WO2022257308A1 - 一种基于联合仿真的燃料组件多学科结构设计优化方法 - Google Patents
一种基于联合仿真的燃料组件多学科结构设计优化方法 Download PDFInfo
- Publication number
- WO2022257308A1 WO2022257308A1 PCT/CN2021/122533 CN2021122533W WO2022257308A1 WO 2022257308 A1 WO2022257308 A1 WO 2022257308A1 CN 2021122533 W CN2021122533 W CN 2021122533W WO 2022257308 A1 WO2022257308 A1 WO 2022257308A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optimization
- file
- design
- maximum
- format
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 126
- 238000005457 optimization Methods 0.000 title claims abstract description 117
- 238000013461 design Methods 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000004088 simulation Methods 0.000 title claims abstract description 35
- 238000004364 calculation method Methods 0.000 claims abstract description 56
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 43
- 239000007787 solid Substances 0.000 claims abstract description 23
- 238000013401 experimental design Methods 0.000 claims abstract description 13
- 230000008878 coupling Effects 0.000 claims abstract description 9
- 238000010168 coupling process Methods 0.000 claims abstract description 9
- 238000005859 coupling reaction Methods 0.000 claims abstract description 9
- 238000012545 processing Methods 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 23
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 21
- 229910052782 aluminium Inorganic materials 0.000 claims description 21
- 238000005253 cladding Methods 0.000 claims description 21
- 230000000712 assembly Effects 0.000 claims description 18
- 238000000429 assembly Methods 0.000 claims description 18
- 238000012546 transfer Methods 0.000 claims description 17
- 238000003050 experimental design method Methods 0.000 claims description 13
- 230000008676 import Effects 0.000 claims description 12
- 230000010354 integration Effects 0.000 claims description 12
- 230000002706 hydrostatic effect Effects 0.000 claims description 11
- 230000002068 genetic effect Effects 0.000 claims description 10
- 239000002826 coolant Substances 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 6
- 238000012986 modification Methods 0.000 claims description 4
- 230000004048 modification Effects 0.000 claims description 4
- 101100291267 Drosophila melanogaster Miga gene Proteins 0.000 claims 1
- 239000012530 fluid Substances 0.000 abstract description 8
- 238000011160 research Methods 0.000 abstract description 2
- 239000000306 component Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 6
- 238000013400 design of experiment Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 101100072002 Arabidopsis thaliana ICME gene Proteins 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013506 data mapping Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/04—Constraint-based CAD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/06—Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the invention belongs to the field of fuel assembly design, and relates to a joint simulation-based fuel assembly multidisciplinary structure design optimization method, which is used to improve the optimization efficiency of the fuel assembly structure while meeting the design requirements, and is applicable to various sheet fuel assemblies Optimization of mechanical structure.
- the fuel assembly is the core component of the nuclear reactor, and its performance directly affects the normal operation of the nuclear reactor.
- its working environment is particularly harsh, and it has been under the working conditions of high temperature, high pressure, and high flow rate coolant for a long time, which seriously affects the safety of the fuel assembly. reliability. Therefore, when the fluid, solid, and thermal characteristics have an important impact on the performance of fuel assemblies, the development of a new optimization method for structural design under multi-disciplinary coupling conditions is of great importance in ensuring the normal operation of fuel assemblies and improving their service life. important meaning.
- Invention patent CN201910166484.X proposes a fuel assembly positioning grid optimization method and device, but the optimization process does not consider the working state of the multidisciplinary coupling of fuel assemblies, and the optimization method has not been carefully compared and verified.
- the traditional optimization method is usually completed by the method of experimental design. Although this method can improve the optimization efficiency to a certain extent, the selection of the design variables is discrete, and the optimal solution cannot be accurately found.
- the present invention adopts the approximate model technology on the basis of the test design, can better solve the shortcomings caused by the traditional optimization method, and can find the optimal solution more accurately.
- adopting an optimization method based on ISIGHT co-simulation can greatly reduce the disadvantages of high time and cost caused by continuous manual adjustment and update of geometric models and manual setting of numerical simulation calculation parameters, and can greatly shorten the optimization cycle.
- the fuel assembly cools and dissipates heat through the rapid flow of the cooling medium.
- the heating power of the fuel core of the fuel assembly is unevenly distributed, and the width of each flow channel has a very important influence on the heat dissipation of the fuel core. Therefore, this The invention selects the width of each flow channel as the design parameter, integrates NX, ICEM CFD, FLUENT, and ABAQUS in the optimization software ISIGHT, and realizes a joint simulation platform for fuel assembly structure optimization.
- the optimal design of the fuel assembly is carried out in this way, so as to obtain the optimal flow channel size.
- the technical problem to be solved in the present invention is: to overcome the defect that the traditional optimization method cannot accurately find the optimal solution, and at the same time overcome the problems of high time cost and low optimization efficiency caused by continuously manually adjusting the geometric model and setting numerical simulation calculation parameters , proposed a multi-disciplinary structural design optimization method for fuel assemblies based on co-simulation, which is used to improve the optimization efficiency of structural design of fuel assemblies under complex fluid, solid, and thermal multi-disciplinary coupling conditions, and is applicable to various sheet fuel assemblies Optimization of mechanical structure.
- a multidisciplinary structural design optimization method for fuel assemblies based on co-simulation which takes fuel assemblies as the research object, and aims at the structural optimization requirements and design of experiments (DOE) efficiency of fuel assemblies under fluid, solid, and thermal multidisciplinary coupling conditions Low problem, by determining the appropriate optimal design parameters, using Kriging (Kriging) to establish an approximate model, combined with the use of adaptive simulated annealing (ASA), multi-island genetic algorithm (MIGA), Hawke-Keves Direct search method (Hooke-Jeeves), continuous quadratic programming method (NLPQLP), generalized reduced gradient method (LSGRG) and other optimization algorithms, based on the fast optimization characteristics of ISIGHT, realized the sheet-shaped
- ASA adaptive simulated annealing
- MIGA multi-island genetic algorithm
- Hooke-Jeeves Hawke-Keves Direct search method
- NLPQLPQLP continuous quadratic programming method
- LSGRG generalized reduced gradient method
- the optimized design of the fuel assembly structure effectively solves
- the fuel assembly multidisciplinary structural design optimization method includes the following steps:
- the first step is to build a fuel assembly co-simulation platform based on ISIGHT software integrating NX, ICEM CFD, FLUENT, and ABAQUS.
- the simulation platform includes a geometric model update module, a grid update module, a flow heat transfer calculation module, a solid mechanics calculation module, data
- the processing modules are as follows:
- NX which includes 8 flow channels, 7 fuel cores, 7 aluminum claddings, and 1 tooth plate. Parameterize the size of the width of the 8 runners of the fuel assembly, export the NX expression file in .EXP format, record the NX operation record file in .VB format, and output the geometric model file in .STP format;
- the third is to store the highest node temperature of each aluminum cladding
- R av (sum(R 1 , R 2 , . . . , R 8 ))/8.
- the second step is to determine the design parameters, optimization objectives, and constraints of the optimization model, and select the appropriate experimental design method, approximate model, and optimization algorithm, as follows:
- the width has a very important influence on the heat dissipation of the fuel core, and it is necessary to determine the most effective flow channel width for the heat dissipation of the fuel assembly.
- the experimental design method is selected as the "Latin hypercube" experimental design method, which can ensure full coverage of the selected range of each design variable (L 1 , L 2 , . . . , L 8 ).
- the purpose of designing experiments is to select different combinations of design parameters And calculate the under each set of design parameter combination Equivalence, the combination of each set of design parameters and the calculated The equivalent is one sample.
- the selected design parameter combination of the experimental design For discrete data, the experimental design determines that different samples are the key premise to ensure the accurate establishment of the approximate model.
- the approximate model is established based on the above samples after adopting the "Latin Hypercube" experimental design method to select 80 groups of samples.
