WO2022257231A1 - 一种免蒸养高强加气混凝土材料及加气混凝土的制备方法 - Google Patents

一种免蒸养高强加气混凝土材料及加气混凝土的制备方法 Download PDF

Info

Publication number
WO2022257231A1
WO2022257231A1 PCT/CN2021/107189 CN2021107189W WO2022257231A1 WO 2022257231 A1 WO2022257231 A1 WO 2022257231A1 CN 2021107189 W CN2021107189 W CN 2021107189W WO 2022257231 A1 WO2022257231 A1 WO 2022257231A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
aerated concrete
steam
strength
desulfurized gypsum
Prior art date
Application number
PCT/CN2021/107189
Other languages
English (en)
French (fr)
Inventor
王文龙
杨世钊
姚星亮
姚永刚
王旭江
李敬伟
武双
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2022257231A1 publication Critical patent/WO2022257231A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Definitions

  • the invention belongs to the technical field of aerated concrete, and in particular relates to a non-steam curing high-strength aerated concrete material and a preparation method of the aerated concrete.
  • the existing air-entrained concrete preparation process is mainly based on autoclaved steam curing.
  • the equipment of autoclave is needed.
  • the specimen must be cured under high temperature, high pressure and steam in the autoclave. Only in this way can the test piece come out to meet the strength requirements specified in the standard.
  • this equipment not only requires a huge investment, but also the internal steam temperature of the production process is about 180°C and the pressure is about 12 atmospheres, which poses a great safety hazard.
  • the existing steam-free aerated concrete is mainly based on Portland cement, and the amount of cement generally accounts for more than 50% to meet the strength requirements of the test block, which leads to the loss of natural resources required in the cement and its production process. A large amount of consumption does not meet the requirements of low-carbon and sustainable development. At the same time, due to the slow setting speed of Portland cement, the production efficiency is severely restricted.
  • the strength of autoclaved aerated concrete is relatively high. In comparison, the strength of non-steamed aerated concrete is low.
  • the object of the present invention is to provide a non-steam curing high-strength aerated concrete material and a method for preparing aerated concrete.
  • the technical solution of the present invention is:
  • a steam-free high-strength aerated concrete material includes the following raw materials in parts by weight: 50-80 parts of sulfoaluminate cementitious material, 10-50 parts of pretreated desulfurized gypsum, and 1-10 parts of fly ash , 0.1-0.8 parts of water reducing agent, 1-3 parts of fiber, 0-0.5 parts of potassium iodide, 0.5-3 parts of calcium stearate, 1-8 parts of polymer solution, 1-4 parts of hydrogen peroxide solution, sulfur Aluminate cementitious materials include desulfurized gypsum, aluminum ash, carbide slag, and red mud.
  • the air-entrained concrete material proposed by the present invention hydrogen peroxide is added to obtain air-entrained concrete in the form of chemical foaming, and the sulphoaluminate cementitious material is prepared by calcining desulfurized gypsum, aluminum ash, carbide slag, and red mud at a lower temperature to replace Portland cement is produced, and the calcination temperature is 150°C lower than that of Portland cement, and the production process is lower in carbon; the synergistic effect between the pretreated desulfurized gypsum and the sulphoaluminate cementitious material is used to cooperate to obtain the cementitious matrix material, It can improve the strength of air-entrained concrete.
  • the concrete has the advantages of no-steamed technology, high-strength performance advantages, and raw material advantages of all solid waste production.
  • the effect of adding fiber is to improve the crack resistance of the gelling material; adding potassium iodide plays the role of catalyst to promote the decomposition of hydrogen peroxide solution to generate gas.
  • the effect of adding calcium stearate is to stabilize the foam, and adding the high molecular polymer solution has the effect of film formation and foam stabilization.
  • the sulfoaluminate cementitious material is used as the main cementitious material, and the desulfurized gypsum is pretreated to prepare anhydrous gypsum.
  • the maximum mixing ratio is 50%.
  • the synergistic combination of the two materials is beneficial to improve the strength of the air-entrained concrete.
  • the parts by weight of each substance in the sulphoaluminate cementitious material are composed of 20-40 parts of desulfurized gypsum, 20-28 parts of aluminum ash, 25-30 parts of carbide slag, and 16-25 parts of red mud Further, 25-30 parts of desulfurized gypsum, 22-25 parts of aluminum ash, 28-30 parts of carbide slag, and 18-22 parts of red mud.
  • the sulfoaluminate cementitious material obtained by mixing desulfurized gypsum, aluminum ash, carbide slag, and red mud in a specific ratio is used to prepare air-entrained concrete, which can effectively improve the strength of air-entrained concrete.
  • the pretreated desulfurized gypsum is dried to obtain anhydrous gypsum, which may also be replaced by natural anhydrite.
  • the desulfurized gypsum is pretreated into anhydrous gypsum, namely CaSO 4 .
  • Cooperating with sulfoaluminate cementitious materials can improve the strength, and the composite material has the characteristics of rapid hardening, thereby improving production efficiency.
  • anhydrite contains CaSO 4 , which will slowly hydrate itself to generate CaSO 4 2H 2 O, thus providing a certain strength for the material;
  • CaSO 4 will participate in the hydration reaction of sulfoaluminate cementitious materials, react with calcium sulfoaluminate, and promote the formation of ettringite and aluminum glue, thereby improving the strength of composite materials.
  • the preparation method of the dried desulfurized gypsum is as follows: heat and dry the desulfurized gypsum, the drying temperature is 400-600°C, and the drying time is more than 50-100min; preferably 450- 500°C, drying time is 60-100min.
  • the drying temperature is 400-600°C
  • the drying time is more than 50-100min; preferably 450- 500°C, drying time is 60-100min.
  • the anhydrous gypsum below is composed of two kinds of air-entrained concrete materials, desulfurized gypsum or anhydrite, respectively, in parts by weight.
  • sulfoaluminate cementitious material 20-50 parts of desulfurized gypsum after drying, 1-8 parts of fly ash, 0.1-0.8 parts of water reducing agent, 1- 3 parts, potassium iodide 0-0.5 parts, calcium stearate 0.5-3 parts, high molecular polymer solution 1-8 parts, hydrogen peroxide solution 1-4 parts.
  • sulfoaluminate cementitious material 50-80 parts of sulfoaluminate cementitious material, 10-43 parts of anhydrite, 2-10 parts of fly ash, 0.1-0.8 parts of water reducer, 1-3 parts of fiber, Potassium iodide 0-0.5 parts, calcium stearate 0.5-3 parts, high molecular polymer solution 1-8 parts, hydrogen peroxide solution 1.5-2 parts.
  • the polymer solution is VAE emulsion or styrene-acrylic emulsion or pure acrylic emulsion.
  • the high molecular polymer solution is viscous and film-forming, which is conducive to the stability of internal pores.
  • fiber is fiber products such as polypropylene fiber, glass fiber or basalt fiber; Further, the length of fiber is 3-9mm. The use of short fibers of 3-9mm can have better toughening and crack resistance.
  • the preparation method of the air-entrained concrete using the above-mentioned steam-free high-strength air-entrained concrete material the specific steps are:
  • the raw materials of the sulphoaluminate cementitious material are mixed and then calcined to obtain the clinker of the sulphoaluminate cementitious material;
  • the high molecular polymer solution is added to the mixture, and then the hydrogen peroxide solution is added to obtain a slurry, and the aerated concrete is obtained after the slurry is poured and demoulded.
  • the raw materials of the sulphoaluminate gelling material are dried before mixing, and the drying temperature is 70-110°C; preferably 80-110°C.
  • the calcination temperature is 1220-1270° C., and the temperature is kept for 30-50 minutes.
  • the components of the sulphoaluminate gelling material are calcined to obtain clinker. Compared with Portland cement, the reduction is about 150 °C, and the preparation process is lower carbon.
  • the high-molecular polymer solution is added to the mixture and then stirred, the stirring speed is 800-1500r/min, and the stirring time is 1-3min.
  • the stirring speed is 1500-2100r/min, and maintained for 10-30s.
  • the demoulding time is 4-6 hours.
  • non-steam-cured concrete Compared with steam-cured concrete, the strength of non-steam-cured concrete will be lower, because steam-cured concrete increases the reaction temperature of concrete, and the curing method, curing temperature, curing humidity, and curing time all affect the degree of hydration hardening, strength development and durability of concrete.
  • the non-steam curing concrete material in the present invention eliminates the high energy-consuming steps of steam curing, and compared with the non-steam curing process, it reduces the demoulding time and improves the strength and production of aerated concrete. Efficiency, while having good thermal insulation performance.
  • the aerated concrete prepared by the present invention eliminates the high temperature, high pressure and steam curing in the autoclave in the production link, which makes the preparation process simpler and safer, and the equipment investment is greatly reduced.
  • the sulphoaluminate cementitious material prepared by using industrial solid waste has the characteristics of early strength, high strength and rapid hardening, which can realize the rapid improvement of the strength of the test block, and can be demoulded within 4-6 hours, thereby significantly improving the production of aerated concrete efficiency.
  • the strength of the aerated concrete prepared by the present invention meets the national standard (GB 11968-2020) for autoclaved aerated concrete blocks, and the strength is higher than that of the existing steam-free aerated concrete on the market.
  • the steam-free aerated concrete in the existing market is mainly Portland cement, which is slow to set, high in cost and high in carbon emissions.
  • the sulphoaluminate cementitious materials we use are all raw materials from industrial solid waste, and have the characteristics of early strength, high strength and rapid hardening.
  • the calcination temperature is about 150°C lower than that of Portland cement. In comparison, the condensation is fast, the cost is low, and the carbon is lower.
  • the present invention proposes a more economical, environmentally friendly and low-carbon non-steamed high-strength aerated concrete and its preparation method, which has a positive effect on the comprehensive utilization of industrial solid waste, the technological innovation of energy-saving and thermal insulation materials, and the green and low-carbon cycle development of society. influences.
  • Fig. 1 is the preparation flowchart of embodiment 1-embodiment 3;
  • Fig. 2 is the preparation flowchart of embodiment 4-embodiment 6;
  • Figure 3 is a diagram of the air-entrained concrete sample prepared in Example 1.
  • the sources of raw materials for preparing sulfur-aluminum-based highly active materials are: desulfurization gypsum is a by-product of the flue gas desulfurization industry; red mud is waste from the electrolytic aluminum industry; aluminum ash is slag from the aluminum production process; calcium carbide slag is calcium carbide to produce acetylene waste in the process. These are all bulk industrial solid wastes.
  • concentration of hydrogen peroxide is 30%; the length of polypropylene fiber is 9 mm; the pretreated desulfurized gypsum is used; the water reducer is polycarboxylate water reducer, and the water meets the requirements of water for concrete mixing.
  • the method includes the following steps:
  • the whole kiln system adopts a staged drying method.
  • the heat source from the medium-high temperature kiln in (3) has a relatively high initial temperature and is first used to dry the desulfurized gypsum in (4).
  • the subsequent heat source is used to dry desulfurized gypsum, red mud, carbide slag and aluminum ash in (1).
  • the all-solid waste-based non-steam-cured high-strength aerated concrete material includes the following steps:
  • the whole kiln system adopts a staged drying method.
  • the heat source from the medium-high temperature kiln in (3) has a relatively high initial temperature and is first used to dry the desulfurized gypsum in (4).
  • the subsequent heat source is used to dry desulfurized gypsum, red mud, carbide slag and aluminum ash in (1).
  • the all-solid waste-based non-steam-cured high-strength aerated concrete material includes the following steps:
  • the whole kiln system adopts a staged drying method.
  • the heat source from the medium-high temperature kiln in (3) has a relatively high initial temperature and is first used to dry the desulfurized gypsum in (4).
  • the subsequent heat source is used to dry desulfurized gypsum, red mud, carbide slag and aluminum ash in (1).
  • a kind of preparation method of steam-free high-strength aerated concrete the method comprises the following steps:
  • a method for preparing steam-free high-strength aerated concrete comprising the following steps:
  • a method for preparing steam-free high-strength aerated concrete comprising the following steps:
  • the raw material composition of the sulphoaluminate cementitious material is: 25 parts of desulfurized gypsum, 30 parts of aluminum ash, 20 parts of carbide slag, and 25 parts of red mud.

Abstract

一种免蒸养高强加气混凝土材料及加气混凝土的制备方法。包括如下重量份的原料:硫铝酸盐胶凝材料50-80份、预处理脱硫石膏或天然硬石膏10-50份、粉煤灰1-10份、减水剂0.1-0.8份、纤维1-3份、碘化钾0-0.5份、硬脂酸钙0.5-3份、高分子聚合物溶液1-8份、过氧化氢溶液1-4份,硫铝酸盐胶凝材料包括脱硫石膏、铝灰、电石渣、赤泥。加气混凝土具有免蒸养的工艺优势、强度高的性能优势、固废生产的原料优势,解决了免蒸养加气混凝土存在强度较低的问题和固废利用的问题。

Description

一种免蒸养高强加气混凝土材料及加气混凝土的制备方法 技术领域
本发明属于加气混凝土技术领域,具体涉及一种免蒸养高强加气混凝土材料及加气混凝土的制备方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
现有加气混凝土制备工艺以蒸压蒸汽养护为主,在制备过程中,需要用到蒸压釜这个设备。试件必须在蒸压釜内进行高温高压、蒸汽养护。只有这样,出来的试件才满足标准中规定的强度要求。但是该设备不仅投资巨大,而且生产过程内部蒸汽温度180℃左右,压力12个大气压左右,存在极大的安全隐患。
现有的免蒸养加气混凝土都是以硅酸盐水泥为主,且水泥用量一般占到50%以上,才能满足试块的强度要求,从而导致水泥及其生产过程中所需自然资源的大量消耗,不符合低碳、可持续的发展要求。同时由于硅酸盐水泥凝结速度慢,生产效率受到严重制约。蒸压加气混凝土的强度较高,相比而言,免蒸养加气混凝土存在强度较低的问题。
发明内容
针对上述现有技术中存在的问题,本发明的目的是提供一种免蒸养高强加气混凝土材料及加气混凝土的制备方法。
为了解决以上技术问题,本发明的技术方案为:
第一方面,一种免蒸养高强加气混凝土材料,包括如下重量份的原料:硫铝酸盐胶凝材料50-80份、预处理脱硫石膏10-50份、粉煤灰1-10份、减水剂0.1-0.8份、纤维1-3份、碘化钾0-0.5份、硬脂酸钙0.5-3份、高分子聚合物溶液1-8份、过氧化氢溶液1-4份,硫铝酸盐胶凝材料包括脱硫石膏、铝灰、电石渣、赤泥。
本发明提出的加气混凝土材料,加入过氧化氢以化学发泡的方式得到加气混凝土,以脱硫石膏、铝灰、电石渣、赤泥较低温度煅烧制备硫铝酸盐胶凝材料,替代了硅酸盐水泥,且煅烧温度比硅酸盐水泥低150℃,生产过程更低碳;利用预处理脱硫石膏和硫铝酸盐胶凝材料之间的协同效益进行配合得到胶凝基体材料,具有提高加气混凝土强度的作用。实现了完全以工业固废制备加气混凝土,并且提高免蒸养加气混凝土的强度,混凝土具有免蒸养的工艺优势、强度高的性能优势、全固废生产的原料优势。
加入纤维的作用是提高胶凝材料的抗裂性能;加入碘化钾发挥催化剂的作用,促进过氧化氢溶液分解产生气体。
加入硬脂酸钙的作用是稳泡的作用,加入高分子聚合物溶液起到成膜和稳泡的效果。
以硫铝酸盐胶凝材料为主要胶凝材料,将脱硫石膏预处理以制备无水石膏,最大掺加比例到50%,两种材料的协同配合有利于提高加气混凝土的强度。
在本发明的一些实施方式中,硫铝酸盐胶凝材料中各物质的重量份组成为脱硫石膏20-40份、铝灰20-28份、电石渣25-30份、赤泥16-25份;进一步,脱硫石膏25-30份、铝灰22-25份、电石渣28-30份、赤泥18-22份。脱硫石膏、铝灰、电石渣、赤泥以特定的比例混合得到的硫铝酸盐胶凝材料用于制备加气混凝土,可以有效的提高加气混凝土的强度。
在本发明的一些实施方式中,预处理脱硫石膏经过烘干处理得到无水石膏,也可以用天然硬石膏代替。本发明中采用将脱硫石膏预处理为无水石膏,即CaSO 4。与硫铝酸盐胶凝材料配合具有提高强度的作用,同时复合材料具有快硬的特性,从而提高生产效率。无水石膏与硫铝酸盐胶凝材料配合的原理是:一方面,无水石膏中含有CaSO 4,自身会缓慢的水化,生成CaSO 4·2H 2O,从而为材料提供一定的强度;另一方面,CaSO 4会参与到硫铝酸盐胶凝材料的水化反应中,与硫铝酸钙反应,促进钙矾石和铝胶的生成,从而实现复合材料强度的提升。
在本发明的一些实施方式中,干燥后的脱硫石膏的制备方法为:将脱硫石膏进行加热烘干,烘干的温度为400-600℃,烘干时间为50-100min以上;优选为450-500℃,烘干时间为60-100min。通过脱硫石膏的高温干燥过程,使脱硫石膏内的二水石膏(CaSO 4·2H 2O)几乎全部失水变为无水石膏(CaSO 4)。
下面无水石膏分别为干燥后的脱硫石膏或者硬石膏的两种加气混凝土材料的重量份组成。
在本发明的一些实施方式中,硫铝酸盐胶凝材料50-80份、干燥后的脱硫石膏20-50份、粉煤灰1-8份、减水剂0.1-0.8份、纤维1-3份、碘化钾0-0.5份、硬脂酸钙0.5-3份、高分子聚合物溶液1-8份、过氧化氢溶液1-4份。
在本发明的一些实施方式中,硫铝酸盐胶凝材料50-80份、硬石膏10-43份、粉煤灰2-10份、减水剂0.1-0.8份、纤维1-3份、碘化钾0-0.5份、硬脂酸钙0.5-3份、高分子聚合物溶液1-8份、过氧化氢溶液1.5-2份。
在本发明的一些实施方式中,高分子聚合物溶液为VAE乳液或苯丙乳液或纯丙乳液等。高分子聚合物溶液具有粘性和成膜性,有利于内部气孔的稳定。
在本发明的一些实施方式中,纤维为聚丙烯纤维、玻璃纤维或玄武岩纤维 等纤维制品;进一步,纤维的长度为3-9mm。利用3-9mm的短纤维可以具有更好的增韧和抗裂性能。
第二方面,利用上述免蒸养高强加气混凝土材料的加气混凝土的制备方法,具体步骤为:
硫铝酸盐胶凝材料的各原料混合后进行煅烧得到硫铝酸盐胶凝材料熟料;
硫铝酸盐胶凝材料熟料与石膏混合得到胶凝材料;
向胶凝材料中加入粉煤灰、减水剂、纤维、碘化钾、硬脂酸钙后得到混合料;
向混合料中加入高分子聚合物溶液,然后再加入过氧化氢溶液得到浆体,浆体经过浇筑、脱模后得到加气混凝土。
在本发明的一些实施方式中,硫铝酸盐胶凝材料的各原料混合前先进行干燥,干燥的温度为70-110℃;优选为80-110℃。
在本发明的一些实施方式中,煅烧的温度为1220-1270℃,保温30-50min。硫铝酸盐胶凝材料各组分经过煅烧得到熟料。相比于硅酸盐水泥的降低了约150℃,制备过程更低碳。
在本发明的一些实施方式中,混合料中加入高分子聚合物溶液后进行搅拌,搅拌的转速为800-1500r/min,搅拌的时间为1-3min。
在本发明的一些实施方式中,加入过氧化氢后搅拌的转速为1500-2100r/min,并维持10-30s。
在本发明的一些实施方式中,脱模的时间为4-6h。
免蒸养混凝土相比于蒸养的混凝土强度会低,因为蒸养的混凝土提高了混凝土的反应温度,养护方式、养护温度、养护湿度、养护时间都对混凝土水化硬化程度、强度发展和耐久性具有重要的影响,本发明中的免蒸养混凝土材料, 免去了蒸养的高耗能步骤,且相对于免蒸养工艺,减少了脱模的时间,提高了加气混凝土强度和生产效率,同时具有较好的隔热性能。
本发明一个或多个技术方案具有以下有益效果:
本发明所制备的加气混凝土,生产环节上免去了在蒸压釜内高温高压、蒸汽养护的环节,使得制备工艺更简单、更安全,并且设备投资大幅减少。利用工业固废制备的硫铝酸盐胶凝材料具有早强、高强、快硬的特性,可以实现试块强度的快速提升,4-6小时即可脱模,从而显著提高加气混凝土的生产效率。同时本发明制备的加气混凝土的强度满足蒸压加气混凝土砌块的国家标准(GB 11968-2020),强度高于市面上现有免蒸养的加气混凝土。而且原料上,现有市场的免蒸养加气混凝土以硅酸盐水泥为主,凝结慢,成本高,碳排放高。而我们所用的硫铝酸盐胶凝材料,原材料全部取自工业固废,同时具备早强高强快硬的特性,煅烧温度比硅酸盐水泥低150℃左右。相比而言,凝结快、成本低、更低碳。因此,本发明提出了一种更经济环保低碳的免蒸养高强加气混凝土及其制备方法,对工业固废的综合利用、节能保温材料的技术革新、社会的绿色低碳循环发展有积极影响。
附图说明
构成本发明的一部分的说明书附图用来提供对本申请的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为实施例1-实施例3的制备流程图;
图2为实施例4-实施例6的制备流程图;
图3为实施例1制备得到加气混凝土试样图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。 除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
制备硫铝系高活性材料的原材料的来源为:脱硫石膏为烟气脱硫工业副产物;赤泥为电解铝行业废弃物;铝灰为铝生产工艺中的熔渣;电石渣为电石制取乙炔过程中的废渣。这都属于大宗工业固体废弃物。过氧化氢的浓度为30%;聚丙烯纤维长度为9mm;取预处理脱硫石膏;减水剂为聚羧酸减水剂,所述水符合混凝土拌合用水要求。
下面结合实施例对本发明进一步说明
实施例1
如图1所示,全固废基免蒸养高强加气混凝土材料,该方法包括以下步骤:
