WO2022255615A1 - Biodegradable furan-based composite having improved mechanical properties, and method for producing same - Google Patents

Biodegradable furan-based composite having improved mechanical properties, and method for producing same Download PDF

Info

Publication number
WO2022255615A1
WO2022255615A1 PCT/KR2022/004670 KR2022004670W WO2022255615A1 WO 2022255615 A1 WO2022255615 A1 WO 2022255615A1 KR 2022004670 W KR2022004670 W KR 2022004670W WO 2022255615 A1 WO2022255615 A1 WO 2022255615A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural polymer
polymer nanofibers
furan
biodegradable composite
biodegradable
Prior art date
Application number
PCT/KR2022/004670
Other languages
French (fr)
Korean (ko)
Inventor
황성연
구준모
박제영
오동엽
전현열
트렁탄부
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2022255615A1 publication Critical patent/WO2022255615A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present disclosure relates to a biodegradable furan-based composite having improved mechanical properties and a method for preparing the same.
  • biodegradable polyester when the ester functional group is exposed to external water and air, hydrolysis occurs, enabling biodegradation.
  • polyesters include poly butylene adipate terephthalate (PBAT), poly butylene succinate (PBS), poly lactic acid (PLA), and the like.
  • biodegradable polyesters show inferior aspects to petroleum-based resins in mechanical properties, commercial value or marketability, and price competitiveness.
  • mechanical properties for example, tensile strength or elongation are very inferior to petroleum-based resins, and research and development to solve this problem are urgent.
  • One embodiment is to provide a biodegradable furan-based composite having improved mechanical properties and a method for preparing the same.
  • One embodiment provides a biodegradable composite prepared by polymerizing furan-based dicarboxylic acids or derivatives thereof, aliphatic dicarboxylic acids or derivatives thereof, aliphatic diols, and natural polymer nanofibers.
  • the natural polymer nanofibers may be at least one selected from nanochitin fibers and nanocellulose fibers.
  • the content of the natural polymer nanofibers may be 0.005 to 2% by weight based on 100% by weight of the entire biodegradable composite.
  • the natural polymer nanofibers may have an average diameter of 1 to 200 nm and a length of 100 nm to 100 ⁇ m.
  • the biodegradable composite may be one that satisfies the following formula 1,
  • TS 1 is the tensile strength (MPa) of the biodegradable composite
  • TS 0 is the tensile strength (MPa) when polymerized without including the natural polymer nanofibers.
  • Another embodiment includes preparing a mixture containing a furan-based dicarboxylic acid or derivative thereof, an aliphatic dicarboxylic acid or derivative thereof, and an aliphatic diol;
  • It provides a method for producing a biodegradable composite comprising; polymerizing the mixture in which the natural polymer nanofibers are dispersed.
  • It provides a method for producing a biodegradable composite comprising mixing and polymerizing an aliphatic diol in which the natural polymer nanofibers are dispersed, a furan-based dicarboxylic acid or a derivative thereof, and an aliphatic dicarboxylic acid or a derivative thereof.
  • distilled water in which the natural polymer nanofibers are dispersed may be introduced into and dispersed in the aliphatic diol.
  • the mechanical properties of the biodegradable composite according to one embodiment are remarkably improved by including a furan-based dicarboxylic acid or a derivative thereof.
  • the manufacturing method of the biodegradable composite according to one embodiment is economical and effective because it does not require a pre-treatment process for hydrophobicization of natural polymer nanofibers, a melt kneading process, a solution mixing process, and the like.
  • One embodiment provides a biodegradable composite prepared by polymerizing furan-based dicarboxylic acids or derivatives thereof, aliphatic dicarboxylic acids or derivatives thereof, aliphatic diols, and natural polymer nanofibers.
  • the furan-based dicarboxylic acid or derivative thereof may be used without particular limitation as long as it is a dicarboxylic acid compound or derivative thereof containing a furan (C 4 H 4 O) ring, and two or more furan-based dicarboxylic acids or derivatives thereof may be a mixture.
  • the furan-based dicarboxylic acid or derivative thereof is one in which a substituent, such as an alkyl, cycloalkyl, or heterocycloalkyl, independently of two carboxyl groups or a carboxyl group, is independently substituted on a furan ring. It may be in a substituted form.
  • a substituent usually substituted on the furan ring for example, -OH, -CN, -NH 2 , -NO 2 , halogen, alkyl, alkoxy, cycloalkyl or heterocycloalkyl may be further connected.
  • the composite polymerized from the furan-based compound according to one embodiment is effective because the reinforcing effect of the nanofibers is further improved due to the decrease in crystallinity compared to the case of using the terephthal-based compound by using the furan-based compound.
  • the furan-based compound can be derived from biomass, it is possible to manufacture 100% bio-based biodegradable plastic using the biodegradable composite according to the present invention.
  • the aliphatic dicarboxylic acid is not particularly limited, but is selected from, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, serveric acid, azelaic acid, and sebacic acid. can be one or more of the
  • the aliphatic diol is not particularly limited, but examples thereof include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentanediol, 1 ,6-hexanediol, 2,4-dimethyl-2-ethyl-1,3-hexanediol, 2,2-dimethyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanediol , 2-ethyl-2-isobutyl-1,3-propanediol and 2,2,4-trimethyl-1,6-hexanediol.
  • the natural polymer nanofibers may mean natural polymer materials that exist in nature, which are not particularly limited, but may mean, for example, those made from chitin or cellulose, and are already known in the art. It may be any one or more selected from nanochitin fibers or nanocellulose fibers prepared by converting chitin or cellulose into nanofibers by a known physical or chemical method.
  • the content of the natural polymer nanofibers may be 0.005 to 2% by weight based on 100% by weight of the total biodegradable composite, but is not necessarily limited to the above weight range, for example, 0.001 to 1.5% by weight, 0.005 to 1.5% by weight. 0.001 to 1%, 0.005 to 1%, 0.001 to 0.5%, 0.005 to 0.5%, 0.01 to 1.5%, 0.01 to 1%, or 0.01 to 0.05%.
  • the natural polymer nanofibers may have an average diameter of 1 to 200 nm, but are not necessarily limited to the diameter range, and may be, for example, 1 to 100 nm or 1 to 50 nm.
  • the natural polymer nanofibers may have a length of 100 nm to 100 ⁇ m, but are not necessarily limited to the length range, and may be, for example, 100 nm to 10 ⁇ m or 500 nm to 10 ⁇ m. Natural polymer nanofibers having the above diameter and length ranges are effective because of their excellent dispersibility, and the biodegradable composite can have remarkably improved mechanical properties by including the natural polymer nanofibers in a uniform distribution.
  • a biodegradable composite according to an embodiment is not particularly limited, but may satisfy Equation 1 below.
  • TS 1 is the tensile strength (MPa) of the biodegradable composite
  • TS 0 is the tensile strength (MPa) when polymerized without the natural polymer nanofibers.
  • the biodegradable composite according to one embodiment has a tensile strength of 60 MPa or more, 65 MPa or more, 70 MPa or more, 75 MPa or more, or 80 MPa or more when measured at 25 ° C. with a load cell of 1 kN and a crosshead speed of 100 mm / min. can
  • the biodegradable composite according to an embodiment has significantly improved mechanical properties by forming cross-linking points in which the components are polymerized from the monomer phase and the natural polymer nanofibers are uniformly distributed in the biodegradable composite. Therefore, the biodegradable composite can be effectively applied to new functional materials, water-dispersible nano fillers, and the like.
  • preparing a mixture comprising a furan-based dicarboxylic acid or derivative thereof, an aliphatic dicarboxylic acid or derivative thereof, and an aliphatic diol;
  • It provides a method for producing a biodegradable composite comprising; polymerizing the mixture in which the natural polymer nanofibers are dispersed.
  • the manufacturing method according to an embodiment is not simply physically mixing polyester and natural polymer nanofibers, but polymerizing the above-described components from the monomer phase. Accordingly, a biodegradable composite having excellent mechanical properties can be prepared by uniformly dispersing and cross-linking the natural polymer nanofibers.
  • dispersing natural polymer nanofibers in aliphatic diol dispersing natural polymer nanofibers in aliphatic diol
  • It provides a method for producing a biodegradable composite comprising mixing and polymerizing an aliphatic diol in which the natural polymer nanofibers are dispersed, a furan-based dicarboxylic acid or a derivative thereof, and an aliphatic dicarboxylic acid or a derivative thereof.
  • the components can be more reliably polymerized from the monomer phase, and the natural polymer nanofibers can form crosslinking points more uniformly distributed in the biodegradable composite.
  • the mechanical properties of the biodegradable composite can significantly improve the mechanical properties of the biodegradable composite.
  • distilled water in which the natural polymer nanofibers are dispersed may be introduced into and dispersed in the aliphatic diol.
  • the above effects are further enhanced, and a biodegradable composite having significantly improved mechanical properties can be prepared.
  • the aliphatic dicarboxylic acids or derivatives thereof, aromatic dicarboxylic acids or derivatives thereof, aliphatic diols, and natural polymer nanofibers may be applied as described above.
  • Tensile test To measure tensile strength and elongation, polymer and composite samples were hot-pressed at 150 degrees Celsius and 100 bar pressure for 5 minutes to have a thickness of 0.5 mm, and then tested according to ASTM D412 standard using Intstron 5943 equipment. The cut specimens were measured. The measurement was performed at 25° C. with a load cell of 1 kN and a crosshead speed of 100 mm/min, and the average value was obtained by measuring 5 times.
  • nanochitin fibers 0.05 g, average diameter 20 nm, average length 1 ⁇ m
  • 1,4-butanediol 0.76 mol, 68.30 g
  • 1,4-butanediol in which nanochitin fibers were dispersed, adipic acid (0.24 mol, 34.61 g) and dimethyl furan-2,5-dicarboxylate (0.24 mol, 44.20 g) were added to a 4-necked reactor (500 mL). Then, an overhead stirrer, a nitrogen inlet and a condenser were installed, and the mixture was stirred at 10 rpm for 1 hour and purged with nitrogen.
  • Ti(OBu) 4 as a catalyst was added at 500 ppm based on the total weight of adipic acid and dimethyl furan-2,5-dicarboxylate in the mixture. . Then, while stirring at 150 rpm, the reactor was heated to 180 °C at a rate of 10 °C/min, and maintained for 2 hours. Thereafter, the temperature was raised to 210 ° C. and maintained for 2 more hours to remove by-products.
  • the product was transferred to a reactor (250 mL) equipped with a vacuum outlet and an overhead stirrer, and then heated to 170 °C while the inside of the reactor was completely purged with nitrogen. After the product was completely melted, the mixture was heated to 240 °C at a rate of 10 °C/min, the stirring speed was maintained at 50 rpm, and the temperature was adjusted to 100 mTorr or less through gradual pressure reduction. When the viscosity of the internal reactant increased by measuring the torque through an overhead stirrer, the stirring speed was reduced to 30 rpm and maintained for 60 minutes.
  • the final product was quenched with water and dried in a vacuum oven at room temperature for 48 hours to prepare a biodegradable composite.
  • Example 8 instead of the nanochitin fibers in Example 1, 0.05 wt% (Example 5), 0.1 wt% (Example 6), 0.005 wt% (Example 7), and 2.0 wt% (Example 8) of nanocellulose fibers, respectively. ), and the biodegradable composite according to Examples 5 to 8 was prepared in the same manner as in Example 1, except that it was added as.
  • Example 9 was carried out in the same manner as in Example 1, except that in Example 1, 0.05 wt% of nanochitin fibers were pre-dispersed in distilled water (5 mL) and then added to 1,4-butanediol to disperse them.
  • a biodegradable composite was prepared according to.
  • PBAF poly butylene adipate furanoate
  • Example 1 In Examples 1 to 4, except that dimethyl terephthalate (0.24 mol, 45.99 g) was added instead of dimethyl furan-2,5-dicarboxylate (0.24 mol, 44.20 g), each Example 1 In the same manner as in 4 to 4, a biodegradable composite was prepared (Comparative Example 3: Nanochitin content (0.05 wt%), Comparative Example 4: Nanochitin content (0.1 wt%), Comparative Example 5: Nanochitin content (0.005 wt%) %), Comparative Example 6: Nanochitin content (2.0 wt%)).
  • the biodegradable composites according to Examples of the present invention showed excellent mechanical properties with significantly improved tensile strength and elongation. Specifically, the tensile strength and elongation of the PBAFs of Examples 1 to 4 containing furan-based compounds were significantly improved compared to the PBAT of Comparative Examples 3 to 6, so that the tensile strength of PBAF during in situ polymerization was improved more than that of PBAT. It was confirmed that the effect was more excellent.
  • Example 1 having a nanofiber content of 0.05 wt% had a tensile strength of 72 MPa
  • the reinforcing effect of the nanofibers is further increased due to the decrease in crystallinity of the composite by using the furan-based dicarboxylic acid derivative.
  • Comparative Example 1 not containing natural polymer nanofibers very poor mechanical properties were exhibited.
  • Example 9 in which the nanochitin fibers were previously dispersed in distilled water and then added to and dispersed in 1,4-butanediol, the tensile strength and elongation were higher compared to Example 1 in which 0.05 wt% of the nanofibers were added. improvement could be observed.
  • biodegradable composite containing the furan-based dicarboxylic acid or its derivative are significantly improved compared to the composite containing the terephthalic dicarboxylic acid derivative due to the improved nanofiber reinforcing effect.
  • furan-based compounds can be converted from biomass, bio-based biodegradable plastics can be manufactured using the biodegradable composite according to the present invention, which is effective.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present disclosure relates to: a furan-based biodegradable composite produced by polymerizing a furan-based dicarboxylic acid or derivative thereof, an aliphatic dicarboxylic acid or derivative thereof, an aliphatic diol, and a natural polymer nanofiber; and a method for producing same. The biodegradable composite according to one embodiment may have significantly improved mechanical properties due to the natural polymer nanofibers being uniformly dispersed and cross-linked.

Description

향상된 기계적 물성을 갖는 생분해성 퓨란계 복합체 및 이의 제조방법Biodegradable furan-based composite having improved mechanical properties and method for preparing the same
본 개시는 향상된 기계적 물성을 갖는 생분해성 퓨란계 복합체 및 이의 제조방법에 관한 것이다.The present disclosure relates to a biodegradable furan-based composite having improved mechanical properties and a method for preparing the same.
폴리에틸렌, 폴리프로필렌과 같이, 현재 상용화된 수지는 전반적으로 석유 기반 단량체를 활용한 것으로, 자연 상태에서의 분해성이 떨어져 사용 후 폐기 시 환경에 악영향을 미치는 문제가 있다.Currently commercialized resins, such as polyethylene and polypropylene, generally utilize petroleum-based monomers, and have poor degradability in a natural state, adversely affecting the environment when discarded after use.
하지만 석유 기반 수지는 내구성 등의 기계적 물성이 우수해, 이를 이용한 제품의 비중은 점진적으로 높아지고 있다. 이는 특히 환경 문제가 중요시되는 오늘날, 해결되어야 할 문제로 부각되고 있으며, 이에 세계적으로 석유 기반 수지를 대체할 수 있는 친환경 소재에 대한 연구 및 개발이 요구되고 있다.However, petroleum-based resins have excellent mechanical properties such as durability, and the proportion of products using them is gradually increasing. This is emerging as a problem to be solved in today's world, when environmental issues are particularly important, and research and development on eco-friendly materials that can replace petroleum-based resins is required worldwide.
이를 위한 방법의 하나로, 바이오매스 혹은 석유 기반 단량체를 활용하여 생분해가 가능한 수지를 합성하는 방법이 있다. 이의 일 예로, 생분해성 폴리에스테르는, 에스테르 작용기가 외부의 물과 공기에 노출될 시, 가수분해가 일어나 생분해가 가능하게 된다. 이러한 폴리에스테르로는, 구체적으로, PBAT(poly butylene adipate terephthalate), PBS(poly butylene succinate), PLA(poly lactic acid) 등이 있다.As one of the methods for this, there is a method of synthesizing a biodegradable resin using biomass or petroleum-based monomers. As an example of this, biodegradable polyester, when the ester functional group is exposed to external water and air, hydrolysis occurs, enabling biodegradation. Specifically, such polyesters include poly butylene adipate terephthalate (PBAT), poly butylene succinate (PBS), poly lactic acid (PLA), and the like.
하지만 이러한 생분해성 폴리에스테르는 기계적 물성, 상용가치나 상품성, 및 가격 경쟁력에서 석유 기반 수지보다 열등한 면을 보여주고 있다. 특히 석유 기반 수지보다 기계적 물성, 예를 들어 인장강도나 신율이 매우 열위한 문제가 있어, 이를 해결하기 위한 연구 및 개발이 시급하다.However, these biodegradable polyesters show inferior aspects to petroleum-based resins in mechanical properties, commercial value or marketability, and price competitiveness. In particular, there is a problem that mechanical properties, for example, tensile strength or elongation are very inferior to petroleum-based resins, and research and development to solve this problem are urgent.
일 구현예는 향상된 기계적 물성을 갖는 생분해성 퓨란계 복합체 및 이의 제조방법을 제공하고자 한다.One embodiment is to provide a biodegradable furan-based composite having improved mechanical properties and a method for preparing the same.
상기 목적을 달성하기 위하여,In order to achieve the above purpose,
일 구현예는, 퓨란계 디카복실산 또는 이의 유도체, 지방족 디카복실산 또는 이의 유도체, 지방족 디올 및 천연고분자 나노섬유를 포함하여 중합함으로써 제조되는 생분해성 복합체를 제공한다.One embodiment provides a biodegradable composite prepared by polymerizing furan-based dicarboxylic acids or derivatives thereof, aliphatic dicarboxylic acids or derivatives thereof, aliphatic diols, and natural polymer nanofibers.
이때 상기 천연고분자 나노섬유는, 나노키틴 섬유 및 나노셀룰로오스 섬유에서 선택되는 어느 하나 이상일 수 있다.In this case, the natural polymer nanofibers may be at least one selected from nanochitin fibers and nanocellulose fibers.
상기 천연고분자 나노섬유의 함량은, 상기 생분해성 복합체 전체 100 중량%에 대해 0.005 내지 2 중량%일 수 있다.The content of the natural polymer nanofibers may be 0.005 to 2% by weight based on 100% by weight of the entire biodegradable composite.
상기 천연고분자 나노섬유는, 평균직경이 1 내지 200 nm이고, 길이가 100 nm 내지 100 ㎛일 수 있다.The natural polymer nanofibers may have an average diameter of 1 to 200 nm and a length of 100 nm to 100 μm.
상기 생분해성 복합체는, 하기 식 1을 만족하는 것일 수 있고,The biodegradable composite may be one that satisfies the following formula 1,
[식 1][Equation 1]
Figure PCTKR2022004670-appb-img-000001
Figure PCTKR2022004670-appb-img-000001
이때, TS1은 상기 생분해성 복합체의 인장강도(MPa)이고, TS0는 상기 천연고분자 나노섬유를 포함하지 않고 중합된 경우의 인장강도(MPa)이다.At this time, TS 1 is the tensile strength (MPa) of the biodegradable composite, and TS 0 is the tensile strength (MPa) when polymerized without including the natural polymer nanofibers.
다른 일 구현예는, 퓨란계 디카복실산 또는 이의 유도체, 지방족 디카복실산 또는 이의 유도체, 및 지방족 디올을 포함하는 혼합물을 준비하는 단계;Another embodiment includes preparing a mixture containing a furan-based dicarboxylic acid or derivative thereof, an aliphatic dicarboxylic acid or derivative thereof, and an aliphatic diol;
상기 혼합물에 천연고분자 나노섬유를 분산시키는 단계; 및dispersing natural polymer nanofibers in the mixture; and
상기 천연고분자 나노섬유가 분산된 혼합물을 중합시키는 단계;를 포함하는, 생분해성 복합체의 제조방법을 제공한다.It provides a method for producing a biodegradable composite comprising; polymerizing the mixture in which the natural polymer nanofibers are dispersed.
다른 일 구현예는, 천연고분자 나노섬유를 지방족 디올에 분산시키는 단계; 및In another embodiment, dispersing natural polymer nanofibers in an aliphatic diol; and
상기 천연고분자 나노섬유가 분산된 지방족 디올과, 퓨란계 디카복실산 또는 이의 유도체 및 지방족 디카복실산 또는 이의 유도체를 혼합하여 중합시키는 단계;를 포함하는, 생분해성 복합체의 제조방법을 제공한다.It provides a method for producing a biodegradable composite comprising mixing and polymerizing an aliphatic diol in which the natural polymer nanofibers are dispersed, a furan-based dicarboxylic acid or a derivative thereof, and an aliphatic dicarboxylic acid or a derivative thereof.
상기 천연고분자 나노섬유를 지방족 디올에 분산시키는 단계는, 상기 천연고분자 나노섬유를 분산시킨 증류수를 상기 지방족 디올에 투입하여 분산시키는 것일 수 있다.In the step of dispersing the natural polymer nanofibers in the aliphatic diol, distilled water in which the natural polymer nanofibers are dispersed may be introduced into and dispersed in the aliphatic diol.
일 구현예에 따른 생분해성 복합체는 퓨란계 디카복실산 또는 이의 유도체를 포함함으로써 기계적 물성이 현저히 향상되었다. 일 구현예에 따른 생분해성 복합체의 제조방법은 천연고분자 나노섬유의 소수성화 전처리 공정, 용융 혼련, 용액 혼합 공정 등을 요하지 않으므로 경제적이고 효과적이다.The mechanical properties of the biodegradable composite according to one embodiment are remarkably improved by including a furan-based dicarboxylic acid or a derivative thereof. The manufacturing method of the biodegradable composite according to one embodiment is economical and effective because it does not require a pre-treatment process for hydrophobicization of natural polymer nanofibers, a melt kneading process, a solution mixing process, and the like.
이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.
한편, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 나아가, 명세서 전체에서 어떤 구성요소를 "포함"한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다. 또한, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.Meanwhile, the embodiments of the present invention may be modified in various forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. Furthermore, "include" a certain component throughout the specification means that other components may be further included without excluding other components unless otherwise stated. In addition, singular forms also include plural forms unless specifically stated otherwise in the text.
일 구현예는, 퓨란계 디카복실산 또는 이의 유도체, 지방족 디카복실산 또는 이의 유도체, 지방족 디올 및 천연고분자 나노섬유를 포함하여 중합함으로써 제조되는 생분해성 복합체를 제공한다.One embodiment provides a biodegradable composite prepared by polymerizing furan-based dicarboxylic acids or derivatives thereof, aliphatic dicarboxylic acids or derivatives thereof, aliphatic diols, and natural polymer nanofibers.
이때 상기 퓨란계 디카복실산 또는 이의 유도체는 퓨란(furan, C4H4O) 고리를 함유하는 디카복실산 화합물 또는 이의 유도체라면 특별한 제한 없이 사용될 수 있으며, 서로 다른 두개 이상의 퓨란계 디카복실산 또는 이의 유도체의 혼합일 수도 있다. 예를 들면 상기 퓨란계 디카복실산 또는 이의 유도체는 퓨란 고리에, 두개의 카복실기 또는 카복실기 각각에 독립적으로 통상적으로 치환되는 치환기, 예를 들면 알킬, 사이클로알킬 또는 헤테로사이클로알킬 등의 치환기가 연결된 것이 치환된 형태일 수 있다. 또한 예를 들면 퓨란 고리에, 통상적으로 치환되는 치환기, 예를 들면 -OH, -CN, -NH2, -NO2, 할로겐, 알킬, 알콕시, 사이클로알킬 또는헤테로사이클로알킬 등의 치환기가 더 연결된 것일 수도 있다. 구체적으로 예를 들면 디메틸 퓨란-2,5-디카복실레이트, 디메틸 퓨란-2,4-디카복실레이트, 디메틸 퓨란-2,3-디카복실레이트, 디메틸 퓨란-3,4-디카복실레이트, 디에틸 퓨란-2,5-디카복실레이트, 디프로필 퓨란-2,5-디카복실레이트, 5-(메톡시카보닐)퓨란-2-카복실산, 디프로필 퓨란-2,5-디카복실레이트, 5-(에톡시카보닐)퓨란-2-카복실산, 또는 5-(메톡시카보닐)퓨란-3-카복실산일 수 있으나 반드시 이에 제한되는 것은 아니다.In this case, the furan-based dicarboxylic acid or derivative thereof may be used without particular limitation as long as it is a dicarboxylic acid compound or derivative thereof containing a furan (C 4 H 4 O) ring, and two or more furan-based dicarboxylic acids or derivatives thereof may be a mixture. For example, the furan-based dicarboxylic acid or derivative thereof is one in which a substituent, such as an alkyl, cycloalkyl, or heterocycloalkyl, independently of two carboxyl groups or a carboxyl group, is independently substituted on a furan ring. It may be in a substituted form. In addition, for example, a substituent usually substituted on the furan ring, for example, -OH, -CN, -NH 2 , -NO 2 , halogen, alkyl, alkoxy, cycloalkyl or heterocycloalkyl may be further connected. may be Specifically, for example, dimethyl furan-2,5-dicarboxylate, dimethyl furan-2,4-dicarboxylate, dimethyl furan-2,3-dicarboxylate, dimethyl furan-3,4-dicarboxylate, dicarboxylate Ethyl furan-2,5-dicarboxylate, dipropyl furan-2,5-dicarboxylate, 5-(methoxycarbonyl)furan-2-carboxylic acid, dipropyl furan-2,5-dicarboxylate, 5 It may be -(ethoxycarbonyl)furan-2-carboxylic acid or 5-(methoxycarbonyl)furan-3-carboxylic acid, but is not necessarily limited thereto.
일 실시예에 따른 퓨란계 화합물로부터 중합된 복합체는, 퓨란계 화합물을 이용함으로써 테레프탈계 화합물을 이용하는 경우보다 결정성 감소로 인해 나노섬유의 보강효과가 더욱 향상되므로 효과적이다. 또한 퓨란계 화합물은 바이오매스로부터 유래 가능하므로 본 발명에 따른 생분해성 복합체를 이용하여 100% 바이오기반의 생분해성 플라스틱의 제조가 가능하다.The composite polymerized from the furan-based compound according to one embodiment is effective because the reinforcing effect of the nanofibers is further improved due to the decrease in crystallinity compared to the case of using the terephthal-based compound by using the furan-based compound. In addition, since the furan-based compound can be derived from biomass, it is possible to manufacture 100% bio-based biodegradable plastic using the biodegradable composite according to the present invention.
상기 지방족 디카복실산 또는 이의 유도체에서 지방족 디카복실산은 특별히 제한되는 것은 아니지만 예를 들면, 옥살산, 말론산, 석신산, 글루타르산, 아디프산, 피멜산, 서버산, 아젤라산 및 세박산 등에서 선택되는 어느 하나 이상일 수 있다.Among the aliphatic dicarboxylic acids or derivatives thereof, the aliphatic dicarboxylic acid is not particularly limited, but is selected from, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, serveric acid, azelaic acid, and sebacic acid. can be one or more of the
상기 지방족 디올은 특별히 제한되는 것은 아니지만 예를 들면, 에탄디올, 1,2-프로판디올, 1,3-프로판디올, 1,2-부탄디올, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 2,4-디메틸-2-에틸-1,3-헥산디올, 2,2-디메틸-1,3-프로판디올, 2-에틸-2-부틸-1,3-프로판디올, 2-에틸-2-이소부틸-1,3-프로판디올 및 2,2,4-트리메틸-1,6-헥산디올 등에서 선택되는 어느 하나 이상일 수 있다.The aliphatic diol is not particularly limited, but examples thereof include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentanediol, 1 ,6-hexanediol, 2,4-dimethyl-2-ethyl-1,3-hexanediol, 2,2-dimethyl-1,3-propanediol, 2-ethyl-2-butyl-1,3-propanediol , 2-ethyl-2-isobutyl-1,3-propanediol and 2,2,4-trimethyl-1,6-hexanediol.
상기 천연고분자 나노섬유란, 자연계에 존재하는 천연고분자 물질을 의미하는 것일 수 있고, 이는 특별히 제한되는 것은 아니지만, 예를 들어 키틴이나 셀룰로오스로부터 제조되는 것을 의미할 수 있고, 당 기술분야에서 이미 공지되어 있는 물리적, 화학적 방법에 의해 키틴이나 셀룰로오스를 나노섬유화함으로써 제조된 나노키틴 섬유 또는 나노셀룰로오스 섬유 등에서 선택되는 어느 하나 이상일 수 있다.The natural polymer nanofibers may mean natural polymer materials that exist in nature, which are not particularly limited, but may mean, for example, those made from chitin or cellulose, and are already known in the art. It may be any one or more selected from nanochitin fibers or nanocellulose fibers prepared by converting chitin or cellulose into nanofibers by a known physical or chemical method.
상기 천연고분자 나노섬유의 함량은, 상기 생분해성 복합체 전체 100 중량%에 대해 0.005 내지 2 중량%일 수 있는데, 반드시 상기 중량 범위에 한정되는 것은 아니고, 예를 들면 0.001 내지 1.5 중량%, 0.005 내지 1.5 중량%, 0.001 내지 1 중량%, 0.005 내지 1 중량%, 0.001 내지 0.5 중량%, 0.005 내지 0.5 중량%, 0.01 내지 1.5 중량%, 0.01 내지 1 중량%, 또는 0.01 내지 0.05 중량%일 수도 있다.The content of the natural polymer nanofibers may be 0.005 to 2% by weight based on 100% by weight of the total biodegradable composite, but is not necessarily limited to the above weight range, for example, 0.001 to 1.5% by weight, 0.005 to 1.5% by weight. 0.001 to 1%, 0.005 to 1%, 0.001 to 0.5%, 0.005 to 0.5%, 0.01 to 1.5%, 0.01 to 1%, or 0.01 to 0.05%.
상기 천연고분자 나노섬유는, 평균직경이 1 내지 200 nm일 수 있는데, 반드시 상기 직경 범위에 한정되는 것은 아니고, 예를 들면 1 내지 100 nm, 또는 1 내지 50 nm일 수도 있다. 또한, 상기 천연고분자 나노섬유는, 길이가 100 nm 내지 100 ㎛일 수 있는데, 반드시 상기 길이 범위에 한정되는 것은 아니고, 예를 들면 100 nm 내지 10 ㎛, 500 nm 내지 10 ㎛일 수도 있다. 상기 직경 및 길이 범위를 가지는 천연고분자 나노섬유는 분산성이 우수하므로 효과적이며, 생분해성 복합체는 천연고분자 나노섬유를 균일한 분포로 포함함으로써 현저히 향상된 기계적 물성을 가질 수 있다. The natural polymer nanofibers may have an average diameter of 1 to 200 nm, but are not necessarily limited to the diameter range, and may be, for example, 1 to 100 nm or 1 to 50 nm. In addition, the natural polymer nanofibers may have a length of 100 nm to 100 μm, but are not necessarily limited to the length range, and may be, for example, 100 nm to 10 μm or 500 nm to 10 μm. Natural polymer nanofibers having the above diameter and length ranges are effective because of their excellent dispersibility, and the biodegradable composite can have remarkably improved mechanical properties by including the natural polymer nanofibers in a uniform distribution.
일 실시예에 따른 생분해성 복합체는 특별히 제한되는 것은 아니지만, 하기 식 1을 만족하는 것일 수 있다.A biodegradable composite according to an embodiment is not particularly limited, but may satisfy Equation 1 below.
[식 1][Equation 1]
Figure PCTKR2022004670-appb-img-000002
Figure PCTKR2022004670-appb-img-000002
상기 식 1에서, TS1은 상기 생분해성 복합체의 인장강도(MPa)이고, TS0는 상기 천연고분자 나노섬유를 포함하지 않고 중합된 경우의 인장강도(MPa)이다.In Equation 1, TS 1 is the tensile strength (MPa) of the biodegradable composite, and TS 0 is the tensile strength (MPa) when polymerized without the natural polymer nanofibers.
또한 일 실시예에 따른 생분해성 복합체는 1 kN의 로드셀, 크로스헤드 속도 100 mm/min으로 25 ℃에서 측정한 인장강도가 60 MPa 이상, 65 MPa 이상, 70 MPa 이상, 75 MPa 이상, 80 MPa 이상일 수 있다.In addition, the biodegradable composite according to one embodiment has a tensile strength of 60 MPa or more, 65 MPa or more, 70 MPa or more, 75 MPa or more, or 80 MPa or more when measured at 25 ° C. with a load cell of 1 kN and a crosshead speed of 100 mm / min. can
일 실시예에 따른 생분해성 복합체는 구성 성분들이 단량체 상에서부터 중합되어, 천연고분자 나노섬유가 생분해성 복합체 내 균일하게 분포된 가교점을 형성함으로써, 현저히 향상된 기계적 물성을 갖는 특성이 있다. 따라서 상기 생분해성 복합체를 이용하여 기능성 신소재, 수분산 나노필러 등에 효과적으로 적용할 수 있다.The biodegradable composite according to an embodiment has significantly improved mechanical properties by forming cross-linking points in which the components are polymerized from the monomer phase and the natural polymer nanofibers are uniformly distributed in the biodegradable composite. Therefore, the biodegradable composite can be effectively applied to new functional materials, water-dispersible nano fillers, and the like.
일 구현예는, 퓨란계 디카복실산 또는 이의 유도체, 지방족 디카복실산 또는 이의 유도체, 및 지방족 디올을 포함하는 혼합물을 준비하는 단계;In one embodiment, preparing a mixture comprising a furan-based dicarboxylic acid or derivative thereof, an aliphatic dicarboxylic acid or derivative thereof, and an aliphatic diol;
상기 혼합물에 천연고분자 나노섬유를 분산시키는 단계; 및dispersing natural polymer nanofibers in the mixture; and
상기 천연고분자 나노섬유가 분산된 혼합물을 중합시키는 단계;를 포함하는, 생분해성 복합체의 제조방법을 제공한다.It provides a method for producing a biodegradable composite comprising; polymerizing the mixture in which the natural polymer nanofibers are dispersed.
일 실시예에 따른 제조방법은, 단순히 폴리에스테르와 천연고분자 나노섬유를 물리적으로 혼합시키는 것이 아니고, 상술한 구성 성분들을 단량체 상에서부터 중합시키는 것이다. 이에, 천연고분자 나노섬유가 균일하게 분산 가교 결합됨으로써, 우수한 기계적 물성을 갖는 생분해성 복합체를 제조할 수 있다.The manufacturing method according to an embodiment is not simply physically mixing polyester and natural polymer nanofibers, but polymerizing the above-described components from the monomer phase. Accordingly, a biodegradable composite having excellent mechanical properties can be prepared by uniformly dispersing and cross-linking the natural polymer nanofibers.
일 구현예는, 천연고분자 나노섬유를 지방족 디올에 분산시키는 단계; 및In one embodiment, dispersing natural polymer nanofibers in aliphatic diol; and
상기 천연고분자 나노섬유가 분산된 지방족 디올과, 퓨란계 디카복실산 또는 이의 유도체 및 지방족 디카복실산 또는 이의 유도체를 혼합하여 중합시키는 단계;를 포함하는, 생분해성 복합체의 제조방법을 제공한다.It provides a method for producing a biodegradable composite comprising mixing and polymerizing an aliphatic diol in which the natural polymer nanofibers are dispersed, a furan-based dicarboxylic acid or a derivative thereof, and an aliphatic dicarboxylic acid or a derivative thereof.
상기 제조방법으로 생분해성 복합체를 제조하는 경우 구성 성분들이 보다 확실하게 단량체 상에서부터 중합될 수 있고, 천연고분자 나노섬유가 생분해성 복합체 내에서 보다 균일하게 분포된 가교점을 형성할 수 있다. 이에, 생분해성 복합체의 기계적 물성을 현저히 향상시킬 수 있는 효과가 있다.In the case of preparing the biodegradable composite by the above manufacturing method, the components can be more reliably polymerized from the monomer phase, and the natural polymer nanofibers can form crosslinking points more uniformly distributed in the biodegradable composite. Thus, there is an effect that can significantly improve the mechanical properties of the biodegradable composite.
이때, 상기 천연고분자 나노섬유를 지방족 디올에 분산시키는 단계는, 상기 천연고분자 나노섬유를 분산시킨 증류수를 상기 지방족 디올에 투입하여 분산시키는 것일 수 있다. 이 경우 상술한 효과가 보다 증진되어, 탁월히 향상된 기계적 물성을 갖는 생분해성 복합체를 제조할 수 있다. 상기 제조방법에서 지방족 디카복실산 또는 이의 유도체, 방향족 디카복실산 또는 이의 유도체, 지방족 디올, 천연고분자 나노섬유는 상술한 바를 적용할 수 있다.In this case, in the step of dispersing the natural polymer nanofibers in the aliphatic diol, distilled water in which the natural polymer nanofibers are dispersed may be introduced into and dispersed in the aliphatic diol. In this case, the above effects are further enhanced, and a biodegradable composite having significantly improved mechanical properties can be prepared. In the preparation method, the aliphatic dicarboxylic acids or derivatives thereof, aromatic dicarboxylic acids or derivatives thereof, aliphatic diols, and natural polymer nanofibers may be applied as described above.
이하, 본 발명의 실시예 및 실험예를 하기에 구체적으로 예시하여 설명한다. 다만, 후술하는 실시예 및 실험예는 본 발명의 일부를 예시하는 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, examples and experimental examples of the present invention will be specifically illustrated and described. However, Examples and Experimental Examples to be described later are merely illustrative of a part of the present invention, and the present invention is not limited thereto.
<평가방법><Evaluation method>
인장시험: 인장강도 및 신율을 측정하기 위해서 고분자 및 복합체 시료를 섭씨 150도, 100 bar의 압력에서 5분간 핫-프레싱하는 방법으로 두께 0.5 mm로 제조한 후, Intstron 5943 장비를 이용하여 ASTM D412 규격으로 컷팅한 시편을 측정하였다. 측정은 1 kN의 로드셀, 크로스헤드 속도 100 mm/min으로 25 ℃에서 수행하였으며, 5번 측정하여 평균값을 얻었다.Tensile test: To measure tensile strength and elongation, polymer and composite samples were hot-pressed at 150 degrees Celsius and 100 bar pressure for 5 minutes to have a thickness of 0.5 mm, and then tested according to ASTM D412 standard using Intstron 5943 equipment. The cut specimens were measured. The measurement was performed at 25° C. with a load cell of 1 kN and a crosshead speed of 100 mm/min, and the average value was obtained by measuring 5 times.
<< 실시예Example 1 내지 4> 1 to 4>
1,4-부탄디올(0.76 mol, 68.30 g)에 이론적 최종 생성물의 수득량(100 g)에 대비하여, 0.05 wt%의 나노키틴 섬유(0.05 g, 평균직경 20 nm, 평균길이 1 ㎛)를 투입하고, 초음파 발생장치를 이용하여 충분히 분산시켰다.0.05 wt% of nanochitin fibers (0.05 g, average diameter 20 nm, average length 1 μm) was added to 1,4-butanediol (0.76 mol, 68.30 g), compared to the theoretical yield of the final product (100 g). and sufficiently dispersed using an ultrasonic generator.
이후, 나노키틴 섬유가 분산된 1,4-부탄디올, 아디프산(0.24 mol, 34.61 g) 및 디메틸 퓨란-2,5-디카복실레이트(0.24 mol, 44.20 g)를 4구 반응기(500 mL)에 투입한 다음, 오버 헤드 교반기, 질소 유입구 및 컨덴서를 장착하여 10 rpm으로 1시간 동안 교반하며 질소로 퍼징하였다.Thereafter, 1,4-butanediol in which nanochitin fibers were dispersed, adipic acid (0.24 mol, 34.61 g) and dimethyl furan-2,5-dicarboxylate (0.24 mol, 44.20 g) were added to a 4-necked reactor (500 mL). Then, an overhead stirrer, a nitrogen inlet and a condenser were installed, and the mixture was stirred at 10 rpm for 1 hour and purged with nitrogen.
이후, 에스테르화를 위해 140 ℃까지 가열하여 혼합물을 완전 용융시킨 후, 촉매로서 Ti(OBu)4를 혼합물 내 아디프산과 디메틸 퓨란-2,5-디카복실레이트의 총 중량 대비 500 ppm으로 첨가하였다. 이후 이를 150 rpm으로 교반하면서, 반응기를 10 ℃/분의 속도로 180 ℃까지 가열한 후, 2시간 동안 유지하였다. 이후 210 ℃까지 온도를 상승시키고 2시간 더 유지하면서, 부산물을 제거하였다.Then, after completely melting the mixture by heating to 140 °C for esterification, Ti(OBu) 4 as a catalyst was added at 500 ppm based on the total weight of adipic acid and dimethyl furan-2,5-dicarboxylate in the mixture. . Then, while stirring at 150 rpm, the reactor was heated to 180 °C at a rate of 10 °C/min, and maintained for 2 hours. Thereafter, the temperature was raised to 210 ° C. and maintained for 2 more hours to remove by-products.
이후, 생성물을 진공 배출구 및 오버 헤드 교반기가 장착된 반응기(250 mL)로 옮긴 후, 반응기 내부가 질소로 완전히 퍼징된 상태에서 170 ℃까지 가열하였다. 생성물이 완전히 용융된 후, 240 ℃까지 10 ℃/분의 속도로 가열하며 교반속도를 50 rpm으로 유지하고, 점진적인 감압을 통해 100 mTorr 이하로 조절하였다. 오버 헤드 교반기를 통한 토크 측정으로 내부 반응물의 점도가 상승할 때 교반속도를 30 rpm으로 감소시키고, 60분 동안 유지하였다.Thereafter, the product was transferred to a reactor (250 mL) equipped with a vacuum outlet and an overhead stirrer, and then heated to 170 °C while the inside of the reactor was completely purged with nitrogen. After the product was completely melted, the mixture was heated to 240 °C at a rate of 10 °C/min, the stirring speed was maintained at 50 rpm, and the temperature was adjusted to 100 mTorr or less through gradual pressure reduction. When the viscosity of the internal reactant increased by measuring the torque through an overhead stirrer, the stirring speed was reduced to 30 rpm and maintained for 60 minutes.
이후, 최종 생성물을 물로 급냉시키고, 실온 상태의 진공오븐 내에서 48시간 동안 건조시켜, 생분해성 복합체를 제조하였다.Then, the final product was quenched with water and dried in a vacuum oven at room temperature for 48 hours to prepare a biodegradable composite.
나노키틴 섬유의 투입량만 각각 0.1 wt%(실시예 2), 0.005 wt%(실시예 3), 2.0 wt%(실시예 4)로 달리하여 위 과정을 반복 실시하여, 실시예 2 내지 실시예 4에 따른 생분해성 복합체를 추가로 제조하였다.Only the input amount of nanochitin fibers was changed to 0.1 wt% (Example 2), 0.005 wt% (Example 3), and 2.0 wt% (Example 4), respectively, and the above process was repeated, Examples 2 to 4 A biodegradable composite according to was further prepared.
제조된 생분해성 복합체에 대해 상기 평가방법에 따라 인장강도 및 신율을 측정하여, 하기 표 1에 기재하였다.Tensile strength and elongation of the prepared biodegradable composites were measured according to the above evaluation method, and are listed in Table 1 below.
<< 실시예Example 5 내지 8> 5 to 8>
상기 실시예 1에서 나노키틴 섬유 대신에, 나노셀룰로오스 섬유를 각각 0.05 wt%(실시예 5), 0.1 wt%(실시예 6), 0.005 wt%(실시예 7), 2.0 wt%(실시예 8)로 투입한 것을 제외하고는, 실시예 1과 동일하게 실시하여 실시예 5 내지 실시예 8에 따른 생분해성 복합체를 제조하였다.Instead of the nanochitin fibers in Example 1, 0.05 wt% (Example 5), 0.1 wt% (Example 6), 0.005 wt% (Example 7), and 2.0 wt% (Example 8) of nanocellulose fibers, respectively. ), and the biodegradable composite according to Examples 5 to 8 was prepared in the same manner as in Example 1, except that it was added as.
제조된 생분해성 복합체에 대해 상기 평가방법에 따라 인장강도 및 신율을 측정하여, 하기 표 1에 기재하였다.Tensile strength and elongation of the prepared biodegradable composites were measured according to the above evaluation method, and are listed in Table 1 below.
<< 실시예Example 9> 9>
상기 실시예 1에서 나노키틴 섬유 0.05 wt%를 증류수(5 mL)에 미리 분산시킨 다음 이를 1,4-부탄디올에 투입하여 분산시킨 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 실시예 9에 따른 생분해성 복합체를 제조하였다.Example 9 was carried out in the same manner as in Example 1, except that in Example 1, 0.05 wt% of nanochitin fibers were pre-dispersed in distilled water (5 mL) and then added to 1,4-butanediol to disperse them. A biodegradable composite was prepared according to.
제조된 생분해성 복합체에 대해 상기 평가방법에 따라 인장강도 및 신율을 측정하여, 하기 표 1에 기재하였다.Tensile strength and elongation of the prepared biodegradable composites were measured according to the above evaluation method, and are listed in Table 1 below.
<< 비교예comparative example 1> 1>
상기 실시예 1에서 나노키틴 섬유를 사용하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 PBAF(poly butylene adipate furanoate)를 제조하였다.PBAF (poly butylene adipate furanoate) was prepared in the same manner as in Example 1, except that nanochitin fibers were not used in Example 1.
제조된 PBAF에 대해 인장강도, 및 신율을 측정하여, 하기 표 1에 기재하였다.Tensile strength and elongation were measured for the prepared PBAF, and are shown in Table 1 below.
<< 비교예comparative example 2> 2>
상기 비교예 1에서 디메틸 퓨란-2,5-디카복실레이트(0.24 mol, 44.20 g)을 대신하여 디메틸 테레프탈레이트(0.24 mol, 45.99 g)를 투입한 것을 제외하고는, 비교예 1과 동일하게 실시하여 PBAT(poly butylene adipate terephthalate)를 제조하였다.Except for adding dimethyl terephthalate (0.24 mol, 45.99 g) instead of dimethyl furan-2,5-dicarboxylate (0.24 mol, 44.20 g) in Comparative Example 1, the same procedure as in Comparative Example 1 was performed. To prepare poly butylene adipate terephthalate (PBAT).
제조된 PBAT에 대해 인장강도, 및 신율을 측정하여, 하기 표 1에 기재하였다Tensile strength and elongation were measured for the prepared PBAT, and are listed in Table 1 below.
<< 비교예comparative example 3 내지 6> 3 to 6>
상기 실시예 1 내지 4에서, 디메틸 퓨란-2,5-디카복실레이트(0.24 mol, 44.20 g)을 대신하여 디메틸 테레프탈레이트(0.24 mol, 45.99 g)를 투입한 것을 제외하고는, 각각 실시예 1 내지 4와 동일하게 실시하여 생분해성 복합체를 제조하였다 (비교예 3: 나노키틴 함량 (0.05 wt%), 비교예 4: 나노키틴 함량 (0.1 wt%), 비교예 5: 나노키틴 함량 (0.005 wt%), 비교예 6: 나노키틴 함량 (2.0 wt%)).In Examples 1 to 4, except that dimethyl terephthalate (0.24 mol, 45.99 g) was added instead of dimethyl furan-2,5-dicarboxylate (0.24 mol, 44.20 g), each Example 1 In the same manner as in 4 to 4, a biodegradable composite was prepared (Comparative Example 3: Nanochitin content (0.05 wt%), Comparative Example 4: Nanochitin content (0.1 wt%), Comparative Example 5: Nanochitin content (0.005 wt%) %), Comparative Example 6: Nanochitin content (2.0 wt%)).
제조된 생분해성 복합체에 대해 상기 평가방법에 따라 인장강도, 및 신율을 측정하여, 하기 표 1에 기재하였다.Tensile strength and elongation of the prepared biodegradable composites were measured according to the above evaluation method, and are listed in Table 1 below.
고분자 종류polymer type 나노섬유 투입량
(wt%)
Nanofiber input
(wt%)
인장강도
(MPa)
The tensile strength
(MPa)
신율
(%)
elongation
(%)
실시예 1Example 1 PBAFPBAF 0.050.05 7272 10701070
실시예 2Example 2 PBAFPBAF 0.10.1 8080 10901090
실시예 3Example 3 PBAFPBAF 0.0050.005 6767 10401040
실시예 4Example 4 PBAFPBAF 2.02.0 5252 900900
실시예 5Example 5 PBAFPBAF 0.050.05 7070 10601060
실시예 6Example 6 PBAFPBAF 0.10.1 7979 10701070
실시예 7Example 7 PBAFPBAF 0.0050.005 6767 10201020
실시예 8Example 8 PBAFPBAF 2.02.0 5151 890890
실시예 9Example 9 PBAFPBAF 0.050.05 7575 10801080
비교예 1Comparative Example 1 PBAFPBAF -- 5555 10101010
비교예 2Comparative Example 2 PBATPBAT -- 6060 920920
비교예 3Comparative Example 3 PBATPBAT 0.050.05 6565 930930
비교예 4Comparative Example 4 PBATPBAT 0.10.1 6868 930930
비교예 5Comparative Example 5 PBATPBAT 0.0050.005 6262 920920
비교예 6Comparative Example 6 PBATPBAT 2.02.0 5858 870870
그 결과, 상기 표 1에서 확인할 수 있듯이, 본 발명 실시예예 따른 생분해성 복합체는 인장강도 및 신율이 현저히 향상되어 우수한 기계적 물성을 나타내었다. 구체적으로 비교예 3 내지 비교예 6의 PBAT에서보다, 퓨란계 화합물을 포함하는 실시예 1 내지 실시예 4의 PBAF에서 인장강도 및 신율이 모두 현저히 향상되었으므로 PBAT보다 PBAF가 in situ 중합시 인장강도 강화효과가 더욱 우수한 것을 확인할 수 있었다.As a result, as can be seen in Table 1, the biodegradable composites according to Examples of the present invention showed excellent mechanical properties with significantly improved tensile strength and elongation. Specifically, the tensile strength and elongation of the PBAFs of Examples 1 to 4 containing furan-based compounds were significantly improved compared to the PBAT of Comparative Examples 3 to 6, so that the tensile strength of PBAF during in situ polymerization was improved more than that of PBAT. It was confirmed that the effect was more excellent.
특히 나노섬유 함량이 0.05 wt%인 실시예 1은 인장강도가 72 MPa이고, 나노섬유 함량이 0.1 wt%인 실시예 2는 인장강도가 80 MPa로 매우 우수한 인장강도를 가짐을 확인할 수 있었는데, 이는 퓨란계 디카복실산 유도체를 사용함으로써 복합체의 결정성이 떨어짐으로 인하여 나노섬유의 보강효과가 더욱 커지기 때문이다. 한편, 천연고분자 나노섬유를 포함하지 않는 비교예 1의 경우 매우 열위한 기계적 물성을 나타내었다. In particular, Example 1 having a nanofiber content of 0.05 wt% had a tensile strength of 72 MPa, and Example 2 having a nanofiber content of 0.1 wt% had a tensile strength of 80 MPa, which was confirmed to have a very good tensile strength. This is because the reinforcing effect of the nanofibers is further increased due to the decrease in crystallinity of the composite by using the furan-based dicarboxylic acid derivative. On the other hand, in the case of Comparative Example 1 not containing natural polymer nanofibers, very poor mechanical properties were exhibited.
또한, 나노키틴 섬유를 증류수에 미리 분산시킨 후 1,4-부탄디올에 투입, 분산시킨 실시예 9의 경우, 동일하게 나노섬유를 0.05 wt% 투입한 실시예 1과 비교할 때 인장강도 및 신율이 더욱 향상된 것을 확인할 수 있었다.In addition, in the case of Example 9 in which the nanochitin fibers were previously dispersed in distilled water and then added to and dispersed in 1,4-butanediol, the tensile strength and elongation were higher compared to Example 1 in which 0.05 wt% of the nanofibers were added. improvement could be observed.
이를 통해, 퓨란계 디카복실산 또는 이의 유도체를 포함하는 생분해성 복합체는 나노섬유 보강효과 향상으로 인해 테레프탈계 디카복실산 유도체를 포함하는 복합체보다 기계적 물성이 현저히 향상되는 것을 알 수 있다. 뿐만 아니라 퓨란계 화합물은 바이오매스에서 전환이 가능하므로 본 발명에 따른 생분해성 복합체를 이용하여 바이오기반 생분해성 플라스틱의 제조가 가능하므로 효과적이다.Through this, it can be seen that the mechanical properties of the biodegradable composite containing the furan-based dicarboxylic acid or its derivative are significantly improved compared to the composite containing the terephthalic dicarboxylic acid derivative due to the improved nanofiber reinforcing effect. In addition, since furan-based compounds can be converted from biomass, bio-based biodegradable plastics can be manufactured using the biodegradable composite according to the present invention, which is effective.
이상, 본 발명을 바람직한 실시예 및 실험예를 통해 상세히 설명하였으나, 본 발명의 범위는 특성 실시예에 한정되는 것은 아니며, 첨부된 특허 청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.In the above, the present invention has been described in detail through preferred embodiments and experimental examples, but the scope of the present invention is not limited to specific examples, and should be interpreted by the appended claims. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.

Claims (8)

  1. 퓨란계 디카복실산 또는 이의 유도체, 지방족 디카복실산 또는 이의 유도체, 지방족 디올 및 천연고분자 나노섬유를 포함하여 중합함으로써 제조되는 생분해성 복합체.A biodegradable composite prepared by polymerizing furan-based dicarboxylic acids or derivatives thereof, aliphatic dicarboxylic acids or derivatives thereof, aliphatic diols, and natural polymer nanofibers.
  2. 제1항에 있어서,According to claim 1,
    상기 천연고분자 나노섬유는, 나노키틴 섬유 및 나노셀룰로오스 섬유에서 선택되는 어느 하나 이상인 것인, 생분해성 복합체.The natural polymer nanofibers are at least one selected from nanochitin fibers and nanocellulose fibers, the biodegradable composite.
  3. 제1항에 있어서,According to claim 1,
    상기 천연고분자 나노섬유의 함량은, 상기 생분해성 복합체 전체 100 중량%에 대해 0.005 내지 2 중량%인, 생분해성 복합체.The content of the natural polymer nanofibers is 0.005 to 2% by weight based on 100% by weight of the total biodegradable composite, biodegradable composite.
  4. 제1항에 있어서,According to claim 1,
    상기 천연고분자 나노섬유는, 평균직경이 1 내지 200 nm이고, 길이가 100 nm 내지 100 ㎛인, 생분해성 복합체.The natural polymer nanofibers have an average diameter of 1 to 200 nm and a length of 100 nm to 100 μm, a biodegradable composite.
  5. 제1항에 있어서,According to claim 1,
    상기 생분해성 복합체는, 하기 식 1을 만족하는 것인, 생분해성 복합체:The biodegradable composite, which satisfies the following formula 1, is a biodegradable composite:
    [식 1][Equation 1]
    Figure PCTKR2022004670-appb-img-000003
    Figure PCTKR2022004670-appb-img-000003
    상기 식 1에서, TS1은 상기 생분해성 복합체의 인장강도(MPa)이고, TS0는 상기 천연고분자 나노섬유를 포함하지 않고 중합된 경우의 인장강도(MPa)이다.In Equation 1, TS 1 is the tensile strength (MPa) of the biodegradable composite, and TS 0 is the tensile strength (MPa) when polymerized without the natural polymer nanofibers.
  6. 퓨란계 디카복실산 또는 이의 유도체, 지방족 디카복실산 또는 이의 유도체, 및 지방족 디올을 포함하는 혼합물을 준비하는 단계;preparing a mixture containing a furanic dicarboxylic acid or derivative thereof, an aliphatic dicarboxylic acid or derivative thereof, and an aliphatic diol;
    상기 혼합물에 천연고분자 나노섬유를 분산시키는 단계; 및dispersing natural polymer nanofibers in the mixture; and
    상기 천연고분자 나노섬유가 분산된 혼합물을 중합시키는 단계;를 포함하는, 생분해성 복합체의 제조방법.Method for producing a biodegradable composite comprising; polymerizing the mixture in which the natural polymer nanofibers are dispersed.
  7. 천연고분자 나노섬유를 지방족 디올에 분산시키는 단계; 및dispersing natural polymer nanofibers in aliphatic diol; and
    상기 천연고분자 나노섬유가 분산된 지방족 디올과, 퓨란계 디카복실산 또는 이의 유도체, 및 지방족 디카복실산 또는 이의 유도체를 혼합하여 중합시키는 단계;를 포함하는, 생분해성 복합체의 제조방법.A method for producing a biodegradable composite comprising mixing and polymerizing an aliphatic diol in which the natural polymer nanofibers are dispersed, a furan-based dicarboxylic acid or a derivative thereof, and an aliphatic dicarboxylic acid or a derivative thereof.
  8. 제7항에 있어서,According to claim 7,
    상기 천연고분자 나노섬유를 지방족 디올에 분산시키는 단계는, 상기 천연고분자 나노섬유를 분산시킨 증류수를 상기 지방족 디올에 투입하여 분산시키는 것인, 생분해성 복합체의 제조방법.In the step of dispersing the natural polymer nanofibers in the aliphatic diol, distilled water in which the natural polymer nanofibers are dispersed is added to the aliphatic diol to disperse them.
PCT/KR2022/004670 2021-06-03 2022-04-01 Biodegradable furan-based composite having improved mechanical properties, and method for producing same WO2022255615A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0072152 2021-06-03
KR1020210072152A KR20220163693A (en) 2021-06-03 2021-06-03 Bio-degradable furan-based composite with improved mechanical properties and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2022255615A1 true WO2022255615A1 (en) 2022-12-08

Family

ID=84323333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004670 WO2022255615A1 (en) 2021-06-03 2022-04-01 Biodegradable furan-based composite having improved mechanical properties, and method for producing same

Country Status (2)

Country Link
KR (2) KR20220163693A (en)
WO (1) WO2022255615A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120316257A1 (en) * 2009-11-05 2012-12-13 Novamont S.P.A. Biodegradable composition comprising polymers of natural origin and aliphatic-aromatic copolyesters
US20130095268A1 (en) * 2011-10-14 2013-04-18 Eastman Chemical Company Polyester compositions containing furandicarboxylic acid or an ester thereof and cyclohexanedimethanol
WO2017182582A1 (en) * 2016-04-20 2017-10-26 Novamont S.P.A. Compositions containing new polyester
JP2020502355A (en) * 2016-12-22 2020-01-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Polyester containing furandicarboxylic acid
KR102131286B1 (en) * 2019-06-05 2020-07-08 한국화학연구원 Bio-degradable composite with improved mechanical properties and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120316257A1 (en) * 2009-11-05 2012-12-13 Novamont S.P.A. Biodegradable composition comprising polymers of natural origin and aliphatic-aromatic copolyesters
US20130095268A1 (en) * 2011-10-14 2013-04-18 Eastman Chemical Company Polyester compositions containing furandicarboxylic acid or an ester thereof and cyclohexanedimethanol
WO2017182582A1 (en) * 2016-04-20 2017-10-26 Novamont S.P.A. Compositions containing new polyester
JP2020502355A (en) * 2016-12-22 2020-01-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Polyester containing furandicarboxylic acid
KR102131286B1 (en) * 2019-06-05 2020-07-08 한국화학연구원 Bio-degradable composite with improved mechanical properties and manufacturing method thereof

Also Published As

Publication number Publication date
KR20230175157A (en) 2023-12-29
KR20220163693A (en) 2022-12-12

Similar Documents

Publication Publication Date Title
WO2012144781A2 (en) Biodegradable polymer composite material
JPH0149383B2 (en)
WO2014038896A1 (en) Thermoplastic lignin condensation polymer, and preparation method therefor
WO2021006480A1 (en) Biodegradable composite material with improved mechanical properties using aqueous dispersion of natural polymer nanofibers and method for preparing same
WO2018056539A1 (en) Biodegradable resin composition and biodegradable article manufactured therefrom
WO2017150747A1 (en) Low melting point conjugate fiber
WO2016027963A1 (en) Transparent biodegradable polymer
CN102070884A (en) Fire resistant glass fiber reinforced polyethylene terephthalate/polybutylece terephthalate alloy and preparation method thereof
WO2023033562A1 (en) Biodegradable polyester polymer with excellent transparency and impact strength and biodegradable polymer composition comprising same
WO2012165734A1 (en) Hydrolysis resistant and biodegradable aliphatic-aromatic copolyester resin composition
WO2019203542A1 (en) Environmentally friendly thermoplastic polyether ester elastomer comprising anhydrous sugar alcohol derivatives and method for preparing same
KR102131286B1 (en) Bio-degradable composite with improved mechanical properties and manufacturing method thereof
WO2013100473A1 (en) Bioplastic composition
WO2017082710A1 (en) Method for producing wholly aromatic polyester resin with improved flowability, and wholly aromatic polyester produced thereby
WO2020067695A1 (en) Thermoplastic resin composition and molded product produced therefrom
WO2022255615A1 (en) Biodegradable furan-based composite having improved mechanical properties, and method for producing same
WO2017150750A1 (en) Compound for preparing copolymerized polyester resin and method for preparing copolymerized polyester resin using same
CN103665788A (en) Modified PET copolyester and preparation method and application thereof
CN117659691A (en) High CTI flame-retardant high-temperature-resistant nylon composite material and preparation method and application thereof
WO2020197147A1 (en) Method for preparation of block copolymer
WO2020111563A1 (en) Polyester resin having improved adhesion strength for binder and polyester fiber using same
WO2021054721A1 (en) Biopolymer composition, preparation method for same and bioplastic using same
CN102391627B (en) Preparation method of polylactic acid/ polydiethylene glycol sebacate/ palygorskite clay composite material
WO2022182154A1 (en) Poly(lactic acid-b-3-hydroxypropionic acid) block copolymer having excellent transparency property and products containing same
CN104045820A (en) Preparation method of poly(propylene carbonate) polylactic acid composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816278

Country of ref document: EP

Kind code of ref document: A1