- the purpose of the approximate model is to "continuously" the discrete design variables, using In the subsequent use of optimization calculation
- Described approximation model selects Kriging approximation model, and described Kriging approximation model has better approximation effect when designing parameters within 10, and described approximation model adopts R 2 to verify the accuracy of approximation model.
- the optimization algorithm is a calculation method for predicting the optimal value after the Kriging approximate model is established, and the optimization algorithm selects "Multi-Island Genetic Algorithm (MIGA)", and the “Multi-Island Genetic Algorithm (MIGA)” It is a global optimization algorithm, which can effectively prevent the optimization result from falling into a local optimal solution.
- the optimal solution is a set of predicted values of design parameters L ′ 1 , L′ 2 , . . .
- the third step after the first step and the second step are all prepared, run the fuel assembly co-simulation platform to perform relevant optimization operations, and use the optimization algorithm to obtain L′ 1 , L′ 2 , ..., L′ 8 corresponding to predicted value of Actual values corresponding to L′ 1 , L′ 2 , ..., L′ 8 obtained through numerical calculation Compare and analyze the performance of the optimized fuel assembly. details as follows:
- step 1.1 the width of each flow channel has been parameterized, so the width of each flow channel is set to L′ 1 , L′ 2 , ..., L′ 8 , and the geometric model is updated in sequence module, grid update module, flow heat transfer calculation module, solid mechanics calculation module, and data processing module to obtain real calculation data when the design parameters are L′ 1 , L′ 2 ,...,L′ 8 Wait.
- step 3.3 If the error ⁇ described in step 3.3) is less than 10%, all meet the requirements, it is considered that the design parameters obtained after optimization are L' 1 , L' 2 , ..., L' 8 are acceptable; if the error described in step 3.2) is greater than 10%, or If any value in does not meet the requirements, it is considered that the design parameters obtained after optimization are L′ 1 , L′ 2 , ..., L′ 8 are unacceptable, and the optimization process needs to be corrected.
- the present invention has at least the following beneficial effects:
- the present invention adopts the fuel assembly optimization method design method based on ISIGHT co-simulation, fully exerts the advantages of NX, ICME CFD, FLUENT, and ABAQUS in their respective fields, and compares manual adjustment and update geometric models and settings when optimizing solutions Numerical simulation calculation parameters can greatly reduce the time cost, and the method of approximate model optimization can also improve the accuracy and reliability of the optimized design.
- the present invention obtains by error analysis after establishing an approximate model R av ,
- the R2 errors of S max were 0.99806, 0.99725, 0.91674, and 0.98714, respectively, indicating that the fitting degree is very good, and the approximate model can be used instead of the real model for optimization.
- the present invention adopts the Multi-Island Genetic Algorithm (Multi-Island GA) optimization algorithm, and the prediction results R' av , S' max , with actual calculation results
- the verification can effectively avoid problems such as the prediction value obtained by the optimization algorithm falling into a local optimal solution and the optimization result being unreliable.
- the present invention carries out digital calculation and verification based on the ISIGHT co-simulation fuel assembly optimization method design method, which can provide a theoretical basis for the experiment, reduce the excessively high experimental cost caused by blind experiments, and improve the efficiency of flake fuel. The overall performance of the component.
- Fig. 1 (a) is the schematic diagram of three-dimensional model of fuel assembly of the present invention
- Figure 1(b) is a cross-sectional view of the fuel assembly
- Fig. 2 is method flowchart of the present invention
- Figure 3 is the construction diagram of the ISIGHT co-simulation optimization platform
- Fig. 4 is the Multi-Island GA optimization process figure of the present invention.
- FIG. 1 is a schematic diagram of a three-dimensional model of a fuel assembly of the present invention, including a fluid domain 1 , a fuel core 2 , a tooth plate 3 , and an aluminum cladding 4 .
- the fuel core is placed in the core of the aluminum cladding; the aluminum cladding is fixed through the slot of the tooth plate; the fluid medium in the fluid domain flows rapidly from the flow channel between the aluminum cladding to achieve the effect of cooling.
- Fig. 2 is a flow chart of the fuel assembly structure optimization design method based on ISIGHT co-simulation.
- a joint simulation platform is built by integrating NX, ICEM CFD, FLUENT and ABAQUS through ISIGHT.
- NX can parameterize the size and characteristics of the fuel assembly through parametric modeling, and its output format is the general 3D geometric model file of .STP.
- ICME CFD can mesh the 3D geometric model, and its output format is .
- Grid file FLUENT can perform grid assembly on the .MSH grid file, and perform numerical simulation calculations on the flow and heat dissipation of the cooling medium, and output the calculated hydrostatic pressure, temperature and other data in a file format of .VRP
- ABAQUS is used for data input; ABAQUS can perform numerical simulation calculations on solid parts such as fuel assembly tooth plate, aluminum cladding and fuel core based on the hydrostatic pressure, temperature and other data output by FLUENT, and the maximum Mises stress of the output solid part is in The format is in a .TXT file.
- the design parameters, optimization goals, and constraints are determined, and then the sample points are selected through the design of experiments (DOE), and the approximate model is established on the basis of the experimental design, and the accuracy of the approximate model is tested by R2. If the requirements are met, the optimization algorithm is used for optimization prediction. If the accuracy does not meet the requirements, new sample points need to be determined, and the approximate model is rebuilt until the R2 test is qualified. After the optimization algorithm is optimized, it is necessary to judge whether the predicted optimization results and the actual calculation results meet the relevant requirements. If the requirements are met, the optimization results are desirable. If the requirements are not met, it is necessary to determine new sample points and reconstruct the approximation. Model, on the basis of the R2 test is qualified until whether the predicted optimization results and the actual calculation results meet the relevant requirements.
- Figure 3 is a construction diagram of the optimization platform for fuel assembly structure design optimization method based on ISIGHT co-simulation, including model update 1, model update 2, grid update 1, grid update 2, grid update 3, grid update 4, flow Heat transfer, solid mechanics 8 SIMCODE components, data processing 1, data processing 2 two calculator components, Optimization optimization component.
- the SIMCODE component is used to drive NX to update the geometric model, drive ICEM CFD to perform grid division, drive FLUENT to perform flow heat transfer numerical calculation, and drive ABAQUS to perform solid mechanics simulation calculation; data processing 1 and data processing 2 are respectively used to process FLUENT With the data output by ABAQUS; Optimization is used to establish an approximate model and optimize it through an optimization algorithm.
- Figure 4 shows the optimization process of the multi-island genetic algorithm (Multi-Island GA) optimization algorithm.
- This algorithm is a global optimization algorithm, and the optimization process has a total of 27,000 iterations.
- Table 1 is the data mapping relationship diagram of the invention, which specifically shows L' 1 , L' 2 , ..., L' 8 and L' 1 , L' 2 ,..., L' 8 , R′ av , S′ max , The relationship between.
- Table 2 shows the usage corresponding to each format file, including different types such as 3D geometry files, grid files, batch files, macro files, and data files.
- Table 3 is the comparison of data results before and after optimization, and the improvement of each index can be obtained from this table.
- a multidisciplinary structural design optimization method for fuel assemblies based on co-simulation includes the following steps:
- the first step is to build a fuel assembly co-simulation platform based on ISIGHT software integrating NX, ICEM CFD, FLUENT, and ABAQUS.
- the simulation platform includes a geometric model update module, a grid update module, a flow heat transfer calculation module, a solid mechanics calculation module, data
- the processing modules are as follows:
- NX which includes 8 flow channels, 7 fuel cores, 7 aluminum claddings, and 1 tooth plate. Parameterize the size of the width of the 8 runners of the fuel assembly, export the NX expression file in .EXP format, record the NX operation record file in .VB format, and output the geometric model file in .STP format;
- the third is to store the highest node temperature of each aluminum cladding
- R av (sum(R 1 , R 2 , . . . , R 8 ))/8.