(1)将脱硫石膏、铝灰、电石渣、赤泥这些工业固废在100℃左右,干燥处理,备用。
(2)将(1)中烘干后的脱硫石膏27份、铝灰24份、电石渣29份、赤泥20份工业固废按相应的配合比混合,并进行粉磨、预混处理,备用。
(3)将(2)中混合料送入窑炉中煅烧,高温1250℃,保温30min,制备出硫铝酸盐胶凝材料熟料,备用。
(4)取部分脱硫石膏高温500℃烘干60min,此时脱硫石膏内的二水石膏(CaSO 4·2H 2O)全部失水变为无水石膏(CaSO 4),备用。
(5)整个窑炉系统采用分级烘干的方式,从(3)中高温窑炉出来的热源,初始温度较高,先用于烘干(4)中脱硫石膏。之后的热源再用于烘干(1)中脱硫石膏、赤泥、电石渣和铝灰。
(6)取(3)中烧成的硫铝酸盐胶凝材料熟料(60份),取(4)中高温处理过的脱硫石膏(40份)粉磨混合作胶凝材料,备用。
(7)向(6)中胶凝材料中,添加粉煤灰(2份)、减水剂(0.5份)、聚丙烯纤维(长度6mm;2份)、碘化钾(0.1份)和硬脂酸钙(1.2份)后干搅混合,得到混合料,备用。
(8)取水(35份),并向水中掺加VAE乳液(3份),并搅拌均匀,制成混合液,备用。
(9)取(7)中混合料低速搅拌,并加入(8)中混合液,之后搅拌(1000r/min),并维持3min。
(10)之后向(9)中搅拌好的浆体中加入过氧化氢溶液(30%,2%),之后高速搅拌(2000r/min)并维持30s。
(11)将(10)中搅拌好的浆体,浇筑入模箱中,静养成型4小时后脱模,切割,并用塑料薄膜包裹,继续静养即得到全固废基免蒸养高强加气混凝土材料,如图3所示。
表1实施例1免蒸养高强加气混凝土的性能
Figure PCTCN2021107189-appb-000001
实施例2
全固废基免蒸养高强加气混凝土材料,该方法包括以下步骤:
(1)将脱硫石膏、铝灰、电石渣、赤泥这些工业固废在100℃左右,干燥处理,备用。
(2)将(1)中烘干后的脱硫石膏27份、铝灰24份、电石渣29份、赤泥20份工业固废按相应的配合比混合,并进行粉磨、预混处理,备用。
(3)将(2)中混合料送入窑炉中煅烧,高温1240℃,保温40min,制备出硫铝酸盐胶凝材料熟料,备用。
(4)取部分脱硫石膏高温500℃烘干60min,此时脱硫石膏内的二水石膏(CaSO 4·2H 2O)全部失水变为无水石膏(CaSO 4),备用。
(5)整个窑炉系统采用分级烘干的方式,从(3)中高温窑炉出来的热源,初始温度较高,先用于烘干(4)中脱硫石膏。之后的热源再用于烘干(1)中脱硫石膏、赤泥、电石渣和铝灰。
(6)取(3)中烧成的硫铝酸盐胶凝材料熟料(70份),取(4)中高温处理过的脱硫石膏(30份)粉磨混合作胶凝材料,备用。
(7)向(6)中胶凝材料中,添加粉煤灰(5份)、减水剂(0.3份)、玻璃纤维(长度4mm;1.5份)、碘化钾(0.1份)和硬脂酸钙(1份)后干搅混合,得到混合料,备用。
(8)取水(30份),并向水中掺加VAE乳液(2份),并搅拌均匀,制成混合液,备用。
(9)取(7)中混合料低速搅拌,并加入(8)中混合液,之后搅拌(1000r/min),并维持3min。
(10)之后向(9)中搅拌好的浆体中加入过氧化氢溶液(30%,1.5%),之后高速搅拌(2000r/min)并维持30s。
(11)将(10)中搅拌好的浆体,浇筑入模箱中,静养成型4小时后脱模,切割,并用塑料薄膜包裹,继续静养即得到全固废基免蒸养高强加气混凝土材料。
表2实施例2免蒸养高强加气混凝土的性能
Figure PCTCN2021107189-appb-000002
实施例3
全固废基免蒸养高强加气混凝土材料,该方法包括以下步骤:
(1)将脱硫石膏、铝灰、电石渣、赤泥这些工业固废在100℃左右,干燥处理,备用。
(2)将(1)中烘干后的脱硫石膏27份、铝灰24份、电石渣29份、赤泥20份工业固废按相应的配合比混合,并进行粉磨、预混处理,备用。
(3)将(2)中混合料送入窑炉中煅烧,高温1250℃,保温30min,制备出硫铝酸盐胶凝材料熟料,备用。
(4)取部分脱硫石膏高温450℃烘干70min,此时脱硫石膏内的二水石膏(CaSO 4·2H 2O)全部失水变为无水石膏(CaSO 4),备用。
(5)整个窑炉系统采用分级烘干的方式,从(3)中高温窑炉出来的热源,初始温度较高,先用于烘干(4)中脱硫石膏。之后的热源再用于烘干(1)中脱硫石膏、赤泥、电石渣和铝灰。
(6)取(3)中烧成的硫铝酸盐胶凝材料熟料(80份),取(4)中高温处理过的脱硫石膏(20份)粉磨混合作胶凝材料,备用。
(7)向(6)中胶凝材料中,添加粉煤灰(3份)、减水剂(0.2份)、玄武岩纤维(长度6mm;1.5份)、碘化钾(0.1份)和硬脂酸钙(1.2份)后干搅混合,得到混合料,备用。
(8)取水(30份),并向水中掺加VAE乳液(2份),并搅拌均匀,制成混合液,备用。
(9)取(7)中混合料低速搅拌,并加入(8)中混合液,之后搅拌(1000r/min),并维持3min。
(10)之后向(9)中搅拌好的浆体中加入过氧化氢溶液(30%,1.7%),之后高速搅拌(2000r/min)并维持30s。
(11)将(10)中搅拌好的浆体,浇筑入模箱中,静养成型4小时后脱模,切割,并用塑料薄膜包裹,继续静养即得到全固废基免蒸养高强加气混凝土材料。
表3实施例3免蒸养高强加气混凝土的性能
Figure PCTCN2021107189-appb-000003
实施例4
如图2所示,一种免蒸养高强加气混凝土的制备方法,该方法包括以下步骤:
(1)将脱硫石膏、赤泥、铝灰、电石渣在105℃下,干燥处理(热源可以由窑炉提供),备用;
(2)将(1)中的四种固废原材料分别按脱硫石膏27:赤泥20:铝灰24: 电石渣29的比例混合并倒入粉磨机中,混合并粉磨后,备用;
(3)将(2)中混好的混合料加入到窑炉中煅烧,温度为1250℃保温30min,制备出硫铝酸盐胶凝材料熟料,待用;
(4)取(3)中硫铝酸盐胶凝材料熟料55份,天然硬石膏40份,粉煤灰5份,混合后粉磨作为制备加气混凝土的胶凝材料,待用;
(5)取(4)中混好的胶凝材料,加入聚羧酸减水剂0.4份、聚丙烯纤维0.5份、碘化钾0.1份、硬脂酸钙1份后干混搅拌,待用;
(6)取自来水35份,并向其中加入VAE乳液3份,混合溶液搅拌后,待用;
(7)将(5)中的混合料放入高速搅拌机中,将(6)中混合液倒入,并以1000r/min进行高速搅拌3min,制成混合浆体;
(8)向(7)中混合浆体倒入1.7份的过氧化氢溶液,并以2000r/min继续高速搅拌30s;
(9)将(8)中搅拌好的浆体倒入内表面刷油的模箱中,静养4h后。脱模并切割,最后将切好的砌块,用塑料薄膜包好继续静养。并最终制得免蒸养高强加气混凝土。性能如表4所示。
表4实施例4免蒸养高强加气混凝土的性能
Figure PCTCN2021107189-appb-000004
实施例5
一种免蒸养高强加气混凝土的制备方法,该方法包括以下步骤:
(1)将脱硫石膏、赤泥、铝灰、电石渣在105℃下,干燥处理(热源可以由窑炉提供),备用;
(2)将(1)中的四种固废原材料分别按27:20:24:29的比例混合并倒入粉磨机中,混合并粉磨后,备用;
(3)将(2)中混好的混合料加入到窑炉中煅烧,温度为1250℃保温30min,制备出硫铝酸盐胶凝材料熟料,待用;
(4)取(3)中硫铝酸盐胶凝材料熟料65份,天然硬石膏30份,粉煤灰5份,混合后粉磨作为制备加气混凝土的胶凝材料,待用;
(5)取(4)中混好的胶凝材料,加入聚羧酸减水剂0.4份、聚丙烯纤维1.5份、碘化钾0.1份、硬脂酸钙1.2份后干混搅拌,待用;
(6)取自来水32份,并向其中加入VAE乳液2份,混合溶液搅拌后,待用;
(7)将(5)中的混合料放入高速搅拌机中,将(6)中混合液倒入,并以1000r/min进行高速搅拌3min,制成混合浆体;
(8)向(7)中混合浆体倒入1.5份的过氧化氢,并以2000r/min继续高速搅拌30s;
(9)将(8)中搅拌好的浆体倒入内表面刷油的模箱中,静养4h后。脱模并切割,最后将切好的砌块,用塑料薄膜包好继续静养。并最终制得免蒸养高强加气混凝土。性能如表5所示。
表5实施例5免蒸养高强加气混凝土的性能
Figure PCTCN2021107189-appb-000005
实施例6
一种免蒸养高强加气混凝土的制备方法,该方法包括以下步骤:
(1)将脱硫石膏、赤泥、铝灰、电石渣在105℃下,干燥处理(热源可以由窑炉提供),备用;
(2)将(1)中的四种固废原材料分别按27:20:24:29的比例混合并倒入粉磨机中,混合并粉磨后,备用;
(3)将(2)中混好的混合料加入到窑炉中煅烧,温度为1250℃保温30min,制备出硫铝酸盐胶凝材料熟料,待用;
(4)取(3)中硫铝酸盐胶凝材料熟料75份,天然硬石膏23份,粉煤灰2份,混合后粉磨作为制备加气混凝土的胶凝材料,待用;
(5)取(4)中混好的胶凝材料,加入聚羧酸减水剂0.2份、玻璃纤维1.5份、碘化钾0.1份、硬脂酸钙1份后干混搅拌,待用;
(6)取自来水30份,并向其中加入VAE乳液2份,混合溶液搅拌后,待用;
(7)将(5)中的混合料放入高速搅拌机中,将(6)中混合液倒入,并以1200r/min进行高速搅拌3min,制成混合浆体;
(8)向(7)中混合浆体倒入2份的过氧化氢,并以2100r/min继续高速搅拌30s;
(9)将(8)中搅拌好的浆体倒入内表面刷油的模箱中,静养4h后。脱模并切割,最后将切好的砌块,用塑料薄膜包好继续静养。并最终制得免蒸养高强加气混凝土。性能如表6所示。
表6实施例6免蒸养高强加气混凝土的性能
Figure PCTCN2021107189-appb-000006
Figure PCTCN2021107189-appb-000007
对比例1
相比于实施例3,硫铝酸盐胶凝材料的原料组成为:脱硫石膏25份、铝灰30份、电石渣20份、赤泥25份。
表7对比例1免蒸养高强加气混凝土的性能
Figure PCTCN2021107189-appb-000008
通过对比例1和实施例3的对比可知,当硫铝酸盐胶凝材料的原料发生改变时,会影响免蒸养加气混凝土的强度和导热系数。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种免蒸养高强加气混凝土材料,其特征在于:包括如下重量份的原料:硫铝酸盐胶凝材料50-80份、预处理脱硫石膏或天然硬石膏10-50份、粉煤灰1-10份、减水剂0.1-0.8份、纤维1-3份、碘化钾0-0.5份、硬脂酸钙0.5-3份、高分子聚合物溶液1-8份、过氧化氢溶液1-4份,硫铝酸盐胶凝材料包括脱硫石膏、铝灰、电石渣、赤泥。
  2. 如权利要求1所述的免蒸养高强加气混凝土材料,其特征在于:硫铝酸盐胶凝材料中各物质的重量份组成为脱硫石膏20-40份、铝灰20-28份、电石渣25-30份、赤泥16-25份;进一步,脱硫石膏25-30份、铝灰22-25份、电石渣28-30份、赤泥18-22份。
  3. 如权利要求1所述的免蒸养高强加气混凝土材料,其特征在于:无水石膏为干燥后的脱硫石膏或者硬石膏。
  4. 如权利要求3所述的免蒸养高强加气混凝土材料,其特征在于:干燥后的脱硫石膏的制备方法为:将脱硫石膏进行加热烘干,烘干的温度为400-600℃,烘干时间为50-100min以上;优选为450-500℃,烘干时间为60-100min。
  5. 如权利要求4所述的预处理脱硫石膏,其特征是利用了工业窑炉的多级余热利用的方式,较高温度用于预处理脱硫石膏,较低温度用于烘干固废原料。
  6. 如权利要求1所述的免蒸养高强加气混凝土材料,其特征在于:分子聚合物溶液为VAE乳液或苯丙乳液或纯丙乳液。
  7. 如权利要求1所述的免蒸养高强加气混凝土材料,其特征在于:纤维为聚丙烯纤维、玻璃纤维或玄武岩纤维等纤维制品;进一步,纤维的长度为3-9mm。
  8. 利用权利要求1-7任一所述的免蒸养高强加气混凝土材料的加气混凝土的制备方法,其特征在于:具体步骤为:
    硫铝酸盐胶凝材料的各原料混合后进行煅烧得到硫铝酸盐胶凝材料熟料;
    利用硫铝酸盐胶凝材料熟料与无水石膏的协同关系,混合得到胶凝材料;
    工业窑炉的多级余热利用,实现较高温脱硫石膏的预处理和较低温固废原料的烘干;
    向胶凝材料中加入粉煤灰、减水剂、纤维、碘化钾、硬脂酸钙后得到混合料;
    向混合料中加入高分子聚合物溶液,然后再加入过氧化氢溶液得到浆体,浆体经过浇筑、脱模后得到加气混凝土。
  9. 如权利要求8所述的加气混凝土的制备方法,其特征在于:硫铝酸盐胶凝材料的各原料混合前利用窑炉的多级余热利用的方式先进行干燥,干燥的温度为70-110℃;优选为80-110℃。
  10. 如权利要求8所述的加气混凝土的制备方法,其特征在于:煅烧的温度为1220-1270℃,保温30-50min;
    或,脱模的时间为4-6h。
PCT/CN2021/107189 2021-06-07 2021-07-19 一种免蒸养高强加气混凝土材料及加气混凝土的制备方法 WO2022257231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110632214.0 2021-06-07
CN202110632214.0A CN113185318B (zh) 2021-06-07 2021-06-07 一种免蒸养高强加气混凝土材料及加气混凝土的制备方法

Publications (1)

Publication Number Publication Date
WO2022257231A1 true WO2022257231A1 (zh) 2022-12-15

Family

ID=76976370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107189 WO2022257231A1 (zh) 2021-06-07 2021-07-19 一种免蒸养高强加气混凝土材料及加气混凝土的制备方法

Country Status (2)

Country Link
CN (1) CN113185318B (zh)
WO (1) WO2022257231A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082011A (zh) * 2022-12-27 2023-05-09 贵州大学 一种电解锰渣生产加气混凝土砌块及其制备方法
CN116283139A (zh) * 2023-03-03 2023-06-23 湖北工业大学 一种蒸压加气混凝土废料碳化再利用方法
CN116462480A (zh) * 2023-04-23 2023-07-21 信阳市灵石科技有限公司 工业废弃物和非金属尾矿制备高强石膏基凝胶材料的方法
CN116514572A (zh) * 2023-03-16 2023-08-01 武汉建筑材料工业设计研究院有限公司 一种耐候高强加气混凝土及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425462B (zh) * 2023-03-31 2024-02-13 北京瑞吉达科技有限公司 一种胶凝组合物、免蒸压加气混凝土及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992888B1 (ko) * 2010-04-16 2010-11-09 (주)유성테크 친환경 뿜칠용 내화피복재 조성물
KR101710934B1 (ko) * 2016-10-07 2017-03-02 주식회사 효성 금속성 팽창물질을 포함하는 친환경 균열 저감제 조성물 및 이를 이용한 기포콘크리트 조성물 및 방통 모르타르 조성물
CN108821671A (zh) * 2018-07-17 2018-11-16 山东大学 一种全工业固废高强度即用型发泡混凝土材料及制备方法
CN109354509A (zh) * 2018-12-13 2019-02-19 四川什邡市星天丰科技有限公司 一种免蒸压的加气磷石膏基混凝土砌块制备方法
CN112624795A (zh) * 2020-12-31 2021-04-09 山东大学 一种脱硫石膏基泡沫混凝土及制备方法和应用
CN112723764A (zh) * 2020-12-29 2021-04-30 山东大学 赤泥基胶凝材料、赤泥基轻骨料、赤泥基轻骨料混凝土及其制备方法
CN112851273A (zh) * 2020-12-31 2021-05-28 山东大学 一种铁尾矿砂基节能保温轻质混凝土及其制备方法、应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959587B1 (ko) * 2009-10-15 2010-05-27 (주)하이스콘 초고강도 콘크리트 조성물, 및 이를 이용한 초고강도 콘크리트 제조 방법
CN102167536B (zh) * 2011-01-25 2013-07-03 河海大学 二次钙矾石型膨胀剂及其制备方法和应用
CN104119096B (zh) * 2013-04-25 2017-08-18 神华集团有限责任公司 一种无机组合物、无机泡沫材料及其制备方法
CN106915938B (zh) * 2017-03-17 2019-06-14 山东大学 一种利用工业固废制备硫铝酸盐超高水充填材料的系统和方法
CN112723814B (zh) * 2020-12-31 2022-06-03 山东大学 固废基免蒸养装配式建筑预制用混凝土、预制构件及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100992888B1 (ko) * 2010-04-16 2010-11-09 (주)유성테크 친환경 뿜칠용 내화피복재 조성물
KR101710934B1 (ko) * 2016-10-07 2017-03-02 주식회사 효성 금속성 팽창물질을 포함하는 친환경 균열 저감제 조성물 및 이를 이용한 기포콘크리트 조성물 및 방통 모르타르 조성물
CN108821671A (zh) * 2018-07-17 2018-11-16 山东大学 一种全工业固废高强度即用型发泡混凝土材料及制备方法
CN109354509A (zh) * 2018-12-13 2019-02-19 四川什邡市星天丰科技有限公司 一种免蒸压的加气磷石膏基混凝土砌块制备方法
CN112723764A (zh) * 2020-12-29 2021-04-30 山东大学 赤泥基胶凝材料、赤泥基轻骨料、赤泥基轻骨料混凝土及其制备方法
CN112624795A (zh) * 2020-12-31 2021-04-09 山东大学 一种脱硫石膏基泡沫混凝土及制备方法和应用
CN112851273A (zh) * 2020-12-31 2021-05-28 山东大学 一种铁尾矿砂基节能保温轻质混凝土及其制备方法、应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116082011A (zh) * 2022-12-27 2023-05-09 贵州大学 一种电解锰渣生产加气混凝土砌块及其制备方法
CN116283139A (zh) * 2023-03-03 2023-06-23 湖北工业大学 一种蒸压加气混凝土废料碳化再利用方法
CN116283139B (zh) * 2023-03-03 2024-04-19 湖北工业大学 一种蒸压加气混凝土废料碳化再利用方法
CN116514572A (zh) * 2023-03-16 2023-08-01 武汉建筑材料工业设计研究院有限公司 一种耐候高强加气混凝土及其制备方法
CN116514572B (zh) * 2023-03-16 2024-04-26 武汉建筑材料工业设计研究院有限公司 一种耐候高强加气混凝土及其制备方法
CN116462480A (zh) * 2023-04-23 2023-07-21 信阳市灵石科技有限公司 工业废弃物和非金属尾矿制备高强石膏基凝胶材料的方法
CN116462480B (zh) * 2023-04-23 2024-01-05 信阳市灵石科技有限公司 工业废弃物和非金属尾矿制备高强石膏基凝胶材料的方法

Also Published As

Publication number Publication date
CN113185318A (zh) 2021-07-30
CN113185318B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2022257231A1 (zh) 一种免蒸养高强加气混凝土材料及加气混凝土的制备方法
CN110204258B (zh) 一种基于尾气碳化的全固废免烧发泡混凝土及其制备方法和应用
CN106348643B (zh) 改性混凝土膨胀剂
CN112266264B (zh) 基于碱激发与加速碳化协同作用的加气混凝土及制备方法
CN114538850B (zh) 一种基于生物炭内碳化的固废基轻骨料及其制备方法
CN102701656A (zh) 偏高岭土基地聚合物泡沫混凝土及其制备方法
CN111635152B (zh) 一种高贝利特硫铝酸盐水泥熟料及其制备方法
WO2023001320A1 (zh) 一种超低碳无熟料水泥及其制备方法和应用
WO2022142135A1 (zh) 一种脱硫石膏基泡沫混凝土及制备方法和应用
CN103723988A (zh) 利用玻璃粉制备的轻质高强加气混凝土及其方法
CN111747664A (zh) 一种半水磷石膏基耐水型胶凝材料及其制备方法
CN111285654A (zh) 一种脱硫建筑石膏基复合胶凝材料的制备方法
CN111423189B (zh) 一种秸秆灰制备的硅酸钙板及其制备方法
CN114988791A (zh) 一种掺富硫锂渣的烟道灌浆料及其制备方法和应用
CN114573315B (zh) 一种免蒸压碳化养护再生轻质混凝土及其制备方法
CN101148335B (zh) 一种免烧增韧陶粒及其制备方法
CN113880540B (zh) 一种利用半干法氧化脱硫灰制备石膏自流平材料的方法
CN115353361A (zh) 一种复合胶凝材料及其制备方法和应用
CN112851273B (zh) 一种铁尾矿砂基节能保温轻质混凝土及其制备方法、应用
CN111559896A (zh) 一种发泡磷石膏砌块及其制备方法
CN114956642B (zh) 一种基于再生微粉的复合膨胀剂及其制备方法
CN115259726B (zh) 一种用于胶凝材料的复合激发剂及其制备方法
CN115432982B (zh) 一种加气混凝土的制备方法
CN114105535B (zh) 一种高掺量半干法烧结脱硫灰制备轻质节能墙材的方法
CN113929425B (zh) 一种建筑砌块及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE