendicular to the axial direction of the first shaft body 130.
  • the paddle 175 is running, That is, the airship can be driven to move along the axis of the first shaft 130 and away from the ground.
  • the first power device 172 and the second power device 173 can also adopt other structures, so that the first power device 172 and the second power device 173 can be used to drive the flying boat along the Axial movement perpendicular to the first shaft body 130, or, the first power unit 172 and the second power unit 173 can be used to drive the airship to move axially along the first shaft body 130; in one embodiment, the first power unit 172 And the second power unit 173 is an electric motor (not shown in the figure), a piston engine (not shown in the figure) or a turbine engine (not shown in the figure), when the airship needs to move in one direction, the electric motor The motor, piston engine, or turbine engine ejects gas in the opposite direction of this direction, so that the electric motor, piston engine, or turbine engine can push the air near it to move in the opposite direction of this direction.
  • the first power device 172 is rigidly connected to the second shaft body 171
  • the second power device 173 and the cockpit 120 are rigidly connected to the first shaft body 130
  • the airbag 110 can rotate along the circumferential direction of the first shaft body 130. fixed on the first shaft body 130. In this way, since the second shaft body 171 is connected with the first shaft body 130, when the airship needs to move along any direction perpendicular to the axial direction of the first shaft body 130, the cockpit 120 can be rotated to avoid being located in the cockpit 120.
  • the first shaft 130 can be rotated synchronously, and the first power device 172 and the second power device 173 can be rotated together through the first shaft 130, so that the first power device 172 and the second power device 173 can be rotated together.
  • the second power unit 173 provides power for the airship to move in this direction.
  • the first power device 172 can be rotatably connected to the second shaft body 171, and the second power device 172 and the cockpit 120 can also be rotatably connected to the first shaft body 130.
  • the cockpit 120 can be rotated relative to the first shaft body 130 to prevent the operator in the cockpit 120 from being limited in the operating angle of view, and to control it through the cockpit 120
  • the first power device 172 and the second power device 173 rotate along the circumference of the first shaft 130 , so that the first power device 172 and the second power device 173 can provide power for the airship to move in this direction.
  • the airship further includes: a functional cabin 180 ; 130 on.
  • a functional cabin 180 in this way, when the flying ship needs to turn, only turning the cockpit 120 can avoid the operator in the cockpit 120 from being limited in the operating angle of view, thereby avoiding the need to turn the airbag 110 and the functional cabin at the same time when turning the cockpit 120 180 to improve the maneuverability, maneuverability and stability of the airship.
  • the functional compartment 180 is located between the airbag 110 and the cockpit 120, and there is a gap between the functional compartment 180, the airbag 110 and the cockpit 120; the second power unit 173 is located between the functional compartment 180 and the cockpit 120 Spaces are left between the second power unit 173 and the functional compartment 180 and the cockpit 120 .
  • the functional cabin 180 is a closed type; it should be noted that in other embodiments, the functional cabin 180 may also be a semi-closed type, a roofless type, an open top type, or a double-deck type.
  • the above-mentioned airship also includes: a hollow rod 191 and a baffle plate 192, the airbag 110 and the functional cabin 180 are fixed on the hollow rod 191, and the hollow rod 191 can Rotately sleeved on the first shaft body 130, so that the airbag 110 and the functional compartment 180 are rotatably fixed on the first shaft body 130, the baffle plate 192 is fixed on the first shaft body 130, and the baffle plate 192 is tightly Attach the end of the hollow rod 191 away from the cockpit 120 , so as to prevent the hollow rod 191 from moving along the axial direction of the first shaft body 130 and away from the cockpit 120 .
  • the crosswind can flow through the bottom 113 through the gap between the airbag 110 and the functional cabin 180 surface, still can make the crosswind travel the same distance as the top 111 and the bottom 113 when the crosswind blows.
  • the cockpit 120 and the functional cabin 180 can also be arranged at other locations, and used to carry passengers or store other items; in one embodiment, referring to FIG. 12 , the functional cabin 180 is located at In the airbag 110 and at the bottom of the airbag 110, the cockpit 120 is connected to the bottom of the functional cabin 180; in another embodiment, referring to FIG. The bottom of the functional cabin 180 and a space is left between the functional cabin 180; in yet another embodiment, referring to FIG. 110 with a gap between them.
  • the functional compartment 180 includes: an upper part 181 , and a lower part 182 opposite to the upper part 181 and connected to the upper part 181 ; , the surface area of the upper part 181 is 1-1.3 times the surface area of the lower part 182 .
  • the surface area of the upper part 181 is the same as the surface area of the lower part 182. In this way, when the above-mentioned airship encounters a crosswind during flight, the distance traveled when the crosswind blows over the upper part 181 is the same as that of the crosswind blowing through the lower part. 182, the distance traveled is the same, so that the flow velocity of the crosswind passing through the upper part 181 is the same as the flow velocity of the crosswind passing through the lower part 182, so that the air pressure on the outer surface of the upper part 181 is the same as that on the outer surface of the lower part 182, thereby further improving The stability of the airship during operation.
  • the surface area of the upper part 181 can also be greater than the surface area of the lower part 182, and not more than 1.3 times the surface area of the lower part 182; , the distance passed when the crosswind blows over the upper part 181 is slightly greater than the distance passed when the crosswind blows over the lower part 182, so that the flow velocity when the crosswind passes through the upper part 181 is slightly greater than the flow velocity when the crosswind passes through the lower part 182, so that the upper part 181
  • the air pressure received by the outer surface is slightly smaller than the air pressure received by the outer surface of the lower part 182, thereby providing the upward power for the airship.
  • the surface area of the upper portion 181 is 1.3 times the surface area of the lower portion 182 . In another embodiment, the surface area of the upper portion 181 is 1.1 times the surface area of the lower portion 182 .
  • the above-mentioned airship is also provided with a staircase 193 extending from the cockpit 120 to the functional cabin 180; in another embodiment, Referring to Fig. 15, the airship is provided with a ladder 194 extending from the cockpit 120 to the functional cabin 180; At the same time, the folding ladder can extend from the functional cabin to the ground so that passengers can take the airship;
  • the maximum dimension of the cockpit 120 in the axial direction perpendicular to the first shaft body 130 is smaller than the maximum dimension of the functional cabin 180 in the axial direction perpendicular to the first shaft body 130 , and the function The maximum dimension of the cabin 180 in the axial direction perpendicular to the first shaft body 130 is smaller than the maximum dimension of the airbag 110 in the axial direction perpendicular to the first shaft body 130; Since the maximum dimension of the cockpit 120 perpendicular to the axial direction of the first shaft body 130 is relatively small, the area required for the landing of the flying boat can be reduced; in addition, when the ground where the flying boat needs to land is provided with a concave parking point, and When the dimensions of the concave parking point are larger than the size of the cockpit 120, the cockpit 120 and even the functional cabin 180 can be lowered into the concave parking point.
  • the airbag 110 can be located outside the concave parking point, thereby achieving safe and perfect parking.
  • the concave parking point can be a pit, a ring building with a groove inside, etc., as long as the concave parking point is used to accommodate the cockpit 120 .
  • the anchoring device 121 extending in the direction, so that when the airship lands on the ground, the anchoring device 121 can extend from the cockpit 120 along the axial direction of the first shaft body 130 and away from the airbag 110, and be embedded in the ground , so that the flying boat stops.
  • the anchoring device 121 is an auger type; it should be noted that, in order to adapt to different landing sites, in other embodiments, the anchoring device 121 can also be a buckle type or a long rod type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Bags (AREA)
  • Toys (AREA)

Abstract

本申请实施例涉及航空装置技术领域,特别涉及一种飞行船,包括:气囊(110)、驾驶舱(120)以及第一轴体(130);所述气囊(110)用于容纳控制所述飞行船上升的气体,所述气囊(110)以及所述驾驶舱(120)沿所述第一轴体(130)轴向方向依次设置并与所述第一轴体(130)固定、且所述气囊(110)与所述驾驶舱(120)之间留有间隔,所述气囊(110)以及所述驾驶舱(120)中的至少一者与所述第一轴体(130)可转动连接,其中,所述气囊(110)容纳控制所述飞行船上升的气体后,所述气囊(110)在垂直于所述第一轴体(130)轴向上的任一截面形状均为圆形或环形,所述第一轴体(130)轴向与重力方向同向。

Description

一种飞行船
相关申请的交叉引用
本申请基于申请号为“202110638580.7”、申请日为2021年06月08日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及航空装置技术领域,特别涉及一种飞行船。
背景技术
目前,飞行船是将密度小于空气的气体置于气囊中以产生浮力、并进行飞行的一种飞行器。
本申请发明人发现:在气囊容纳用于控制飞行船上升的气体之后,气囊的形状为多呈现为类球形或粗圆柱体、且多设置尾翼用以调整或改变航向,当飞行船进行转向时,为了避免位于驾驶舱内的操作人员的操作视角受限,气囊以及驾驶舱需以飞行船外的一点为圆心、并绕该点转动,进而致使飞行船机动性较差以及稳定性较差。
因此,亟需提供一种飞行船,以提升飞行船的机动性和稳定性。
发明内容
本申请实施例提供一种飞行船,包括:气囊、驾驶舱以及第一轴体;所述气囊用于容纳控制所述飞行船上升的气体,所述气囊以及所述驾驶舱沿所述第一轴体轴向方向依次设置并与所述第一轴体固定、且所述气囊与所述驾驶舱之间留有间隔,所述气囊以及所述驾驶舱中的至少一者与所述第一轴体可转动连接,其中,所述气囊容纳控制所述飞行船上升的气体后,所述气囊在垂直于所述第一轴体轴向上的任一截面形状均为圆形或环形,所述第一轴体轴向与重力方向同向。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的飞行船的结构示意图;
图2为本申请实施例提供的飞行船中气囊的在一个实施方式中的结构示意图;
图3为本申请实施例提供的气囊在受到侧风时的受力分析图;
图4为本申请实施例提供的气囊的结构示意图;
图5为本申请实施例提供的飞行船中固定部的在一个实施方式中的结构示意图;
图6为本申请实施例提供的环翼以及未容纳气体时的气囊的结构示意图;
图7为本申请实施例提供的固定部、第二刚性环以及多个连接部的结构示意图;
图8为本申请实施例提供的环翼、第二刚性环、多个连接部以及未容纳气体时的气囊的结构示意图;
图9为本申请实施例提供的第一动力装置、挡板、第一轴体、第二轴体、第二动力装置以及驾驶舱的结构示意图;
图10为本申请实施例提供的第一动力装置、挡板、第一轴体、第二轴体、第二动力装置以及驾驶舱的另一状态的结构示意图;
图11为本申请实施例提供的气囊、第二刚性环、环翼、连接部、中空杆以及功能舱的结构示意图;
图12为本申请实施例提供的飞行船中功能舱以及驾驶舱的在一个实施方式中的结构示意图;
图13为本申请实施例提供的飞行船中功能舱以及驾驶舱的在另一个实施方式中的结构示意图;
图14为本申请实施例提供的飞行船中功能舱以及驾驶舱的又一个实施方式中的结构示意图;
图15为本申请实施例提供的飞行船的在一个实施方式中的结构示意图;
图16为本申请实施例提供的飞行船去除楼梯的结构示意图;
图17为本申请实施例提供的飞行船去除楼梯的另一视角结构示意图;
图18为本申请实施例提供的驾驶舱以及锚定装置的结构示意图;
图19为本申请实施例提供的驾驶舱以及锚定装置的另一状态的结构示意图。
具体实施方式
本申请实施例提供一种飞行船,包括:气囊、驾驶舱以及第一轴体;气囊用于容纳控制所述飞行船上升的气体,气囊以及驾驶舱沿第一轴体轴向方向依次设置并与第一轴体固定、且气囊与驾驶舱之间留有间隔,气囊以及驾驶舱中的至少一者与第一轴体可转动连接,进而在气囊容纳控制飞行船上升的气体之后,当飞行船需进行转向时,仅需使得驾驶舱相对于气囊转动,即可避免位于驾驶舱内的操作人员的操作视角受限,进而避免在飞行船需进行转向时还需同时转动气囊,以提升飞行船运行时的操控性、机动性以及稳定性。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
参见图1,本申请实施例提供一种飞行船,包括:气囊110、驾驶舱120以及第一轴体130;气囊110用于容纳控制飞行船上升的气体,气囊110以及驾驶舱120沿第一轴体130轴向方向依次设置并与第一轴体130固定、且气囊110与驾驶舱120之间留有间隔,气囊110以及驾驶舱120中的至少一者与第一轴体130可转动连接,其中,气囊110容纳控制飞行船上升的气体后,气囊110在垂直于第一轴体130轴向上的任一截面形状均为圆形或环形,第一轴体130轴向与重力方向同向。
气囊110采用柔性且不透气的材料制作而成;在一实施方式,气囊110采用强化尼龙制作而成;在又一实施方式中,气囊采用涤纶制作而成。另外,驾驶舱120用于承载驾驶人员,在一实施方式中,驾驶舱120的壳体采用铝合金制作而成;在又一实施方式中,驾驶舱120的壳体采用合金钢制作而成;在另一实施方式中,为了减少飞行船的重量,驾驶舱120的壳体采用碳纤维制作而成。第一轴体130采用刚性材料制作而成;在一实施方式中,第一轴体130采用铝合金制作而成;在又一实施方式中,第一轴体130采用合金钢制作而成;在另一实施方式中,为了减少飞行船的重量,第一轴体130采用碳纤维制作而成。
在一实施方式中,驾驶舱120与第一轴体130刚性连接,气囊110与第一轴体130可转动连接,从而在飞行船需进行转向时,仅需同时转动驾驶舱120以及第一轴体130即可,气囊110可保持不动;在又一实施方式中,驾驶舱120与第一轴体130可转动连接,气囊110与第一轴体130刚性连接,从而在飞行船需进行转向时,仅需转动驾驶舱120即可,气囊110与第一轴体130可保持不动;在另一实施方式中,驾驶舱120以及气囊110均可转动地固定在第一轴体130上,从而在飞行船需进行转动时,既可仅转动驾驶舱120,也可同时转动驾驶舱120以及第一轴体130,此时,气囊110仍可保持不动。
在一些实施方式中,气囊110容纳控制飞行船上升的气体后,气囊110在垂直于第一轴体130轴向上的任一截面形状均为圆形。在一实施方式中,参见图2,气囊110容纳控制飞行船上升的气体后,气囊110在垂直于第一轴体130轴向上的任一截面形状均为环形。
在一些实施方式中,继续参见图1,上述飞行船还包括:固定部140;固定部140用于在气囊110容纳控制飞行船上升的气体后,拉扯气囊110、支撑气囊110、或限制气囊110沿重力方向膨胀,以使气囊110在垂直于重力方向上的最大尺寸大于气囊110在重力方向上的最大尺寸。
如此一来,当飞行船在飞行过程中或降落时遇见侧风时,进一步参见图3,在侧风吹向气囊110时,侧风对气囊110产生的风力F被分解与气囊110表面相切的第一分力F1以及垂直于第一分力F1的第二分力F2,由于本实施例提供的气囊110在重力方向上的最大尺寸小于气囊110在垂直于重力方向上的最大尺寸,因此,本实施例提供的气囊110相较于相关技术(即气囊为球形的飞行船)的气囊,减小了侧风对气囊110产生的第二分力F2,进而降低了侧风对气囊110的影响,以避免飞行船产生大幅偏移。
继续参见图1、并参见图4,在此定义:气囊110内填充用于控制飞行船上升的气体之后,气囊110在垂直于第一轴体130轴向上的最大尺寸为第一尺寸W,气囊110在第一轴体130轴向方向上的最大尺寸为第二尺寸H,也即上述飞行船在飞行过程中,气囊110在垂直于重力方向上的最大尺寸为第一尺寸W,气囊110在重力方向上的最大尺寸为第二尺寸H。
在一些实施方式中,第一尺寸W为第二尺寸H的4-9倍;如此一来,可进一步减小上述飞行船在飞行过程中,气囊110在重力方向上的最大尺寸,使得飞行船在飞行过程中遇见侧风时,进一步进而降低侧风对气囊110的影响,从而进一步避免飞行船产生大幅偏移。
在一些实施方式中,第一尺寸W为第二尺寸H的5-7倍。在一实施方式中,第一尺寸W为第二尺寸H的6倍。
在一些实施方式中,固定部140为第一刚性环,第一刚性环(即固定部140)的内环面或外环面与气囊110固定,第一刚性环在气囊110容纳控制飞行船上升的气体后、拉扯或支撑气囊,以使气囊110在垂直于重力方向上的最大尺寸大于气囊110在重力方向上的最大尺寸。
在一些实施方式中,第一刚性环采用刚性材料制作而成;在一实施方式中,第一刚性环采用铝合金制作而成;在又一实施方式中,第一刚性环采用合金钢制作而成;在另一实施方式中,为了减少飞行船的重量,第一刚性环采用碳纤维制作而成。
需要说明的是,在其他的实施方式中,固定部140也可不为第一刚性环,只要固定部140可用于在气囊110容纳控制飞行船上升的气体后,拉扯气囊110、支撑气囊110、或限制气囊110沿重力方向膨胀,以使气囊110在垂直于重力方向上的最大尺寸大于气囊110在重力方向上的最大尺寸即可。
在一实施方式中,参见图5,固定部140为多根绳索,每个绳索(即固定部140)的两端均与气囊110的内壁面固定,多根绳索在气囊110容纳控制飞行船上升的气体后、拉扯气囊110,以使气囊110在垂直于重力方向上的最大尺寸大于气囊110在重力方向上的最大尺寸。
在又实施方式中,固定部140为框架,气囊110位于框架内,框架在气囊110容纳控制飞行船上升的气体后限制气囊110沿重力方向膨胀,使气囊110在垂直于重力方向上的最大 尺寸大于气囊110在重力方向上的最大尺寸。
在一实施方式中,参见图6至图8,上述飞行船还包括:环绕气囊的环翼150,第一刚性环与环翼150固定、并通过环翼150拉扯气囊110。
当气囊110内容纳用于控制飞行船上升的气体之后,由于环翼150与第一刚性环固定、且环翼150还与气囊110固定,从而使得环翼150位于第一刚性环与气囊110之间的部分呈拉平状态,在飞行船飞行、并欲产生颠簸时,通过环翼150增加飞行船与空气的接触面积,进而增加空气对飞行船产生的阻力,进一步避免飞行船产生颠簸。
在一实施方式中,环翼150的内边缘与气囊110的外边缘固定,环翼150的外边缘设有用于包裹第一刚性环的包裹部151,包裹部151包裹第一刚性环,以使得第一刚性环与环翼150固定、并通过环翼150拉扯气囊110,进而在气囊110容纳用于控制飞行船上升的气体之后,使得气囊110在垂直于第一刚性环轴向(也即第一轴体130轴向)上的最大尺寸大于气囊110在第一刚性环轴向方向上的最大尺寸,并使整个环翼150都呈拉平状态;在又一实施方式中,环翼150为中空结构,第一刚性环位于环翼150内部,从而使得第一刚性环从环翼150内部支撑环翼、并通过环翼150拉扯气囊110,进而在气囊110容纳用于控制飞行船上升的气体之后,可使得气囊110在垂直于第一刚性环轴向上的最大尺寸大于气囊110在第一刚性环轴向方向上的最大尺寸,也可使得整个环翼150呈拉平状态。
此外,需要说明的是,在其他的实施方式中,也可仅设有第一刚性环以及气囊110,并由第一刚性环直接拉扯或支撑气囊110,以使得气囊110在垂直于第一刚性环轴向上的最大尺寸大于气囊110在第一刚性环轴向方向上的最大尺寸;在一实施方式中,第一刚性环位于气囊110内部、且第一刚性环的外环面与气囊110内壁面贴合并固定,从而使得第一刚性环从气囊110内部支撑气囊;在另一实施方式中,第一刚性环位于气囊110外部、且第一刚性环的内环面与气囊110外壁面固定,从而使得第一刚性环从气囊110外部拉扯气囊。
在一些实施方式中,环翼150采用柔性材料制作而成;在一实施方式中,环翼150采用强化尼龙制作而成;在又一实施方式中,环翼150采用涤纶制作而成。
在一些实施方式中,继续参见图1、图7以及图8,上述飞行船还包括:两个第二刚性环161以及多个连接部162,两个第二刚性环161均与第一刚性环同轴设置、且两个第二刚性环161沿第一刚性环轴向依次设置,第一刚性环位于两个第二刚性环161之间,多个连接部162沿第一刚性环周向分布、且每一连接部162均与第一刚性环以及两个第二刚性环161相连。如此一来,当在第一刚性环受力时,第一刚性环可将力经由多个连接部162传递至两个第二刚性环161上,进而减少第一刚性环的受力,从而避免第一刚性环在受力时易产生形变。
需要说明是,在其他的实施方式中,飞行船也可包括其他结构,从而在第一刚性环受力 时,第一刚性环可将受力传递至其他结构上,进而避免第一刚性环受力时产生形变;在一实施方式中,上述飞行船包括多个连接柱(图中未示出)以及多个绳索(图中未示出),多个连接柱沿第一刚性环周向分布、且每个连接柱两端之间的部位与第一刚性环固定,任一连接柱的任一端均固定有两个绳索的一端、且两个绳索的另一端位于该连接柱的两侧并固定在第一刚性环上,进而使得第一刚性环、多个连接柱以及多个绳索形成张拉结构,以在第一刚性环受力时,第一刚性环可将受力传递至绳索以及连接柱上,避免第一刚性环在受力时易产生形变。
在一些实施方式中,继续参见图4与图8,气囊110包括:沿第一轴体130轴向依次设置的顶部111、连接部112以及底部113,顶部111与底部113相对设置,连接部112与顶部111以及底部113相连并共同围成气囊110,第一刚性环与连接部112固定,连接部112在垂直于第一刚性环轴向上的最大尺寸大于顶部111以及底部113任一者在垂直于第一刚性环轴向上的最大尺寸。在一实施方式中,第一刚性环通过环翼150与连接部112固定。
在一些实施方式中,顶部111的表面积为底部113的表面积1-1.3倍。
在一实施方式中,顶部111的表面积与底部113的表面积相同;如此一来,上述飞行船在飞行过程中遇见侧风时,侧风吹过顶部111时经过的距离与侧风吹过底部113时经过的距离相同,进而使得侧风经过顶部111时的流速与侧风经过底部113时的流速相同,从而使得顶部111外表面受到的气压与底部113外表面受到的气压相同,以进一步提升飞行船在运行时的操控性以及稳定性。
在一些实施方式中,由于气囊110与驾驶舱120之间留有间隔,当飞行船在飞行过程中遇见侧风时,侧风可通过气囊110与驾驶舱120之间的间隔流经底部113的表面,仍可使得侧风吹过顶部111时经过的距离与侧风吹过底部113时经过的距离仍然相同。
需要说明的是,在其他的实施方式中,顶部111的表面积也可大于底部113的表面积、并不超过底部113的表面积的1.3倍;如此一来,当上述飞行船在飞行过程中遇见侧风时,侧风吹过顶部111时经过的距离略大于侧风吹过底部113时经过的距离,进而使得侧风经过顶部111时的流速略大于侧风经过底部113时的流速,从而使得顶部111外表面受到的气压略小于底部113外表面受到的气压,进而为飞行船提供上升的动力。在一实施方式中,顶部111的表面积为底部113的表面积的1.3倍。在另一实施方式中,顶部111的表面积为底部113的表面积的1.1倍。
在一些实施方式中,继续参见图1,上述飞行船还可包括:第二轴体171、第一动力装置172以及第二动力装置173;第二轴体171与第一轴体130同轴设置,第二轴体171以及第一动力装置172位于气囊110远离驾驶舱120的一侧,第一动力装置172与第二轴体171固定, 第二动力装置173位于气囊110与驾驶舱120之间、并与第一轴体130固定,其中,第一动力装置172以及第二动力装置173用于驱动飞行船沿垂直于第一轴体130轴向移动,或,第一动力装置172以及第二动力装置173用于驱动飞行船沿第一轴体130轴向移动;驾驶舱120用于控制第一动力装置172以及第二动力装置173沿第一轴体130周向转动。
如此一来,在第一动力装置172以及第二动力装置173驱动飞行船沿垂直于第一轴体130轴向移动时,第一动力装置172以及第二动力装置173产生的合力位于飞行船的重心处,进而提升飞行船在运行时的稳定性。
在一实施方式中,第一轴体130贯穿气囊110并于第二轴体171相连。在一个例子中,第一轴体位于气囊靠近驾驶舱的一侧并与气囊固定,此时,第一轴体不与第二轴体相连。
继续参见图1、并参见图9与图10,在一实施方式中,第一动力装置172以及第二动力装置173均包括:第三轴体174、桨叶175以及转动部176,桨叶175通过转动部176可转动地固定在第三轴体174的一端,其中,第一动力装置172的第三轴体174与第二轴体171固定,第二动力装置173的第三轴体174与第一轴体130固定。
当飞行船需沿垂直于第一轴体130轴向移动时,第一动力装置172以及第二动力装置173的桨叶175通过转动部176转动至桨叶175的叶面与第一轴体130的轴向平行,此时,当桨叶175运行时,即可驱动飞行船沿垂直于第一轴体130轴向移动,此外,还可通过驾驶舱120控制第一动力装置172以及第二动力装置173沿第一轴体130周向转动,从而使得第一动力装置172以及第二动力装置173提供驱动飞行船沿任一垂直于第一轴体130轴向方向的动力。
在一实施方式中,当飞行船需沿第一轴体130轴向并靠近地面的方向移动时,第一动力装置172的桨叶175经由转动部176转动至桨叶175的叶面与第一轴体130的轴向垂直,此时,当桨叶175运行时,即可驱动飞行船沿第一轴体130轴向并靠近地面的方向移动;当飞行船需沿第一轴体130轴向并远离地面的方向移动时,第二动力装置173的桨叶175经由转动部176转动至桨叶175的叶面与第一轴体130的轴向垂直,此时,当桨叶175运行时,即可驱动飞行船沿第一轴体130轴向并远离地面的方向移动。
此外,需要说明的是,在其他的实施方式中,第一动力装置172以及第二动力装置173也可采用其他结构,以使得第一动力装置172以及第二动力装置173可用于驱动飞行船沿垂直于第一轴体130轴向移动,或,第一动力装置172以及第二动力装置173可用于驱动飞行船沿第一轴体130轴向移动;在一实施方式中,第一动力装置172以及第二动力装置173为电动马达(图中未示出)、活塞式发动机(图中未示出)或涡轮式发动机(图中未示出),当飞行船需向一个方向移动时,电动马达、活塞式发动机或涡轮式发动机向该方向的相反方向喷出气体,从而使得电动马达、活塞式发动机或涡轮式发动机可推动其附近的空气沿该方向 的相反方向移动,此时,空气在受到电动马达、活塞式发动机或涡轮式发动机提供的力时,空气向电动马达、活塞式发动机或涡轮式发动机提供反作用力,进而使得空气推动电动马达、活塞式发动机或涡轮式发动机乃至于飞行船沿该方向移动。
在一实施方式中,第一动力装置172与第二轴体171刚性连接,第二动力装置173以及驾驶舱120与第一轴体130刚性连接,气囊110可沿第一轴体130周向转动地固定在第一轴体130上。如此一来,由于第二轴体171与第一轴体130相连,当飞行船需沿垂直于第一轴体130轴向的任一方向移动时,可转动驾驶舱120以避免位于驾驶舱120内的操作人员操作视角受限的同时,还可同步转动第一轴体130、并经由第一轴体130一同转动第一动力装置172以及第二动力装置173,从而便于第一动力装置172以及第二动力装置173提供飞行船沿该方向移动的动力。
在一实施方式中,第一动力装置172可与第二轴体171可转动连接,第二动力装置172以及驾驶舱120也可与第一轴体130可转动连接,如此,当飞行船需沿垂直于第一轴体130轴向的任一方向移动时,可使得驾驶舱120相对于第一轴体130转动以避免位于驾驶舱120内的操作人员操作视角受限,并通过驾驶舱120控制第一动力装置172以及第二动力装置173沿第一轴体130周向转动,以使得第一动力装置172以及第二动力装置173可提供飞行船该方向移动的动力。
在一些实施方式中,继续参见图1、并同时参见图11,上述飞行船还包括:功能舱180;气囊110以及功能舱180可沿第一轴体130周向转动地固定在第一轴体130上。如此一来,当飞行船需进行转向时,仅转动驾驶舱120即可避免驾驶舱120内的操作人员的操作视角受限,进而避免在转动驾驶舱120时还需同时转动气囊110以及功能舱180,以提升飞行船运行时的操控性、机动性以及稳定性。
在一实施方式中,功能舱180位于气囊110以及驾驶舱120之间、且功能舱180与气囊110以及驾驶舱120之间均留有间隔;第二动力装置173位于功能舱180以及驾驶舱120之间、第二动力装置173与功能舱180以及驾驶舱120之间均留有间隔。
在一实施方式中,功能舱180为封闭式;需要说明的是,在其他的实施方式中,功能舱180也可为半封闭式、无顶式、敞篷式、或双层甲板式。
在一些实施方式中继续参见图1、图9、图10以及图11,上述飞行船还包括:中空杆191以及挡板192,气囊110以及功能舱180固定在中空杆191上,中空杆191可转动地套设在第一轴体130上,从而使得气囊110以及功能舱180可转动地固定在第一轴体130上,挡板192均固定在第一轴体130上、且挡板192紧贴中空杆191远离驾驶舱120的一端,从而避免中空杆191沿第一轴体130轴向、并远离驾驶舱120的方向移动。
由于功能舱180与气囊110以及驾驶舱120之间均留有间隔,因此,当飞行船在飞行过程中遇见侧风时,侧风可通过气囊110与功能舱180之间的间隔流经底部113的表面,仍可使得侧风吹过顶部111时经过的距离与侧风吹过底部113时经过的距离相同。
需要说明的是,在其他的实施方式中,驾驶舱120和功能舱180也可设置在其他位置、并用于载客或是存放其他物品;在一实施方式中,参见图12,功能舱180位于气囊110内并位于气囊110的底部,驾驶舱120与功能舱180的底部相连;在另一实施方式中,参见图13,功能舱180位于气囊110内并位于气囊110的底部,驾驶舱120位于功能舱180的底部且与功能舱180之间留有间隔;在又一实施方式中,参见图14,功能舱180环绕气囊110并与气囊110固定,驾驶舱120位于气囊110的底部且与气囊110之间留有间隔。
在一些实施方式中,继续参见图1,功能舱180包括:上部181,以及与上部181相对设置、并与上部181相连的下部182;上部181以及下部182沿第一轴体130轴向依次设置,上部181的表面积为下部182的表面积1-1.3倍。
在一实施方式中,上部181的表面积与下部182的表面积相同,如此一来,在上述飞行船在飞行过程中遇见侧风时,侧风吹过上部181时经过的距离与侧风吹过下部182时经过的距离相同,进而使得侧风经过上部181时的流速与侧风经过下部182时的流速相同,从而使得上部181外表面受到的气压与下部182外表面受到的气压相同,进而进一步提升飞行船在运行时的稳定性。
需要说明的是,在其他的实施方式中,上部181的表面积也可大于下部182的表面积、并不超过下部182的表面积的1.3倍;如此一来,当上述飞行船在飞行过程中遇见侧风时,侧风吹过上部181时经过的距离略大于侧风吹过下部182时经过的距离,进而使得侧风经过上部181时的流速略大于侧风经过下部182时的流速,从而使得上部181外表面受到的气压略小于下部182外表面受到的气压,进而为飞行船提供上升的动力。在一实施方式中,上部181的表面积为下部182的表面积的1.3倍。在另一实施方式中,上部181的表面积为下部182的表面积的1.1倍。
在一些实施方式中,继续参见图1,为了便于乘客乘坐飞行船,在一实施方式中,上述飞行船还设有自驾驶舱120延伸至功能舱180的楼梯193;在又一实施方式中,参见图15,飞行船设有自驾驶舱120延伸至功能舱180的爬梯194;在另一实施方式中,功能舱180设有折叠梯(图中未示出),当飞行船停在地面上时,折叠梯可自功能舱延伸至地面、以便于乘客乘坐飞行船;在再一实施方式中,飞行船设有自驾驶舱120延伸至功能舱180的电梯。
在一些实施方式中,参见图16与图17,驾驶舱120在垂直于第一轴体130轴向上的最大尺寸小于功能舱180在垂直于第一轴体130轴向上的最大尺寸,功能舱180在垂直于第一 轴体130轴向上的最大尺寸小于气囊110在垂直于第一轴体130轴向上的最大尺寸;如此一来,当飞行船需从空中降落至地面上时,由于驾驶舱120在垂直于第一轴体130轴向上的最大尺寸较小,可减小飞行船降落时所需的面积;另外,当飞行船所需降落的地面设有凹型停放点,且该凹型停放点各尺寸均大于驾驶舱120的尺寸时,可将驾驶舱120乃至于功能舱180降落至凹型停放点中,此时,气囊110可位于凹型停放点外,从而达到安全完善的停泊状态,其中,凹型停放点可以是凹坑、内部具有凹槽的环形建筑等,只要凹型停放点用于容纳驾驶舱120即可。
在一些实施方式中,继续参见图1,并同时参见图18与图19,飞行船还包括:位于驾驶舱120内、并可自驾驶舱120沿第一轴体130轴向且远离气囊110的方向延伸的锚定装置121,如此一来,当飞行船降落在地面上时,锚定装置121可自驾驶舱120沿第一轴体130轴向且远离气囊110的方向延伸、并嵌入地面中,从而使飞行船停稳。在一实施方式中,锚定装置121为螺旋钻头式;需要说明的是,为了适应不同的降落场地,在其他的实施方式中,锚定装置121也可为环扣式或长竿式。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各自更动与修改,因此本申请的保护范围应当以权利要求限定的范围为准。

Claims (13)

  1. 一种飞行船,其特征在于,包括:气囊(110)、驾驶舱(120)以及第一轴体(130);
    所述气囊(110)用于容纳控制所述飞行船上升的气体,所述气囊(110)以及所述驾驶舱(120)沿所述第一轴体(130)轴向方向依次设置并与所述第一轴体(130)固定、且所述气囊(110)与所述驾驶舱(120)之间留有间隔,所述气囊(110)以及所述驾驶舱(120)中的至少一者与所述第一轴体(130)可转动连接,其中,所述气囊(110)容纳控制所述飞行船上升的气体后,所述气囊(110)在垂直于所述第一轴体(130)轴向上的任一截面形状均为圆形或环形,所述第一轴体(130)轴向与重力方向同向。
  2. 根据权利要求1所述的飞行船,其特征在于,还包括:固定部(140);
    所述固定部(140)用于在所述气囊(110)容纳控制所述飞行船上升的气体后,拉扯所述气囊(110)、支撑所述气囊(110)、或限制所述气囊(110)沿重力方向膨胀,以使所述气囊(110)在垂直于重力方向上的最大尺寸大于所述气囊(110)在重力方向上的最大尺寸。
  3. 根据权利要求2所述的飞行船,其特征在于,所述气囊(110)容纳控制所述飞行船上升的气体后,所述气囊(110)在垂直于重力方向上的最大尺寸为第一尺寸,所述气囊(110)在重力方向上的最大尺寸为第二尺寸,所述第一尺寸为所述第二尺寸的3-9倍。
  4. 根据权利要求2所述的飞行船,其特征在于,所述固定部(140)为第一刚性环,所述第一刚性环的内环面或外环面与所述气囊(110)固定,所述第一刚性环在所述气囊(110)容纳控制所述飞行船上升的气体后、拉扯或支撑所述气囊(110),以使所述气囊(110)在垂直于重力方向上的最大尺寸大于所述气囊(110)在重力方向上的最大尺寸。
  5. 根据权利要求4所述的飞行船,其特征在于,还包括:环绕所述气囊(110)的环翼(150),所述第一刚性环与所述环翼(150)固定、并通过所述环翼(150)拉扯所述气囊(110)。
  6. 根据权利要求4所述的飞行船,其特征在于,还包括:两个第二刚性环(161)以及多个连接部(162),所述两个第二刚性环(161)均与所述第一刚性环同轴设置、且所述两个第二刚性环(161)沿所述第一刚性环轴向依次设置,所述第一刚性环位于所述两个第二刚性环(161)之间,所述多个连接部(162)沿所述第一刚性环周向分布、且每一所述连接部(162)均与所述第一刚性环以及所述两个第二刚性环(161)相连。
  7. 根据权利要求4所述的飞行船,其特征在于,所述气囊(110)包括:沿所述第一轴体(130)轴向依次设置的顶部(111)、连接部(112)以及底部(113),所述顶部(111)与所述底部(113)相对设置,所述连接部(112)与所述顶部(111)以及所述底部(113)相连并共同围成所述气囊(110),所述第一刚性环与所述连接部(112)固定,所述连接部(112)在垂直于所述第一刚性环轴向上的最大尺寸大于所述顶部(111)以及所述底部(113)任一者在垂直于所述第一刚性环轴向上的最大尺寸,其中,所述顶部(111)的表面积为所述底部(113)的表面积1-1.3倍。
  8. 根据权利要求1-7任一项所述的飞行船,其特征在于,还包括:第二轴体(171)、第一动力装置(172)以及第二动力装置(173);
    所述第二轴体(171)与所述第一轴体(130)同轴设置,所述第二轴体(171)以及所述第一动力装置(172)位于所述气囊(110)远离所述驾驶舱(120)的一侧,所述第一动力装置(172)与所述第二轴体(171)固定,所述第二动力装置(173)位于所述气囊(110)与所述驾驶舱(120)之间、并与所述第一轴体(130)固定,其中,所述第一动力装置(172)以及所述第二动力装置(173)用于驱动所述飞行船沿垂直于所述第一轴体(130)轴向移动,或,所述第一动力装置(172)以及所述第二动力装置(173)用于驱动所述飞行船沿所述第一轴体(130)轴向移动;
    所述驾驶舱(120)用于控制所述第一动力装置(172)以及所述第二动力装置(173)沿所述第一轴体(130)周向转动。
  9. 根据权利要求8所述的飞行船,其特征在于,所述第一动力装置(172)以及所述第二动力装置(173)均包括:第三轴体(174)、桨叶(175)以及转动部(176),所述桨叶(175)通过所述转动部(176)可转动地固定在所述第三轴体(174)的一端,其中,所述第一动力装置(172)的第三轴体(174)与所述第二轴体(171)固定,所述第二动力装置(173)的第三轴体(174)与所述第一轴体(130)固定。
  10. 根据权利要求8所述的飞行船,其特征在于,所述第一动力装置(172)与所述第二轴体(171)刚性连接,所述第二动力装置(173)以及所述驾驶舱(120)与所述第一轴体(130)刚性连接,所述气囊(110)可沿所述第一轴体(130)周向转动地与所述第一轴体(130)固定。
  11. 根据权利要求1-7任一项所述的飞行船,其特征在于,还包括:功能舱(180);
    所述气囊(110)以及所述功能舱(180)可沿所述第一轴体(130)周向转动地固定在所述第一轴体(130)上,所述驾驶舱(120)与所述第一轴体(130)刚性连接。
  12. 根据权利要求11所述的飞行船,其特征在于,所述功能舱(180)位于所述气囊(110)以及所述驾驶舱(120)之间、且所述功能舱(180)与所述气囊(110)以及所述驾驶舱(120)之间均留有间隔。
  13. 根据权利要求12所述的飞行船,其特征在于,所述功能舱(180)包括:上部(181),以及与所述上部(181)相对设置、并与所述上部(181)相连的下部(182);
    所述上部(181)以及所述下部(182)沿所述第一轴体(130)轴向依次设置,所述上部(181)的表面积为所述下部(182)的表面积1-1.3倍。
PCT/CN2022/085878 2021-06-08 2022-04-08 一种飞行船 WO2022257586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110638580.7 2021-06-08
CN202110638580.7A CN115447752A (zh) 2021-06-08 2021-06-08 一种飞行船

Publications (1)

Publication Number Publication Date
WO2022257586A1 true WO2022257586A1 (zh) 2022-12-15

Family

ID=84285960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085878 WO2022257586A1 (zh) 2021-06-08 2022-04-08 一种飞行船

Country Status (3)

Country Link
US (1) US11702184B2 (zh)
CN (1) CN115447752A (zh)
WO (1) WO2022257586A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064253A1 (de) * 2002-01-30 2003-08-07 Konrad Walter Fluggerät
TW200631858A (en) * 2005-01-18 2006-09-16 Multimax Inc Hybrid unmanned vehicle for high altitude operations
US20110198438A1 (en) * 2010-02-18 2011-08-18 21St Century Airship Technologies Inc. Propulsion and steering system for an airship
CN104925257A (zh) * 2015-07-03 2015-09-23 华中科技大学 一种低空长航时飞行器
CN105083522A (zh) * 2015-08-02 2015-11-25 王建勤 一种碟形充气式飞行器及飞行控制方法
CN211711042U (zh) * 2020-01-03 2020-10-20 陈茂常 一种飞艇和多旋翼无人机组合的飞行器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP9802787A1 (hu) * 1998-12-01 2000-09-28 Gábor Fazakas Repülőszerkezet forgószárny körüli önsúlykompenzáló radiális gázcellákkal
WO2001072588A1 (en) * 2000-03-28 2001-10-04 Friedrich Grimm Guidable airship with a nozzle-shaped hollow body
AT500009A1 (de) * 2003-10-03 2005-10-15 Franz Autherith Flugkörper
CN105836096B (zh) * 2016-02-29 2018-01-02 上海交通大学 基于欧拉体的浮空器平台及其装配方法
CN110015396B (zh) * 2019-04-08 2022-05-27 上海交通大学 一种大尺度半刚性结构飞艇
CN113086154A (zh) * 2021-04-12 2021-07-09 中国空气动力研究与发展中心空天技术研究所 一种飞艇与无人机异构组合的飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064253A1 (de) * 2002-01-30 2003-08-07 Konrad Walter Fluggerät
TW200631858A (en) * 2005-01-18 2006-09-16 Multimax Inc Hybrid unmanned vehicle for high altitude operations
US20110198438A1 (en) * 2010-02-18 2011-08-18 21St Century Airship Technologies Inc. Propulsion and steering system for an airship
CN104925257A (zh) * 2015-07-03 2015-09-23 华中科技大学 一种低空长航时飞行器
CN105083522A (zh) * 2015-08-02 2015-11-25 王建勤 一种碟形充气式飞行器及飞行控制方法
CN211711042U (zh) * 2020-01-03 2020-10-20 陈茂常 一种飞艇和多旋翼无人机组合的飞行器

Also Published As

Publication number Publication date
US20220388623A1 (en) 2022-12-08
US11702184B2 (en) 2023-07-18
CN115447752A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
US11912404B2 (en) Vertical takeoff and landing aircraft
EP2576339B1 (en) Super-rigid hybrid airship and method of producing it
US6286783B1 (en) Aircraft with a fuselage substantially designed as an aerodynamic lifting body
US6402088B1 (en) Passenger vehicle employing a circumferentially disposed rotatable thrust assembly
US10967964B2 (en) Air wheel rotor, a gyro stabilized aircraft and a wind-driven power generator using the air wheel rotor, and a stationary launching device
US7059562B2 (en) Vertical lift flying craft
US9802690B2 (en) Cargo airship
US4695012A (en) Aerial load-lifting system
US7070145B2 (en) Tailboom-stabilized VTOL aircraft
US5071090A (en) Airship
US4778128A (en) Flying disc aircraft
US20110198438A1 (en) Propulsion and steering system for an airship
US20110155840A1 (en) Morphing aircraft
US6142414A (en) Rotor--aerostat composite aircraft
US11247783B1 (en) Aircraft
WO2013085589A2 (en) Improved wing-in-ground effect vessel
US3801044A (en) Ballooned, stol aircraft
US20160376002A1 (en) Aircraft with Rotating Outer Shell
WO2022257586A1 (zh) 一种飞行船
CA2693672A1 (en) Propulsion and steering system for an airship
RU2114765C1 (ru) Комбинированный летательный аппарат
RU2201379C2 (ru) Аэростатический аппарат
RU2348567C2 (ru) Универсальный летательный аппарат
RU2410284C1 (ru) Способ полета и летательный аппарат для реализации способа
WO2001072588A1 (en) Guidable airship with a nozzle-shaped hollow body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819190

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P6002818/2023

Country of ref document: AE

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22819190

Country of ref document: EP

Kind code of ref document: A1