- the second step is to determine the design parameters, optimization objectives, and constraints of the optimization model, and select the appropriate experimental design method, approximate model, and optimization algorithm, as follows:
- the width has a very important influence on the heat dissipation of the fuel core, and it is necessary to determine the most effective flow channel width for the heat dissipation of the fuel assembly.
- the experimental design method is selected as the "Latin hypercube" experimental design method, which can ensure full coverage of the selected range of each design variable (L 1 , L 2 , . . . , L 8 ).
- the purpose of designing experiments is to select different combinations of design parameters And calculate the under each set of design parameter combination Equivalence, the combination of each set of design parameters and the calculated The equivalent is one sample.
- the selected design parameter combination of the experimental design For discrete data, the experimental design determines that different samples are the key premise to ensure the accurate establishment of the approximate model. Table 3 shows the initial 80 sets of design parameter combinations determined by the "Latin Hypercube" experimental design method
- the approximate model is established based on the above samples after adopting the "Latin Hypercube" experimental design method to select 80 groups of samples.
- the purpose of the approximate model is to "continuously" the discrete design variables, using Then use the optimization algorithm to predict the optimal solution.
- Described approximation model selects Kriging approximation model, and described Kriging approximation model has better approximation effect when designing parameters within 10, and described approximation model adopts R 2 to verify the accuracy of approximation model.
- the optimization algorithm is a calculation method for predicting the optimal value after the Kriging approximate model is established, and the optimization algorithm selects "Multi-Island Genetic Algorithm (MIGA)", and the “Multi-Island Genetic Algorithm (MIGA)” It is a global optimization algorithm, which can effectively prevent the optimization result from falling into a local optimal solution.
- the optimal solution is a set of predicted values of design parameters L ′ 1 , L′ 2 , . . .
- the third step after the first step and the second step are all prepared, run the fuel assembly co-simulation platform to perform relevant optimization operations, and use the optimization algorithm to obtain L′ 1 , L′ 2 , ..., L′ 8 corresponding to predicted value of Actual values corresponding to L′ 1 , L′ 2 , ..., L′ 8 obtained through numerical calculation Compare and analyze the performance of the optimized fuel assembly. details as follows:
- step 1.1 the width of each flow channel has been parameterized, so the width of each flow channel is set to L′ 1 , L′ 2 , ..., L′ 8 , and the geometric model is updated in sequence module, grid update module, flow heat transfer calculation module, solid mechanics calculation module, and data processing module to obtain real calculation data when the design parameters are L′ 1 , L′ 2 ,...,L′ 8 Wait.
- step 3.3 If the error ⁇ described in step 3.3) is less than 10%, all meet the requirements, it is considered that the design parameters obtained after optimization are L' 1 , L' 2 , ..., L' 8 are acceptable; if the error described in step 3.2) is greater than 10%, or If any value in does not meet the requirements, it is considered that the design parameters obtained after optimization are L′ 1 , L′ 2 , ..., L′ 8 are unacceptable, and the optimization process needs to be corrected.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Computing Systems (AREA)
- Fluid Mechanics (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
一种基于联合仿真的燃料组件多学科结构设计优化方法,属于燃料组件设计领域。该方法以燃料组件为研究对象,针对燃料组件在流、固、热多学科耦合工况下结构的优化需求和试验设计效率低的问题,通过确定合适的优化设计参数,建立近似模型,同时结合优化算法,基于ISIGHT的快速优化特点,实现含有多条窄流道的片状燃料组件结构优化设计,能够有效解决该结构温度分布不均匀的问题。该方法基于ISIGHT集成NX、ICEM CFD、FLUENT、ABAQUS搭建联合仿真平台,在多次计算中不需要反复手动对软件进行操作设置,在满足设计需求的同时可以大幅度节约时间成本,缩短优化周期,具有稳定、高效的特点。
