WO2022255478A1 - Pharmaceutical composition for prostate cancer treatment - Google Patents

Pharmaceutical composition for prostate cancer treatment Download PDF

Info

Publication number
WO2022255478A1
WO2022255478A1 PCT/JP2022/022594 JP2022022594W WO2022255478A1 WO 2022255478 A1 WO2022255478 A1 WO 2022255478A1 JP 2022022594 W JP2022022594 W JP 2022022594W WO 2022255478 A1 WO2022255478 A1 WO 2022255478A1
Authority
WO
WIPO (PCT)
Prior art keywords
rnase
prostate cancer
seq
group
substituent
Prior art date
Application number
PCT/JP2022/022594
Other languages
French (fr)
Japanese (ja)
Inventor
聡 井上
賢一 高山
直樹 木村
Original Assignee
地方独立行政法人東京都健康長寿医療センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人東京都健康長寿医療センター filed Critical 地方独立行政法人東京都健康長寿医療センター
Publication of WO2022255478A1 publication Critical patent/WO2022255478A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a pharmaceutical composition for treating prostate cancer. According to the present invention, refractory prostate cancer can be treated.
  • Prostate cancer is a malignant tumor that grows in an androgen-dependent manner. Therefore, for localized prostate cancer where the cancer is confined to the prostate, surgery or radiation therapy is performed, but for advanced prostate cancer, androgen deprivation therapy (ADT) is used. conduct. ADT is very effective in the early stages, but it gradually loses its effectiveness, leading to castration-resistant prostate cancer (CRPC), which has become a very important clinical problem (patent References 1 and 2).
  • CRPC castration-resistant prostate cancer
  • an object of the present invention is to provide therapeutic agents for prostate cancer, including castration-resistant prostate cancer.
  • the present invention provides [1] A pharmaceutical composition for treating prostate cancer containing an RNase H2 inhibitor as an active ingredient, [2]
  • the RNase H2 inhibitor is a double-stranded nucleic acid having an RNAi effect on the RNase H2 gene, a sense strand comprising a nucleotide sequence corresponding to the target sequence of SEQ ID NO: 13, and a complement to the sense strand
  • the pharmaceutical composition for treating prostate cancer according to [1] which is a double-stranded nucleic acid comprising an antisense strand containing a specific nucleotide sequence
  • the double-stranded nucleic acid is an oligonucleotide siRNA consisting of the nucleotide sequences represented by SEQ ID NOs: 1 and 2, an oligonucleotide siRNA consisting
  • the RNase H2 inhibitor is Formula (1) below: (Wherein, X is a single bond, an alkylene group having 1 to 3 carbon atoms, or -NH-CO-C-, Y is a single bond or -C-S-, and R 1 is a substituent a 5- to 6-membered aromatic heterocyclic group that may have a substituent, a phenyl group that may have a substituent, a cycloalkyl group that has 5 to 6 carbon atoms that may have a substituent, or an alkyl that has 3 to 8 carbon atoms is a group, R 2 is a cycloalkyl group having 5 to 6 carbon atoms which may have a substituent, a 5- to 6-membered aromatic heterocyclic group which may have a substituent, A phenyl group or an alkyl group having 3 to 8 carbon atoms, the hydrogen atom (H) of —NH— is dissociated, and the nitrogen atom (N) is bonded to the sulfur atom
  • AR variants AR variants; AR-Vs
  • siRNA SEH2A and a ribonuclease (RNase) H2 inhibitor suppressed proliferation of prostate cancer cells by increasing the expression level of the tumor suppressor gene p53 and decreasing the expression level of AR in prostate cancer cells. Furthermore, in CRPC cells, the expression level of AR-Vs was suppressed.
  • the pharmaceutical composition for treating prostate cancer of the present invention can effectively treat prostate cancer, particularly castration-resistant prostate cancer.
  • Photographs of tumor suppressor gene p53 and Ac-p53 protein expression (A, C) in AR-positive prostate cancer cells (LNCaP cells and 22Rv1 cells) by siRNA, and p53 downstream signals (p53, p21, BAX) is a graph showing the mRNA expression (B, D) of Graph showing the effect of siRNA on AR and AR-V7 protein (A) and mRNA (B) expression, and the effect of androgen dihydrotestosterone (DHT) stimulation on prostate cancer cell proliferation (C). is.
  • FIG. 4 shows the in vivo therapeutic effect of siRNA on castration-resistant prostate cancer cells.
  • FIG. 3 is a graph showing the effect of RNase H2 inhibitory compounds (RNaseH2i#1 and RNaseH2i#2) on cell proliferation of AR-positive prostate cancer cells (LNCaP cells and 22Rv1 cells).
  • Fig. 3 is a photograph of Western blotting showing the effect of RNase H2 inhibitory compounds (RNaseH2i#1 and RNaseH2i#2) on the expression of p53 and AR.
  • 1 is a graph showing the effects of RNase H2 inhibitory compounds (RNaseH2i#1 and RNaseH2i#2) on DNA damage ( ⁇ H2AX) and apoptosis (c-PARP).
  • c-PARP apoptosis
  • FIG. 7B shows photographs and graphs showing the effect of RNase H2 inhibitory compounds (RNaseH2i#1 and RNaseH2i#2) on apoptosis measured by TUNEL assay.
  • FIG. 4 shows in vivo therapeutic effects of RNase H2 inhibitory compounds on castration-resistant prostate cancer cells.
  • the pharmaceutical composition for treating prostate cancer of the present invention contains an RNase H2 inhibitor as an active ingredient.
  • RNase H is an enzyme that hydrolyzes the RNA strands of RNA/DNA hybrids.
  • Eukaryotes have both RNase H1 and RNase H2, and in human cells, RNase H2 mainly has RNase H enzymatic activity.
  • RNase H2 is composed of three subunits, A, B, and C. Each protein is composed of 299 amino acids for RNase H2A, 308 amino acids for H2B, and 164 amino acids for H2C. It is a huge protein.
  • RNase H2 activity is exhibited by the formation of a complex of three proteins.
  • prostate cancer especially CRPC
  • the expression of the RNase H2A gene is elevated.
  • prostate cancer can be treated by suppressing RNase H2.
  • RNase H2 an increase in the expression level of the tumor suppressor gene p53 and/or a decrease in the expression level of AR is observed. Without limitation, these phenomena have the potential to treat prostate cancer, particularly CRPC.
  • the RNase H2 inhibitor is not particularly limited as long as it suppresses and/or inhibits the activity of RNase H2. mentioned. Suppression or inhibition of RNase H2 activity specifically includes, for example, suppression of RNase H2 mRNA expression, suppression of RNase H2 protein expression, suppression or inhibition of RNase H2 protein function, and the like. , but not limited to these.
  • the double-stranded nucleic acid is a double-stranded nucleic acid having an RNAi effect on the RNase H2 gene, and is a sense strand comprising a base sequence corresponding to the target sequence of SEQ ID NO: 13, and a base complementary to the sense strand. and an antisense strand containing the sequence.
  • the term "double-stranded nucleic acid” means a nucleic acid molecule containing a double-stranded nucleic acid region formed by hybridizing a desired sense strand and an antisense strand, and siRNA (small interfering RNA) Preferably.
  • the double-stranded nucleic acid of the present invention comprises a sense strand containing a nucleotide sequence corresponding to the target sequence of SEQ ID NO: 13, and an antisense strand containing a complementary nucleotide sequence to the sense strand.
  • the "base sequence corresponding to the target sequence” is the same base sequence as the target sequence, or one or several (eg, 2 to 3) bases in the target sequence are substituted. means a base sequence. It is known that when the double-stranded nucleic acid is siRNA, RNAi effect can be obtained even if it contains one to several base mismatches. In the present invention, not only the base sequence identical to the target sequence, but also base sequences containing mismatches may be used as long as the RNAi effect can be obtained.
  • the "base sequence complementary to the sense strand" in the antisense strand may be a base sequence complementary to the extent that it can hybridize with the sense strand, and a base sequence completely complementary to the sense strand.
  • it may be a base sequence in which one or several (eg, 2 to 3) bases are substituted in a base sequence completely complementary to the sense strand.
  • nucleic acid types and modifications The type of nucleic acid constituting the double-stranded nucleic acid is not particularly limited and can be appropriately selected. Examples thereof include double-stranded RNA and DNA-RNA chimeric double-stranded nucleic acid. The chimeric type is obtained by replacing part of the double-stranded RNA having an RNAi effect with DNA, and is known to have high stability in serum and low immune response induction.
  • double-stranded nucleic acids are modified, for example, by modification of the 2′-OH group, substitution of the backbone with phosphorothioate or modification with a boranophosphate group, introduction of LNA (locked nucleic acid) in which the 2-position and 4-position of ribose are bridged.
  • the 5'-end or 3'-end of the sense strand of the double-stranded nucleic acid can be modified with, for example, nanoparticles, cholesterol, cell membrane-transmitting peptides, or the like.
  • siRNA The double-stranded RNA of the present invention is preferably siRNA (including chimeric forms).
  • siRNA is a small double-stranded RNA of 18 bases to 29 bases in length (preferably 21 to 23 bases in length) having a sequence complementary to the antisense strand (guide strand) of the siRNA. It has the function of cleaving the mRNA of the target gene with and suppressing the expression of the target gene. That is, siRNA can destroy messenger RNA (mRNA) by RNA interference (RNAi) and suppress gene expression in a sequence-specific manner.
  • mRNA messenger RNA
  • RNAi RNA interference
  • the nucleotide sequence of siRNA can be appropriately designed from the nucleotide sequence of RNase H2A mRNA (SEQ ID NO: 13).
  • the siRNA is not particularly limited in its terminal structure as long as it contains a sense strand and an antisense strand as described above and exhibits a desired RNAi effect, and can be appropriately selected. , may have a blunt end or may have a protruding end (overhang). Above all, the siRNA preferably has a structure in which the 3′ end of each strand protrudes by 2 to 6 bases, and more preferably has a structure in which the 3′ end of each strand protrudes by 2 bases.
  • siRNA produced from the nucleotide sequence of mRNA of RNase H2A can be used as an active ingredient of a pharmaceutical composition for treating prostate cancer, regardless of whether the effect is large or small.
  • siRNA of the present invention as shown in Table 1, for example, the sense strand of SEQ ID NO: 1 (21 bases) and the antisense strand of SEQ ID NO: 2 (21 bases) targeting SEQ ID NO: 14 (23 bases) siRNA consisting of (siRNASEH2A # 1 in the examples described later), the sense strand of SEQ ID NO: 3 (21 bases) and the antisense strand of SEQ ID NO: 4 (21 bases) with SEQ ID NO: 15 (23 bases) as the target sequence siRNA (same siRNASEH2A#2) consisting of a sense strand of SEQ ID NO: 5 (21 bases) targeting SEQ ID NO: 16 (23 bases) and an antisense strand of SEQ ID NO: 6 (21 bases) (same as siRNA SEH2A #3), siRNA consisting of a sense strand of SEQ ID NO: 7 (21 bases) targeting SEQ ID NO: 17 (23 bases) and an antisense strand of SEQ ID NO: 8 (21 bases)
  • target sequence #1 CTCAGCATCCGAGAATCAGGAGG (858-880) (SEQ ID NO: 14) #2: CCGTTCTTCCCACCGATATTTCC (933-935) (SEQ ID NO: 15) #3: GTCTACGCCATCTGTTATTGTCC (226-248) (SEQ ID NO: 16) #4: GCCACTGGGCTTATACAGTATGC (451-473) (SEQ ID NO: 17) #5: CTGCAGGACTTGGATACTGATTA (685-707) (SEQ ID NO: 18) #6: TGGGTGTTGGTTGATTAATTTTA (1147-1169) (SEQ ID NO: 19)
  • the double-stranded RNA (particularly siRNA) of the present invention can be produced based on conventionally known techniques. For example, single-stranded RNAs of 18-base length to 29-base length corresponding to the desired sense strand and antisense strand are chemically synthesized using an existing automatic DNA/RNA synthesizer or the like, and then synthesized. It can be produced by annealing. In addition, by constructing a desired siRNA expression vector, such as the vector of the present invention described below, and introducing the expression vector into cells, siRNA can also be produced using intracellular reactions.
  • a promoter sequence for controlling transcription of the double-stranded nucleic acid is linked upstream (5' side) of the base sequence encoding the double-stranded nucleic acid.
  • the promoter sequence is not particularly limited and can be appropriately selected. Examples thereof include pol II promoters such as CMV promoter, and pol III promoters such as H1 promoter and U6 promoter.
  • a terminator sequence for terminating transcription of the double-stranded nucleic acid is ligated downstream (3' side) of the base sequence encoding the double-stranded nucleic acid.
  • the terminator sequence is also not particularly limited and can be appropriately selected depending on the purpose.
  • the vector is not particularly limited as long as it contains the DNA, and can be appropriately selected depending on the purpose. Examples thereof include plasmid vectors and virus vectors.
  • the vector is preferably an expression vector capable of expressing the double-stranded nucleic acid (particularly siRNA).
  • the expression mode of the double-stranded nucleic acid is not particularly limited and can be appropriately selected according to the purpose. For example, as a method of expressing siRNA as a double-stranded nucleic acid, two short single-stranded RNAs are expressed. A method (tandem type), a method of expressing single-stranded RNA as shRNA (short hairpin RNA) (hairpin type), and the like can be mentioned.
  • shRNA is a single-stranded RNA containing a dsRNA region of about 18 to 29 bases and a loop region of about 3 to 9 bases. to form a hairpin-shaped double-stranded RNA.
  • the shRNA is then cleaved by Dicer (RNase III enzyme) into siRNA, which can function to suppress the expression of target genes.
  • the tandem-type siRNA expression vector contains a DNA sequence encoding a sense strand and a DNA sequence encoding an antisense strand that constitute the siRNA, and is upstream (5' side) of the DNA sequence encoding each strand.
  • a promoter sequence is ligated to each strand, and a terminator sequence is ligated downstream (3' side) of the DNA sequence encoding each strand.
  • a DNA sequence encoding a sense strand and a DNA sequence encoding an antisense strand constituting the siRNA are arranged in opposite directions, and the sense strand DNA sequence and the antisense strand DNA sequences are linked via a loop sequence, and a promoter sequence is linked upstream (5' side) and a terminator sequence is linked downstream (3' side).
  • a pharmaceutical composition of the invention may comprise an RNase H2 inhibitory compound.
  • the RNase H2 inhibitory compound is not particularly limited, but has the following formula (1): (Wherein, X is a single bond, an alkylene group having 1 to 3 carbon atoms, or -NH-CO-C-, Y is a single bond or -CS-, R 1 is a 5- to 6-membered aromatic heterocyclic group which may have a substituent, a phenyl group which may have a substituent, a cycloalkyl group having 5 to 6 carbon atoms which may have a substituent, or an alkyl group having 3 to 8 carbon atoms, R 2 is a cycloalkyl group having 5 to 6 carbon atoms which may have a substituent, a 5- to 6-membered aromatic heterocyclic group which may have a substituent, a phenyl group which may have a substituent, or an alkyl group having 3 to 8 carbon atoms,
  • X is a single bond
  • Y is a single bond
  • R 2 and the carbon atom (C) are bonded as they are.
  • alkylene group having 1 to 3 carbon atoms include methylene group, ethylene group and propylene group.
  • a 5- to 6-membered aromatic heterocyclic group which may have a substituent means a group obtained by removing one hydrogen atom from an aromatic heterocyclic ring containing a heteroatom in the ring. Heteroatoms include oxygen, sulfur, or nitrogen atoms.
  • aromatic heterocyclic groups or condensed rings thereof include pyridyl, pyrazyl, pyrimidyl, quinolyl, isoquinolyl, pyrrolyl, indolenyl, imidazolyl, carbazolyl, thienyl, and furyl groups. be done.
  • the aromatic heterocyclic group has a substituent, the hydrogen atom of the aromatic heterocyclic group is replaced with another group, but the number of substituents is not limited, and is, for example, 1 to 5.
  • Two substituents together may also be fused with a 5- to 6-membered aromatic heterocyclic group as an aromatic ring, heteroaromatic ring, saturated heterocyclic ring, or cycloalkyl ring, and bicyclic , or three or more rings may be condensed.
  • a cycloalkyl group having 5 to 6 carbon atoms includes a cyclopentyl group or a cyclohexyl group. Examples of alkyl groups having 3 to 8 carbon atoms include propyl, butyl, pentyl, hexyl, heptyl and octyl groups.
  • substituents examples include an alkyl group having 1 to 3 carbon atoms, a halogen atom (eg, a chlorine atom, a fluorine atom, or a bromine atom), an amide group (—CO—NH 2 ), a carboxy group, a methoxycarbonyl group, or an ethyl Toshikicarbonyl group is mentioned.
  • a halogen atom eg, a chlorine atom, a fluorine atom, or a bromine atom
  • amide group —CO—NH 2
  • an aromatic heterocyclic group a phenyl group, or a cycloalkyl group
  • two substituents together form an aromatic ring, an aromatic heterocyclic ring, a saturated heterocyclic ring, or a cycloalkyl ring, an aromatic It may be condensed with a heterocyclic group, a phenyl group, or a cycloalkyl group, and may be a condensed ring having two, three or more rings.
  • the aromatic ring, aromatic heterocyclic ring, saturated heterocyclic ring or cycloalkyl ring is preferably 5-membered or 6-membered. These condensed rings may further have the substituents described above.
  • the cycloalkyl group of R 2 When the hydrogen atom (H) of the -NH- is dissociated and the nitrogen atom (N) bonds with the sulfur atom (S) of the substituent of the R 2 group to form a ring structure, the cycloalkyl group of R 2 , It forms a condensed ring with an aromatic heterocyclic group or a phenyl group.
  • the compound represented by the formula (1) is preferably represented by the following formula (2): 2-cyclopentanamide-4-ethyl-5-methylthiophene-3-carboxamide (2-cyclopentaneamido-4-ethyl-5-methylthiophene-3-carboxamide) represented by (hereinafter sometimes referred to as compound A) or the following formula (3): N-[(furan-2-yl)methyl]-2- ⁇ 8-thia-4,6-diazatricyclo[7.4.0.02,7]trideca-1 (9), 2 (7 ), 3,5-tetraen-3-ylsulfanyl ⁇ acetamide (N-[(furan-2-yl)methyl]-2- ⁇ 8-thia-4,6-diazatricyclo[7.4.0.02,7]trideca-1 (9),2(7),3,5-tetraen-3-ylsulfanyl ⁇ acetamide) (hereinafter sometimes referred to as compound B).
  • compound B 2-cyclopentanamide-4-eth
  • RNase H2 inhibitory compounds used in the present invention include salts thereof.
  • the salt of the RNaseH2 inhibitory compound is a pharmaceutically acceptable salt, and may form an acid addition salt or a salt with a base depending on the type of substituent.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid , lactic acid, malic acid, mandelic acid, tartaric acid, dibenzoyltartaric acid, ditoluoyltartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, aspartic acid, glutamic acid, and other organic acids.
  • Salts salts with inorganic bases such as sodium, potassium, magnesium, calcium and aluminum, salts with organic bases such as methylamine, ethylamine, ethanolamine, lysine and ornithine, salts with various amino acids and amino acid derivatives such as acetylleucine, and ammonium salts etc.
  • inorganic bases such as sodium, potassium, magnesium, calcium and aluminum
  • organic bases such as methylamine, ethylamine, ethanolamine, lysine and ornithine
  • salts with various amino acids and amino acid derivatives such as acetylleucine, and ammonium salts etc.
  • the compounds used in the present invention also include various hydrates and solvates of the above-mentioned RNase H2 inhibitory compounds and salts thereof, and polymorphic substances.
  • the compounds also include compounds labeled with various radioactive or non-radioactive isotopes.
  • a pharmaceutical composition containing one or more of the RNase H2 inhibitory compounds or salts thereof as an active ingredient may be prepared using excipients commonly used in the art, such as pharmaceutical excipients and pharmaceutical carriers. can be prepared by a commonly used method. Administration is oral administration in tablets, pills, capsules, granules, powders, liquids, etc.; Any form of parenteral administration such as an ointment, a transdermal patch, a transmucosal liquid, a transmucosal patch, or an inhalant may be used.
  • Solid compositions for oral administration include tablets, powders, granules and the like.
  • one or more active ingredients are combined with at least one inert excipient such as lactose, mannitol, glucose, hydroxypropylcellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone. , and/or magnesium aluminometasilicate and the like.
  • the composition may contain inert additives such as lubricants such as magnesium stearate, disintegrants such as sodium carboxymethyl starch, stabilizers, and solubilizers in accordance with conventional methods.
  • Tablets or pills may, if desired, be sugar-coated or film-coated with gastric or enteric substances.
  • Liquid compositions for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or elixirs and the like, and commonly used inert diluents such as purified water. or containing ethanol.
  • inert diluents such as purified water. or containing ethanol.
  • the liquid compositions may contain adjuvants such as solubilizers, wetting agents, suspending agents, sweetening agents, flavoring agents, fragrances and preservatives.
  • Injections for parenteral administration contain sterile aqueous or non-aqueous solutions, suspensions or emulsions.
  • Aqueous solvents include, for example, distilled water for injection or physiological saline.
  • non-aqueous solvents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, alcohols such as ethanol, and polysorbate 80 (pharmacopoeial name).
  • Such compositions may further comprise a tonicity agent, a preservative, a wetting agent, an emulsifying agent, a dispersing agent, a stabilizing agent, or a solubilizing agent. They are sterilized by, for example, filtration through a bacteria-retaining filter, formulation with sterilizing agents or irradiation. They can also be used by preparing a sterile solid composition and dissolving or suspending them in sterile water or a sterile solvent for injection before use.
  • External preparations include ointments, plasters, creams, jellies, poultices, sprays, lotions, eye drops, ophthalmic ointments, and the like. It contains commonly used ointment bases, lotion bases, aqueous or non-aqueous solutions, suspensions, emulsions and the like.
  • ointment or lotion bases include polyethylene glycol, propylene glycol, white petrolatum, bleached beeswax, polyoxyethylene hydrogenated castor oil, glyceryl monostearate, stearyl alcohol, cetyl alcohol, lauromacrogol, sorbitan sesquioleate, and the like. mentioned.
  • Transmucosal agents such as inhalants and nasal agents are solid, liquid or semi-solid, and can be produced according to conventionally known methods.
  • known excipients, pH adjusters, preservatives, surfactants, lubricants, stabilizers, thickeners and the like may be added as appropriate.
  • Administration can use a suitable inhalation or insufflation device.
  • known devices such as metered dose inhalation devices and nebulizers are used to administer the compounds either alone or as a powder in a formulated mixture, or as a solution or suspension in combination with a pharmaceutically acceptable carrier.
  • Dry powder inhalers and the like may be for single or multiple doses and may utilize dry powder or powder-containing capsules. Alternatively, it may be in the form of a pressurized aerosol spray or the like using a suitable propellant such as a chlorofluoroalkane, hydrofluoroalkane or carbon dioxide.
  • the dosage varies depending on the type of disease, symptoms, age, sex, etc. of each individual patient, but in the case of oral administration, it is usually about 0.001 mg / kg to 500 mg / kg per day for adults, and this is once or Administer in 2 to 4 divided doses.
  • When administered by injection once or twice a day for an adult, about 0.0001 mg/kg to 10 mg/kg is administered by bolus injection or intravenous drip infusion.
  • inhalation about 0.0001 mg/kg to 10 mg/kg is administered once or multiple times per day for adults.
  • the dose of about 0.01 mg/kg to 10 mg/kg per day for adults is applied once or twice a day.
  • the RNaseH2 inhibitory compound or its salt can be used in combination with various therapeutic or preventive agents for diseases for which the RNaseH2 inhibitory compound or its salt is considered to be effective.
  • the combinations may be administered simultaneously or administered separately sequentially or at desired time intervals.
  • Co-administered formulations may be combined or formulated separately.
  • Prostate cancer which is the target of treatment with the pharmaceutical composition of the present invention, is cancer that develops in the prostate gland, and antiandrogen agents are sometimes administered as hormone therapy.
  • the type of prostate cancer to be treated is not particularly limited, but it is particularly effective for androgen-independent prostate cancer (CRPC) that has acquired resistance to hormone therapy.
  • CRPC androgen-independent prostate cancer
  • the pharmaceutical composition of the present invention can be effectively used for CRPC that has acquired resistance to hormone therapy, since it exhibits a remarkable anticancer effect on AR-positive and AR-negative CRPC.
  • prostate cancer that is not hormonally resistant and resistant to treatment by other mechanisms can also be treated.
  • the RNase H2 inhibitors can be used in methods of treating prostate cancer. That is, the present specification includes the step of administering to a patient with prostate cancer a therapeutically effective amount of an RNase H2 inhibitor such as a double-stranded nucleic acid having an RNAi effect, an anti-RNase H antibody, or an RNase H inhibitory compound. A method of treating cancer is disclosed.
  • RNase H2 inhibitors for use in methods of treating prostate cancer
  • the RNase H2 inhibitors can be used in methods of treating prostate cancer.
  • RNase H2 inhibitors such as double-stranded nucleic acids with said RNAi effect, anti-RNase H antibodies, or RNase H inhibitory compounds, for use in methods of treating prostate cancer.
  • RNase H2 inhibitors can be used for the manufacture of a pharmaceutical composition for the treatment of prostate cancer. That is, the present specification describes the use of a double-stranded nucleic acid having an RNAi effect, an anti-RNase H antibody, or an RNase H2 inhibitory substance such as an RNase H inhibitory compound for the production of a pharmaceutical composition for treating prostate cancer. disclose.
  • RNase H2 inhibitors inhibit the expression of RNase H2 mRNA, inhibits the expression of RNase H2 protein, and inhibits the function (activity) of RNase H2, thereby increasing the activity of RNase H2. Cancer can be suppressed. For example, by suppressing the expression or activity of RNase H2, it is presumed that the proliferation of prostate cancer cells can be suppressed by increasing the expression level of the tumor suppressor gene p53 and/or decreasing the expression level of AR.
  • the RNase H2 inhibitory compound of the present invention can suppress prostate cancer in which RNase H2 activity is enhanced by inhibiting the function (activity) of RNase H2.
  • R 1 and R 2 each have a 5- to 6-membered aromatic heterocyclic group, a phenyl group, a cycloalkyl group having 5 to 6 carbon atoms, or an alkyl group having 3 to 8 carbon atoms, thereby exhibiting RNase H2 inhibitory activity.
  • siRNA against RNase H2A was used to examine the effects on the expression of mRNA and protein in AR-positive prostate cancer cells (LNCaP cells and 22Rv1 cells) and cell proliferation.
  • Androgen receptor-positive prostate cancer cell lines LNCaP (human left clavicular lymph node-derived prostate cancer cells) and 22Rv1 cells (human prostate cancer-derived epithelial cells) were cultured under conditions of 37° C. and 5% CO 2 . Roswell Park Memorial Institute (RPMI) 1640 (Sigma-Aldrich Japan, Tokyo, Japan) supplemented with 10% Fetal bovine serum (FBS) and 1% penicillin-streptomycin (Thermofisher, Tokyo, Japan) was used as the medium.
  • RPMI Roswell Park Memorial Institute
  • siRNA SEH2A#1 858-880
  • siRNA SEH2A#2 933-935) 5'-GUUCUUCCCACCGAUAUUUCC-3' 5'-AAAUAUCGGUGGGAAGAACGG-3'
  • siRNA SEH2A#3 5'-CUACGCCAUCUGUUAUUGUCC-3' 5'-ACAAUAACAGAUGGCGUAGAC-3'
  • siRNA SEH2A#6 (1147-1169) 5'-GGUGUUGGUUG
  • siRNA siRNA select siRNA
  • Thermofisher Tokyo, Japan
  • Introduction of siRNA into cells was performed using Lipofectamine RNAiMAX (Thermofisher, Tokyo, Japan) according to the protocol.
  • Suppression of RNASEH2A expression was measured by qRT-PCR and western blot method using RNASEH2A and AR-specific antibodies. Analysis of cell proliferation ability was performed by counting the number of viable cells. 5 ⁇ 10 4 cells were seeded in a 24-well plate, and RNase H2i was added the next day.
  • RNASEH2A-treated cells it was confirmed that RNASEH2A and AR mRNA and protein expression levels were suppressed compared to siControl (Fig. 1A, B, D, E). In addition, suppression of RNASEH2A expression was found to suppress cell growth with a significant difference in any siRNASEH2A in 22Rv1, and in LNCaP, siRNASEH2A #2 and #5 with a significant difference ( Figures 1C and F).
  • siRNASEH2A#1 and siRNASEH2A#5 were used to examine the effect on the expression of the tumor suppressor gene p53.
  • RNASEH2A expression was suppressed, and protein expression was examined by Western blotting using RNASEH2A, p53, and Ac-p53 specific antibodies.
  • the expression levels of p53 and Ac-p53 were increased in siRNA SEH2A #1 and #5-treated cells compared to siControl (FIGS. 2A and C).
  • siRNASEH2A#1 and siRNASEH2A#5 were used to examine the effects on the expression of AR and AR-V7.
  • Expression of RNASEH2A was suppressed, and protein expression was examined by Western blot method using AR and AR-V7 specific antibodies. Expression of AR and AR-V7 mRNA was also measured by qPCR.
  • DHT dihydrotestosterone
  • the expression levels of AR and AR-V7 were decreased in siRNA SEH2A #1 and #5 treated cells compared to siControl (Fig. 3). Furthermore, the DHT-dependent growth-promoting effect was significantly suppressed compared to siControl.
  • Example 4>> In this example, the in vivo effects of siRNA against RNase H2A on castration-resistant prostate cancer cells were examined in nude mice. 22Rv1 cells were subcutaneously injected into nude mice, and castration was performed after tumor formation was confirmed (N 10). Tumors were injected with siControl and siRNA SEH2A#5 every 48 hours and tumor size was measured. A significant reduction in tumor size was observed with siRNA SEH2A#5 compared to siControl. Furthermore, when proteins were extracted from the tumor and the detection of the expression levels of AR and p53 was examined, an increase in the expression levels of p53 and a decrease in the expression levels of AR and AR-V7 were observed with siRNASEH2A#5 treatment (Fig. 4). ).
  • 22Rv1, LNCaP, and RWPE cells were seeded in 24-well plates at 3 ⁇ 10 4 cells each, and after 24 hours, compound A or compound B was added at 100, 50, 10, 5, 1, 0.5, 0.1, 0.05 ⁇ M.
  • compound A or compound B was added at 100, 50, 10, 5, 1, 0.5, 0.1, 0.05 ⁇ M.
  • cells were collected with PBS, dead cells were stained with 0.5% trypan blue staining solution, and the number of unstained cells was counted. Each measurement was performed three times, and the percentage of the number of living cells in the control was measured and compared with the number of living cells in the control by t-test for statistical analysis.
  • ⁇ Example 7>> the effects of RNase H2 inhibitory compounds on DNA damage and apoptosis were investigated.
  • the effect on DNA damage was detected by ⁇ H2AX, and apoptosis was examined by the expression level of cleaved-Poly (ADP-ribose) polymerase (c-PARP) caused by the degradation of Poly (ADP-ribose) polymerase (PARP), and the TUNEL method. did.
  • c-PARP cleaved-Poly (ADP-ribose) polymerase
  • PARP Poly (ADP-ribose) polymerase
  • the effects of RNase H2 inhibitory compounds on proliferation of prostate cancer cells were examined in vivo.
  • 22Rv1 cells were subcutaneously implanted in BALB/c nude mice, and after confirmation of tumor formation, castration was performed to prepare CRPC model mice.
  • RNase H2i#1 and #2 were intraperitoneally administered to CRPC model mice at 0.5 mg/mouse/dose, 5 times/week, respectively, and the effect on tumor growth was examined.
  • Fig. 9 tumor growth in mice administered with RNase H2i#1 and #2 was significantly suppressed compared to controls.
  • the pharmaceutical composition for treating prostate cancer of the present invention can be effectively used for treating prostate cancer.

Abstract

The purpose of the present invention is to provide a drug for treating prostate cancer including castration-resistant prostate cancer. The problem can be solved by using this pharmaceutical composition for prostate cancer treatment, said composition including an RNasa H2 inhibitor as an active ingredient.

Description

前立腺がん治療用医薬組成物Pharmaceutical composition for treating prostate cancer
 本発明は、前立腺がん治療用医薬組成物に関する。本発明によれば、難治性の前立腺がんを治療することができる。 The present invention relates to a pharmaceutical composition for treating prostate cancer. According to the present invention, refractory prostate cancer can be treated.
 日本における、2017年の前立腺がん罹患数は91,215例で、男性における第1位のがんであり、10人に1人が罹患すると言われている。前立腺がんは、アンドロゲン依存性に増殖する悪性腫瘍である。そのため、がんが前立腺にとどまっている限局性の前立腺がんに対しては、手術や放射線療法を行うが、進行した前立腺がんに対しては、アンドロゲン遮断療法(androgen deprivation therapy;ADT)を行う。ADTは初期には非常に有効であるが、次第に効果がなくなり、去勢抵抗性前立腺がん(castration resistant prostate cancer;CRPC)となることが、臨床上、非常に重要な問題となっている(特許文献1及び2)。 In Japan, there were 91,215 cases of prostate cancer in 2017, which is the number one cancer among men and is said to affect one in ten men. Prostate cancer is a malignant tumor that grows in an androgen-dependent manner. Therefore, for localized prostate cancer where the cancer is confined to the prostate, surgery or radiation therapy is performed, but for advanced prostate cancer, androgen deprivation therapy (ADT) is used. conduct. ADT is very effective in the early stages, but it gradually loses its effectiveness, leading to castration-resistant prostate cancer (CRPC), which has become a very important clinical problem (patent References 1 and 2).
特開2019-172700号公報Japanese Patent Application Laid-Open No. 2019-172700 特開2019-123671号公報JP 2019-123671 A
 従って、本発明の目的は、去勢抵抗性前立腺がんを含む前立腺がんの治療薬を提供することである。 Therefore, an object of the present invention is to provide therapeutic agents for prostate cancer, including castration-resistant prostate cancer.
 本発明者は、去勢抵抗性前立腺がんの治療薬について、鋭意研究した結果、驚くべきことに、RNase H2の阻害物質が、前立腺がんの治療に有効であることを見出した。
 本発明は、こうした知見に基づくものである。
 従って、本発明は、
[1]RNase H2阻害物質を有効成分として含む前立腺がん治療用医薬組成物、
[2]前記RNase H2阻害物質が、RNase H2遺伝子に対してRNAi効果を有する二本鎖核酸であって、配列番号13の標的配列に対応する塩基配列を含むセンス鎖と、前記センス鎖に相補的な塩基配列を含むアンチセンス鎖とを含む二本鎖核酸である、[1]に記載の前立腺がん治療用医薬組成物、
[3]前記二本鎖核酸が、配列番号1及び2で表される塩基配列からなるオリゴヌクレオチドのsiRNA、配列番号3及び4で表される塩基配列からなるオリゴヌクレオチドのsiRNA、配列番号5及び6で表される塩基配列からなるオリゴヌクレオチドのsiRNA、配列番号7及び8で表される塩基配列からなるオリゴヌクレオチドのsiRNA、配列番号9及び10で表される塩基配列からなるオリゴヌクレオチドのsiRNA、及び配列番号11及び12で表される塩基配列からなるオリゴヌクレオチドのsiRNA、からなる群から選択される二本鎖核酸である、[2]に記載の前立腺がん治療用医薬組成物、
[4]前記RNase H2阻害物質が、
下記式(1):
Figure JPOXMLDOC01-appb-C000004
(式中、Xは単結合、炭素数1~3のアルキレン基、又は-NH-CO-C-であり、Yは単結合、又は-C-S-であり、Rは、置換基を有することのある5~6員の芳香族複素環基、置換基を有することのあるフェニル基、置換基を有することのある炭素数5~6のシクロアルキル基、又は炭素数3~8のアルキル基であり、Rは、置換基を有することのある炭素数5~6のシクロアルキル基、置換基を有することのある5~6員の芳香族複素環基、置換基を有することのあるフェニル基、又は炭素数3~8のアルキル基であり、-NH-の水素原子(H)が解離し、窒素原子(N)がR基の置換基の硫黄原子(S)と結合して環構造を形成してもよい)で表される化合物である、[1]に記載の前立腺がん治療用医薬組成物、及び
[5]前記RNaseH2阻害化合物が、下記式(2):
Figure JPOXMLDOC01-appb-C000005
で表される2-シクロペンタンアミド-4-エチル-5-メチルチオフェン-3-カルボキサミド、又は下記式(3):
Figure JPOXMLDOC01-appb-C000006
で表されるN-[(フラン-2-イル)メチル]-2-{8-チア-4,6-ジアザトリシクロ[7.4.0.02,7]トリデカ-1(9),2(7),3,5-テトラエン-3-イルスルファニル}アセトアミドである、[4]に記載の前立腺がん治療用医薬組成物、
に関する。
 前記去勢抵抗性前立腺がんの原因の1つにアンドロゲン受容体(androgen receptor;AR)の変異体(AR variants;AR-Vs)の出現が報告されている。siRNASEH2A及びRibonuclease(RNase)H2阻害薬は、前立腺がん細胞において、がん抑制遺伝子p53発現量の増加、及びAR発現量を減少させることで、前立腺がん細胞の増殖を抑制した。更に、CRPC細胞において、AR-Vs発現量を抑制した。
As a result of intensive research on therapeutic agents for castration-resistant prostate cancer, the present inventor surprisingly found that RNase H2 inhibitors are effective in treating prostate cancer.
The present invention is based on these findings.
Accordingly, the present invention provides
[1] A pharmaceutical composition for treating prostate cancer containing an RNase H2 inhibitor as an active ingredient,
[2] The RNase H2 inhibitor is a double-stranded nucleic acid having an RNAi effect on the RNase H2 gene, a sense strand comprising a nucleotide sequence corresponding to the target sequence of SEQ ID NO: 13, and a complement to the sense strand The pharmaceutical composition for treating prostate cancer according to [1], which is a double-stranded nucleic acid comprising an antisense strand containing a specific nucleotide sequence,
[3] The double-stranded nucleic acid is an oligonucleotide siRNA consisting of the nucleotide sequences represented by SEQ ID NOs: 1 and 2, an oligonucleotide siRNA consisting of the nucleotide sequences represented by SEQ ID NOs: 3 and 4, SEQ ID NOs: 5 and Oligonucleotide siRNA consisting of the base sequence represented by 6, Oligonucleotide siRNA consisting of the base sequences represented by SEQ ID NOS: 7 and 8, Oligonucleotide siRNA consisting of the base sequences represented by SEQ ID NOS: 9 and 10, and an oligonucleotide siRNA consisting of the base sequences represented by SEQ ID NOs: 11 and 12.
[4] the RNase H2 inhibitor is
Formula (1) below:
Figure JPOXMLDOC01-appb-C000004
(Wherein, X is a single bond, an alkylene group having 1 to 3 carbon atoms, or -NH-CO-C-, Y is a single bond or -C-S-, and R 1 is a substituent a 5- to 6-membered aromatic heterocyclic group that may have a substituent, a phenyl group that may have a substituent, a cycloalkyl group that has 5 to 6 carbon atoms that may have a substituent, or an alkyl that has 3 to 8 carbon atoms is a group, R 2 is a cycloalkyl group having 5 to 6 carbon atoms which may have a substituent, a 5- to 6-membered aromatic heterocyclic group which may have a substituent, A phenyl group or an alkyl group having 3 to 8 carbon atoms, the hydrogen atom (H) of —NH— is dissociated, and the nitrogen atom (N) is bonded to the sulfur atom (S) of the substituent of the R 2 group and [5] the RNaseH2 inhibitory compound is represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000005
2-cyclopentanamide-4-ethyl-5-methylthiophene-3-carboxamide represented by or the following formula (3):
Figure JPOXMLDOC01-appb-C000006
N-[(furan-2-yl)methyl]-2-{8-thia-4,6-diazatricyclo[7.4.0.02,7]trideca-1 (9), 2 (7 ),3,5-tetraen-3-ylsulfanyl}acetamide, the pharmaceutical composition for treating prostate cancer according to [4],
Regarding.
The emergence of androgen receptor (AR) variants (AR variants; AR-Vs) has been reported as one of the causes of castration-resistant prostate cancer. siRNA SEH2A and a ribonuclease (RNase) H2 inhibitor suppressed proliferation of prostate cancer cells by increasing the expression level of the tumor suppressor gene p53 and decreasing the expression level of AR in prostate cancer cells. Furthermore, in CRPC cells, the expression level of AR-Vs was suppressed.
 本発明の前立腺がん治療用医薬組成物によれば、前立腺がん、特に去勢抵抗性前立腺がんを効果的に治療することができる。 The pharmaceutical composition for treating prostate cancer of the present invention can effectively treat prostate cancer, particularly castration-resistant prostate cancer.
siRNAによるAR陽性の前立腺がん細胞(LNCaP細胞及び22Rv1細胞)のRNASEH2A及びARのmRNA(A、D)、及びタンパク質発現量(B、E)の変化、及び細胞増殖(C、F)への影響を示したグラフである。Changes in RNASEH2A and AR mRNA (A, D) and protein expression levels (B, E) in AR-positive prostate cancer cells (LNCaP cells and 22Rv1 cells) by siRNA, and cell proliferation (C, F) It is the graph which showed the influence. siRNAによるAR陽性の前立腺がん細胞(LNCaP細胞及び22Rv1細胞)のがん抑制遺伝子であるp53及びAc-p53タンパク質の発現(A、C)の写真、並びにp53下流シグナル(p53、p21、BAX)のmRNA発現(B、D)を示したグラフである。Photographs of tumor suppressor gene p53 and Ac-p53 protein expression (A, C) in AR-positive prostate cancer cells (LNCaP cells and 22Rv1 cells) by siRNA, and p53 downstream signals (p53, p21, BAX) is a graph showing the mRNA expression (B, D) of siRNAによるARおよびAR-V7のタンパク質(A)およびmRNA(B)発現への影響ならびにアンドロゲンであるジヒドロテストステロン(DHT)刺激による前立腺がん細胞の増殖促進効果に与える影響(C)を示したグラフである。Graph showing the effect of siRNA on AR and AR-V7 protein (A) and mRNA (B) expression, and the effect of androgen dihydrotestosterone (DHT) stimulation on prostate cancer cell proliferation (C). is. siRNAによる去勢抵抗性前立腺がん細胞へのin vivoでの治療効果を示した図である。FIG. 4 shows the in vivo therapeutic effect of siRNA on castration-resistant prostate cancer cells. RNase H2阻害化合物(RNaseH2i#1及びRNaseH2i#2)によるAR陽性の前立腺がん細胞(LNCaP細胞及び22Rv1細胞)の細胞増殖への影響を示したグラフである。Fig. 3 is a graph showing the effect of RNase H2 inhibitory compounds (RNaseH2i#1 and RNaseH2i#2) on cell proliferation of AR-positive prostate cancer cells (LNCaP cells and 22Rv1 cells). RNase H2阻害化合物(RNaseH2i#1及びRNaseH2i#2)によるp53及びARの発現への影響を示したウエスタンブロットの写真である。Fig. 3 is a photograph of Western blotting showing the effect of RNase H2 inhibitory compounds (RNaseH2i#1 and RNaseH2i#2) on the expression of p53 and AR. RNase H2阻害化合物(RNaseH2i#1及びRNaseH2i#2)によるDNA損傷(γH2AX)及びアポトーシス(c-PARP)への影響を示したグラフである。本実施例では、RNase H2阻害化合物がDNA損傷とアポトーシスへ与える影響を検討した。DNA損傷へ与える影響はγH2AXで検出し、アポトーシスをPoly(ADP-ribose)polymerase(PARP)の分解により生じるcleaved-Poly(ADP-ribose)polymerase(c-PARP)の発現量、及びTUNEL法により検討した。22Rv1においてRNaseH2i#1及び#2共に(1及び5μM)でγH2AX、c-PARPの発現増加が認められた(図7A)。LNCaP細胞では、RNaseH2i#1(5μM)、RNaseH2i#2(5μM)でγH2AXの発現増加が認められ、RNaseH2i#1(1及び5μM)、RNaseH2i#2(5μM)でc-PARPの発現増加が認められた(図7B)。また、TUNEL assayでは、RNase H2i#1及び#2(1及び5μM)共に有意にアポトーシス細胞数を増加させることが分かった(図8)。1 is a graph showing the effects of RNase H2 inhibitory compounds (RNaseH2i#1 and RNaseH2i#2) on DNA damage (γH2AX) and apoptosis (c-PARP). In this example, the effects of RNase H2 inhibitory compounds on DNA damage and apoptosis were examined. The effect on DNA damage was detected by γH2AX, and apoptosis was examined by the expression level of cleaved-Poly (ADP-ribose) polymerase (c-PARP) caused by the degradation of Poly (ADP-ribose) polymerase (PARP), and the TUNEL method. did. In 22Rv1, both RNase H2i#1 and #2 (1 and 5 μM) increased the expression of γH2AX and c-PARP (Fig. 7A). In LNCaP cells, RNaseH2i#1 (5 μM) and RNaseH2i#2 (5 μM) increased the expression of γH2AX, and RNaseH2i#1 (1 and 5 μM) and RNaseH2i#2 (5 μM) increased the expression of c-PARP. (Fig. 7B). In TUNEL assay, both RNase H2i#1 and #2 (1 and 5 μM) significantly increased the number of apoptotic cells (Fig. 8). RNase H2阻害化合物(RNaseH2i#1及びRNaseH2i#2)によるアポトーシスへの影響をTUNELアッセイによって測定した写真及びグラフである。Fig. 3 shows photographs and graphs showing the effect of RNase H2 inhibitory compounds (RNaseH2i#1 and RNaseH2i#2) on apoptosis measured by TUNEL assay. RNase H2阻害化合物による去勢抵抗性前立腺がん細胞へのin vivoでの治療効果を示した図である。FIG. 4 shows in vivo therapeutic effects of RNase H2 inhibitory compounds on castration-resistant prostate cancer cells.
 本発明の前立腺がん治療用医薬組成物は、RNase H2阻害物質を有効成分として含む。 The pharmaceutical composition for treating prostate cancer of the present invention contains an RNase H2 inhibitor as an active ingredient.
《RNase H2》
 RNase Hは、RNA/DNAハイブリットのRNA鎖を加水分解する酵素である。真核生物はRNase H1とRNase H2の2つを持ち、ヒトの細胞では主にRNase H2がRNase Hの酵素活性を有する。RNase H2はA、B、Cの 3つのサブユニットから構成され、それぞれのタンパク質は、RNaseH2Aが299アミノ酸、H2Bが308アミノ酸、H2Cが164アミノ酸で構成され、いずれもドメイン構造を持たない単一な巨大タンパクである。3つのタンパクが複合体を形成することによってRNase H2活性を示す。
《RNase H2》
RNase H is an enzyme that hydrolyzes the RNA strands of RNA/DNA hybrids. Eukaryotes have both RNase H1 and RNase H2, and in human cells, RNase H2 mainly has RNase H enzymatic activity. RNase H2 is composed of three subunits, A, B, and C. Each protein is composed of 299 amino acids for RNase H2A, 308 amino acids for H2B, and 164 amino acids for H2C. It is a huge protein. RNase H2 activity is exhibited by the formation of a complex of three proteins.
 前立腺がん、特にCRPCにおいては、RNase H2A遺伝子の発現が上昇しているものがある。本発明においては、RNase H2を抑制することによって、前立腺がんを治療することができる。また、RNase H2の発現又は活性を抑制することにより、がん抑制遺伝子p53発現量の増加、及び/又はAR発現量の減少がみられる。限定されるものではないが、これらの現象により、前立腺がん、特にCRPCが治療できる可能性がある。 In some prostate cancers, especially CRPC, the expression of the RNase H2A gene is elevated. In the present invention, prostate cancer can be treated by suppressing RNase H2. In addition, by suppressing the expression or activity of RNase H2, an increase in the expression level of the tumor suppressor gene p53 and/or a decrease in the expression level of AR is observed. Without limitation, these phenomena have the potential to treat prostate cancer, particularly CRPC.
 RNase H2阻害物質は、RNase H2の活性を抑制及び/又は阻害する限りにおいて特に限定されるものではないが、例えばRNAi効果を有する二本鎖核酸、抗RNase H抗体、又はRNase H阻害化合物などが挙げられる。RNase H2の活性の抑制又は阻害とは、具体的には、例えばRNase H2のmRNAの発現の抑制、RNase H2のタンパク質の発現の抑制、RNase H2のタンパク質の機能の抑制又は阻害などが挙げられるが、これらに限定されるものではない。 The RNase H2 inhibitor is not particularly limited as long as it suppresses and/or inhibits the activity of RNase H2. mentioned. Suppression or inhibition of RNase H2 activity specifically includes, for example, suppression of RNase H2 mRNA expression, suppression of RNase H2 protein expression, suppression or inhibition of RNase H2 protein function, and the like. , but not limited to these.
《RNAi効果を有する二本鎖核酸》
 前記二本鎖核酸は、RNase H2遺伝子に対してRNAi効果を有する二本鎖核酸であって、配列番号13の標的配列に対応する塩基配列を含むセンス鎖と、前記センス鎖に相補的な塩基配列を含むアンチセンス鎖とを含むことを特徴とする。なお、本明細書において「二本鎖核酸」とは、所望のセンス鎖とアンチセンス鎖とがハイブリダイズしてなる二本鎖核酸領域を含む核酸分子を意味し、siRNA(small interfering RNA)であることが好ましい。
<<Double-stranded nucleic acid having RNAi effect>>
The double-stranded nucleic acid is a double-stranded nucleic acid having an RNAi effect on the RNase H2 gene, and is a sense strand comprising a base sequence corresponding to the target sequence of SEQ ID NO: 13, and a base complementary to the sense strand. and an antisense strand containing the sequence. As used herein, the term "double-stranded nucleic acid" means a nucleic acid molecule containing a double-stranded nucleic acid region formed by hybridizing a desired sense strand and an antisense strand, and siRNA (small interfering RNA) Preferably.
 本発明の二本鎖核酸は、配列番号13の標的配列に対応する塩基配列を含むセンス鎖と、前記センス鎖に相補的な塩基配列を含むアンチセンス鎖とを含む。ここで、「標的配列に対応する塩基配列」とは、標的配列と同一の塩基配列であるか、あるいは、前記標的配列において1若しくは数個(例えば、2~3個)の塩基が置換された塩基配列を意味する。二本鎖核酸がsiRNAである場合、1~数塩基のミスマッチを含んでいても、RNAi効果が得られることが知られている。本発明では、標的配列と同一の塩基配列だけでなく、RNAi効果が得られる限り、ミスマッチを含む塩基配列であってもよい。 The double-stranded nucleic acid of the present invention comprises a sense strand containing a nucleotide sequence corresponding to the target sequence of SEQ ID NO: 13, and an antisense strand containing a complementary nucleotide sequence to the sense strand. Here, the "base sequence corresponding to the target sequence" is the same base sequence as the target sequence, or one or several (eg, 2 to 3) bases in the target sequence are substituted. means a base sequence. It is known that when the double-stranded nucleic acid is siRNA, RNAi effect can be obtained even if it contains one to several base mismatches. In the present invention, not only the base sequence identical to the target sequence, but also base sequences containing mismatches may be used as long as the RNAi effect can be obtained.
 また、アンチセンス鎖における「センス鎖に相補的な塩基配列」とは、センス鎖とハイブリダイズすることができる程度に相補的な塩基配列であればよく、センス鎖に完全に相補的な塩基配列であるか、あるいは、前記センス鎖に完全に相補的な塩基配列において1若しくは数個(例えば、2~3個)の塩基が置換された塩基配列であることができる。 In addition, the "base sequence complementary to the sense strand" in the antisense strand may be a base sequence complementary to the extent that it can hybridize with the sense strand, and a base sequence completely complementary to the sense strand. Alternatively, it may be a base sequence in which one or several (eg, 2 to 3) bases are substituted in a base sequence completely complementary to the sense strand.
(核酸の種類と修飾)
 二本鎖核酸を構成する核酸の種類は、特に限定されるものではなく、適宜選択することができ、例えば、二本鎖RNA、DNA-RNAキメラ型二本鎖核酸を挙げることができる。キメラ型はRNAi効果を有する二本鎖RNAの一部をDNAに換えたものであり、血清中での安定性が高く、免疫応答誘導性が低いことが知られている。
 また、二本鎖核酸は、例えば、2’-OH基の修飾、バックボーンのホスホロチオエートによる置換やボラノホスフェート基による修飾、リボースの2位と4位が架橋されたLNA(locked nucleic acid)の導入などによって、ヌクレアーゼに対する耐性や安定化を高めることもできる。あるいは、細胞への導入効率を高める等の目的から、二本鎖核酸のセンス鎖の5’端、或いは3’端に、例えば、ナノ粒子、コレステロール、細胞膜通過ペプチド等の修飾を施すこともできる。
(Nucleic acid types and modifications)
The type of nucleic acid constituting the double-stranded nucleic acid is not particularly limited and can be appropriately selected. Examples thereof include double-stranded RNA and DNA-RNA chimeric double-stranded nucleic acid. The chimeric type is obtained by replacing part of the double-stranded RNA having an RNAi effect with DNA, and is known to have high stability in serum and low immune response induction.
In addition, double-stranded nucleic acids are modified, for example, by modification of the 2′-OH group, substitution of the backbone with phosphorothioate or modification with a boranophosphate group, introduction of LNA (locked nucleic acid) in which the 2-position and 4-position of ribose are bridged. For example, resistance to nucleases and stabilization can be enhanced. Alternatively, for the purpose of increasing the efficiency of introduction into cells, the 5'-end or 3'-end of the sense strand of the double-stranded nucleic acid can be modified with, for example, nanoparticles, cholesterol, cell membrane-transmitting peptides, or the like. .
(siRNA)
 本発明の二本鎖RNAは、siRNA(キメラ型を含む)であることが好ましい。ここで、「siRNA」とは、18塩基長~29塩基長(好ましくは21~23塩基長)の小分子二本鎖RNAであり、前記siRNAのアンチセンス鎖(ガイド鎖)と相補的な配列をもつ標的遺伝子のmRNAを切断し、標的遺伝子の発現を抑制する機能を有する。すなわちsiRNAは、RNA干渉(RNAi)により、メッセンジャーRNA(mRNA)を破壊し、配列特異的に遺伝子の発現を抑制することができる。siRNAの塩基配列は、RNaseH2AのmRNAの塩基配列(配列番号13)から、適宜設計することができる。前記siRNAは、先述したようなセンス鎖及びアンチセンス鎖を含み、かつ所望のRNAi効果を示すものであれば、その末端構造に特に制限はなく、適宜選択することができ、例えば、前記siRNAは、平滑末端を有するものであってもよいし、突出末端(オーバーハング)を有するものであってもよい。中でも、前記siRNAは、各鎖の3’末端が2塩基~6塩基突出した構造を有することが好ましく、各鎖の3’末端が2塩基突出した構造を有することがより好ましい。また、RNaseH2AのmRNAの塩基配列から作製されたsiRNAであれば、効果の多寡があっても、前立腺がん治療用医薬組成物の有効成分として用いることができる。
(siRNA)
The double-stranded RNA of the present invention is preferably siRNA (including chimeric forms). Here, "siRNA" is a small double-stranded RNA of 18 bases to 29 bases in length (preferably 21 to 23 bases in length) having a sequence complementary to the antisense strand (guide strand) of the siRNA. It has the function of cleaving the mRNA of the target gene with and suppressing the expression of the target gene. That is, siRNA can destroy messenger RNA (mRNA) by RNA interference (RNAi) and suppress gene expression in a sequence-specific manner. The nucleotide sequence of siRNA can be appropriately designed from the nucleotide sequence of RNase H2A mRNA (SEQ ID NO: 13). The siRNA is not particularly limited in its terminal structure as long as it contains a sense strand and an antisense strand as described above and exhibits a desired RNAi effect, and can be appropriately selected. , may have a blunt end or may have a protruding end (overhang). Above all, the siRNA preferably has a structure in which the 3′ end of each strand protrudes by 2 to 6 bases, and more preferably has a structure in which the 3′ end of each strand protrudes by 2 bases. In addition, siRNA produced from the nucleotide sequence of mRNA of RNase H2A can be used as an active ingredient of a pharmaceutical composition for treating prostate cancer, regardless of whether the effect is large or small.
 本発明のsiRNAとしては、表1に示すように、例えば、配列番号14(23塩基)を標的配列とする配列番号1(21塩基)のセンス鎖と配列番号2(21塩基)のアンチセンス鎖とからなるsiRNA(後述する実施例におけるsiRNASEH2A#1)、配列番号15(23塩基)を標的配列とする配列番号3(21塩基)のセンス鎖と配列番号4(21塩基)のアンチセンス鎖とからなるsiRNA(同siRNASEH2A#2)、配列番号16(23塩基)を標的配列とする配列番号5(21塩基)のセンス鎖と配列番号6(21塩基)のアンチセンス鎖とからなるsiRNA(同siRNASEH2A#3)、配列番号17(23塩基)を標的配列とする配列番号7(21塩基)のセンス鎖と配列番号8(21塩基)のアンチセンス鎖とからなるsiRNA(同siRNASEH2A#4)、配列番号18(23塩基)を標的配列とする配列番号9(21塩基)のセンス鎖と配列番号10(21塩基)のアンチセンス鎖とからなるsiRNA(同siRNASEH2A#5)、配列番号19(23塩基)を標的配列とする配列番号11(21塩基)のセンス鎖と配列番号12(21塩基)のアンチセンス鎖とからなるsiRNA(同siRNASEH2A#6)を挙げることができる。 As the siRNA of the present invention, as shown in Table 1, for example, the sense strand of SEQ ID NO: 1 (21 bases) and the antisense strand of SEQ ID NO: 2 (21 bases) targeting SEQ ID NO: 14 (23 bases) siRNA consisting of (siRNASEH2A # 1 in the examples described later), the sense strand of SEQ ID NO: 3 (21 bases) and the antisense strand of SEQ ID NO: 4 (21 bases) with SEQ ID NO: 15 (23 bases) as the target sequence siRNA (same siRNASEH2A#2) consisting of a sense strand of SEQ ID NO: 5 (21 bases) targeting SEQ ID NO: 16 (23 bases) and an antisense strand of SEQ ID NO: 6 (21 bases) (same as siRNA SEH2A #3), siRNA consisting of a sense strand of SEQ ID NO: 7 (21 bases) targeting SEQ ID NO: 17 (23 bases) and an antisense strand of SEQ ID NO: 8 (21 bases) (same siRNA SEH2A #4), siRNA (same siRNASEH2A#5) consisting of the sense strand of SEQ ID NO: 9 (21 bases) and the antisense strand of SEQ ID NO: 10 (21 bases) targeting SEQ ID NO: 18 (23 bases), SEQ ID NO: 19 (23 bases) siRNA (same siRNA SEH2A#6) consisting of the sense strand of SEQ ID NO: 11 (21 bases) and the antisense strand of SEQ ID NO: 12 (21 bases) targeting SEQ ID NO: 11 (21 bases).
Figure JPOXMLDOC01-appb-T000007
(標的配列)
#1:CTCAGCATCCGAGAATCAGGAGG(858-880)(配列番号14)
#2:CCGTTCTTCCCACCGATATTTCC(933-935)(配列番号15)
#3:GTCTACGCCATCTGTTATTGTCC(226-248)(配列番号16)
#4:GCCACTGGGCTTATACAGTATGC(451-473)(配列番号17)
#5:CTGCAGGACTTGGATACTGATTA(685-707)(配列番号18)
#6:TGGGTGTTGGTTGATTAATTTTA(1147-1169)(配列番号19)
Figure JPOXMLDOC01-appb-T000007
(target sequence)
#1: CTCAGCATCCGAGAATCAGGAGG (858-880) (SEQ ID NO: 14)
#2: CCGTTCTTCCCACCGATATTTCC (933-935) (SEQ ID NO: 15)
#3: GTCTACGCCATCTGTTATTGTCC (226-248) (SEQ ID NO: 16)
#4: GCCACTGGGCTTATACAGTATGC (451-473) (SEQ ID NO: 17)
#5: CTGCAGGACTTGGATACTGATTA (685-707) (SEQ ID NO: 18)
#6: TGGGTGTTGGTTGATTAATTTTA (1147-1169) (SEQ ID NO: 19)
(製造方法)
 本発明の二本鎖RNA(特にはsiRNA)は、従来公知の手法に基づき作製することができる。
 例えば、所望のセンス鎖とアンチセンス鎖とに相当する18塩基長~29塩基長の一本鎖RNAを、それぞれ既存のDNA/RNA自動合成装置等を利用して化学的に合成し、それらをアニーリングすることにより作製することができる。また、後述する本発明のベクターのような、所望のsiRNA発現ベクターを構築し、前記発現ベクターを細胞内に導入することにより、細胞内の反応を利用してsiRNAを作製することもできる。
(Production method)
The double-stranded RNA (particularly siRNA) of the present invention can be produced based on conventionally known techniques.
For example, single-stranded RNAs of 18-base length to 29-base length corresponding to the desired sense strand and antisense strand are chemically synthesized using an existing automatic DNA/RNA synthesizer or the like, and then synthesized. It can be produced by annealing. In addition, by constructing a desired siRNA expression vector, such as the vector of the present invention described below, and introducing the expression vector into cells, siRNA can also be produced using intracellular reactions.
 前記ベクターに含まれるDNAは、前記二本鎖核酸をコードする塩基配列の上流(5’側)に、前記二本鎖核酸の転写を制御するためのプロモーター配列が連結されていることが好ましい。前記プロモーター配列としては、特に制限はなく、適宜選択することができ、例えば、CMVプロモーター等のpol II系プロモーター、H1プロモーター、U6プロモーター等のpol III系プロモーターなどが挙げられる。更に、前記二本鎖核酸をコードする塩基配列の下流(3’側)に、前記二本鎖核酸の転写を終結させるためのターミネーター配列が連結されていることがより好ましい。前記ターミネーター配列としても、特に制限はなく、目的に応じて適宜選択することができる。 In the DNA contained in the vector, it is preferable that a promoter sequence for controlling transcription of the double-stranded nucleic acid is linked upstream (5' side) of the base sequence encoding the double-stranded nucleic acid. The promoter sequence is not particularly limited and can be appropriately selected. Examples thereof include pol II promoters such as CMV promoter, and pol III promoters such as H1 promoter and U6 promoter. Furthermore, it is more preferable that a terminator sequence for terminating transcription of the double-stranded nucleic acid is ligated downstream (3' side) of the base sequence encoding the double-stranded nucleic acid. The terminator sequence is also not particularly limited and can be appropriately selected depending on the purpose.
 前記ベクターとしては、前記DNAを含むものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、プラスミドベクター、ウイルスベクターなどが挙げられる。前記ベクターは、前記二本鎖核酸(特にsiRNA)を発現可能な発現ベクターであることが好ましい。
 前記二本鎖核酸の発現様式としては、特に制限はなく、目的に応じて適宜選択することができ、例えば二本鎖核酸としてsiRNAを発現させる方法として、短い一本鎖RNAを二本発現させる方法(タンデム型)、shRNA(short hairpin RNA)として一本鎖RNAを発現させる方法(ヘアピン型)等が挙げられる。ここで、shRNAとは、18塩基~29塩基程度のdsRNA領域と3塩基~9塩基程度のloop領域を含む一本鎖RNAであるが、shRNAは、生体内で発現されることにより、塩基対を形成してヘアピン状の二本鎖RNAとなる。その後、shRNAはDicer(RNase III酵素)により切断されてsiRNAとなり、標的遺伝子の発現抑制に機能することができる。
The vector is not particularly limited as long as it contains the DNA, and can be appropriately selected depending on the purpose. Examples thereof include plasmid vectors and virus vectors. The vector is preferably an expression vector capable of expressing the double-stranded nucleic acid (particularly siRNA).
The expression mode of the double-stranded nucleic acid is not particularly limited and can be appropriately selected according to the purpose. For example, as a method of expressing siRNA as a double-stranded nucleic acid, two short single-stranded RNAs are expressed. A method (tandem type), a method of expressing single-stranded RNA as shRNA (short hairpin RNA) (hairpin type), and the like can be mentioned. Here, shRNA is a single-stranded RNA containing a dsRNA region of about 18 to 29 bases and a loop region of about 3 to 9 bases. to form a hairpin-shaped double-stranded RNA. The shRNA is then cleaved by Dicer (RNase III enzyme) into siRNA, which can function to suppress the expression of target genes.
 前記タンデム型siRNA発現ベクターは、前記siRNAを構成するセンス鎖をコードするDNA配列と、アンチセンス鎖をコードするDNA配列とを含み、かつ、各鎖をコードするDNA配列の上流(5’側)にプロモーター配列がそれぞれ連結され、また、各鎖をコードするDNA配列の下流(3’側)にターミネーター配列がそれぞれ連結されたDNAを含む。 The tandem-type siRNA expression vector contains a DNA sequence encoding a sense strand and a DNA sequence encoding an antisense strand that constitute the siRNA, and is upstream (5' side) of the DNA sequence encoding each strand. A promoter sequence is ligated to each strand, and a terminator sequence is ligated downstream (3' side) of the DNA sequence encoding each strand.
 また、前記ヘアピン型siRNA発現ベクターは、前記siRNAを構成するセンス鎖をコードするDNA配列と、アンチセンス鎖をコードするDNA配列とが逆向きに配置され、前記センス鎖DNA配列とアンチセンス鎖DNA配列とがループ配列を介して接続されており、かつ、それらの上流(5’側)にプロモーター配列が、また、下流(3’側)にターミネーター配列が連結されたDNAを含む。 In the hairpin-type siRNA expression vector, a DNA sequence encoding a sense strand and a DNA sequence encoding an antisense strand constituting the siRNA are arranged in opposite directions, and the sense strand DNA sequence and the antisense strand DNA sequences are linked via a loop sequence, and a promoter sequence is linked upstream (5' side) and a terminator sequence is linked downstream (3' side).
《RNaseH2阻害化合物》
 本発明の医薬組成物は、RNaseH2阻害化合物を含んでもよい。RNaseH2阻害化合物は、特に限定されるものではないが、下記式(1):
Figure JPOXMLDOC01-appb-C000008
(式中、Xは単結合、炭素数1~3のアルキレン基、又は-NH-CO-C-であり、
Yは単結合、又は-C-S-であり、
は、置換基を有することのある5~6員の芳香族複素環基、置換基を有することのあるフェニル基、置換基を有することのある炭素数5~6のシクロアルキル基、又は炭素数3~8のアルキル基であり、
は、置換基を有することのある炭素数5~6のシクロアルキル基、置換基を有することのある5~6員の芳香族複素環基、置換基を有することのあるフェニル基、又は炭素数3~8のアルキル基であり、
-NH-の水素原子(H)が解離し、窒素原子(N)がR基の置換基の硫黄原子(S)と結合して環構造を形成してもよい)
で表される化合物が挙げられる。
<<RNase H2 inhibitory compound>>
A pharmaceutical composition of the invention may comprise an RNase H2 inhibitory compound. The RNase H2 inhibitory compound is not particularly limited, but has the following formula (1):
Figure JPOXMLDOC01-appb-C000008
(Wherein, X is a single bond, an alkylene group having 1 to 3 carbon atoms, or -NH-CO-C-,
Y is a single bond or -CS-,
R 1 is a 5- to 6-membered aromatic heterocyclic group which may have a substituent, a phenyl group which may have a substituent, a cycloalkyl group having 5 to 6 carbon atoms which may have a substituent, or an alkyl group having 3 to 8 carbon atoms,
R 2 is a cycloalkyl group having 5 to 6 carbon atoms which may have a substituent, a 5- to 6-membered aromatic heterocyclic group which may have a substituent, a phenyl group which may have a substituent, or an alkyl group having 3 to 8 carbon atoms,
The hydrogen atom (H) of —NH— may be dissociated, and the nitrogen atom (N) may bond with the sulfur atom (S) of the substituent of the R 2 group to form a ring structure)
The compound represented by is mentioned.
 本明細書において「Xが単結合である」とは、Rと窒素原子(N)とが、そのまま結合することを意味する。また、「Yが単結合である」とは、Rと炭素原子(C)とが、そのまま結合することを意味する。
 炭素数1~3のアルキレン基としては、メチレン基、エチレン基、又はプロピレン基が挙げられる。
 置換基を有することのある5~6員の芳香族複素環基とは、ヘテロ原子を環内に含む芳香族複素環から水素原子1個を除いた基を意味する。ヘテロ原子としては、酸素原子、硫黄原子、又は窒素原子が挙げられる。具体的な芳香族複素環基又はその縮合環としては、ピリジル基、ピラジル基、ピリミジル基、キノリル基、イソキノリル基、ピロリル基、インドレニル基、イミダゾリル基、カルバゾリル基、チエニル基、又はフリル基が挙げられる。置換基を有する場合は、芳香族複素環基の水素原子が他の基に置換されるが、置換基の数は限定されるものではなく、例えば1~5のいずれかである。また、2つの置換基が一緒になって、芳香族環、芳香族複素環、飽和複素環、又はシクロアルキル環として、5~6員の芳香族複素環基と縮合してもよく、2環、又は3環以上の縮合でもよい。
 炭素数5~6のシクロアルキル基としては、シクロペンチル基又はシクロヘキシル基が挙げられる。
 炭素数3~8のアルキル基としては、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、又はオクチル基が挙げられる。
As used herein, “X is a single bond” means that R 1 and a nitrogen atom (N) are directly bonded. Moreover, "Y is a single bond" means that R 2 and the carbon atom (C) are bonded as they are.
Examples of the alkylene group having 1 to 3 carbon atoms include methylene group, ethylene group and propylene group.
A 5- to 6-membered aromatic heterocyclic group which may have a substituent means a group obtained by removing one hydrogen atom from an aromatic heterocyclic ring containing a heteroatom in the ring. Heteroatoms include oxygen, sulfur, or nitrogen atoms. Specific aromatic heterocyclic groups or condensed rings thereof include pyridyl, pyrazyl, pyrimidyl, quinolyl, isoquinolyl, pyrrolyl, indolenyl, imidazolyl, carbazolyl, thienyl, and furyl groups. be done. When the aromatic heterocyclic group has a substituent, the hydrogen atom of the aromatic heterocyclic group is replaced with another group, but the number of substituents is not limited, and is, for example, 1 to 5. Two substituents together may also be fused with a 5- to 6-membered aromatic heterocyclic group as an aromatic ring, heteroaromatic ring, saturated heterocyclic ring, or cycloalkyl ring, and bicyclic , or three or more rings may be condensed.
A cycloalkyl group having 5 to 6 carbon atoms includes a cyclopentyl group or a cyclohexyl group.
Examples of alkyl groups having 3 to 8 carbon atoms include propyl, butyl, pentyl, hexyl, heptyl and octyl groups.
 前記置換基としては、炭素数1~3のアルキル基、ハロゲン原子(例えば、塩素原子、フッ素原子、又は臭素原子)、アミド基(-CO-NH)、カルボキシ基、メトキシカルボニル基、又はエトシキカルボニル基が挙げられる。
 芳香族複素環基、フェニル基、又はシクロアルキル基の置換基としては、2つの置換基が一緒になって、芳香族環、芳香族複素環、飽和複素環、又はシクロアルキル環として、芳香族複素環基、フェニル基、又はシクロアルキル基と縮合してもよく、2環、又は3環以上の縮合環でもよい。芳香族環、芳香族複素環、飽和複素環、又はシクロアルキル環は、5員又は6員が好ましい。これらの縮合環は、されに前記置換基を有してもよい。
Examples of the substituent include an alkyl group having 1 to 3 carbon atoms, a halogen atom (eg, a chlorine atom, a fluorine atom, or a bromine atom), an amide group (—CO—NH 2 ), a carboxy group, a methoxycarbonyl group, or an ethyl Toshikicarbonyl group is mentioned.
As substituents of an aromatic heterocyclic group, a phenyl group, or a cycloalkyl group, two substituents together form an aromatic ring, an aromatic heterocyclic ring, a saturated heterocyclic ring, or a cycloalkyl ring, an aromatic It may be condensed with a heterocyclic group, a phenyl group, or a cycloalkyl group, and may be a condensed ring having two, three or more rings. The aromatic ring, aromatic heterocyclic ring, saturated heterocyclic ring or cycloalkyl ring is preferably 5-membered or 6-membered. These condensed rings may further have the substituents described above.
 前記-NH-の水素原子(H)が解離し、窒素原子(N)がR基の置換基の硫黄原子(S)と結合して環構造を形成する場合、Rのシクロアルキル基、芳香族複素環基、又はフェニル基と縮合環を形成することになる。 When the hydrogen atom (H) of the -NH- is dissociated and the nitrogen atom (N) bonds with the sulfur atom (S) of the substituent of the R 2 group to form a ring structure, the cycloalkyl group of R 2 , It forms a condensed ring with an aromatic heterocyclic group or a phenyl group.
 前記式(1)の化合物としては、具体的には下記の化学式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
Specific examples of the compound of formula (1) include compounds represented by the following chemical formulas.
Figure JPOXMLDOC01-appb-C000009
 前記式(1)で表される化合物は、好ましくは下記式(2):
Figure JPOXMLDOC01-appb-C000010
で表される2-シクロペンタンアミド-4-エチル-5-メチルチオフェン-3-カルボキサミド(2-cyclopentaneamido-4-ethyl-5-methylthiophene-3-carboxamide)(以下、化合物Aと称することがある)又は
下記式(3):
Figure JPOXMLDOC01-appb-C000011
で表されるN-[(フラン-2-イル)メチル]-2-{8-チア-4,6-ジアザトリシクロ[7.4.0.02,7]トリデカ-1(9)、2(7)、3,5-テトラエン- 3-イルスルファニル}アセトアミド(N-[(furan-2-yl)methyl]-2-{8-thia-4,6-diazatricyclo[7.4.0.02,7]trideca-1(9),2(7),3,5-tetraen-3-ylsulfanyl}acetamide)(以下、化合物Bと称することがある)である。
The compound represented by the formula (1) is preferably represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000010
2-cyclopentanamide-4-ethyl-5-methylthiophene-3-carboxamide (2-cyclopentaneamido-4-ethyl-5-methylthiophene-3-carboxamide) represented by (hereinafter sometimes referred to as compound A) or the following formula (3):
Figure JPOXMLDOC01-appb-C000011
N-[(furan-2-yl)methyl]-2-{8-thia-4,6-diazatricyclo[7.4.0.02,7]trideca-1 (9), 2 (7 ), 3,5-tetraen-3-ylsulfanyl}acetamide (N-[(furan-2-yl)methyl]-2-{8-thia-4,6-diazatricyclo[7.4.0.02,7]trideca-1 (9),2(7),3,5-tetraen-3-ylsulfanyl}acetamide) (hereinafter sometimes referred to as compound B).
 本発明に用いられるRNaseH2阻害化合物は、それらの塩を含む。前記RNaseH2阻害化合物の塩は、製薬学的に許容される塩であり、置換基の種類によって、酸付加塩又は塩基との塩を形成する場合がある。具体的には、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の無機酸や、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、マンデル酸、酒石酸、ジベンゾイル酒石酸、ジトルオイル酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、アスパラギン酸、グルタミン酸等の有機酸との酸付加塩、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム等の無機塩基、メチルアミン、エチルアミン、エタノールアミン、リシン、オルニチン等の有機塩基との塩、アセチルロイシン等の各種アミノ酸及びアミノ酸誘導体との塩やアンモニウム塩等が挙げられる。 RNase H2 inhibitory compounds used in the present invention include salts thereof. The salt of the RNaseH2 inhibitory compound is a pharmaceutically acceptable salt, and may form an acid addition salt or a salt with a base depending on the type of substituent. Specifically, inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid , lactic acid, malic acid, mandelic acid, tartaric acid, dibenzoyltartaric acid, ditoluoyltartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, aspartic acid, glutamic acid, and other organic acids. Salts, salts with inorganic bases such as sodium, potassium, magnesium, calcium and aluminum, salts with organic bases such as methylamine, ethylamine, ethanolamine, lysine and ornithine, salts with various amino acids and amino acid derivatives such as acetylleucine, and ammonium salts etc.
 更に、本発明に用いられる化合物は、前記のRNaseH2阻害化合物、並びにその塩の各種の水和物や溶媒和物、及び結晶多形の物質も包含する。また前記化合物は、種々の放射性又は非放射性同位体でラベルされた化合物も包含する。 Furthermore, the compounds used in the present invention also include various hydrates and solvates of the above-mentioned RNase H2 inhibitory compounds and salts thereof, and polymorphic substances. The compounds also include compounds labeled with various radioactive or non-radioactive isotopes.
 前記RNaseH2阻害化合物、又はその塩の1種又は2種以上を有効成分として含有する医薬組成物は、当分野において通常用いられている賦形剤、即ち、薬剤用賦形剤や薬剤用担体等を用いて、通常使用されている方法によって調製することができる。
 投与は錠剤、丸剤、カプセル剤、顆粒剤、散剤、液剤等による経口投与、又は、関節内、静脈内、筋肉内等の注射剤、坐剤、点眼剤、眼軟膏、経皮用液剤、軟膏剤、経皮用貼付剤、経粘膜液剤、経粘膜貼付剤、吸入剤等による非経口投与のいずれの形態であってもよい。
A pharmaceutical composition containing one or more of the RNase H2 inhibitory compounds or salts thereof as an active ingredient may be prepared using excipients commonly used in the art, such as pharmaceutical excipients and pharmaceutical carriers. can be prepared by a commonly used method.
Administration is oral administration in tablets, pills, capsules, granules, powders, liquids, etc.; Any form of parenteral administration such as an ointment, a transdermal patch, a transmucosal liquid, a transmucosal patch, or an inhalant may be used.
 経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる。このような固体組成物においては、1種又は2種以上の有効成分を、少なくとも1種の不活性な賦形剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、及び/又はメタケイ酸アルミン酸マグネシウム等と混合される。組成物は、常法に従って、不活性な添加剤、例えばステアリン酸マグネシウムのような滑沢剤やカルボキシメチルスターチナトリウム等のような崩壊剤、安定化剤、溶解補助剤を含有していてもよい。錠剤又は丸剤は必要により糖衣又は胃溶性若しくは腸溶性物質のフィルムで被膜してもよい。
 経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロップ剤又はエリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水又はエタノールを含む。当該液体組成物は不活性な希釈剤以外に可溶化剤、湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有していてもよい。
Solid compositions for oral administration include tablets, powders, granules and the like. In such solid compositions one or more active ingredients are combined with at least one inert excipient such as lactose, mannitol, glucose, hydroxypropylcellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone. , and/or magnesium aluminometasilicate and the like. The composition may contain inert additives such as lubricants such as magnesium stearate, disintegrants such as sodium carboxymethyl starch, stabilizers, and solubilizers in accordance with conventional methods. . Tablets or pills may, if desired, be sugar-coated or film-coated with gastric or enteric substances.
Liquid compositions for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or elixirs and the like, and commonly used inert diluents such as purified water. or containing ethanol. In addition to inert diluents, the liquid compositions may contain adjuvants such as solubilizers, wetting agents, suspending agents, sweetening agents, flavoring agents, fragrances and preservatives.
 非経口投与のための注射剤は、無菌の水性又は非水性の溶液剤、懸濁剤又は乳濁剤を含有する。水性の溶剤としては、例えば注射用蒸留水又は生理食塩液が含まれる。非水性の溶剤としては、例えばプロピレングリコール、ポリエチレングリコール又はオリーブ油のような植物油、エタノールのようなアルコール類、又はポリソルベート80(局方名)等がある。このような組成物は、更に等張化剤、防腐剤、湿潤剤、乳化剤、分散剤、安定化剤、又は溶解補助剤を含んでもよい。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。また、これらは無菌の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解又は懸濁して使用することもできる。 Injections for parenteral administration contain sterile aqueous or non-aqueous solutions, suspensions or emulsions. Aqueous solvents include, for example, distilled water for injection or physiological saline. Examples of non-aqueous solvents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, alcohols such as ethanol, and polysorbate 80 (pharmacopoeial name). Such compositions may further comprise a tonicity agent, a preservative, a wetting agent, an emulsifying agent, a dispersing agent, a stabilizing agent, or a solubilizing agent. They are sterilized by, for example, filtration through a bacteria-retaining filter, formulation with sterilizing agents or irradiation. They can also be used by preparing a sterile solid composition and dissolving or suspending them in sterile water or a sterile solvent for injection before use.
 外用剤としては、軟膏剤、硬膏剤、クリーム剤、ゼリー剤、パップ剤、噴霧剤、ローション剤、点眼剤、眼軟膏等を包含する。一般に用いられる軟膏基剤、ローション基剤、水性又は非水性の液剤、懸濁剤、乳剤等を含有する。例えば、軟膏又はローション基剤としては、ポリエチレングリコール、プロピレングリコール、白色ワセリン、サラシミツロウ、ポリオキシエチレン硬化ヒマシ油、モノステアリン酸グリセリン、ステアリルアルコール、セチルアルコール、ラウロマクロゴール、セスキオレイン酸ソルビタン等が挙げられる。 External preparations include ointments, plasters, creams, jellies, poultices, sprays, lotions, eye drops, ophthalmic ointments, and the like. It contains commonly used ointment bases, lotion bases, aqueous or non-aqueous solutions, suspensions, emulsions and the like. For example, ointment or lotion bases include polyethylene glycol, propylene glycol, white petrolatum, bleached beeswax, polyoxyethylene hydrogenated castor oil, glyceryl monostearate, stearyl alcohol, cetyl alcohol, lauromacrogol, sorbitan sesquioleate, and the like. mentioned.
 吸入剤や経鼻剤等の経粘膜剤は固体、液体又は半固体状のものが用いられ、従来公知の方法に従って製造することができる。例えば公知の賦形剤や、更に、pH調整剤、防腐剤、界面活性剤、滑沢剤、安定剤や増粘剤等が適宜添加されていてもよい。投与は、適当な吸入又は吹送のためのデバイスを使用することができる。例えば、計量投与吸入デバイス等の公知のデバイスや噴霧器を使用して、化合物を単独で又は処方された混合物の粉末として、もしくは医薬的に許容し得る担体と組み合わせて溶液又は懸濁液として投与することができる。乾燥粉末吸入器等は、単回又は多数回の投与用のものであってもよく、乾燥粉末又は粉末含有カプセルを利用することができる。あるいは、適当な駆出剤、例えば、クロロフルオロアルカン、ヒドロフルオロアルカン又は二酸化炭素等の好適な気体を使用した加圧エアゾールスプレー等の形態であってもよい。 Transmucosal agents such as inhalants and nasal agents are solid, liquid or semi-solid, and can be produced according to conventionally known methods. For example, known excipients, pH adjusters, preservatives, surfactants, lubricants, stabilizers, thickeners and the like may be added as appropriate. Administration can use a suitable inhalation or insufflation device. For example, known devices such as metered dose inhalation devices and nebulizers are used to administer the compounds either alone or as a powder in a formulated mixture, or as a solution or suspension in combination with a pharmaceutically acceptable carrier. be able to. Dry powder inhalers and the like may be for single or multiple doses and may utilize dry powder or powder-containing capsules. Alternatively, it may be in the form of a pressurized aerosol spray or the like using a suitable propellant such as a chlorofluoroalkane, hydrofluoroalkane or carbon dioxide.
 投与量は病気の種類、症状、年齢、性別など個々の患者によって異なるが、通常、経口投与の場合、成人1日あたり0.001mg/kg~500mg/kg程度であり、これを1回、あるいは2回から4回に分けて投与する。注射で投与する場合は、成人1日あたり0.0001mg/kg~10mg/kg程度を1回乃至2回、急速静注するかあるいは点滴静注する。吸入の場合は成人1日あたり0.0001mg/kg~10mg/kg程度を1回、又は複数回投与する。経皮剤の場合は成人1日あたり0.01mg/kg~10mg/kg程度を1日1回乃至2回貼付する。 The dosage varies depending on the type of disease, symptoms, age, sex, etc. of each individual patient, but in the case of oral administration, it is usually about 0.001 mg / kg to 500 mg / kg per day for adults, and this is once or Administer in 2 to 4 divided doses. When administered by injection, once or twice a day for an adult, about 0.0001 mg/kg to 10 mg/kg is administered by bolus injection or intravenous drip infusion. In the case of inhalation, about 0.0001 mg/kg to 10 mg/kg is administered once or multiple times per day for adults. In the case of a transdermal preparation, the dose of about 0.01 mg/kg to 10 mg/kg per day for adults is applied once or twice a day.
 前記RNaseH2阻害化合物、又はその塩は、前記RNaseH2阻害化合物、又はその塩が有効性を示すと考えられる疾患の種々の治療剤又は予防剤と併用することができる。当該併用は、同時投与、或いは別個に連続して、若しくは所望の時間間隔をおいて投与してもよい。同時投与製剤は、配合剤であっても別個に製剤化されていてもよい。 The RNaseH2 inhibitory compound or its salt can be used in combination with various therapeutic or preventive agents for diseases for which the RNaseH2 inhibitory compound or its salt is considered to be effective. The combinations may be administered simultaneously or administered separately sequentially or at desired time intervals. Co-administered formulations may be combined or formulated separately.
 本発明の医薬組成物の治療対象である前立腺がんは、前立腺に発生する癌であり、ホルモン療法として、抗アンドロゲン剤の投与が行われることもある。治療対象の前立腺がんの種類は、特に限定されるものではないが、ホルモン療法耐性を獲得したアンドロゲン非依存性前立腺がん(CRPC)に特に有効である。AR陽性CRPC及びAR陰性のCRPCに顕著な抗がん作用を示し、本発明の医薬組成物は、ホルモン療法耐性を獲得したCRPCに有効に用いることができる。しかしながら、ホルモン療法耐性ではない前立腺がんやその他の機序による治療抵抗性前立腺がんも治療することができる。 Prostate cancer, which is the target of treatment with the pharmaceutical composition of the present invention, is cancer that develops in the prostate gland, and antiandrogen agents are sometimes administered as hormone therapy. The type of prostate cancer to be treated is not particularly limited, but it is particularly effective for androgen-independent prostate cancer (CRPC) that has acquired resistance to hormone therapy. The pharmaceutical composition of the present invention can be effectively used for CRPC that has acquired resistance to hormone therapy, since it exhibits a remarkable anticancer effect on AR-positive and AR-negative CRPC. However, prostate cancer that is not hormonally resistant and resistant to treatment by other mechanisms can also be treated.
《前立腺がんの治療方法》
 前記RNase H2阻害物質を前立腺がんの治療方法に用いることができる。すなわち、本明細書は、前記RNAi効果を有する二本鎖核酸、抗RNase H抗体、又はRNase H阻害化合物等のRNase H2阻害物質の治療有効量を前立腺がん患者に投与する工程を含む、前立腺がんの治療方法を開示する。
<<Treatment method for prostate cancer>>
The RNase H2 inhibitors can be used in methods of treating prostate cancer. That is, the present specification includes the step of administering to a patient with prostate cancer a therapeutically effective amount of an RNase H2 inhibitor such as a double-stranded nucleic acid having an RNAi effect, an anti-RNase H antibody, or an RNase H inhibitory compound. A method of treating cancer is disclosed.
《前立腺癌の治療方法における使用のためのRNase H2阻害物質》
 前記RNase H2阻害物質は、前立腺がんの治療方法に使用することができる。すなわち、前立腺がんの治療方法に使用するための、前記RNAi効果を有する二本鎖核酸、抗RNase H抗体、又はRNase H阻害化合物等のRNase H2阻害物質を開示する。
RNase H2 inhibitors for use in methods of treating prostate cancer
The RNase H2 inhibitors can be used in methods of treating prostate cancer. Thus, disclosed are RNase H2 inhibitors, such as double-stranded nucleic acids with said RNAi effect, anti-RNase H antibodies, or RNase H inhibitory compounds, for use in methods of treating prostate cancer.
《RNase H2阻害物質の医薬組成物の製造への使用》
 前記RNase H2阻害物質は、前立腺がんの治療用医薬組成物の製造へ使用することができる。すなわち、本明細書は、前記前記RNAi効果を有する二本鎖核酸、抗RNase H抗体、又はRNase H阻害化合物等のRNase H2阻害物質の、前立腺がんの治療用医薬組成物の製造への使用を開示する。
<<Use of RNase H2 Inhibitor for Manufacture of Pharmaceutical Composition>>
Said RNase H2 inhibitors can be used for the manufacture of a pharmaceutical composition for the treatment of prostate cancer. That is, the present specification describes the use of a double-stranded nucleic acid having an RNAi effect, an anti-RNase H antibody, or an RNase H2 inhibitory substance such as an RNase H inhibitory compound for the production of a pharmaceutical composition for treating prostate cancer. disclose.
《作用》
 RNase H2阻害物質が前立腺癌の治療に有効であるメカニズムは、詳細に解析されているわけではないが、以下のように推定することができる。RNase H2阻害物質は、RNase H2のmRNAの発現を阻害すること、RNase H2タンパク質の発現を阻害すること、RNase H2の機能(活性)を阻害することによって、RNase H2の活性が亢進している前立腺がんを抑制することができる。例えば、RNase H2の発現又は活性を抑制することによって、がん抑制遺伝子p53発現量を増加、及び/又はAR発現量を減少させることで、前立腺がん細胞の増殖を抑制できると推定される。
 本発明のRNase H2阻害化合物は、RNase H2の機能(活性)を阻害することによって、RNase H2の活性が亢進している前立腺がんを抑制することができるが、特に下記式(1)のR及びRに、それぞれ5~6員の芳香族複素環基、フェニル基、炭素数5~6のシクロアルキル基、又は炭素数3~8のアルキル基を有することにより、RNase H2阻害活性を示すものと推定される。
Figure JPOXMLDOC01-appb-C000012
《Action》
Although the mechanism by which RNase H2 inhibitors are effective in treating prostate cancer has not been analyzed in detail, it can be presumed as follows. The RNase H2 inhibitor inhibits the expression of RNase H2 mRNA, inhibits the expression of RNase H2 protein, and inhibits the function (activity) of RNase H2, thereby increasing the activity of RNase H2. Cancer can be suppressed. For example, by suppressing the expression or activity of RNase H2, it is presumed that the proliferation of prostate cancer cells can be suppressed by increasing the expression level of the tumor suppressor gene p53 and/or decreasing the expression level of AR.
The RNase H2 inhibitory compound of the present invention can suppress prostate cancer in which RNase H2 activity is enhanced by inhibiting the function (activity) of RNase H2. 1 and R 2 each have a 5- to 6-membered aromatic heterocyclic group, a phenyl group, a cycloalkyl group having 5 to 6 carbon atoms, or an alkyl group having 3 to 8 carbon atoms, thereby exhibiting RNase H2 inhibitory activity. presumed to indicate
Figure JPOXMLDOC01-appb-C000012
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 The present invention will be specifically described below with reference to examples, but these are not intended to limit the scope of the present invention.
《実施例1》
 本実施例では、RNase H2Aに対するsiRNAを用いて、AR陽性の前立腺がん細胞(LNCaP細胞及び22Rv1細胞)のmRNA及びタンパク質の発現及び細胞の増殖に対する影響を検討した。
 アンドロゲン受容体陽性前立腺がん細胞株LNCaP(ヒト左鎖骨リンパ節転移由来前立腺がん細胞)と22Rv1細胞(ヒト前立腺がん由来上皮細胞)は、37℃、5%CO条件下で培養した。10%Fetal bovine serum(FBS)、1%ペニシリン-ストレプトマイシン(Thermofisher, Tokyo, Japan)を加えたRoswell Park Memorial Institute(RPMI)1640(Sigma-Aldrich Japan, Tokyo, Japan)をメディウムとして使用した。
<<Example 1>>
In this example, siRNA against RNase H2A was used to examine the effects on the expression of mRNA and protein in AR-positive prostate cancer cells (LNCaP cells and 22Rv1 cells) and cell proliferation.
Androgen receptor-positive prostate cancer cell lines LNCaP (human left clavicular lymph node-derived prostate cancer cells) and 22Rv1 cells (human prostate cancer-derived epithelial cells) were cultured under conditions of 37° C. and 5% CO 2 . Roswell Park Memorial Institute (RPMI) 1640 (Sigma-Aldrich Japan, Tokyo, Japan) supplemented with 10% Fetal bovine serum (FBS) and 1% penicillin-streptomycin (Thermofisher, Tokyo, Japan) was used as the medium.
 以下のsiRNAを作製した。
siRNASEH2A#1(858-880)
5’-CAGCAUCCGAGAAUCAGGAGG-3’
5’-UCCUGAUUCUCGGAUGCUGAG-3’
siRNASEH2A#2(933-935)
5’-GUUCUUCCCACCGAUAUUUCC-3’
5’-AAAUAUCGGUGGGAAGAACGG-3’
siRNASEH2A#3(226-248)
5’-CUACGCCAUCUGUUAUUGUCC-3’
5’-ACAAUAACAGAUGGCGUAGAC-3’
siRNASEH2A#4(451-473)
5’-CACUGGGCUUAUACAGUAUGC-3’
5’-AUACUGUAUAAGCCCAGUGGC-3’
siRNASEH2A#5(685-707)
5’-GCAGGACUUGGAUACUGAUUA-3’
5’-AUCAGUAUCCAAGUCCUGCAG-3’
siRNASEH2A#6(1147-1169)
5’-GGUGUUGGUUGAUUAAUUUUA-3’
5’-AAAUUAAUCAACCAACACCCA-3’
The following siRNA was produced.
siRNA SEH2A#1 (858-880)
5'-CAGCAUCCGAGAAUCAGGAGG-3'
5'-UCCUGAUUCUCGGAUGCUGAG-3'
siRNA SEH2A#2 (933-935)
5'-GUUCUUCCCACCGAUAUUUCC-3'
5'-AAAUAUCGGUGGGAAGAACGG-3'
siRNA SEH2A#3(226-248)
5'-CUACGCCAUCUGUUAUUGUCC-3'
5'-ACAAUAACAGAUGGCGUAGAC-3'
siRNA SEH2A#4(451-473)
5'-CACUGGGCUUAUACAGUAUGC-3'
5'-AUACUGUAUAAGCCCAGUGGC-3'
siRNA SEH2A#5(685-707)
5'-GCAGGACUUGGAUACUGAUUA-3'
5'-AUCAGUAUCCAAGUCCUGCAG-3'
siRNA SEH2A#6 (1147-1169)
5'-GGUGUUGGUUGAUUAAUUUUA-3'
5'-AAAUUAAUCAACCAACACCCA-3'
 コントロールsiRNA(silencer select siRNA)はThermofisher(Tokyo, Japan)より購入した。siRNAの細胞内への導入はLipofectamine RNAiMAX(Thermofisher, Tokyo, Japan)を用い、プロトコルにしたがって行った。
 RNASEH2Aの発現抑制は、qRT-PCR及びRNASEH2A、AR特異抗体を用いたwestern blot法にて測定した。細胞増殖能の解析は、生細胞数のカウントにより行った。5×10個ずつ24穴プレートに細胞を播種し、翌日にRNase H2iを加えた。RNase H2i添加3日後にPBSで細胞を回収し、同量の0.5%トリパンブルー染色液(Nacalaitesque, Kyoto, Japan)を加え、死細胞の染色を行った。血球計算版(NanoEnTek, Seoul, Korea)で染色されない細胞数をカウントした。解析は各群において3回のカウントを行い、平均値、標準偏差を計算した。
Control siRNA (silencer select siRNA) was purchased from Thermofisher (Tokyo, Japan). Introduction of siRNA into cells was performed using Lipofectamine RNAiMAX (Thermofisher, Tokyo, Japan) according to the protocol.
Suppression of RNASEH2A expression was measured by qRT-PCR and western blot method using RNASEH2A and AR-specific antibodies. Analysis of cell proliferation ability was performed by counting the number of viable cells. 5×10 4 cells were seeded in a 24-well plate, and RNase H2i was added the next day. Three days after the addition of RNase H2i, the cells were collected with PBS, and the same amount of 0.5% trypan blue staining solution (Nacalaitesque, Kyoto, Japan) was added to stain dead cells. The number of unstained cells was counted with a hemocytometer (NanoEnTek, Seoul, Korea). For analysis, each group was counted three times, and the mean and standard deviation were calculated.
 siRNASEH2A処理細胞ではsiControlと比較し、RNASEH2A及びARのmRNA、タンパク質発現量が抑制されることが確認された(図1A、B、D、E)。また、RNASEH2Aの発現抑制は、22Rv1ではいずれのsiRNASEH2Aにおいても有意差を持って細胞増殖を抑制し、LNCaPではsiRNASEH2A#2、#5で有意差を持って細胞増殖を抑制することが分かった(図1C及びF)。 In siRNASEH2A-treated cells, it was confirmed that RNASEH2A and AR mRNA and protein expression levels were suppressed compared to siControl (Fig. 1A, B, D, E). In addition, suppression of RNASEH2A expression was found to suppress cell growth with a significant difference in any siRNASEH2A in 22Rv1, and in LNCaP, siRNASEH2A #2 and #5 with a significant difference ( Figures 1C and F).
《実施例2》
 本実施例では、siRNASEH2A#1及びsiRNASEH2A#5を用いて、がん抑制遺伝子p53の発現に対する影響を検討した。
 RNASEH2Aの発現抑制を行い、RNASEH2A、p53、Ac-p53特異抗体を用いたwestern blot法でタンパク質発現を検討した。siRNASEH2A#1及び#5処理細胞ではsiControlに比べ、p53、Ac-p53の発現量が増加していた(図2A及びC)。更に、p53下流シグナル(p53、p21、BAX)のmRNA発現量をqRT-PCRにて計測したところ、siRNASEH2A#1、#5処理細胞では、siControlに比べp53、p21、BAXの発現量が増加していた(図2B及びD)。
<<Example 2>>
In this example, siRNASEH2A#1 and siRNASEH2A#5 were used to examine the effect on the expression of the tumor suppressor gene p53.
RNASEH2A expression was suppressed, and protein expression was examined by Western blotting using RNASEH2A, p53, and Ac-p53 specific antibodies. The expression levels of p53 and Ac-p53 were increased in siRNA SEH2A #1 and #5-treated cells compared to siControl (FIGS. 2A and C). Furthermore, when the mRNA expression levels of p53 downstream signals (p53, p21, BAX) were measured by qRT-PCR, the expression levels of p53, p21, and BAX increased in siRNA SEH2A #1 and #5-treated cells compared to siControl. (Fig. 2B and D).
《実施例3》
 本実施例では、siRNASEH2A#1及びsiRNASEH2A#5を用いて、AR及びAR-V7の発現に対する影響を検討した。
 RNASEH2Aの発現抑制を行い、AR及びAR-V7特異抗体を用いたwestern blot法でタンパク質発現を検討した。また、AR及びAR-V7のmRNAの発現をqPCRによって測定した。更に、アンドロゲンであるジヒドロテストステロンDHT添加による増殖抑制効果への影響を調べた。
 siRNASEH2A#1及び#5処理細胞ではsiControlに比べ、AR及びAR-V7の発現量が減少していた(図3)。更に、DHT依存的な増殖促進効果がsiControlと比べて有意に抑制を受けていた。
<<Example 3>>
In this example, siRNASEH2A#1 and siRNASEH2A#5 were used to examine the effects on the expression of AR and AR-V7.
Expression of RNASEH2A was suppressed, and protein expression was examined by Western blot method using AR and AR-V7 specific antibodies. Expression of AR and AR-V7 mRNA was also measured by qPCR. Furthermore, the effect of the addition of dihydrotestosterone DHT, which is an androgen, on the antiproliferative effect was investigated.
The expression levels of AR and AR-V7 were decreased in siRNA SEH2A #1 and #5 treated cells compared to siControl (Fig. 3). Furthermore, the DHT-dependent growth-promoting effect was significantly suppressed compared to siControl.
《実施例4》
 本実施例では、RNase H2Aに対するsiRNAにより、去勢抵抗性前立腺がん細胞へのin vivoでの影響をヌードマウスで検討した。
 22Rv1細胞をヌードマウスへ皮下注射し、腫瘍形成を確認した後に去勢術を行った(N=10)。48時間おきにsiControl及びsiRNASEH2A#5を腫瘍へ注射し、腫瘍サイズを計測した。siControlと比較し、siRNASEH2A#5で有意に腫瘍サイズの有意な減少が認められた。更に腫瘍からタンパク質を抽出し、AR、p53の発現量の検出を検討したところ、siRNASEH2A#5処理によりp53の発現量の増加、AR、AR-V7の発現量の減少が観察された(図4)。
<<Example 4>>
In this example, the in vivo effects of siRNA against RNase H2A on castration-resistant prostate cancer cells were examined in nude mice.
22Rv1 cells were subcutaneously injected into nude mice, and castration was performed after tumor formation was confirmed (N=10). Tumors were injected with siControl and siRNA SEH2A#5 every 48 hours and tumor size was measured. A significant reduction in tumor size was observed with siRNA SEH2A#5 compared to siControl. Furthermore, when proteins were extracted from the tumor and the detection of the expression levels of AR and p53 was examined, an increase in the expression levels of p53 and a decrease in the expression levels of AR and AR-V7 were observed with siRNASEH2A#5 treatment (Fig. 4). ).
《実施例5》
 本実施例では、RNase H2阻害化合物が前立腺がん細胞株へ与える影響の検討を行った。RNase H2阻害化合物として、2-シクロペンタンアミド-4-エチル-5-メチルチオフェン-3-カルボキサミド(2-cyclopentaneamido-4-ethyl-5-methylthiophene-3-carboxamide;RNaseH2i#1)及びN-[(フラン-2-イル)メチル]-2-{8-チア-4,6-ジアザトリシクロ[7.4.0.02,7]トリデカ-1(9)、2(7)、3,5-テトラエン-3-イルスルファニル}アセトアミド(N-[(furan-2-yl)methyl]-2-{8-thia-4,6-diazatricyclo[7.4.0.02,7]trideca-1(9),2(7),3,5-tetraen-3-ylsulfanyl}acetamide;RNaseH2i#2)を用いた。22Rv1、LNCaP、RWPE細胞を24穴プレートに3×10個ずつ播種し、24時間後に化合物A又は化合物Bを100、50、10、5、1、0.5、0.1、0.05μM添加し、3日後にPBSで細胞を回収し、0.5%トリパンブルー染色液で死細胞を染色し、染色されていない細胞数を計測した。それぞれ3度の計測を行い、コントロールでの生細胞数との割合を計測しt-testによりコントロールにおける生細胞数と比較し統計解析を行った。22Rv1細胞では化合物A又は化合物B共に5μMでコントロールと比較した細胞数が半数になり、LNCaP細胞ではRNaseH2i#1が10μM、RNaseH2i#2が5μMで半数となった。しかし、正常前立腺上皮細胞株であるRWPE細胞では細胞増殖抑制効果は認められなかった(図5)。
<<Example 5>>
In this example, the effects of RNase H2 inhibitory compounds on prostate cancer cell lines were examined. 2-cyclopentaneamido-4-ethyl-5-methylthiophene-3-carboxamide (RNaseH2i#1) and N-[( furan-2-yl)methyl]-2-{8-thia-4,6-diazatricyclo[7.4.0.02,7]trideca-1(9),2(7),3,5-tetraene- 3-ylsulfanyl}acetamide (N-[(furan-2-yl)methyl]-2-{8-thia-4,6-diazatricyclo[7.4.0.02,7]trideca-1(9),2(7) ,3,5-tetraen-3-ylsulfanyl}acetamide;RNaseH2i#2) was used. 22Rv1, LNCaP, and RWPE cells were seeded in 24-well plates at 3×10 4 cells each, and after 24 hours, compound A or compound B was added at 100, 50, 10, 5, 1, 0.5, 0.1, 0.05 μM. Three days after addition, cells were collected with PBS, dead cells were stained with 0.5% trypan blue staining solution, and the number of unstained cells was counted. Each measurement was performed three times, and the percentage of the number of living cells in the control was measured and compared with the number of living cells in the control by t-test for statistical analysis. In 22Rv1 cells, 5 μM of compound A or compound B halved the number of cells compared to the control, and in LNCaP cells, 10 μM of RNaseH2i# 1 and 5 μM of RNaseH2i#2 halved the number of cells compared to the control. However, no cytostatic effect was observed in RWPE cells, which is a normal prostate epithelial cell line (Fig. 5).
《実施例6》
 本実施例では、RNase H2阻害化合物がp53とARに与える影響を検討した。22Rv1、LNCaP細胞を6穴プレートに1×10個播種し、24時間後にRNaseH2i#1又は#2を添加し、48時間後にタンパク質を回収した。22Rv1におけるAR発現減少は、RNaseH2i#1(5μM)、RNaseH2i#2(1及び5μM)で認められ、p53の発現増加はRNaseH2i#1及び#2共に(1及び5μM)認められた(図6A)。LNCaP細胞では、AR発現減少は、RNaseH2i #2(1及び5μM)で認められ、p53の発現増加はRNaseH2i#1及び#2共に(1及び5μM)認められた(図6B)。
<<Example 6>>
In this example, the effects of RNase H2 inhibitory compounds on p53 and AR were examined. 22Rv1, LNCaP cells were seeded at 1×10 5 in a 6-well plate, RNase H2i#1 or #2 was added 24 hours later, and proteins were collected 48 hours later. A decrease in AR expression in 22Rv1 was observed in RNaseH2i#1 (5 μM) and RNaseH2i#2 (1 and 5 μM), and an increase in p53 expression was observed in both RNaseH2i#1 and #2 (1 and 5 μM) (FIG. 6A). . In LNCaP cells, decreased AR expression was observed with RNase H2i #2 (1 and 5 μM), and increased expression of p53 was observed with both RNase H2i #1 and #2 (1 and 5 μM) (FIG. 6B).
《実施例7》
 本実施例では、RNase H2阻害化合物がDNA損傷とアポトーシスへ与える影響を検討した。DNA損傷へ与える影響はγH2AXで検出し、アポトーシスをPoly(ADP-ribose)polymerase(PARP)の分解により生じるcleaved-Poly(ADP-ribose)polymerase(c-PARP)の発現量、及びTUNEL法により検討した。22Rv1においてRNaseH2i#1及び#2共に(1及び5μM)でγH2AX、c-PARPの発現増加が認められた(図7A)。LNCaP細胞では、RNaseH2i#1(5μM)、RNaseH2i#2(5μM)でγH2AXの発現増加が認められ、RNaseH2i#1(1及び5μM)、RNaseH2i#2(5μM)でc-PARPの発現増加が認められた(図7B)。また、TUNEL assayでは、RNase H2i#1及び#2(1及び5μM)共に有意にアポトーシス細胞数を増加させることが分かった(図8)。
<<Example 7>>
In this example, the effects of RNase H2 inhibitory compounds on DNA damage and apoptosis were investigated. The effect on DNA damage was detected by γH2AX, and apoptosis was examined by the expression level of cleaved-Poly (ADP-ribose) polymerase (c-PARP) caused by the degradation of Poly (ADP-ribose) polymerase (PARP), and the TUNEL method. did. In 22Rv1, both RNase H2i#1 and #2 (1 and 5 μM) increased the expression of γH2AX and c-PARP (Fig. 7A). In LNCaP cells, RNaseH2i#1 (5 μM) and RNaseH2i#2 (5 μM) increased the expression of γH2AX, and RNaseH2i#1 (1 and 5 μM) and RNaseH2i#2 (5 μM) increased the expression of c-PARP. (Fig. 7B). Also, in the TUNEL assay, it was found that both RNase H2i#1 and #2 (1 and 5 µM) significantly increased the number of apoptotic cells (Fig. 8).
《実施例8》
 本実施例では、RNase H2阻害化合物が前立腺がん細胞の増殖へ与える影響の検討をin vivoで行った。BALB/cヌードマウスの皮下に22Rv1細胞を移植し、腫瘍形成を確認後に去勢術を行い、CRPCモデルマウスを作成した。CRPCモデルマウスの腹腔内へRNaseH2i#1及び#2をそれぞれ0.5mg/匹/回ずつ5回/週投与し、腫瘍増殖へ与える影響を検討した。その結果、RNaseH2i#1及び#2を投与したマウスにおける腫瘍増殖は、コントロールに比べ有意に抑制されていた(図9)。
<<Example 8>>
In this example, the effects of RNase H2 inhibitory compounds on proliferation of prostate cancer cells were examined in vivo. 22Rv1 cells were subcutaneously implanted in BALB/c nude mice, and after confirmation of tumor formation, castration was performed to prepare CRPC model mice. RNase H2i#1 and #2 were intraperitoneally administered to CRPC model mice at 0.5 mg/mouse/dose, 5 times/week, respectively, and the effect on tumor growth was examined. As a result, tumor growth in mice administered with RNase H2i#1 and #2 was significantly suppressed compared to controls (Fig. 9).
 本発明の前立腺がん治療用医薬組成物は、前立腺がんの治療に効果的に用いることができる。 The pharmaceutical composition for treating prostate cancer of the present invention can be effectively used for treating prostate cancer.

Claims (5)

  1.  RNase H2阻害物質を有効成分として含む前立腺がん治療用医薬組成物。 A pharmaceutical composition for treating prostate cancer containing an RNase H2 inhibitor as an active ingredient.
  2.  前記RNase H2阻害物質が、RNase H2遺伝子に対してRNAi効果を有する二本鎖核酸であって、配列番号13の標的配列に対応する塩基配列を含むセンス鎖と、前記センス鎖に相補的な塩基配列を含むアンチセンス鎖とを含む二本鎖核酸である、請求項1に記載の前立腺がん治療用医薬組成物。 The RNase H2 inhibitor is a double-stranded nucleic acid having an RNAi effect on the RNase H2 gene, the sense strand comprising a base sequence corresponding to the target sequence of SEQ ID NO: 13, and a base complementary to the sense strand 2. The pharmaceutical composition for treating prostate cancer according to claim 1, which is a double-stranded nucleic acid comprising an antisense strand comprising the sequence.
  3.  前記二本鎖核酸が、配列番号1及び2で表される塩基配列からなるオリゴヌクレオチドのsiRNA、配列番号3及び4で表される塩基配列からなるオリゴヌクレオチドのsiRNA、配列番号5及び6で表される塩基配列からなるオリゴヌクレオチドのsiRNA、配列番号7及び8で表される塩基配列からなるオリゴヌクレオチドのsiRNA、配列番号9及び10で表される塩基配列からなるオリゴヌクレオチドのsiRNA、及び配列番号11及び12で表される塩基配列からなるオリゴヌクレオチドのsiRNA、からなる群から選択される二本鎖核酸である、請求項2に記載の前立腺がん治療用医薬組成物。 The double-stranded nucleic acid is an oligonucleotide siRNA consisting of the base sequences represented by SEQ ID NOS: 1 and 2, an oligonucleotide siRNA consisting of the base sequences represented by SEQ ID NOS: 3 and 4, and SEQ ID NOS: 5 and 6. oligonucleotide siRNA consisting of the base sequence represented by SEQ ID NOS: 7 and 8, oligonucleotide siRNA consisting of the base sequences represented by SEQ ID NOS: 9 and 10, and SEQ ID NOS: 3. The pharmaceutical composition for treating prostate cancer according to claim 2, which is a double-stranded nucleic acid selected from the group consisting of oligonucleotide siRNA consisting of base sequences represented by 11 and 12.
  4.  前記RNase H2阻害物質が、
    下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは単結合、炭素数1~3のアルキレン基、又は-NH-CO-C-であり、
    Yは単結合、又は-C-S-であり、
    は、置換基を有することのある5~6員の芳香族複素環基、置換基を有することのあるフェニル基、置換基を有することのある炭素数5~6のシクロアルキル基、又は炭素数3~8のアルキル基であり、
    は、置換基を有することのある炭素数5~6のシクロアルキル基、置換基を有することのある5~6員の芳香族複素環基、置換基を有することのあるフェニル基、又は炭素数3~8のアルキル基であり、
    -NH-の水素原子(H)が解離し、窒素原子(N)がR基の置換基の硫黄原子(S)と結合して環構造を形成してもよい)
    で表される化合物である、請求項1に記載の前立腺がん治療用医薬組成物。
    wherein the RNase H2 inhibitor is
    Formula (1) below:
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, X is a single bond, an alkylene group having 1 to 3 carbon atoms, or -NH-CO-C-,
    Y is a single bond or -CS-,
    R 1 is a 5- to 6-membered aromatic heterocyclic group which may have a substituent, a phenyl group which may have a substituent, a cycloalkyl group having 5 to 6 carbon atoms which may have a substituent, or an alkyl group having 3 to 8 carbon atoms,
    R 2 is a cycloalkyl group having 5 to 6 carbon atoms which may have a substituent, a 5- to 6-membered aromatic heterocyclic group which may have a substituent, a phenyl group which may have a substituent, or an alkyl group having 3 to 8 carbon atoms,
    The hydrogen atom (H) of —NH— may be dissociated, and the nitrogen atom (N) may bond with the sulfur atom (S) of the substituent of the R 2 group to form a ring structure)
    The pharmaceutical composition for treating prostate cancer according to claim 1, which is a compound represented by:
  5.  前記RNaseH2阻害化合物が、下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    で表される2-シクロペンタンアミド-4-エチル-5-メチルチオフェン-3-カルボキサミド、又は下記式(3):
    Figure JPOXMLDOC01-appb-C000003
    で表されるN-[(フラン-2-イル)メチル]-2-{8-チア-4,6-ジアザトリシクロ[7.4.0.02,7]トリデカ-1(9),2(7),3,5-テトラエン-3-イルスルファニル}アセトアミドである、請求項4に記載の前立腺がん治療用医薬組成物。
    The RNaseH2 inhibitory compound has the following formula (2):
    Figure JPOXMLDOC01-appb-C000002
    2-cyclopentanamide-4-ethyl-5-methylthiophene-3-carboxamide represented by or the following formula (3):
    Figure JPOXMLDOC01-appb-C000003
    N-[(furan-2-yl)methyl]-2-{8-thia-4,6-diazatricyclo[7.4.0.02,7]trideca-1 (9), 2 (7 ),3,5-tetraen-3-ylsulfanyl}acetamide, the pharmaceutical composition for treating prostate cancer according to claim 4.
PCT/JP2022/022594 2021-06-04 2022-06-03 Pharmaceutical composition for prostate cancer treatment WO2022255478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-094694 2021-06-04
JP2021094694A JP2022186461A (en) 2021-06-04 2021-06-04 Pharmaceutical composition for prostate cancer treatment

Publications (1)

Publication Number Publication Date
WO2022255478A1 true WO2022255478A1 (en) 2022-12-08

Family

ID=84322601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022594 WO2022255478A1 (en) 2021-06-04 2022-06-03 Pharmaceutical composition for prostate cancer treatment

Country Status (2)

Country Link
JP (1) JP2022186461A (en)
WO (1) WO2022255478A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516192A (en) * 2002-10-18 2006-06-29 ジェネンテック・インコーポレーテッド Compositions and methods for tumor diagnosis and treatment
JP2018520644A (en) * 2015-05-06 2018-08-02 イマティクス バイオテクノロジーズ ゲーエムベーハー Novel peptides and combinations of peptides and their scaffolds for use in immunotherapy against colorectal cancer (CRC) and other cancers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516192A (en) * 2002-10-18 2006-06-29 ジェネンテック・インコーポレーテッド Compositions and methods for tumor diagnosis and treatment
JP2018520644A (en) * 2015-05-06 2018-08-02 イマティクス バイオテクノロジーズ ゲーエムベーハー Novel peptides and combinations of peptides and their scaffolds for use in immunotherapy against colorectal cancer (CRC) and other cancers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM JUNGHWAN, YOON JAEWAN, JU MOONKYEONG, LEE YUNMI, KIM TAE-HEE, KIM JUNWON, SOMMER PETER, NO ZAESUNG, CECHETTO JONATHAN, HAN SUN: "Identification of two HIV inhibitors that also inhibit human RNaseH2", MOLECULES AND CELLS, SEOUL, KR, vol. 36, no. 3, 30 September 2013 (2013-09-30), KR , pages 212 - 218, XP093010391, ISSN: 1016-8478, DOI: 10.1007/s10059-013-2348-z *
WHITE RACHEL, BARBARA SAXTY, JONATHAN LARGE, CATHERINE A. KETTLEBOROUGH, ANDREW P. JACKSON: "Identification of small-molecule inhibitors of the ribonuclease H2 enzyme", JOURNAL OF BIOMOLECULAR SCREENING, SAGE; LIEBERT, US, vol. 18, no. 5, 20 February 2013 (2013-02-20), US , pages 610 - 620, XP093010392, ISSN: 1087-0571, DOI: 10.1177/1087057113476550 *

Also Published As

Publication number Publication date
JP2022186461A (en) 2022-12-15

Similar Documents

Publication Publication Date Title
US9968630B2 (en) Pharmaceutical combination comprising a CIP2A silencing agent for use in the treatment of a hyperproliferative disorder, preferably one with impaired P53 function
RU2316326C2 (en) Method and composition for cancer disease treatment, tosylate and pharmaceutically acceptable salts of n-(4-chloro-3-(trifluoromethyl)phenyl)-n&#39;-(4-(2-(n-methylcarbamoyl)-4-pyridyloxy)phenyl)urea
JP7129095B2 (en) Pharmaceutical compositions and therapeutic methods for inherited diseases caused by splicing abnormalities
KR20100102637A (en) Treatment of cancer with combinations of topoisomerase inhibitors and parp inhibitors
KR20160074368A (en) Compositions and methods for modulating utrn expression
JP2015523855A (en) Compositions and methods for modulating APOA1 and ABCA1 expression
US20220243282A1 (en) Compositions and Methods for Monitoring, Diagnosis, Detection and Treatment of Cancer
US11504374B2 (en) Compositions and methods for the treatment of a beta-catenin-associated disease or disorder
BR112015024764B1 (en) MODIFIED TGF-BETA OLIGONUCLEOTIDES, THEIR USE AND PHARMACEUTICAL COMPOSITIONS INCLUDING THEM
JP2015519057A (en) Compositions and methods for modulating PTEN expression
JP2004525942A (en) Compounds and methods
JP2023533485A (en) How to treat severe pulmonary hypertension
JP2014509608A (en) Combination of anti-clusterin oligonucleotide and HSP90 inhibitor for the treatment of prostate cancer
US9476050B2 (en) Combination therapy
WO2022255478A1 (en) Pharmaceutical composition for prostate cancer treatment
WO2017114260A1 (en) Uses of tryptanthrin and derivative thereof in preparing hldo2 inhibitor
US11118184B2 (en) Asymmetric siRNA for inhibiting expression of male pattern hair loss target gene
WO2017114261A1 (en) Uses of n-aryl, benzyltryptanthrin and derivative thereof in preparing hldo2 inhibitor
US20200181711A1 (en) Compositions and methods for monitoring, diagnosis, prognosis, detection, and treatment of cancer
WO2022255346A1 (en) Mitochondrial supercomplex formation promoter, composition for maintaining or improving muscular strength, therapeutic or preventative pharmaceutical composition for diseases which decrease mitochondrial function or muscular function, and screening method for substances which contribute to formation of mitochondrial supercomplex
US20220233551A1 (en) Compositions and methods for using androgen signaling inhibitors
EP2872631B1 (en) Combination therapy
RU2800071C1 (en) Sorafenib-based combination therapy for hepatocellular carcinoma
US20220168422A1 (en) Compositions and methods for monitoring, diagnosis, prognosis, detection, and treatment of cancer
US20220233539A1 (en) Compositions and methods for inhibiting hedgehog pathway

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE