WO2022255537A1 - 전해질 공급 장치 및 이를 포함하는 안전 시스템 - Google Patents

전해질 공급 장치 및 이를 포함하는 안전 시스템 Download PDF

Info

Publication number
WO2022255537A1
WO2022255537A1 PCT/KR2021/010718 KR2021010718W WO2022255537A1 WO 2022255537 A1 WO2022255537 A1 WO 2022255537A1 KR 2021010718 W KR2021010718 W KR 2021010718W WO 2022255537 A1 WO2022255537 A1 WO 2022255537A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
pipe
tank
storage tank
valve
Prior art date
Application number
PCT/KR2021/010718
Other languages
English (en)
French (fr)
Inventor
조수민
Original Assignee
주식회사 에프오케이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210071684A external-priority patent/KR102299538B1/ko
Priority claimed from KR1020210071671A external-priority patent/KR102299537B1/ko
Application filed by 주식회사 에프오케이 filed Critical 주식회사 에프오케이
Publication of WO2022255537A1 publication Critical patent/WO2022255537A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/12Flow or pressure control devices or systems, e.g. valves, gas pressure control, level control in storage containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/02Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes for transferring liquids other than fuel or lubricants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/76Arrangements of devices for purifying liquids to be transferred, e.g. of filters, of air or water separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte supply device and a safety system including the same, and more particularly, to a device for supplying an electrolyte used in a secondary battery and a safety system including the same.
  • an electrolyte used in a lithium secondary battery is classified as an explosive material and may cause explosion or ignition. Accordingly, special management is required to supply and store the electrolyte, which causes inconvenience to the user.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an apparatus for safely and easily supplying an electrolyte and preventing environmental pollution during the supply process, and a safety system including the same.
  • Electrolyte supply device for storing the electrolyte
  • the electrolyte storage tank for storing the electrolyte
  • a first pipe connected between the electrolyte storage tank and the tank lorry;
  • a pressurized gas providing unit connected to the electrolyte storage tank through a second pipe and supplying inert gas to the electrolyte storage tank to pressurize the inside of the electrolyte storage tank so that the electrolyte is transported to the tank lorry;
  • Connected to the electrolyte storage tank through a third pipe receiving an inert gas used for the transfer of the electrolyte or exhaust gas present in the electrolyte storage tank through the third pipe, and separating into gas components and waste electrolyte separation tank;
  • an air purifying device connected to the separation tank through a fourth pipe and purifying the gas components and discharging them into the air
  • a drain buffer tank connected to the separation tank through a fifth pipe and to which the waste electrolyte is transferred from the separation tank 140;
  • adjusting the second valve and the third valve to transfer the gas component in the separation tank to the air purifier, adjusting the fourth valve to transfer the waste electrolyte in the separation tank to the drain It may include a control unit for adjusting the fifth valve to transfer to the buffer tank and adjusting the first air pump to move the waste electrolyte in the drain buffer tank to the drain storage tank.
  • the drain buffer tank is buried underground, the drain storage tank is installed on the ground, and the waste electrolyte may be moved from the separation tank to the drain buffer tank by a natural flow rate through the fifth pipe. .
  • the first air pump may lift the waste electrolyte in the drain buffer tank buried underground to the drain storage tank.
  • An electrolyte supply device includes a waste electrolyte collection unit connected to the drain storage tank through a seventh pipe; And a second air pump installed in the seventh pipe to move the waste electrolyte collected in the drain storage tank to the waste electrolyte collection unit, wherein the drain storage tank connects an eighth pipe in which a sixth valve is installed. It may be connected to the pressurized gas providing unit through the. The control unit turns on the sixth valve so that the inert gas from the pressurized gas supply unit pressurizes the inside of the drain storage tank, and applies pressure to move the waste electrolyte in the drain storage tank. 2 may be set to compress and store the waste electrolyte in the drain storage tank in the waste electrolyte collection unit by controlling an air pump.
  • a device for supplying electrolyte through pressurization of an inert gas cost can be reduced compared to a device for supplying electrolyte using a conventional pump.
  • nitrogen may function as an extinguishing agent when nitrogen is used as an inert gas.
  • the electrolyte supply device can easily supply the electrolyte by pressurizing the inert gas, so that user convenience can be provided.
  • a safety system including a sensing unit, an alarm unit, a monitoring unit, and a control unit connected to the electrolyte supply device and interlocking with each other, a systemized safety system that is not a simple supply type may be constructed.
  • FIG. 1 is a schematic diagram for explaining an electrolyte supply device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating an electrolyte storage tank of the electrolyte supply device of FIG. 1 .
  • FIG. 3 is a schematic diagram for explaining an electrolyte supply device according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram for explaining a method of recovering the electrolyte supplied from the electrolyte supplying device shown in FIG. 3 to the electrolyte storage tank.
  • FIG. 5 is a schematic conceptual diagram for explaining a safety system including an electrolyte supply device according to an embodiment of the present invention.
  • FIG. 1 is a drawing showing the best mode for carrying out the present invention.
  • FIG. 1 is a schematic diagram for explaining an electrolyte supply device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating an electrolyte storage tank of the electrolyte supply device of FIG. 1 .
  • the electrolyte supply device 1000 includes an electrolyte production device 100, an electrolyte storage tank 110, a pressurized gas supply unit 120, a separation tank 140, an air purifier 150, and a drain buffer.
  • Tank 160 drain storage tank 170, waste electrolyte collection unit 180, a plurality of pipes (P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13 , P14), a plurality of valves (V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12), and a plurality of air pumps (AP1, AP2).
  • the electrolyte supply device 1000 may further include a tank lorry 130 for delivering the electrolyte to an electrolyte supplier.
  • Electrolytes can be divided into organic electrolytes and polymer electrolytes.
  • organic electrolytes may include lithium salts (LiAsF6, LiPF6, LiClO4) and organic solvents such as polycarbonate (PC), ethylene carbonate (EC), dimethyl ether (DME), diethyl carbonate (DEC), and dimethyl carbonate (DMC).
  • PC polycarbonate
  • EC ethylene carbonate
  • DME dimethyl ether
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • the organic electrolyte may use a mixture of a solvent having a good dielectric constant (eg, PC, EC) and a solvent having a low viscosity (eg, DME, DEC, DMC) rather than using only one organic solvent.
  • the polymer electrolyte is used by adding an organic solvent and lithium salt to a polymer matrix such as poly ethylene oxide (PEO) or poly methyl methacrylate (PMMA), and optionally a plasticizer.
  • the electrolyte is an explosive material, and must be supplied and stored at a low temperature of about 0 ° C. Therefore, the place where the electrolyte is supplied or stored must be maintained at 0° C. by installing a temperature control unit (CL).
  • CL temperature control unit
  • the electrolyte production device 100 may produce an electrolyte and supply it to the electrolyte storage tank 110 .
  • the electrolyte production device 100 may be connected to the electrolyte storage tank 110 through the first pipe P1 and transfer the produced electrolyte to the electrolyte storage tank 110 .
  • a first valve (V1) is installed in the first pipe (P1) to open and close the first pipe (P1) to control the movement of the electrolyte.
  • the electrolyte storage tank 110 may store (or temporarily store) the supplied electrolyte.
  • the electrolyte storage tank 110 may deliver the stored (or temporarily stored) electrolyte to the tank lorry 130 .
  • the electrolyte storage tank 110 may be connected to the pressurized gas supplier 120 through the second pipe P2 and the third pipe P3 and connected to the tank lorry 130 through the fifth pipe P5.
  • the electrolyte storage tank 110 may receive inert gas from the pressurized gas supplier 120 through the second pipe P2 and the third pipe P3.
  • a second valve V2 is installed in the second pipe P2 to open and close the second pipe P2, and a third valve V3 is installed in the third pipe P3 to open and close the third pipe P3.
  • a fifth valve (V5) is installed in the fifth pipe (P5) to open and close the fifth pipe (P5), so that the transfer and blocking of the electrolyte can be controlled.
  • the fifth pipe (P5) may be installed to be separable from the tank lorry 130.
  • the fifth valve V5 connected to the tank lorry 130 may be turned on to open the fifth pipe P5 so that the tank lorry 130 and the electrolyte storage tank 110 may communicate with each other.
  • the second valve V2 and the third valve V3 connected to the electrolyte storage tank 110 are turned on to open the second pipe P2 and the third pipe P3 to remove the electrolyte storage tank 110 and pressurized gas. Study (120) can be communicated. At this time, the remaining valves may be set to off.
  • the inert gas from the pressurized gas supply unit 120 pressurizes the inside of the electrolyte storage tank 110, and the electrolyte stored in the electrolyte storage tank 110 may be transferred to the tank lorry 130 through the fifth pipe P5. .
  • the electrolyte when the electrolyte is supplied from the electrolyte storage tank 110 to the tank lorry 130, it can be supplied only with the pressure of an inert gas without a pump, so that the desired accurate amount of electrolyte can be safely supplied. can supply
  • the pressure sensor 111 for measuring the pressure inside the electrolyte storage tank 110 and the pressure sensor 111 are interlocked and when the pressure in the electrolyte storage tank 110 is out of a set range, the second valve (V2) and the third valve (V3) forcibly off (off) and the sixth valve (V6), the eighth valve (V8), and the control unit 440 forcibly turning on (on) the tenth valve (V10), 5) may be further provided.
  • the first A control unit 440 forcibly turning off the valve V1 or the fifth valve V5 may be further provided.
  • the electrolyte storage tank 110 stores (or temporarily stores) the electrolyte, and since the electrolyte must be maintained at a low temperature of 0 ° C, the temperature control surrounding the outside of the electrolyte storage tank 110 A part CL may be provided.
  • the first pipe (P1) and the fifth pipe (P5) are passages through which the electrolyte is moved, and a temperature control unit (CL) may be provided to maintain the electrolyte at a low temperature of 0 °C.
  • an inert gas concentration sensor 112 disposed at a lower end of the electrolyte storage tank 110 inside the electrolyte storage tank 110 may be further provided.
  • the inert gas concentration sensor 112 When the electrolyte level drops below a set level (eg A level), the inert gas concentration sensor 112 is exposed and the inert gas concentration sensor 112 notifies replenishment of the electrolyte when the inert gas concentration is out of the set concentration range.
  • a set level eg A level
  • the electrolyte storage tank 110 may include a body extending in one direction, an upper end portion closing one end of the body, and a lower end portion closing the other end opposite to one end of the body. Each of the upper and lower ends may close one end and the other end of the body in a hemisphere shape, respectively.
  • the electrolyte storage tank 110 may have a capsule shape and may have an elliptical cross section extending in one direction.
  • a support for supporting the electrolyte storage tank 110 may be further provided.
  • the electrolyte in the electrolyte storage tank 110 may be filled up to 75% to 85% of the electrolyte storage tank 110 .
  • 85% or more of the electrolyte storage tank 110 is filled (eg, B level in FIG. 2 )
  • a safety problem may occur.
  • the electrolyte storage tank 110 may transfer used inert gas or exhaust gas to the separation tank 140 .
  • the electrolyte storage tank 110 may be connected to the separation tank 140 through the sixth pipe P6.
  • a sixth valve V6 is installed in the sixth pipe P6 to open and close the sixth pipe P6, so that the movement and blocking of the inert gas or exhaust gas used in the electrolyte storage tank 110 can be controlled.
  • the sixth valve V6 connected to the separation tank 140 is turned on to open the sixth pipe P6, and the electrolyte storage tank 110 and the separation tank ( 140) can be communicated.
  • the second valve V2 and the third valve V3 connected to the electrolyte storage tank 110 are turned on to open the second pipe P2 and the third pipe P3 to remove the electrolyte storage tank 110 and pressurized gas.
  • Study (120) can be communicated. Accordingly, the inert gas from the pressurized gas supplier 120 pressurizes the inside of the electrolyte storage tank 110, and the used inert gas or exhaust gas in the electrolyte storage tank 110 may be moved to the separation tank 140.
  • the pressurized gas supply unit 120 may store an inert gas and provide the inert gas to the electrolyte storage tank 110 to pressurize the inside of the electrolyte storage tank 110 with the inert gas.
  • the pressurized gas providing unit 120 may provide inert gas to the tank lorry 130 to pressurize the inside of the tank lorry 130 with the inert gas.
  • the inert gas may include one of nitrogen (N2), argon (Ar), helium (He), radon (Rn), neon (Ne), and xenon (Xe).
  • nitrogen may function as an extinguisher when nitrogen is used as an inert gas.
  • a control unit 440 forcibly turning off the second valve V2 may be further provided.
  • the water level sensor 121 for measuring the amount of inert gas stored in the pressurized gas supply unit 120 is interlocked with the water level sensor 121 and the second valve V2 is forcibly opened when the amount of inert gas is out of the set range.
  • a control unit (440, see FIG. 5) for turning off may be further provided.
  • the tank lorry 130 temporarily stores the electrolyte, and the fifth pipe (P5) and the fifth valve (V5) are used as a passage through which the electrolyte is supplied.
  • the electrolyte is at about 0 ° C. Since it is necessary to maintain the low temperature of the tank lorry 130, the fifth pipe (P5) and the fifth valve (V5), a temperature control unit (eg, the temperature control unit (CL) of FIG. 2) surrounding the outside of each will be provided.
  • a temperature control unit eg, the temperature control unit (CL) of FIG. 2
  • the pressure sensor 131 for measuring the pressure inside the tank lorry 130 is interlocked with the pressure sensor 131 and the fifth valve V5 is turned on when the pressure in the tank lorry 130 is out of the set range.
  • a control unit (440, see FIG. 5) forcibly turning off may be further provided.
  • a water level sensor 131 that measures the amount of electrolyte stored in the tank lorry 130 and a control unit 440 that interlocks with the water level sensor 131 and forcibly turns off the fifth valve V5 when the amount of electrolyte is out of a set range , see FIG. 5) may be further provided.
  • the tank lorry 130 may unload the temporarily stored electrolyte into the electrolyte storage tank 110 .
  • the tank lorry 130 is connected to the pressurized gas supply unit 120 through the second pipe P2 and the twelfth pipe P12, and is connected to the electrolyte storage tank 110 through the fifth pipe P5.
  • the tank lorry 130 may receive inert gas from the pressurized gas supplier 120 through the second pipe P2 and the twelfth pipe P12.
  • a twelfth valve (V12) is installed in the twelfth pipe (P12) to open and close the twelfth pipe (P12), so that the provision and blocking of the inert gas can be controlled.
  • the fifth valve V5 connected to the electrolyte storage tank 110 may be turned on to open the fifth pipe P5 so that the tank lorry 130 and the electrolyte storage tank 110 may communicate.
  • the second valve V2 and the twelfth valve V12 connected to the pressurized gas supply unit 120 are turned on to open the second pipe P2 and the twelfth pipe P12, and the tank lorry 130 and the pressurized gas supply unit (120) can be communicated.
  • the inert gas from the pressurized gas supply unit 120 pressurizes the inside of the tank lorry 130, and the electrolyte stored in the tank lorry 130 is unloaded into the electrolyte storage tank 110 through the fifth pipe P5. Can be unloaded.
  • the electrolyte when the electrolyte is unloaded from the tank lorry 130 to the electrolyte storage tank 110, it can be unloaded only with the pressure of the inert gas without a pump, so that the desired amount of electrolyte can be safely unloaded.
  • the separation tank 140 may separate waste electrolyte from used inert gas or exhaust gas.
  • the inert gas or exhaust gas used may contain waste electrolyte (eg, vaporized bare electrolyte).
  • the separation tank 140 may separate light gas components (eg, used inert gas or exhaust gas) and heavy waste electrolyte based on gravity.
  • the separation tank 140 may be connected to the air purifier 150 through the eighth pipe P8 and the eleventh pipe P11.
  • An eighth valve (V8) is installed in the eighth pipe (P8) to open and close the eighth pipe (P8)
  • an eleventh valve (V11) is installed in the eleventh pipe (P11) to open and close the eleventh pipe (P11). is installed to control the movement and blocking of gas components (eg, used inert gas or exhaust gas) in the separation tank 140 .
  • gas components eg, used inert gas or exhaust gas
  • the eighth valve V8 and the eleventh valve V11 connected to the air purifier 150 are turned on to open the eighth pipe P8 and the eleventh pipe ( P11) can be opened to communicate the separation tank 140 and the air purifier 150.
  • Gas components eg, used inert gas or exhaust gas
  • the separation tank 140 may be moved to the air purifier 150 through the eighth pipe P8 and the eleventh pipe P11.
  • the separation tank 140 may be connected to the drain buffer tank 160 through a seventh pipe P7.
  • a seventh valve (V7) is installed to open and close the seventh pipe (P7), it is possible to control the movement and blocking of the waste electrolyte.
  • the seventh valve V7 connected to the drain buffer tank 160 may be turned on to open the seventh pipe P7 so that the separation tank 140 and the drain buffer tank 160 communicate with each other.
  • the drain buffer tank 160 may be buried underground. Therefore, the waste electrolyte may be moved from the separation tank 140 to the drain buffer tank 160 by a natural flow rate.
  • the pressure sensor 141 measures the pressure inside the separation tank 140, and when the pressure in the separation tank 140 is out of a set range by interlocking with the pressure sensor 141, the sixth valve (V6) ) and forcibly turning on the eighth valve V8 and the eleventh valve V11 (440, see FIG. 5) may be further provided.
  • the water level sensor 141 for measuring the amount of waste electrolyte stored in the separation tank 140 is interlocked with the water level sensor 141 and the sixth valve V6 is forcibly turned off when the amount of waste electrolyte is out of a set range.
  • a control unit 440 forcibly turning on the seventh valve V7 and the eleventh valve V11 may be further provided.
  • the drain buffer tank 160 may store the waste electrolyte and separate gas components included in the waste electrolyte.
  • the waste electrolyte delivered to the drain buffer tank 160 may also contain a part of the used inert gas or exhaust gas, and the drain buffer tank 160 may contain gas components (eg, used inert gas) contained in the waste electrolyte. gas or exhaust gas) to the air purification device 150.
  • gas components eg, used inert gas
  • the drain buffer tank 160 may be connected to the air purifier 150 through the ninth pipe P9 and the eleventh pipe P11.
  • a ninth valve V9 is installed in the ninth pipe P9 to open and close the ninth pipe P9
  • an eleventh valve V11 is installed in the eleventh pipe P11 to open and close the eleventh pipe P11. Is installed, it is possible to control the movement and blocking of gas components included in the waste electrolyte in the drain buffer tank 160.
  • the air purifier 150 can be communicated.
  • Gas components included in the waste electrolyte in the drain buffer tank 160 may be delivered to the air purifier 150 through the ninth pipe P9 and the eleventh pipe P11.
  • the pressure sensor 161 for measuring the pressure inside the drain buffer tank 160 and the pressure sensor 161 are interlocked and when the pressure in the drain buffer tank 160 is out of a set range, the seventh valve A control unit 440 (see FIG. 5) forcibly turning off the valve V7 and forcibly turning on the ninth valve V9 and the eleventh valve V11 may be further provided.
  • the water level sensor 161 for measuring the amount of waste electrolyte stored in the drain buffer tank 160 is interlocked with the water level sensor 161 and the seventh valve V7 is forcibly opened when the amount of waste electrolyte is out of the set range.
  • a control unit (440, see FIG. 5) for turning off may be further provided.
  • the drain storage tank 170 may be connected to the drain buffer tank 160 through a thirteenth pipe P13.
  • the drain buffer tank 160 may be buried underground, and the drain storage tank 170 may be installed above ground.
  • a first air pump (AP1) is installed in the thirteenth pipe (P13), and the first air pump (AP1) moves the waste electrolyte stored in the drain buffer tank 160 to the drain storage tank 170 installed on the ground.
  • the drain storage tank 170 may be connected to the air purifier 150 through the tenth pipe P10 and the eleventh pipe P11.
  • a tenth valve V10 is installed in the tenth pipe P10 to open and close the tenth pipe P10
  • an eleventh valve V11 is installed in the eleventh pipe P11 to open and close the eleventh pipe P11. Is installed, it is possible to control the movement and blocking of gas components included in the waste electrolyte in the drain storage tank 170.
  • the air purifier 150 and The drain storage tank 170 may be communicated with. Accordingly, the gas components included in the waste electrolyte in the drain storage tank 170 may be delivered to the air purifier 150 through the tenth pipe P10 and the eleventh pipe P11.
  • the pressure sensor 171 for measuring the pressure inside the drain storage tank 170 is interlocked with the pressure sensor 171 and when the pressure in the drain storage tank 170 is out of a set range, the first air A control unit 440 (see FIG. 5 ) forcibly turning off the pump AP1 and forcibly turning on the tenth valve V10 and the eleventh valve V11 may be further provided.
  • the water level sensor 171 for measuring the amount of waste electrolyte stored in the drain storage tank 170 is interlocked with the water level sensor 171 and the first air pump AP1 is forcibly operated when the amount of waste electrolyte is out of the set range.
  • a controller (440, see FIG. 5) for turning off may be further provided.
  • the waste electrolyte collection unit 180 may compress and store the waste electrolyte from the drain storage tank 170 .
  • the waste electrolyte collection unit 180 may be connected to the drain storage tank 170 through a fourteenth pipe P14.
  • a second air pump AP2 may be installed in the fourteenth pipe P14.
  • the drain storage tank 170 and The pressurized gas supply unit 120 may be communicated with.
  • the inert gas from the pressurized gas supply unit 120 pressurizes the inside of the drain storage tank 170 and the second air pump AP2 moves the waste electrolyte in the drain storage tank 170 to the waste electrolyte collection unit 180. have.
  • the waste electrolyte may be compressed through the pressure of the inert gas from the pressurized gas supply unit 120 and the pressure by the second air pump AP2 and stored in the waste electrolyte collection unit 180 .
  • the remaining valves may be set to off.
  • the air purifying device 150 may purify and discharge used inactive gas or exhaust gas.
  • the separation tank 140 and the The air purifier 150 can be communicated.
  • Gas components (eg, used inert gas or exhaust gas) in the separation tank 140 may be moved to the air purifier 150 through the eighth pipe P8 and the eleventh pipe P11.
  • the ninth valve V9 and the eleventh valve V11 connected to the air purifier 150 to open the ninth pipe P9 and the eleventh pipe P11
  • the drain buffer tank 160 and the air purifier (150) can be communicated.
  • Gas components (eg, inert gas or exhaust gas included in the waste electrolyte) in the drain buffer tank 160 may be moved to the air purifier 150 through the ninth pipe P9 and the eleventh pipe P11. .
  • the tenth valve (V10) and the eleventh valve (V11) connected to the air purifier 150 are turned on to open the 10th pipe (P10) and the 11th pipe (P11), and the drain storage tank 170 and the air purifier (150) can be communicated.
  • Gas components (eg, inert gas or exhaust gas included in the waste electrolyte) in the drain storage tank 170 may be moved to the air purifier 150 through the tenth pipe P10 and the eleventh pipe P11. .
  • the gas component moved to the air purifier 150 may be discharged into the air after removing environmental pollutants through various purification processes. Therefore, the electrolyte supplying device 1000 can prevent air pollution generated during the electrolyte supplying process.
  • Each of the first and second air pumps AP1 and AP2 may be connected to the control unit 440 (see FIG. 5).
  • the control unit 440 see FIG.
  • control unit 440 controls a flow transmitter installed in the second valve V2 or the third valve V3 connected to the pressurized gas supply unit 120, so that the electrolyte storage tank 110 ) can provide a precise amount of inert gas.
  • the amount of electrolyte supplied to the tank lorry 131 can be accurate only when the amount of inert gas provided is accurate.
  • control unit 440 controls a flow transmitter installed in the second valve V2 or the twelfth valve V12 connected to the pressurized gas supply unit 120, so that the tank lorry 130 A precise amount of inert gas can be provided.
  • the amount of electrolyte unloaded into the electrolyte storage tank 110 can be accurate only when the amount of inert gas provided is accurate.
  • control unit 440 controls a flow transmitter installed on the second valve V2 or the fourth valve V4 connected to the pressurized gas supply unit 120 to control the drain storage tank 170.
  • the control unit 440 can provide a precise amount of inert gas.
  • the waste electrolyte can be uniformly compressed in the waste electrolyte collecting unit 180 .
  • the cost can be reduced compared to a device for supplying electrolyte using a conventional pump.
  • nitrogen can function as a fire extinguisher when nitrogen is used as an inert gas.
  • gas components eg, used inert gas or exhaust gas
  • waste electrolyte is separated and recovered, and gas components are purified and discharged through the air purifier 150, thereby preventing environmental pollution.
  • FIG. 3 is a schematic diagram for explaining an electrolyte supply device according to another embodiment of the present invention.
  • the electrolyte supply device 2000 includes an electrolyte production device 200, a plurality of electrolyte storage tanks 210 and 215, a pressurized gas supply unit 220, a separation tank 240, an air purifier ( 250), drain buffer tank 260, drain storage tank 270, waste electrolyte collection unit 280, a plurality of pipes (P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20), multiple valves (V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V15, V16, V17, V18, V19, V20) and a plurality of air pumps AP1 and AP2.
  • a plurality of pipes P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, V12, V15, V16, V17, V
  • two electrolyte storage tanks 210 and 215, one pressurized gas supply unit 220 and one separation tank 240 are exemplarily described, but the present invention is an electrolyte storage tank and a pressurized gas supply unit. , and the quantity of the buffer tank is not limited thereto.
  • the two electrolyte storage tanks 210 and 215 are referred to as a first electrolyte storage tank 210 and a second electrolyte storage tank 215, respectively.
  • the electrolyte production device 200 may be connected to the first electrolyte storage tank 210 and the second electrolyte storage tank 215 through the first pipe (P1).
  • the first pipe P1 may communicate with a fifteenth pipe P15 connected to the first electrolyte storage tank 210 and a sixteenth pipe P16 connected to the second electrolyte storage tank 215 .
  • the fifteenth pipe (P15) and the sixteenth pipe (P16) may be connected in parallel to the first pipe (V1).
  • a first valve V1 for opening and closing the first pipe P1 may be installed in the first pipe P1.
  • a 15th valve V15 for opening and closing the 15th pipe P15 is installed in the 15th pipe P15, and a 16th valve V16 for opening and closing the 16th pipe P16 in the 16th pipe P16 can be installed.
  • the pressurized gas supply unit 220 may be connected to the first electrolyte storage tank 210, the second electrolyte storage tank 215, and the drain storage tank 270 through the second pipe P2.
  • the second pipe P2 is the third pipe P3 connected to the first electrolyte storage tank 210, the seventeenth pipe P17 connected to the second electrolyte storage tank 215, and the drain storage tank 270.
  • It may be in communication with the fourth pipe (P4) connected to.
  • the third pipe (P3), the fourth pipe (P4), and the seventeenth pipe (P17) may be connected in parallel to the second pipe (V2).
  • a second valve V2 for opening and closing the second pipe P2 may be installed in the second pipe P2.
  • a third valve V3 for opening and closing the third pipe P3 is installed in the third pipe P3, and a fourth valve V4 for opening and closing the fourth pipe P4 in the fourth pipe P4 is installed, and a seventeenth valve (V17) for opening and closing the seventeenth pipe (P17) may be installed among the seventeenth pipe (P17).
  • the tank lorry 230 may be connected to the first electrolyte storage tank 210 and the second electrolyte storage tank 215 through the fifth pipe P5.
  • the fifth pipe P5 may communicate with an eighteenth pipe P18 connected to the first electrolyte storage tank 210 and a nineteenth pipe P19 connected to the second electrolyte storage tank 215 .
  • the eighteenth pipe P18 and the nineteenth pipe P19 may be connected in parallel to the third pipe V3.
  • a fifth valve V5 for opening and closing the fifth pipe P5 may be installed in the fifth pipe P5.
  • the 18th valve V18 for opening and closing the 18th pipe P18 is installed in the 18th pipe P18, and the 19th valve V19 for opening and closing the 19th pipe P19 in the 19th pipe P19 can be installed.
  • the separation tank 240 may be connected to the first electrolyte storage tank 210 through the sixth pipe P6.
  • the separation tank 240 may be connected to the second electrolyte storage tank 215 through a twentieth pipe P20.
  • a sixth valve V6 for opening and closing the sixth pipe P6 may be installed in the sixth pipe P6.
  • a twentieth valve V20 for opening and closing the twentieth pipe P20 may be installed in the twentieth pipe P20.
  • the separation tank 240 may be connected to the drain buffer tank 260 through the seventh pipe P7.
  • a seventh valve V7 for opening and closing the seventh pipe P7 may be installed in the seventh pipe P7.
  • the air purifier 250 may be connected to the separation tank 240, the drain buffer tank 260, and the drain storage tank 270 through the eleventh pipe P11.
  • the eleventh pipe P11 includes an eighth pipe P8 connected to the separation tank 240, a ninth pipe P9 connected to the drain buffer tank 260, and a 10th pipe connected to the drain storage tank 270. It may communicate with the pipe (P10).
  • the eighth pipe P8, the ninth pipe P9, and the tenth pipe P10 may be connected in parallel to the eleventh pipe V11.
  • An eleventh valve V11 for opening and closing the eleventh pipe P11 may be installed in the eleventh pipe P11.
  • An eighth valve V8 for opening and closing the eighth pipe P8 is installed in the eighth pipe P8, and a ninth valve V9 for opening and closing the ninth pipe P9 in the ninth pipe P9 is installed, and a tenth valve (V10) for opening and closing the tenth pipe (P10) may be installed among the tenth pipe (P10).
  • the electrolyte production device 200 may supply electrolyte to a plurality of electrolyte storage tanks (eg, the first electrolyte storage tank 210 and the second electrolyte storage tank 215).
  • the first electrolyte storage tank 210 may receive and store (or temporarily store) the electrolyte through the first pipe (P1) and the fifteenth pipe (P15).
  • the second electrolyte storage tank 215 may receive and store (or temporarily store) electrolyte through the first pipe (P1) and the sixteenth pipe (P16).
  • the tank lorry 230 may receive electrolyte from a plurality of electrolyte storage tanks (eg, the first electrolyte storage tank 210 and the second electrolyte storage tank 215).
  • the first electrolyte storage tank 210 may supply electrolyte to the tank lorry 230 through the eighteenth pipe P18 and the fifth pipe P5.
  • the second electrolyte storage tank 215 may supply electrolyte to the tank lorry 230 through the nineteenth pipe P19 and the fifth pipe P5.
  • the tank lorry 230 simultaneously receives electrolytes from the first electrolyte storage tank 210 and the second electrolyte storage tank 215, and the electrolyte supply time is shortened compared to the case where the electrolyte is supplied from one electrolyte storage tank.
  • the inert gas or exhaust gas used in the plurality of electrolyte storage tanks (eg, the first electrolyte storage tank 210 and the second electrolyte storage tank 215) is discharged into one separation tank 240.
  • the inert gas or exhaust gas used in the plurality of electrolyte storage tanks eg, the first electrolyte storage tank 210 and the second electrolyte storage tank 215) is discharged into one separation tank 240.
  • used inert gas or exhaust gas in the first electrolyte storage tank 210 and the second electrolyte storage tank 215 may be simultaneously transferred to the separation tank 240 .
  • each of the electrolyte storage tanks 210 and 215 and the separation tank 140 may be communicated simultaneously.
  • the second pipe (P2), the third pipe (P3) and the 17th pipe (P2) are turned on by turning on the second valve (V2), the third valve (V3) and the 16th valve (V16) connected to the electrolyte storage tanks (210, 215).
  • the inert gas from the pressurized gas supply unit 220 pressurizes the inside of each of the electrolyte storage tanks 210 and 215, so that the used inert gas or exhaust gas of the electrolyte storage tanks 210 and 215 is transferred to the separation tank ( 240).
  • used inert gas or exhaust gas from the electrolyte storage tanks 210 and 215 can be efficiently transferred to the separation tank 240 .
  • FIG. 3 A detailed description of the electrolyte supplying device and method of supplying the electrolyte shown in FIG. 3 is similar to that described in FIG. 1, so detailed description thereof will be omitted.
  • one pressurized gas supply unit 220 is provided, but the pressurized gas supply unit 220 may be plural so as to be separately connected to the first electrolyte storage tank 210 and the second electrolyte storage tank 215, respectively. have.
  • FIG. 4 is a schematic diagram for explaining a method of recovering the electrolyte supplied from the electrolyte supplying device shown in FIG. 3 to the electrolyte storage tank.
  • the electrolyte recovery method of FIG. 4 may also be applied to FIG. 1 .
  • the electrolyte supply device 3000 includes an electrolyte production device 300, a plurality of electrolyte storage tanks 310 and 315, a pressurized gas supply unit 320, a separation tank 340, an air purifier ( 350), drain buffer tank 360, drain storage tank 370, waste electrolyte collection unit 380, a plurality of pipes (P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22), multiple valves (V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V14, V15, V16, V17, V18, V19, V20, V21, V22) and a plurality of air pumps AP1 and AP2.
  • pipes P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P14, V15
  • FIG. 4 two electrolyte storage tanks 310 and 315, one pressurized gas supply unit 320 and one separation tank 340 are exemplarily described, but the present invention is an electrolyte storage tank and a pressurized gas supply unit. , and the quantity of the buffer tank is not limited thereto.
  • the two electrolyte storage tanks 310 and 315 are referred to as a first electrolyte storage tank 310 and a second electrolyte storage tank 315, respectively.
  • a detailed description of the electrolyte supply device shown in FIG. 4 is similar to that described in FIG. 1 or FIG. 3, so the detailed description thereof will be omitted.
  • one pressurized gas supply unit 320 is provided, but the pressurized gas supply unit 320 may be plural so as to be separately connected to the first electrolyte storage tank 310 and the second electrolyte storage tank 315, respectively. have.
  • the electrolyte supply device 3000 may include electrolyte supply pipes P17, P17, and P5 and separate electrolyte recovery pipes P20, P21, and P22.
  • the first tank lorry 330 may receive electrolyte from the first electrolyte storage tank 310 through the fifth pipe P5 and the eighteenth pipe P18.
  • the first tank lorry 330 may receive electrolyte from the second electrolyte storage tank 315 through the fifth pipe P5 and the nineteenth pipe P19.
  • the sixth valve V6, the fifteenth valve V15, and the eighteenth valve V18 are turned off, and the second valve V2, the third valve V3, the twenty-first valve V21, and the twenty-third valve
  • the second pipe P2, the third pipe P3, the twenty-first pipe P21, and the twenty-third pipe P23 can communicate with the first electrolyte storage tank 310.
  • the second tank lorry 335 may recover the remaining electrolyte (or electrolyte injected incorrectly) after being supplied from the first electrolyte storage tank 310 through the 21st pipe P21 and the 23rd pipe P23.
  • the 20th valve V20, the 16th valve V16, and the 19th valve V19 are turned off, and the 2nd valve V2, the 17th valve V17, the 22nd valve V22, and the 23rd valve
  • the second pipe P2, the seventeenth pipe P17, the twenty-second pipe P22, and the twenty-third pipe P23 can communicate with the second electrolyte storage tank 315.
  • the second tank lorry 335 may recover the remaining electrolyte (or electrolyte injected incorrectly) after being supplied from the second electrolyte storage tank 315 through the 22nd pipe (P22) and the 23rd pipe (P23). Even when recovering the electrolyte, it can be recovered without a pump, so the electrolyte can be recovered more simply and efficiently.
  • the first tank lorry 330 may unload the temporarily stored electrolyte into the plurality of electrolyte storage tanks 310 and 315 .
  • the first tank lorry 330 is connected to the pressurized gas supplier 320 through the second pipe P2 and the twelfth pipe P12, and the fifth pipe P5 and the eighteenth pipe P18 It may be connected to the first electrolyte storage tank 310 through.
  • the first tank lorry 330 may receive inert gas from the pressurized gas supplier 320 through the second pipe P2 and the twelfth pipe P12.
  • the inert gas from the pressurized gas supply unit 320 pressurizes the inside of the first tank lorry 330, and the electrolyte stored in the first tank lorry 330 passes through the fifth pipe P5 and the eighteenth pipe P18 to the first tank lorry 330. It can be unloaded into the electrolyte storage tank 310.
  • the first tank lorry 330 is connected to the pressurized gas supply unit 320 through the second pipe P2 and the twelfth pipe P12, and through the fifth pipe P5 and the nineteenth pipe P19. It may be connected to the second electrolyte storage tank 315.
  • the first tank lorry 330 may receive inert gas from the pressurized gas supplier 320 through the second pipe P2 and the twelfth pipe P12.
  • the inert gas from the pressurized gas supplier 320 pressurizes the inside of the first tank lorry 330, and the electrolyte stored in the first tank lorry 330 passes through the fifth pipe P5 and the nineteenth pipe P19 to the second tank lorry 330. It can be unloaded into the electrolyte storage tank 315.
  • the second tank lorry 335 may unload the temporarily stored electrolyte into the plurality of electrolyte storage tanks 310 and 315 .
  • the second tank lorry 335 is connected to the pressurized gas supplier 320 through the second pipe P2 and the twenty-fourth pipe P24, and the twenty-third pipe P23 and the twenty-first pipe P21 It may be connected to the first electrolyte storage tank 310 through.
  • a 24th valve V24 for opening and closing the 24th pipe P24 is installed in the 24th pipe P24, and a 23rd valve V23 for opening and closing the 23rd pipe P23 in the 23rd pipe P23 is installed, and a 21st valve V21 for opening and closing the 21st pipe P21 may be installed among the 21st pipe P21.
  • the second tank lorry 335 may receive inert gas from the pressurized gas supplier 320 through the second pipe P2 and the twelfth pipe P12.
  • the inert gas from the pressurized gas supplier 320 pressurizes the inside of the second tank lorry 335, and the electrolyte stored in the second tank lorry 335 passes through the 23rd pipe P23 and the 21st pipe P21 to the first tank lorry 335. It can be unloaded into the electrolyte storage tank 310.
  • the second tank lorry 335 is connected to the pressurized gas supplier 320 through the second pipe P2 and the twenty-fourth pipe P24, and through the twenty-third pipe P23 and the twenty-second pipe P22. It may be connected to the second electrolyte storage tank 315.
  • a 22nd valve V22 for opening and closing the 22nd pipe P22 may be installed in the 22nd pipe P22.
  • the second tank lorry 335 may receive inert gas from the pressurized gas supplier 320 through the second pipe P2 and the twenty-fourth pipe P24.
  • the inert gas from the pressurized gas supply unit 320 pressurizes the inside of the second tank lorry 335, and the electrolyte stored in the second tank lorry 335 passes through the 23rd pipe P23 and the 22nd pipe P22 to the second tank lorry 335. It can be unloaded into the electrolyte storage tank 315.
  • FIG. 5 is a schematic conceptual diagram for explaining a safety system including an electrolyte supply device according to an embodiment of the present invention.
  • the safety system 4000 may include electrolyte supply devices 1000, 2000, and 3000, a sensing unit 410, an alarm unit 420, a monitoring unit 430, and a control unit 440. have.
  • the electrolyte supply devices 1000, 2000, and 3000 may be one of the electrolyte supply devices 1000, 2000, and 3000 illustrated in FIGS. 1, 3, or 4. Therefore, a detailed description thereof will be omitted.
  • the electrolyte supplying devices 1000, 2000, and 3000 may be referred to as electrolyte supplying, unloading and drain devices.
  • the sensing unit 410 may be connected to the electrolyte supply devices 1000, 2000, and 3000.
  • the sensing unit 410 may detect harmful gas generated from the electrolyte supply devices 1000 , 2000 , and 3000 or may detect heat and fire generated from the electrolyte supply devices 1000 , 2000 , and 3000 .
  • the alarm unit 420 may be connected to the electrolyte supply devices 1000, 2000, and 3000.
  • the alarm unit 420 may communicate with the sensing unit 410 visually and audibly about noxious gas, heat, and fire detected by the sensing unit 410 .
  • the monitoring unit 430 can be visually monitored in real time using a closed circuit camera, etc., and can be constantly monitored by a related organization such as a fire brigade.
  • control unit 440 activates a watering/fire extinguishing device or performs specific actions such as emergency stop and ventilation through detection from the sensing unit 410, the alarm unit 420, and the monitoring unit 430.
  • the controller 440 controls the first valve V1, the second valve V2, the third valve V3, and the fifth valve V1 according to the amount of electrolyte and the pressure in the electrolyte storage tank 110 shown in FIG.
  • valve V5 and the sixth valve V6, and the second valve V2, the third valve V3, and the fourth valve V4 according to the pressure and the amount of inert gas in the pressurized gas supply unit 120 and the twelfth valve V12, and controls the fifth valve V5 and the twelfth valve V12 according to the pressure and the amount of electrolyte in the tank lorry 130, and the pressure and amount of waste electrolyte in the separation tank 140.
  • the sixth valve V6, the seventh valve V7, the eighth valve V8, and the eleventh valve V11 are controlled according to the pressure and the waste electrolyte amount in the drain buffer tank 160, and the seventh valve (V7), the ninth valve (V9), the eleventh valve (V11) and the first air pump (AP1) are controlled, and the second valve (V2) according to the pressure and the amount of waste electrolyte in the drain storage tank 170,
  • the fourth valve V4, the tenth valve V10, the eleventh valve V11, the first air pump AP1, and the second air pump AP2 may be controlled.
  • a safety device including a sensing unit 410, an alarm unit 420, a monitoring unit 430, and a control unit 440 connected to the electrolyte supply devices 1000, 2000, and 3000 and interlocking with each other.
  • a systemized safety system that is not a simple supply form can be built.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

본 발명의 실시 예에 따른 전해질 공급 장치는, 비활성 가스의 가압을 통해 전해질을 공급하는 장치로서, 기존의 펌프를 이용하여 전해질을 공급하는 장치에 비하여 비용적으로 절감될 수 있다. 전해질 공급 장치는 비활성 가스의 가압으로 용이하게 전해질을 공급시켜, 사용자의 편의가 제공될 수 있다. 전해질 공급뿐만 아니라 전해질 공급 과정에서 발생된 가스 성분, 예를 들면, 사용된 비활성 가스 또는 배기 가스, 및 폐전해액을 분리하여 회수하고, 가스 성분을 정화 후 배출하여, 환경오염을 방지할 수 있다. 전해질 공급 장치와 연결되고, 서로 연동되는 센싱부, 알람부, 모니터링부, 및 제어부를 포함하는 안전 시스템을 통해, 단순한 공급 형태가 아닌 시스템화된 안전 시스템이 구축될 수 있다.

Description

전해질 공급 장치 및 이를 포함하는 안전 시스템
본 발명은 전해질 공급 장치 및 이를 포함하는 안전 시스템에 관한 것으로, 좀 더 상세하게는 이차전지에 사용되는 전해질을 공급하는 장치 및 이를 포함하는 안전 시스템에 관한 것이다.
스마트폰, MP3 플레이어, 태블릿 PC와 같은 휴대용 모바일 전자 기기와 전기 자동차 등의 발전으로, 전기 에너지를 저장할 수 있는 리튬 이차전지에 대한 수요가 폭발적으로 증가하고 있다.
하지만, 리튬 이차전지에 사용되는 전해질은 폭발성 물질로 분류되어 폭발 및 발화의 위험이 있다. 이에 따라, 전해질을 공급 및 보관하는데 특별한 관리가 필요하여, 사용자가 불편한 문제점이 있다.
본 발명은 상술한 과제를 해결하기 위한 것으로서, 본 발명의 목적은 안전하고 사용자 용이하게 전해질을 공급하고 공급 과정의 환경오염을 방지하기 위한 장치 및 이를 포함하는 안전 시스템을 제공하는 데 있다.
본 발명의 실시 예에 따른 전해질 공급 장치는, 전해질을 보관하는 전해질 보관 탱크; 상기 전해질 보관 탱크와 탱크로리 사이에 연결되는 제1 배관; 상기 전해질 보관 탱크와 제2 배관을 통해 연결되고, 상기 전해질이 상기 탱크로리로 이송되도록 상기 전해질 보관 탱크로 비활성 가스를 제공하여 상기 전해질 보관 탱크 내부를 가압하는 가압가스 제공부; 상기 전해질 보관 탱크와 제3 배관을 통해 연결되고, 상기 제3 배관을 통해 상기 전해질의 이송에 사용된 비활성 가스 또는 상기 전해질 보관 탱크에 존재하는 배기 가스를 전달받고, 가스 성분 및 폐전해액으로 분리하는 분리 탱크; 상기 분리 탱크와 제4 배관을 통해 연결되고, 상기 가스 성분을 정화하여 공기 중으로 배출하는 공기 정화 장치; 상기 분리 탱크와 제5 배관을 통해 연결되고, 상기 분리 탱크(140)로부터 상기 폐전해액이 전달되는 드레인 버퍼 탱크; 상기 드레인 버퍼 탱크와 제6 배관을 통해 연결되는 드레인 저장 탱크; 상기 제6 배관 중에 설치되어, 상기 드레인 버퍼 탱크에 모인 상기 폐전해액을 위치에너지에 반하여 상기 드레인 저장 탱크로 이동시키는 제1 에어펌프; 상기 제1 배관 중에 설치되어 상기 제1 배관의 개폐를 조절하는 제1 밸브; 상기 제2 배관 중에 설치되어 상기 제2 배관의 개폐를 조절하는 제2 밸브; 상기 제3 배관 중에 설치되어 상기 제3 배관의 개폐를 조절하는 제3 밸브; 상기 제4 배관 중에 설치되어 상기 제4 배관의 개폐를 조절하는 적어도 하나의 제4 밸브; 상기 제5 배관 중에 설치되어 상기 제5 배관의 개폐를 조절하는 제5 밸브; 및 상기 전해질 보관 탱크에 보관된 상기 전해질을 상기 탱크로리로 전달하기 위해 상기 제1 밸브 및 상기 제2 밸브를 조절하고, 상기 전해질 보관 탱크 내에 포함된 상기 사용된 비활성 가스 또는 배기 가스를 상기 분리 탱크로 전달하기 위해 상기 제2 밸브 및 상기 제3 밸브를 조절하고, 상기 분리 탱크 내의 상기 가스 성분을 상기 공기 정화 장치로 전달하기 위해 상기 제4 밸브를 조절하고, 상기 분리 탱크 내의 상기 폐전해액을 상기 드레인 버퍼 탱크로 전달하기 위해 상기 제5 밸브를 조절하고, 상기 드레인 버퍼 탱크 내의 상기 폐전해액을 상기 드레인 저장 탱크로 이동시키기 위해 상기 제1 에어펌프를 조절하는 제어부를 포함할 수 있다.
또한, 상기 드레인 버퍼 탱크는 지하에 매설되고, 상기 드레인 저장 탱크는 지상에 설치되고, 상기 폐전해액은 상기 분리 탱크로부터 상기 제5 배관을 통해 자연적인 유속에 의해 상기 드레인 버퍼 탱크로 이동될 수 있다. 상기 제1 에어펌프는 지하에 매설된 상기 드레인 버퍼 탱크 내의 상기 폐전해액을 상기 드레인 저장 탱크로 끌어올릴 수 있다.
본 발명의 실시 예에 따른 전해질 공급 장치는, 상기 드레인 저장 탱크와 제7 배관을 통해 연결되는 폐전해질 수거부; 및 상기 제7 배관 중에 설치되어, 상기 드레인 저장 탱크에 모인 상기 폐전해액을 상기 폐전해질 수거부로 이동시키는 제2 에어펌프를 더 포함하고, 상기 드레인 저장 탱크는 제6 밸브가 설치된 제8 배관을 통해 상기 가압가스 제공부와 연결될 수 있다. 상기 제어부는, 상기 가압가스 제공부로부터 상기 비활성 가스가 상기 드레인 저장 탱크 내부를 가압하도록 상기 제6 밸브를 온(on)하고, 압력을 가하여 상기 드레인 저장 탱크 내의 상기 폐전해액을 이동시키도록 상기 제2 에어펌프를 제어하여, 상기 드레인 저장 탱크 내의 상기 폐전해액을 상기 폐전해질 수거부에 압축하여 저장하도록 설정될 수 있다.
본 발명의 실시 예에 따르면, 비활성 가스의 가압을 통해 전해질을 공급하는 장치에 있어서, 기존의 펌프를 이용하여 전해질을 공급하는 장치에 비하여 비용적으로 절감될 수 있다. 한편, 전해질은 폭발성 물질로 분류되는 전해질을 공급시키는 전해질 공급 장치가 폭발하는 경우, 비활성 가스로 질소를 사용할 때 질소가 소화 기능을 할 수 있다. 또한, 전해질 공급 장치는 비활성 가스의 가압으로 용이하게 전해질을 공급시켜, 사용자의 편의가 제공될 수 있다. 또한, 전해질 공급뿐만 아니라 전해질 공급 과정에서 발생된 가스 성분(예: 사용된 비활성 가스 또는 배기 가스) 및 폐전해액을 분리하여 회수하고, 가스 성분을 정화 후 배출하여, 환경오염을 방지할 수 있다. 한편, 전해질 공급 장치와 연결되고, 서로 연동되는 센싱부, 알람부, 모니터링부, 및 제어부를 포함하는 안전 시스템을 통해, 단순한 공급 형태가 아닌 시스템화된 안전 시스템이 구축될 수 있다.
도 1은 본 발명의 일 실시 예에 따른 전해질 공급 장치를 설명하기 위한 개략도이다.
도 2는 도 1의 전해질 공급 장치의 전해질 보관 탱크를 설명하기 위한 단면도이다.
도 3은 본 발명의 다른 실시 예에 따른 전해질 공급 장치를 설명하기 위한 개략도이다.
도 4는, 도 3에 도시된 전해질 공급 장치에서 전해질 보관 탱크로 공급된 전해질을 회수하는 방법을 설명하기 위한 개략도이다.
도 5는 본 발명의 일 실시 예에 따른 전해질 공급 장치를 포함하는 안전 시스템을 설명하기 위한 개략적인 개념도이다.
본 발명의 실시를 위한 최선의 형태를 보여주는 도면은 도 1이다.
이하에서, 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로, 본 발명의 실시 예들이 명확하고 상세하게 기재될 것이다.
도 1은 본 발명의 일 실시 예에 따른 전해질 공급 장치를 설명하기 위한 개략도이다. 도 2는 도 1의 전해질 공급 장치의 전해질 보관 탱크를 설명하기 위한 단면도이다.
도 1을 참조하면, 전해질 공급 장치(1000)는 전해질 생산 장치(100), 전해질 보관 탱크(110), 가압가스 제공부(120), 분리 탱크(140), 공기 정화 장치(150), 드레인 버퍼 탱크(160), 드레인 저장 탱크(170), 폐전해질 수거부(180), 복수의 배관들(P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14), 복수의 밸브들(V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12) 및 복수의 에어펌프들(AP1, AP2)을 포함할 수 있다. 추가적으로, 전해질 공급 장치(1000)는 전해질 공급 업체로 전해질을 전달하는 탱크로리(tank lorry, 130)를 더 포함할 수 있다.
전해질 공급 장치(1000)에 의해 공급되고 임시적으로 저장되는 전해질은 이차전지에 사용될 수 있다. 전해질은 유기 전해질 및 고분자 전해질로 나눠질 수 있다. 예컨대, 유기 전해질은 리튬염(LiAsF6, LiPF6, LiClO4)과 PC(polycarbonate), EC(ethylene carbonate), DME(dimethyl ether), DEC(diethyl carbonate), DMC(dimethyl carbonate)와 같은 유기 용매를 포함할 수 있다.
예컨대, 유기 전해질은 유기 용매를 한 가지만 사용하기보다는 좋은 유전 상수를 갖는 용매(예컨대, PC, EC)와 낮은 점도를 갖는 용매(예컨대, DME, DEC, DMC)를 혼합하여 사용할 수 있다. 고분자 전해질은 PEO(poly ethylene oxide) 또는 PMMA(poly methyl methacrylate)와 같은 고분자 매트릭스에 유기 용매와 리튬염을 첨가하여 사용하며, 선택적으로 가소제를 넣기도 한다.
한편, 전해질은 폭발위험성이 있는 물질로서, 0℃ 정도의 저온에서 공급 및 보관되어야 한다. 따라서, 전해질이 공급되거나 보관되는 곳은 온도 조절부(CL)를 설치하여 전해질을 0℃으로 유지하여야 한다.
일 실시 예에 따르면, 전해질 생산 장치(100)는 전해질을 생산하여 전해질 보관 탱크(110)에 공급할 수 있다. 예를 들면, 전해질 생산 장치(100)는 제1 배관(P1)을 통해 전해질 보관 탱크(110)와 연결되어, 생산된 전해질을 전해질 보관 탱크(110)로 이송할 수 있다. 제1 배관(P1) 중에는 제1 배관(P1)의 개폐를 위해 제1 밸브(V1)가 설치되어 전해질의 이동을 조절할 수 있다.
전해질 보관 탱크(110)는 공급된 전해질을 보관(또는 임시 보관)할 수 있다. 전해질 보관 탱크(110)는 보관(또는 임시 보관)된 전해질을 탱크로리(130)로 전달할 수 있다. 전해질 보관 탱크(110)는 제2 배관(P2) 및 제3 배관(P3)을 통해 가압가스 제공부(120)와 연결되고, 제5 배관(P5)을 통해 탱크로리(130)와 연결될 수 있다. 전해질 보관 탱크(110)는 제2 배관(P2) 및 제3 배관(P3)을 통해 가압가스 제공부(120)로부터 비활성 가스를 제공받을 수 있다. 제2 배관(P2) 중에는 제2 배관(P2)의 개폐를 위해 제2 밸브(V2)가 설치되고, 제3 배관(P3) 중에는 제3 배관(P3)의 개폐를 위해 제3 밸브(V3)가 설치되어, 비활성 가스의 제공 및 차단을 조절할 수 있다. 제5 배관(P5) 중에는 제5 배관(P5)의 개폐를 위해 제5 밸브(V5)가 설치되어, 전해질의 이송 및 차단을 조절할 수 있다. 제5 배관(P5)은 탱크로리(130)와 분리 가능하도록 설치될 수 있다.
일 예로, 탱크로리(130)와 연결된 제5 밸브(V5)를 온(on)하여 제5 배관(P5)을 열어, 탱크로리(130)와 전해질 보관 탱크(110)를 연통시킬 수 있다. 전해질 보관 탱크(110)와 연결된 제2 밸브(V2) 및 제3 밸브(V3)를 온하여 제2 배관(P2) 및 제3 배관(P3)을 열어, 전해질 보관 탱크(110)와 가압가스 제공부(120)를 연통시킬 수 있다. 이때 나머지 밸브들은 오프로 설정될 수 있다. 가압가스 제공부(120)로부터 비활성 가스가 전해질 보관 탱크(110) 내부를 가압하여, 전해질 보관 탱크(110)에 보관된 전해질은 제5 배관(P5)을 통해 탱크로리(130)로 이송될 수 있다.
상술한 바와 같이, 본 발명의 실시 예들에 따르면, 전해질 보관 탱크(110)로부터 탱크로리(130)로 전해질을 공급시킬 때, 펌프 없이 비활성 가스의 압력만으로 공급시킬 수 있어 목적하는 정확한 양의 전해질을 안전하게 공급시킬 수 있다.
일 실시 예에 따르면, 전해질 보관 탱크(110) 내부의 압력을 측정하는 압력 센서(111)와, 압력 센서(111)와 연동되며 전해질 보관 탱크(110) 내 압력이 설정된 범위를 벗어나면 제2 밸브(V2) 및 제3 밸브(V3)를 강제로 오프(off)시키고 제6 밸브(V6), 제8 밸브(V8) 및 제10 밸브(V10)를 강제로 온(on)시키는 제어부(440, 도 5 참조)가 더 제공될 수 있다. 또는, 전해질 보관 탱크(110)에 저장된 전해질의 양을 측정하는 수위 센서(111)와, 수위 센서(111)와 연동되며 전해질 양이 설정된 범위(예: 도 2의 B 레벨)를 벗어나면 제1 밸브(V1) 또는 제5 밸브(V5)를 강제로 오프시키는 제어부(440, 도 5 참조)가 더 제공될 수 있다.
도 1 및 도 2를 참조하면, 전해질 보관 탱크(110)는 전해질을 저장(또는 임시 저장)하는데, 전해질이 0℃의 저온으로 유지되어야 하기 때문에, 전해질 보관 탱크(110)의 외측을 감싸는 온도 조절부(CL)가 제공될 수 있다. 또한, 제1 배관(P1) 및 제5 배관(P5)은 전해질이 이동되는 통로로서, 전해질을 0℃의 저온으로 유지하기 위해 온도 조절부(CL)가 제공될 수 있다. 일 예로, 전해질 보관 탱크(110) 내부에 전해질 보관 탱크(110)의 하단부에 배치되는 비활성 가스 농도 센서(112)가 더 제공될 수 있다. 전해질 수위가 설정된 레벨(예: A 레벨) 아래로 내려가면, 비활성 가스 농도 센서(112)가 노출되고 비활성 가스 농도 센서(112)에서는 비활성 가스 농도가 설정된 농도 범위를 벗어나는 경우, 전해질을 보충을 알려줄 수 있다.
일 실시 예에 따르면, 전해질 보관 탱크(110)는 일 방향으로 연장하는 몸체와, 몸체의 일 단부를 폐쇄하는 상단부, 및 몸체의 일 단부에 대향하는 타 단부를 폐쇄하는 하단부를 포함할 수 있다. 상단부 및 하단부 각각은 반구(hemisphere) 형상으로 몸체의 일 단부 및 타 단부 각각을 폐쇄할 수 있다. 일 예로, 전해질 보관 탱크(110)는 캡슐형상을 가지며, 일 방향으로 연장된 타원형의 단면을 가질 수 있다. 다른 예로, 전해질 보관 탱크(110)의 하단부가 둥근 표면을 가짐으로써, 전해질 보관 탱크(110)를 지지하기 위한 지지대가 더 제공될 수 있다. 한편, 전해질 보관 탱크(110) 내에 전해질은 전해질 보관 탱크(110)의 75% 내지 85%까지 채워질 수 있다. 전해질 보관 탱크(110)의 85% 이상(예: 도 2의 B 레벨) 채워질 경우, 안전상의 문제가 발생할 수 있다.
일 실시 예에 따르면, 전해질 보관 탱크(110)는 사용된 비활성 가스 또는 배기 가스를 분리 탱크(140)로 전달할 수 있다. 예를 들면, 전해질 보관 탱크(110)는 제6 배관(P6)을 통해 분리 탱크(140)와 연결될 수 있다. 제6 배관(P6) 중에는 제6 배관(P6)의 개폐를 위해 제6 밸브(V6)가 설치되어, 전해질 보관 탱크(110) 내의 사용된 비활성 가스 또는 배기 가스의 이동 및 차단을 조절할 수 있다. 일 예로, 제5 밸브(V5)를 오프시킨 상태에서, 분리 탱크(140)와 연결된 제6 밸브(V6)를 온하여 제6 배관(P6)을 열어, 전해질 보관 탱크(110)와 분리 탱크(140)를 연통시킬 수 있다. 전해질 보관 탱크(110)와 연결된 제2 밸브(V2) 및 제3 밸브(V3)를 온하여 제2 배관(P2) 및 제3 배관(P3)을 열어, 전해질 보관 탱크(110)와 가압가스 제공부(120)를 연통시킬 수 있다. 이에, 가압가스 제공부(120)로부터 비활성 가스가 전해질 보관 탱크(110) 내부를 가압하여, 전해질 보관 탱크(110) 내의 사용된 비활성 가스 또는 배기 가스는 분리 탱크(140)로 이동될 수 있다.
일 실시 예에 따르면, 가압가스 제공부(120)는 비활성 가스를 보관하며, 전해질 보관 탱크(110)로 비활성 가스를 제공하여, 전해질 보관 탱크(110)의 내부를 비활성 가스로 가압할 수 있다. 또는 가압가스 제공부(120)는 탱크로리(130)로 비활성 가스를 제공하여, 탱크로리(130)의 내부를 비활성 가스로 가압할 수 있다. 예를 들면, 비활성 가스는 질소(N2), 아르곤(Ar), 헬륨(He), 라돈(Rn), 네온(Ne), 제논(Xe) 중 하나를 포함할 수 있다. 일 예로, 폭발성 물질로 분류되는 전해질을 공급하는 전해질 공급 장치(1000)가 폭발하는 경우, 비활성 가스로 질소가 사용되면, 질소가 소화 기능을 할 수 있다.
일 실시 예에 따르면, 가압가스 제공부(120) 내부의 압력을 측정하는 압력 센서(121)와, 압력 센서(121)와 연동되며 가압가스 제공부(120) 내 압력이 설정된 범위를 벗어나면, 제2 밸브(V2)를 강제로 오프시키는 제어부(440, 도 5 참조)가 더 제공될 수 있다. 또는 가압가스 제공부(120)에 저장된 비활성 가스의 양을 측정하는 수위 센서(121)와, 수위 센서(121)와 연동되며 비활성 가스 양이 설정된 범위를 벗어나면 제2 밸브(V2)를 강제로 오프시키는 제어부(440, 도 5 참조)가 더 제공될 수 있다.
일 실시 예에 따르면, 탱크로리(130)는 전해질을 일시적으로 저장하며, 제5 배관(P5) 및 제5 밸브(V5)는 전해질이 공급되는 통로로 이용되는데, 전술한 바와 같이 전해질은 0℃ 정도의 저온을 유지해야 하기 때문에, 탱크로리(130), 제5 배관(P5) 및 제5 밸브(V5) 각각의 외측을 감싸는 온도 조절부(예: 도 2의 온도 조절부(CL))가 제공될 수 있다.
일 실시 예에 따르면, 탱크로리(130) 내부의 압력을 측정하는 압력 센서(131)와, 압력 센서(131)와 연동되며 탱크로리(130) 내 압력이 설정된 범위를 벗어나면 제5 밸브(V5)를 강제로 오프시키는 제어부(440, 도 5 참조)가 더 제공될 수 있다. 또는 탱크로리(130)에 저장된 전해질의 양을 측정하는 수위 센서(131)와, 수위 센서(131)와 연동되며 전해질 양이 설정된 범위를 벗어나면 제5 밸브(V5)를 강제로 오프시키는 제어부(440, 도 5 참조)가 더 제공될 수 있다.
일 실시 예에 따르면, 탱크로리(130)는 일시적으로 저장된 전해질을 전해질 보관 탱크(110)로 언로딩(unloading)할 수 있다. 예를 들면, 탱크로리(130)는 제2 배관(P2) 및 제12 배관(P12)을 통해 가압가스 제공부(120)와 연결되고, 제5 배관(P5)을 통해 전해질 보관 탱크(110)와 연결될 수 있다. 탱크로리(130)는 제2 배관(P2) 및 제12 배관(P12)을 통해 가압가스 제공부(120)로부터 비활성 가스를 제공받을 수 있다. 제12 배관(P12) 중에는 제12 배관(P12)의 개폐를 위해 제12 밸브(V12)가 설치되어, 비활성 가스의 제공 및 차단을 조절할 수 있다.
일 예로, 전해질 보관 탱크(110)와 연결된 제5 밸브(V5)를 온(on)하여 제5 배관(P5)을 열어, 탱크로리(130)와 전해질 보관 탱크(110)를 연통시킬 수 있다. 가압가스 제공부(120)와 연결된 제2 밸브(V2) 및 제12 밸브(V12)를 온하여 제2 배관(P2) 및 제12 배관(P12)을 열어, 탱크로리(130)와 가압가스 제공부(120)를 연통시킬 수 있다. 가압가스 제공부(120)로부터 비활성 가스가 탱크로리(130) 내부를 가압하여, 탱크로리(130)에 보관된 전해질은 제5 배관(P5)을 통해 전해질 보관 탱크(110)로 언로딩될 수 있다.
상술한 바와 같이, 본 발명의 실시 예들에 따르면, 탱크로리(130)로부터 전해질 보관 탱크(110)로 전해질을 언로딩할 때, 펌프 없이 비활성 가스의 압력만으로 언로딩할 수 있어 목적하는 정확한 양의 전해질을 안전하게 언로딩할 수 있다.
일 실시 예에 따르면, 분리 탱크(140)는 사용된 비활성 가스 또는 배기 가스로부터 폐전해액을 분리할 수 있다. 예를 들면, 사용된 비활성 가스 또는 배기 가스는 폐전해액(예: 기화된 패전해액)을 포함할 수 있다. 분리 탱크(140)는 중력에 기초하여 가벼운 가스 성분(예: 사용된 비활성 가스 또는 배기 가스)과 무거운 폐전해액을 분리할 수 있다.
분리 탱크(140)는 제8 배관(P8) 및 제11 배관(P11)을 통해 공기 정화 장치(150)와 연결될 수 있다. 제8 배관(P8) 중에는 제8 배관(P8)의 개폐를 위해 제8 밸브(V8)가 설치되고, 제11 배관(P11) 중에는 제11 배관(P11)의 개폐를 위해 제11 밸브(V11)가 설치되어, 분리 탱크(140) 내의 가스 성분(예: 사용된 비활성 가스 또는 배기 가스)의 이동 및 차단을 조절할 수 있다.
일 예로, 제6 밸브(V6)를 오프시킨 상태에서, 공기 정화 장치(150)와 연결된 제8 밸브(V8) 및 제11 밸브(V11)를 온하여 제8 배관(P8) 및 제11 배관(P11)을 열어, 분리 탱크(140)와 공기 정화 장치(150)를 연통시킬 수 있다. 분리 탱크(140) 내의 가스 성분(예: 사용된 비활성 가스 또는 배기 가스)은 제8 배관(P8) 및 제11 배관(P11)을 통해 공기 정화 장치(150)로 이동될 수 있다.
일 실시 예에 따르면, 분리 탱크(140)는 제7 배관(P7)을 통해 드레인 버퍼 탱크(160)에 연결될 수 있다. 예를 들면, 제7 배관(P7) 중에는 제7 배관(P7)의 개폐를 위해 제7 밸브(V7)가 설치되어, 폐전해액의 이동 및 차단을 조절할 수 있다. 일 예로, 드레인 버퍼 탱크(160)와 연결된 제7 밸브(V7)를 온하여 제7 배관(P7)을 열어, 분리 탱크(140)와 드레인 버퍼 탱크(160)를 연통시킬 수 있다. 드레인 버퍼 탱크(160)는 지하에 매설될 수 있다. 따라서, 자연적인 유속에 의해, 폐전해액은 분리 탱크(140)로부터 드레인 버퍼 탱크(160)로 이동될 수 있다.
일 실시 예에 따르면, 분리 탱크(140) 내부의 압력을 측정하는 압력 센서(141)와, 압력 센서(141)와 연동되며 분리 탱크(140) 내 압력이 설정된 범위를 벗어나면 제6 밸브(V6)를 강제로 오프시키고 제8 밸브(V8) 및 제11 밸브(V11)를 강제로 온시키는 제어부(440, 도 5 참조)가 더 제공될 수 있다. 또한, 분리 탱크(140)에 저장된 폐전해질의 양을 측정하는 수위 센서(141)와, 수위 센서(141)와 연동되며 폐전해질 양이 설정된 범위를 벗어나면 제6 밸브(V6)를 강제로 오프시키고 제7 밸브(V7) 및 제11 밸브(V11)를 강제로 온시키는 제어부(440, 도 5 참조)가 더 제공될 수 있다.
일 실시 예에 따르면, 드레인 버퍼 탱크(160)는 폐전해액을 보관하고, 폐전해액에 포함된 가스 성분을 분리할 수 있다. 예를 들면, 드레인 버퍼 탱크(160)에 전달된 폐전해액에도 사용된 비활성 가스 또는 배기 가스의 일부가 포함될 수 있고, 드레인 버퍼 탱크(160)는 폐전해액에 포함된 가스 성분(예: 사용된 비활성 가스 또는 배기 가스)을 공기 정화 장치(150)로 전달할 수 있다.
드레인 버퍼 탱크(160)는 제9 배관(P9) 및 제11 배관(P11)을 통해 공기 정화 장치(150)와 연결될 수 있다. 제9 배관(P9) 중에는 제9 배관(P9)의 개폐를 위해 제9 밸브(V9)가 설치되고, 제11 배관(P11) 중에는 제11 배관(P11)의 개폐를 위해 제11 밸브(V11)가 설치되어, 드레인 버퍼 탱크(160) 내의 폐전해액에 포함된 가스 성분의 이동 및 차단을 조절할 수 있다.
일 예로, 공기 정화 장치(150)와 연결된 제9 밸브(V9) 및 제11 밸브(V11)를 온하여 제9 배관(P9) 및 제11 배관(P11)을 열어, 드레인 버퍼 탱크(160)와 공기 정화 장치(150)를 연통시킬 수 있다. 드레인 버퍼 탱크(160) 내의 폐전해액에 포함된 가스 성분은 제9 배관(P9) 및 제11 배관(P11)을 통해 공기 정화 장치(150)로 전달될 수 있다.
일 실시 예에 따르면, 드레인 버퍼 탱크(160) 내부의 압력을 측정하는 압력 센서(161)와, 압력 센서(161)와 연동되며 드레인 버퍼 탱크(160) 내 압력이 설정된 범위를 벗어나면 제7 밸브(V7)를 강제로 오프시키고 제9 밸브(V9) 및 제11 밸브(V11)를 강제로 온시키는 제어부(440, 도 5 참조)가 더 제공될 수 있다. 또한, 드레인 버퍼 탱크(160)에 저장된 폐전해질의 양을 측정하는 수위 센서(161)와, 수위 센서(161)와 연동되며 폐전해질 양이 설정된 범위를 벗어나면 제7 밸브(V7)를 강제로 오프시키는 제어부(440, 도 5 참조)가 더 제공될 수 있다.
일 실시 예에 따르면, 드레인 저장 탱크(170)는 제13 배관(P13)을 통해 드레인 버퍼 탱크(160)와 연결될 수 있다. 예를 들면, 드레인 버퍼 탱크(160)는 지하에 매설되고, 드레인 저장 탱크(170)는 지상에 설치될 수 있다. 제13 배관(P13) 중에는 제1 에어펌프(AP1)가 설치되고, 제1 에어펌프(AP1)는 드레인 버퍼 탱크(160)에 보관된 폐전해액을 지상에 설치된 드레인 저장 탱크(170)로 이동시킬 수 있다.
일 실시 예에 따르면, 드레인 저장 탱크(170)는 제10 배관(P10) 및 제11 배관(P11)을 통해 공기 정화 장치(150)와 연결될 수 있다. 제10 배관(P10) 중에는 제10 배관(P10)의 개폐를 위해 제10 밸브(V10)가 설치되고, 제11 배관(P11) 중에는 제11 배관(P11)의 개폐를 위해 제11 밸브(V11)가 설치되어, 드레인 저장 탱크(170) 내의 폐전해액에 포함된 가스 성분의 이동 및 차단을 조절할 수 있다.
일 예로, 공기 정화 장치(150)와 연결된 제10 밸브(V10) 및 제11 밸브(V11)를 온하여 제10 배관(P10) 및 제11 배관(P11)을 열어, 공기 정화 장치(150)와 드레인 저장 탱크(170)를 연통시킬 수 있다. 이에, 드레인 저장 탱크(170) 내의 폐전해액에 포함된 가스 성분은 제10 배관(P10) 및 제11 배관(P11)을 통해 공기 정화 장치(150)로 전달될 수 있다.
일 실시 예에 따르면, 드레인 저장 탱크(170) 내부의 압력을 측정하는 압력 센서(171)와, 압력 센서(171)와 연동되며 드레인 저장 탱크(170) 내 압력이 설정된 범위를 벗어나면 제1 에어펌프(AP1)를 강제로 오프시키고 제10 밸브(V10) 및 제11 밸브(V11)를 강제로 온시키는 제어부(440, 도 5 참조)가 더 제공될 수 있다. 또한, 드레인 저장 탱크(170)에 저장된 폐전해질의 양을 측정하는 수위 센서(171)와, 수위 센서(171)와 연동되며 폐전해질 양이 설정된 범위를 벗어나면 제1 에어펌프(AP1)를 강제로 오프시키는 제어부(440, 도 5 참조)가 더 제공될 수 있다.
일 실시 예에 따르면, 폐전해질 수거부(180)는 드레인 저장 탱크(170)로부터 폐전해액을 전달받아 압축 저장할 수 있다. 예를 들면, 폐전해질 수거부(180)는 제14 배관(P14)을 통해 드레인 저장 탱크(170)와 연결될 수 있다. 제14 배관(P14) 중에는 제2 에어펌프(AP2)가 설치될 수 있다.
일 예로, 드레인 저장 탱크(170)와 연결된 제2 밸브(V2) 및 제4 밸브(V4)를 온하여 제2 배관(P2) 및 제4 배관(P4)을 열어, 드레인 저장 탱크(170)와 가압가스 제공부(120)를 연통시킬 수 있다. 가압가스 제공부(120)로부터 비활성 가스가 드레인 저장 탱크(170) 내부를 가압하고 제2 에어펌프(AP2)는 드레인 저장 탱크(170) 내의 폐전해액을 폐전해질 수거부(180)로 이동시킬 수 있다. 이때, 가압가스 제공부(120)로부터 비활성 가스의 압력과 제2 에어펌프(AP2)에 의한 압력을 통해 폐전해액은 압축되어 폐전해질 수거부(180)에 저장될 수 있다. 이때 나머지 밸브들은 오프로 설정될 수 있다.
일 실시 예에 따르면, 공기 정화 장치(150)는 사용된 비활성 가스 또는 배기 가스를 정화하여 배출할 수 있다. 예를 들면, 공기 정화 장치(150)와 연결된 제8 밸브(V8) 및 제11 밸브(V1)를 온하여 제8 배관(P8) 및 제11 배관(P11)을 열어, 분리 탱크(140)와 공기 정화 장치(150)를 연통시킬 수 있다. 분리 탱크(140) 내의 가스 성분(예: 사용된 비활성 가스 또는 배기 가스)은 제8 배관(P8) 및 제11 배관(P11)을 통해 공기 정화 장치(150)로 이동될 수 있다. 공기 정화 장치(150)와 연결된 제9 밸브(V9) 및 제11 밸브(V11)를 온하여 제9 배관(P9) 및 제11 배관(P11)을 열어, 드레인 버퍼 탱크(160)와 공기 정화 장치(150)를 연통시킬 수 있다. 드레인 버퍼 탱크(160) 내의 가스 성분(예: 폐전해액에 포함된 비활성 가스 또는 배기 가스)은 제9 배관(P9) 및 제11 배관(P11)을 통해 공기 정화 장치(150)로 이동될 수 있다. 공기 정화 장치(150)와 연결된 제10 밸브(V10) 및 제11 밸브(V11)를 온하여 제10 배관(P10) 및 제11 배관(P11)을 열어, 드레인 저장 탱크(170)와 공기 정화 장치(150)를 연통시킬 수 있다. 드레인 저장 탱크(170) 내의 가스 성분(예: 폐전해액에 포함된 비활성 가스 또는 배기 가스)은 제10 배관(P10) 및 제11 배관(P11)을 통해 공기 정화 장치(150)로 이동될 수 있다.
공기 정화 장치(150)로 이동된 가스 성분은 다양한 정화 과정을 거쳐 환경오염 물질을 제거한 후 공기 중으로 배출될 수 있다. 따라서, 전해질 공급 장치(1000)는 전해질 공급 과정에서 발생하는 공기의 오염을 방지할 수 있다.
일 실시 예에 따르면, 전해질 보관 탱크(110)의 압력 센서(111) 또는 수위 센서(111), 가압가스 제공부(120)의 압력 센서(121) 또는 수위 센서(121), 탱크로리(130)의 압력 센서(131) 또는 수위 센서(131), 분리 탱크(140)의 압력 센서(141) 또는 수위 센서(141), 드레인 버퍼 탱크(160)의 압력 센서(161) 또는 수위 센서(161), 드레인 저장 탱크(170)의 압력 센서(171) 또는 수위 센서(171), 제1 내지 제12 밸브들(V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12) 각각, 제1 및 제2 에어펌프(AP1, AP2) 각각은 제어부(440, 도 5 참조)와 연결될 수 있다. 제어부(440, 도 5 참조)는 각 압력 센서(111, 121, 131, 141, 161, 171) 또는 수위 센서(111, 121, 131, 141, 161, 171)로부터 지속적으로 탱크 내부 압력 또는 수위를 입력 받아, 제1 내지 제12 밸브들(V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12) 각각, 제1 및 제2 에어펌프(AP1, AP2) 각각을 제어할 수 있다.
또한, 제어부(440, 도 5 참조)는 가압가스 제공부(120)와 연결된 제2 밸브(V2) 또는 제3 밸브(V3)에 설치된 유량 전송기(flow transmitter)를 제어하여, 전해질 보관 탱크(110)로 정확한 양의 비활성 가스를 제공할 수 있다. 제공되는 비활성 가스의 양이 정확해야 탱크로리(131)로 공급되는 전해질의 양이 정확할 수 있다.
또한, 제어부(440, 도 5 참조)는 가압가스 제공부(120)와 연결된 제2 밸브(V2) 또는 제12 밸브(V12)에 설치된 유량 전송기(flow transmitter)를 제어하여, 탱크로리(130)로 정확한 양의 비활성 가스를 제공할 수 있다. 제공되는 비활성 가스의 양이 정확해야 전해질 보관 탱크(110)로 언로딩되는 전해질의 양이 정확할 수 있다.
또한, 제어부(440, 도 5 참조)는 가압가스 제공부(120)와 연결된 제2 밸브(V2) 또는 제4 밸브(V4)에 설치된 유량 전송기(flow transmitter)를 제어하여, 드레인 저장 탱크(170)로 정확한 양의 비활성 가스를 제공할 수 있다. 제공되는 비활성 가스의 양이 정확해야 폐전해질 수거부(180)에서 폐전해질을 일정하게 압축할 수 있다.
이와 같이 비활성 가스의 가압을 통해 전해질을 공급하는 장치에 있어서, 기존의 펌프를 이용하여 전해질을 공급하는 장치에 비하여 비용적으로 절감될 수 있다. 한편, 폭발성 물질로 분류되는 전해질을 공급하는 전해질 공급 장치(1000)가 폭발하는 경우, 비활성 가스로 질소를 사용하면, 질소가 소화 기능을 할 수 있다. 또한, 분리 탱크(140), 드레인 버퍼 탱크(160), 드레인 저장 탱크(170) 및 폐전해질 수거부(180)를 통해 전해질 공급 과정에서 발생된 가스 성분(예: 사용된 비활성 가스 또는 배기 가스) 및 폐전해액을 분리하여 회수하고, 공기 정화 장치(150)를 통해 가스 성분을 정화 후 배출하여, 환경오염을 방지할 수 있다.
도 3은 본 발명의 다른 실시 예에 따른 전해질 공급 장치를 설명하기 위한 개략도이다.
도 3을 참조하면, 전해질 공급 장치(2000)는 전해질 생산 장치(200), 복수의 전해질 보관 탱크들(210, 215), 가압가스 제공부(220), 분리 탱크(240), 공기 정화 장치(250), 드레인 버퍼 탱크(260), 드레인 저장 탱크(270), 폐전해질 수거부(280), 복수의 배관들(P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20), 복수의 밸브들(V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V15, V16, V17, V18, V19, V20) 및 복수의 에어펌프들(AP1, AP2)을 포함할 수 있다. 도 3에서는 2개의 전해질 보관 탱크들(210, 215), 하나의 가압가스 제공부(220)와 하나의 분리 탱크(240)를 예시적으로 설명하되, 본 발명은 전해질 보관 탱크, 가압가스 제공부, 및 버퍼 탱크의 수량을 이로 한정하지 않는다. 설명의 용이함을 위하여, 2개의 전해질 보관 탱크들(210, 215) 각각을 제1 전해질 보관 탱크(210) 및 제2 전해질 보관 탱크(215)라 지칭한다.
일 실시 예에 따르면, 전해질 생산 장치(200)는 제1 배관(P1)을 통해 제1 전해질 보관 탱크(210) 및 제2 전해질 보관 탱크(215)와 연결될 수 있다. 예를 들면, 제1 배관(P1)은 제1 전해질 보관 탱크(210)에 연결된 제15 배관(P15)과 제2 전해질 보관 탱크(215)에 연결된 제16 배관(P16)과 연통될 수 있다. 제15 배관(P15) 및 제16 배관(P16)은 제1 배관(V1)에 병렬 연결될 수 있다. 제1 배관(P1) 중에, 제1 배관(P1)을 개폐하기 위한 제1 밸브(V1)가 설치될 수 있다. 제15 배관(P15) 중에 제15 배관(P15)을 개폐하기 위한 제15 밸브(V15)가 설치되고, 제16 배관(P16) 중에 제16 배관(P16)을 개폐하기 위한 제16 밸브(V16)가 설치될 수 있다.
일 실시 예에 따르면, 가압가스 제공부(220)는 제2 배관(P2)을 통해 제1 전해질 보관 탱크(210), 제2 전해질 보관 탱크(215) 및 드레인 저장 탱크(270)와 연결될 수 있다. 예를 들면, 제2 배관(P2)은 제1 전해질 보관 탱크(210)에 연결된 제3 배관(P3), 제2 전해질 보관 탱크(215)에 연결된 제17 배관(P17) 및 드레인 저장 탱크(270)에 연결된 제4 배관(P4)과 연통될 수 있다. 제3 배관(P3), 제4 배관(P4) 및 제17 배관(P17)은 제2 배관(V2)에 병렬 연결될 수 있다. 제2 배관(P2) 중에 제2 배관(P2)을 개폐하기 위한 제2 밸브(V2)가 설치될 수 있다. 제3 배관(P3) 중에 제3 배관(P3)을 개폐하기 위한 제3 밸브(V3)가 설치되고, 제4 배관(P4) 중에 제4 배관(P4)을 개폐하기 위한 제4 밸브(V4)가 설치되고, 제17 배관(P17) 중에 제17 배관(P17)을 개폐하기 위한 제17 밸브(V17)가 설치될 수 있다.
일 실시 예에 따르면, 탱크로리(230)는 제5 배관(P5)을 통해 제1 전해질 보관 탱크(210) 및 제2 전해질 보관 탱크(215)와 연결될 수 있다. 예를 들면, 제5 배관(P5)은 제1 전해질 보관 탱크(210)에 연결된 제18 배관(P18)과 제2 전해질 보관 탱크(215)에 연결된 제19 배관(P19)과 연통될 수 있다. 제18 배관(P18) 및 제19 배관(P19)은 제3 배관(V3)에 병렬 연결될 수 있다. 제5 배관(P5) 중에, 제5 배관(P5)을 개폐하기 위한 제5 밸브(V5)가 설치될 수 있다. 제18 배관(P18) 중에 제18 배관(P18)을 개폐하기 위한 제18 밸브(V18)가 설치되고, 제19 배관(P19) 중에 제19 배관(P19)을 개폐하기 위한 제19 밸브(V19)가 설치될 수 있다.
일 실시 예에 따르면, 분리 탱크(240)는 제6 배관(P6)을 통해 제1 전해질 보관 탱크(210)와 연결될 수 있다. 분리 탱크(240)는 제20 배관(P20)을 통해 제2 전해질 보관 탱크(215)와 연결될 수 있다. 예를 들면, 제6 배관(P6) 중에 제6 배관(P6)을 개폐하기 위한 제6 밸브(V6)가 설치될 수 있다. 제20 배관(P20) 중에 제20 배관(P20)을 개폐하기 위한 제20 밸브(V20)가 설치될 수 있다.
일 실시 예에 따르면, 분리 탱크(240)는 제7 배관(P7)을 통해 드레인 버퍼 탱크(260)와 연결될 수 있다. 예를 들면, 제7 배관(P7) 중에 제7 배관(P7)을 개폐하기 위한 제7 밸브(V7)가 설치될 수 있다.
일 실시 예에 따르면, 공기 정화 장치(250)는 제11 배관(P11)을 통해 분리 탱크(240), 드레인 버퍼 탱크(260) 및 드레인 저장 탱크(270)와 연결될 수 있다. 예를 들면, 제11 배관(P11)은 분리 탱크(240)에 연결된 제8 배관(P8), 드레인 버퍼 탱크(260)에 연결된 제9 배관(P9) 및 드레인 저장 탱크(270)에 연결된 제10 배관(P10)과 연통될 수 있다. 제8 배관(P8), 제9 배관(P9) 및 제10 배관(P10)은 제11 배관(V11)에 병렬 연결될 수 있다. 제11 배관(P11) 중에 제11 배관(P11)을 개폐하기 위한 제11 밸브(V11)가 설치될 수 있다. 제8 배관(P8) 중에 제8 배관(P8)을 개폐하기 위한 제8 밸브(V8)가 설치되고, 제9 배관(P9) 중에 제9 배관(P9)을 개폐하기 위한 제9 밸브(V9)가 설치되고, 제10 배관(P10) 중에 제10 배관(P10)을 개폐하기 위한 제10 밸브(V10)가 설치될 수 있다.
일 실시 예에 따르면, 전해질 생산 장치(200)는 복수의 전해질 보관 탱크들(예: 제1 전해질 보관 탱크(210) 및 제2 전해질 보관 탱크(215))에 전해질을 공급할 수 있다. 예를 들면, 제1 전해질 보관 탱크(210)는 제1 배관(P1) 및 제15 배관(P15)을 통해 전해질을 공급받아 보관(또느 임시 보관)할 수 있다. 제2 전해질 보관 탱크(215)는 제1 배관(P1) 및 제16 배관(P16)을 통해 전해질을 공급받아 보관(또는 임시 보관)할 수 있다.
일 실시 예에 따르면, 탱크로리(230)는 복수의 전해질 보관 탱크들(예: 제1 전해질 보관 탱크(210) 및 제2 전해질 보관 탱크(215))로부터 전해질을 공급받을 수 있다. 예를 들면, 제1 전해질 보관 탱크(210)는 제18 배관(P18) 및 제5 배관(P5)을 통해 탱크로리(230)로 전해질을 공급할 수 있다. 제2 전해질 보관 탱크(215)는 제19 배관(P19) 및 제5 배관(P5)을 통해 탱크로리(230)로 전해질을 공급할 수 있다. 일 예로, 탱크로리(230)는 제1 전해질 보관 탱크(210) 및 제2 전해질 보관 탱크(215)로부터 동시에 전해질을 공급받아, 하나의 전해질 보관 탱크로부터 전해질을 공급받는 경우보다 전해질 공급 시간은 단축될 수 있다.
일 실시 예에 따르면, 복수의 전해질 보관 탱크들(예: 제1 전해질 보관 탱크(210) 및 제2 전해질 보관 탱크(215)) 내의 사용된 비활성 가스 또는 배기 가스는 하나의 분리 탱크(240)로 이동될 수 있다. 예를 들면, 제1 전해질 보관 탱크(210) 및 제2 전해질 보관 탱크(215) 내의 사용된 비활성 가스 또는 배기 가스는 동시에 분리 탱크(240)로 이동될 수 있다. 일 예로, 제17 밸브(V17) 및 제18 밸브(V18)를 오프시킨 상태에서, 분리 탱크(140)와 연결된 제6 밸브(V6) 및 제19 밸브(V19)를 온하여 제6 배관(P6) 및 제20 배관(P20)을 열어, 전해질 보관 탱크들(210, 215) 각각과 분리 탱크(140)를 동시에 연통시킬 수 있다. 전해질 보관 탱크들(210, 215)과 연결된 제2 밸브(V2), 제3 밸브(V3) 및 제16 밸브(V16)를 온하여 제2 배관(P2), 제3 배관(P3) 및 제17 배관(P17)을 열어, 전해질 보관 탱크들(210, 215) 각각과 가압가스 제공부(220)를 연통시킬 수 있다. 이에, 가압가스 제공부(220)로부터 비활성 가스가 전해질 보관 탱크들(210, 215) 각각의 내부를 가압하여, 전해질 보관 탱크들(210, 215)의 사용된 비활성 가스 또는 배기 가스는 분리 탱크(240)로 이동될 수 있다. 이에, 전해질 보관 탱크들(210, 215)의 사용된 비활성 가스 또는 배기 가스가 효율적으로 분리 탱크(240)로 이동될 수 있다.
도 3에 도시된 전해질 공급 장치에 대한 상세한 설명 및 전해질 공급 방법은 도 1에서 설명된 것과 유사하여 그 상세한 설명을 생략하기로 한다. 도 3에서는 하나의 가압가스 제공부(220)가 제공되나, 가압가스 제공부(220)는 제1 전해질 보관 탱크(210) 및 제2 전해질 보관 탱크(215) 각각과 분리되어 연결되도록 복수 개일 수도 있다.
도 4는, 도 3에 도시된 전해질 공급 장치에서 전해질 보관 탱크로 공급된 전해질을 회수하는 방법을 설명하기 위한 개략도이다. 다만, 도 4의 전해질 회수 방법은 도 1에도 적용될 수 있다.
도 4를 참조하면, 전해질 공급 장치(3000)는 전해질 생산 장치(300), 복수의 전해질 보관 탱크들(310, 315), 가압가스 제공부(320), 분리 탱크(340), 공기 정화 장치(350), 드레인 버퍼 탱크(360), 드레인 저장 탱크(370), 폐전해질 수거부(380), 복수의 배관들(P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22), 복수의 밸브들(V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V14, V15, V16, V17, V18, V19, V20, V21, V22) 및 복수의 에어펌프들(AP1, AP2)을 포함할 수 있다.
도 4에서는 2개의 전해질 보관 탱크들(310, 315), 하나의 가압가스 제공부(320)와 하나의 분리 탱크(340)를 예시적으로 설명하되, 본 발명은 전해질 보관 탱크, 가압가스 제공부, 및 버퍼 탱크의 수량을 이로 한정하지 않는다. 설명의 용이함을 위하여, 2개의 전해질 보관 탱크들(310, 315) 각각을 제1 전해질 보관 탱크(310) 및 제2 전해질 보관 탱크(315)라 지칭한다. 도 4에 도시된 전해질 공급 장치에 대한 상세한 설명은 도 1 또는 도 3에서 설명된 것과 유사하여 그 상세한 설명을 생략하기로 한다. 도 4에서는 하나의 가압가스 제공부(320)가 제공되나, 가압가스 제공부(320)는 제1 전해질 보관 탱크(310) 및 제2 전해질 보관 탱크(315) 각각과 분리되어 연결되도록 복수 개일 수도 있다.
일 실시 예에 따르면, 전해질 공급 장치(3000)는 전해질 공급 배관(P17, P17, P5) 및 별도의 전해질 회수 배관(P20, P21, P22)을 포함할 수 있다. 예를 들면, 제1 탱크로리(330)는 제5 배관(P5) 및 제18 배관(P18)을 통해 제1 전해질 보관 탱크(310)로부터 전해질을 공급받을 수 있다. 제1 탱크로리(330)는 제5 배관(P5) 및 제19 배관(P19)을 통해 제2 전해질 보관 탱크(315)로부터 전해질을 공급받을 수 있다.
한편, 제6 밸브(V6), 제15 밸브(V15) 및 제18 밸브(V18)를 오프하고, 제2 밸브(V2), 제3 밸브(V3), 제21밸브(V21) 및 제23 밸브(V23)를 온하여, 제2 배관(P2), 제3 배관(P3), 제21 배관(P21) 및 제23 배관(P23)을 제1 전해질 보관 탱크(310)와 연통시킬 수 있다. 제2 탱크로리(335)는 제21 배관(P21) 및 제23 배관(P23)을 통해 제1 전해질 보관 탱크(310)로부터 공급하고 남은 전해질(또는 잘못 투입된 전해질)을 회수할 수 있다.
또한, 제20 밸브(V20), 제16 밸브(V16) 및 제19 밸브(V19)를 오프하고, 제2 밸브(V2), 제17 밸브(V17), 제22 밸브(V22) 및 제23 밸브(V23)를 온하여, 제2 배관(P2), 제17 배관(P17), 제22 배관(P22) 및 제23 배관(P23)을 제2 전해질 보관 탱크(315)와 연통시킬 수 있다. 제2 탱크로리(335)는 제22 배관(P22) 및 제23 배관(P23)을 통해 제2 전해질 보관 탱크(315)로부터 공급하고 남은 전해질(또는 잘못 투입된 전해질)을 회수할 수 있다. 전해질 회수 시에도, 펌프 없이 회수가 가능하여 보다 간단하고 효율적으로 전해질이 회수될 수 있다.
일 실시 예에 따르면, 제1 탱크로리(330)는 일시적으로 저장된 전해질을 복수의 전해질 보관 탱크(310, 315)로 언로딩(unloading)할 수 있다. 예를 들면, 제1 탱크로리(330)는 제2 배관(P2) 및 제12 배관(P12)을 통해 가압가스 제공부(320)와 연결되고, 제5 배관(P5) 및 제18 배관(P18)을 통해 제1 전해질 보관 탱크(310)와 연결될 수 있다. 제1 탱크로리(330)는 제2 배관(P2) 및 제12 배관(P12)을 통해 가압가스 제공부(320)로부터 비활성 가스를 제공받을 수 있다. 가압가스 제공부(320)로부터 비활성 가스가 제1 탱크로리(330) 내부를 가압하여, 제1 탱크로리(330)에 보관된 전해질은 제5 배관(P5) 및 제18 배관(P18)을 통해 제1 전해질 보관 탱크(310)로 언로딩될 수 있다.
또한, 제1 탱크로리(330)는 제2 배관(P2) 및 제12 배관(P12)을 통해 가압가스 제공부(320)와 연결되고, 제5 배관(P5) 및 제19 배관(P19)을 통해 제2 전해질 보관 탱크(315)와 연결될 수 있다. 제1 탱크로리(330)는 제2 배관(P2) 및 제12 배관(P12)을 통해 가압가스 제공부(320)로부터 비활성 가스를 제공받을 수 있다. 가압가스 제공부(320)로부터 비활성 가스가 제1 탱크로리(330) 내부를 가압하여, 제1 탱크로리(330)에 보관된 전해질은 제5 배관(P5) 및 제19 배관(P19)을 통해 제2 전해질 보관 탱크(315)로 언로딩될 수 있다.
일 실시 예에 따르면, 제2 탱크로리(335)는 일시적으로 저장된 전해질을 복수의 전해질 보관 탱크(310, 315)로 언로딩(unloading)할 수 있다. 예를 들면, 제2 탱크로리(335)는 제2 배관(P2) 및 제24 배관(P24)을 통해 가압가스 제공부(320)와 연결되고, 제23 배관(P23) 및 제21 배관(P21)을 통해 제1 전해질 보관 탱크(310)와 연결될 수 있다. 제24 배관(P24) 중에 제24 배관(P24)을 개폐하기 위한 제24 밸브(V24)가 설치되고, 제23 배관(P23) 중에 제23 배관(P23)을 개폐하기 위한 제23 밸브(V23)가 설치되고, 제21 배관(P21) 중에 제21 배관(P21)을 개폐하기 위한 제21 밸브(V21)가 설치될 수 있다. 제2 탱크로리(335)는 제2 배관(P2) 및 제12 배관(P12)을 통해 가압가스 제공부(320)로부터 비활성 가스를 제공받을 수 있다. 가압가스 제공부(320)로부터 비활성 가스가 제2 탱크로리(335) 내부를 가압하여, 제2 탱크로리(335)에 보관된 전해질은 제23 배관(P23) 및 제21 배관(P21)을 통해 제1 전해질 보관 탱크(310)로 언로딩될 수 있다.
또한, 제2 탱크로리(335)는 제2 배관(P2) 및 제24 배관(P24)을 통해 가압가스 제공부(320)와 연결되고, 제23 배관(P23) 및 제22 배관(P22)을 통해 제2 전해질 보관 탱크(315)와 연결될 수 있다. 제22 배관(P22) 중에 제22 배관(P22)을 개폐하기 위한 제22 밸브(V22)가 설치될 수 있다. 제2 탱크로리(335)는 제2 배관(P2) 및 제24 배관(P24)을 통해 가압가스 제공부(320)로부터 비활성 가스를 제공받을 수 있다. 가압가스 제공부(320)로부터 비활성 가스가 제2 탱크로리(335) 내부를 가압하여, 제2 탱크로리(335)에 보관된 전해질은 제23 배관(P23) 및 제22 배관(P22)을 통해 제2 전해질 보관 탱크(315)로 언로딩될 수 있다.
도 5는 본 발명의 일 실시 예에 따른 전해질 공급 장치를 포함하는 안전 시스템을 설명하기 위한 개략적인 개념도이다.
도 5를 참조하면, 안전 시스템(4000)은 전해질 공급 장치(1000, 2000, 3000), 센싱부(410), 알람부(420), 모니터링부(430), 및 제어부(440)를 포함할 수 있다. 전해질 공급 장치(1000, 2000, 3000)는 도 1, 도 3 또는 도 4에 도시된 전해질 공급 장치(1000, 2000, 3000) 중 하나일 수 있다. 따라서, 이에 대한 상세한 설명은 생략하기로 한다. 또한, 전해질 공급 장치(1000, 2000, 3000)는 전해질 공급, 언로딩 및 드레인 장치(electrolyte supplying, unloading and drain device)로 지칭될 수도 있다.
일 실시 예에 따르면, 센싱부(410)는 전해질 공급 장치(1000, 2000, 3000)와 연결될 수 있다. 센싱부(410)에서는 전해질 공급 장치(1000, 2000, 3000)로부터 발생되는 유해가스를 감지하거나 전해질 공급 장치(1000, 2000, 3000)로부터 발생되는 열 및 화재를 감지할 수 있다.
일 실시 예에 따르면, 알람부(420)는 전해질 공급 장치(1000, 2000, 3000)와 연결될 수 있다. 알람부(420)는 센싱부(410)와 연동되어 센싱부(410)로부터 감지된 유해가스, 열, 및 화재를 시각 및 청각적으로 알려줄 수 있다.
일 실시 예에 따르면, 모니터링부(430)는 폐쇄회로카메라 등을 이용하여 실시간 시각적으로 모니터하고, 소방대 등 관련 기관이 상시적으로 모니터할 수 있다.
일 실시 예에 따르면, 제어부(440)는 센싱부(410), 알람부(420) 및 모니터링부(430)로부터 감지된 것을 통해 살수/소화 장치를 가동시키거나 비상 정지 및 환기 등의 구체적인 액션을 취할 수 있다. 예를 들면, 제어부(440)는 도 1에 도시된 전해질 보관 탱크(110) 내 압력 및 전해질 양에 따라 제1 밸브(V1), 제2 밸브(V2), 제3 밸브(V3), 제5 밸브(V5) 및 제6 밸브(V6)를 제어하고, 가압가스 제공부(120) 내 압력 및 비활성 가스 양에 따라 제2 밸브(V2), 제3 밸브(V3), 제4 밸브(V4) 및 제12 밸브(V12)를 제어하고, 탱크로리(130) 내 압력 및 전해질 양에 따라 제5 밸브(V5) 및 제12 밸브(V12)를 제어하고, 분리 탱크(140) 내 압력 및 폐전해질 양에 따라 제6 밸브(V6), 제7 밸브(V7), 제8 밸브(V8) 및 제11 밸브(V11)를 제어하고, 드레인 버퍼 탱크(160) 내 압력 및 폐전해질 양에 따라 제7 밸브(V7), 제9 밸브(V9), 제11 밸브(V11) 및 제1 에어펌프(AP1)를 제어하고, 드레인 저장 탱크(170) 내 압력 및 폐전해질 양에 따라 제2 밸브(V2), 제4 밸브(V4), 제10 밸브(V10), 제11 밸브(V11), 제1 에어펌프(AP1) 및 제2 에어펌프(AP2)를 제어할 수 있다.
일 실시 예에 따르면, 전해질 공급 장치(1000, 2000, 3000)와 연결되고, 서로 연동되는 센싱부(410), 알람부(420), 모니터링부(430), 및 제어부(440)를 포함하는 안전 시스템(4000)을 통해, 단순한 공급 형태가 아닌 시스템화된 안전 시스템이 구축될 수 있다.
상술한 내용은 본 발명을 실시하기 위한 구체적인 실시 예들이다. 본 발명은 상술한 실시 예들 이외에도, 단순하게 설계 변경되거나 용이하게 변경할 수 있는 실시 예들도 포함될 것이다. 또한, 본 발명은 실시 예들을 이용하여 용이하게 변형하여 실시할 수 있는 기술들도 포함될 것이다. 따라서, 본 발명의 범위는 상술한 실시 예들에 국한되어 정해져서는 안되며, 후술하는 특허청구범위뿐만 아니라 이 발명의 특허청구범위와 균등한 것들에 의해 정해져야 할 것이다.

Claims (8)

  1. 전해질 공급 장치에 있어서,
    전해질을 보관하는 전해질 보관 탱크(110);
    상기 전해질 보관 탱크(110)와 탱크로리(130) 사이에 연결되는 제1 배관(P5);
    상기 전해질 보관 탱크(110)와 제2 배관(P2, P3)을 통해 연결되고, 상기 전해질이 상기 탱크로리(130)로 이송되도록 상기 전해질 보관 탱크(110)로 비활성 가스를 제공하여 상기 전해질 보관 탱크(110) 내부를 가압하는 가압가스 제공부(120);
    상기 전해질 보관 탱크(110)와 제3 배관(P6)을 통해 연결되고, 상기 제3 배관(P6)을 통해 상기 전해질의 이송에 사용된 비활성 가스 또는 상기 전해질 보관 탱크(110)에 존재하는 배기 가스를 전달받고, 가스 성분 및 폐전해액으로 분리하는 분리 탱크(140);
    상기 분리 탱크(140)와 제4 배관(P8, P11)을 통해 연결되고, 상기 가스 성분을 정화하여 공기 중으로 배출하는 공기 정화 장치(150);
    상기 분리 탱크(140)와 제5 배관(P7)을 통해 연결되고, 상기 분리 탱크(140)로부터 상기 폐전해액이 전달되는 드레인 버퍼 탱크(160);
    상기 드레인 버퍼 탱크(160)와 제6 배관(P13)을 통해 연결되는 드레인 저장 탱크(170);
    상기 제6 배관(P13) 중에 설치되어, 상기 드레인 버퍼 탱크(160)에 모인 상기 폐전해액을 위치에너지에 반하여 상기 드레인 저장 탱크(170)로 이동시키는 제1 에어펌프(AP1);
    상기 제1 배관(P5) 중에 설치되어 상기 제1 배관(P5)의 개폐를 조절하는 제1 밸브(V5);
    상기 제2 배관(P2, P3) 중에 설치되어 상기 제2 배관(P2, P3)의 개폐를 조절하는 제2 밸브(V2, V3);
    상기 제3 배관(P6) 중에 설치되어 상기 제3 배관(P6)의 개폐를 조절하는 제3 밸브(V6);
    상기 제4 배관(P8, P11) 중에 설치되어 상기 제4 배관(P8, P11)의 개폐를 조절하는 적어도 하나의 제4 밸브(V8, V11);
    상기 제5 배관(P7) 중에 설치되어 상기 제5 배관(P7)의 개폐를 조절하는 제5 밸브(V7); 및
    상기 전해질 보관 탱크(110)에 보관된 상기 전해질을 상기 탱크로리(130)로 전달하기 위해 상기 제1 밸브(V5) 및 상기 제2 밸브(V2, V3)를 조절하고, 상기 전해질 보관 탱크(110) 내에 포함된 상기 사용된 비활성 가스 또는 배기 가스를 상기 분리 탱크(140)로 전달하기 위해 상기 제2 밸브(V2, V3) 및 상기 제3 밸브(V6)를 조절하고, 상기 분리 탱크(140) 내의 상기 가스 성분을 상기 공기 정화 장치(150)로 전달하기 위해 상기 제4 밸브(V8, V11)를 조절하고, 상기 분리 탱크(140) 내의 상기 폐전해액을 상기 드레인 버퍼 탱크(160)로 전달하기 위해 상기 제5 밸브(V7)를 조절하고, 상기 드레인 버퍼 탱크(160) 내의 상기 폐전해액을 상기 드레인 저장 탱크(170)로 이동시키기 위해 상기 제1 에어펌프(AP1)를 조절하는 제어부(440)를 포함하는 전해질 공급 장치.
  2. 제1 항에 있어서,
    상기 드레인 버퍼 탱크(160)는 지하에 매설되고,
    상기 드레인 저장 탱크(170)는 지상에 설치되고,
    상기 폐전해액은 상기 분리 탱크(140)로부터 상기 제5 배관(P7)을 통해 자연적인 유속에 의해 상기 드레인 버퍼 탱크(160)로 이동되고,
    상기 제1 에어펌프(AP1)는 지하에 매설된 상기 드레인 버퍼 탱크(160) 내의 상기 폐전해액을 상기 드레인 저장 탱크(170)로 끌어올리는 전해질 공급 장치.
  3. 제1 항에 있어서,
    상기 드레인 저장 탱크(170)와 제7 배관(P14)을 통해 연결되는 폐전해질 수거부(180); 및
    상기 제7 배관(P14) 중에 설치되어, 상기 드레인 저장 탱크(170)에 모인 상기 폐전해액을 상기 폐전해질 수거부(180)로 이동시키는 제2 에어펌프(AP2)를 더 포함하고,
    상기 드레인 저장 탱크(170)는 제6 밸브(V2, V4)가 설치된 제8 배관(P2, P4)을 통해 상기 가압가스 제공부(120)와 연결되고,
    상기 제어부(440)는,
    상기 가압가스 제공부(120)로부터 상기 비활성 가스가 상기 드레인 저장 탱크(170) 내부를 가압하도록 상기 제6 밸브(V2, V4)를 온(on)하고,
    압력을 가하여 상기 드레인 저장 탱크(170) 내의 상기 폐전해액을 이동시키도록 상기 제2 에어펌프(AP2)를 제어하여,
    상기 드레인 저장 탱크(170) 내의 상기 폐전해액을 상기 폐전해질 수거부(180)에 압축하여 저장하도록 설정된, 전해질 공급 장치.
  4. 제1 항에 있어서,
    상기 전해질 보관 탱크(110)와 연결되고, 상기 전해질 보관 탱크(110) 내 압력 및 전해질 수위를 감지하는 제1 센서(111);
    상기 가압가스 제공부(120)와 연결되고, 상기 가압가스 제공부(120)의 압력 및 비활성 가스 수위를 감지하는 제2 센서(121);
    상기 분리 탱크(140)와 연결되고, 상기 분리 탱크(140) 내 압력 및 폐전해질 수위를 감지하는 제3 센서(141);
    상기 드레인 버퍼 탱크(160)와 연결되고, 상기 드레인 버퍼 탱크(160) 내 압력 및 폐전해질 수위를 감지하는 제4 센서(161);
    상기 드레인 저장 탱크(170)와 연결되고, 상기 드레인 저장 탱크(170) 내 압력 및 폐전해질 수위를 감지하는 제5 센서(171); 및
    상기 전해질 보관 탱크(110) 내부에 상기 전해질 보관 탱크(110)의 하단부에 배치되고, 상기 비활성 가스의 농도를 측정하고, 측정된 가스 농도가 설정된 범위보다 큰 경우 상기 전해질 보충을 알리는 비활성 가스 농도 센서(112)를 더 포함하고,
    상기 제어부(440)는 상기 제1 센서(111) 또는 상기 비활성 가스 농도 센서(112)와 연결되어 상기 압력 및 전해질 수위가 설정된 범위를 벗어나는 경우 상기 전해질 보관 탱크(110)에 상기 전해질을 공급하는 배관에 설치된 밸브를 조절하고, 상기 제2 센서(121)와 연결되어 상기 압력 및 비활성 가스 수위가 설정된 범위를 벗어나는 경우 상기 제2 밸브(V2, V3)를 조절하고, 상기 제3 센서(141)와 연결되어 상기 분리 탱크(140) 내 압력 및 폐전해질 수위가 설정된 범위를 벗어나는 경우 상기 제3 밸브(V6)를 조절하고, 상기 제4 센서(161)와 연결되어 상기 드레인 버퍼 탱크(160) 내 압력 및 폐전해질 수위가 설정된 범위를 벗어나는 경우 상기 제5 밸브(V7)를 조절하고, 상기 제5 센서(171)와 연결되어 상기 드레인 저장 탱크(170) 내 압력 및 폐전해질 수위가 설정된 범위를 벗어나는 경우 상기 제1 에어펌프(AP1)를 조절하는 전해질 공급 장치.
  5. 전해질 공급 장치에 있어서,
    전해질을 보관하는 전해질 보관 탱크(110);
    상기 전해질 보관 탱크(110)와 탱크로리(130) 사이에 연결되는 제1 배관(P3);
    상기 전해질 보관 탱크(110)와 제2 배관(P2, P9)을 통해 연결되고, 상기 전해질이 상기 탱크로리(130)로 이송되도록 상기 전해질 보관 탱크(110)로 비활성 가스를 제공하여 상기 전해질 보관 탱크(110) 내부를 가압하는 가압가스 제공부(120);
    상기 전해질 보관 탱크(110)와 제3 배관(P4)을 통해 연결되고, 상기 제3 배관(P4)을 통해 상기 전해질의 이송에 사용된 비활성 가스 또는 상기 전해질 보관 탱크(110)에 존재하는 배기 가스를 전달받고, 가스 성분 및 폐전해액으로 분리하는 분리 탱크(140);
    상기 분리 탱크(140)와 제4 배관(P5, P8)을 통해 연결되고, 상기 가스 성분을 정화하여 공기 중으로 배출하는 공기 정화 장치(150);
    상기 분리 탱크(140)와 제5 배관(P6)을 통해 연결되고, 상기 분리 탱크(140)로부터 상기 폐전해액이 전달되는 드레인 버퍼 탱크(160);
    상기 제1 배관(P3) 중에 설치되어 상기 제1 배관(P3)의 개폐를 조절하는 제1 밸브(V3);
    상기 제2 배관(P2, P9) 중에 설치되어 상기 제2 배관(P2, P9)의 개폐를 조절하는 제2 밸브(V2, V9);
    상기 제3 배관(P4) 중에 설치되어 상기 제3 배관(P4)의 개폐를 조절하는 제3 밸브(V4);
    상기 제4 배관(P5, P8) 중에 설치되어 상기 제4 배관(P5, P8)의 개폐를 조절하는 적어도 하나의 제4 밸브(V5, V8);
    상기 제5 배관(P6) 중에 설치되어 상기 제5 배관(P6)의 개폐를 조절하는 제5 밸브(V6); 및
    상기 전해질 보관 탱크(110)에 보관된 상기 전해질을 상기 탱크로리(130)로 전달하기 위해 상기 제1 밸브(V3) 및 상기 제2 밸브(V2, V9)를 조절하고, 상기 전해질 보관 탱크(110) 내에 포함된 상기 사용된 비활성 가스 또는 배기 가스를 상기 분리 탱크(140)로 전달하기 위해 상기 제2 밸브(V2, V9) 및 상기 제3 밸브(V4)를 조절하고, 상기 분리 탱크(140) 내의 상기 가스 성분을 상기 공기 정화 장치(150)로 전달하기 위해 상기 제4 밸브(V5, V8)를 조절하고, 상기 분리 탱크(140) 내의 상기 폐전해액을 상기 드레인 버퍼 탱크(160)로 전달하기 위해 상기 제5 밸브(V6)를 조절하는 제어부(440)를 포함하는 전해질 공급 장치.
  6. 제5 항에 있어서,
    상기 드레인 버퍼 탱크(160)는 제6 배관(P7, P8)을 통해 상기 공기 정화 장치(150)에 연결되고,
    상기 제어부는, 상기 드레인 버퍼 탱크(160)에서 상기 폐전해액에 포함된 가스 성분을 상기 공기 정화 장치(150)에 전달하기 위해, 상기 제6 배관(P7, P8) 중에 설치되어 상기 제6 배관(P7, P8)의 개폐를 조절하는 제6 밸브(V7, V8)를 조절하는 전해질 공급 장치.
  7. 제5 항에 있어서,
    상기 드레인 버퍼 탱크(160)는 지하에 매설되고,
    상기 폐전해액은 상기 분리 탱크(140)로부터 상기 제5 배관(P6)을 통해 자연적인 유속에 의해 상기 드레인 버퍼 탱크(160)로 이동되는 전해질 공급 장치.
  8. 제5 항에 있어서,
    상기 전해질 보관 탱크(110)와 연결되고, 상기 전해질 보관 탱크(110) 내 압력 및 전해질 수위를 감지하는 제1 센서(111);
    상기 가압가스 제공부(120)와 연결되고, 상기 가압가스 제공부(120)의 압력 및 비활성 가스 수위를 감지하는 제2 센서(121);
    상기 분리 탱크(140)와 연결되고, 상기 분리 탱크(140) 내 압력 및 폐전해질 수위를 감지하는 제3 센서(141);
    상기 드레인 버퍼 탱크(160)와 연결되고, 상기 드레인 버퍼 탱크(160) 내 압력 및 폐전해질 수위를 감지하는 제4 센서(161); 및
    상기 전해질 보관 탱크(110) 내부에 상기 전해질 보관 탱크(110)의 하단부에 배치되고, 상기 비활성 가스의 농도를 측정하고, 측정된 가스 농도가 설정된 범위보다 큰 경우 상기 전해질 보충을 알리는 비활성 가스 농도 센서(112)를 더 포함하고,
    상기 제어부(440)는 상기 제1 센서(111) 또는 상기 비활성 가스 농도 센서(112)와 연결되어 상기 압력 및 전해질 수위가 설정된 범위를 벗어나는 경우 상기 전해질 보관 탱크(110)에 상기 전해질을 공급하는 배관에 설치된 밸브를 조절하고, 상기 제2 센서(121)와 연결되어 상기 압력 및 비활성 가스 수위가 설정된 범위를 벗어나는 경우 상기 제2 밸브(V2, V9)를 조절하고, 상기 제3 센서(141)와 연결되어 상기 분리 탱크(140) 내 압력 및 폐전해질 수위가 설정된 범위를 벗어나는 경우 상기 제3 밸브(V4)를 조절하고, 상기 제4 센서(161)와 연결되어 상기 드레인 버퍼 탱크(160) 내 압력 및 폐전해질 수위가 설정된 범위를 벗어나는 경우 상기 제5 밸브(V6)를 조절하는 전해질 공급 장치.
PCT/KR2021/010718 2021-06-02 2021-08-12 전해질 공급 장치 및 이를 포함하는 안전 시스템 WO2022255537A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020210071684A KR102299538B1 (ko) 2021-06-02 2021-06-02 전해질 공급 장치 및 이를 포함하는 안전 시스템
KR10-2021-0071684 2021-06-02
KR10-2021-0071671 2021-06-02
KR1020210071671A KR102299537B1 (ko) 2021-06-02 2021-06-02 전해질 공급 장치 및 이를 포함하는 안전 시스템

Publications (1)

Publication Number Publication Date
WO2022255537A1 true WO2022255537A1 (ko) 2022-12-08

Family

ID=84323673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010718 WO2022255537A1 (ko) 2021-06-02 2021-08-12 전해질 공급 장치 및 이를 포함하는 안전 시스템

Country Status (1)

Country Link
WO (1) WO2022255537A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200322386Y1 (ko) * 2003-05-07 2003-08-09 키펙스솔루션스 주식회사 가스-전해액 분리 수단을 구비한 수산 가스 발생 장치
KR102069568B1 (ko) * 2019-02-19 2020-02-11 조수민 전해질 이송 장치 및 이를 포함하는 안전 시스템
US20200157694A1 (en) * 2017-09-07 2020-05-21 De Nora Permelec Ltd Electrolytic device
JP2020095913A (ja) * 2018-12-14 2020-06-18 株式会社デンソー 電解液ステーション、電力マネジメントシステム
KR20200101278A (ko) * 2020-01-17 2020-08-27 조수민 전해질 이송 장치 및 이를 포함하는 안전 시스템
KR20200133722A (ko) * 2018-03-22 2020-11-30 가부시끼가이샤 도꾸야마 알칼리수 전해 장치 및 가스 제조 방법
KR102209517B1 (ko) * 2019-11-08 2021-01-28 안효수 자동차용 폐이차전지 재활용시스템 및 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200322386Y1 (ko) * 2003-05-07 2003-08-09 키펙스솔루션스 주식회사 가스-전해액 분리 수단을 구비한 수산 가스 발생 장치
US20200157694A1 (en) * 2017-09-07 2020-05-21 De Nora Permelec Ltd Electrolytic device
KR20200133722A (ko) * 2018-03-22 2020-11-30 가부시끼가이샤 도꾸야마 알칼리수 전해 장치 및 가스 제조 방법
JP2020095913A (ja) * 2018-12-14 2020-06-18 株式会社デンソー 電解液ステーション、電力マネジメントシステム
KR102069568B1 (ko) * 2019-02-19 2020-02-11 조수민 전해질 이송 장치 및 이를 포함하는 안전 시스템
KR102209517B1 (ko) * 2019-11-08 2021-01-28 안효수 자동차용 폐이차전지 재활용시스템 및 방법
KR20200101278A (ko) * 2020-01-17 2020-08-27 조수민 전해질 이송 장치 및 이를 포함하는 안전 시스템

Similar Documents

Publication Publication Date Title
WO2016085027A1 (ko) 자가발전 및 증발가스 처리가 가능한 천연가스 하이드레이트 탱크 컨테이너 적재시스템
WO2013172576A1 (ko) 이차전지 제조용 전극 건조 오븐 자동 급기 유량 제어 장치
WO2019103559A1 (ko) 전해질 주입장치 및 전해액 주입방법
CN105634060B (zh) 移动电源的充放电系统及其方法
WO2010062141A2 (ko) 배터리 셀 전압 측정 장치 및 방법
WO2022255537A1 (ko) 전해질 공급 장치 및 이를 포함하는 안전 시스템
WO2023210907A1 (ko) 폐전지 친환경 재활용을 위한 파쇄시스템
WO2022050804A2 (ko) 수소 디스펜서 장치 및 그 제어 방법
KR102069568B1 (ko) 전해질 이송 장치 및 이를 포함하는 안전 시스템
KR20170066677A (ko) 시료 채취 장치 및 시료 채취 방법
KR20200101278A (ko) 전해질 이송 장치 및 이를 포함하는 안전 시스템
KR100451417B1 (ko) 축전지 형성장치
WO2017150884A1 (ko) 무선전력 송수신 가능한 보조배터리
WO2018151415A1 (ko) 열팽창성 테이프를 포함하는 안전성이 개선된 배터리 셀 및 이의 제조방법
CN106960986A (zh) 动力电池充放电防爆箱及其试验室布局防护系统
WO2013133555A1 (ko) 무선 제어 방식의 배터리 에너지 저장장치
FR2695265B1 (fr) Dispositif de chargement de batterie pour véhicule de transport sans conducteur.
KR20220163231A (ko) 전해질 공급 장치 및 이를 포함하는 안전 시스템
WO2018088685A1 (ko) 배터리 팩
KR20220163232A (ko) 전해질 공급 장치 및 이를 포함하는 안전 시스템
WO2020036387A1 (ko) 건식 가스 정화 장치
CN107017442A (zh) 动力电池回收过程中的处理方法
WO2014061865A1 (ko) 리튬 공기전지 시스템
WO2016099161A1 (ko) 레독스 플로우 전지의 펌프 속도 제어 방법 및 장치
WO2022197040A1 (ko) 전기자동차의 충전 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944292

Country of ref document: EP

Kind code of ref document: A1