Description
本发明属于燃料组件设计领域,涉及一种基于联合仿真的燃料组件多学科结构设计优化方法,用于在满足设计要求的同时也可以提高燃料组件结构的优化效率,适用于各种片状燃料组件机械结构的优化。
燃料组件是核反应堆的核心部件,其性能直接影响了核反应堆的正常工作,然而其工作环境尤为苛刻,长期处于高温、高压、高流速冷却液冲刷的工作条件下,严重影响了燃料组件的安全性、可靠性。因此,在流、固、热特性对燃料组件工作性能有重要影响的情况下,研发一种适用多学科耦合工况下结构设计的新型优化方法,对保证燃料组件正常工作、提高使用寿命方面具有重要意义。
发明专利CN201910166484.X提出了一种燃料组件的定位格架优化方法及装置,但其优化过程没有考虑燃料组件多学科耦合作用的工作状态,且优化方法没有经过周密的对比验证。
传统的优化方法通常是通过试验设计的方法完成的,这种方法虽然能够在一定程度上提高优化效率,但是其设计变量的选择是离散的,无法精确的寻找到最优解。本发明在试验设计的基础上,采用近似模型技术,可以较好的解决传统优化方法所带来的不足,可以更加准确的寻找最优解。并且,采用一种基于ISIGHT联合仿真的优化方法可以大大缩短因为不断手动调整更新几何模型、手动设置数值仿真计算参数所带来的时间成本高昂的缺点,可以大大缩短优化周期。
该燃料组件是通过冷却介质快速流动的方式对燃料组件进行冷却散热,该燃料组件的燃料芯体发热功率分布不均匀,各个流道的宽度对燃料芯体的散热有十分重要的影响,故本发明选取各个流道的宽度作为设计参数,将NX、ICEM CFD、FLUENT、ABAQUS集成在优化软件ISIGHT中,实现一种燃料组件结构优化的联合仿真平台,在试验设计的基础上通过构建近似模型的方式对燃料组件进行优化设计,从而得到最优的流道尺寸。
发明内容
本发明需要解决的技术问题是:克服传统优化方法无法精确的寻找到最优解的缺陷,同时克服不断手动调整几何模型、设置数值仿真计算参数所带来的时间成本高昂,优化效率低下的问题,提出一种基于联合仿真的燃料组件多学科结构设计优化方法,用于提高燃料组件在流、固、热多学科耦合的复杂工况下结构设计的优化效率,适用于各种片状燃料组件机械结构的优化。
本发明解决上述问题采用的技术方案是:
一种基于联合仿真的燃料组件多学科结构设计优化方法,该方法以燃料组件为研究对象, 针对燃料组件在流、固、热多学科耦合工况下结构的优化需求和试验设计(DOE)效率低的问题,通过确定合适的优化设计参数,利用克里金法(Kriging)建立近似模型,同时结合利用自适应模拟退火法(ASA)、多岛遗传算法(MIGA)、霍克-基维斯直接搜索法(Hooke-Jeeves)、连续二次规划法(NLPQLP)、广义约简梯度法(LSGRG)等优化算法的方式,基于ISIGHT的快速优化特点,实现了含有多条窄流道的片状燃料组件结构优化设计,有效解决了该结构温度分布不均匀的问题。
所述燃料组件多学科结构设计优化方法包括如下步骤:
第一步,基于ISIGHT软件集成NX、ICEM CFD、FLUENT、ABAQUS搭建燃料组件联合仿真平台,该仿真平台内包括几何模型更新模块、网格更新模块、流动传热计算模块、固体力学计算模块、数据处理模块具体如下:
1.1)在NX中建立燃料组件的几何模型,该几何模型共包括8个流道、7个燃料芯体、7个铝包层、1个齿板。对燃料组件8个流道宽度的尺寸进行参数化设置,导出.EXP格式的NX表达式文件,录制.VB格式的NX操作记录文件,输出格式为.STP的几何模型文件;
1.2)建立利用NX执行几何模型更新模块的批处理文件,并将该批处理文件导入ISIGHT通用组件SIMCODE中,将步骤1.1)得到的.EXP格式的NX表达式文件中的流道宽度参数写入ISIGHT作为设计参数,驱动NX进行几何模型更新,输出更新后的格式为.STP通用几何模型文件,实现ISIGHT和NX两个软件之间的集成。
1.3)将ICEM CFD网格划分流程保存为.RPL格式的宏文件;
1.4)建立利用ICEM CFD执行网格更新模块的批处理文件,并将该批处理文件导入ISIGHT通用组件SIMCODE中,读取格式为.STP通用三维几何模型文件,驱动ICEM CFD进行网格更新,输出更新后的格式为.MSH的网格文件,实现ISIGHT和ICEM CFD两个软件之间的集成。
1.5)将FLUENT流动传热计算过程保存为.JOU格式的宏文件;
1.6)建立利用FLUENT执行流动传热数值计算模块的批处理文件,并将该批处理文件导入ISIGHT通用组件SIMCODE中,读取格式为.MSH文件的网格文件、格式为.C的UDF文件,驱动FLUENT进行流动传热数值计算,将求解计算完成后的数据储存在格式为.VRP的文本文件中,实现ISIGHT和FLUENT两个软件之间的集成。其中,共包括4个.VRP文本文件,其一储存着各个流道的综合指标R
i(i=1,2,...,8),其二储存着各个燃料芯体的最高节点温度
其三储存着各个铝包层的最高节点温度
其四储存着各个流道壁面的最大流体静压P
i(i=1,2,...,8)。
所有流道的壁面最大流体静压P
max,P
max=max(P
1,P
2,...,P
8);
各个流道综合指标平均值R
av,R
av=(sum(R
1,R
2,...,R
8))/8。
1.8)将ABAQUS固体力学计算过程保存为.PY格式的宏文件;
1.9)建立利用ABAQUS执行固体力学计算模块的批处理文件,并将该批处理文件导入ISIGHT通用组件SIMCODE中,将经过CALCULATOR组件计算得到的所有流道的壁面最大流体静压P
max与所有铝包层的最高节点温度
写入ISIGHT作为中间变量传输给ABAQUS,读取格式为.STP的三维几何模型文件,驱动ABAQUS进行固体力学计算,将求解计算完成后的数据储存在格式为.TXT的文本文件中,实现ISIGHT和ABAQUS两个软件之间的集成。.TXT文本文件中储存着各个燃料芯体最大Mises等效应力
齿板最大Mises等效应力S
θ、各个铝包层最大Mises等效应力
第二步,确定优化模型的设计参数、优化目标、约束条件,选取合适的试验设计方法、近似模型、优化算法,具体如下:
2.1)所述设计参数的选取为各个流道的宽度L
i(i=1,2,...,8),,其原因是燃料组件的燃料芯体发热功率分布不均匀,各个流道的宽度对燃料芯体的散热有十分重要的影响,需要确定对燃料组件散热最有效的流道宽度。
2.2)如前所述,燃料芯体发热功率分布不均匀,这种不均匀性将导致燃料芯体温度分布的不均匀,各个燃料芯体之间的温度梯度过大将会大大缩减燃料组件整体的使用寿命,我们通常使用标准差来描述数据分布的不均匀性,故所述优化目标的选取通过函数描述为:
2.3)除燃料芯体温度分布不均会对燃料组件使用寿命有重要影响外,各个流道的综合指标平均值R
av、燃料组件整体最大Mises应力S
max、所有燃料芯体的最高节点温度
对使用寿命也有一定影响,并希望R
av尽可能大、S
max尽可能小、
尽可能小,但以上三个指标的影响相对
而言较小,可将R
av、S
max、
设定为约束条件。此外,由燃料组件的放置空间条件限制,各个流道的宽度也应作为约束。
所述约束条件描述为:
-R
av≤-R
0
S
max≤S
0
2≤L
1,L
2...,L
8≤3
其中:
为所有燃料芯体的最高节点温度;S
max为燃料组件流-热-力耦合作用下最大Mises等效应力;R
0为各个流道平均综合指标最低许用值;T
0为燃料组件最高许用温度;S
0为燃料组件最高许用应力。
表示各个流道综合指标平均值;
表示第个流道的综合指标,Nu
i为第i个流道的努赛尔数,Nu
0为参考流道的努赛尔数,f
i表示第i个流道的达西摩擦系数,f
0表示参考流道的达西摩擦系数;
Δp
i为第i个流道出入口压降(Pa),D
i为第
i个流道水力直径(m),ρ
i为第
i个流道中冷却液的平均密度(kg/m
3),U
i为第i个流道入口速度(m/s),L为各个流道的长度(m);
2.4)所述试验设计方法选取为“拉丁超立方”试验设计方法,这种方法能够保证每一个设计变量(L
1,L
2,...,L
8)选取范围的全覆盖。进行试验设计的目的是选取不同的设计参数组合
并计算每一组设计参数组合下的
等值,每组设计参数组合与计算所得的
等值为一个样本。所述的样本数量选定为80,即j=1,2,...,80。所述试验设计所选取的设计参数组合
为离散数据,所述试验设计确定不同的样本是保证近似模型建立准确的关键前提。
2.5)所述的近似模型是在采用“拉丁超立方”试验设计方法选定80组样本后,基于以上样本所建立的,所述近似模型的用途是将离散的设计变量“连续化”,用于后续利用优化算
法预测最优解。所述近似模型选取Kriging近似模型,所述的Kriging近似模型在10个以内设计参数时具有较好的近似效果,所述的近似模型采用R
2验证近似模型的准确性。
2.6)所述优化算法是在建立Kriging近似模型后预测最优值的一种计算方法,所述优化算法选取“多岛遗传算法(MIGA)”,所述的“多岛遗传算法(MIGA)”是一种全局寻优算法,可以有效避免寻优结果陷入局部最优解。所述的最优解是利用“多岛遗传算法(MIGA)”得到的一组设计参数预测值L′
1,L′
2,...,L′
8,在L′
1,L′
2,...,L′
8设计参数下所对应的R′
av、S′
max、
亦是预测值,2≤L′
1,L′
2,...,L′
8≤3,且L′
1,L′
2,...,L′
8是区间[2,3]之间任意实数,未必属于试验设计选取的组合
第三步,第一步和第二步均准备完毕后,运行燃料组件联合仿真平台进行相关的优化操作,将利用优化算法得到的L′
1,L′
2,...,L′
8对应的预测值
与经数值计算得到L′
1,L′
2,...,L′
8对应的实际值
进行对比,分析优化后燃料组件的性能。具体如下:
3.1)以“多岛遗传算法(MIGA)”寻优后得到一组预测的最优设计参数L′
1,L′
2,...,L′
8,在该组设计参数下,与其对应的R′
av、S′
max、
满足-R′
av≤R
0、S′
max≤S
0、
为近似模型中的最小值。
3.2)如步骤1.1)所述,各个流道的宽度已经被参数化,故将各个流道的宽度分别设置为L′
1,L′
2,...,L′
8,依次执行几何模型更新模块、网格更新模块、流动传热计算模块、固体力学计算模块、数据处理模块,得到在设计参数为L′
1,L′
2,...,L′
8时的真实计算数据
等。
3.4)步骤3.3)中所述的误差σ若小于10%,
均满足要求,则认为优化后所得到的设计参数是L′
1,L′
2,...,L′
8是可以接受的;若步骤3.2)中所述的误差大于10%,或者
中任意数值不满足要求则认为优化后所得到的设计参数是L′
1,L′
2,...,L′
8是无法接受的,需要对优化流程进行修正。
3.5)所述的优化流程修正是通过增加试验设计样本的方式进行的,即在之前80组样本 的基础上新增样本,重构近似模型,重新利用优化算法进行寻优,重新将算法预测值与实际计算值比较,直到符合步骤3.2)、3.3)得标准为止。
本发明与现有技术相比,至少具有如下的有益效果:
(1)本发明采用了基于ISIGHT联合仿真的燃料组件优化方法设计方法,充分发挥了NX、ICME CFD、FLUENT、ABAQUS在各自领域的优势,在优化求解时相较于手动调整更新几何模型、设置数值仿真计算参数可以极大缩短时间成本,利用近似模型优化的方法亦可以提高优化设计的准确性和可靠性。
(2)本发明在建立近似模型后通过误差分析得到
R
av、
S
max的R
2误差分别为0.99806、0.99725、0.91674、0.98714,表明拟合度很好,可以用近似模型代替真实模型用于优化。
(3)本发明采用了多岛遗传算法(Multi-Island GA)优化算法,将各个优化算法的预测结果R′
av、S′
max、
与实际计算结果
进行验证,可以有效避免寻优算法得到的预测值陷入局部最优解、优化结果不可靠等问题。
(4)本发明通过基于ISIGHT联合仿真的燃料组件优化方法设计方法进行数字计算验证,可以为实验提供响应的理论依据,降低因盲目实验而带来的过高的实验成本,可以提高片状燃料组件的整体性能。
图1(a)为本发明的燃料组件三维模型示意图;
图1(b)为燃料组件截面图;
图2为本发明的方法流程图;
图3为ISIGHT联合仿真优化平台搭建图;
图4为本发明的Multi-Island GA优化过程图;
图中:1流体域;2燃料芯体;3齿板;4铝包层。
下面结合附图及具体实施方式进一步说明本发明,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。本发明不应局限于本实施例,其余利用本方法而实现的多学科耦合优化设计都在本发明的保护范围之内。
图1为本发明的燃料组件三维模型示意图,包括流体域1、燃料芯体2、齿板3、铝包层4。其中燃料芯体内置于铝包层芯部;铝包层通过齿板卡槽进行固定;流体域中的流体介质从铝包层之间的流道快速流动而达到冷却降温的作用。
图2为基于ISIGHT联合仿真的燃料组件结构优化设计方法流程图。根据燃料组件优化设计的实际情况,通过ISIGHT集成NX、ICEM CFD、FLUENT、ABAQUS搭建联合仿真平 台。NX可以通过参数化建模使燃料组件的尺寸和特征参数化,其输出格式为.STP的通用三维几何模型文件,ICME CFD可对三维几何模型进行网格划分,其输出格式为.MSH的网格文件;FLUENT可对.MSH网格文件进行网格装配,并对冷却介质的流动散热情况进行数值仿真计算,并将计算完成后的流体静压、温度等数据输出在格式为.VRP的文件中,供ABAQUS进行数据输入;ABAQUS可基于FLUENT输出的流体静压、温度等数据对燃料组件齿板、铝包层、燃料芯体等固体部分进行数值仿真计算,输出固体部分的最大Mises应力在格式为.TXT文件中。在联合仿真平台搭建完成后,确定设计参数、优化目标、约束条件,而后通过试验设计(DOE)选取样本点,在试验设计的基础上建立近似模型,并用R
2检验近似模型精度,若其精度满足要求则用优化算法进行寻优预测,若其精度不满足要求则需要确定新的样本点,重新构建近似模型直到R
2检验合格为止。在优化算法寻优完成后,要判断其预测的优化结果与实际计算结果是否满足相关要求,若满足要求则说明优化结果是可取的,若不满足要求则需要确定新的样本点,重新构建近似模型,在R
2检验合格的基础上直到预测的优化结果与实际计算结果是否满足相关要求为止。
图3为基于ISIGHT联合仿真的燃料组件结构设计优化方法优化平台搭建图,其中包括模型更新1、模型更新2、网格更新1、网格更新2、网格更新3、网格更新4、流动传热、固体力学8个SIMCODE组件,数据处理1、数据处理2两个计算器组件,Optimization优化组件。其中SIMCODE组件分别用于驱动NX进行几何模型更新、驱动ICEM CFD进行网格划分、驱动FLUENT进行流动传热数值计算、驱动ABAQUS进行固体力学仿真计算;数据处理1、数据处理2分别用于处理FLUENT与ABAQUS所输出的数据;Optimization用来建立近似模型并通过优化算法进行寻优。
图4为多岛遗传算法(Multi-Island GA)寻优算法的寻优历程,该算法为全局优化算法,寻优过程共迭代27000次。
表1 本发明的数据映射关系图
表2为每种格式文件所对应的用途,包括三维几何文件、网格文件、批处理文件、宏文件、数据文件等不同的类型。
表2 各文件格式及用途
表3为优化前后数据结果对比,由该表可得出各个指标的改善情况。
表3
参照图1至图4,一种基于联合仿真的燃料组件多学科结构设计优化方法,共包括如下步骤:
第一步,基于ISIGHT软件集成NX、ICEM CFD、FLUENT、ABAQUS搭建燃料组件联合仿真平台,该仿真平台内包括几何模型更新模块、网格更新模块、流动传热计算模块、固 体力学计算模块、数据处理模块具体如下:
1.1)在NX中建立燃料组件的几何模型,该几何模型共包括8个流道,7个燃料芯体,7个铝包层,1个齿板。对燃料组件8个流道宽度的尺寸进行参数化设置,导出.EXP格式的NX表达式文件,录制.VB格式的NX操作记录文件,输出格式为.STP的几何模型文件;
1.2)建立利用NX执行几何模型更新模块的批处理文件,并将该批处理文件导入ISIGHT通用组件SIMCODE中,将步骤1.1)得到的.EXP格式的NX表达式文件中的流道宽度参数写入ISIGHT作为设计参数,驱动NX进行几何模型更新,输出更新后的格式为.STP通用几何模型文件,实现ISIGHT和NX两个软件之间的集成。
1.3)将ICEM CFD网格划分流程保存为.RPL格式的宏文件;
1.4)建立利用ICEM CFD执行网格更新模块的批处理文件,并将该批处理文件导入ISIGHT通用组件SIMCODE中,读取格式为.STP通用三维几何模型文件,驱动ICEM CFD进行网格更新,输出更新后的格式为.MSH的网格文件,实现ISIGHT和ICEM CFD两个软件之间的集成。
1.5)将FLUENT流动传热计算过程保存为.JOU格式的宏文件;
1.6)建立利用FLUENT执行流动传热数值计算模块的批处理文件,并将该批处理文件导入ISIGHT通用组件SIMCODE中,读取格式为.MSH文件的网格文件、格式为.C的UDF文件,驱动FLUENT进行流动传热数值计算,将求解计算完成后的数据储存在格式为.VRP的文本文件中,实现ISIGHT和FLUENT两个软件之间的集成。其中,共包括4个.VRP文本文件,其一储存着各个流道的综合指标R
i(i=1,2,...,8),其二储存着各个燃料芯体的最高节点温度
其三储存着各个铝包层的最高节点温度
其四储存着各个流道壁面的最大流体静压P
i(i=1,2,...,8)。
所有流道的壁面最大流体静压P
max,P
max=max(P
1,P
2,...,P
8);
各个流道综合指标平均值R
av,R
av=(sum(R
1,R
2,...,R
8))/8。
1.8)将ABAQUS固体力学计算过程保存为.PY格式的宏文件;
1.9)建立利用ABAQUS执行固体力学计算模块的批处理文件,并将该批处理文件导入ISIGHT通用组件SIMCODE中,将经过CALCULATOR组件计算得到的所有流道的壁面最大 流体静压P
max与所有铝包层的最高节点温度
写入ISIGHT作为中间变量传输给ABAQUS,读取格式为.STP的三维几何模型文件,驱动ABAQUS进行固体力学计算,将求解计算完成后的数据储存在格式为.TXT的文本文件中,实现ISIGHT和ABAQUS两个软件之间的集成。.TXT文本文件中储存着各个燃料芯体最大Mises等效应力
齿板最大Mises等效应力S
θ、各个铝包层最大Mises等效应力
第二步,确定优化模型的设计参数、优化目标、约束条件,选取合适的试验设计方法、近似模型、优化算法,具体如下:
2.1)所述设计参数的选取为各个流道的宽度L
i(i=1,2,...,8),,其原因是燃料组件的燃料芯体发热功率分布不均匀,各个流道的宽度对燃料芯体的散热有十分重要的影响,需要确定对燃料组件散热最有效的流道宽度。
2.2)如前所述,燃料芯体发热功率分布不均匀,这种不均匀性将导致燃料芯体温度分布的不均匀,各个燃料芯体之间的温度梯度过大将会大大缩减燃料组件整体的使用寿命,我们通常使用标准差来描述数据分布的不均匀性,故所述优化目标的选取通过函数描述为:
2.3)除燃料芯体温度分布不均会对燃料组件使用寿命有重要影响外,各个流道的综合指标平均值R
av、燃料组件整体最大Mises应力S
max、所有燃料芯体的最高节点温度
对使用寿命也有一定影响,并希望R
av尽可能大、S
max尽可能小、
尽可能小,但以上三个指标的影响相对
而言较小,可将R
av、S
max、
设定为约束条件。此外,由燃料组件的放置空间条件限制,各个流道的宽度也应作为约束。
所述约束条件描述为:
-R
av≤-R
0
S
max≤S
0
2≤L
1,L
2...,L
8≤3
其中:
为所有燃料芯体的最高节点温度;S
max为燃料组件流-热-力耦合作用下最大Mises等效应力;R
0为各个流道平均综合指标最低许用值;T
0为燃料组件最高许用温度;S
0为燃料组件最高许用应力。
表示各个流道综合指标平均值;
表示第个流道的综合指标,Nu
i为第i个流道的努赛尔数,Nu
0为参考流道的努赛尔数,f
i表示第i个流道的达西摩擦系数,f
0表示参考流道的达西摩擦系数;
Δp
i为第i个流道出入口压降(Pa),D
i为第i个流道水力直径(m),ρ
i为第
i个流道中冷却液的平均密度(kg/m
3),U
i为第i个流道入口速度(m/s),L为各个流道的长度(m);
2.4)所述试验设计方法选取为“拉丁超立方”试验设计方法,这种方法能够保证每一个设计变量(L
1,L
2,...,L
8)选取范围的全覆盖。进行试验设计的目的是选取不同的设计参数组合
并计算每一组设计参数组合下的
等值,每组设计参数组合与计算所得的
等值为一个样本。所述的样本数量选定为80,即j=1,2,...,80。所述试验设计所选取的设计参数组合
为离散数据,所述试验设计确定不同的样本是保证近似模型建立准确的关键前提。表3为“拉丁超立方”试验设计方法确定的初始80组设计参数组合
表4
2.5)所述的近似模型是在采用“拉丁超立方”试验设计方法选定80组样本后,基于以上样本所建立的,所述近似模型的用途是将离散的设计变量“连续化”,用于后续利用优化算法预测最优解。所述近似模型选取Kriging近似模型,所述的Kriging近似模型在10个以内设计参数时具有较好的近似效果,所述的近似模型采用R
2验证近似模型的准确性。
2.6)所述优化算法是在建立Kriging近似模型后预测最优值的一种计算方法,所述优化算法选取“多岛遗传算法(MIGA)”,所述的“多岛遗传算法(MIGA)”是一种全局寻优算法,可以有效避免寻优结果陷入局部最优解。所述的最优解是利用“多岛遗传算法(MIGA)”得到的一组设计参数预测值L′
1,L′
2,...,L′
8,在L′
1,L′
2,...,L′
8设计参数下所对应的R′
av、S′
max、
亦是预测值,2≤L′
1,L′
2,...,L′
8≤3,且L′
1,L′
2,...,L′
8是区间[2,3]之间任意实数,未必属于试验设计选取的组合
第三步,第一步和第二步均准备完毕后,运行燃料组件联合仿真平台进行相关的优化操作,将利用优化算法得到的L′
1,L′
2,...,L′
8对应的预测值
与经数值计算得到L′
1,L′
2,...,L′
8对应的实际值
进行对比,分析优化后燃料组件的性能。具体如下:
3.1)以“多岛遗传算法(MIGA)”寻优后得到一组预测的最优设计参数L′
1,L′
2,...,L′
8,在该组设计参数下,与其对应的R′
av、S′
max、
满足-R′
av≤R
0、S′
max≤S
0、
为近似模型中的最小值。
3.2)如步骤1.1)所述,各个流道的宽度已经被参数化,故将各个流道的宽度分别设置为L′
1,L′
2,...,L′
8,依次执行几何模型更新模块、网格更新模块、流动传热计算模块、固体力学 计算模块、数据处理模块,得到在设计参数为L′
1,L′
2,...,L′
8时的真实计算数据
等。
3.4)步骤3.3)中所述的误差σ若小于10%,
均满足要求,则认为优化后所得到的设计参数是L′
1,L′
2,...,L′
8是可以接受的;若步骤3.2)中所述的误差大于10%,或者
中任意数值不满足要求则认为优化后所得到的设计参数是L′
1,L′
2,...,L′
8是无法接受的,需要对优化流程进行修正。
3.5)所述的优化流程修正是通过增加试验设计样本的方式进行的,即在之前80组样本的基础上新增样本,重构近似模型,重新利用优化算法进行寻优,重新将算法预测值与实际计算值比较,直到符合步骤3.2)、3.3)得标准为止。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。
Claims (4)
- 一种基于联合仿真的燃料组件多学科结构设计优化方法,其特征在于,包括如下步骤:第一步,集成NX、ICEM CFD、FLUENT、ABAQUS搭建燃料组件联合仿真平台,该仿真平台内包括几何模型更新模块、网格更新模块、流动传热计算模块、固体力学计算模块、数据处理模块,具体如下:1.1)在NX中建立燃料组件的几何模型,该几何模型共包括8个流道、7个燃料芯体、7个铝包层、1个齿板;对燃料组件8个流道宽度的尺寸进行参数化设置,导出.EXP格式的NX表达式文件,录制.VB格式的NX操作记录文件,输出格式为.STP的几何模型文件;1.2)建立利用NX执行几何模型更新模块的批处理文件,并将该批处理文件导入ISIGHT通用组件SIMCODE中,将步骤1.1)得到的.EXP格式的NX表达式文件中的流道宽度参数写入ISIGHT作为设计参数,驱动NX进行几何模型更新,输出更新后的格式为.STP通用几何模型文件,实现ISIGHT和NX之间的集成;1.3)将ICEM CFD网格划分流程保存为.RPL格式的宏文件;1.4)建立利用ICEM CFD执行网格更新模块的批处理文件,并将该批处理文件导入ISIGHT通用组件SIMCODE中,读取格式为.STP通用三维几何模型文件,驱动ICEM CFD进行网格更新,输出更新后的格式为.MSH的网格文件,实现ISIGHT和ICEM CFD两个软件之间的集成;1.5)将FLUENT流动传热计算过程保存为.JOU格式的宏文件;1.6)建立利用FLUENT执行流动传热数值计算模块的批处理文件,并将该批处理文件导入ISIGHT通用组件SIMCODE中,读取格式为.MSH文件的网格文件、格式为.C的UDF文件,驱动FLUENT进行流动传热数值计算,将求解计算完成后的数据储存在格式为.VRP的文本文件中,实现ISIGHT和FLUENT两个软件之间的集成;其中,共包括4个.VRP文本文件,储存以下内容:各个流道的综合指标R i(i=1,2,...,8)、各个燃料芯体的最高节点温度 (i=1,2,...,7)、各个铝包层的最高节点温度 各个流道壁面的最大流体静压P i(i=1,2,...,8);所有流道的壁面最大流体静压P max,P max=max(P 1,P 2,...,P 8);各个流道综合指标平均值R av,R av=(sum(R 1,R 2,...,R 8))/8;1.8)将ABAQUS固体力学计算过程保存为.PY格式的宏文件;1.9)建立利用ABAQUS执行固体力学计算模块的批处理文件,并将该批处理文件导入ISIGHT通用组件SIMCODE中,将经过CALCULATOR组件计算得到的所有流道的壁面最大流体静压P max与所有铝包层的最高节点温度 写入ISIGHT作为中间变量传输给ABAQUS,读取格式为.STP的三维几何模型文件,驱动ABAQUS进行固体力学计算,将求解计算完成后的数据储存在格式为.TXT的文本文件中,实现ISIGHT和ABAQUS两个软件之间的集成;.TXT文本文件中储存:各个燃料芯体最大Mises等效应力 齿板最大Mises等效应力S θ、各个铝包层最大Mises等效应力第二步,确定优化模型的设计参数、优化目标、约束条件,选取合适的试验设计方法、近似模型、优化算法,具体如下:2.1)所述设计参数为各个流道的宽度L i(i=1,2,...,8);2.2)所述优化目标通过函数描述为:所述约束条件描述为:-R av≤-R 0S max≤S 02≤L 1,L 2...,L 8≤3其中: 为所有燃料芯体的最高节点温度;S max为燃料组件流-热-力耦合作用下最大Mises等效应力;R 0为各个流道平均综合指标最低许用值;T 0为燃料组件最高许用温度;S 0为燃料 组件最高许用应力; 表示各个流道综合指标平均值; 表示第i个流道的综合指标,Nu i为第i个流道的努赛尔数,Nu 0为参考流道的努赛尔数,f i表示第i个流道的达西摩擦系数,f 0表示参考流道的达西摩擦系数; Δp i为第i个流道出入口压降(Pa),D i为第i个流道水力直径(m),ρ i为第i个流道中冷却液的平均密度(kg/m 3),U i为第i个流道入口速度(m/s),L为各个流道的长度(m);2.5)所述的近似模型是在采用步骤2.4)试验设计方法选定样本后,基于以上样本所建立的,将离散的设计变量“连续化”,用于后续利用优化算法预测最优解;2.6)所述优化算法要求能够有效避免寻优结果陷入局部最优解,最优解是利用优化算法得到的一组设计参数预测值L′ 1,L′ 2,...,L′ 8,其中2≤L′ 1,L′ 2,...,L′ 8≤3;在L′ 1,L′ 2,...,L′ 8设计参数下所对应的R′ av、S′ max、 亦是预测值,;第三步,运行燃料组件联合仿真平台,进行优化操作,将利用优化算法得到的L′ 1,L′ 2,...,L′ 8对应的预测值 与经数值计算得到L′ 1,L′ 2,...,L′ 8对应的实际值 进行对比,分析优化后燃料组件的性能;具体如下:3.1)以步骤2.6)优化算法寻优后得到一组预测的最优设计参数L′ 1,L′ 2,...,L′ 8,在该组设计参数下,与其对应的R′ av、S′ max、 满足-R′ av≤R 0、S′ max≤S 0、 为近似模型中的最小值;3.2)将各个流道的宽度分别设置为L′ 1,L′ 2,...,L′ 8,依次执行几何模型更新模块、网格更新模块、流动传热计算模块、固体力学计算模块、数据处理模块,得到在设计参数为L′ 1,L′ 2,...,L′ 8时的真实计算数据3.4)步骤3.3)中所述的误差σ若小于10%, 均满足要求,则认为优化后所得到的设计参数是L′ 1,L′ 2,...,L′ 8是可以接受的;若步骤3.2)中所述的误差大于10%, 或者 中任意数值不满足要求则认为优化后所得到的设计参数是L′ 1,L′ 2,...,L′ 8是无法接受的,需要对优化流程进行修正;3.5)所述的优化流程修正是通过增加试验设计样本的方式进行的,即在之前样本的基础上新增样本,重构近似模型,重新利用优化算法进行寻优,重新将算法预测值与实际计算值比较,直到符合步骤3.2)、3.3)得标准为止。
- 根据权利要求1所述的一种基于联合仿真的燃料组件多学科结构设计优化方法,其特征在于,步骤2.4)中所述试验设计方法为“拉丁超立方”试验设计方法。
- 根据权利要求1所述的一种基于联合仿真的燃料组件多学科结构设计优化方法,其特征在于,步骤2.6)中,所述优化算法选取多岛遗传算法MIGA。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/780,290 US20230252203A1 (en) | 2021-06-10 | 2021-10-18 | Multidisciplinary structural design optimization method for fuel assembly based on co-simulation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110647968.3 | 2021-06-10 | ||
CN202110647968.3A CN113255229B (zh) | 2021-06-10 | 2021-06-10 | 一种基于联合仿真的燃料组件多学科结构设计优化方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022257308A1 true WO2022257308A1 (zh) | 2022-12-15 |
Family
ID=77187504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/122533 WO2022257308A1 (zh) | 2021-06-10 | 2021-10-08 | 一种基于联合仿真的燃料组件多学科结构设计优化方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230252203A1 (zh) |
CN (1) | CN113255229B (zh) |
WO (1) | WO2022257308A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116029179A (zh) * | 2023-03-29 | 2023-04-28 | 上海治臻新能源股份有限公司 | 燃料电池流道结构的数值模拟方法、装置和计算机设备 |
CN116150885A (zh) * | 2023-02-14 | 2023-05-23 | 南京友一智能科技有限公司 | 一种多学科集成与仿真数据管理系统 |
CN116306383A (zh) * | 2023-05-22 | 2023-06-23 | 华东交通大学 | 展向波纹杆件协同优化方法及系统 |
CN116306046A (zh) * | 2023-05-23 | 2023-06-23 | 北京云道智造科技有限公司 | 一种确定燃烧仿真中组分浓度的方法及装置 |
CN116484771A (zh) * | 2023-06-21 | 2023-07-25 | 陕西空天信息技术有限公司 | 一种轴流压气机cfd网格生成的方法及装置 |
CN116484772A (zh) * | 2023-06-26 | 2023-07-25 | 陕西空天信息技术有限公司 | 一种通流设计的损失获取方法、装置、设备及介质 |
CN116991981A (zh) * | 2023-09-27 | 2023-11-03 | 深圳市特区建工科工集团盛腾科技有限公司 | 结合有限元分析的预应力构件仿真数据处理方法及系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113255229B (zh) * | 2021-06-10 | 2023-04-11 | 大连理工大学 | 一种基于联合仿真的燃料组件多学科结构设计优化方法 |
CN117313419B (zh) * | 2023-10-30 | 2024-08-13 | 中船奥蓝托无锡软件技术有限公司 | 一种多学科联合仿真系统 |
CN117648872B (zh) * | 2024-01-16 | 2024-06-18 | 广东工业大学 | 一种基于机器学习的城市街区节能减碳多目标优化方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108984842A (zh) * | 2018-06-20 | 2018-12-11 | 内蒙古工业大学 | 一种骨料烘干煤粉燃烧器的设计方法及设计平台 |
CN110135076A (zh) * | 2019-05-17 | 2019-08-16 | 北京航空航天大学 | 一种基于isight联合仿真的云台机械结构多目标集成优化方法 |
CN110147559A (zh) * | 2018-02-11 | 2019-08-20 | 株洲中车时代电气股份有限公司 | 基于多物理场耦合的变流器多学科优化设计方法 |
US20200387653A1 (en) * | 2019-06-09 | 2020-12-10 | BWXT Advanced Technologies LLC | Rapid Digital Nuclear Reactor Design Using Machine Learning |
CN112199792A (zh) * | 2020-09-30 | 2021-01-08 | 哈尔滨工程大学 | 一种微小型水下机器人多学科优化设计方法 |
CN113255229A (zh) * | 2021-06-10 | 2021-08-13 | 大连理工大学 | 一种基于联合仿真的燃料组件多学科结构设计优化方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101510229B (zh) * | 2009-03-20 | 2011-09-21 | 西安电子科技大学 | 基于机电热三场耦合的电子设备机箱结构优化设计方法 |
CN102880916B (zh) * | 2012-09-07 | 2015-10-28 | 华南理工大学 | 一种燃气、蒸汽联合循环机组优化调度改进方法 |
CN108763741A (zh) * | 2018-05-28 | 2018-11-06 | 青岛科技大学 | 一种液压软管流固耦合数值预测方法 |
CN108920844A (zh) * | 2018-07-06 | 2018-11-30 | 哈尔滨理工大学 | 一种基于联合仿真的球头铣刀几何参数优化方法 |
-
2021
- 2021-06-10 CN CN202110647968.3A patent/CN113255229B/zh active Active
- 2021-10-08 WO PCT/CN2021/122533 patent/WO2022257308A1/zh active Application Filing
- 2021-10-18 US US17/780,290 patent/US20230252203A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110147559A (zh) * | 2018-02-11 | 2019-08-20 | 株洲中车时代电气股份有限公司 | 基于多物理场耦合的变流器多学科优化设计方法 |
CN108984842A (zh) * | 2018-06-20 | 2018-12-11 | 内蒙古工业大学 | 一种骨料烘干煤粉燃烧器的设计方法及设计平台 |
CN110135076A (zh) * | 2019-05-17 | 2019-08-16 | 北京航空航天大学 | 一种基于isight联合仿真的云台机械结构多目标集成优化方法 |
US20200387653A1 (en) * | 2019-06-09 | 2020-12-10 | BWXT Advanced Technologies LLC | Rapid Digital Nuclear Reactor Design Using Machine Learning |
CN112199792A (zh) * | 2020-09-30 | 2021-01-08 | 哈尔滨工程大学 | 一种微小型水下机器人多学科优化设计方法 |
CN113255229A (zh) * | 2021-06-10 | 2021-08-13 | 大连理工大学 | 一种基于联合仿真的燃料组件多学科结构设计优化方法 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116150885A (zh) * | 2023-02-14 | 2023-05-23 | 南京友一智能科技有限公司 | 一种多学科集成与仿真数据管理系统 |
CN116029179A (zh) * | 2023-03-29 | 2023-04-28 | 上海治臻新能源股份有限公司 | 燃料电池流道结构的数值模拟方法、装置和计算机设备 |
CN116029179B (zh) * | 2023-03-29 | 2023-06-20 | 上海治臻新能源股份有限公司 | 燃料电池流道结构的数值模拟方法、装置和计算机设备 |
CN116306383A (zh) * | 2023-05-22 | 2023-06-23 | 华东交通大学 | 展向波纹杆件协同优化方法及系统 |
CN116306383B (zh) * | 2023-05-22 | 2024-01-30 | 华东交通大学 | 展向波纹杆件协同优化方法及系统 |
CN116306046B (zh) * | 2023-05-23 | 2023-10-03 | 北京云道智造科技有限公司 | 一种确定燃烧仿真中组分浓度的方法及装置 |
CN116306046A (zh) * | 2023-05-23 | 2023-06-23 | 北京云道智造科技有限公司 | 一种确定燃烧仿真中组分浓度的方法及装置 |
CN116484771B (zh) * | 2023-06-21 | 2023-08-25 | 陕西空天信息技术有限公司 | 一种轴流压气机cfd网格生成的方法及装置 |
CN116484771A (zh) * | 2023-06-21 | 2023-07-25 | 陕西空天信息技术有限公司 | 一种轴流压气机cfd网格生成的方法及装置 |
CN116484772A (zh) * | 2023-06-26 | 2023-07-25 | 陕西空天信息技术有限公司 | 一种通流设计的损失获取方法、装置、设备及介质 |
CN116484772B (zh) * | 2023-06-26 | 2023-08-25 | 陕西空天信息技术有限公司 | 一种通流设计的损失获取方法、装置、设备及介质 |
CN116991981A (zh) * | 2023-09-27 | 2023-11-03 | 深圳市特区建工科工集团盛腾科技有限公司 | 结合有限元分析的预应力构件仿真数据处理方法及系统 |
CN116991981B (zh) * | 2023-09-27 | 2023-12-01 | 深圳市特区建工科工集团盛腾科技有限公司 | 结合有限元分析的预应力构件仿真数据处理方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
US20230252203A1 (en) | 2023-08-10 |
CN113255229B (zh) | 2023-04-11 |
CN113255229A (zh) | 2021-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022257308A1 (zh) | 一种基于联合仿真的燃料组件多学科结构设计优化方法 | |
Zhang et al. | Multidisciplinary design and multi-objective optimization on guide fins of twin-web disk using Kriging surrogate model | |
CN105677964A (zh) | 一种基于cfd仿真和网格自适应的阀门流量系数计算方法 | |
CN102043877B (zh) | 用于预测淬火期间的传热系数的系统和方法 | |
Qvist et al. | The ADOPT code for automated fast reactor core design | |
CN106650125A (zh) | 一种离心压气机叶轮的优化方法和系统 | |
WO2024016621A1 (zh) | 反应堆试验模型的规模确定方法、装置和计算机设备 | |
Yoon et al. | The effects of crossflow gap and axial bypass gap distribution on the flow characteristics in prismatic VHTR core | |
WO2022099716A1 (zh) | 一种高温碳化炉外部保温材料隔热性能的模拟方法 | |
Yu et al. | Fuel performance analysis of BEAVRS benchmark Cycle 1 depletion with MCS/FRAPCON coupled system | |
Difonzo et al. | Assessment of different RANS turbulence models in mini-channels for the cooling of MW-class gyrotron resonators | |
Van Rooij et al. | Improving aerodynamic matching of axial compressor blading using a three-dimensional multistage inverse design method | |
Chen et al. | Distributed-parallel CFD computation for all fuel assemblies in PWR core | |
CN111444619B (zh) | 一种注塑模具冷却系统在线分析方法及设备 | |
Hinterberger et al. | Automatic geometry optimization of exhaust systems based on sensitivities computed by a continuous adjoint CFD method in OpenFOAM | |
Yue et al. | Coupled neutronics, thermal-hydraulics, and fuel performance analysis of dispersion plate-type fuel assembly in a cohesive way | |
Miao et al. | Intelligent mesh refinement based on U-NET for high-fidelity CFD simulation in numerical reactor | |
Ye et al. | A multi-objective optimization approach for battery thermal management system based on the combination of BP neural network prediction and NSGA-II algorithm | |
CN112597708A (zh) | 一种考虑转捩扰动因素的γ-Reθt转捩模型标定方法 | |
WO2022099712A1 (zh) | 一种高温碳化炉中石墨棒加热性能的模拟方法 | |
Zhang et al. | Implementation of an embedded LES model with parameter assessment for predicting surface pressure and surrounding flow of an isolated building | |
Tan et al. | Numerical simulation of muffler cover temperature analysis for general purpose engine based on CFD | |
Li et al. | Thermal-fluid-structure coupling analysis for plate-type fuel assembly under irradiation. Part-I numerical methodology | |
Bian | Research on Cooling Optimization of the Enclosed Single Rack Data Centers based on the Porous Medium Server Model | |
Makarashvili et al. | Nek5000 Simulations on Turbulent Coolant Flow in a Fuel Assembly Experiment-AREVA/ANL collaboration for advancing CFD tools |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21944808 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21944808 Country of ref document: EP Kind code of ref document: A1 |