WO2022257556A1 - 确定电池包荷电状态的装置和方法 - Google Patents

确定电池包荷电状态的装置和方法 Download PDF

Info

Publication number
WO2022257556A1
WO2022257556A1 PCT/CN2022/083408 CN2022083408W WO2022257556A1 WO 2022257556 A1 WO2022257556 A1 WO 2022257556A1 CN 2022083408 W CN2022083408 W CN 2022083408W WO 2022257556 A1 WO2022257556 A1 WO 2022257556A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery pack
charge
state
aging rate
Prior art date
Application number
PCT/CN2022/083408
Other languages
English (en)
French (fr)
Inventor
李东江
李俭
盛杰
Original Assignee
蜂巢能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技股份有限公司 filed Critical 蜂巢能源科技股份有限公司
Publication of WO2022257556A1 publication Critical patent/WO2022257556A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Definitions

  • the present disclosure relates to the technical field of batteries, in particular to a device and method for determining the state of charge of a battery pack.
  • Lithium iron phosphate (English: Lithium Iron Phosphate, abbreviation: LFP) battery has the advantages of long cycle life, low cost, wide abundance of raw materials, safe system and not easy to fire, etc. It is one of the important choices for power batteries.
  • SOC (English: State of Charge, Chinese: State of Charge) is an important parameter to evaluate the state of the battery, which is of great significance to the safe and efficient use of the battery.
  • the SOC of the LFP battery pack is mainly calculated by the ampere-hour integration method combined with OCV (English: Open Circuit Voltage, Chinese: Open Circuit Voltage).
  • OCV Open Circuit Voltage
  • the OCV-SOC curve of LFP battery pack is relatively flat, which will affect the accuracy of calculating SOC.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • an object of the present disclosure is to propose a device for determining the state of charge of a battery pack.
  • a device for determining the state of charge of a battery pack includes a controller, a battery pack and active components, the controller is connected to the battery pack, The battery pack and the active components form a battery pack circuit, and the cells in the battery pack are connected in series with the active components;
  • the controller is configured to acquire the first element voltage of the active element and the first total voltage of the battery pack circuit at the first energization moment, and obtain the second element voltage of the active element at the second energization moment and the second total voltage of the battery pack circuit and the amount of electricity passing through the battery pack circuit from the first power-on moment to the second power-on moment;
  • the controller is further configured to determine the first aging of the battery pack according to the first element voltage, the second element voltage, the first total voltage, the second total voltage and the electric quantity rate and a second aging rate of said active element;
  • the controller is further configured to acquire the current third element voltage of the active element, and determine the current battery pack voltage according to the third element voltage, the first aging rate and the second aging rate. target state of charge.
  • controller is used for:
  • the first aging rate and the second aging rate are determined according to the first state of charge change, the second state of charge change and the electric quantity.
  • controller is used for:
  • the first formula includes:
  • f LFP is the first aging rate
  • Q LFP is the first initial capacity of the battery pack
  • ⁇ Q is the electric quantity
  • ⁇ x is the change amount of the first state of charge
  • the second formula includes:
  • f RE is the second aging rate
  • Q RE is the second initial capacity of the active element
  • ⁇ y is the second state of charge variation.
  • controller is used for:
  • the element charge state of the active element is determined by using a preset correspondence relationship, the preset correspondence relationship is the element voltage of the active element and the charge of the active element Correspondence between electrical states;
  • the third formula includes:
  • x is the target state of charge
  • x0 is the first initial state of charge of the battery pack
  • y is the state of charge of the component
  • y0 is the second initial state of charge of the active component
  • Q LFP is the first initial capacity of the battery pack
  • Q RE is the second initial capacity of the active components
  • f LFP is the first aging rate
  • f RE is the second aging rate.
  • the device further includes a first voltage sampler and a second voltage sampler, the first voltage sampler is used to collect the element voltage of the active element, and the second voltage sampler is used to collect the The total voltage of the battery pack circuit;
  • the active element is arranged outside the battery pack; or, the active element is arranged inside the battery pack.
  • Another object of the present disclosure is to provide a method for determining the state of charge of a battery pack.
  • a method for determining the state of charge of a battery pack which is applied to a device for determining the state of charge of a battery pack, the device includes a battery pack and active components, and the battery pack is connected to the active element.
  • the source element constitutes a battery pack circuit, and the cells in the battery pack are connected in series with the active element, and the method includes:
  • the first component voltage, the second component voltage, the first total voltage, the second total voltage and the electric quantity determine a first aging rate of the battery pack and a first aging rate of the active component second aging rate
  • the first total voltage, the second total voltage, the first element voltage, the second element voltage and the electric quantity, the first aging rate and The second aging rate of the active element comprises:
  • the first aging rate and the second aging rate are determined according to the first state of charge change, the second state of charge change and the electric quantity.
  • the determining the first aging rate and the second aging rate according to the first state of charge change, the second state of charge change and the electric quantity includes:
  • the first formula includes:
  • f LFP is the first aging rate
  • Q LFP is the first initial capacity of the battery pack
  • ⁇ Q is the electric quantity
  • ⁇ x is the change amount of the first state of charge
  • the second formula includes:
  • f RE is the second aging rate
  • Q RE is the second initial capacity of the active element
  • ⁇ y is the second state of charge variation.
  • the determining the current target state of charge of the battery pack according to the voltage of the third element, the first aging rate and the second aging rate includes:
  • the element charge state of the active element is determined by using a preset correspondence relationship, the preset correspondence relationship is the element voltage of the active element and the charge of the active element Correspondence between electrical states;
  • the third formula includes:
  • x is the target state of charge
  • x0 is the first initial state of charge of the battery pack
  • y is the state of charge of the component
  • y0 is the second initial state of charge of the active component
  • Q LFP is the first initial capacity of the battery pack
  • Q RE is the second initial capacity of the active components
  • f LFP is the first aging rate
  • f RE is the second aging rate.
  • the device further includes a first voltage sampler and a second voltage sampler, the first voltage sampler is used to collect the element voltage of the active element, and the second voltage sampler is used to collect the The total voltage of the battery pack circuit;
  • the active element is arranged outside the battery pack; or, the active element is arranged inside the battery pack.
  • the device for determining the state of charge of the battery pack in the present disclosure includes a controller, a battery pack and active components, the battery pack and the active components constitute a battery pack circuit, and the batteries in the battery pack and the active components
  • the controller is used to obtain the first total voltage of the battery pack circuit and the first component voltage of the active components at the first power-on moment, and the second total voltage of the battery pack circuit and the active component voltage at the second power-on time
  • the first aging rate and the second aging rate of the active element and then obtain the third element voltage of the current active element, and determine the target load of the current battery pack according to the third element voltage, the first aging rate and the second aging rate power state.
  • the battery pack is connected in series with the active components to charge and discharge, so that the total voltage of the battery pack circuit can change monotonously with the charging and discharging time, and the current battery pack is determined by the total voltage of the battery pack circuit and the component voltage of the active components
  • the target state of charge of the battery pack improves the accuracy of determining the state of charge of the battery pack.
  • FIG. 1 is a schematic diagram of a device for determining the state of charge of a battery pack according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of another device for determining the state of charge of a battery pack according to another embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of another device for determining the state of charge of a battery pack according to another embodiment of the present disclosure
  • Fig. 4 is a flow chart of another method for determining the state of charge of a battery pack according to another embodiment of the present disclosure
  • FIG. 5 is a flowchart of a step 202 shown in the embodiment shown in FIG. 4;
  • FIG. 6 is a flowchart of a step 203 shown in the embodiment shown in FIG. 4 .
  • Fig. 1 is a block diagram of a device for determining the state of charge of a battery pack according to an exemplary embodiment.
  • the device 100 includes a controller 101, a battery pack 102 and an active element 103, the controller 101 is connected to the battery pack 102, the battery pack 102 and the active element 103 constitute a battery pack circuit, and the battery pack 102 The electric core is connected in series with the active element 103 .
  • the controller 101 is configured to obtain the first element voltage of the active element 103 and the first total voltage of the battery pack circuit at the first power-on moment, and the second element voltage of the active element 103 and the battery pack circuit voltage at the second power-on moment. The second total voltage and the electric quantity passing through the battery pack circuit from the first power-on moment to the second power-on moment.
  • the active element 103 can be introduced, and the charge of the battery pack 102 can be calculated by observing the element voltage of the active element 103 State (ie SOC).
  • the battery pack 102 and the active element 103 can be connected in series (at this moment, the battery pack 102 and the active element 103 constitute a battery pack circuit), and when a current passes through the battery pack circuit, the active element 103 can generate a component voltage, and the element voltage can monotonically change with the charging/discharging time, and the element voltage will be coupled with the battery voltage of the battery pack 102, so that the curve of the total voltage of the battery pack circuit (that is, the sum of the element voltage and the battery voltage at the same time) No longer flat, but monotonically varying with charge/discharge time.
  • the active element 103 can be arranged outside the battery pack 102 or inside the battery pack 102 .
  • the first aging rate of the battery pack 102 and the second aging rate of the active component 103 can then be determined.
  • the first total voltage of the battery pack circuit and the first element voltage of the active element 103 at the first energization moment can be obtained by the controller 101
  • the second total voltage of the battery pack circuit and the active element 103 voltage at the second energization moment can be obtained by the controller 101.
  • the controller 101 may be any processor with a control function, for example, it may be a BMS (English: Battery Management System, Chinese: Battery Management System).
  • the battery pack 102 may be any type of battery pack, such as an LFP battery pack.
  • the active element 103 can be understood as a circuit element used to change the curve shape of the battery voltage of the battery pack 102, for example, it can be a battery of a ternary NMC (Chinese: nickel cobalt lithium manganate) system, a lithium cobalt oxide battery, a cobalt-free Active components such as batteries, capacitors, supercapacitors, etc.
  • the controller 101 is further configured to determine a first aging rate of the battery pack 102 and a second aging rate of the active element 103 according to the first element voltage, the second element voltage, the first total voltage, the second total voltage and the electric quantity.
  • V p V LFP + V RE , where V p is the total voltage of the battery pack circuit, V LFP is the battery voltage of the battery pack 102, and V RE is The element voltage of the active element 103 .
  • V LFP V p -V RE . Therefore, the controller 101 can use the difference between the first total voltage and the first element voltage as the first battery voltage of the battery pack 102 at the first power-on moment, and use the difference between the second total voltage and the second element voltage as, as the second battery voltage of the battery pack 102 at the second power-on moment.
  • the controller 101 can determine the first state of charge variation of the battery pack 102 according to the first battery voltage and the second battery voltage.
  • the controller 101 can determine the second state of charge variation of the active element 103 according to the first element voltage and the second element voltage.
  • the third state of charge and the fourth state of charge of the active element 103 at the second energization moment, and the difference between the fourth state of charge and the third state of charge is used as the second state of charge change.
  • the controller 101 may determine the first aging rate and the second aging rate according to the first change amount of the state of charge, the second change amount of the state of charge and the electric quantity. For example, the controller 101 may use a first formula to determine the first aging rate.
  • f LFP is the first aging rate
  • Q LFP is the first initial capacity of the battery pack 102
  • ⁇ Q is the electric quantity
  • ⁇ x is the first state of charge variation.
  • the controller 101 can determine the second aging rate by using the second formula.
  • f RE is the second aging rate
  • Q RE is the second initial capacity of the active element 103
  • ⁇ y is the second state of charge variation.
  • the controller 101 is further configured to acquire the current third element voltage of the active element 103, and determine the current target state of charge of the battery pack 102 according to the third element voltage, the first aging rate and the second aging rate.
  • the controller 101 may first determine the element charge state of the current active element 103 according to the third element voltage and use a preset correspondence relationship.
  • the controller 101 can use the third formula to determine the target state of charge.
  • the third formula includes: x is the target state of charge, x 0 is the first initial state of charge of the battery pack 102, y is the element state of charge, y 0 is the second initial state of charge of the active element 103, Q LFP is the first initial state of charge of the battery pack An initial capacity, Q RE is the second initial capacity of the active element 103, f LFP is the first aging rate, and f RE is the second aging rate. It can be seen from the third formula that the process of determining the target state of charge is actually a process of inferring the target state of charge from the state of charge of the active components 103.
  • the OCV- The effect of SOC curve flatness on the accuracy of calculating the target state of charge, so as to ensure that the accurate target state of charge is obtained.
  • the controller 101 may introduce the target state of charge into the estimation of other state parameters of the battery pack 102 .
  • the target state of charge can be introduced into the SOH (English: State of Health, Chinese: State of Life), SOE (English: State of Energy, Chinese: battery net accumulative charge and discharge capacity), power and remaining mileage of the battery pack 102 estimate.
  • the controller 101 may periodically update the first aging rate and the second aging rate (for example, once a month), that is, Periodically, a first aging rate and a second aging rate are determined according to the first total voltage, the second total voltage, the first element voltage, the second element voltage and the electric quantity.
  • the device 100 for determining the state of charge of a battery pack in the present disclosure includes a controller 101, a battery pack 102 and an active element 103, the battery pack 102 and the active element 103 constitute a battery pack circuit, and the battery pack 102
  • the battery cell is connected in series with the active element 103, and the controller 101 is used to obtain the first total voltage of the battery pack circuit and the first element voltage of the active element 103 at the first power-on moment, and the battery pack circuit at the second power-on moment
  • the second total voltage and electric quantity determine the first aging rate of the battery pack 102 and the second aging rate of the active element 103, and then obtain the third element voltage of the current active element 103, and according to the third element voltage, the
  • the battery pack 102 is connected in series with the active element 103 to charge and discharge, so that the total voltage of the battery pack circuit can change monotonously with the charging and discharging time, and is determined by the total voltage of the battery pack circuit and the element voltage of the active element 103
  • the current target state of charge of the battery pack 102 improves the accuracy of determining the state of charge of the battery pack 102 .
  • the third formula can be derived in the following way:
  • the state of charge of the active element 103 at any time is:
  • the state of charge of the battery pack 102 is:
  • I is the current flowing through the battery pack circuit, I>0 when the battery pack 102 is charging, and I ⁇ 0 when the battery pack 102 is discharging.
  • the device 100 further includes a first voltage sampler 104 and a second voltage sampler 105, the first voltage sampler 104 is used to collect the element voltage of the active element 103, and the second voltage sampler 105 is used to collect the voltage of the battery pack the total voltage of the circuit.
  • the active element 103 is provided outside the battery pack 102 .
  • the active element 103 is disposed inside the battery pack 102 .
  • the device 100 may include a first voltage sampler 104 for collecting the element voltage of the active element 103 , and a second voltage sampler 105 for collecting the total voltage of the battery pack circuit.
  • the active element 103 can be arranged outside the battery pack 102, the first voltage sampler 104 is used to collect the element voltage of the active element 103, and the second voltage sampler 105 is used to collect The total voltage of the battery pack circuit. It should be noted that the capacity of the active component 103 needs not to be lower than the capacity of the battery pack 102 .
  • the active element 103 can be arranged inside the battery pack 102 (at this time, the active element 103 is mixed with the cells inside the battery pack 102 ).
  • the first voltage sampler 104 is used to collect the element voltage of the active element 103
  • the second voltage sampler 105 is used to collect the total voltage of the battery pack circuit.
  • the active element 103 when the active element 103 is connected in series with any LFP cell in the battery pack 102, the following conditions need to be met: 1) The size of the active element 103 must match the battery pack 102, if there are multiple rows of batteries in the battery pack 102 When the cells are connected in series and there is only one active element 103 , the size of the active element 103 should be exactly the same as the cell of the battery pack 102 . 2) The capacity of the active element 103 should match the battery pack 102, for example, the active element 103 and the battery pack 102 need to satisfy at any time: Q RE ⁇ f RE ⁇ Q LFP ⁇ f LFP . 3) When the cells of the battery pack 102 and the active components 103 are connected in series to form a package, the SOC must be reasonably matched. For example, the active components 103 and the battery pack 102 need to meet:
  • the device 100 for determining the state of charge of a battery pack in the present disclosure includes a controller 101, a battery pack 102 and an active element 103, the battery pack 102 and the active element 103 constitute a battery pack circuit, and the battery pack 102
  • the battery cell is connected in series with the active element 103, and the controller 101 is used to obtain the first total voltage of the battery pack circuit and the first element voltage of the active element 103 at the first power-on moment, and the battery pack circuit at the second power-on moment
  • the second total voltage and electric quantity determine the first aging rate of the battery pack 102 and the second aging rate of the active element 103, and then obtain the third element voltage of the current active element 103, and according to the third element voltage, the
  • the battery pack 102 is connected in series with the active element 103 to charge and discharge, so that the total voltage of the battery pack circuit can change monotonously with the charging and discharging time, and is determined by the total voltage of the battery pack circuit and the element voltage of the active element 103
  • the current target state of charge of the battery pack 102 improves the accuracy of determining the state of charge of the battery pack 102 .
  • Fig. 4 is a flowchart showing a method for determining the state of charge of the battery pack 102 according to an exemplary embodiment. As shown in FIG. 4 , it is applied to a device 100 for determining the state of charge of a battery pack.
  • the device 100 includes a battery pack 102 and an active element 103.
  • the battery pack 102 and the active element 103 constitute a battery pack circuit, and the battery pack 102
  • the electric core is connected in series with the active element 103, and the method may include the following steps:
  • Step 201 obtain the first element voltage of the active element and the first total voltage of the battery pack circuit at the first energization moment, the second element voltage of the active element and the second total voltage of the battery pack circuit at the second energization moment, and The amount of electricity passing through the battery pack circuit from the first power-on moment to the second power-on moment.
  • Step 202 according to the first element voltage, the second element voltage, the first total voltage, the second total voltage and the electric quantity, determine the first aging rate of the battery pack and the second aging rate of the active element.
  • Step 203 acquire the third element voltage of the current active element, and determine the current target state of charge of the battery pack according to the third element voltage, the first aging rate and the second aging rate.
  • FIG. 5 is a flowchart of a step 202 shown in the embodiment shown in FIG. 4 .
  • step 202 may include the following steps:
  • Step 2021 use the difference between the first total voltage and the voltage of the first element as the first battery voltage of the battery pack at the first power-on moment, and use the difference between the second total voltage and the voltage of the second element as the voltage at the second The second battery voltage of the battery pack at power-on time.
  • Step 2022 according to the first battery voltage and the second battery voltage, determine the first state of charge variation of the battery pack.
  • Step 2023 according to the voltage of the first element and the voltage of the second element, determine the variation of the second state of charge of the active element.
  • Step 2024 Determine a first aging rate and a second aging rate according to the first state of charge change, the second state of charge change and the electric quantity.
  • step 2024 can be implemented in the following manner:
  • a first aging rate is determined.
  • f LFP is the first aging rate
  • Q LFP is the first initial capacity of the battery pack
  • ⁇ Q is the electric quantity
  • ⁇ x is the change amount of the first state of charge.
  • a second aging rate is determined.
  • f RE is the second aging rate
  • Q RE is the second initial capacity of the active element
  • ⁇ y is the second state of charge variation.
  • FIG. 6 is a flowchart of a step 203 shown in the embodiment shown in FIG. 4 .
  • step 203 may include the following steps:
  • Step 2031 according to the voltage of the third element, using the preset corresponding relationship to determine the current state of charge of the active element, the preset corresponding relationship is the corresponding relationship between the element voltage of the active element and the state of charge of the active element .
  • Step 2032 using the third formula to determine the target state of charge.
  • the third formula includes: x is the target SOC, x 0 is the first initial SOC of the battery pack, y is the component SOC, y 0 is the second initial SOC of the active components, Q LFP is the first initial SOC of the battery pack capacity, Q RE is the second initial capacity of the active component, f LFP is the first aging rate, and f RE is the second aging rate.
  • the device 100 also includes a first voltage sampler 104 and a second voltage sampler 105, the first voltage sampler 104 is used to collect the element voltage of the active element 103, and the second voltage sampler 105 is used to collect the voltage of the battery The total voltage of the package circuit.
  • Active elements 103 are provided outside the battery pack. Alternatively, the active element 103 is disposed inside the battery pack.
  • the device 100 for determining the state of charge of a battery pack in the present disclosure includes a controller 101, a battery pack 102 and an active element 103, the battery pack 102 and the active element 103 constitute a battery pack circuit, and the battery pack 102
  • the battery cell is connected in series with the active element 103, and the controller 101 is used to obtain the first total voltage of the battery pack circuit and the first element voltage of the active element 103 at the first power-on moment, and the battery pack circuit at the second power-on moment
  • the second total voltage and electric quantity determine the first aging rate of the battery pack 102 and the second aging rate of the active element, and then obtain the third element voltage of the current active element 103, and according to the third element voltage, the first
  • the battery pack 102 is connected in series with the active element 103 to charge and discharge, so that the total voltage of the battery pack circuit can change monotonously with the charging and discharging time, and is determined by the total voltage of the battery pack circuit and the element voltage of the active element 103
  • the current target state of charge of the battery pack 102 improves the accuracy of determining the state of charge of the battery pack 102 .
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise clearly and specifically defined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

一种确定电池包荷电状态的装置(100)和方法,该装置包括:控制器(101),电池包(102)和有源元件(103),控制器(101)与电池包(102)连接,电池包(102)与有源元件(103)构成电池包电路,且电池包(102)中的电芯与有源元件(103)串联,控制器(101),用于获取在第一通电时刻有源元件(103)的第一元件电压和电池包电路的第一总电压,在第二通电时刻有源元件(103)的第二元件电压和电池包电路的第二总电压以及从第一通电时刻至第二通电时刻通过电池包电路的电量,之后根据第一元件电压,第二元件电压,第一总电压,第二总电压和电量,确定电池包(102)的第一老化速率和有源元件(103)的第二老化速率,再获取当前有源元件(103)的第三元件电压,并根据第三元件电压,第一老化速率和第二老化速率,确定当前电池包的目标荷电状态。

Description

确定电池包荷电状态的装置和方法
相关公开的交叉引用
本公开要求蜂巢能源科技有限公司于2021年6月7日提交的、公开名称为“确定电池包荷电状态的装置和方法”的、中国专利公开号“202110632085.5”的优先权。
技术领域
本公开涉及电池技术领域,特别是涉及一种确定电池包荷电状态的装置和方法。
背景技术
在注重可持续发展的当下,绿色环保的电动汽车得到了广泛的应用。动力电池作为电动汽车运行的动力源与储能单元,其性能的好坏直接影响整车性能。磷酸铁锂(英文:Lithium Iron Phosphate,缩写:LFP)电池具有循环寿命长、成本低、原材料丰度广、体系安全且不易发生起火等优点,是动力电池的重要选择之一。SOC(英文:State of Charge,中文:荷电状态)是对电池状态进行评估的重要参数,对电池的安全、高效的使用具有重大意义。
当前,主要是通过安时积分法,结合OCV(英文:Open Circuit Voltage,中文:开路电压)来计算LFP电池包的SOC。然而,LFP电池包的OCV-SOC曲线较为平坦,这会影响计算SOC的准确性。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的一个目的在于提出一种确定电池包荷电状态的装置。
为了实现上述目的,根据本公开的第一方面,提供一种确定电池包荷电状态的装置,所述装置包括控制器,电池包和有源元件,所述控制器与所述电池包连接,所述电池包与所述有源元件构成电池包电路,且所述电池包中的电芯与所述有源元件串联;
所述控制器,用于获取在第一通电时刻所述有源元件的第一元件电压和所述电池包电路的第一总电压,在第二通电时刻所述有源元件的第二元件电压和所述电池包电路的第二总电压以及从所述第一通电时刻至所述第二通电时刻通过所述电池包电路的电量;
所述控制器,还用于根据所述第一元件电压,所述第二元件电压,所述第一总电压,所述第二总电压和所述电量,确定所述电池包的第一老化速率和所述有源元件的第二老化速率;
所述控制器,还用于获取当前所述有源元件的第三元件电压,并根据所述第三元件电压,所述第一老化速率和所述第二老化速率,确定当前所述电池包的目标荷电状态。
可选地,所述控制器用于:
将所述第一总电压与所述第一元件电压的差值,作为在所述第一通电时刻所述电池包的第一电池电压,并将所述第二总电压与所述第二元件电压的差值,作为在所述第二通电时刻所述电池包的第二电池电压;
根据所述第一电池电压和所述第二电池电压,确定所述电池包的第一荷电状态变化量;
根据所述第一元件电压和所述第二元件电压,确定所述有源元件的第二荷电状态变化量;
根据所述第一荷电状态变化量,所述第二荷电状态变化量和所述电量,确定所述第一老化速率和所述第二老化速率。
可选地,所述控制器用于:
利用第一公式,确定所述第一老化速率;
所述第一公式包括:
f LFP=Q LFP-ΔQ/Δx;
其中,f LFP为所述第一老化速率,Q LFP为所述电池包的第一初始容量,ΔQ为所述电量,Δx为所述第一荷电状态变化量;
利用第二公式,确定所述第二老化速率;
所述第二公式包括:
f RE=Q RE-ΔQ/Δy;
其中,f RE为所述第二老化速率,Q RE为所述有源元件的第二初始容量,Δy为所述第二荷电状态变化量。
可选地,所述控制器用于:
根据所述第三元件电压,利用预设对应关系,确定当前所述有源元件的元件荷电状态,所述预设对应关系为所述有源元件的元件电压与所述有源元件的荷电状态之间的对应关系;
利用第三公式,确定所述目标荷电状态;
所述第三公式包括:
Figure PCTCN2022083408-appb-000001
其中,x为所述目标荷电状态,x 0为所述电池包的第一初始荷电状态,y为所述元件荷 电状态,y 0为所述有源元件的第二初始荷电状态,Q LFP为所述电池包的第一初始容量,Q RE为所述有源元件的第二初始容量,f LFP为所述第一老化速率,f RE为所述第二老化速率。
可选地,所述装置还包括第一电压采样器和第二电压采样器,所述第一电压采样器用于采集所述有源元件的元件电压,所述第二电压采样器用于采集所述电池包电路的总电压;
所述有源元件设置在所述电池包外部;或者,所述有源元件设置在所述电池包内部。
本公开的另一个目的在于提出一种确定电池包荷电状态的方法。
根据本公开的第二方面,提供一种确定电池包荷电状态的方法,应用于确定电池包荷电状态的装置,所述装置包括电池包和有源元件,所述电池包与所述有源元件构成电池包电路,且所述电池包中的电芯与所述有源元件串联,所述方法包括:
获取在第一通电时刻所述有源元件的第一元件电压和所述电池包电路的第一总电压,在第二通电时刻所述有源元件的第二元件电压和所述电池包电路的第二总电压以及从所述第一通电时刻至所述第二通电时刻通过所述电池包电路的电量;
根据所述第一元件电压,所述第二元件电压,所述第一总电压,所述第二总电压和所述电量,确定所述电池包的第一老化速率和所述有源元件的第二老化速率;
获取当前所述有源元件的第三元件电压,并根据所述第三元件电压,所述第一老化速率和所述第二老化速率,确定当前所述电池包的目标荷电状态。
可选地,所述根据所述第一总电压,所述第二总电压,所述第一元件电压,所述第二元件电压和所述电量,确定所述电池包的第一老化速率和所述有源元件的第二老化速率,包括:
将所述第一总电压与所述第一元件电压的差值,作为在所述第一通电时刻所述电池包的第一电池电压,并将所述第二总电压与所述第二元件电压的差值,作为在所述第二通电时刻所述电池包的第二电池电压;
根据所述第一电池电压和所述第二电池电压,确定所述电池包的第一荷电状态变化量;
根据所述第一元件电压和所述第二元件电压,确定所述有源元件的第二荷电状态变化量;
根据所述第一荷电状态变化量,所述第二荷电状态变化量和所述电量,确定所述第一老化速率和所述第二老化速率。
可选地,所述根据所述第一荷电状态变化量,所述第二荷电状态变化量和所述电量,确定所述第一老化速率和所述第二老化速率,包括:
利用第一公式,确定所述第一老化速率;
所述第一公式包括:
f LFP=Q LFP-ΔQ/Δx;
其中,f LFP为所述第一老化速率,Q LFP为所述电池包的第一初始容量,ΔQ为所述电量,Δx为所述第一荷电状态变化量;
利用第二公式,确定所述第二老化速率;
所述第二公式包括:
f RE=Q RE-ΔQ/Δy;
其中,f RE为所述第二老化速率,Q RE为所述有源元件的第二初始容量,Δy为所述第二荷电状态变化量。
可选地,所述根据所述第三元件电压,所述第一老化速率和所述第二老化速率,确定当前所述电池包的目标荷电状态,包括:
根据所述第三元件电压,利用预设对应关系,确定当前所述有源元件的元件荷电状态,所述预设对应关系为所述有源元件的元件电压与所述有源元件的荷电状态之间的对应关系;
利用第三公式,确定所述目标荷电状态;
所述第三公式包括:
Figure PCTCN2022083408-appb-000002
其中,x为所述目标荷电状态,x 0为所述电池包的第一初始荷电状态,y为所述元件荷电状态,y 0为所述有源元件的第二初始荷电状态,Q LFP为所述电池包的第一初始容量,Q RE为所述有源元件的第二初始容量,f LFP为所述第一老化速率,f RE为所述第二老化速率。
可选地,所述装置还包括第一电压采样器和第二电压采样器,所述第一电压采样器用于采集所述有源元件的元件电压,所述第二电压采样器用于采集所述电池包电路的总电压;
所述有源元件设置在所述电池包外部;或者,所述有源元件设置在所述电池包内部。
通过上述技术方案,本公开中的确定电池包荷电状态的装置包括控制器,电池包和有源元件,电池包与有源元件构成电池包电路,且电池包中的电芯与有源元件串联,控制器,用于先获取在第一通电时刻电池包电路的第一总电压和有源元件的第一元件电压,在第二通电时刻电池包电路的第二总电压和有源元件的第二元件电压以及从第一通电时刻至第二通电时刻通过电池包电路的电量,之后根据第一元件电压,第二元件电压,第一总电压,第二总电压和电量,确定电池包的第一老化速率和有源元件的第二老化速率,再获取当前有源元件的第三元件电压,并根据第三元件电压,第一老化速率和第二老化速率,确定当前电池包的目标荷电状态。本公开将电池包与有源元件串联后进行充放电,使得电池包电路的总电压可以随充放电时间呈单调变化,并通过电池包电路的总电压和有源元件的元件 电压确定当前电池包的目标荷电状态,提高了确定电池包的荷电状态的准确性。本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开一个实施例的确定电池包荷电状态的装置的示意图;
图2是根据本公开另一实施例的另一种确定电池包荷电状态的装置的示意图;
图3是根据本公开另一实施例的另一种确定电池包荷电状态的装置的示意图;
图4是根据本公开另一实施例的另一种确定电池包荷电状态的方法的流程图;
图5是图4所示实施例示出的一种步骤202的流程图;
图6是图4所示实施例示出的一种步骤203的流程图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种确定电池包荷电状态的装置的框图。如图1所示,该装置100包括控制器101,电池包102和有源元件103,控制器101与电池包102连接,电池包102与有源元件103构成电池包电路,且电池包102中的电芯与有源元件103串联。
控制器101,用于获取在第一通电时刻有源元件103的第一元件电压和电池包电路的第一总电压,在第二通电时刻有源元件103的第二元件电压和电池包电路的第二总电压以及从第一通电时刻至第二通电时刻通过电池包电路的电量。
举例来说,为了避免由于电池包102的OCV-SOC曲线平坦对计算SOC准确性的影响,可以引入有源元件103,并通过观察有源元件103的元件电压,来计算电池包102的荷电状态(即SOC)。具体的,首先可以将电池包102与有源元件103进行串联(此时电池包102与有源元件103构成了电池包电路),当有电流通过电池包电路时,有源元件103能够产生元 件电压,且该元件电压能够随充/放电时间单调变化,同时该元件电压将与电池包102的电池电压耦合,使得电池包电路的总电压(即相同时刻元件电压与电池电压之和)的曲线不再平坦,而是随充/放电时间呈单调变化。其中,有源元件103可以设置于电池包102的外部,也可以设置于电池包102的内部。
之后可以对电池包102的第一老化速率和有源元件103的第二老化速率进行测定。例如,可以由控制器101获取在第一通电时刻电池包电路的第一总电压和有源元件103的第一元件电压,在第二通电时刻电池包电路的第二总电压和有源元件103的第二元件电压以及从第一通电时刻至第二通电时刻通过电池包电路的电量。
其中,控制器101可以是任一种具有控制功能的处理器,例如可以是BMS(英文:Battery Management System,中文:电池管理系统)。电池包102可以是任一种类型的电池包,例如LFP电池包。有源元件103可以理解成一种用于改变电池包102的电池电压的曲线形状的电路元件,例如可以是三元NMC(中文:镍钴锰酸锂)体系的电池、钴酸锂电池、无钴电池、电容器、超级电容器等有源元件。
控制器101,还用于根据第一元件电压,第二元件电压,第一总电压,第二总电压和电量,确定电池包102的第一老化速率和有源元件103的第二老化速率。
进一步的,由于控制器101与电池包102串联,则有:V p=V LFP+V RE,其中,V p为电池包电路的总电压,V LFP为电池包102的电池电压,V RE为有源元件103的元件电压。那么电池包102的电池电压曲线可以表示为:V LFP=V p-V RE。因此,控制器101可以将第一总电压与第一元件电压的差值,作为在第一通电时刻电池包102的第一电池电压,并将第二总电压与第二元件电压的差值,作为在第二通电时刻电池包102的第二电池电压。然后控制器101可以根据第一电池电压和第二电池电压,确定电池包102的第一荷电状态变化量。例如,可以预先在控制器101中存储电池包102的电池电压与电池包102的荷电状态之间的对应关系(该对应关系可以是关系曲线,也可以是map表,例如该对应关系可以用V LFP=f(x)表示,x为电池包102的荷电状态),再根据第一电池电压和第二电池电压,利用该对应关系,确定在第一通电时刻电池包102的第一荷电状态和在第二通电时刻电池包102的第二荷电状态,并将第二荷电状态与第一荷电状态的差值作为第一荷电状态变化量。
其次,控制器101可以根据第一元件电压和第二元件电压,确定有源元件103的第二荷电状态变化量。例如,可以预先在控制器101中存储有源元件103的元件电压与有源元件103的荷电状态之间的对应关系(该对应关系可以是关系曲线,也可以是map表,例如该对应关系可以用V RE=F(y)表示,y为有源元件103的荷电状态),再根据第一元件电压和第二元件电压,利用该对应关系,确定在第一通电时刻有源元件103的第三荷电状态和在第二通电时刻有源元件103的第四荷电状态,并将第四荷电状态与第三荷电状态的差值作 为第二荷电状态变化量。
最后,控制器101可以根据第一荷电状态变化量,第二荷电状态变化量和电量,确定第一老化速率和第二老化速率。例如,控制器101可以利用第一公式,确定第一老化速率。其中,第一公式包括:f LFP=Q LFP-ΔQ/Δx。f LFP为第一老化速率,Q LFP为电池包102的第一初始容量,ΔQ为电量,Δx为第一荷电状态变化量。同时,控制器101可以利用第二公式,确定第二老化速率。其中,第二公式包括:f RE=Q RE-ΔQ/Δy。f RE为第二老化速率,Q RE为有源元件103的第二初始容量,Δy为第二荷电状态变化量。
控制器101,还用于获取当前有源元件103的第三元件电压,并根据第三元件电压,第一老化速率和第二老化速率,确定当前电池包102的目标荷电状态。
示例地,控制器101可以先根据第三元件电压,利用预设对应关系,确定当前有源元件103的元件荷电状态。其中,预设对应关系为有源元件103的元件电压与有源元件103的荷电状态之间的对应关系,预设对应关系即为上述的V RE=F(y),通过该预设对应关系可以得到任一时刻有源元件103的元件荷电状态。
然后,控制器101可以利用第三公式,确定目标荷电状态。其中,第三公式包括:
Figure PCTCN2022083408-appb-000003
x为目标荷电状态,x 0为电池包102的第一初始荷电状态,y为元件荷电状态,y 0为有源元件103的第二初始荷电状态,Q LFP为电池包的第一初始容量,Q RE为有源元件103的第二初始容量,f LFP为第一老化速率,f RE为第二老化速率。由第三公式可知,确定目标荷电状态的过程,实际上是通过有源元件103的元件荷电状态来推断目标荷电状态的过程,采用这样的方式,能够避免由于电池包102的OCV-SOC曲线平坦对计算目标荷电状态准确性的影响,从而确保获得准确的目标荷电状态。进一步的,控制器101在获取到准确的目标荷电状态后,可以将目标荷电状态引入到电池包102的其它状态参数的估算中。例如,可以将目标荷电状态引入到电池包102的SOH(英文:State of Health,中文:寿命状态)、SOE(英文:State of Energy,中文:电池净累计充放电容量)、功率以及剩余里程的估算。
需要说明的是,为了进一步提高确定电池包102的荷电状态的准确性,控制器101可以周期性的对第一老化速率和第二老化速率进行更新(例如,每一个月更新一次),即周期性的根据第一总电压,第二总电压,第一元件电压,第二元件电压和电量,确定第一老化速率和第二老化速率。
综上所述,本公开中的确定电池包荷电状态的装置100包括控制器101,电池包102和有源元件103,电池包102与有源元件103构成电池包电路,且电池包102中的电芯与有源 元件103串联,控制器101,用于先获取在第一通电时刻电池包电路的第一总电压和有源元件103的第一元件电压,在第二通电时刻电池包电路的第二总电压和有源元件103的第二元件电压以及从第一通电时刻至第二通电时刻通过电池包电路的电量,之后根据第一元件电压,第二元件电压,第一总电压,第二总电压和电量,确定电池包102的第一老化速率和有源元件103的第二老化速率,再获取当前有源元件103的第三元件电压,并根据第三元件电压,第一老化速率和第二老化速率,确定当前电池包102的目标荷电状态。本公开将电池包102与有源元件103串联后进行充放电,使得电池包电路的总电压可以随充放电时间呈单调变化,并通过电池包电路的总电压和有源元件103的元件电压确定当前电池包102的目标荷电状态,提高了确定电池包102的荷电状态的准确性。
示例地,第三公式可以通过以下方式推导得到:
假设初始状态时,电池包102的第一初始荷电状态为x 0,有源元件103的第二初始荷电状态为y 0,则任意时刻有源元件103的荷电状态为:
Figure PCTCN2022083408-appb-000004
电池包102的荷电状态为:
Figure PCTCN2022083408-appb-000005
其中,I为流过电池包电路的电流,当电池包102充电时I>0,当电池包102放电时I<0。对
Figure PCTCN2022083408-appb-000006
Figure PCTCN2022083408-appb-000007
进行合并转化后得到第三公式,即
Figure PCTCN2022083408-appb-000008
可选地,装置100还包括第一电压采样器104和第二电压采样器105,第一电压采样器104用于采集有源元件103的元件电压,第二电压采样器105用于采集电池包电路的总电压。
有源元件103设置在电池包102外部。或者,有源元件103设置在电池包102内部。
示例地,装置100可以包括用于采集有源元件103的元件电压的第一电压采样器104,以及用于采集电池包电路的总电压的第二电压采样器105。在一种场景中,如图2所示,有源元件103可以设置在电池包102外部,第一电压采样器104用于采集有源元件103的元件电压,第二电压采样器105用于采集电池包电路的总电压。需要说明的是,有源元件103 的容量需要不低于电池包102的容量。
在另一种场景中,如图3所示,有源元件103可以设置在电池包102内部(此时有源元件103与电池包102内部的电芯进行混串)。同样的,第一电压采样器104用于采集有源元件103的元件电压,第二电压采样器105用于采集电池包电路的总电压。另外,当有源元件103在电池包102内与任意LFP电芯串联时,需要满足以下条件:1)有源元件103的尺寸要与电池包102相匹配,若电池包102中有多排电芯串联,且只有一个有源元件103时,有源元件103的尺寸要与电池包102的电芯完全一致。2)有源元件103的容量要与电池包102相匹配,例如,有源元件103与电池包102需要在任意时刻时均满足:Q RE-f RE≥Q LFP-f LFP。3)电池包102的电芯与有源元件103串联成包时,SOC要合理匹配,例如,有源元件103与电池包102需要满足:
Figure PCTCN2022083408-appb-000009
综上所述,本公开中的确定电池包荷电状态的装置100包括控制器101,电池包102和有源元件103,电池包102与有源元件103构成电池包电路,且电池包102中的电芯与有源元件103串联,控制器101,用于先获取在第一通电时刻电池包电路的第一总电压和有源元件103的第一元件电压,在第二通电时刻电池包电路的第二总电压和有源元件103的第二元件电压以及从第一通电时刻至第二通电时刻通过电池包电路的电量,之后根据第一元件电压,第二元件电压,第一总电压,第二总电压和电量,确定电池包102的第一老化速率和有源元件103的第二老化速率,再获取当前有源元件103的第三元件电压,并根据第三元件电压,第一老化速率和第二老化速率,确定当前电池包102的目标荷电状态。本公开将电池包102与有源元件103串联后进行充放电,使得电池包电路的总电压可以随充放电时间呈单调变化,并通过电池包电路的总电压和有源元件103的元件电压确定当前电池包102的目标荷电状态,提高了确定电池包102的荷电状态的准确性。
图4是根据一示例性实施例示出的一种确定电池包102荷电状态的方法的流程图。如图4所示,应用于确定电池包荷电状态的装置100,该装置100包括电池包102和有源元件103,电池包102与有源元件103构成电池包电路,且电池包102中的电芯与有源元件103串联,该方法可以包括以下步骤:
步骤201,获取在第一通电时刻有源元件的第一元件电压和电池包电路的第一总电压,在第二通电时刻有源元件的第二元件电压和电池包电路的第二总电压以及从第一通电时刻至第二通电时刻通过电池包电路的电量。
步骤202,根据第一元件电压,第二元件电压,第一总电压,第二总电压和电量,确定电池包的第一老化速率和有源元件的第二老化速率。
步骤203,获取当前有源元件的第三元件电压,并根据第三元件电压,第一老化速率和第二老化速率,确定当前电池包的目标荷电状态。
图5是图4所示实施例示出的一种步骤202的流程图。如图5所示,步骤202可以包括以下步骤:
步骤2021,将第一总电压与第一元件电压的差值,作为在第一通电时刻电池包的第一电池电压,并将第二总电压与第二元件电压的差值,作为在第二通电时刻电池包的第二电池电压。
步骤2022,根据第一电池电压和第二电池电压,确定电池包的第一荷电状态变化量。
步骤2023,根据第一元件电压和第二元件电压,确定有源元件的第二荷电状态变化量。
步骤2024,根据第一荷电状态变化量,第二荷电状态变化量和电量,确定第一老化速率和第二老化速率。
可选地,步骤2024可以通过以下方式实现:
利用第一公式,确定第一老化速率。
第一公式包括:f LFP=Q LFP-ΔQ/Δx。
其中,f LFP为第一老化速率,Q LFP为电池包的第一初始容量,ΔQ为电量,Δx为第一荷电状态变化量。
利用第二公式,确定第二老化速率。
第二公式包括:f RE=Q RE-ΔQ/Δy。
其中,f RE为第二老化速率,Q RE为有源元件的第二初始容量,Δy为第二荷电状态变化量。
图6是图4所示实施例示出的一种步骤203的流程图。如图6所示,步骤203可以包括以下步骤:
步骤2031,根据第三元件电压,利用预设对应关系,确定当前有源元件的元件荷电状态,预设对应关系为有源元件的元件电压与有源元件的荷电状态之间的对应关系。
步骤2032,利用第三公式,确定目标荷电状态。
其中,第三公式包括:
Figure PCTCN2022083408-appb-000010
x为目标荷电状态,x 0为电池包的第一初始荷电状态,y为元件荷电状态,y 0为有源元件的第二初始荷电状态,Q LFP为电池包的第一初始容量,Q RE为有源元件的第二初始容量,f LFP为第一老化速率,f RE为第二老化速率。
可选地,该装置100还包括第一电压采样器104和第二电压采样器105,第一电压采样器104用于采集有源元件103的元件电压,第二电压采样器105用于采集电池包电路的总 电压。
有源元件103设置在电池包外部。或者,有源元件103设置在电池包内部。
综上所述,本公开中的确定电池包荷电状态的装置100包括控制器101,电池包102和有源元件103,电池包102与有源元件103构成电池包电路,且电池包102中的电芯与有源元件103串联,控制器101,用于先获取在第一通电时刻电池包电路的第一总电压和有源元件103的第一元件电压,在第二通电时刻电池包电路的第二总电压和有源元件103的第二元件电压以及从第一通电时刻至第二通电时刻通过电池包电路的电量,之后根据第一元件电压,第二元件电压,第一总电压,第二总电压和电量,确定电池包102的第一老化速率和有源元件的第二老化速率,再获取当前有源元件103的第三元件电压,并根据第三元件电压,第一老化速率和第二老化速率,确定当前电池包102的目标荷电状态。本公开将电池包102与有源元件103串联后进行充放电,使得电池包电路的总电压可以随充放电时间呈单调变化,并通过电池包电路的总电压和有源元件103的元件电压确定当前电池包102的目标荷电状态,提高了确定电池包102的荷电状态的准确性。
但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机 械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种确定电池包荷电状态的装置,其特征在于,所述装置包括控制器,电池包和有源元件,所述控制器与所述电池包连接,所述电池包与所述有源元件构成电池包电路,且所述电池包的电芯与所述有源元件串联;
    所述控制器,用于获取在第一通电时刻所述有源元件的第一元件电压和所述电池包电路的第一总电压,在第二通电时刻所述有源元件的第二元件电压和所述电池包电路的第二总电压以及从所述第一通电时刻至所述第二通电时刻通过所述电池包电路的电量;
    所述控制器,还用于根据所述第一元件电压,所述第二元件电压,所述第一总电压,所述第二总电压和所述电量,确定所述电池包的第一老化速率和所述有源元件的第二老化速率;
    所述控制器,还用于获取当前所述有源元件的第三元件电压,并根据所述第三元件电压,所述第一老化速率和所述第二老化速率,确定当前所述电池包的目标荷电状态。
  2. 根据权利要求1所述的装置,其特征在于,所述控制器用于:
    将所述第一总电压与所述第一元件电压的差值,作为在所述第一通电时刻所述电池包的第一电池电压,并将所述第二总电压与所述第二元件电压的差值,作为在所述第二通电时刻所述电池包的第二电池电压;
    根据所述第一电池电压和所述第二电池电压,确定所述电池包的第一荷电状态变化量;
    根据所述第一元件电压和所述第二元件电压,确定所述有源元件的第二荷电状态变化量;
    根据所述第一荷电状态变化量,所述第二荷电状态变化量和所述电量,确定所述第一老化速率和所述第二老化速率。
  3. 根据权利要求2所述的装置,其特征在于,所述控制器用于:
    利用第一公式,确定所述第一老化速率;
    所述第一公式包括:
    f LFP=Q LFP-ΔQ/Δx;
    其中,f LFP为所述第一老化速率,Q LFP为所述电池包的第一初始容量,ΔQ为所述电量,Δx为所述第一荷电状态变化量;
    利用第二公式,确定所述第二老化速率;
    所述第二公式包括:
    f RE=Q RE-ΔQ/Δy;
    其中,f RE为所述第二老化速率,Q RE为所述有源元件的第二初始容量,Δy为所述第二荷电状态变化量。
  4. 根据权利要求1-3中任一项所述的装置,其特征在于,所述控制器用于:
    根据所述第三元件电压,利用预设对应关系,确定当前所述有源元件的元件荷电状态,所述预设对应关系为所述有源元件的元件电压与所述有源元件的荷电状态之间的对应关系;
    利用第三公式,确定所述目标荷电状态;
    所述第三公式包括:
    Figure PCTCN2022083408-appb-100001
    其中,x为所述目标荷电状态,x 0为所述电池包的第一初始荷电状态,y为所述元件荷电状态,y 0为所述有源元件的第二初始荷电状态,Q LFP为所述电池包的第一初始容量,Q RE为所述有源元件的第二初始容量,f LFP为所述第一老化速率,f RE为所述第二老化速率。
  5. 根据权利要求1-4中任一项所述的装置,其特征在于,所述装置还包括第一电压采样器和第二电压采样器,所述第一电压采样器用于采集所述有源元件的元件电压,所述第二电压采样器用于采集所述电池包电路的总电压;
    所述有源元件设置在所述电池包外部;或者,所述有源元件设置在所述电池包内部。
  6. 一种确定电池包荷电状态的方法,其特征在于,应用于确定电池包荷电状态的装置,所述装置包括电池包和有源元件,所述电池包与所述有源元件构成电池包电路,且所述电池包中的电芯与所述有源元件串联,所述方法包括:
    获取在第一通电时刻所述有源元件的第一元件电压和所述电池包电路的第一总电压,在第二通电时刻所述有源元件的第二元件电压和所述电池包电路的第二总电压以及从所述第一通电时刻至所述第二通电时刻通过所述电池包电路的电量;
    根据所述第一元件电压,所述第二元件电压,所述第一总电压,所述第二总电压和所述电量,确定所述电池包的第一老化速率和所述有源元件的第二老化速率;
    获取当前所述有源元件的第三元件电压,并根据所述第三元件电压,所述第一老化速率和所述第二老化速率,确定当前所述电池包的目标荷电状态。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述第一元件电压,所述第二元件电压,所述第一总电压,所述第二总电压和所述电量,确定所述电池包的第一老化速率和所述有源元件的第二老化速率,包括:
    将所述第一总电压与所述第一元件电压的差值,作为在所述第一通电时刻所述电池包的第一电池电压,并将所述第二总电压与所述第二元件电压的差值,作为在所述第二通电时刻所述电池包的第二电池电压;
    根据所述第一电池电压和所述第二电池电压,确定所述电池包的第一荷电状态变化量;
    根据所述第一元件电压和所述第二元件电压,确定所述有源元件的第二荷电状态变化量;
    根据所述第一荷电状态变化量,所述第二荷电状态变化量和所述电量,确定所述第一老化速率和所述第二老化速率。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第一荷电状态变化量,所述第二荷电状态变化量和所述电量,确定所述第一老化速率和所述第二老化速率,包括:
    利用第一公式,确定所述第一老化速率;
    所述第一公式包括:
    f LFP=Q LFP-ΔQ/Δx;
    其中,f LFP为所述第一老化速率,Q LFP为所述电池包的第一初始容量,ΔQ为所述电量,Δx为所述第一荷电状态变化量;
    利用第二公式,确定所述第二老化速率;
    所述第二公式包括:
    f RE=Q RE-ΔQ/Δy;
    其中,f RE为所述第二老化速率,Q RE为所述有源元件的第二初始容量,Δy为所述第二荷电状态变化量。
  9. 根据权利要求6-8中任一项所述的方法,其特征在于,所述根据所述第三元件电压,所述第一老化速率和所述第二老化速率,确定当前所述电池包的目标荷电状态,包括:
    根据所述第三元件电压,利用预设对应关系,确定当前所述有源元件的元件荷电状态,所述预设对应关系为所述有源元件的元件电压与所述有源元件的荷电状态之间的对应关系;
    利用第三公式,确定所述目标荷电状态;
    所述第三公式包括:
    Figure PCTCN2022083408-appb-100002
    其中,x为所述目标荷电状态,x 0为所述电池包的第一初始荷电状态,y为所述元件荷电状态,y 0为所述有源元件的第二初始荷电状态,Q LFP为所述电池包的第一初始容量,Q RE为所述有源元件的第二初始容量,f LFP为所述第一老化速率,f RE为所述第二老化速率。
  10. 根据权利要求6-9中任一项所述的方法,其特征在于,所述装置还包括第一电压采样器和第二电压采样器,所述第一电压采样器用于采集所述有源元件的元件电压,所述第二电压采样器用于采集所述电池包电路的总电压;
    所述有源元件设置在所述电池包外部;或者,所述有源元件设置在所述电池包内部。
PCT/CN2022/083408 2021-06-07 2022-03-28 确定电池包荷电状态的装置和方法 WO2022257556A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110632085.5 2021-06-07
CN202110632085.5A CN113253137B (zh) 2021-06-07 2021-06-07 确定电池包荷电状态的装置和方法

Publications (1)

Publication Number Publication Date
WO2022257556A1 true WO2022257556A1 (zh) 2022-12-15

Family

ID=77186890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083408 WO2022257556A1 (zh) 2021-06-07 2022-03-28 确定电池包荷电状态的装置和方法

Country Status (2)

Country Link
CN (1) CN113253137B (zh)
WO (1) WO2022257556A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253137B (zh) * 2021-06-07 2021-09-24 蜂巢能源科技有限公司 确定电池包荷电状态的装置和方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004226A (zh) * 2010-09-30 2011-04-06 中山大学 一种纯电动车用电池组soc估算装置及其估算方法
CN102495372A (zh) * 2011-11-29 2012-06-13 北京科诺伟业科技有限公司 一种风电机组变桨距系统蓄电池容量检测方法
CN102818996A (zh) * 2011-06-08 2012-12-12 光阳工业股份有限公司 电池结构及其电量测量方法
CN105449739A (zh) * 2015-09-30 2016-03-30 上海凌翼动力科技有限公司 基于单体电池的串联电池组荷电状态soc在线估计方法
CN106970327A (zh) * 2017-01-11 2017-07-21 深圳市沛城电子科技有限公司 一种电池的荷电状态估算方法及装置
EP3258282A1 (fr) * 2016-05-27 2017-12-20 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé et dispositif d'évaluation d'un indicateur d'état de santé d'une cellule d'une batterie lithium
CN109273787A (zh) * 2017-07-14 2019-01-25 中兴通讯股份有限公司 一种调整串联锂离子电池组的荷电状态soc的方法、装置
WO2019052015A1 (zh) * 2017-09-14 2019-03-21 广州市香港科大霍英东研究院 一种估算电池电量状态的方法
CN111929595A (zh) * 2020-06-09 2020-11-13 山东北固新材料科技有限公司 一种通过混合串联测量磷酸铁锂电池组电量状态的方法
CN112415400A (zh) * 2020-10-21 2021-02-26 欣旺达电子股份有限公司 电池容量估计方法及系统
CN113253137A (zh) * 2021-06-07 2021-08-13 蜂巢能源科技有限公司 确定电池包荷电状态的装置和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884945B2 (ja) * 2006-11-30 2012-02-29 三菱重工業株式会社 充電状態予測プログラム、架線レス交通システム及びその充電方法
CN105353316B (zh) * 2015-09-30 2018-07-03 南京林业大学 动力电池充电时soc变化量及充电电量折算系数测量方法
CN105301509B (zh) * 2015-11-12 2019-03-29 清华大学 锂离子电池荷电状态、健康状态与功率状态的联合估计方法
CN206460151U (zh) * 2016-11-16 2017-09-01 惠州市蓝微新源技术有限公司 一种电池组荷电状态估算系统
WO2019109951A1 (zh) * 2017-12-08 2019-06-13 南京德朔实业有限公司 便携式电能系统及电池包剩余电量测量方法
CN111426960A (zh) * 2020-05-26 2020-07-17 中国恩菲工程技术有限公司 储能锂电池荷电状态监控方法与装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004226A (zh) * 2010-09-30 2011-04-06 中山大学 一种纯电动车用电池组soc估算装置及其估算方法
CN102818996A (zh) * 2011-06-08 2012-12-12 光阳工业股份有限公司 电池结构及其电量测量方法
CN102495372A (zh) * 2011-11-29 2012-06-13 北京科诺伟业科技有限公司 一种风电机组变桨距系统蓄电池容量检测方法
CN105449739A (zh) * 2015-09-30 2016-03-30 上海凌翼动力科技有限公司 基于单体电池的串联电池组荷电状态soc在线估计方法
EP3258282A1 (fr) * 2016-05-27 2017-12-20 Commissariat à l'Energie Atomique et aux Energies Alternatives Procédé et dispositif d'évaluation d'un indicateur d'état de santé d'une cellule d'une batterie lithium
CN106970327A (zh) * 2017-01-11 2017-07-21 深圳市沛城电子科技有限公司 一种电池的荷电状态估算方法及装置
CN109273787A (zh) * 2017-07-14 2019-01-25 中兴通讯股份有限公司 一种调整串联锂离子电池组的荷电状态soc的方法、装置
WO2019052015A1 (zh) * 2017-09-14 2019-03-21 广州市香港科大霍英东研究院 一种估算电池电量状态的方法
CN111929595A (zh) * 2020-06-09 2020-11-13 山东北固新材料科技有限公司 一种通过混合串联测量磷酸铁锂电池组电量状态的方法
CN112415400A (zh) * 2020-10-21 2021-02-26 欣旺达电子股份有限公司 电池容量估计方法及系统
CN113253137A (zh) * 2021-06-07 2021-08-13 蜂巢能源科技有限公司 确定电池包荷电状态的装置和方法

Also Published As

Publication number Publication date
CN113253137A (zh) 2021-08-13
CN113253137B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
Conte Battery and battery management for hybrid electric vehicles: a review
Groot State-of-health estimation of li-ion batteries: Cycle life test methods
US6700383B2 (en) Method of detecting and resolving memory effect
Eichi et al. Modeling and analysis of battery hysteresis effects
JP6199999B2 (ja) 電池のsoc推定方法及びシステム
TW201203658A (en) Assembled battery and method of controlling assembled battery
Yang et al. Characterization, analysis and modeling of an ultracapacitor
KR101504804B1 (ko) 노화를 고려한 이차 전지의 상태 추정 방법 및 장치
KR101521328B1 (ko) 이차 전지의 다성분 전극의 특성을 평가하는 방법 및 시스템
Jin et al. Comparison of Li-ion battery degradation models for system design and control algorithm development
WO2019184842A1 (zh) 动力电池组的soc计算方法、装置和电动汽车
WO2022160190A1 (zh) 充电的方法、动力电池的电池管理系统和充电桩
WO2022257556A1 (zh) 确定电池包荷电状态的装置和方法
Pathiyil et al. Generic Battery model covering self-discharge and internal resistance variation
Wang et al. Third-order dynamic model of a lead acid battery for use in fuel cell vehicle simulation
US20130309554A1 (en) Lead-acid battery with high specific power and specific energy
Wu et al. Preheating strategy of variable‐frequency pulse for lithium battery in cold weather
KR20210074195A (ko) 리튬 이온 전지의 제조 방법
Zhao et al. Analysis of fading characteristics of a lithium ion battery based on an integration model
Soni et al. Analysis of battery-super capacitor based storage for electrical vehicle
KR20180014763A (ko) 배터리 셀 내의 애노드 전위 및/또는 캐소드 전위를 결정하기 위한 방법
Sadabadi et al. Development of an electrochemical model for a Lithium Titanate Oxide|| nickel manganese cobalt battery module
Becherif et al. Enhancement of the coulomb counter estimator by the on-board vehicle determination of battery initial state of charge
Totev et al. Batteries of Electric Vehicles
Banaei et al. Online detection of terminal voltage in Li-ion batteries via battery impulse response

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819161

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2301007991

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE