WO2022255443A1 - Separator for lead-acid battery, and lead-acid battery including same - Google Patents

Separator for lead-acid battery, and lead-acid battery including same Download PDF

Info

Publication number
WO2022255443A1
WO2022255443A1 PCT/JP2022/022453 JP2022022453W WO2022255443A1 WO 2022255443 A1 WO2022255443 A1 WO 2022255443A1 JP 2022022453 W JP2022022453 W JP 2022022453W WO 2022255443 A1 WO2022255443 A1 WO 2022255443A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
porous film
acid battery
separator
electrode plate
Prior art date
Application number
PCT/JP2022/022453
Other languages
French (fr)
Japanese (ja)
Inventor
悦子 伊藤
和成 安藤
創太 福田
敏宏 吉田
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021094467A external-priority patent/JP2022186311A/en
Priority claimed from JP2021094465A external-priority patent/JP2022186309A/en
Priority claimed from JP2021152476A external-priority patent/JP2023044443A/en
Priority claimed from JP2021154755A external-priority patent/JP2023046062A/en
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN202280039318.3A priority Critical patent/CN117461210A/en
Publication of WO2022255443A1 publication Critical patent/WO2022255443A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead-acid battery separator and a lead-acid battery including the same.
  • Lead-acid batteries are used in a variety of applications, including automotive and industrial applications.
  • a lead-acid battery includes a positive plate and a negative plate, a separator interposed therebetween, and an electrolyte. Various performances are required for separators of lead-acid batteries.
  • Patent Document 1 a raw material composition comprising a mixture of 20 to 60% by mass of polyolefin resin, 80 to 40% by mass of inorganic powder, and 40 to 240% by mass of mineral oil is heated. After being melted and kneaded, it is molded into a sheet having ribs, then immersed in an immersion tank of an organic solvent capable of dissolving the oil to extract and remove a portion of the oil, followed by heating and drying.
  • a ribbed separator for a lead-acid battery containing 5 to 30% by mass of oil, wherein the difference in oil content between the rib portion and the base portion of the separator is 5% by mass or less. is suggesting.
  • US Pat. No. 5,300,009 is a separator for lead-acid batteries comprising a polyolefin microporous membrane, said polyolefin microporous membrane comprising polyethylene, preferably ultra-high molecular weight polyethylene, particulate fillers, and treated plasticizers. and wherein the particulate filler is present in an amount of 40% or more by weight, and the polyethylene comprises a shish kebab forming comprising a plurality of extended chain crystals (shish forming) and a plurality of folded chain crystals (kebab forming). wherein the average repetition or period of said kebab formation is between 1 nm and 150 nm, preferably less than 120 nm.
  • Patent Document 3 discloses a lead-acid battery comprising a positive electrode plate, a negative electrode plate, an electrolytic solution, and a separator, wherein the separator comprises a porous sheet and a glass mat, and the electrolytic solution contains 0.02 mol/L or more of aluminum ions.
  • a lead-acid battery containing 0.2 mol/L or less and containing 0.02 mol/L or more and 0.2 mol/L or less of lithium ions is proposed.
  • Patent Document 4 discloses a lead-acid battery in which a separator, which is a laminate of a porous resin thin film and a glass mat, is interposed between a positive electrode plate and a negative electrode plate. , (a) a plurality of ribs are provided on at least one side of the base portion of the synthetic resin thin film, (b) a glass mat is attached between the ribs, and (c) the ribs on both ends are also provided outside the ribs. and (d) when the glass mat is adhered to the base portion of the synthetic resin thin film, the surface of the glass mat on the opposite side of the adhered surface is inclined from the top surface of the rib portion.
  • the separator having the glass mat attached to the synthetic resin thin film is inserted into the electrode plate group and housed in the container of the lead-acid battery, the rib portion is attached to the positive electrode plate.
  • a lead-acid battery is proposed in which the glass mat is pressurized and compressed until it abuts, and the stacking pressure is 10 to 60 kPa.
  • Patent Document 5 describes "a lead-acid battery separator, the lead-acid battery separator comprising a porous membrane and/or a fibrous mat, and one or more A lead-acid battery separator comprising a conductive element or nucleating additive.”
  • JP-A-2001-338631 Japanese Patent Publication No. 2019-514173 JP 2013-84362 A JP 2016-139455 A Japanese Patent Publication No. 2020-533741
  • the positive electrode plate contains lead dioxide, which has a strong oxidizing power, as a positive electrode active material.
  • lead dioxide which has a strong oxidizing power
  • the potential of the positive plate is high. Therefore, the separator facing the positive electrode plate is easily oxidized and deteriorated. Oxidative deterioration of the separator during overcharging is particularly noticeable at high temperatures (for example, temperatures of 75° C. or higher).
  • temperatures for example, temperatures of 75° C. or higher.
  • the separator when the separator is oxidatively degraded, the flexibility is reduced, cracks are generated, and short circuiting occurs, resulting in the end of the life.
  • a separator for a lead-acid battery may have ribs on the surface facing the positive electrode plate, or may contain oil as a pore-forming agent. Such a separator can suppress oxidative deterioration to some extent, and is therefore advantageous from the viewpoint of ensuring high high-temperature overcharge life performance.
  • the separators for lead-acid batteries are required to have even higher high-temperature overcharge life performance.
  • One aspect of the present disclosure is a lead-acid battery separator comprising: the separator comprises a porous film, the porous film comprising a crystalline region and an amorphous region;
  • the degree of crystallinity represented by 100 ⁇ I c /(I c +I a ) is 20% or more
  • I c is the integrated intensity of the diffraction peak having the maximum peak height among the diffraction peaks corresponding to the crystalline region
  • I a relates to the lead-acid battery separator, which is the integrated intensity of the halo corresponding to the amorphous region.
  • FIG. 1 is an X-ray diffraction spectrum of a porous film used for a lead-acid battery separator of an example.
  • 5 is a graph showing the relationship between the total Vt of the volume of the first pores of the porous film used for the separator of each lead-acid battery of Example 2 and the IS life performance.
  • FIG. 2 is a schematic plan view of the lead-acid battery separator of FIG. 1 ;
  • 10 is a graph showing part of the results of Experimental Example 3 of Example 4.
  • FIG. 10 is a graph showing another part of the results of Experimental Example 3 of Example 4.
  • FIG. 1 is an X-ray diffraction spectrum of a porous film used for a lead-acid battery separator of an example.
  • 5 is a graph showing the relationship between the total Vt of the volume of the first pores of the porous film used for the separator of each lead-acid battery of Example 2 and the IS life performance.
  • FIG. 2 is a schematic plan view of the lead-acid battery separat
  • Lead-acid batteries may be used under harsh conditions.
  • One of the typical uses of lead-acid batteries is for automobiles.
  • automobiles have been caught in traffic jams and are used constantly like commercial vehicles, increasing the chances that lead-acid batteries are exposed to an overcharged state.
  • life performance when exposed to an overcharged state at a high temperature (for example, a temperature of 75° C. or higher) may be referred to as high-temperature overcharge life performance.
  • lead-acid batteries are required to have a higher level of high-temperature overcharge life performance than ever before.
  • a lead-acid battery separator includes a porous film, the porous film including crystalline regions and amorphous regions.
  • the crystallinity expressed by 100 ⁇ I c /(I c +I a ) is 20% or more.
  • I c is the integrated intensity of the diffraction peak having the maximum peak height (hereinafter sometimes referred to as the first diffraction peak) among the diffraction peaks corresponding to the crystalline region.
  • Ia is the integrated intensity of the halo corresponding to the amorphous region.
  • the crystallinity of the porous film is 20% or more, the oxidation resistance of the porous film can be improved, and the oxidation resistance of the separator itself can be improved.
  • the oxidation resistance of the porous film can be improved, and the oxidation resistance of the separator itself can be improved.
  • the oxidation resistance is enhanced, there is almost no contradiction such as an increase in resistance. Therefore, even a high-performance lead-acid battery can ensure excellent high-temperature overcharge life performance.
  • a separator for a lead-acid battery has a relatively large thickness, unlike a separator for a lithium-ion secondary battery.
  • lead-acid batteries have a lower positive electrode potential when overcharged, so sufficient oxidation resistance could be ensured by ribs, oil, etc. in conventional usage environments and usage patterns. .
  • the thicker the separator the more difficult it becomes to increase the degree of crystallinity, and the higher the degree of crystallinity, the harder and more brittle the separator tends to be. From this point of view, in conventional separators for lead-acid batteries, the crystallinity of the porous film contained in the separator has not been controlled.
  • the crystallinity of porous films included in separators for conventional lead-acid batteries tends to be relatively low, about 18% or less. Contrary to such conventional wisdom, in the lead-acid battery separator of one aspect of the present invention, it has become clear that the high-temperature overcharge life performance can be greatly improved by setting the crystallinity of the porous film to 20% or more. rice field.
  • the thickness of the porous film is preferably 100 ⁇ m or more and 300 ⁇ m or less. When the thickness is within such a range, the effect of suppressing oxidative deterioration of the porous film contained in the separator is further enhanced, and the high-temperature overcharge life performance can be further improved.
  • the crystallinity of the porous film is preferably 40% or less. In this case, it is easy to secure the flexibility of the separator, and in addition, it is easy to manufacture.
  • the porous film preferably contains oil.
  • the effect of suppressing oxidative deterioration of the porous film contained in the separator is further enhanced, and higher high-temperature overcharge life performance can be ensured.
  • the porous film preferably contains polyolefin, and more preferably contains polyolefin containing at least ethylene units. Such a porous film is easily oxidatively deteriorated, but the degree of crystallinity can be increased relatively easily.
  • the porous film comprises a polyolefin containing at least ethylene units, the first diffraction peak corresponds to the (110) plane due to the crystalline regions.
  • the total Vt of the volume of pores (first pores) having a pore diameter of 0.005 ⁇ m or more and 10 ⁇ m or less may be 0.8 cm 3 /g or more.
  • the total volume Vt of the first pores may be simply referred to as the first pore volume Vt.
  • sulfate ions which have a large specific gravity, descend during charging, and stratification is likely to occur, where a difference in the specific gravity of the electrolyte (that is, the difference in the concentration of sulfuric acid) occurs between the upper and lower parts of the battery case.
  • PSOC partial state of charge
  • ISS idling start-stop
  • lead-acid batteries are used in PSOCs, so stratification is likely to be noticeable.
  • the positive electrode plate deteriorates, and the life performance (also referred to as IS life performance) of the lead-acid battery when used in a PSOC decreases.
  • the diffusibility of the electrolytic solution improves, which is advantageous from the viewpoint of suppressing stratification.
  • the contact area with the electrolytic solution increases, oxidation deterioration of the porous film tends to progress. Damage to the separator due to oxidative deterioration of the porous film causes a short circuit and shortens the life of the separator, so the effect of improving the IS life performance is limited.
  • the lead-acid battery separator of one aspect of the present invention includes a porous film, the porous film includes a crystalline region and an amorphous region, and the crystallinity of the porous film is 20% or more.
  • first pore volume Vt the total Vt of the volume of the first pores in the porous film
  • the contact area with the electrolytic solution increases, so that the oxidation deterioration of the porous film tends to progress easily.
  • the porous film is oxidatively degraded, the flexibility is reduced, cracks are generated, and short circuiting occurs, resulting in the end of the life of the battery. Even if stratification can be reduced, it is difficult to improve IS lifetime performance.
  • the separator according to the aspect of the present invention since the crystallinity of the porous film is 20% or more, the oxidation resistance of the porous film itself can be enhanced. Therefore, by reducing oxidation deterioration of the porous film, deterioration of IS life performance due to short circuit is suppressed, and the effect of improving IS life performance by suppressing stratification is sufficiently exhibited. Therefore, excellent IS life performance can be secured.
  • the IS life performance when the first pore volume Vt is less than 0.8 cm 3 /g, even if the degree of crystallinity is changed, the IS life performance hardly changes. In this case, since the surface area of the porous film is small, the contact with the electrolytic solution is reduced, and oxidative deterioration is suppressed. Therefore, it is considered that increasing the crystallinity of the porous film does not affect the IS life performance.
  • the first pore volume Vt is less than 0.8 cm 3 /g and when it is 0.8 cm 3 /g or more, the behavior of the IS life performance when changing the crystallinity of the porous film is completely different.
  • the IS life performance when the first pore volume Vt is 0.8 cm 3 /g or more, the IS life performance can be greatly improved by setting the crystallinity to 20% or more. It became clear.
  • the total Vt of the volume of the first pores in the porous film (first pore volume Vt) is the first pores in the porous film obtained by the mercury intrusion method (pore diameter of 0.005 ⁇ m or more and 10 ⁇ m or less It is the sum of the volume of pores).
  • the first pore volume Vt is preferably 0.9 cm 3 /g or more. In this case, the effect of improving the IS life performance by setting the degree of crystallinity to 20% or more is particularly remarkable.
  • the crystallinity of the porous film is preferably 25% or more. In this case, since the oxidation resistance of the porous film is further enhanced, and the oxidation resistance of the separator is further enhanced, the IS life performance can be further improved.
  • the separator may include a laminate of a porous resin film and a glass fiber mat.
  • Lead-acid batteries may be used under harsh conditions.
  • One of the typical uses of lead-acid batteries is for automobiles.
  • automobiles have been caught in traffic jams and are used constantly like commercial vehicles, increasing the chances that lead-acid batteries are exposed to an overcharged state.
  • opportunities to use lead-acid batteries in higher temperature environments in summer are increasing.
  • the softening of the positive electrode material becomes noticeable, and the positive electrode material falls off due to vibration, shortening the life of the separator. As a result, a short circuit occurs and the life of the battery is shortened. Therefore, in recent years, lead-acid batteries are required to have a higher level of high-temperature overcharge life performance than ever before.
  • the separator which is a laminate, has a higher resistance than the porous film alone, so the CCA performance is lowered. Reducing the thickness of the porous film can reduce the deterioration of CCA performance.
  • the thickness of the glass fiber mat is not so great, the dropped positive electrode material may penetrate the glass fiber mat.
  • the lead-acid battery separator of one aspect of the present invention includes a laminate of a resin porous film and a glass fiber mat
  • the crystallinity of the porous film is 20% or more.
  • the oxidation resistance of the porous film itself can be improved. Therefore, even if the dropped high-potential positive electrode material penetrates the glass fiber mat and comes into contact with the porous film during high-temperature overcharging, breakage due to oxidative deterioration is suppressed, and the occurrence of a short circuit can be suppressed. As a result, the high temperature overcharge life performance can be improved.
  • porous film itself may be used as a separator for lead-acid batteries.
  • Porous film separators for lead-acid batteries have a relatively large thickness, unlike separators for lithium-ion secondary batteries and the like.
  • lead-acid batteries have a lower positive electrode potential when overcharged than lithium-ion secondary batteries, so sufficient oxidation resistance could be secured by oil or the like in conventional usage environments and usage patterns.
  • the thickness of the porous film increases, it tends to become more difficult to increase the degree of crystallinity. From this point of view, the degree of crystallinity has not been controlled in conventional separators for lead-acid batteries.
  • the crystallinity of porous films used in separators for conventional lead-acid batteries tends to be relatively low, about 18% or less. Contrary to such conventional wisdom, in the lead-acid battery separator of one aspect of the present invention, the crystallinity of the porous film laminated with the glass fiber mat is 20% or more, thereby reducing the resistance of the porous film. In addition, high oxidation resistance can be secured while suppressing the increase in the resistance of the laminate with the glass fiber mat.
  • the thickness of the porous film is preferably 100 ⁇ m or more. When the thickness is within such a range, the effect of suppressing oxidative deterioration is further enhanced, and higher high-temperature overcharge life performance can be ensured.
  • the thickness of the porous film is preferably 300 ⁇ m or less. In this case, it is easy to keep the resistance of the porous film low, so relatively high CCA performance can be easily obtained.
  • the porous film may have a region not covered with the glass fiber mat at least part of the edge. In such a region, the dropped positive electrode material sticks into the porous film or comes into contact with the porous film and oxidizes and deteriorates, resulting in short circuit and deterioration in high-temperature overcharge life performance.
  • the porous film has a high degree of crystallinity, the oxidation resistance of the porous film can be improved. A decrease in charge life performance can be reduced.
  • a lead-acid battery separator may include a porous film and a carbon material disposed on its surface.
  • the life of a lead-acid battery is also greatly reduced by uneven concentration of the electrolyte (stratification).
  • the concentration of the electrolyte at the top of the battery can be lower than the concentration of the electrolyte at the bottom, thereby reducing battery life performance.
  • the separator of the present embodiment includes a carbon material disposed on the surface of the porous film, this carbon material contacts the electrode (positive electrode or negative electrode) in the lead-acid battery and is thus electrically connected to the electrode. .
  • the lead-acid battery is charged (for example, at the end of charging), water can be electrolyzed on the surface of the carbon material to generate gas. Since the electrolytic solution is stirred by the generated gas, stratification of the electrolytic solution is suppressed.
  • the separator of the present embodiment uses a porous film with a high degree of crystallinity, it is possible to suppress oxidation of the porous film.
  • lead-acid batteries are being improved in performance by using a large number of thin electrode plates.
  • a lead-acid battery using a large number of thin plates has a high rate of defects during manufacturing due to insufficient strength of the separator. Therefore, increasing the strength of the separator is particularly important for improving the reliability and productivity of high-performance lead-acid batteries.
  • the inventors of the present application have found that a separator having unexpected strength can be obtained by combining a porous film with a high degree of crystallinity and a carbon material. That is, according to the separator of the present embodiment, it is possible to configure a high-performance lead-acid battery with high life performance and high productivity.
  • the present invention also includes a lead-acid battery containing the lead-acid battery separator described above.
  • a lead-acid battery includes at least one cell that includes a plate assembly and an electrolyte, and the plate assembly includes a positive plate, a negative plate, and the above separator interposed between the positive plate and the negative plate.
  • the separator includes a laminate of a resin porous film and a glass fiber mat, the glass fiber mat may be in contact with the positive electrode plate. By using the laminate, the resistance of the separator can be kept low, and high CCA performance can be ensured.
  • the separator includes a porous film and a carbon material disposed on its surface
  • the carbon material may be disposed on both of the two main surfaces of the porous film, or on the positive electrode plate side or the negative electrode plate side. It may be arranged on the main surface of the side.
  • the carbon material of the separator may be arranged on one of the two main surfaces of the porous film, which faces the negative electrode plate.
  • the lead-acid battery may be a valve-regulated battery, but a liquid battery (vented battery) is preferable.
  • Valve-regulated lead-acid batteries are sometimes called VRLA (Valve Regulated Lead-Acid Battery).
  • the vertical direction of a lead-acid battery or components of a lead-acid battery means the vertical direction of the lead-acid battery when the lead-acid battery is used.
  • Each of the positive electrode plate and the negative electrode plate has an ear portion for connection with an external terminal.
  • a separator includes a porous film.
  • the porous film may be made of resin.
  • the separator may be a laminate of a resin porous film and a glass fiber mat.
  • the separator may have a carbon material on at least one surface of the porous film.
  • the porous film includes crystalline regions in which the molecules of the constituent material of the porous film are arranged relatively regularly (ie, highly ordered) and amorphous regions in which the molecules are poorly arranged. Therefore, in the XRD spectrum of the porous film, a diffraction peak due to the crystalline region is observed, and scattered light due to the amorphous region is observed as a halo. Excellent high-temperature overcharge life performance is obtained when the degree of crystallinity represented by 100 ⁇ I c /(I c +I a ) is 20% or more in the XRD spectrum of the porous film.
  • Ic is the integrated intensity of the diffraction peak (first diffraction peak) having the maximum peak height among the diffraction peaks corresponding to the crystalline region
  • Ia is the halo corresponding to the amorphous region.
  • a diffraction peak corresponding to the (110) plane of the crystalline region is observed in the range of 2 ⁇ from 20 ° to 22.5 °, and the crystalline A diffraction peak corresponding to the (200) plane of the region is observed in the range of 2 ⁇ from 23° to 24.5°.
  • a halo in the amorphous region is observed in the range of 2 ⁇ from 17° to 27°.
  • the diffraction peak corresponding to the (110) plane has the highest peak height and corresponds to the first diffraction peak.
  • the crystallinity of the porous film is 20% or more, and may be 22% or more, 23% or more, or 25% or more from the viewpoint of ensuring higher high-temperature overcharge life performance.
  • the degree of crystallinity may be 23% or more or 25% or more from the viewpoint of ensuring higher IS life performance.
  • the degree of crystallinity may be 40% or less, 37% or less, 35% or less, or 30% or less. When the degree of crystallinity is within such a range, it is easy to ensure the flexibility of the separator, and the production is easy.
  • the crystallinity of the porous film can be at least any of the above lower limits and at most any of the above upper limits.
  • the crystallinity of the porous film is 20% or more (or 22% or more) and 40% or less, 20% or more (or 22% or more) and 37% or less, 20% or more (or 22% or more) and 35% or less, 23%. It may be 40% or more (or 37% or less), or 23% or more and 35% or less.
  • the integrated intensities of the diffraction peaks and halos are obtained by fitting the diffraction peaks due to the crystalline regions and the halos due to the amorphous regions in the XRD spectrum of the porous film. Using the obtained integrated intensity Ic of the first diffraction peak and the obtained integrated intensity Ia of the halo, the degree of crystallinity is obtained from the above formula.
  • the first pore volume Vt in the porous film is preferably 0.8 cm 3 /g or more.
  • the first pore volume Vt is more preferably 0.9 cm 3 /g or more, and even more preferably 1.05 cm 3 /g or more.
  • the first pore volume Vt may be, for example, 2.2 cm 3 /g or less.
  • the first pore volume Vt is preferably 2.0 cm 3 /g or less, more preferably 1.9 cm 3 /g or less, from the viewpoint that the effect of improving the IS life performance by increasing the degree of crystallinity is more likely to be exhibited.
  • the first pore volume Vt in the porous film can be any lower limit or more and any upper limit or less.
  • the first pore volume Vt is 0.8 cm 3 /g or more and 2.2 cm 3 /g or less (or 2.0 cm 3 /g or less), 0.9 cm 3 /g or more and 2.2 cm 3 /g or less (or 2 .0 cm 3 /g or less), 1.05 cm 3 /g or more and 2.2 cm 3 /g or less (or 2.0 cm 3 /g or less), 0.8 cm 3 /g or more (or 0.9 cm 3 /g or more) It may be 1.9 cm 3 /g or less, or 1.05 cm 3 /g or more and 1.9 cm 3 /g or less.
  • a porous film includes, for example, a polymer material (hereinafter also referred to as a base polymer). Since the porous film contains crystalline regions, the base polymer usually contains a crystalline polymer. Porous films include, for example, polyolefins.
  • a polyolefin is a polymer containing at least olefinic units (that is, a polymer containing at least monomeric units derived from an olefin).
  • a polyolefin and another base polymer may be used in combination as the base polymer.
  • the ratio of polyolefin to the entire base polymer contained in the porous film is, for example, 50% by mass or more, may be 80% by mass or more, or may be 90% by mass or more.
  • the proportion of polyolefin is, for example, 100% by mass or less.
  • the base polymer may consist of polyolefin only. When the ratio of polyolefin is high like this, the porous film tends to be easily deteriorated by oxidation. , high high temperature overcharge life performance can be ensured.
  • Polyolefins include, for example, homopolymers of olefins, copolymers containing different olefin units, and copolymers containing olefin units and copolymerizable monomer units.
  • a copolymer containing olefin units and copolymerizable monomer units may contain one or more olefin units. Further, the copolymer containing olefin units and copolymerizable monomer units may contain one or more copolymerizable monomer units.
  • a copolymerizable monomer unit is a monomer unit derived from a polymerizable monomer other than an olefin and copolymerizable with an olefin.
  • Polyolefins include, for example, polymers containing at least C 2-3 olefins as monomer units.
  • the C 2-3 olefin includes at least one selected from the group consisting of ethylene and propylene. More preferred polyolefins are, for example, polyethylene, polypropylene, and copolymers containing C 2-3 olefins as monomer units (eg, ethylene-propylene copolymers).
  • polyolefins it is preferable to use polyolefins containing at least ethylene units (polyethylene, ethylene-propylene copolymer, etc.). Polyolefins containing ethylene units (polyethylene, ethylene-propylene copolymers, etc.) may be used in combination with other polyolefins.
  • the porous film preferably contains oil.
  • Oil refers to a hydrophobic substance that is liquid at room temperature (20° C. or higher and 35° C. or lower) and separates from water. Oils include naturally derived oils, mineral oils, and synthetic oils. Mineral oil, synthetic oil and the like are preferable as the oil. Examples of oils include paraffin oil and silicone oil.
  • the porous film may contain one type of oil or a combination of two or more types.
  • the oil content in the porous film may be 11% by mass or more or 12% by mass or more.
  • the oil content is preferably 18% by mass or less. When the oil content is within this range, the effect of suppressing oxidative deterioration of the porous film is further enhanced. Also, the resistance of the separator can be kept relatively low.
  • the porous film may be sheet-like. Alternatively, a sheet-like porous film may be used as a separator by folding in a bellows shape.
  • the porous film may be formed into a bag shape. Either one of the positive electrode plate and the negative electrode plate may be housed in a bag-like porous film.
  • the porous film may or may not have ribs.
  • a porous film having ribs includes, for example, a base portion and ribs erected from the surface of the base portion. The ribs may be provided only on one surface of the porous film or each base portion, or may be provided on both surfaces.
  • the base portion of the porous film is a portion excluding projections such as ribs among constituent portions of the porous film, and refers to a sheet-like portion that defines the outer shape of the porous film.
  • the thickness of the porous film is, for example, 90 ⁇ m or more. From the viewpoint of obtaining higher high-temperature overcharge life performance, the thickness is preferably 100 ⁇ m or more or 150 ⁇ m or more.
  • the thickness of the porous film is, for example, 300 ⁇ m or less. From the viewpoint of keeping the resistance of the separator low, the thickness of the porous film may be 250 ⁇ m or less, 200 ⁇ m or less, or 150 ⁇ m or less. Even with such a small thickness of the porous film, sufficient oxidation resistance can be obtained, and high high-temperature overcharge life performance can be ensured. .
  • the thickness of the porous film means the average thickness of the portion of the porous film facing the electrode material. When the porous film has a base portion and ribs erected from at least one surface of the base portion, the thickness of the porous film is the average thickness of the base portion.
  • the thickness of the porous film is 90 ⁇ m or more and 300 ⁇ m or less (or 250 ⁇ m or less), 90 ⁇ m or more and 200 ⁇ m or less, 100 ⁇ m or more (or 150 ⁇ m or more) and 300 ⁇ m or less, 100 ⁇ m or more (or 150 ⁇ m or more) and 250 ⁇ m or less, or 100 ⁇ m or more (or 150 ⁇ m or more). ) may be 200 ⁇ m or less.
  • the rib height may be 0.05 mm or more. Also, the rib height may be 1.2 mm or less. The height of the rib is the height of the portion that protrudes from the surface of the base portion (protrusion height).
  • the height of the ribs provided in the region facing the positive electrode plate of the porous film may be 0.4 mm or more.
  • the height of the rib provided in the region of the porous film facing the positive electrode plate may be 1.2 mm or less.
  • the ribs of the porous film may be provided on the surface of the negative electrode plate.
  • the ribs are preferably provided on the portion of the porous film facing the negative electrode material.
  • Providing ribs on the negative electrode plate side facilitates the diffusion of the electrolytic solution.
  • the height of the ribs provided on the negative electrode plate side is, for example, 50 ⁇ m or more.
  • the rib height may be, for example, 400 ⁇ m or less or 300 ⁇ m or less.
  • the separator is a laminate of a porous film and a glass fiber mat
  • ribs are provided on the positive electrode plate side of the porous film
  • they may be provided in areas not covered with the glass fiber mat.
  • a glass fiber mat may be arranged between adjacent ribs as in Patent Document 2.
  • it is not necessary to provide ribs on the positive electrode plate side of the porous film.
  • the porous film When the separator is a laminate of a porous film and a glass fiber mat, the porous film may have a region not covered with the glass fiber mat at least part of the edge. In the state of high-temperature overcharge, when the dropped high-potential positive electrode material comes into contact with this region, the porous film is oxidized and deteriorated, or the positive electrode material bites into the porous film, causing the porous film to break. A short circuit occurs, and it is easy to reach the end of life. However, in the aspect of the present invention, even in such a case, oxidation deterioration and breakage of the porous film are suppressed by increasing the oxidation resistance of the porous film, and the occurrence of short circuits can be suppressed.
  • a porous film is roughly square and usually has four edges: top and bottom edges and both side edges.
  • the width of the region of the porous film not covered with the glass fiber mat (for example, w p in FIG. 4 described below) is, for example, 1 mm or more, and may be 2 mm or more.
  • the width of this region is, for example, 5 mm or less, and may be 4.5 mm or less or 4 mm or less.
  • the porous film may have areas on the side edges (preferably on both side edges) that are not covered with the glass fiber mat.
  • the width of the above region may be 1 mm or more (or 2 mm or more) and 5 mm or less, 1 mm or more (or 2 mm or more) and 4.5 mm or less, or 1 mm or more (or 2 mm or more) and 4 mm or less.
  • a porous film is produced by, for example, extruding a resin composition containing a base polymer, a pore-forming agent, and a penetrating agent (surfactant) into a sheet, stretching the film, and removing at least part of the pore-forming agent. obtained by removing Removal of at least a portion of the pore-forming agent forms micropores in the matrix of the base polymer.
  • the porous film (or the resin composition used for producing the porous film) may contain inorganic particles. When a carbon material is placed on the surface of the porous film, the inorganic particles do not contain the carbon material. After removing the pore-forming agent, the sheet-like porous film is dried if necessary.
  • the degree of crystallinity is adjusted by adjusting at least one selected from the group consisting of the cooling rate of the sheet during extrusion, the draw ratio during stretching, and the temperature during drying. .
  • the degree of crystallinity tends to increase when the sheet is quenched during extrusion molding, the draw ratio is increased, or the temperature during drying is decreased.
  • the stretching treatment may be carried out by biaxial stretching, but is usually carried out by uniaxial stretching.
  • the sheet-like porous film may be folded into a bellows shape or processed into a bag shape, if necessary.
  • the pore structure and the first pore volume Vt in the separator control the affinity between the base polymer and the pore-forming agent and/or the penetrating agent, control the dispersibility of the pore-forming agent, and determine the type of inorganic particles. and/or select the particle size, select the type of penetrant, adjust the amount of the inorganic particles, the amount of the pore-forming agent, and/or the amount of the penetrant, and/or the surface of the inorganic particles can be adjusted by adjusting the amount of functional groups and/or atoms present in .
  • the ribs may be formed into a sheet when extruding the resin composition.
  • the ribs may be formed by pressing the sheet with a roller having grooves corresponding to the ribs after molding the resin composition into a sheet or after removing the pore-forming agent.
  • Pore-forming agents include liquid pore-forming agents and solid pore-forming agents.
  • the pore-forming agent preferably contains at least oil. By using oil, an oil-containing porous film is obtained, and the effect of suppressing oxidative deterioration is further enhanced.
  • the pore-forming agents may be used singly or in combination of two or more. Oil and other pore-forming agents may be used in combination.
  • a liquid pore-forming agent and a solid pore-forming agent may be used in combination. At room temperature (20° C. or higher and 35° C. or lower), a liquid pore-forming agent is classified as a liquid pore-forming agent, and a solid pore-forming agent as a solid pore-forming agent.
  • Solid pore formers include, for example, polymer powders.
  • the amount of pore-forming agent in the porous film may vary depending on the type.
  • the amount of the pore-forming agent in the porous film is, for example, 30 parts by weight or more per 100 parts by weight of the base polymer.
  • the amount of the pore-forming agent is, for example, 60 parts by weight or less per 100 parts by weight of the base polymer.
  • a porous film containing oil is formed by extracting and removing part of the oil from a sheet formed using oil as a pore-forming agent using a solvent.
  • a solvent is selected, for example, according to the type of oil.
  • the oil content in the porous film can be adjusted by adjusting the type and composition of the solvent, extraction conditions (extraction time, extraction temperature, speed of supplying the solvent, etc.).
  • the surfactant as a penetrant may be, for example, either an ionic surfactant or a nonionic surfactant. Surfactants may be used alone or in combination of two or more.
  • the content of the penetrant in the porous film is, for example, 0.01% by mass or more, and may be 0.1% by mass or more.
  • the content of the penetrant in the porous film may be 10% by mass or less.
  • Ceramic particles are preferable. Ceramics constituting the ceramic particles include, for example, at least one selected from the group consisting of silica, alumina, and titania.
  • the content of inorganic particles in the separator may be, for example, 40% by mass or more.
  • the content of inorganic particles is, for example, 80% by mass or less, and may be 70% by mass or less.
  • the glass fiber mat may be laminated on the surface of the porous film facing the positive electrode plate.
  • a bag-shaped porous film may have a glass fiber mat laminated to both outer surfaces of the bag.
  • the bag-shaped porous film containing this negative electrode plate has a glass fiber mat laminated on the surface of the side facing the positive electrode plate, and the positive electrode plate is formed.
  • the porous film may be exposed on the surface that does not face the plate.
  • a glass fiber mat is a mat (or non-woven fabric) made of glass fiber.
  • the glass fiber mat may be a material called Absorbed Glass Mat (AGM).
  • AGM Absorbed Glass Mat
  • the glass fiber mat may be entirely made of glass fiber.
  • the glass fiber mat may contain glass fibers as a main component.
  • the glass fiber content in the glass fiber mat may be 90% by mass or more or 95% by mass or more.
  • the content of glass fibers in the glass fiber mat is 100% by mass or less.
  • the glass fiber mat may contain components other than glass fibers, such as organic fibers, acid-resistant inorganic powders, and polymers as binders, but their content is usually 10% by mass or less or 5% by mass. % by mass or less.
  • the average fiber diameter of the glass fiber is, for example, 0.1 ⁇ m or more, and may be 0.5 ⁇ m or more. When the average fiber diameter of the glass fibers is within such a range, the effect of suppressing falling off of the softened positive electrode material is enhanced.
  • the average fiber diameter of the glass fibers is, for example, 30 ⁇ m or less, and may be 10 ⁇ m or less. In this case, an excessive increase in the internal resistance of the battery can be suppressed. In addition, it is possible to secure relatively high flexibility of the glass fiber mat, and it is easy to hold a relatively large amount of electrolytic solution.
  • the average fiber diameter of the glass fiber may be 0.1 ⁇ m or more (or 0.5 ⁇ m or more) and 30 ⁇ m or less, or 0.1 ⁇ m or more (or 0.5 ⁇ m or more) and 10 ⁇ m or less.
  • the surface density of the glass fiber mat is, for example, 100 g/m 2 or more.
  • the surface density of the glass fiber mat may be 250 g/m 2 or less, or 200 g/m 2 or less.
  • a separator that is a laminate of a porous film and a glass fiber mat is obtained, for example, by laminating a porous film and a glass fiber mat. More specifically, the separator may be formed by laminating a glass fiber mat on the surface of the porous film facing the positive electrode plate.
  • the porous film and the glass fiber mat may be simply placed on top of each other, or may be laminated (or fixed) using an adhesive. Alternatively, the porous film and the glass fiber mat may be laminated (or fixed) using welding (heat sealing, etc.) or mechanical adhesion methods (gear sealing, etc.).
  • adhesives include silicone-based adhesives, epoxy-based adhesives, and polyolefin-based adhesives. It is preferable that the amount of the adhesive applied is small so as not to increase the resistance of the separator. For example, it is preferable to apply the adhesive to a portion of the porous film or fiberglass mat rather than to the entire surface to be adhered.
  • a conductive carbon material can be used as the carbon material.
  • conductive carbon materials include graphite, activated carbon, conductive carbon black, carbon fibers, carbon nanotubes, and the like.
  • conductive carbon black include acetylene black, ketjen black, high surface area carbon black, and the like. From the viewpoint of productivity, it is preferable to use carbon black, and for example, it is preferable to use acetylene black, high surface area carbon black, and ketjen black.
  • the carbon material may be at least one selected from the group consisting of conductive carbon black and conductive carbon fiber.
  • the carbon material may be layered on the surface of the porous film. A method of arranging the carbon material will be described later.
  • the carbon material may be arranged only on one main surface (the main surface on the positive electrode plate side or the main surface on the negative electrode plate side), or may be arranged on both main surfaces. may In other words, the carbon material is present on at least one surface of the separator. In one preferred example, the carbon material is arranged only on one major surface of the porous film. As will be described later, the carbon material may be arranged only on the main surface of the porous film on the negative electrode plate side.
  • the carbon material may be arranged in layers so as to cover the main surface of the porous film, or may be arranged in a non-layered form. Examples of non-layered morphologies include morphologies arranged in discrete islands.
  • the thickness of the layer of carbon material may be in the range of 5 ⁇ m to 30 ⁇ m (eg in the range of 10 ⁇ m to 20 ⁇ m). The thickness of the carbon material layer can be measured in the same manner as the thickness of the separator.
  • the content of the carbon material (the carbon material placed on the surface of the porous film) in the separator may be 2% by mass or more, preferably 3% by mass or more. By setting the content to 2% by mass or more, it is possible to particularly improve the oxidation resistance and strength of the separator.
  • the content may be 40% by mass or less, or 30% by mass or less.
  • the carbon material may be formed by applying a carbon material, a composition containing the carbon material, or a dispersion containing the carbon material to the surface of the porous film.
  • the coating method is not particularly limited, and a doctor blade method, roller coating method, spray coating method, dipping method, vapor deposition method, other printing methods, and the like may be used.
  • dispersions containing carbon materials include dispersions in which carbon materials are dispersed in a dispersion medium (water and/or organic solvent). The amount and thickness of the carbon material placed on the surface of the porous film can be adjusted by controlling the amount of the applied carbon material.
  • the separator removed from the lead-acid battery is washed and dried according to the following procedure.
  • the separator taken out from the lead-acid battery is immersed in pure water for 1 hour to remove the sulfuric acid in the separator.
  • the separator is taken out from the liquid in which it was immersed, left to stand in an environment of 25° C. ⁇ 5° C. for 16 hours or longer, and dried.
  • the fully charged state of a liquid lead-acid battery is defined by the definition of JIS D 5301:2019. More specifically, the terminal voltage (V ) or the fully charged state is the state in which the electrolyte solution density converted to temperature at 20° C. is charged three times consecutively until it shows a constant value with three significant digits.
  • a fully charged state is defined as a current (0.2 times the rated capacity value (unit: Ah) in an air tank at 25°C ⁇ 2°C).
  • A constant current constant voltage charging is performed at 2.23 V / cell, and the charging current during constant voltage charging is a value (A) that is 0.005 times the value (value in Ah) described in the rated capacity.
  • the charging is finished when it becomes .
  • the numerical value described as the rated capacity is a numerical value whose unit is Ah (ampere hour).
  • the unit of current set based on the numerical value described as the rated capacity is A (ampere).
  • a fully charged lead-acid battery is a fully-charged lead-acid battery that has already been chemically formed.
  • the lead-acid battery may be fully charged immediately after the formation as long as it is after the formation, or after some time has passed since the formation. may be used).
  • battery in the early stage of use means a battery that has not undergone much deterioration since the start of use and has not deteriorated.
  • XRD spectrum The XRD spectrum of the porous film is measured by irradiating X-rays in the direction perpendicular to the surface of the porous film facing the positive electrode plate in the separator.
  • a sample for measurement is produced by processing the portion of the separator facing the electrode material into a strip shape.
  • the separator is a laminate of a porous film and a glass fiber mat
  • the sample for measurement is obtained by peeling off the glass fiber mat from the porous film and processing the area where the adhesive is not applied into strips. It is made by For separators or porous films that have ribs on the surface facing the positive plate, the sample is processed so that it does not contain ribs.
  • the carbon material is removed by polishing, and then the XRD spectrum is measured. Measurement and fitting of the XRD spectrum are performed under the following conditions.
  • Measurement condition Measuring device: RINT-TTR2, manufactured by Rigaku Fitting: FT (step scan) method Measuring angle range: 15-35° Step width: 0.02° Measurement speed: 5°/min XRD data processing: using XRD pattern analysis software (PDXL2, manufactured by Rigaku).
  • sample A A sample (hereinafter referred to as sample A) is prepared by processing the portion of the porous film facing the electrode material into a strip of 20 mm ⁇ 5 mm.
  • Sample A is produced by processing the base into strips so as not to include ribs.
  • the separator is a laminate of the porous film and the glass fiber mat, the porous film and the glass fiber mat are separated, and in the area where the adhesive is not applied, the part of the separator facing the electrode material is 20 mm ⁇ 5 mm. to produce a sample (hereinafter referred to as sample A).
  • the pore size distribution is determined using a mercury porosimeter under the following conditions, and Vt is determined by totaling the volumes of the first pores.
  • Mercury porosimeter Autopore IV9510, manufactured by Shimadzu Corporation Pressure range for measurement: 4 psia ( ⁇ 27.6 kPa) to 60,000 psia ( ⁇ 414 MPa) Pore distribution: 0.01 ⁇ m to 50 ⁇ m
  • the thickness of the porous film is obtained by measuring the thickness of the porous film portion at five arbitrarily selected points in the cross-sectional photograph of the separator and averaging the measured thicknesses.
  • the thickness of the layer of the carbon material is obtained in a similar manner.
  • the height of the rib is obtained by averaging the heights from one surface of the base portion of the rib measured at 10 arbitrarily selected locations of the rib in the cross-sectional photograph of the separator.
  • sample B is prepared by processing the portion of the separator facing the electrode material into a strip shape in the region where the adhesive is not applied. If the separator has a carbon material on the surface of the porous film, the carbon material is removed by polishing, and the portion of the separator facing the electrode material is processed into a strip shape to prepare Sample B. .
  • the porous film has ribs, it is processed to produce sample B so as not to include ribs.
  • sample B (Content of inorganic particles in porous film) A portion of sample B prepared in the same manner as described above is sampled, accurately weighed, placed in a platinum crucible, and heated with a Bunsen burner until white smoke is no longer emitted. Next, the resulting sample is heated in an electric furnace (550° C. ⁇ 10° C. in an oxygen stream) for about 1 hour to be ashed, and the ashed matter is weighed. The ratio (percentage) of the mass of the ash to the mass of the sample B is calculated and defined as the inorganic particle content (% by mass). The content of inorganic particles is determined for 10 samples B, and the average value is calculated. Let the obtained average value be the content rate of the inorganic particle in a porous film.
  • sample B (Content of penetrant in porous film) A portion of sample B prepared in the same manner as described above is sampled, weighed accurately, and dried at room temperature (20° C. or higher and 35° C. or lower) under a reduced pressure environment lower than atmospheric pressure for 12 hours or more. The dried material is placed in a platinum cell, set in a thermogravimetry device, and heated from room temperature to 800° C. ⁇ 1° C. at a temperature elevation rate of 10 K/min. The amount of weight loss when the temperature is raised from room temperature to 250°C ⁇ 1°C is taken as the mass of the penetrant, and the ratio (percentage) of the mass of the penetrant to the mass of sample B is calculated, and the content of the above penetrant. (% by mass). As a thermogravimetry device, T.I. A. Q5000IR manufactured by Instruments is used. The penetrant content is determined for 10 samples B, and the average value is calculated. The obtained average value is defined as the penetrant content in the porous film.
  • the average fiber diameter of glass fibers is determined by averaging the maximum diameters of arbitrary cross sections perpendicular to the longitudinal direction of arbitrary 100 fibers taken out from the glass fiber mat portion of the separator.
  • a paste-type positive plate is used as the positive plate.
  • the pasted positive plate comprises a positive current collector and a positive electrode material.
  • a positive electrode material is held by a positive current collector.
  • the positive electrode material is a portion of the positive electrode plate excluding the positive current collector.
  • members such as mats and pasting paper may be attached to the electrode plates.
  • Such a member also referred to as a sticking member
  • the positive electrode material is the portion of the positive electrode plate excluding the positive current collector and the sticking member.
  • the positive electrode current collector contained in the positive electrode plate may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead or lead alloy sheet. Processing methods include, for example, expanding processing and punching processing. It is preferable to use a grid-like current collector as the positive electrode current collector because it facilitates carrying the positive electrode material.
  • Pb--Ca-based alloys and Pb--Ca--Sn-based alloys are preferable as the lead alloy used for the positive electrode current collector in terms of corrosion resistance and mechanical strength.
  • the positive electrode current collector may have lead alloy layers with different compositions, and the alloy layer may be a single layer or a plurality of layers.
  • the positive electrode material contained in the positive plate contains a positive electrode active material (lead dioxide or lead sulfate) that develops capacity through an oxidation-reduction reaction.
  • the positive electrode material may contain other additives (such as reinforcing materials) as necessary.
  • reinforcing materials include fibers (inorganic fibers, organic fibers, etc.).
  • resins (or polymers) constituting organic fibers include acrylic resins, polyolefin resins (polypropylene resins, polyethylene resins, etc.), polyester resins (including polyalkylene arylates (polyethylene terephthalate, etc.)).
  • celluloses cellulose, cellulose derivatives (cellulose ether, cellulose ester, etc.)).
  • Celluloses also include rayon.
  • the content of the reinforcing material in the positive electrode material is, for example, 0.03% by mass or more. Moreover, the content of the reinforcing material in the positive electrode material is, for example, 0.5% by mass or less.
  • An unformed paste-type positive electrode plate is obtained by filling a positive current collector with positive electrode paste, aging and drying.
  • the positive electrode paste is prepared by adding water and sulfuric acid to lead powder, an antimony compound, and optionally other additives (reinforcing material, etc.) and kneading them.
  • a positive electrode plate can be obtained by chemically forming an unformed positive electrode plate. Formation can be performed by charging the electrode plate group including the unformed positive electrode plate while immersing the electrode plate group in an electrolytic solution containing sulfuric acid in the battery case of the lead-acid battery. However, formation may be performed before assembly of the lead-acid battery or the electrode plate assembly.
  • a negative electrode plate of a lead-acid battery is composed of a negative current collector and a negative electrode material.
  • the negative electrode material is a portion of the negative electrode plate excluding the negative electrode current collector.
  • the above-described attachment member is attached to the negative electrode plate.
  • the attachment member is included in the negative electrode plate.
  • the negative electrode material is the portion of the negative plate excluding the negative current collector and the sticking member.
  • the negative electrode current collector can be formed in the same manner as the positive electrode current collector.
  • At least one of the positive electrode current collector and the negative electrode current collector may be a current collector formed by an expanding process.
  • the corners of the electrode plate may be deformed due to interference with the manufacturing equipment during the manufacturing process of the electrode plate.
  • the corners of the electrode plates are likely to break through the separator at the initial stage, resulting in a short circuit. Since the separator in which the carbon material is arranged on the surface of the porous film has high strength, even when it is combined with the electrode plate using the expanded lattice, it is possible to suppress the initial short circuit due to the deformation of the electrode plate.
  • At least one of the positive plate and the negative plate may contain an expanded lattice.
  • the lead alloy used for the negative electrode current collector may be any of Pb--Sb-based alloy, Pb--Ca-based alloy, and Pb--Ca--Sn-based alloy. These lead or lead alloys may further contain at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu, etc. as an additive element.
  • the negative electrode current collector may have lead alloy layers with different compositions, and the alloy layer may be a single layer or a plurality of layers.
  • the negative electrode material contained in the negative plate contains a negative electrode active material (lead or lead sulfate) that develops capacity through an oxidation-reduction reaction, and may contain an organic shrinkage agent, carbonaceous material, barium sulfate, and the like.
  • the negative electrode material may contain other additives (such as reinforcing materials) as necessary.
  • organic shrink-proofing agents include lignin, lignin sulfonic acid, and synthetic organic shrink-proofing agents (formaldehyde condensates of phenol compounds, etc.).
  • the negative electrode material may contain one kind or two or more kinds of organic expanders.
  • the content of the organic shrinkage inhibitor in the negative electrode material is, for example, 0.01% by mass or more.
  • the content of the organic shrink-proofing agent is, for example, 1% by mass or less.
  • Examples of carbonaceous materials in negative electrode materials include carbon black, graphite (artificial graphite, natural graphite, etc.), hard carbon, and soft carbon.
  • the negative electrode material may contain one type of carbonaceous material, or may contain two or more types.
  • the content of the carbonaceous material in the negative electrode material is, for example, 0.1% by mass or more.
  • the content of the carbonaceous material may be, for example, 3% by mass or less.
  • the content of barium sulfate in the negative electrode material is, for example, 0.1% by mass or more.
  • the content of barium sulfate is, for example, 3% by mass or less.
  • reinforcing materials include fibers (inorganic fibers, organic fibers (such as organic fibers made of resin as described for reinforcing materials for positive electrode materials), etc.).
  • the content of the reinforcing material in the negative electrode material is, for example, 0.03% by mass or more. Moreover, the content of the reinforcing material in the negative electrode material is, for example, 0.5% by mass or less.
  • the negative electrode active material in the charged state is spongy lead, but the unformed negative electrode plate is usually made using lead powder.
  • the negative electrode plate can be formed by filling a negative electrode current collector with a negative electrode paste, aging and drying to prepare an unformed negative electrode plate, and then forming the unformed negative electrode plate.
  • the negative electrode paste is prepared by adding water and sulfuric acid to lead powder, an organic anti-shrinking agent, and optionally various additives, and kneading the mixture.
  • the unformed negative electrode plate is preferably aged at a temperature and humidity higher than room temperature.
  • Formation can be performed by charging the electrode plate group including the unformed negative electrode plate while immersing the electrode plate group including the unformed negative electrode plate in the electrolytic solution containing sulfuric acid in the battery case of the lead-acid battery. However, formation may be performed before assembly of the lead-acid battery or the electrode plate assembly. Formation produces spongy lead.
  • a separator in which a carbon material is arranged on the surface of a porous film is particularly preferably used for a lead-acid battery in which one cell accommodates a large number of positive plates and negative plates, specifically 12 or more sheets in total. . This is because the tensile strength of the separator is particularly important when a total of 12 or more positive electrode plates and negative electrode plates are accommodated in one cell.
  • the electrolyte is an aqueous solution containing sulfuric acid.
  • the electrolytic solution may be gelled if necessary.
  • the electrolyte may further contain at least one metal ion selected from the group consisting of Na ions, Li ions, Mg ions, and Al ions.
  • the specific gravity of the electrolyte at 20°C is, for example, 1.10 or more.
  • the specific gravity of the electrolytic solution at 20° C. may be 1.35 or less. It should be noted that these specific gravities are values for the electrolytic solution of a lead-acid battery in a fully charged state.
  • High-temperature overcharge life performance High-temperature overcharge life performance of a lead-acid battery is evaluated based on the life of the lead-acid battery at this time by performing a high-temperature overcharge endurance test in the following procedure. (a) Place the accumulator in an air bath at 75°C ⁇ 3°C throughout the entire test period. (b) Connect the storage battery to the life test device and continuously repeat the following discharge and charge cycles. The cycle of this discharge and charge is defined as one lifetime (one cycle).
  • Discharge Discharge current 25.0 A ⁇ 0.1 A for 60 seconds ⁇ 1 second
  • Charge Charge voltage 14.80 V ⁇ 0.03 V (limit current 25.0 A ⁇ 0.1 A) for 600 seconds ⁇ 1 second
  • a rated cold cranking current 390 A for 30 seconds, and the voltage at 30 seconds is recorded. After that, charging of (b) is performed. Note that these discharges and charges are also added to the number of lifespans (number of cycles).
  • the 30th second voltage measured in the test of (c) is 7.2 V or less, and the test is terminated when it is confirmed that it does not rise again. ) is used as an indicator of life performance.
  • the rated cold cranking current is a measure of engine starting performance, and is the discharge current determined so that the voltage at the 30th second is 7.2 V or more after discharging at a temperature of -18°C ⁇ 1°C. is.
  • the IS life performance of a lead-acid battery is evaluated based on the life of the lead-acid battery at this time by carrying out an IS life test according to the following procedure based on SBA S 0101:2014. a) Place the accumulator in the gas phase at 25 ⁇ 2° C. throughout the entire test period. The wind velocity in the vicinity of the storage battery shall be 2.0 m/s or less. b) Connect the storage battery to the life test equipment and perform the following discharges (Discharge 1 and Discharge 2) and charge. This discharge and charge is one cycle of discharge and charge. The cycle of discharge and charge is then repeated continuously.
  • the tensile strength of the separator is measured by the following procedure. First, a test piece is obtained by cutting a separator into a size of 10 mm ⁇ 40 mm. Using a precision universal testing machine (Shimadzu Corporation, product name: AGS-X), this test piece was subjected to a tensile test under the conditions of 20 mm chuck distance, 5 mm/min tensile speed, and 25°C. Tensile strength.
  • FIG. 1 shows the appearance of an example of a lead-acid battery according to an embodiment of the present invention.
  • a lead-acid battery 1 includes a battery case 12 that accommodates an electrode plate group 11 and an electrolytic solution (not shown).
  • the interior of the container 12 is partitioned into a plurality of cell chambers 14 by partition walls 13 .
  • Each cell chamber 14 accommodates one electrode plate group 11 .
  • the opening of the container 12 is closed with a lid 15 having a negative terminal 16 and a positive terminal 17 .
  • the lid 15 is provided with a liquid port plug 18 for each cell chamber. When rehydrating, the rehydration liquid is replenished by removing the liquid port plug 18. - ⁇ The liquid port plug 18 may have a function of discharging the gas generated inside the cell chamber 14 to the outside of the battery.
  • the electrode plate group 11 is configured by stacking a plurality of negative electrode plates 2 and positive electrode plates 3 with separators 4 interposed therebetween.
  • a bag-shaped separator 4 for housing the negative electrode plate 2 is shown, but the shape of the separator is not particularly limited.
  • the glass fiber mat or the carbon material is arranged on either the inner surface or the outer surface of the bag. be.
  • a negative electrode shelf portion 6 connecting a plurality of negative electrode plates 2 in parallel is connected to a through connector 8, and a positive electrode shelf portion connecting a plurality of positive electrode plates 3 in parallel. 5 is connected to the positive pole 7 .
  • the positive pole 7 is connected to a positive terminal 17 outside the lid 15 .
  • the negative electrode column 9 is connected to the negative electrode shelf 6
  • the through connector 8 is connected to the positive electrode shelf 5 .
  • the negative electrode column 9 is connected to a negative electrode terminal 16 outside the lid 15 .
  • Each through-connector 8 passes through a through-hole provided in the partition wall 13 and connects the electrode plate groups 11 of adjacent cell chambers 14 in series.
  • Example 1> ⁇ Lead-acid batteries E1-1 to E1-10 and C1-1>> Each lead-acid battery was produced in the following procedure.
  • the oil content of the separator obtained by the above procedure was 11 to 18% by mass, and the silica particle content was 60% by mass.
  • the rib height determined by the procedure described above was 0.6 mm. Tables 1 and 2 show the thickness of the separator (thickness of the base portion) obtained by the above procedure.
  • the sheet-like microporous membrane was folded in two so that ribs were arranged on the outer surface to form a bag, and the overlapped ends were crimped to obtain a bag-like separator.
  • the crystallinity of the porous film, the oil content, the silica particle content, the thickness of the base portion, and the height of the rib are the values obtained for the separator before production of the lead-acid battery. It is almost the same as the value measured by the procedure described above for the separator taken out from the lead-acid battery.
  • a positive electrode paste was prepared by mixing lead oxide, reinforcing material (synthetic resin fiber), water and sulfuric acid.
  • the positive electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 100 mm, a height of 110 mm, and a thickness of 1.6 mm. A positive plate was obtained.
  • Negative Electrode Plate A negative electrode paste was prepared by mixing lead oxide, carbon black, barium sulfate, lignin, reinforcing material (synthetic resin fiber), water and sulfuric acid.
  • the negative electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 100 mm, a height of 110 mm, and a thickness of 1.3 mm. A negative plate was obtained.
  • the amounts of carbon black, barium sulfate, lignin and synthetic resin fiber used were such that the content of each component in the negative electrode plate taken out from a fully charged lead-acid battery was 0.3% by mass, 2.1% by mass and 0.3% by mass, respectively. It was adjusted to be 1% by mass and 0.1% by mass.
  • the lugs of the positive electrode plate and the lugs of the negative electrode plate were welded to the positive shelf and the negative shelf by a cast-on-strap (COS) method, respectively.
  • the electrode plate group is inserted into a polypropylene battery case, the electrolyte is injected, and chemical conversion is performed in the battery case so that the rated voltage is 12 V and the rated capacity is 30 Ah (5 hour rate capacity (Ah described in the rated capacity).
  • Six electrode plate groups are connected in series in the container.
  • a sulfuric acid aqueous solution was used as the electrolyte.
  • the specific gravity at 20° C. of the electrolytic solution after chemical conversion was 1.285.
  • FIG. 2 shows the XRD spectrum of separator E1-1 measured by the procedure described above.
  • the high-temperature overcharge life performance was evaluated according to the procedure described above.
  • the high-temperature overcharge life performance was evaluated by the ratio of the number of cycles of each lead-acid battery to 100 cycles of the lead-acid battery C1-1.
  • E1-1 to E1-10 are examples.
  • C1-1 is a comparative example.
  • Each lead-acid battery was produced in the following procedure.
  • (1) Preparation of Separator A resin composition containing 100 parts by mass of polyethylene, about 160 parts by mass of silica particles, about 80 parts by mass of paraffinic oil as a pore-forming agent, and 2 parts by mass of a penetrating agent was prepared into a sheet.
  • Example 2 only the porous film was used as the separator.
  • the E2-1 separator is the same as the E1-1 separator produced in Example 1.
  • the content of silica particles obtained by the procedure described above was 60% by mass.
  • the rib height determined by the procedure described above was 0.6 mm.
  • the thickness of the separator (thickness of the base portion) determined by the above procedure was 0.2 mm.
  • the sheet-like microporous membrane was folded in two so that ribs were arranged on the outer surface to form a bag, and the overlapped ends were crimped to obtain a bag-like separator.
  • the crystallinity of the porous film, the first pore volume Vt, the oil content, the silica particle content, the thickness of the base portion, and the height of the ribs were determined for the separator before the lead-acid battery was produced.
  • the value is almost the same as the value measured by the above-described procedure for the separator taken out from the manufactured lead-acid battery.
  • a positive electrode paste was prepared by mixing lead oxide, reinforcing material (synthetic resin fiber), water and sulfuric acid.
  • the positive electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 100 mm, a height of 110 mm, and a thickness of 1.6 mm. A positive plate was obtained.
  • Negative Electrode Plate A negative electrode paste was prepared by mixing lead oxide, carbon black, barium sulfate, lignin, reinforcing material (synthetic resin fiber), water and sulfuric acid.
  • the negative electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 100 mm, a height of 110 mm, and a thickness of 1.3 mm. A negative plate was obtained.
  • the amounts of carbon black, barium sulfate, lignin and synthetic resin fiber used were such that the content of each component in the negative electrode plate taken out from a fully charged lead-acid battery was 0.3% by mass, 2.1% by mass and 0.3% by mass, respectively. It was adjusted to be 1% by mass and 0.1% by mass.
  • the lugs of the positive electrode plate and the lugs of the negative electrode plate were welded to the positive shelf and the negative shelf by a cast-on-strap (COS) method, respectively.
  • the electrode plate group is inserted into a polypropylene battery case, the electrolyte is injected, and chemical conversion is performed in the battery case so that the rated voltage is 12 V and the rated capacity is 30 Ah (5 hour rate capacity (Ah described in the rated capacity).
  • Six electrode plate groups are connected in series in the container.
  • a sulfuric acid aqueous solution was used as the electrolyte.
  • the specific gravity at 20° C. of the electrolytic solution after chemical conversion was 1.285.
  • the IS life performance was evaluated according to the procedure described above. CCA performance was also evaluated using some lead-acid batteries. The IS life performance was evaluated by the ratio (%) of the number of cycles of each lead-acid battery when the number of cycles of the lead-acid battery C2-1 was taken as 100 (%). The CCA performance was evaluated by the ratio (%) of the terminal voltage at 30 seconds of each lead-acid battery when the terminal voltage at 30 seconds of lead-acid battery C2-17 was taken as 100.
  • Tables 3 to 5 show the evaluation results of IS life performance.
  • Table 6 shows the evaluation results of CCA performance.
  • E2-1 to E2-108 in the table indicate battery numbers and are examples.
  • C2-1 to C2-48 indicate battery numbers and are comparative examples.
  • the numerical value at the bottom of the battery number is the IS life performance (%).
  • the first pore volume Vt is 0.8 cm 3 /g compared to when it is less than 0.8 cm 3 /g.
  • the IS life is improved at 0.8 cm 3 /g or more, but the IS life performance decreases (comparison between C2-1 and C2-2 to 2-13, C2-17 and C2-18 to C2 -29, C2-33 and C2-34 to C2-45).
  • the first pore volume Vt is less than 0.8 cm 3 /g, the IS life performance does not change even if the degree of crystallinity is changed.
  • FIG. 3 is a graph plotting the IS life performance results of C2-17 to C2-32 and E2-37 to E2-72 in Table 4 for each crystallinity.
  • the excellent IS life performance was obtained in the examples because the first pore volume Vt of 0.8 cm 3 /g or more increased the diffusibility of the electrolytic solution and reduced the resistance of the separator.
  • Each lead-acid battery was produced in the following procedure.
  • (1) Preparation of Separator A resin composition containing 100 parts by mass of polyethylene, 160 parts by mass of silica particles, 80 parts by mass of paraffin oil as a pore-forming agent, and 2 parts by mass of a penetrating agent is extruded into a sheet.
  • a microporous membrane having ribs on one side was produced by removing part of the pore-forming agent after molding and stretching.
  • the porous film of E3-7 is the same as the separator of E1-1 produced in Example 1 and the separator of E2-1 produced in Example 2.
  • the oil content of the separator obtained by the above procedure was 11 to 18% by mass, and the silica particle content was 60% by mass.
  • the rib height determined by the procedure described above was 0.2 mm.
  • Tables 7 and 8 show the thickness of the porous film (thickness of the base portion) determined by the procedure described above.
  • the sheet-like porous film is folded in half so that the ribs are arranged on the inner surface to form a bag, and the overlapped both ends are crimped to form a bag-like porous film (in a flat state).
  • size length 117 mm x width 152 mm).
  • the crimped portion had a width of 3 mm inside a position 2 mm from the side edge of the porous film.
  • ribs were formed on the outer surface, and a bag-shaped porous film formed in the same manner as described above was used as a separator, except that the rib height was 0.6 mm. used as
  • a glass fiber mat (size under atmospheric pressure: 117 mm long x 143 mm wide, average fiber diameter: 17 ⁇ m, surface density: 60 g/m 2 ) is adhered to both outer surfaces of the bag-like porous film as shown in FIG. pasted with glue.
  • the width of the porous film was greater than the width of the glass fiber mat, and regions with a width of 4.5 mm where the glass fiber mat did not overlap were formed on both side ends of the porous film.
  • the crystallinity, oil content, silica particle content, base thickness, rib height, glass fiber mat size, average fiber diameter, and surface density of the porous film were measured before the lead-acid battery was manufactured. This is the value obtained for the porous film or glass fiber mat of , which is almost the same as the value measured by the above-described procedure for the porous film or glass fiber mat taken out from the lead-acid battery after production.
  • a positive electrode paste was prepared by mixing lead oxide, reinforcing material (synthetic resin fiber), water and sulfuric acid.
  • the positive electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 137 mm, a height of 110 mm, and a thickness of 1.6 mm. A positive plate was obtained.
  • Negative Electrode Plate A negative electrode paste was prepared by mixing lead oxide, carbon black, barium sulfate, lignin, reinforcing material (synthetic resin fiber), water and sulfuric acid.
  • the negative electrode paste was filled in the mesh part of an expanded grid made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 137 mm, a height of 110 mm, and a thickness of 1.3 mm. A negative plate was obtained.
  • the amounts of carbon black, barium sulfate, lignin and synthetic resin fiber used were such that the content of each component in the negative electrode plate taken out from a fully charged lead-acid battery was 0.3% by mass, 2.1% by mass and 0.3% by mass, respectively. It was adjusted to be 1% by mass and 0.1% by mass.
  • the lugs of the positive electrode plate and the lugs of the negative electrode plate were welded to the positive shelf and the negative shelf using the cast-on-strap method, respectively.
  • the electrode plate group is inserted into a polypropylene battery case, the electrolyte is injected, and chemical conversion is performed in the battery case so that the rated voltage is 12 V and the rated capacity is 30 Ah (5 hour rate capacity (Ah described in the rated capacity).
  • Six electrode plate groups are connected in series in the container.
  • a sulfuric acid aqueous solution was used as the electrolyte.
  • the specific gravity at 20° C. of the electrolytic solution after chemical conversion was 1.285.
  • CCA performance was evaluated by the ratio (%) of the terminal voltage at 30 seconds of each lead-acid battery when the terminal voltage at 30 seconds of lead-acid battery R3-4 was taken as 100.
  • the high-temperature overcharge life performance was evaluated by the ratio (%) of the number of cycles of each lead-acid battery to 100 cycles of the lead-acid battery R3-4.
  • E3-1 to E3-16 are examples.
  • R3-1 to R3-12 are reference examples.
  • the CCA performance of the separator without the glass fiber mat is affected by the thickness of the separator, and the smaller the thickness, the higher the CCA performance (R3-1 to R3-4).
  • the smaller the thickness of the separator the lower the high temperature overcharge life performance tends to be (R3-1 to R3-4). This is presumably because if the thickness of the separator is small, the separator is likely to break when it comes into contact with the positive electrode material, and short-circuiting is more likely to occur.
  • the porous film When the porous film is laminated with the glass fiber mat, the falling off of the softened positive electrode material is suppressed, so it is expected that the high-temperature overcharge life performance will be improved to some extent.
  • the crystallinity of the porous film is less than 20% and the thickness is 100 ⁇ m, even if it is laminated with the glass fiber mat, the improvement effect is small, with only a 9% improvement from 89% cycle to 98%. (Comparison of R3-1 and R3-9). Even when the thickness of the porous film is large, the results do not change much, and the effect of improving the high temperature overcharge life performance by laminating with the glass fiber mat is about 7 to 10% (R3-2 to R3-4 and R3-10 to R3-12). On the other hand, as the thickness of the porous film increases, the CCA performance tends to decrease because the resistance increases.
  • the high temperature overcharge life performance will be improved by 14 to 22%. be done.
  • E3-1 to E3-4 have improved high temperature overcharge life performance by 36 to 41% compared to R3-1 to R3-4, and a high value of 130 to 138% is obtained.
  • the thickness of the porous film is 300 ⁇ m or less. From the viewpoint of obtaining excellent high-temperature overcharge life performance and further improving CCA performance, the thickness of the porous film may be 250 ⁇ m or less or 200 ⁇ m or less.
  • lead-acid batteries were produced and evaluated using the porous films and the electrode plates having the sizes described above. can get.
  • Example 4 (Experimental example 1) In Experimental Example 1, a plurality of separators and a plurality of lead-acid batteries were produced by the following procedure.
  • a resin composition containing 100 parts by mass of polyethylene, 160 parts by mass of silica particles, 80 parts by mass of paraffinic oil as a pore-forming agent, and 2 parts by mass of a penetrating agent was prepared into a sheet.
  • a porous film having ribs on one side was produced by extruding the film, stretching the film, and partially removing the pore-forming agent. At this time, the cooling rate and stretching ratio of the extruded sheet were adjusted so that the crystallinity of the porous film obtained by the procedure described above was the value shown in Table 9.
  • a carbon material was placed on one main surface (main surface on the negative electrode plate side) of each of the formed porous films by the following procedure.
  • a mixture of silica and carbon material was deposited on the separator, and then a pure carbon layer was deposited thereon by roller coating method or spray coating method.
  • the carbon material was arranged.
  • the thickness of the carbon material was the same for each porous film. Specifically, it was set to 10 ⁇ m.
  • the oil content of the separator obtained by the above procedure was 11 to 18% by mass, and the silica particle content was 60% by mass.
  • the rib height determined by the procedure described above was 0.6 mm.
  • Table 9 shows the thickness of the separator (thickness of the base portion) obtained by the procedure described above.
  • the sheet-like separator obtained by the above procedure was folded in two so that ribs were arranged on the outer surface to form a bag.
  • a bag-like separator was obtained by crimping the overlapped ends.
  • the inner surface of the bag-like separator is the surface on which the carbon material is arranged.
  • the crystallinity of the porous film, the oil content, the silica particle content, the thickness of the separator, and the height of the ribs in the separator are the values obtained for the separator before production of the lead-acid battery. These values are almost the same as the values measured by the above-described procedure for the separator taken out from the manufactured lead-acid battery.
  • a positive electrode paste was prepared by mixing lead oxide, reinforcing material (synthetic resin fiber), water and sulfuric acid.
  • the positive electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 100 mm, a height of 110 mm, and a thickness of 1.6 mm. A positive plate was obtained.
  • Negative Electrode Plate A negative electrode paste was prepared by mixing lead oxide, carbon black, barium sulfate, lignin, reinforcing material (synthetic resin fiber), water and sulfuric acid.
  • the negative electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 100 mm, a height of 110 mm, and a thickness of 1.3 mm. A negative plate was obtained.
  • the amounts of carbon black, barium sulfate, lignin and synthetic resin fiber used were such that the content of each component in the negative electrode plate taken out from a fully charged lead-acid battery was 0.3% by mass, 2.1% by mass and 0.3% by mass, respectively. It was adjusted to be 1% by mass and 0.1% by mass.
  • the lugs of the positive electrode plate and the lugs of the negative electrode plate were welded to the positive shelf and the negative shelf by a cast-on-strap (COS) method, respectively.
  • the electrode plate group is inserted into a polypropylene battery case, the electrolyte is injected, and chemical conversion is performed in the battery case so that the rated voltage is 12 V and the rated capacity is 30 Ah (5 hour rate capacity (Ah described in the rated capacity).
  • a liquid lead-acid battery with a capacity when discharged at a current (A) that is 1/5 of the value of )) was assembled.
  • Six electrode plate groups are connected in series in the container.
  • the porous films of the separators used in Battery A1 were the E1-1 separator used in Example 1, the E2-1 separator used in Example 2, and the E3-7 separator used in Example 3. is the same as the porous film of
  • a sulfuric acid aqueous solution was used as the electrolyte.
  • the specific gravity at 20° C. of the electrolytic solution after chemical conversion was 1.285.
  • the XRD spectrum measured by the procedure described above showed good agreement with the XRD spectrum of the E-1 separator shown in FIG.
  • the high-temperature overcharge life performance (number of cycles N) was evaluated according to the procedure described above.
  • the high-temperature overcharge life performance was evaluated by the relative value of the cycle number N of each lead-acid battery.
  • the relative value of the cycle number N is a value when the cycle number N of the battery CA1 is 90.
  • Table 9 shows the evaluation results.
  • Batteries A1 to A4 are batteries of invention examples, and battery CA1 is a battery of comparative examples.
  • Example 2 In Experimental Example 2, a lead-acid battery was produced and evaluated in the same manner as in Experimental Example 1, except that the separator was changed. Specifically, a plurality of separators were produced in the same manner as in Experimental Example 1, except that the production conditions for changing the separator thickness and the crystallinity of the porous film were changed. The carbon material was placed under the same conditions as the separator of Experimental Example 1.
  • the manufactured separator and lead-acid battery were evaluated in the same manner as in Experimental Example 1.
  • Table 10 shows the evaluation results.
  • Batteries B1 to B12 are invention examples, and batteries CB1 to CB4 are comparative examples.
  • the high-temperature overcharge life performance (number of cycles N) in Table 10 is a relative value when the number of cycles N of battery B1 is 100.
  • the high-temperature overcharge life performance could be significantly improved. If the separator is thin (if the porous film is thin), the resin does not flow well into the mold during resin molding to form the porous film. Separator tears) may occur partially. On the other hand, when the thickness of the separator is 100 ⁇ m or more (the thickness of the porous film is 90 ⁇ m or more), the surroundings of the resin are improved and a homogeneous porous film can be obtained. In addition, placing the carbon material on the surface of the porous film significantly improves the tensile strength of the separator, as will be described later. Therefore, it is considered that the high-temperature overcharge life characteristics were greatly improved.
  • Example 3 In Experimental Example 3, a plurality of separators were produced under different production conditions. Specifically, the same method as in Experimental Example 1 was used, except that the manufacturing conditions for changing the crystallinity of the porous film and the thickness of the separator, and the presence or absence of the arrangement of the carbon material were changed. , a plurality of separators were produced. The produced separator was evaluated in the same manner as in Experimental Example 1.
  • the tensile strength of the manufactured separator was measured by the method described above.
  • Tables 11 and 12 show the evaluation results of the separator.
  • Separators S1 to S10 are invention example separators, and separators CS1 to CS12 are comparative example separators.
  • the tensile strength is a relative value when the tensile strength of the separator CS1 is set to 100.
  • Table 11 The results of Table 11 are shown in FIG. 5, and the results of Table 12 are shown in FIG.
  • Table 11 and FIG. 5 by disposing the carbon material on the surface and setting the crystallinity of the porous film to 20% or more, the tensile strength of the separator could be significantly increased.
  • Table 12 and FIG. 6 by disposing the carbon material on the surface and setting the thickness to 100 ⁇ m or more, the tensile strength of the separator could be significantly increased.
  • the lead-acid battery separator according to the above aspect of the present invention is suitable, for example, for IS applications (lead-acid batteries for ISS vehicles, etc.), starting power sources for various vehicles (automobiles, motorcycles, etc.).
  • the lead-acid battery separator can be suitably used as a power source for industrial power storage devices such as electric vehicles (forklifts, etc.). It should be noted that these uses are merely exemplary. Applications of the lead-acid battery separator and the lead-acid battery according to the above aspects of the present invention are not limited to these.
  • 1 lead-acid battery
  • 2 negative electrode plate
  • 3 positive electrode plate
  • 4 separator
  • 4a porous film
  • 4b glass fiber mat
  • 5 positive electrode shelf
  • 6 negative electrode shelf
  • 7 positive electrode column
  • 8 Penetration connector
  • 9 negative electrode column
  • 11 electrode plate group
  • 12 container
  • 13 partition wall
  • 14 cell chamber
  • 15 lid
  • 16 negative electrode terminal
  • 17 positive electrode terminal
  • 18 liquid spout plug
  • 20 crimping part
  • 21 area not covered with the glass fiber mat of the porous film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)

Abstract

This separator for a lead-acid battery comprises a porous film. The porous film has a crystalline region and an amorphous region. In an X-ray diffraction spectrum of the porous film, a crystallinity degree represented by 100 × Ic/(Ic + Ia) is greater than or equal to 20%. Ic is the integrated intensity of a diffraction peak having a greatest peak height among diffraction peaks corresponding to the crystalline region. Ia is the integrated intensity of a halo corresponding to the amorphous region.

Description

鉛蓄電池用セパレータおよびそれを含む鉛蓄電池Separator for lead-acid battery and lead-acid battery including the same
 本発明は、鉛蓄電池用セパレータおよびそれを含む鉛蓄電池に関する。 The present invention relates to a lead-acid battery separator and a lead-acid battery including the same.
 鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、正極板および負極板と、これらの間に介在するセパレータと、電解液と、を含む。鉛蓄電池のセパレータには、様々な性能が要求される。 Lead-acid batteries are used in a variety of applications, including automotive and industrial applications. A lead-acid battery includes a positive plate and a negative plate, a separator interposed therebetween, and an electrolyte. Various performances are required for separators of lead-acid batteries.
 特許文献1は、ポリオレフィン系樹脂20~60質量%と、無機粉体80~40質量%と、これらの配合物に対して40~240質量%の鉱物オイルとの混合物からなる原料組成物を加熱溶融し、混練しながら、リブを有するシート状に成形した後、該オイルを溶解し得る有機溶剤の浸漬槽に浸漬して該オイルの一部を抽出除去し、加熱乾燥して得られる、該オイルを5~30質量%含有した鉛蓄電池用リブ付きセパレータにおいて、該セパレータのリブ部とベース部におけるオイル含有率の差を5質量%以下としたことを特徴とする鉛蓄電池用リブ付きセパレータを提案している。 In Patent Document 1, a raw material composition comprising a mixture of 20 to 60% by mass of polyolefin resin, 80 to 40% by mass of inorganic powder, and 40 to 240% by mass of mineral oil is heated. After being melted and kneaded, it is molded into a sheet having ribs, then immersed in an immersion tank of an organic solvent capable of dissolving the oil to extract and remove a portion of the oil, followed by heating and drying. A ribbed separator for a lead-acid battery containing 5 to 30% by mass of oil, wherein the difference in oil content between the rib portion and the base portion of the separator is 5% by mass or less. is suggesting.
 特許文献2は、ポリオレフィン微孔性膜を含む鉛蓄電池のためのセパレータであって、前記ポリオレフィン微孔性膜は、好ましくは超高分子量ポリエチレンであるポリエチレンと、粒子状充填剤と、処理可塑剤と、を含み、前記粒子状充填剤は重量で40%以上の量で存在し、前記ポリエチレンは、複数の伸び切り鎖結晶(シシ形成)及び複数の折り畳み鎖結晶(ケバブ形成)を含むシシケバブ形成のポリマーを含み、前記ケバブ形成の平均繰り返し又は周期は1nmから150nmであり、好ましくは120nm未満である、セパレータを提案している。 US Pat. No. 5,300,009 is a separator for lead-acid batteries comprising a polyolefin microporous membrane, said polyolefin microporous membrane comprising polyethylene, preferably ultra-high molecular weight polyethylene, particulate fillers, and treated plasticizers. and wherein the particulate filler is present in an amount of 40% or more by weight, and the polyethylene comprises a shish kebab forming comprising a plurality of extended chain crystals (shish forming) and a plurality of folded chain crystals (kebab forming). wherein the average repetition or period of said kebab formation is between 1 nm and 150 nm, preferably less than 120 nm.
 セパレータとして、多孔質フィルムとガラスマットとを併用する場合もある。例えば、特許文献3は、正極板と負極板と電解液とセパレータとを備えた鉛蓄電池において、前記セパレータは多孔質シートとガラスマットから成り、前記電解液がアルミニウムイオンを0.02mol/L以上0.2mol/L以下、リチウムイオンを0.02mol/L以上0.2mol/L以下含有することを特徴とする、鉛蓄電池を提案している。 A porous film and a glass mat may be used together as a separator. For example, Patent Document 3 discloses a lead-acid battery comprising a positive electrode plate, a negative electrode plate, an electrolytic solution, and a separator, wherein the separator comprises a porous sheet and a glass mat, and the electrolytic solution contains 0.02 mol/L or more of aluminum ions. A lead-acid battery containing 0.2 mol/L or less and containing 0.02 mol/L or more and 0.2 mol/L or less of lithium ions is proposed.
 特許文献4は、多孔性樹脂薄膜とガラスマットとを積層したセパレータを正極板と負極板との間に介在させ、これらを交互に積層した極板群を電槽に収納してなる鉛蓄電池において、(a)合成樹脂薄膜のベース部の少なくとも片面に複数条のリブ部が設けられ、(b)夫々のリブ部間にガラスマットが貼付され、(c)且つ両端のリブ部の外側にもガラスマットが貼付されること、更に、(d)前記ガラスマットが該合成樹脂薄膜のベース部に着接された際、着接面の反対側の該ガラスマット表面が、リブ部の頂面より高くなる厚さを有し、(e)該ガラスマットが前記合成樹脂薄膜に貼付されたセパレータが極板群に挿入され、鉛蓄電池の電槽内に収納された際、リブ部が正極板に当接するまで該ガラスマットが加圧圧縮され、そのスタッキング圧が10~60kPaであること、を特徴とした鉛蓄電池を提案している。 Patent Document 4 discloses a lead-acid battery in which a separator, which is a laminate of a porous resin thin film and a glass mat, is interposed between a positive electrode plate and a negative electrode plate. , (a) a plurality of ribs are provided on at least one side of the base portion of the synthetic resin thin film, (b) a glass mat is attached between the ribs, and (c) the ribs on both ends are also provided outside the ribs. and (d) when the glass mat is adhered to the base portion of the synthetic resin thin film, the surface of the glass mat on the opposite side of the adhered surface is inclined from the top surface of the rib portion. (e) the separator having the glass mat attached to the synthetic resin thin film is inserted into the electrode plate group and housed in the container of the lead-acid battery, the rib portion is attached to the positive electrode plate. A lead-acid battery is proposed in which the glass mat is pressurized and compressed until it abuts, and the stacking pressure is 10 to 60 kPa.
 特許文献5は、「鉛蓄電池セパレータであって、前記鉛蓄電池セパレータは、多孔質膜及び/又は繊維状マット、ならびに前記多孔質膜及び/又は前記繊維状マットの内部又は上部に1つ以上の導電性要素又は核生成添加剤、を備える、鉛蓄電池セパレータ。」を開示している。 Patent Document 5 describes "a lead-acid battery separator, the lead-acid battery separator comprising a porous membrane and/or a fibrous mat, and one or more A lead-acid battery separator comprising a conductive element or nucleating additive."
特開2001-338631号公報JP-A-2001-338631 特表2019-514173号公報Japanese Patent Publication No. 2019-514173 特開2013-84362号公報JP 2013-84362 A 特開2016-139455号公報JP 2016-139455 A 特表2020-533741号公報Japanese Patent Publication No. 2020-533741
 鉛蓄電池では、正極板に正極活物質として酸化力の強い二酸化鉛が含まれる。過充電状態の鉛蓄電池では、正極板の電位が高い。そのため、正極板と対向するセパレータは、酸化劣化し易い。過充電時のセパレータの酸化劣化は、特に、高温(例えば、75℃以上の温度)で顕著である。鉛蓄電池において、セパレータが酸化劣化すると、柔軟性が低下して亀裂が生じ、短絡が起こることで寿命となる。 In a lead-acid battery, the positive electrode plate contains lead dioxide, which has a strong oxidizing power, as a positive electrode active material. In an overcharged lead-acid battery, the potential of the positive plate is high. Therefore, the separator facing the positive electrode plate is easily oxidized and deteriorated. Oxidative deterioration of the separator during overcharging is particularly noticeable at high temperatures (for example, temperatures of 75° C. or higher). In a lead-acid battery, when the separator is oxidatively degraded, the flexibility is reduced, cracks are generated, and short circuiting occurs, resulting in the end of the life.
 鉛蓄電池用のセパレータは、正極板に対向する表面にリブを有したり、造孔剤などとしてオイルを含有したりすることがある。このようなセパレータでは、酸化劣化をある程度抑制することができるため、高い高温過充電寿命性能を確保する観点からは有利である。しかし、鉛蓄電池の使用環境または使用形態などの変化に伴い、鉛蓄電池用のセパレータには、さらに高い高温過充電寿命性能が求められている。 A separator for a lead-acid battery may have ribs on the surface facing the positive electrode plate, or may contain oil as a pore-forming agent. Such a separator can suppress oxidative deterioration to some extent, and is therefore advantageous from the viewpoint of ensuring high high-temperature overcharge life performance. However, with the changes in the use environment and usage patterns of lead-acid batteries, the separators for lead-acid batteries are required to have even higher high-temperature overcharge life performance.
 本開示の一側面は、鉛蓄電池用セパレータであって、
 前記セパレータは、多孔質フィルムを含み、前記多孔質フィルムは結晶質領域と非晶質領域とを含み、
 前記多孔質フィルムのX線回折スペクトルにおいて、100×I/(I+I)で表される結晶化度が20%以上であり、
 Iは、前記結晶質領域に相当する回折ピークのうちピーク高さが最大である回折ピークの積分強度であり、
 Iは、前記非晶質領域に相当するハローの積分強度である、鉛蓄電池用セパレータに関する。
One aspect of the present disclosure is a lead-acid battery separator comprising:
the separator comprises a porous film, the porous film comprising a crystalline region and an amorphous region;
In the X-ray diffraction spectrum of the porous film, the degree of crystallinity represented by 100×I c /(I c +I a ) is 20% or more,
I c is the integrated intensity of the diffraction peak having the maximum peak height among the diffraction peaks corresponding to the crystalline region;
I a relates to the lead-acid battery separator, which is the integrated intensity of the halo corresponding to the amorphous region.
 鉛蓄電池において、高温過充電寿命性能を向上できるセパレータを提供する。 Provide a separator that can improve high-temperature overcharge life performance in lead-acid batteries.
本発明の一実施形態に係る鉛蓄電池の外観と内部構造を示す一部切り欠き斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a partially cutaway perspective view which shows the external appearance and internal structure of the lead storage battery which concerns on one Embodiment of this invention. 実施例の鉛蓄電池用セパレータに用いた多孔質フィルムのX線回折スペクトルである。1 is an X-ray diffraction spectrum of a porous film used for a lead-acid battery separator of an example. 実施例2の各鉛蓄電池のセパレータに用いた多孔質フィルムの第1細孔の容積の合計VtとIS寿命性能との関係を示すグラフである。5 is a graph showing the relationship between the total Vt of the volume of the first pores of the porous film used for the separator of each lead-acid battery of Example 2 and the IS life performance. 図1の鉛蓄電池用セパレータの概略平面図である。FIG. 2 is a schematic plan view of the lead-acid battery separator of FIG. 1 ; 実施例4の実験例3の結果の一部を示すグラフである。10 is a graph showing part of the results of Experimental Example 3 of Example 4. FIG. 実施例4の実験例3の結果の他の一部を示すグラフである。10 is a graph showing another part of the results of Experimental Example 3 of Example 4. FIG.
 鉛蓄電池は、過酷な条件下で使用される場合がある。鉛蓄電池の代表的な用途の1つに自動車用途がある。近年、自動車が、渋滞に巻き込まれたり、商用車のように常時使用されたりすることで、鉛蓄電池が過充電状態に晒される機会が増加している。以下、高温(例えば、75℃以上の温度)で過充電状態に晒された場合の寿命性能を、高温過充電寿命性能と称することがある。また、温暖化に伴い、夏期には、より高い温度環境下で鉛蓄電池が使用される機会が増加している。そのため、近年、鉛蓄電池には、従来に比べて、さらに高いレベルの高温過充電寿命性能が求められるようになりつつある。  Lead-acid batteries may be used under harsh conditions. One of the typical uses of lead-acid batteries is for automobiles. In recent years, automobiles have been caught in traffic jams and are used constantly like commercial vehicles, increasing the chances that lead-acid batteries are exposed to an overcharged state. Hereinafter, life performance when exposed to an overcharged state at a high temperature (for example, a temperature of 75° C. or higher) may be referred to as high-temperature overcharge life performance. In addition, with global warming, opportunities to use lead-acid batteries in higher temperature environments in summer are increasing. Therefore, in recent years, lead-acid batteries are required to have a higher level of high-temperature overcharge life performance than ever before.
 セパレータを構成する多孔質フィルムの正極板に対向する表面にリブを設けると、セパレータと正極板との間に隙間が形成されるため、多孔質フィルムの酸化劣化が軽減される傾向がある。しかし、鉛蓄電池の高性能化に伴い、従来に比べて、1つのセルにつき、厚さの小さい極板を数多く収容することが多くなっているため、リブを設けるだけでは多孔質フィルムの酸化劣化を抑制するには不十分である。多孔質フィルムがオイルを含有する場合にも、多孔質フィルムの酸化劣化をある程度軽減できる。しかし、絶縁性のオイルが多孔質フィルムの細孔を塞ぐため、セパレータの抵抗が大きくなり、極板の反応性が低下する傾向がある。そのため、高性能の鉛蓄電池では、多孔質フィルム中のオイルの含有率を高めることが難しい。このように、従来のセパレータでは、鉛蓄電池の高温過充電寿命性能を高いレベルまで向上することは困難である。 When ribs are provided on the surface of the porous film that constitutes the separator, facing the positive electrode plate, a gap is formed between the separator and the positive electrode plate, which tends to reduce oxidative deterioration of the porous film. However, as the performance of lead-acid batteries has improved, it has become common to accommodate a large number of small-thickness plates in each cell. is insufficient to suppress Even when the porous film contains oil, oxidative deterioration of the porous film can be reduced to some extent. However, since the insulating oil clogs the pores of the porous film, the resistance of the separator tends to increase and the reactivity of the electrode plate tends to decrease. Therefore, it is difficult to increase the content of oil in the porous film in high-performance lead-acid batteries. Thus, with conventional separators, it is difficult to improve the high-temperature overcharge life performance of lead-acid batteries to a high level.
 上記に鑑み、本発明の一側面の鉛蓄電池用セパレータは、多孔質フィルムを含み、多孔質フィルムは結晶質領域と非晶質領域とを含む。多孔質フィルムのX線回折(X-ray diffraction:XRD)スペクトルにおいて、100×I/(I+I)で表される結晶化度が20%以上である。ここで、Iは、結晶質領域に相当する回折ピークのうちピーク高さが最大である回折ピーク(以下、第1回折ピークと称することがある)の積分強度である。Iは、非晶質領域に相当するハローの積分強度である。 In view of the above, a lead-acid battery separator according to one aspect of the present invention includes a porous film, the porous film including crystalline regions and amorphous regions. In the X-ray diffraction (XRD) spectrum of the porous film, the crystallinity expressed by 100×I c /(I c +I a ) is 20% or more. Here, I c is the integrated intensity of the diffraction peak having the maximum peak height (hereinafter sometimes referred to as the first diffraction peak) among the diffraction peaks corresponding to the crystalline region. Ia is the integrated intensity of the halo corresponding to the amorphous region.
 多孔質フィルムの結晶化度が20%以上であるため、多孔質フィルムの耐酸化性を向上させ、ひいてはセパレータ自体の耐酸化性を向上させることができる。この場合、従来のオイルを含むセパレータの場合のように、耐酸化性を高めても、抵抗が増加するといった背反がほとんどない。そのため、高性能の鉛蓄電池でも、優れた高温過充電寿命性能を確保することができる。 Because the crystallinity of the porous film is 20% or more, the oxidation resistance of the porous film can be improved, and the oxidation resistance of the separator itself can be improved. In this case, unlike the case of the conventional oil-containing separator, even if the oxidation resistance is enhanced, there is almost no contradiction such as an increase in resistance. Therefore, even a high-performance lead-acid battery can ensure excellent high-temperature overcharge life performance.
 鉛蓄電池用のセパレータは、リチウムイオン二次電池などのセパレータとは異なり、ある程度大きな厚さを有する。また、鉛蓄電池では、リチウムイオン二次電池と比べると、過充電時の正極電位も低いため、従来の使用環境または使用形態であればリブやオイルなどによって十分な耐酸化性が確保できていた。また、セパレータの厚さが大きいほど、結晶化度を高めることが難しくなる傾向があることに加え、結晶化度が大きくなると、セパレータが硬く脆くなる傾向がある。このような観点から、従来の鉛蓄電池用のセパレータでは、セパレータに含まれる多孔質フィルムの結晶化度を制御することはなされていなかった。従来の鉛蓄電池用のセパレータに含まれる多孔質フィルムの結晶化度は、約18%以下と、比較的低い傾向がある。このような従来の常識に対し、本発明の一側面の鉛蓄電池用セパレータでは、多孔質フィルムの結晶化度を20%以上とすることで、高温過充電寿命性能を大きく向上できることが明らかとなった。 A separator for a lead-acid battery has a relatively large thickness, unlike a separator for a lithium-ion secondary battery. In addition, compared to lithium-ion secondary batteries, lead-acid batteries have a lower positive electrode potential when overcharged, so sufficient oxidation resistance could be ensured by ribs, oil, etc. in conventional usage environments and usage patterns. . In addition, the thicker the separator, the more difficult it becomes to increase the degree of crystallinity, and the higher the degree of crystallinity, the harder and more brittle the separator tends to be. From this point of view, in conventional separators for lead-acid batteries, the crystallinity of the porous film contained in the separator has not been controlled. The crystallinity of porous films included in separators for conventional lead-acid batteries tends to be relatively low, about 18% or less. Contrary to such conventional wisdom, in the lead-acid battery separator of one aspect of the present invention, it has become clear that the high-temperature overcharge life performance can be greatly improved by setting the crystallinity of the porous film to 20% or more. rice field.
 多孔質フィルムの厚さは、100μm以上300μm以下であることが好ましい。厚さがこのような範囲である場合、セパレータに含まれる多孔質フィルムの酸化劣化を抑制する効果がさらに高まり、高温過充電寿命性能をさらに向上することができる。 The thickness of the porous film is preferably 100 µm or more and 300 µm or less. When the thickness is within such a range, the effect of suppressing oxidative deterioration of the porous film contained in the separator is further enhanced, and the high-temperature overcharge life performance can be further improved.
 多孔質フィルムの結晶化度は、40%以下であることが好ましい。この場合、セパレータの柔軟性を担保し易いことに加え、製造が容易である。 The crystallinity of the porous film is preferably 40% or less. In this case, it is easy to secure the flexibility of the separator, and in addition, it is easy to manufacture.
 多孔質フィルムは、オイルを含むことが好ましい。この場合、セパレータに含まれる多孔質フィルムの酸化劣化を抑制する効果がさらに高まり、より高い高温過充電寿命性能を確保することができる。 The porous film preferably contains oil. In this case, the effect of suppressing oxidative deterioration of the porous film contained in the separator is further enhanced, and higher high-temperature overcharge life performance can be ensured.
 多孔質フィルムは、ポリオレフィンを含むことが好ましく、少なくともエチレン単位を含むポリオレフィンを含むことがより好ましい。このような多孔質フィルムは、酸化劣化し易いが、結晶化度を比較的容易に高めることができる。少なくともエチレン単位を含むポリオレフィンを多孔質フィルムが含む場合、第1回折ピークは、結晶質領域による(110)面に相当する。 The porous film preferably contains polyolefin, and more preferably contains polyolefin containing at least ethylene units. Such a porous film is easily oxidatively deteriorated, but the degree of crystallinity can be increased relatively easily. When the porous film comprises a polyolefin containing at least ethylene units, the first diffraction peak corresponds to the (110) plane due to the crystalline regions.
 多孔質フィルムにおいて、0.005μm以上10μm以下の細孔径を有する細孔(第1細孔)の容積の合計Vtは、0.8cm/g以上であってもよい。以下、第1細孔の容積の合計Vtを、単に、第1細孔容積Vtと称することがある。 In the porous film, the total Vt of the volume of pores (first pores) having a pore diameter of 0.005 μm or more and 10 μm or less may be 0.8 cm 3 /g or more. Hereinafter, the total volume Vt of the first pores may be simply referred to as the first pore volume Vt.
 鉛蓄電池では、充電時に比重の大きな硫酸イオンが下降して、電槽の上部と下部とで電解液の比重差(つまり、硫酸の濃度差)が生じる成層化が起こり易い。成層化は、鉛蓄電池が部分充電状態(PSOC)と呼ばれる充電不足状態で使用される場合に顕著になる。例えば、アイドリングスタートストップ(ISS)車などのIS用途または充電制御用途では、鉛蓄電池がPSOCで使用されるため、成層化が顕著になり易い。成層化が顕著になると、正極板が劣化して、PSOCで用いたときの鉛蓄電池の寿命性能(IS寿命性能とも言う)が低下する。 In lead-acid batteries, sulfate ions, which have a large specific gravity, descend during charging, and stratification is likely to occur, where a difference in the specific gravity of the electrolyte (that is, the difference in the concentration of sulfuric acid) occurs between the upper and lower parts of the battery case. Stratification becomes noticeable when lead-acid batteries are used in an undercharged state called partial state of charge (PSOC). For example, in IS applications such as idling start-stop (ISS) vehicles or charge control applications, lead-acid batteries are used in PSOCs, so stratification is likely to be noticeable. When the stratification becomes significant, the positive electrode plate deteriorates, and the life performance (also referred to as IS life performance) of the lead-acid battery when used in a PSOC decreases.
 多孔質フィルムの細孔容積が大きくなると、電解液の拡散性が向上するため、成層化を抑制する観点からは有利である。しかし、電解液との接触面積が増加するため、多孔質フィルムの酸化劣化が進行し易くなる。多孔質フィルムの酸化劣化に起因するセパレータの損傷によって、短絡が生じて寿命となるため、IS寿命性能の向上効果が限定的である。 When the pore volume of the porous film increases, the diffusibility of the electrolytic solution improves, which is advantageous from the viewpoint of suppressing stratification. However, since the contact area with the electrolytic solution increases, oxidation deterioration of the porous film tends to progress. Damage to the separator due to oxidative deterioration of the porous film causes a short circuit and shortens the life of the separator, so the effect of improving the IS life performance is limited.
 ここで、本発明の一側面の鉛蓄電池用セパレータは、多孔質フィルムを含み、多孔質フィルムは結晶質領域と非晶質領域とを含み、多孔質フィルムの結晶化度が20%以上であり、かつ多孔質フィルムにおける第1細孔の容積の合計Vt(第1細孔容積Vt)が0.8cm/g以上である場合、電解液の高い拡散性が得られるとともに、セパレータの抵抗を低く抑えることができる。そのため、成層化を抑制する効果が高まるとともに、充放電反応をスムーズに行うことができる。しかし、第1細孔容積Vtが上記の範囲である場合、電解液との接触面積が増加するため、多孔質フィルムの酸化劣化が進行し易い傾向がある。鉛蓄電池において、多孔質フィルムが酸化劣化すると、柔軟性が低下して亀裂が生じ、短絡が起こることで寿命となる。成層化を低減できても、IS寿命性能を向上することは難しい。それに対し、本発明の上記側面のセパレータでは、多孔質フィルムの結晶化度が20%以上であるため、多孔質フィルム自体の耐酸化性を高めることができる。よって、多孔質フィルムの酸化劣化が軽減されることで、短絡に伴うIS寿命性能の低下が抑制され、成層化抑制によるIS寿命性能の向上効果が十分に発揮される。よって、優れたIS寿命性能を確保することができる。 Here, the lead-acid battery separator of one aspect of the present invention includes a porous film, the porous film includes a crystalline region and an amorphous region, and the crystallinity of the porous film is 20% or more. And when the total Vt of the volume of the first pores in the porous film (first pore volume Vt) is 0.8 cm 3 /g or more, high diffusibility of the electrolytic solution can be obtained and the resistance of the separator can be reduced. can be kept low. Therefore, the effect of suppressing stratification is enhanced, and the charging and discharging reactions can be performed smoothly. However, when the first pore volume Vt is within the above range, the contact area with the electrolytic solution increases, so that the oxidation deterioration of the porous film tends to progress easily. In a lead-acid battery, when the porous film is oxidatively degraded, the flexibility is reduced, cracks are generated, and short circuiting occurs, resulting in the end of the life of the battery. Even if stratification can be reduced, it is difficult to improve IS lifetime performance. On the other hand, in the separator according to the aspect of the present invention, since the crystallinity of the porous film is 20% or more, the oxidation resistance of the porous film itself can be enhanced. Therefore, by reducing oxidation deterioration of the porous film, deterioration of IS life performance due to short circuit is suppressed, and the effect of improving IS life performance by suppressing stratification is sufficiently exhibited. Therefore, excellent IS life performance can be secured.
 なお、第1細孔容積Vtが0.8cm/g未満の場合には、結晶化度を変更してもIS寿命性能はほとんど変わらない。この場合、多孔質フィルムの表面積が小さいことで、電解液との接触が低下し、酸化劣化が抑制されているため、成層化が顕著になることによって寿命となる。そのため、多孔質フィルムの結晶化度を高めても、IS寿命性能には影響がないと考えられる。このように、第1細孔容積Vtが0.8cm/g未満の場合と0.8cm/g以上の場合とでは、多孔質フィルムの結晶化度を変更したときのIS寿命性能の挙動が全く異なる。本発明の一側面の鉛蓄電池用セパレータでは、第1細孔容積Vtが0.8cm/g以上の場合に、結晶化度を20%以上とすることで、IS寿命性能を大きく向上できることが明らかとなった。 Note that when the first pore volume Vt is less than 0.8 cm 3 /g, even if the degree of crystallinity is changed, the IS life performance hardly changes. In this case, since the surface area of the porous film is small, the contact with the electrolytic solution is reduced, and oxidative deterioration is suppressed. Therefore, it is considered that increasing the crystallinity of the porous film does not affect the IS life performance. Thus, when the first pore volume Vt is less than 0.8 cm 3 /g and when it is 0.8 cm 3 /g or more, the behavior of the IS life performance when changing the crystallinity of the porous film is completely different. In the lead-acid battery separator of one aspect of the present invention, when the first pore volume Vt is 0.8 cm 3 /g or more, the IS life performance can be greatly improved by setting the crystallinity to 20% or more. It became clear.
 多孔質フィルムにおける第1細孔の容積の合計Vt(第1細孔容積Vt)とは、水銀圧入法により求められる多孔質フィルム中の第1細孔(0.005μm以上10μm以下の細孔径を有する細孔)の容積の総和である。 The total Vt of the volume of the first pores in the porous film (first pore volume Vt) is the first pores in the porous film obtained by the mercury intrusion method (pore diameter of 0.005 μm or more and 10 μm or less It is the sum of the volume of pores).
 第1細孔容積Vtは、0.9cm/g以上が好ましい。この場合、結晶化度を20%以上とすることによるIS寿命性能の向上効果が特に顕著になる。 The first pore volume Vt is preferably 0.9 cm 3 /g or more. In this case, the effect of improving the IS life performance by setting the degree of crystallinity to 20% or more is particularly remarkable.
 多孔質フィルムの結晶化度は、25%以上であることが好ましい。この場合、多孔質フィルムの耐酸化性がより高まることにより、セパレータの耐酸化性がさらに高まるため、IS寿命性能をさらに向上することができる。 The crystallinity of the porous film is preferably 25% or more. In this case, since the oxidation resistance of the porous film is further enhanced, and the oxidation resistance of the separator is further enhanced, the IS life performance can be further improved.
 セパレータは、樹脂製の多孔質フィルムと、ガラス繊維マットとの積層体を含んでもよい。 The separator may include a laminate of a porous resin film and a glass fiber mat.
 鉛蓄電池は、過酷な条件下で使用される場合がある。鉛蓄電池の代表的な用途の1つに自動車用途がある。近年、自動車が、渋滞に巻き込まれたり、商用車のように常時使用されたりすることで、鉛蓄電池が過充電状態に晒される機会が増加している。また、温暖化に伴い、夏期には、より高い温度環境下で鉛蓄電池が使用される機会が増加している。また、高温環境下で過充電状態に晒されると、正極電極材料の軟化が顕著になり、振動により正極電極材料が脱落することで寿命となったり、脱落した正極電極材料によりセパレータが酸化劣化することで短絡が生じたりして、寿命となる。そのため、近年、鉛蓄電池には、従来に比べて、さらに高いレベルの高温過充電寿命性能が求められるようになりつつある。  Lead-acid batteries may be used under harsh conditions. One of the typical uses of lead-acid batteries is for automobiles. In recent years, automobiles have been caught in traffic jams and are used constantly like commercial vehicles, increasing the chances that lead-acid batteries are exposed to an overcharged state. In addition, with global warming, opportunities to use lead-acid batteries in higher temperature environments in summer are increasing. In addition, when exposed to an overcharged state in a high-temperature environment, the softening of the positive electrode material becomes noticeable, and the positive electrode material falls off due to vibration, shortening the life of the separator. As a result, a short circuit occurs and the life of the battery is shortened. Therefore, in recent years, lead-acid batteries are required to have a higher level of high-temperature overcharge life performance than ever before.
 鉛蓄電池では、充放電を繰り返すと、正極電極材料が軟化する。特許文献3または4のように、ガラス繊維マットを設けると、軟化した正極電極材料の脱落を低減するのに有利である。しかし、積層体であるセパレータでは、多孔質フィルムのみの場合に比べると抵抗が高くなるため、コールドクランキング電流(Cold Cranking Ampere:CCA)性能が低下する。多孔質フィルムの厚さを小さくすれば、CCA性能の低下を軽減できる。しかし、ガラス繊維マットの厚さはそれほど大きくないため、脱落した正極電極材料または集電体の端部などがガラス繊維マットを貫通し易い。積層体を構成する多孔質フィルムの厚さが小さいと、多孔質フィルムが破れて短絡するため、寿命となる。 In a lead-acid battery, repeated charging and discharging softens the positive electrode material. Providing a glass fiber mat as in Patent Documents 3 and 4 is advantageous in reducing falling off of the softened positive electrode material. However, since the separator, which is a laminate, has a higher resistance than the case of only the porous film, the cold cranking current (CCA) performance is lowered. Reducing the thickness of the porous film can reduce the deterioration of CCA performance. However, since the thickness of the glass fiber mat is not so large, the dropped positive electrode material or the edge of the current collector easily penetrates the glass fiber mat. If the thickness of the porous film that constitutes the laminate is small, the porous film will be torn and short-circuited, shortening the service life.
 鉛蓄電池では、過充電時には、正極活物質の酸化力が高くなることに加え、高温時には酸化が進行し易くなる。そのため、高温(例えば、75℃以上)において、過充電状態になると、多孔質フィルムが酸化されやすく、寿命性能が低下し易くなる。セパレータが造孔剤などのオイルを含有する場合、多孔質フィルムの酸化劣化をある程度軽減できる。しかし、絶縁性のオイルがセパレータの細孔を塞ぐため、セパレータの抵抗が大きくなり、コールドクランキング電流(Cold Cranking Ampere:CCA)性能が低下する傾向がある。そのため、高いCCA性能が求められるような高性能の鉛蓄電池では、セパレータ中のオイルの含有率を高めることが難しい。また、多孔質フィルムにガラス繊維マットを併用すると、ガラス繊維マットによって正極電極材料の脱落をある程度抑制することができる。しかし、正極電極材料の脱落を完全に抑制することは難しい。さらに、積層体であるセパレータでは、多孔質フィルムのみの場合に比べると抵抗が高くなるため、CCA性能が低下する。多孔質フィルムの厚さを小さくすれば、CCA性能の低下を軽減できる。しかし、ガラス繊維マットの厚さはそれほど大きくないため、脱落した正極電極材料がガラス繊維マットを貫通することがある。正極電極材料が、多孔質フィルムに接触すると、多孔質フィルムに酸化劣化による破れが生じ、短絡を引き起こして、寿命となる。このように、従来のセパレータでは、鉛蓄電池の高温過充電寿命性能を高いレベルまで向上することは困難である。 In lead-acid batteries, when overcharged, the oxidizing power of the positive electrode active material increases, and oxidation progresses more easily at high temperatures. Therefore, when the battery is overcharged at a high temperature (for example, 75° C. or higher), the porous film is likely to be oxidized, and the life performance is likely to be reduced. When the separator contains an oil such as a pore-forming agent, deterioration of the porous film due to oxidation can be reduced to some extent. However, since the insulating oil clogs the pores of the separator, the resistance of the separator increases, and the cold cranking current (CCA) performance tends to decrease. Therefore, it is difficult to increase the content of oil in the separator in high-performance lead-acid batteries that require high CCA performance. Moreover, when a glass fiber mat is used together with the porous film, the falling off of the positive electrode material can be suppressed to some extent by the glass fiber mat. However, it is difficult to completely prevent the falling off of the positive electrode material. Furthermore, the separator, which is a laminate, has a higher resistance than the porous film alone, so the CCA performance is lowered. Reducing the thickness of the porous film can reduce the deterioration of CCA performance. However, since the thickness of the glass fiber mat is not so great, the dropped positive electrode material may penetrate the glass fiber mat. When the positive electrode material comes into contact with the porous film, the porous film is torn due to oxidative deterioration, causing a short circuit and shortening the service life. Thus, with conventional separators, it is difficult to improve the high-temperature overcharge life performance of lead-acid batteries to a high level.
 上記に鑑み、本発明の一側面の鉛蓄電池用セパレータは、樹脂製の多孔質フィルムと、ガラス繊維マットとの積層体を含む場合、多孔質フィルムの結晶化度が20%以上であるため、多孔質フィルム自体の耐酸化性を向上させることができる。そのため、高温過充電時に、脱落した高電位の正極電極材料がガラス繊維マットを貫通して、多孔質フィルムと接触しても、酸化劣化による破れが抑制され短絡の発生を抑制することができる。これによって、高温過充電寿命性能を向上できる。多孔質フィルムの厚さを小さくしても、多孔質フィルムの酸化劣化を抑制できることから、CCA性能の低下を抑制することができる。よって、高いCCA性能を確保しながら、優れた高温過充電寿命性能を確保することができる。つまり、多孔質フィルムの結晶化度を高める場合には、従来のセパレータのオイル含有量を増加させる場合のように、耐酸化性を高めても、抵抗が増加するといった背反がほとんどない。そのため、高性能の鉛蓄電池でも、優れた高温過充電寿命性能を確保することができる。 In view of the above, when the lead-acid battery separator of one aspect of the present invention includes a laminate of a resin porous film and a glass fiber mat, the crystallinity of the porous film is 20% or more. The oxidation resistance of the porous film itself can be improved. Therefore, even if the dropped high-potential positive electrode material penetrates the glass fiber mat and comes into contact with the porous film during high-temperature overcharging, breakage due to oxidative deterioration is suppressed, and the occurrence of a short circuit can be suppressed. As a result, the high temperature overcharge life performance can be improved. Even if the thickness of the porous film is reduced, deterioration of the porous film due to oxidation can be suppressed, so deterioration of the CCA performance can be suppressed. Therefore, it is possible to ensure excellent high-temperature overcharge life performance while ensuring high CCA performance. In other words, when increasing the crystallinity of the porous film, there is almost no contradiction such as increasing the resistance even if the oxidation resistance is increased, as in the case of increasing the oil content of the conventional separator. Therefore, even a high-performance lead-acid battery can ensure excellent high-temperature overcharge life performance.
 なお、多孔質フィルム自体が鉛蓄電池用のセパレータとして利用されることもある。鉛蓄電池用の多孔質フィルムセパレータは、リチウムイオン二次電池などのセパレータとは異なり、ある程度大きな厚さを有する。また、鉛蓄電池では、リチウムイオン二次電池と比べると、過充電時の正極電位も低いため、従来の使用環境または使用形態であればオイルなどによって十分な耐酸化性が確保できていた。また、多孔質フィルムの厚さが大きいほど、結晶化度を高めることが難しくなる傾向があることに加え、結晶化度が大きくなると、多孔質フィルムが硬く脆くなる傾向がある。このような観点から、従来の鉛蓄電池用のセパレータでは、結晶化度を制御することはなされていなかった。従来の鉛蓄電池用のセパレータに用いられる多孔質フィルムの結晶化度は、約18%以下と、比較的低い傾向がある。このような従来の常識に対し、本発明の一側面の鉛蓄電池用セパレータでは、ガラス繊維マットと積層する多孔質フィルムの結晶化度を20%以上とすることで、多孔質フィルムの抵抗を低く抑えながら、高い耐酸化性を確保することができ、ガラス繊維マットとの積層体の抵抗の増加を抑制することができる。 In addition, the porous film itself may be used as a separator for lead-acid batteries. Porous film separators for lead-acid batteries have a relatively large thickness, unlike separators for lithium-ion secondary batteries and the like. In addition, lead-acid batteries have a lower positive electrode potential when overcharged than lithium-ion secondary batteries, so sufficient oxidation resistance could be secured by oil or the like in conventional usage environments and usage patterns. In addition, as the thickness of the porous film increases, it tends to become more difficult to increase the degree of crystallinity. From this point of view, the degree of crystallinity has not been controlled in conventional separators for lead-acid batteries. The crystallinity of porous films used in separators for conventional lead-acid batteries tends to be relatively low, about 18% or less. Contrary to such conventional wisdom, in the lead-acid battery separator of one aspect of the present invention, the crystallinity of the porous film laminated with the glass fiber mat is 20% or more, thereby reducing the resistance of the porous film. In addition, high oxidation resistance can be secured while suppressing the increase in the resistance of the laminate with the glass fiber mat.
 多孔質フィルムの厚さは、100μm以上であることが好ましい。厚さがこのような範囲である場合、酸化劣化を抑制する効果がさらに高まり、より高い高温過充電寿命性能を確保することができる。多孔質フィルムの厚さは、300μm以下であることが好ましい。この場合、多孔質フィルムの抵抗を低く抑え易いため、比較的高いCCA性能が得られ易い。 The thickness of the porous film is preferably 100 μm or more. When the thickness is within such a range, the effect of suppressing oxidative deterioration is further enhanced, and higher high-temperature overcharge life performance can be ensured. The thickness of the porous film is preferably 300 μm or less. In this case, it is easy to keep the resistance of the porous film low, so relatively high CCA performance can be easily obtained.
 多孔質フィルムは、端部の少なくとも一部に、ガラス繊維マットで覆われていない領域を有していてもよい。このような領域では、脱落した正極電極材料が、多孔質フィルムに突き刺さったり、多孔質フィルムに接触して酸化劣化させたりすることで、短絡が生じ、高温過充電寿命性能が低下し易い。しかし、このような場合であっても、多孔質フィルムの結晶化度が高いことで、多孔質フィルムの耐酸化性を向上させることができるため、短絡の発生を低減することができ、高温過充電寿命性能の低下を軽減することができる。 The porous film may have a region not covered with the glass fiber mat at least part of the edge. In such a region, the dropped positive electrode material sticks into the porous film or comes into contact with the porous film and oxidizes and deteriorates, resulting in short circuit and deterioration in high-temperature overcharge life performance. However, even in such a case, since the porous film has a high degree of crystallinity, the oxidation resistance of the porous film can be improved. A decrease in charge life performance can be reduced.
 本発明の一側面の鉛蓄電池用セパレータは、多孔質フィルムと、その表面に配置された炭素材料を含んでもよい。 A lead-acid battery separator according to one aspect of the present invention may include a porous film and a carbon material disposed on its surface.
 鉛蓄電池の寿命は、電解液の濃度の不均一化(成層化)によっても大きく低下する。鉛蓄電池では、電池の上部の電解液の濃度が下部の電解液の濃度よりも低くなることがあり、それによって電池の寿命性能が低下する。 The life of a lead-acid battery is also greatly reduced by uneven concentration of the electrolyte (stratification). In lead-acid batteries, the concentration of the electrolyte at the top of the battery can be lower than the concentration of the electrolyte at the bottom, thereby reducing battery life performance.
 本実施形態のセパレータが、多孔質フィルムの表面に配置された炭素材料を含む場合、この炭素材料は、鉛蓄電池内において電極(正極または負極)と接触するため、電極と電気的に接続される。その結果、鉛蓄電池が充電される際(例えば充電末期)に、炭素材料の表面で水が電気分解されてガスが発生しうる。発生したガスによって電解液が攪拌されるため、電解液の成層化が抑制される。 When the separator of the present embodiment includes a carbon material disposed on the surface of the porous film, this carbon material contacts the electrode (positive electrode or negative electrode) in the lead-acid battery and is thus electrically connected to the electrode. . As a result, when the lead-acid battery is charged (for example, at the end of charging), water can be electrolyzed on the surface of the carbon material to generate gas. Since the electrolytic solution is stirred by the generated gas, stratification of the electrolytic solution is suppressed.
 ただし、セパレータの表面で水の電気分解が生じる場合、発生した酸素ガスによる多孔質フィルムの酸化を抑制することが重要になる。本実施形態のセパレータでは、結晶化度が高い多孔質フィルムを用いているため、多孔質フィルムの酸化を抑制することが可能である。 However, when electrolysis of water occurs on the surface of the separator, it is important to suppress the oxidation of the porous film by the generated oxygen gas. Since the separator of the present embodiment uses a porous film with a high degree of crystallinity, it is possible to suppress oxidation of the porous film.
 また、鉛蓄電池では、多数の薄い極板を用いることによる高性能化が進められている。多数の薄い極板を用いる鉛蓄電池では、セパレータの強度不足による製造時の不良発生率が高くなる。そのため、セパレータの強度を高めることは、高性能な鉛蓄電池の信頼性および生産性の向上に特に重要になる。 In addition, lead-acid batteries are being improved in performance by using a large number of thin electrode plates. A lead-acid battery using a large number of thin plates has a high rate of defects during manufacturing due to insufficient strength of the separator. Therefore, increasing the strength of the separator is particularly important for improving the reliability and productivity of high-performance lead-acid batteries.
 本願発明者らは、結晶化度が高い多孔質フィルムと炭素材料とを組み合わせることによって、予想を超える強度を有するセパレータが得られることを見出した。すなわち、本実施形態のセパレータによれば、寿命性能および生産性が高い高性能な鉛蓄電池を構成することが可能である。 The inventors of the present application have found that a separator having unexpected strength can be obtained by combining a porous film with a high degree of crystallinity and a carbon material. That is, according to the separator of the present embodiment, it is possible to configure a high-performance lead-acid battery with high life performance and high productivity.
 本発明は、上記の鉛蓄電池用セパレータを含む鉛蓄電池も包含する。鉛蓄電池は、極板群および電解液を含む少なくとも1つのセルを含み、極板群は、正極板と、負極板と、正極板および負極板の間に介在する上記のセパレータとを含む。上記のセパレータを含むことで、鉛蓄電池の高温過充電寿命性能を大幅に向上することができる。
 セパレータが、樹脂製の多孔質フィルムと、ガラス繊維マットとの積層体を含む場合、ガラス繊維マットは正極板と接触していてもよい。上記積層体を用いることで、セパレータの抵抗を低く抑えることができ、高いCCA性能を確保することができる。多孔質フィルムの高い耐酸化性が得られることで、脱落した正極電極材料による多孔質フィルムの破れが抑制され、短絡の発生が抑制されることから、優れた高温過充電寿命性能を確保することができる。
 セパレータが、多孔質フィルムと、その表面に配置された炭素材料とを含む場合、炭素材料は、多孔質フィルムの2つの主面の両方に配置されていてもよいし、正極板側または負極板側の主面に配置されていてもよい。例えば、セパレータの炭素材料は、多孔質フィルムの2つの主面のうち負極板側の主面に配置されていてもよい。充電時に水の電気分解が生じる場合、正極側では酸素ガスが発生する。炭素材料を負極板側に配置することによって、セパレータ内で酸素ガスが発生して多孔質フィルムが酸化されることを抑制できる。
The present invention also includes a lead-acid battery containing the lead-acid battery separator described above. A lead-acid battery includes at least one cell that includes a plate assembly and an electrolyte, and the plate assembly includes a positive plate, a negative plate, and the above separator interposed between the positive plate and the negative plate. By including the above separator, the high-temperature overcharge life performance of the lead-acid battery can be significantly improved.
When the separator includes a laminate of a resin porous film and a glass fiber mat, the glass fiber mat may be in contact with the positive electrode plate. By using the laminate, the resistance of the separator can be kept low, and high CCA performance can be ensured. By obtaining high oxidation resistance of the porous film, it is possible to suppress the tearing of the porous film due to the dropped positive electrode material, and the occurrence of short circuit is suppressed, so that excellent high-temperature overcharge life performance is secured. can be done.
When the separator includes a porous film and a carbon material disposed on its surface, the carbon material may be disposed on both of the two main surfaces of the porous film, or on the positive electrode plate side or the negative electrode plate side. It may be arranged on the main surface of the side. For example, the carbon material of the separator may be arranged on one of the two main surfaces of the porous film, which faces the negative electrode plate. When electrolysis of water occurs during charging, oxygen gas is generated on the positive electrode side. By arranging the carbon material on the negative electrode plate side, it is possible to suppress the oxidation of the porous film due to the generation of oxygen gas in the separator.
 鉛蓄電池は、制御弁式電池であってもよいが、液式電池(ベント型電池)が好ましい。制御弁式鉛蓄電池は、VRLA(Valve Regulated Lead-Acid Battery)と呼ばれることがある。 The lead-acid battery may be a valve-regulated battery, but a liquid battery (vented battery) is preferable. Valve-regulated lead-acid batteries are sometimes called VRLA (Valve Regulated Lead-Acid Battery).
 本明細書中、鉛蓄電池または鉛蓄電池の構成要素(極板、電槽、セパレータなど)の上下方向は、鉛蓄電池が使用される状態において、鉛蓄電池の鉛直方向における上下方向を意味する。なお、正極板および負極板の各極板は、外部端子と接続するための耳部を備えており、液式電池では、耳部は、極板の上部に上方に突出するように設けられている。 In this specification, the vertical direction of a lead-acid battery or components of a lead-acid battery (electrode plate, container, separator, etc.) means the vertical direction of the lead-acid battery when the lead-acid battery is used. Each of the positive electrode plate and the negative electrode plate has an ear portion for connection with an external terminal. there is
 以下、本発明の実施形態に係るセパレータおよび鉛蓄電池について、図面を参照しながらより具体的に説明する。ただし、本発明は以下の実施形態に限定されるものではない。  Hereinafter, the separator and the lead-acid battery according to the embodiments of the present invention will be described more specifically with reference to the drawings. However, the present invention is not limited to the following embodiments.
(セパレータ)
 セパレータは、多孔質フィルムを含む。多孔質フィルムは樹脂製であってよい。セパレータは、樹脂製の多孔質フィルムと、ガラス繊維マットとの積層体であってもよい。セパレータは、多孔質フィルムの少なくとも一方の表面に炭素材料が存在してもよい。
(separator)
A separator includes a porous film. The porous film may be made of resin. The separator may be a laminate of a resin porous film and a glass fiber mat. The separator may have a carbon material on at least one surface of the porous film.
(多孔質フィルム)
多孔質フィルムは、多孔質フィルムの構成材料の分子が比較的規則正しく配列した(つまり、配列性が高い)結晶質領域と、配列性が低い非晶質領域とを含む。そのため、多孔質フィルムのXRDスペクトルでは、結晶質領域による回折ピークが観察されるとともに、非晶質領域による散乱光がハローとして観察される。多孔質フィルムのXRDスペクトルにおいて、100×I/(I+I)で表される結晶化度が20%以上であることによって、優れた高温過充電寿命性能が得られる。ここで、Iは、結晶質領域に相当する回折ピークのうちピーク高さが最大である回折ピーク(第1回折ピーク)の積分強度であり、Iは、非晶質領域に相当するハローの積分強度である。
(porous film)
The porous film includes crystalline regions in which the molecules of the constituent material of the porous film are arranged relatively regularly (ie, highly ordered) and amorphous regions in which the molecules are poorly arranged. Therefore, in the XRD spectrum of the porous film, a diffraction peak due to the crystalline region is observed, and scattered light due to the amorphous region is observed as a halo. Excellent high-temperature overcharge life performance is obtained when the degree of crystallinity represented by 100×I c /(I c +I a ) is 20% or more in the XRD spectrum of the porous film. Here, Ic is the integrated intensity of the diffraction peak (first diffraction peak) having the maximum peak height among the diffraction peaks corresponding to the crystalline region, and Ia is the halo corresponding to the amorphous region. is the integrated intensity of
 例えば、エチレン単位を含むポリオレフィンを含む多孔質フィルムのXRDスペクトルでは、結晶質領域の(110)面に相当する回折ピークが、2θが20°以上22.5°以下の範囲に観察され、結晶質領域の(200)面に相当する回折ピークが、2θが23°以上24.5°以下の範囲に観察される。また、非晶質領域のハローは、2θが17°以上27°以下の範囲に観察される。結晶質領域による回折ピークのうち、(110)面に相当する回折ピークは、ピーク高さが最大であり、第1回折ピークに相当する。 For example, in the XRD spectrum of a porous film containing a polyolefin containing ethylene units, a diffraction peak corresponding to the (110) plane of the crystalline region is observed in the range of 2θ from 20 ° to 22.5 °, and the crystalline A diffraction peak corresponding to the (200) plane of the region is observed in the range of 2θ from 23° to 24.5°. A halo in the amorphous region is observed in the range of 2θ from 17° to 27°. Among the diffraction peaks due to the crystalline region, the diffraction peak corresponding to the (110) plane has the highest peak height and corresponds to the first diffraction peak.
 多孔質フィルムの結晶化度は、20%以上であり、より高い高温過充電寿命性能を確保する観点からは、22%以上、23%以上又は25%以上であってもよい。セパレータにおける第1細孔容積Vtが0.8cm/g以上である場合、より高いIS寿命性能を確保する観点からは、結晶化度は23%以上または25%以上であってもよい。結晶化度は、40%以下であってもよく、37%以下、35%以下、又は30%以下であってもよい。結晶化度がこのような範囲である場合、セパレータの柔軟性を担保し易いことに加え、製造が容易である。多孔質フィルムの結晶化度は、上記したいずれかの下限以上及び上記したいずれかの上限以下とすることができる。 The crystallinity of the porous film is 20% or more, and may be 22% or more, 23% or more, or 25% or more from the viewpoint of ensuring higher high-temperature overcharge life performance. When the first pore volume Vt in the separator is 0.8 cm 3 /g or more, the degree of crystallinity may be 23% or more or 25% or more from the viewpoint of ensuring higher IS life performance. The degree of crystallinity may be 40% or less, 37% or less, 35% or less, or 30% or less. When the degree of crystallinity is within such a range, it is easy to ensure the flexibility of the separator, and the production is easy. The crystallinity of the porous film can be at least any of the above lower limits and at most any of the above upper limits.
 多孔質フィルムの結晶化度は、20%以上(または22%以上)40%以下、20%以上(または22%以上)37%以下、20%以上(または22%以上)35%以下、23%以上40%以下(または37%以下)、あるいは23%以上35%以下であってもよい。 The crystallinity of the porous film is 20% or more (or 22% or more) and 40% or less, 20% or more (or 22% or more) and 37% or less, 20% or more (or 22% or more) and 35% or less, 23%. It may be 40% or more (or 37% or less), or 23% or more and 35% or less.
 回折ピークおよびハローの積分強度は、多孔質フィルムのXRDスペクトルにおいて、結晶質領域による回折ピークと非晶質領域によるハローとをフィッティングすることによって求められる。求められた第1回折ピークの積分強度Iおよびハローの積分強度Iを用いて、上記の式から結晶化度が求められる。 The integrated intensities of the diffraction peaks and halos are obtained by fitting the diffraction peaks due to the crystalline regions and the halos due to the amorphous regions in the XRD spectrum of the porous film. Using the obtained integrated intensity Ic of the first diffraction peak and the obtained integrated intensity Ia of the halo, the degree of crystallinity is obtained from the above formula.
 多孔質フィルムにおける第1細孔容積Vtは、0.8cm/g以上が好ましい。第1細孔容積Vtがこのような範囲であることで、電解液の高い拡散性が得られるとともに、セパレータの抵抗を低く抑えることができる。よって、優れたIS寿命性能が得られる。また、高いCCA(コールドクランキング電流)性能を確保することができる。より高いIS寿命性能を確保する観点からは、第1細孔容積Vtは、0.9cm/g以上がより好ましく、1.05cm/g以上がさらに好ましい。第1細孔容積Vtは、例えば、2.2cm/g以下であってもよい。結晶化度を高めることによるIS寿命性能の向上効果がより発揮され易い観点からは、第1細孔容積Vtは、2.0cm/g以下が好ましく、1.9cm/g以下がより好ましい。多孔質フィルムにおける第1細孔容積Vtは、上記したいずれかの下限以上及び上記したいずれかの上限以下とすることができる。 The first pore volume Vt in the porous film is preferably 0.8 cm 3 /g or more. By setting the first pore volume Vt within such a range, high diffusibility of the electrolytic solution can be obtained, and the resistance of the separator can be kept low. Therefore, excellent IS life performance is obtained. Also, high CCA (cold cranking current) performance can be ensured. From the viewpoint of ensuring higher IS life performance, the first pore volume Vt is more preferably 0.9 cm 3 /g or more, and even more preferably 1.05 cm 3 /g or more. The first pore volume Vt may be, for example, 2.2 cm 3 /g or less. The first pore volume Vt is preferably 2.0 cm 3 /g or less, more preferably 1.9 cm 3 /g or less, from the viewpoint that the effect of improving the IS life performance by increasing the degree of crystallinity is more likely to be exhibited. . The first pore volume Vt in the porous film can be any lower limit or more and any upper limit or less.
 第1細孔容積Vtは、0.8cm/g以上2.2cm/g以下(または2.0cm/g以下)、0.9cm/g以上2.2cm/g以下(または2.0cm/g以下)、1.05cm/g以上2.2cm/g以下(または2.0cm/g以下)、0.8cm/g以上(または0.9cm/g以上)1.9cm/g以下、あるいは1.05cm/g以上1.9cm/g以下であってもよい。 The first pore volume Vt is 0.8 cm 3 /g or more and 2.2 cm 3 /g or less (or 2.0 cm 3 /g or less), 0.9 cm 3 /g or more and 2.2 cm 3 /g or less (or 2 .0 cm 3 /g or less), 1.05 cm 3 /g or more and 2.2 cm 3 /g or less (or 2.0 cm 3 /g or less), 0.8 cm 3 /g or more (or 0.9 cm 3 /g or more) It may be 1.9 cm 3 /g or less, or 1.05 cm 3 /g or more and 1.9 cm 3 /g or less.
 多孔質フィルムは、例えば、ポリマー材料(以下、ベースポリマーとも称する。)を含む。多孔質フィルムは、結晶質領域を含むため、ベースポリマーは、通常、結晶性ポリマーを含む。多孔質フィルムは、例えば、ポリオレフィンを含む。ポリオレフィンとは、少なくともオレフィン単位を含む重合体(つまり、少なくともオレフィンに由来するモノマー単位を含む重合体)である。 A porous film includes, for example, a polymer material (hereinafter also referred to as a base polymer). Since the porous film contains crystalline regions, the base polymer usually contains a crystalline polymer. Porous films include, for example, polyolefins. A polyolefin is a polymer containing at least olefinic units (that is, a polymer containing at least monomeric units derived from an olefin).
 ベースポリマーとして、ポリオレフィンと他のベースポリマーとを併用してもよい。多孔質フィルムに含まれるベースポリマー全体に占めるポリオレフィンの比率は、例えば、50質量%以上であり、80質量%以上であってもよく、90質量%以上であってもよい。ポリオレフィンの比率は、例えば、100質量%以下である。ベースポリマーをポリオレフィンのみで構成してもよい。ポリオレフィンの比率がこのように多い場合、多孔質フィルムが酸化劣化し易い傾向があるが、このような場合であっても、結晶化度を上記の範囲とするため、高い耐酸化性を確保し、高い高温過充電寿命性能を確保することができる。 A polyolefin and another base polymer may be used in combination as the base polymer. The ratio of polyolefin to the entire base polymer contained in the porous film is, for example, 50% by mass or more, may be 80% by mass or more, or may be 90% by mass or more. The proportion of polyolefin is, for example, 100% by mass or less. The base polymer may consist of polyolefin only. When the ratio of polyolefin is high like this, the porous film tends to be easily deteriorated by oxidation. , high high temperature overcharge life performance can be ensured.
 ポリオレフィンには、例えば、オレフィンの単独重合体、異なるオレフィン単位を含む共重合体、オレフィン単位および共重合性モノマー単位を含む共重合体が包含される。オレフィン単位および共重合性モノマー単位を含む共重合体は、1種または2種以上のオレフィン単位を含んでいてもよい。また、オレフィン単位および共重合性モノマー単位を含む共重合体は、1種または2種以上の共重合性モノマー単位を含んでいてもよい。共重合性モノマー単位とは、オレフィン以外で、かつオレフィンと共重合可能な重合性モノマーに由来するモノマー単位である。 Polyolefins include, for example, homopolymers of olefins, copolymers containing different olefin units, and copolymers containing olefin units and copolymerizable monomer units. A copolymer containing olefin units and copolymerizable monomer units may contain one or more olefin units. Further, the copolymer containing olefin units and copolymerizable monomer units may contain one or more copolymerizable monomer units. A copolymerizable monomer unit is a monomer unit derived from a polymerizable monomer other than an olefin and copolymerizable with an olefin.
 ポリオレフィンとしては、例えば、少なくともC2-3オレフィンをモノマー単位として含む重合体が挙げられる。C2-3オレフィンとして、エチレンおよびプロピレンからなる群より選択される少なくとも一種が挙げられる。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、C2-3オレフィンをモノマー単位として含む共重合体(例えば、エチレン-プロピレン共重合体)がより好ましい。ポリオレフィンの中では、少なくともエチレン単位を含むポリオレフィン(ポリエチレン、エチレン-プロピレン共重合体など)を用いることが好ましい。エチレン単位を含むポリオレフィン(ポリエチレン、エチレン-プロピレン共重合体など)と他のポリオレフィンとを併用してもよい。 Polyolefins include, for example, polymers containing at least C 2-3 olefins as monomer units. The C 2-3 olefin includes at least one selected from the group consisting of ethylene and propylene. More preferred polyolefins are, for example, polyethylene, polypropylene, and copolymers containing C 2-3 olefins as monomer units (eg, ethylene-propylene copolymers). Among polyolefins, it is preferable to use polyolefins containing at least ethylene units (polyethylene, ethylene-propylene copolymer, etc.). Polyolefins containing ethylene units (polyethylene, ethylene-propylene copolymers, etc.) may be used in combination with other polyolefins.
 多孔質フィルムは、オイルを含むことが好ましい。多孔質フィルムがオイルを含む場合、多孔質フィルムの酸化劣化を抑制する効果をさらに高めることができるため、より高い高温過充電寿命性能を確保することができる。オイルとは、室温(20℃以上35℃以下の温度)で液状であり、水と分離する疎水性物質を言う。オイルには、天然由来のオイル、鉱物オイル、および合成オイルが包含される。オイルとしては、鉱物オイル、合成オイルなどが好ましい。オイルとしては、例えば、パラフィンオイル、シリコーンオイルが挙げられる。多孔質フィルムは、オイルを一種含んでもよく、二種以上組み合わせて含んでもよい。 The porous film preferably contains oil. When the porous film contains oil, the effect of suppressing oxidative deterioration of the porous film can be further enhanced, so higher high-temperature overcharge life performance can be ensured. Oil refers to a hydrophobic substance that is liquid at room temperature (20° C. or higher and 35° C. or lower) and separates from water. Oils include naturally derived oils, mineral oils, and synthetic oils. Mineral oil, synthetic oil and the like are preferable as the oil. Examples of oils include paraffin oil and silicone oil. The porous film may contain one type of oil or a combination of two or more types.
 多孔質フィルム中のオイルの含有率は、11質量%以上または12質量%以上であってもよい。オイルの含有率は、18質量%以下が好ましい。オイルの含有率がこのような範囲である場合、多孔質フィルムの酸化劣化を抑制する効果がさらに高まる。また、セパレータの抵抗を比較的低く抑えることができる。 The oil content in the porous film may be 11% by mass or more or 12% by mass or more. The oil content is preferably 18% by mass or less. When the oil content is within this range, the effect of suppressing oxidative deterioration of the porous film is further enhanced. Also, the resistance of the separator can be kept relatively low.
 多孔質フィルムは、シート状であってもよい。また、シート状の多孔質フィルムを、蛇腹状に折り曲げることによりセパレータとして用いてもよい。多孔質フィルムは袋状に形成してもよい。正極板または負極板のうちのいずれか一方を袋状の多孔質フィルムに収容してもよい。 The porous film may be sheet-like. Alternatively, a sheet-like porous film may be used as a separator by folding in a bellows shape. The porous film may be formed into a bag shape. Either one of the positive electrode plate and the negative electrode plate may be housed in a bag-like porous film.
 多孔質フィルムは、リブを有してもよく、リブを有さなくてもよい。リブを有する多孔質フィルムは、例えば、ベース部とベース部の表面から立設されたリブとを備える。リブは、多孔質フィルムまたは各ベース部の一方の表面のみに設けてもよく、両方の表面にそれぞれ設けてもよい。なお、多孔質フィルムのベース部とは、多孔質フィルムの構成部位のうち、リブなどの突起を除く部分であり、多孔質フィルムの外形を画定するシート状の部分をいう。 The porous film may or may not have ribs. A porous film having ribs includes, for example, a base portion and ribs erected from the surface of the base portion. The ribs may be provided only on one surface of the porous film or each base portion, or may be provided on both surfaces. The base portion of the porous film is a portion excluding projections such as ribs among constituent portions of the porous film, and refers to a sheet-like portion that defines the outer shape of the porous film.
 多孔質フィルムの厚さは、例えば、90μm以上である。より高い高温過充電寿命性能が得られる観点からは、100μm以上または150μm以上が好ましい。多孔質フィルムの厚さは、例えば、300μm以下である。セパレータの抵抗を低く抑える観点からは、多孔質フィルムの厚さは、250μm以下または200μm以下であってもよく、150μ以下であってもよい。多孔質フィルムの厚さがこのように小さくても、十分な耐酸化性が得られ、高い高温過充電寿命性能を確保することができる。。多孔質フィルムの厚さとは、多孔質フィルムの電極材料に対向する部分における平均厚さを意味する。多孔質フィルムが、ベース部とベース部の少なくとも一方の表面から立設されたリブとを備える場合には、多孔質フィルムの厚さとは、ベース部における平均厚さである。 The thickness of the porous film is, for example, 90 μm or more. From the viewpoint of obtaining higher high-temperature overcharge life performance, the thickness is preferably 100 μm or more or 150 μm or more. The thickness of the porous film is, for example, 300 μm or less. From the viewpoint of keeping the resistance of the separator low, the thickness of the porous film may be 250 μm or less, 200 μm or less, or 150 μm or less. Even with such a small thickness of the porous film, sufficient oxidation resistance can be obtained, and high high-temperature overcharge life performance can be ensured. . The thickness of the porous film means the average thickness of the portion of the porous film facing the electrode material. When the porous film has a base portion and ribs erected from at least one surface of the base portion, the thickness of the porous film is the average thickness of the base portion.
 多孔質フィルムの厚さは、90μm以上300μm以下(または250μm以下)、90μm以上200μm以下、100μm以上(または150μm以上)300μm以下、100μm以上(または150μm以上)250μm以下、あるいは100μm以上(または150μm以上)200μm以下であってもよい。 The thickness of the porous film is 90 μm or more and 300 μm or less (or 250 μm or less), 90 μm or more and 200 μm or less, 100 μm or more (or 150 μm or more) and 300 μm or less, 100 μm or more (or 150 μm or more) and 250 μm or less, or 100 μm or more (or 150 μm or more). ) may be 200 μm or less.
 多孔質フィルムがリブを有する場合、リブの高さは、0.05mm以上であってもよい。また、リブの高さは、1.2mm以下であってもよい。リブの高さは、ベース部の表面から突出した部分の高さ(突出高さ)である。 When the porous film has ribs, the rib height may be 0.05 mm or more. Also, the rib height may be 1.2 mm or less. The height of the rib is the height of the portion that protrudes from the surface of the base portion (protrusion height).
 多孔質フィルムの正極板と対向する領域に設けられるリブの高さは、0.4mm以上であってもよい。多孔質フィルムの正極板と対向する領域に設けられるリブの高さは、1.2mm以下であってもよい。 The height of the ribs provided in the region facing the positive electrode plate of the porous film may be 0.4 mm or more. The height of the rib provided in the region of the porous film facing the positive electrode plate may be 1.2 mm or less.
 セパレータが多孔質フィルムとガラス繊維マットとの積層体である場合、多孔質フィルムのリブは、負極板側の表面に設けてもよい。この場合、リブは、多孔質フィルムの負極電極材料に対向する部分に設けることが好ましい。負極板側にリブを設けることで、電解液が拡散し易くなる。負極板側に設けられるリブの高さは、例えば、50μm以上である。リブの高さは、例えば、400μm以下または300μm以下であってもよい。 When the separator is a laminate of a porous film and a glass fiber mat, the ribs of the porous film may be provided on the surface of the negative electrode plate. In this case, the ribs are preferably provided on the portion of the porous film facing the negative electrode material. Providing ribs on the negative electrode plate side facilitates the diffusion of the electrolytic solution. The height of the ribs provided on the negative electrode plate side is, for example, 50 μm or more. The rib height may be, for example, 400 μm or less or 300 μm or less.
 セパレータが多孔質フィルムとガラス繊維マットとの積層体である場合において、多孔質フィルムの正極板側にリブを設ける場合には、ガラス繊維マットで覆われていない領域に設けてもよい。正極電極材料に対向する部分にリブを設ける場合には、特許文献2のように、隣接するリブ間に、ガラス繊維マットを配置してもよい。しかし、ガラス繊維マットとの積層の容易さを考慮すると、多孔質フィルムの正極板側には特にリブを設けなくてもよい。 When the separator is a laminate of a porous film and a glass fiber mat, and ribs are provided on the positive electrode plate side of the porous film, they may be provided in areas not covered with the glass fiber mat. When ribs are provided in the portion facing the positive electrode material, a glass fiber mat may be arranged between adjacent ribs as in Patent Document 2. However, considering the ease of lamination with the glass fiber mat, it is not necessary to provide ribs on the positive electrode plate side of the porous film.
 セパレータが多孔質フィルムとガラス繊維マットとの積層体である場合、多孔質フィルムは、端部の少なくとも一部にガラス繊維マットで覆われていない領域を有してもよい。この領域に、高温過充電状態において、脱落した高電位の正極電極材料が接触すると、多孔質フィルムが酸化劣化したり、多孔質フィルムに正極電極材料が食い込んだりして、多孔質フィルムが破れ、短絡が生じて、寿命となり易い。しかし、本発明の上記側面では、このような場合であっても、多孔質フィルムの耐酸化性が高まることで、多孔質フィルムの酸化劣化および破れが抑制され、短絡の発生を抑制できる。多孔質フィルムは、おおよそ四角形であり、通常、上下端部および両方の側端部の合計4つの端部を有する。1つの端部において、多孔質フィルムのガラス繊維マットで覆われていない領域の幅(例えば、後述の図4では、w)は、例えば、1mm以上であり、2mm以上であってもよい。この領域の幅は、例えば、5mm以下であり、4.5mm以下または4mm以下であってもよい。多孔質フィルムは、側端部(好ましくは双方の側端部)にガラス繊維マットで覆われていない領域を有してもよい。袋状の多孔質フィルムとガラス繊維マットとを積層した場合、袋状に圧着した部分を含む側端部の所定の領域がガラス繊維マットより外側に露出した状態となる。 When the separator is a laminate of a porous film and a glass fiber mat, the porous film may have a region not covered with the glass fiber mat at least part of the edge. In the state of high-temperature overcharge, when the dropped high-potential positive electrode material comes into contact with this region, the porous film is oxidized and deteriorated, or the positive electrode material bites into the porous film, causing the porous film to break. A short circuit occurs, and it is easy to reach the end of life. However, in the aspect of the present invention, even in such a case, oxidation deterioration and breakage of the porous film are suppressed by increasing the oxidation resistance of the porous film, and the occurrence of short circuits can be suppressed. A porous film is roughly square and usually has four edges: top and bottom edges and both side edges. At one end, the width of the region of the porous film not covered with the glass fiber mat (for example, w p in FIG. 4 described below) is, for example, 1 mm or more, and may be 2 mm or more. The width of this region is, for example, 5 mm or less, and may be 4.5 mm or less or 4 mm or less. The porous film may have areas on the side edges (preferably on both side edges) that are not covered with the glass fiber mat. When the bag-like porous film and the glass fiber mat are laminated, a predetermined region of the side end including the bag-like crimped portion is exposed outside the glass fiber mat.
 上記の領域の幅は、1mm以上(または2mm以上)5mm以下、1mm以上(または2mm以上)4.5mm以下、あるいは1mm以上(または2mm以上)4mm以下であってもよい。 The width of the above region may be 1 mm or more (or 2 mm or more) and 5 mm or less, 1 mm or more (or 2 mm or more) and 4.5 mm or less, or 1 mm or more (or 2 mm or more) and 4 mm or less.
 多孔質フィルムは、例えば、ベースポリマーと、造孔剤と、浸透剤(界面活性剤)とを含む樹脂組成物をシート状に押出成形し、延伸処理した後、造孔剤の少なくとも一部を除去することにより得られる。少なくとも一部の造孔剤を除去することで、ベースポリマーのマトリックス中に微細孔が形成される。多孔質フィルム(または多孔質フィルムの製造に供される樹脂組成物)は、無機粒子を含んでもよい。なお、多孔質フィルムの表面に炭素材料が配置される場合、この無機粒子に炭素材料は含まれない。シート状の多孔質フィルムは、造孔剤を除去した後、必要に応じて乾燥処理される。例えば、押出成形する際のシートの冷却速度、延伸処理の際の延伸倍率、および乾燥処理の際の温度からなる群より選択される少なくとも1つを調節することによって、結晶化度が調節される。例えば、押出成形する際にシートを急冷したり、延伸倍率を高くしたり、または乾燥処理の際の温度を低くしたりすると、結晶化度が高くなる傾向がある。延伸処理は、二軸延伸によって行ってもよいが、通常、一軸延伸によって行われる。シート状の多孔質フィルムは、必要に応じて、蛇腹状に折り曲げたり、袋状に加工したりしてもよい。 A porous film is produced by, for example, extruding a resin composition containing a base polymer, a pore-forming agent, and a penetrating agent (surfactant) into a sheet, stretching the film, and removing at least part of the pore-forming agent. obtained by removing Removal of at least a portion of the pore-forming agent forms micropores in the matrix of the base polymer. The porous film (or the resin composition used for producing the porous film) may contain inorganic particles. When a carbon material is placed on the surface of the porous film, the inorganic particles do not contain the carbon material. After removing the pore-forming agent, the sheet-like porous film is dried if necessary. For example, the degree of crystallinity is adjusted by adjusting at least one selected from the group consisting of the cooling rate of the sheet during extrusion, the draw ratio during stretching, and the temperature during drying. . For example, the degree of crystallinity tends to increase when the sheet is quenched during extrusion molding, the draw ratio is increased, or the temperature during drying is decreased. The stretching treatment may be carried out by biaxial stretching, but is usually carried out by uniaxial stretching. The sheet-like porous film may be folded into a bellows shape or processed into a bag shape, if necessary.
 セパレータ内の細孔構造および第1細孔容積Vtは、ベースポリマーと造孔剤および/または浸透剤との親和性を調節したり、造孔剤の分散性を調節したり、無機粒子の種類および/または粒子径を選択したり、浸透剤の種類を選択したり、無機粒子の量、造孔剤の量、および/または浸透剤の量を調節したり、ならびに/もしくは、無機粒子の表面に存在する官能基および/または原子などの量を調節したりすることにより、調節することができる。 The pore structure and the first pore volume Vt in the separator control the affinity between the base polymer and the pore-forming agent and/or the penetrating agent, control the dispersibility of the pore-forming agent, and determine the type of inorganic particles. and/or select the particle size, select the type of penetrant, adjust the amount of the inorganic particles, the amount of the pore-forming agent, and/or the amount of the penetrant, and/or the surface of the inorganic particles can be adjusted by adjusting the amount of functional groups and/or atoms present in .
 リブを有する多孔質フィルムでは、リブは、樹脂組成物を押出成形する際にシートに形成してもよい。また、リブは、樹脂組成物をシート状に成形した後または造孔剤を除去した後に、各リブに対応する溝を有するローラでシートを押圧することにより形成してもよい。 In the porous film having ribs, the ribs may be formed into a sheet when extruding the resin composition. Alternatively, the ribs may be formed by pressing the sheet with a roller having grooves corresponding to the ribs after molding the resin composition into a sheet or after removing the pore-forming agent.
 造孔剤としては、液状造孔剤および固形造孔剤などが挙げられる。造孔剤は、少なくともオイルを含むことが好ましい。オイルを用いることで、オイルを含有する多孔質フィルムが得られ、酸化劣化を抑制する効果がさらに高まる。造孔剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。オイルと他の造孔剤とを併用してもよい。液状造孔剤と、固形造孔剤とを併用してもよい。なお、室温(20℃以上35℃以下の温度)において、液状の造孔剤を液状造孔剤、固形の造孔剤を固形造孔剤と分類する。 Pore-forming agents include liquid pore-forming agents and solid pore-forming agents. The pore-forming agent preferably contains at least oil. By using oil, an oil-containing porous film is obtained, and the effect of suppressing oxidative deterioration is further enhanced. The pore-forming agents may be used singly or in combination of two or more. Oil and other pore-forming agents may be used in combination. A liquid pore-forming agent and a solid pore-forming agent may be used in combination. At room temperature (20° C. or higher and 35° C. or lower), a liquid pore-forming agent is classified as a liquid pore-forming agent, and a solid pore-forming agent as a solid pore-forming agent.
 液状造孔剤としては、上述のオイルが好ましい。固形造孔剤としては、例えば、ポリマー粉末が挙げられる。 The above-mentioned oil is preferable as the liquid pore-forming agent. Solid pore formers include, for example, polymer powders.
 多孔質フィルム中の造孔剤の量は、種類によっては変化することがある。多孔質フィルム中の造孔剤の量は、ベースポリマー100質量部あたり、例えば、30質量部以上である。造孔剤の量は、ベースポリマー100質量部あたり、例えば、60質量部以下である。  The amount of pore-forming agent in the porous film may vary depending on the type. The amount of the pore-forming agent in the porous film is, for example, 30 parts by weight or more per 100 parts by weight of the base polymer. The amount of the pore-forming agent is, for example, 60 parts by weight or less per 100 parts by weight of the base polymer.
 例えば、造孔剤としてのオイルを用いて形成されるシートから、溶剤を用いて一部のオイルを抽出除去することによって、オイルを含有する多孔質フィルムが形成される。溶剤は、例えば、オイルの種類に応じて選択される。例えば、溶剤の種類および組成、抽出条件(抽出時間、抽出温度、溶剤を供給する速度など)などを調節することによって、多孔質フィルム中のオイルの含有率が調節される。 For example, a porous film containing oil is formed by extracting and removing part of the oil from a sheet formed using oil as a pore-forming agent using a solvent. A solvent is selected, for example, according to the type of oil. For example, the oil content in the porous film can be adjusted by adjusting the type and composition of the solvent, extraction conditions (extraction time, extraction temperature, speed of supplying the solvent, etc.).
 浸透剤としての界面活性剤としては、例えば、イオン性界面活性剤、ノニオン性界面活性剤のいずれであってもよい。界面活性剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The surfactant as a penetrant may be, for example, either an ionic surfactant or a nonionic surfactant. Surfactants may be used alone or in combination of two or more.
 多孔質フィルム中の浸透剤の含有率は、例えば、0.01質量%以上であり、0.1質量%以上であってもよい。多孔質フィルム中の浸透剤の含有率は、10質量%以下であってもよい。 The content of the penetrant in the porous film is, for example, 0.01% by mass or more, and may be 0.1% by mass or more. The content of the penetrant in the porous film may be 10% by mass or less.
 無機粒子としては、例えば、セラミックス粒子が好ましい。セラミックス粒子を構成するセラミックスとしては、例えば、シリカ、アルミナ、およびチタニアからなる群より選択される少なくとも一種が挙げられる。 As the inorganic particles, for example, ceramic particles are preferable. Ceramics constituting the ceramic particles include, for example, at least one selected from the group consisting of silica, alumina, and titania.
 セパレータ中の無機粒子の含有率は、例えば、40質量%以上であってもよい。無機粒子の含有率は、例えば、80質量%以下であり、70質量%以下であってもよい。 The content of inorganic particles in the separator may be, for example, 40% by mass or more. The content of inorganic particles is, for example, 80% by mass or less, and may be 70% by mass or less.
 (ガラス繊維マット)
 ガラス繊維マットは、多孔質フィルムの正極板と対向する側の表面に積層されてもよい。例えば、袋状の多孔質フィルムでは、袋の外側の双方の表面にガラス繊維マットを積層してもよい。例えば、極板群の端の極板が負極板である場合には、この負極板を収容する袋状の多孔質フィルムは、正極板と対向する側の表面にガラス繊維マットが積層され、正極板と対向しない側の表面は多孔質フィルムが露出した状態であってもよい。
(glass fiber mat)
The glass fiber mat may be laminated on the surface of the porous film facing the positive electrode plate. For example, a bag-shaped porous film may have a glass fiber mat laminated to both outer surfaces of the bag. For example, when the electrode plate at the end of the electrode plate group is the negative electrode plate, the bag-shaped porous film containing this negative electrode plate has a glass fiber mat laminated on the surface of the side facing the positive electrode plate, and the positive electrode plate is formed. The porous film may be exposed on the surface that does not face the plate.
 ガラス繊維マットは、ガラス繊維で構成されたマット(または不織布)である。ガラス繊維マットは、吸収ガラスマット(AGM:Absorbed Glass Mat、または、Absorbent Glass Mat)と呼ばれる材料であってもよい。 A glass fiber mat is a mat (or non-woven fabric) made of glass fiber. The glass fiber mat may be a material called Absorbed Glass Mat (AGM).
 ガラス繊維マットは、全体がガラス繊維で形成されていてもよい。ガラス繊維マットは、主成分としてガラス繊維を含んでもよい。ガラス繊維マット中のガラス繊維の含有率は、90質量%以上または95質量%以上であってもよい。ガラス繊維マット中のガラス繊維の含有率は、100質量%以下である。ガラス繊維マットは、ガラス繊維以外の成分、例えば、有機繊維、耐酸性の無機粉体、結着剤としてのポリマーなどを含んでもよいが、それらの含有率は、通常、10質量%以下または5質量%以下である。 The glass fiber mat may be entirely made of glass fiber. The glass fiber mat may contain glass fibers as a main component. The glass fiber content in the glass fiber mat may be 90% by mass or more or 95% by mass or more. The content of glass fibers in the glass fiber mat is 100% by mass or less. The glass fiber mat may contain components other than glass fibers, such as organic fibers, acid-resistant inorganic powders, and polymers as binders, but their content is usually 10% by mass or less or 5% by mass. % by mass or less.
 ガラス繊維の平均繊維径は、例えば、0.1μm以上であり、0.5μm以上であってもよい。ガラス繊維の平均繊維径がこのような範囲である場合、軟化した正極電極材料の脱落を抑制する効果が高まる。ガラス繊維の平均繊維径は、例えば、30μm以下であり、10μm以下であってもよい。この場合、電池の内部抵抗が過度に増加することを抑制できる。また、ガラス繊維マットの比較的高い柔軟性を確保できるとともに、比較的多くの電解液を保持し易い。 The average fiber diameter of the glass fiber is, for example, 0.1 μm or more, and may be 0.5 μm or more. When the average fiber diameter of the glass fibers is within such a range, the effect of suppressing falling off of the softened positive electrode material is enhanced. The average fiber diameter of the glass fibers is, for example, 30 μm or less, and may be 10 μm or less. In this case, an excessive increase in the internal resistance of the battery can be suppressed. In addition, it is possible to secure relatively high flexibility of the glass fiber mat, and it is easy to hold a relatively large amount of electrolytic solution.
 ガラス繊維の平均繊維径は、0.1μm以上(または0.5μm以上)30μm以下、あるいは0.1μm以上(または0.5μm以上)10μm以下であってもよい。 The average fiber diameter of the glass fiber may be 0.1 μm or more (or 0.5 μm or more) and 30 μm or less, or 0.1 μm or more (or 0.5 μm or more) and 10 μm or less.
 ガラス繊維マットの面密度は、例えば、100g/m以上である。ガラス繊維マットの面密度は、250g/m以下であってもよく、200g/m以下であってもよい。 The surface density of the glass fiber mat is, for example, 100 g/m 2 or more. The surface density of the glass fiber mat may be 250 g/m 2 or less, or 200 g/m 2 or less.
 多孔質フィルムとガラス繊維マットの積層体であるセパレータは、例えば、多孔質フィルムとガラス繊維マットとを積層することによって得られる。より具体的には、多孔質フィルムの正極板と対向する表面にガラス繊維マットを積層することによってセパレータを形成してもよい。多孔質フィルムとガラス繊維マットとは、単に重ねるだけでもよく、接着剤を用いて積層(または固定)してもよい。また、溶着(ヒートシールなど)、または機械的接着方法(ギアシールなど)などを使用して、多孔質フィルムとガラス繊維マットとを積層(または固定)してもよい。接着剤としては、例えば、シリコーン系接着剤、エポキシ系接着剤、ポリオレフィン系接着剤などが挙げられる。セパレータの抵抗が高くならないように、接着剤の塗布量は少ない方が好ましい。例えば、接着剤は、多孔質フィルムまたはガラス繊維マットの接着させる面全体に付与するよりも、部分的に付与することが好ましい。 A separator that is a laminate of a porous film and a glass fiber mat is obtained, for example, by laminating a porous film and a glass fiber mat. More specifically, the separator may be formed by laminating a glass fiber mat on the surface of the porous film facing the positive electrode plate. The porous film and the glass fiber mat may be simply placed on top of each other, or may be laminated (or fixed) using an adhesive. Alternatively, the porous film and the glass fiber mat may be laminated (or fixed) using welding (heat sealing, etc.) or mechanical adhesion methods (gear sealing, etc.). Examples of adhesives include silicone-based adhesives, epoxy-based adhesives, and polyolefin-based adhesives. It is preferable that the amount of the adhesive applied is small so as not to increase the resistance of the separator. For example, it is preferable to apply the adhesive to a portion of the porous film or fiberglass mat rather than to the entire surface to be adhered.
 (炭素材料)
 炭素材料としては、導電性を有する炭素材料を用いることができる。導電性を有する炭素材料の例には、黒鉛、活性炭、導電性カーボンブラック、炭素繊維、カーボンナノチューブ、などが含まれる。導電性カーボンブラックの例には、アセチレンブラック、ケッチェンブラック、高表面積カーボンブラックなどが含まれる。生産性の点で、カーボンブラックを用いることが好ましく、例えば、アセチレンブラック、高表面積カーボンブラック、ケッチェンブラックを用いることが好ましい。炭素材料は、導電性カーボンブラックおよび導電性炭素繊維からなる群より選択される少なくとも一種であってもよい。炭素材料は、多孔質フィルムの表面に層状に配置されてもよい。炭素材料の配置の方法については後述する。
(carbon material)
A conductive carbon material can be used as the carbon material. Examples of conductive carbon materials include graphite, activated carbon, conductive carbon black, carbon fibers, carbon nanotubes, and the like. Examples of conductive carbon black include acetylene black, ketjen black, high surface area carbon black, and the like. From the viewpoint of productivity, it is preferable to use carbon black, and for example, it is preferable to use acetylene black, high surface area carbon black, and ketjen black. The carbon material may be at least one selected from the group consisting of conductive carbon black and conductive carbon fiber. The carbon material may be layered on the surface of the porous film. A method of arranging the carbon material will be described later.
 炭素材料は、多孔質フィルムの2つの主面のうち、一方の主面(正極板側の主面または負極板側の主面)のみに配置されてもよいし、両方の主面に配置されてもよい。換言すれば、セパレータの少なくとも一方の表面には炭素材料が存在する。好ましい一例では、炭素材料は、多孔質フィルムの一方の主面のみに配置される。後述するように、炭素材料は、多孔質フィルムの負極板側の主面のみに配置されてもよい。 Of the two main surfaces of the porous film, the carbon material may be arranged only on one main surface (the main surface on the positive electrode plate side or the main surface on the negative electrode plate side), or may be arranged on both main surfaces. may In other words, the carbon material is present on at least one surface of the separator. In one preferred example, the carbon material is arranged only on one major surface of the porous film. As will be described later, the carbon material may be arranged only on the main surface of the porous film on the negative electrode plate side.
 炭素材料は、多孔質フィルムの主面を覆うように層状に配置されてもよいし、層状ではない形態で配置されてもよい。層状ではない形態の例には、分散している島状に配置される形態が含まれる。炭素材料の層の厚さは、5μm~30μmの範囲(例えば10μm~20μmの範囲)にあってもよい。炭素材料の層の厚さは、セパレータの厚さと同様の方法で測定できる。 The carbon material may be arranged in layers so as to cover the main surface of the porous film, or may be arranged in a non-layered form. Examples of non-layered morphologies include morphologies arranged in discrete islands. The thickness of the layer of carbon material may be in the range of 5 μm to 30 μm (eg in the range of 10 μm to 20 μm). The thickness of the carbon material layer can be measured in the same manner as the thickness of the separator.
 セパレータ中の炭素材料(多孔質フィルムの表面に配置される炭素材料)の含有率は、2質量%以上であってもよく、好ましくは3質量%以上である。当該含有率を2質量%以上とすることによって、セパレータの耐酸化性および強度を特に高めることが可能となる。当該含有率は、40質量%以下、または30質量%以下であってもよい。 The content of the carbon material (the carbon material placed on the surface of the porous film) in the separator may be 2% by mass or more, preferably 3% by mass or more. By setting the content to 2% by mass or more, it is possible to particularly improve the oxidation resistance and strength of the separator. The content may be 40% by mass or less, or 30% by mass or less.
 多孔質フィルムの表面に炭素材料を配置する方法に、特に限定はない。例えば、炭素材料は、炭素材料、炭素材料を含む組成物、または炭素材料を含む分散液を多孔質フィルムの表面に塗布することによって形成してもよい。塗布の方法に特に限定はなく、ドクターブレード法、ローラーコーティング法、スプレーコーティング法、浸漬法、蒸着法、その他の印刷法などを用いてもよい。炭素材料を含む分散液の例には、炭素材料を分散媒(水および/または有機溶媒)に分散させた分散液が含まれる。多孔質フィルムの表面に配置される炭素材料の量や厚さは、塗布する炭素材料の量を制御することによって調整できる。 There is no particular limitation on the method of arranging the carbon material on the surface of the porous film. For example, the carbon material may be formed by applying a carbon material, a composition containing the carbon material, or a dispersion containing the carbon material to the surface of the porous film. The coating method is not particularly limited, and a doctor blade method, roller coating method, spray coating method, dipping method, vapor deposition method, other printing methods, and the like may be used. Examples of dispersions containing carbon materials include dispersions in which carbon materials are dispersed in a dispersion medium (water and/or organic solvent). The amount and thickness of the carbon material placed on the surface of the porous film can be adjusted by controlling the amount of the applied carbon material.
(多孔質フィルムおよびガラス繊維マットの分析またはサイズの計測)
 (セパレータの準備)
 多孔質フィルムまたはガラス繊維マットの分析またはサイズの計測には、未使用のセパレータまたは使用初期の満充電状態の鉛蓄電池から取り出したセパレータが用いられる。鉛蓄電池から取り出したセパレータは、分析または計測に先立って、洗浄および乾燥される。なお、多孔質フィルムのXRDスペクトルの測定は、表面にガラス繊維マットまたは炭素材料を配置する前の多孔質フィルムが入手可能な場合は、表面に何も配置されていない多孔質フィルムを用いて行ってもよい。また、片面にのみガラス繊維マットまたは炭素材料が配置されている多孔質フィルムのXRDスペクトルの測定は、ガラス繊維マットまたは炭素材料が配置されていない側の表面を用いて行ってもよい。
(analysis or size measurement of porous films and fiberglass mats)
(Preparation of separator)
For the analysis or size measurement of the porous film or glass fiber mat, an unused separator or a separator taken from a fully charged lead-acid battery at the beginning of use is used. Separators removed from lead-acid batteries are washed and dried prior to analysis or measurement. The measurement of the XRD spectrum of the porous film is performed using a porous film on which nothing is placed on the surface if the porous film is available before the glass fiber mat or carbon material is placed on the surface. may Further, the measurement of the XRD spectrum of the porous film having the glass fiber mat or the carbon material arranged only on one side may be performed using the surface on which the glass fiber mat or the carbon material is not arranged.
 鉛蓄電池から取り出したセパレータの洗浄および乾燥は、次の手順で行われる。鉛蓄電池から取り出したセパレータを純水中に1時間浸漬し、セパレータ中の硫酸を除去する。次いで浸漬していた液体からセパレータを取り出して、25℃±5℃環境下で、16時間以上静置し、乾燥させる。  The separator removed from the lead-acid battery is washed and dried according to the following procedure. The separator taken out from the lead-acid battery is immersed in pure water for 1 hour to remove the sulfuric acid in the separator. Next, the separator is taken out from the liquid in which it was immersed, left to stand in an environment of 25° C.±5° C. for 16 hours or longer, and dried.
 本明細書中、液式の鉛蓄電池の満充電状態は、JIS D 5301:2019の定義によって定められる。より具体的には、25℃±2℃の水槽中で、鉛蓄電池を、定格容量として記載の数値の1/10の電流(A)で、15分ごとに測定した充電中の端子電圧(V)または20℃に温度換算した電解液密度が3回連続して有効数字3桁で一定値を示すまで充電した状態が満充電状態である。また、制御弁式の鉛蓄電池の場合、満充電状態とは、25℃±2℃の気槽中で、定格容量に記載の数値(単位をAhとする数値)の0.2倍の電流(A)で、2.23V/セルの定電流定電圧充電を行い、定電圧充電時の充電電流が定格容量に記載の数値(単位をAhとする数値)の0.005倍の値(A)になった時点で充電を終了した状態である。定格容量として記載の数値は、単位をAh(アンペアアワー)とした数値である。定格容量として記載の数値を元に設定される電流の単位はA(アンペア)とする。 In this specification, the fully charged state of a liquid lead-acid battery is defined by the definition of JIS D 5301:2019. More specifically, the terminal voltage (V ) or the fully charged state is the state in which the electrolyte solution density converted to temperature at 20° C. is charged three times consecutively until it shows a constant value with three significant digits. In the case of a valve-regulated lead-acid battery, a fully charged state is defined as a current (0.2 times the rated capacity value (unit: Ah) in an air tank at 25°C ± 2°C). In A), constant current constant voltage charging is performed at 2.23 V / cell, and the charging current during constant voltage charging is a value (A) that is 0.005 times the value (value in Ah) described in the rated capacity. The charging is finished when it becomes . The numerical value described as the rated capacity is a numerical value whose unit is Ah (ampere hour). The unit of current set based on the numerical value described as the rated capacity is A (ampere).
 満充電状態の鉛蓄電池は、既化成の鉛蓄電池を満充電した鉛蓄電池である。鉛蓄電池の満充電は、化成後であれば、化成直後でもよく、化成から時間が経過した後に行ってもよい(例えば、化成後で、使用中(好ましくは使用初期)の鉛蓄電池を満充電してもよい)。 A fully charged lead-acid battery is a fully-charged lead-acid battery that has already been chemically formed. The lead-acid battery may be fully charged immediately after the formation as long as it is after the formation, or after some time has passed since the formation. may be used).
 本明細書中、使用初期の電池とは、使用開始後、それほど時間が経過しておらず、ほとんど劣化していない電池である。 In this specification, the term "battery in the early stage of use" means a battery that has not undergone much deterioration since the start of use and has not deteriorated.
 (XRDスペクトル)
 多孔質フィルムのXRDスペクトルは、セパレータにおいて、多孔質フィルムの正極板と対抗する表面に対して、垂直な方向からX線を照射することによって測定される。セパレータが多孔質フィルムのみから構成される場合は、測定用のサンプルは、セパレータの電極材料に対向する部分を短冊状に加工することによって作製される。セパレータが多孔質フィルムとガラス繊維マットの積層体である場合は、測定用のサンプルは、セパレータにおいて、多孔質フィルムからガラス繊維マットを剥がし、接着剤が塗布されていない領域を短冊状に加工することによって作製される。正極板と対向する表面にリブを有するセパレータ又は多孔質フィルムでは、サンプルは、リブを含まないように加工される。両面に炭素材料が配置されているセパレータについては、炭素材料を研磨によって除去してから、XRDスペクトルを測定する。XRDスペクトルの測定およびフィッティングは、以下の条件で行われる。
(測定条件)
 測定装置:RINT-TTR2、リガク社製
 フィッティング:FT(ステップスキャン)法
  測定角度範囲:15-35°
  ステップ幅:0.02°
  計測速度:5°/min
 XRDデータ処理:XRDパターン解析ソフト(PDXL2、リガク製)を使用。
(XRD spectrum)
The XRD spectrum of the porous film is measured by irradiating X-rays in the direction perpendicular to the surface of the porous film facing the positive electrode plate in the separator. When the separator is composed only of a porous film, a sample for measurement is produced by processing the portion of the separator facing the electrode material into a strip shape. When the separator is a laminate of a porous film and a glass fiber mat, the sample for measurement is obtained by peeling off the glass fiber mat from the porous film and processing the area where the adhesive is not applied into strips. It is made by For separators or porous films that have ribs on the surface facing the positive plate, the sample is processed so that it does not contain ribs. For separators having carbon material on both sides, the carbon material is removed by polishing, and then the XRD spectrum is measured. Measurement and fitting of the XRD spectrum are performed under the following conditions.
(Measurement condition)
Measuring device: RINT-TTR2, manufactured by Rigaku Fitting: FT (step scan) method Measuring angle range: 15-35°
Step width: 0.02°
Measurement speed: 5°/min
XRD data processing: using XRD pattern analysis software (PDXL2, manufactured by Rigaku).
 (第1細孔容積Vt)
 多孔質フィルムの電極材料に対向する部分を20mm×5mmの短冊状に加工してサンプル(以下、サンプルAと称する)を作製する。リブを有する多孔質フィルムでは、リブを含まないように、ベース部を短冊状に加工してサンプルAを作製する。セパレータが、多孔質フィルムとガラス繊維マットの積層体の場合は、多孔質フィルムとガラス繊維マットを分離し、接着剤が塗布されていない領域で、セパレータの電極材料に対向する部分を20mm×5mmの短冊状に加工してサンプル(以下、サンプルAと称する)を作製する。サンプルAについて、水銀ポロシメータを用いて下記の条件で細孔分布を求め、第1細孔の容積を合計することによりVtが求められる。
 水銀ポロシメータ:オートポアIV9510、(株)島津製作所製
 測定の圧力範囲:4psia(≒27.6kPa)以上60,000psia(≒414MPa)以下
 細孔分布:0.01μm以上50μm以下
(First pore volume Vt)
A sample (hereinafter referred to as sample A) is prepared by processing the portion of the porous film facing the electrode material into a strip of 20 mm×5 mm. For the porous film having ribs, Sample A is produced by processing the base into strips so as not to include ribs. When the separator is a laminate of the porous film and the glass fiber mat, the porous film and the glass fiber mat are separated, and in the area where the adhesive is not applied, the part of the separator facing the electrode material is 20 mm × 5 mm. to produce a sample (hereinafter referred to as sample A). For sample A, the pore size distribution is determined using a mercury porosimeter under the following conditions, and Vt is determined by totaling the volumes of the first pores.
Mercury porosimeter: Autopore IV9510, manufactured by Shimadzu Corporation Pressure range for measurement: 4 psia (≈27.6 kPa) to 60,000 psia (≈414 MPa) Pore distribution: 0.01 μm to 50 μm
 (多孔質フィルムの厚さおよびリブの高さ)
 多孔質フィルムの厚さは、セパレータの断面写真において、任意に選択した5箇所について多孔質フィルム部分の厚さを計測し、平均化することによって求められる。炭素材料が層状に設けられている場合には、同様の方法で、炭素材料の層の厚さが求められる。
(Porous film thickness and rib height)
The thickness of the porous film is obtained by measuring the thickness of the porous film portion at five arbitrarily selected points in the cross-sectional photograph of the separator and averaging the measured thicknesses. When the carbon material is provided in layers, the thickness of the layer of the carbon material is obtained in a similar manner.
 リブの高さは、セパレータの断面写真において、リブの任意に選択される10箇所において計測したリブのベース部の一方の表面からの高さを平均化することにより求められる。 The height of the rib is obtained by averaging the heights from one surface of the base portion of the rib measured at 10 arbitrarily selected locations of the rib in the cross-sectional photograph of the separator.
 (多孔質フィルム中のオイル含有率)
 セパレータが、多孔質フィルムとガラス繊維マットの積層体である場合は、セパレータにおいて、多孔質フィルムからガラス繊維マットを剥がす。接着剤が塗布されていない領域で、セパレータの電極材料に対向する部分を短冊状に加工してサンプル(以下、サンプルBと称する)を作製する。セパレータが、多孔質フィルムの表面に炭素材料が配置されたものである場合は、研磨によって炭素材料を除去して、セパレータの電極材料に対向する部分を短冊状に加工してサンプルBを作製する。多孔質フィルムがリブを有する場合には、リブを含まないように、加工してサンプルBを作製する。
(Oil content in porous film)
When the separator is a laminate of a porous film and a glass fiber mat, the glass fiber mat is peeled off from the porous film in the separator. A sample (hereinafter referred to as sample B) is prepared by processing the portion of the separator facing the electrode material into a strip shape in the region where the adhesive is not applied. If the separator has a carbon material on the surface of the porous film, the carbon material is removed by polishing, and the portion of the separator facing the electrode material is processed into a strip shape to prepare Sample B. . When the porous film has ribs, it is processed to produce sample B so as not to include ribs.
 サンプルBの約0.5gを採取し、正確に秤量し、初期のサンプルの質量(m0)を求める。秤量したサンプルBを、適当な大きさのガラス製ビーカーに入れ、n-ヘキサン50mLを加える。次いで、ビーカーごと、サンプルに約30分間、超音波を付与することにより、サンプルB中に含まれるオイル分をn-ヘキサン中に溶出させる。次いで、n-ヘキサンからサンプルを取り出し、大気中、室温(20℃以上35℃以下の温度)で乾燥させた後、秤量することにより、オイル除去後のサンプルの質量(m1)を求める。そして、下記式により、オイルの含有率を算出する。10個のサンプルBについてオイルの含有率を求め、平均値を算出する。得られる平均値を多孔質フィルム中のオイルの含有率とする。
 オイルの含有率(質量%)=(m0-m1)/m0×100
About 0.5 g of sample B is taken and weighed accurately to determine the initial sample mass (m0). Place the weighed sample B in an appropriately sized glass beaker and add 50 mL of n-hexane. Next, ultrasonic waves are applied to each beaker for about 30 minutes to elute the oil contained in sample B into n-hexane. Next, a sample is removed from n-hexane, dried in the air at room temperature (20° C. or higher and 35° C. or lower), and weighed to determine the mass (m1) of the sample after oil removal. Then, the oil content is calculated by the following formula. The oil content is determined for 10 samples B, and the average value is calculated. Let the average value obtained be the content rate of the oil in a porous film.
Oil content (% by mass) = (m0-m1)/m0 x 100
 (多孔質フィルム中の無機粒子の含有率)
 上記と同様に作製したサンプルBの一部を採取し、正確に秤量した後、白金坩堝中に入れ、ブンゼンバーナーで白煙が出なくなるまで加熱する。次に、得られるサンプルを、電気炉(酸素気流中、550℃±10℃)で、約1時間加熱して灰化し、灰化物を秤量する。サンプルBの質量に占める灰化物の質量の比率(百分率)を算出し、上記の無機粒子の含有率(質量%)とする。10個のサンプルBについて無機粒子の含有率を求め、平均値を算出する。得られる平均値を多孔質フィルム中の無機粒子の含有率とする。
(Content of inorganic particles in porous film)
A portion of sample B prepared in the same manner as described above is sampled, accurately weighed, placed in a platinum crucible, and heated with a Bunsen burner until white smoke is no longer emitted. Next, the resulting sample is heated in an electric furnace (550° C.±10° C. in an oxygen stream) for about 1 hour to be ashed, and the ashed matter is weighed. The ratio (percentage) of the mass of the ash to the mass of the sample B is calculated and defined as the inorganic particle content (% by mass). The content of inorganic particles is determined for 10 samples B, and the average value is calculated. Let the obtained average value be the content rate of the inorganic particle in a porous film.
 (多孔質フィルム中の浸透剤の含有率)
 上記と同様に作製したサンプルBの一部を採取し、正確に秤量した後、室温(20℃以上35℃以下の温度)で大気圧より低い減圧環境下で、12時間以上乾燥させる。乾燥物を白金セルに入れて、熱重量測定装置にセットし、昇温速度10K/分で、室温から800℃±1℃まで昇温する。室温から250℃±1℃まで昇温させたときの重量減少量を浸透剤の質量とし、サンプルBの質量に占める浸透剤の質量の比率(百分率)を算出し、上記の浸透剤の含有率(質量%)とする。熱重量測定装置としては、T.A.インスツルメント社製のQ5000IRが使用される。10個のサンプルBについて浸透剤の含有率を求め、平均値を算出する。得られる平均値を多孔質フィルム中の浸透剤の含有率とする。
(Content of penetrant in porous film)
A portion of sample B prepared in the same manner as described above is sampled, weighed accurately, and dried at room temperature (20° C. or higher and 35° C. or lower) under a reduced pressure environment lower than atmospheric pressure for 12 hours or more. The dried material is placed in a platinum cell, set in a thermogravimetry device, and heated from room temperature to 800° C.±1° C. at a temperature elevation rate of 10 K/min. The amount of weight loss when the temperature is raised from room temperature to 250°C ± 1°C is taken as the mass of the penetrant, and the ratio (percentage) of the mass of the penetrant to the mass of sample B is calculated, and the content of the above penetrant. (% by mass). As a thermogravimetry device, T.I. A. Q5000IR manufactured by Instruments is used. The penetrant content is determined for 10 samples B, and the average value is calculated. The obtained average value is defined as the penetrant content in the porous film.
 (ガラス繊維マットの平均繊維径)
 ガラス繊維の平均繊維径は、セパレータのガラス繊維マット部分から取り出した任意の100本の繊維について、その長さ方向に垂直な任意の断面の最大径を求め、平均化することによって求められる。
(Average fiber diameter of glass fiber mat)
The average fiber diameter of glass fibers is determined by averaging the maximum diameters of arbitrary cross sections perpendicular to the longitudinal direction of arbitrary 100 fibers taken out from the glass fiber mat portion of the separator.
 (ガラス繊維マットの面密度)
 セパレータの電極材料に対向する部分をカットし、接着剤が塗布されていない部分を採取し、計量するとともに、ガラス繊維マット部分の縦および横のサイズ(換言すると、カットした部分の縦および横のサイズ)を計測する。カットした部分からガラス繊維マットを剥離して多孔質フィルムの質量を測定する。カットした部分の質量から多孔質フィルムの質量を差し引いて、ガラス繊維マット部分の質量を求める。ガラス繊維マット部分の縦および横のサイズから面積を算出し、1m当たりのガラス繊維マット部分の質量(g)を面密度として求める。
(Area density of glass fiber mat)
Cut the part facing the electrode material of the separator, collect the part where the adhesive is not applied, weigh it, and measure the vertical and horizontal size of the glass fiber mat part (in other words, the vertical and horizontal size of the cut part) size). The glass fiber mat is peeled off from the cut portion and the mass of the porous film is measured. Subtract the mass of the porous film from the mass of the cut portion to obtain the mass of the glass fiber mat portion. The area is calculated from the vertical and horizontal sizes of the glass fiber mat portion, and the mass (g) of the glass fiber mat portion per 1 m 2 is obtained as the areal density.
(正極板)
 正極板としては、ペースト式正極板が用いられる。ペースト式正極板は、正極集電体と、正極電極材料とを備える。正極電極材料は、正極集電体に保持されている。正極電極材料は、正極板から正極集電体を除いた部分である。なお、極板には、マット、ペースティングペーパなどの部材が貼り付けられていることがある。このような部材(貼付部材とも称する)は極板と一体として使用されるため、極板に含まれる。正極板が貼付部材を含む場合には、正極電極材料は、正極板から正極集電体および貼付部材を除いた部分である。
(Positive plate)
A paste-type positive plate is used as the positive plate. The pasted positive plate comprises a positive current collector and a positive electrode material. A positive electrode material is held by a positive current collector. The positive electrode material is a portion of the positive electrode plate excluding the positive current collector. In addition, members such as mats and pasting paper may be attached to the electrode plates. Such a member (also referred to as a sticking member) is included in the electrode plate because it is used integrally with the electrode plate. When the positive electrode plate includes the sticking member, the positive electrode material is the portion of the positive electrode plate excluding the positive current collector and the sticking member.
 正極板に含まれる正極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛または鉛合金シートを加工して形成してもよい。加工方法としては、例えば、エキスパンド加工または打ち抜き(パンチング)加工が挙げられる。正極集電体として格子状の集電体を用いると、正極電極材料を担持させ易いため好ましい。 The positive electrode current collector contained in the positive electrode plate may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead or lead alloy sheet. Processing methods include, for example, expanding processing and punching processing. It is preferable to use a grid-like current collector as the positive electrode current collector because it facilitates carrying the positive electrode material.
 正極集電体に用いる鉛合金としては、耐食性および機械的強度の点で、Pb-Ca系合金、Pb-Ca-Sn系合金が好ましい。正極集電体は、組成の異なる鉛合金層を有してもよく、合金層は1層であってもよく、複数層でもよい。 Pb--Ca-based alloys and Pb--Ca--Sn-based alloys are preferable as the lead alloy used for the positive electrode current collector in terms of corrosion resistance and mechanical strength. The positive electrode current collector may have lead alloy layers with different compositions, and the alloy layer may be a single layer or a plurality of layers.
 正極板に含まれる正極電極材料は、酸化還元反応により容量を発現する正極活物質(二酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、必要に応じて、他の添加剤(補強材など)を含んでもよい。 The positive electrode material contained in the positive plate contains a positive electrode active material (lead dioxide or lead sulfate) that develops capacity through an oxidation-reduction reaction. The positive electrode material may contain other additives (such as reinforcing materials) as necessary.
 補強材としては、例えば、繊維(無機繊維、有機繊維など)が挙げられる。有機繊維を構成する樹脂(または高分子)としては、例えば、アクリル系樹脂、ポリオレフィン系樹脂(ポリプロピレン系樹脂、ポリエチレン系樹脂など)、ポリエステル系樹脂(ポリアルキレンアリーレート(ポリエチレンテレフタレートなど)を含む)、およびセルロース類(セルロース、セルロース誘導体(セルロースエーテル、セルロースエステルなど)など)からなる群より選択される少なくとも一種が挙げられる。セルロース類には、レーヨンも含まれる。 Examples of reinforcing materials include fibers (inorganic fibers, organic fibers, etc.). Examples of resins (or polymers) constituting organic fibers include acrylic resins, polyolefin resins (polypropylene resins, polyethylene resins, etc.), polyester resins (including polyalkylene arylates (polyethylene terephthalate, etc.)). , and celluloses (cellulose, cellulose derivatives (cellulose ether, cellulose ester, etc.)). Celluloses also include rayon.
 正極電極材料中の補強材の含有率は、例えば、0.03質量%以上である。また、正極電極材料中の補強材の含有率は、例えば、0.5質量%以下である。 The content of the reinforcing material in the positive electrode material is, for example, 0.03% by mass or more. Moreover, the content of the reinforcing material in the positive electrode material is, for example, 0.5% by mass or less.
 未化成のペースト式正極板は、正極集電体に、正極ペーストを充填し、熟成および乾燥することにより得られる。正極ペーストは、鉛粉、アンチモン化合物、および必要に応じて他の添加剤(補強材など)に、水および硫酸を加えて混練することで調製される。 An unformed paste-type positive electrode plate is obtained by filling a positive current collector with positive electrode paste, aging and drying. The positive electrode paste is prepared by adding water and sulfuric acid to lead powder, an antimony compound, and optionally other additives (reinforcing material, etc.) and kneading them.
 未化成の正極板を化成することにより正極板が得られる。化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の正極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。 A positive electrode plate can be obtained by chemically forming an unformed positive electrode plate. Formation can be performed by charging the electrode plate group including the unformed positive electrode plate while immersing the electrode plate group in an electrolytic solution containing sulfuric acid in the battery case of the lead-acid battery. However, formation may be performed before assembly of the lead-acid battery or the electrode plate assembly.
(負極板)
 鉛蓄電池の負極板は、負極集電体と、負極電極材料とで構成されている。負極電極材料は、負極板から負極集電体を除いた部分である。なお、負極板には、上述のような貼付部材が貼り付けられている場合がある。この場合、貼付部材は、負極板に含まれる。負極板が貼付部材を含む場合には、負極電極材料は、負極板から負極集電体および貼付部材を除いた部分である。
(negative plate)
A negative electrode plate of a lead-acid battery is composed of a negative current collector and a negative electrode material. The negative electrode material is a portion of the negative electrode plate excluding the negative electrode current collector. In some cases, the above-described attachment member is attached to the negative electrode plate. In this case, the attachment member is included in the negative electrode plate. When the negative plate includes the sticking member, the negative electrode material is the portion of the negative plate excluding the negative current collector and the sticking member.
 負極集電体は、正極集電体の場合と同様にして形成できる。正極集電体および負極集電体の少なくとも一方が、エキスパンド加工により形成された集電体であってもよい。エキスパンド加工により形成された集電体を用いた極板では、極板の製造工程において、製造装置との干渉によって極板の隅部が変形することがある。このような極板を用いて鉛蓄電池を作製すると、初期の段階で、極板の隅部がセパレータを突き破って短絡が起こり易い。多孔質フィルムの表面に炭素材料が配置されたセパレータは高い強度を有するため、エキスパンド格子を用いた極板と組み合わせる場合でも、極板の変形に伴う初期の短絡を抑制することができる。正極板および負極板の少なくとも一方がエキスパンド格子を含んでいてもよい。 The negative electrode current collector can be formed in the same manner as the positive electrode current collector. At least one of the positive electrode current collector and the negative electrode current collector may be a current collector formed by an expanding process. In the electrode plate using the current collector formed by expanding, the corners of the electrode plate may be deformed due to interference with the manufacturing equipment during the manufacturing process of the electrode plate. When a lead-acid battery is manufactured using such electrode plates, the corners of the electrode plates are likely to break through the separator at the initial stage, resulting in a short circuit. Since the separator in which the carbon material is arranged on the surface of the porous film has high strength, even when it is combined with the electrode plate using the expanded lattice, it is possible to suppress the initial short circuit due to the deformation of the electrode plate. At least one of the positive plate and the negative plate may contain an expanded lattice.
 負極集電体に用いる鉛合金は、Pb-Sb系合金、Pb-Ca系合金、Pb-Ca-Sn系合金のいずれであってもよい。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種を含んでもよい。負極集電体は、組成の異なる鉛合金層を有してもよく、合金層は1層であってもよく、複数層でもよい。 The lead alloy used for the negative electrode current collector may be any of Pb--Sb-based alloy, Pb--Ca-based alloy, and Pb--Ca--Sn-based alloy. These lead or lead alloys may further contain at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu, etc. as an additive element. The negative electrode current collector may have lead alloy layers with different compositions, and the alloy layer may be a single layer or a plurality of layers.
 負極板に含まれる負極電極材料は、酸化還元反応により容量を発現する負極活物質(鉛もしくは硫酸鉛)を含んでおり、有機防縮剤、炭素質材料、硫酸バリウムなどを含んでもよい。負極電極材料は、必要に応じて、他の添加剤(補強材など)を含んでもよい。 The negative electrode material contained in the negative plate contains a negative electrode active material (lead or lead sulfate) that develops capacity through an oxidation-reduction reaction, and may contain an organic shrinkage agent, carbonaceous material, barium sulfate, and the like. The negative electrode material may contain other additives (such as reinforcing materials) as necessary.
 有機防縮剤としては、リグニン、リグニンスルホン酸、合成有機防縮剤(フェノール化合物のホルムアルデヒド縮合物など)などが挙げられる。負極電極材料は、有機防縮剤を一種含んでいてもよく、二種以上含んでいてもよい。 Examples of organic shrink-proofing agents include lignin, lignin sulfonic acid, and synthetic organic shrink-proofing agents (formaldehyde condensates of phenol compounds, etc.). The negative electrode material may contain one kind or two or more kinds of organic expanders.
 負極電極材料中の有機防縮剤の含有率は、例えば、0.01質量%以上である。有機防縮剤の含有率は、例えば、1質量%以下である。 The content of the organic shrinkage inhibitor in the negative electrode material is, for example, 0.01% by mass or more. The content of the organic shrink-proofing agent is, for example, 1% by mass or less.
 負極電極材料中の炭素質材料としては、カーボンブラック、黒鉛(人造黒鉛、天然黒鉛など)、ハードカーボン、ソフトカーボンなどが挙げられる。負極電極材料は、炭素質材料を一種含んでいてもよく、二種以上含んでいてもよい。 Examples of carbonaceous materials in negative electrode materials include carbon black, graphite (artificial graphite, natural graphite, etc.), hard carbon, and soft carbon. The negative electrode material may contain one type of carbonaceous material, or may contain two or more types.
 負極電極材料中の炭素質材料の含有率は、例えば、0.1質量%以上である。炭素質材料の含有率は、例えば、3質量%以下であってもよい。 The content of the carbonaceous material in the negative electrode material is, for example, 0.1% by mass or more. The content of the carbonaceous material may be, for example, 3% by mass or less.
 負極電極材料中の硫酸バリウムの含有率は、例えば、0.1質量%以上である。硫酸バリウムの含有率は、例えば、3質量%以下である。 The content of barium sulfate in the negative electrode material is, for example, 0.1% by mass or more. The content of barium sulfate is, for example, 3% by mass or less.
 補強材としては、例えば、繊維(無機繊維、有機繊維(正極電極材料の補強材について記載した樹脂で構成された有機繊維など)など)が挙げられる。 Examples of reinforcing materials include fibers (inorganic fibers, organic fibers (such as organic fibers made of resin as described for reinforcing materials for positive electrode materials), etc.).
 負極電極材料中の補強材の含有率は、例えば、0.03質量%以上である。また、負極電極材料中の補強材の含有率は、例えば、0.5質量%以下である。 The content of the reinforcing material in the negative electrode material is, for example, 0.03% by mass or more. Moreover, the content of the reinforcing material in the negative electrode material is, for example, 0.5% by mass or less.
 充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、鉛粉を用いて作製される。 The negative electrode active material in the charged state is spongy lead, but the unformed negative electrode plate is usually made using lead powder.
 負極板は、負極集電体に、負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。負極ペーストは、鉛粉と有機防縮剤および必要に応じて各種添加剤に、水と硫酸を加えて混練することで作製する。熟成工程では、室温より高温かつ高湿度で、未化成の負極板を熟成させることが好ましい。 The negative electrode plate can be formed by filling a negative electrode current collector with a negative electrode paste, aging and drying to prepare an unformed negative electrode plate, and then forming the unformed negative electrode plate. The negative electrode paste is prepared by adding water and sulfuric acid to lead powder, an organic anti-shrinking agent, and optionally various additives, and kneading the mixture. In the aging step, the unformed negative electrode plate is preferably aged at a temperature and humidity higher than room temperature.
 化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。 Formation can be performed by charging the electrode plate group including the unformed negative electrode plate while immersing the electrode plate group including the unformed negative electrode plate in the electrolytic solution containing sulfuric acid in the battery case of the lead-acid battery. However, formation may be performed before assembly of the lead-acid battery or the electrode plate assembly. Formation produces spongy lead.
 1つのセルに含まれる正極板および負極板の枚数に特に限定はない。しかし、多孔質フィルムの表面に炭素材料が配置されたセパレータは、1つのセルに多数の、具体的には合計で12枚以上の正極板および負極板が収容される鉛蓄電池に特に好ましく用いられる。合計で12枚以上の正極板および負極板を1つのセルに収容する場合、セパレータの引っ張り強度が特に重要になるからである。 There is no particular limitation on the number of positive electrode plates and negative electrode plates included in one cell. However, a separator in which a carbon material is arranged on the surface of a porous film is particularly preferably used for a lead-acid battery in which one cell accommodates a large number of positive plates and negative plates, specifically 12 or more sheets in total. . This is because the tensile strength of the separator is particularly important when a total of 12 or more positive electrode plates and negative electrode plates are accommodated in one cell.
(電解液)
 電解液は、硫酸を含む水溶液である。電解液は、必要に応じてゲル化させてもよい。
(Electrolyte)
The electrolyte is an aqueous solution containing sulfuric acid. The electrolytic solution may be gelled if necessary.
 電解液は、さらに、Naイオン、Liイオン、Mgイオン、およびAlイオンからなる群より選択される少なくとも一種の金属イオンなどを含んでもよい。 The electrolyte may further contain at least one metal ion selected from the group consisting of Na ions, Li ions, Mg ions, and Al ions.
 電解液の20℃における比重は、例えば、1.10以上である。電解液の20℃における比重は、1.35以下であってもよい。なお、これらの比重は、満充電状態の鉛蓄電池の電解液についての値である。 The specific gravity of the electrolyte at 20°C is, for example, 1.10 or more. The specific gravity of the electrolytic solution at 20° C. may be 1.35 or less. It should be noted that these specific gravities are values for the electrolytic solution of a lead-acid battery in a fully charged state.
 以下、各特性の評価方法について説明する。
(1)高温過充電寿命性能
 鉛蓄電池の高温過充電寿命性能は、下記の手順で、高温過充電耐久試験を行い、このときの鉛蓄電池の寿命に基づいて評価される。
 (a)全試験期間を通して、蓄電池を75℃±3℃の気槽中に置く。
 (b)蓄電池を寿命試験装置に接続し、連続的に次に示す放電及び充電のサイクルを繰り返す。この放電と充電とのサイクルを寿命1回(1サイクル)とする。
   放電:放電電流25.0A±0.1Aで60秒±1秒
   充電:充電電圧14.80V±0.03V(制限電流25.0A±0.1A)で600秒±1秒
 (c)試験中、480サイクルごとに56時間放置し、その後定格コールドクランキング電流390Aで30秒間連続放電を行い、30秒目電圧を記録する。その後、(b)の充電を行う。なお、これらの放電及び充電も寿命回数(サイクル数)に加算する。
 (d)(c)の試験で測定した30秒目電圧が7.2V以下となり、再び上昇しないことを確認した時点で試験を終了し、このときの合計サイクル数(以下では「サイクル数N」と称する場合がある)を寿命性能の指標とする。
 なお、定格コールドクランキング電流とは、エンジン始動性能を表す尺度で、-18℃±1℃の温度で放電し、30秒目電圧が7.2V以上となるように定められた放電電流のことである。
The method for evaluating each characteristic will be described below.
(1) High-temperature overcharge life performance High-temperature overcharge life performance of a lead-acid battery is evaluated based on the life of the lead-acid battery at this time by performing a high-temperature overcharge endurance test in the following procedure.
(a) Place the accumulator in an air bath at 75°C ± 3°C throughout the entire test period.
(b) Connect the storage battery to the life test device and continuously repeat the following discharge and charge cycles. The cycle of this discharge and charge is defined as one lifetime (one cycle).
Discharge: Discharge current 25.0 A ± 0.1 A for 60 seconds ± 1 second Charge: Charge voltage 14.80 V ± 0.03 V (limit current 25.0 A ± 0.1 A) for 600 seconds ± 1 second (c) Under test , and left for 56 hours every 480 cycles, then continuously discharged at a rated cold cranking current of 390 A for 30 seconds, and the voltage at 30 seconds is recorded. After that, charging of (b) is performed. Note that these discharges and charges are also added to the number of lifespans (number of cycles).
(d) The 30th second voltage measured in the test of (c) is 7.2 V or less, and the test is terminated when it is confirmed that it does not rise again. ) is used as an indicator of life performance.
The rated cold cranking current is a measure of engine starting performance, and is the discharge current determined so that the voltage at the 30th second is 7.2 V or more after discharging at a temperature of -18°C ± 1°C. is.
(2)IS寿命性能
 鉛蓄電池のIS寿命性能は、SBA S 0101:2014に基づき、下記の手順で、IS寿命試験を行い、このときの鉛蓄電池の寿命に基づいて評価される。
 a)全試験期間を通して、蓄電池を25±2℃の気相中に置く。蓄電池近傍の風速は、2.0m/s以下とする。
 b)蓄電池を寿命試験装置に接続し、次に示す放電(放電1および放電2)および充電を行う。この放電および充電を、放電および充電のサイクルの1回とする。そして、放電および充電のサイクルを連続的に繰り返す。
  放電:放電1 放電電流I±1Aで59.0±0.2秒(ここで、Iは、次の換算式を用いて算出し、小数点以下第1位で四捨五入する。I=18.3×I20
     放電2 放電電流300±1Aで1.0±0.2秒
  充電:充電電圧14.00±0.03V(制限電流100.0±0.5A)で60.0±0.3秒
 サイクルの3600回ごとに40~48時間放置した後、再びサイクルを開始する。保水は、サイクルの30000回までは行わない。
 放電2の放電終期電圧(端子電圧)を測定し、7.2Vに達するまでのサイクル数を求め、IS寿命性能の指標とする。
 I20は20時間率電流(A)を意味する。
(2) IS life performance The IS life performance of a lead-acid battery is evaluated based on the life of the lead-acid battery at this time by carrying out an IS life test according to the following procedure based on SBA S 0101:2014.
a) Place the accumulator in the gas phase at 25±2° C. throughout the entire test period. The wind velocity in the vicinity of the storage battery shall be 2.0 m/s or less.
b) Connect the storage battery to the life test equipment and perform the following discharges (Discharge 1 and Discharge 2) and charge. This discharge and charge is one cycle of discharge and charge. The cycle of discharge and charge is then repeated continuously.
Discharge: Discharge 1 Discharge current I D ± 1 A for 59.0 ± 0.2 seconds (where I D is calculated using the following conversion formula and rounded to the first decimal place. I D = 18 .3 x I20 )
Discharge 2 Discharge current 300±1A for 1.0±0.2 seconds Charge: Charge voltage 14.00±0.03V (limit current 100.0±0.5A) for 60.0±0.3 seconds Cycle 3600 After 40-48 hours of rest each time, the cycle is started again. Water retention does not occur until 30,000 cycles.
The final discharge voltage (terminal voltage) of discharge 2 is measured, and the number of cycles until it reaches 7.2 V is obtained, which is used as an index of IS life performance.
I20 means 20 hour rate current (A).
(3)CCA性能
 JIS D 5301:2006に準拠して、次の手順で、放電開始後30秒目の端子電圧が7.2V以上となる電流値により鉛蓄電池の始動性を評価する。電流値が大きいほど始動性が高く、セパレータの抵抗が低いことを意味する。
 (a)満充電が完了後、最低16時間、蓄電池を-18℃±1℃の冷却室に置く。
 (b)中央にあるいずれかのセルの電解液温度が-18℃±1℃であることを確認後、CCA390Aで30秒放電する。
 (c)放電開始後30秒目の端子電圧を記録する。
(3) CCA performance In accordance with JIS D 5301:2006, the startability of a lead-acid battery is evaluated according to the current value at which the terminal voltage becomes 7.2 V or higher 30 seconds after the start of discharge, according to the following procedure. A higher current value means a higher startability and a lower resistance of the separator.
(a) Place the storage battery in a cooling room at -18°C ± 1°C for at least 16 hours after full charge is complete.
(b) After confirming that the temperature of the electrolyte in one of the cells in the center is -18°C ± 1°C, discharge with CCA390A for 30 seconds.
(c) Record the terminal voltage 30 seconds after the start of discharge.
(4)セパレータの引っ張り強度
 セパレータの引っ張り強度は、以下の手順で測定される。まず、セパレータを10mm×40mmの大きさにカットすることによって試験片を得る。この試験片に対して、精密万能試験機(島津製作所、製品名:AGS-X)を用い、チャック間距離20mm、引っ張り速度5mm/分、25℃条件で引っ張り試験を行い、破断時の応力を引っ張り強度とする。
(4) Tensile Strength of Separator The tensile strength of the separator is measured by the following procedure. First, a test piece is obtained by cutting a separator into a size of 10 mm×40 mm. Using a precision universal testing machine (Shimadzu Corporation, product name: AGS-X), this test piece was subjected to a tensile test under the conditions of 20 mm chuck distance, 5 mm/min tensile speed, and 25°C. Tensile strength.
 以下では、本実施形態に係る鉛蓄電池の一例について、図面を参照して具体的に説明する。以下で説明する一例の鉛蓄電池の構成要素には、上述した構成要素を適用できる。また、以下で説明する一例の鉛蓄電池の構成要素は、上述した記載に基づいて変更できる。また、以下で説明する事項を、上記の実施形態に適用してもよい。また、以下で説明する実施形態において、本実施形態に係る鉛蓄電池に必須ではない構成要素は省略してもよい。 An example of the lead-acid battery according to the present embodiment will be specifically described below with reference to the drawings. The components described above can be applied to the components of the example lead-acid battery described below. Also, the components of the example lead-acid battery described below can be modified based on the above description. Also, the matters described below may be applied to the above embodiments. Further, in the embodiments described below, components that are not essential to the lead-acid battery according to the present embodiment may be omitted.
 図1に、本発明の実施形態に係る鉛蓄電池の一例の外観を示す。
 鉛蓄電池1は、極板群11と電解液(図示せず)とを収容する電槽12を具備する。電槽12内は、隔壁13により、複数のセル室14に仕切られている。各セル室14には、極板群11が1つずつ収納されている。電槽12の開口部は、負極端子16および正極端子17を具備する蓋15で閉じられる。蓋15には、セル室毎に液口栓18が設けられている。補水の際には、液口栓18を外して補水液が補給される。液口栓18は、セル室14内で発生したガスを電池外に排出する機能を有してもよい。
FIG. 1 shows the appearance of an example of a lead-acid battery according to an embodiment of the present invention.
A lead-acid battery 1 includes a battery case 12 that accommodates an electrode plate group 11 and an electrolytic solution (not shown). The interior of the container 12 is partitioned into a plurality of cell chambers 14 by partition walls 13 . Each cell chamber 14 accommodates one electrode plate group 11 . The opening of the container 12 is closed with a lid 15 having a negative terminal 16 and a positive terminal 17 . The lid 15 is provided with a liquid port plug 18 for each cell chamber. When rehydrating, the rehydration liquid is replenished by removing the liquid port plug 18. - 特許庁The liquid port plug 18 may have a function of discharging the gas generated inside the cell chamber 14 to the outside of the battery.
 極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2を収容する袋状のセパレータ4を示すが、セパレータの形態は特に限定されない。多孔質フィルムの一主面のみにガラス繊維マットまたは炭素材料を配置したセパレータを袋状に加工した場合、ガラス繊維マットまたは炭素材料は、袋の内側の面または外側の面のいずれかに配置される。電槽12の一方の端部に位置するセル室14では、複数の負極板2を並列接続する負極棚部6が貫通接続体8に接続され、複数の正極板3を並列接続する正極棚部5が正極柱7に接続されている。正極柱7は蓋15の外部の正極端子17に接続されている。電槽12の他方の端部に位置するセル室14では、負極棚部6に負極柱9が接続され、正極棚部5に貫通接続体8が接続される。負極柱9は蓋15の外部の負極端子16と接続されている。各々の貫通接続体8は、隔壁13に設けられた貫通孔を通過して、隣接するセル室14の極板群11同士を直列に接続している。 The electrode plate group 11 is configured by stacking a plurality of negative electrode plates 2 and positive electrode plates 3 with separators 4 interposed therebetween. Here, a bag-shaped separator 4 for housing the negative electrode plate 2 is shown, but the shape of the separator is not particularly limited. When a separator in which a glass fiber mat or a carbon material is arranged only on one main surface of a porous film is processed into a bag shape, the glass fiber mat or the carbon material is arranged on either the inner surface or the outer surface of the bag. be. In a cell chamber 14 located at one end of the battery case 12, a negative electrode shelf portion 6 connecting a plurality of negative electrode plates 2 in parallel is connected to a through connector 8, and a positive electrode shelf portion connecting a plurality of positive electrode plates 3 in parallel. 5 is connected to the positive pole 7 . The positive pole 7 is connected to a positive terminal 17 outside the lid 15 . In the cell chamber 14 located at the other end of the battery case 12 , the negative electrode column 9 is connected to the negative electrode shelf 6 , and the through connector 8 is connected to the positive electrode shelf 5 . The negative electrode column 9 is connected to a negative electrode terminal 16 outside the lid 15 . Each through-connector 8 passes through a through-hole provided in the partition wall 13 and connects the electrode plate groups 11 of adjacent cell chambers 14 in series.
 本明細書中に記載した事項は、任意に組み合わせることができる。 The matters described in this specification can be combined arbitrarily.
[実施例]
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[Example]
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to the following examples.
<実施例1>
《鉛蓄電池E1-1~E1-10およびC1-1》
 下記の手順で各鉛蓄電池を作製した。
(1)セパレータの作製
 ポリエチレン100質量部と、シリカ粒子160質量部と、造孔剤としてのパラフィン系オイル80質量部と、2質量部の浸透剤とを含む樹脂組成物を、シート状に押出成形し、延伸処理した後、造孔剤の一部を除去することによって、片面にリブを有する微多孔膜(多孔質フィルム)を作製した。このとき、既述の手順で求められる多孔質フィルムの結晶化度が、表1および表2に示す値となるように、押出成形されたシートの冷却速度および延伸処理の倍率を調節した。なお、実施例1では、多孔質フィルムのみをセパレータとして用いた。
<Example 1>
<<Lead-acid batteries E1-1 to E1-10 and C1-1>>
Each lead-acid battery was produced in the following procedure.
(1) Preparation of Separator A resin composition containing 100 parts by mass of polyethylene, 160 parts by mass of silica particles, 80 parts by mass of paraffin oil as a pore-forming agent, and 2 parts by mass of a penetrating agent is extruded into a sheet. After molding and stretching, a part of the pore-forming agent was removed to produce a microporous membrane (porous film) having ribs on one side. At this time, the cooling rate and stretching ratio of the extruded sheet were adjusted so that the crystallinity of the porous film determined by the above-described procedure was the value shown in Tables 1 and 2. In addition, in Example 1, only the porous film was used as the separator.
 既述の手順で求められるセパレータのオイル含有率は、11~18質量%であり、シリカ粒子の含有率は、60質量%であった。既述の手順で求められるリブの高さは0.6mmであった。既述の手順で求められるセパレータの厚さ(ベース部の厚さ)を表1および表2に示す。 The oil content of the separator obtained by the above procedure was 11 to 18% by mass, and the silica particle content was 60% by mass. The rib height determined by the procedure described above was 0.6 mm. Tables 1 and 2 show the thickness of the separator (thickness of the base portion) obtained by the above procedure.
 次に、シート状の微多孔膜を外面にリブが配置されるように二つ折りにして袋を形成し、重ね合わせた両端部を圧着して、袋状セパレータを得た。 Next, the sheet-like microporous membrane was folded in two so that ribs were arranged on the outer surface to form a bag, and the overlapped ends were crimped to obtain a bag-like separator.
 なお、多孔質フィルムの結晶化度、オイル含有率、シリカ粒子の含有率、ベース部の厚さ、およびリブの高さは、鉛蓄電池の作製前のセパレータについて求めた値であるが、作製後の鉛蓄電池から取り出したセパレータについて既述の手順で測定した値とほぼ同じである。 The crystallinity of the porous film, the oil content, the silica particle content, the thickness of the base portion, and the height of the rib are the values obtained for the separator before production of the lead-acid battery. It is almost the same as the value measured by the procedure described above for the separator taken out from the lead-acid battery.
(2)正極板の作製
 鉛酸化物、補強材(合成樹脂繊維)、水および硫酸を混合して正極ペーストを調製した。正極ペーストを、アンチモンを含まないPb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成および乾燥を行うことによって、幅100mm、高さ110mm、厚さ1.6mmの未化成の正極板を得た。
(2) Production of positive electrode plate A positive electrode paste was prepared by mixing lead oxide, reinforcing material (synthetic resin fiber), water and sulfuric acid. The positive electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 100 mm, a height of 110 mm, and a thickness of 1.6 mm. A positive plate was obtained.
(3)負極板の作製
 鉛酸化物、カーボンブラック、硫酸バリウム、リグニン、補強材(合成樹脂繊維)、水および硫酸を混合して負極ペーストを調製した。負極ペーストを、アンチモンを含まないPb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成および乾燥を行うことによって、幅100mm、高さ110mm、厚さ1.3mmの未化成の負極板を得た。カーボンブラック、硫酸バリウム、リグニンおよび合成樹脂繊維の使用量は、満充電状態の鉛蓄電池から取り出した負極板について各成分の含有率が、それぞれ0.3質量%、2.1質量%、0.1質量%および0.1質量%になるように調節した。
(3) Preparation of Negative Electrode Plate A negative electrode paste was prepared by mixing lead oxide, carbon black, barium sulfate, lignin, reinforcing material (synthetic resin fiber), water and sulfuric acid. The negative electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 100 mm, a height of 110 mm, and a thickness of 1.3 mm. A negative plate was obtained. The amounts of carbon black, barium sulfate, lignin and synthetic resin fiber used were such that the content of each component in the negative electrode plate taken out from a fully charged lead-acid battery was 0.3% by mass, 2.1% by mass and 0.3% by mass, respectively. It was adjusted to be 1% by mass and 0.1% by mass.
(4)鉛蓄電池の作製
 未化成の負極板を、袋状セパレータに収容し、正極板と積層し、未化成の負極板7枚と未化成の正極板6枚とで極板群を形成した。
(4) Preparation of lead-acid battery An unchemically formed negative electrode plate was placed in a bag-like separator and laminated with a positive electrode plate to form an electrode plate group with seven unchemically formed negative electrode plates and six unchemically formed positive electrode plates. .
 正極板の耳部同士および負極板の耳部同士をそれぞれキャストオンストラップ(COS)方式で正極棚部および負極棚部と溶接した。極板群をポリプロピレン製の電槽に挿入し、電解液を注液して、電槽内で化成を施して、定格電圧12Vおよび定格容量が30Ah(5時間率容量(定格容量に記載のAhの数値の1/5の電流(A)で放電するときの容量))の液式の鉛蓄電池を組み立てた。なお、電槽内では6個の極板群が直列に接続されている。 The lugs of the positive electrode plate and the lugs of the negative electrode plate were welded to the positive shelf and the negative shelf by a cast-on-strap (COS) method, respectively. The electrode plate group is inserted into a polypropylene battery case, the electrolyte is injected, and chemical conversion is performed in the battery case so that the rated voltage is 12 V and the rated capacity is 30 Ah (5 hour rate capacity (Ah described in the rated capacity). A liquid lead-acid battery with a capacity when discharged at a current (A) that is 1/5 of the value of )) was assembled. Six electrode plate groups are connected in series in the container.
 電解液としては、硫酸水溶液を用いた。化成後の電解液の20℃における比重は1.285であった。 A sulfuric acid aqueous solution was used as the electrolyte. The specific gravity at 20° C. of the electrolytic solution after chemical conversion was 1.285.
(5)評価
 E1-1のセパレータについて、既述の手順で測定されたXRDスペクトルを図2に示す。図2に示されるように、ポリエチレンの結晶質領域の(110)面に相当する回折ピークが、2θ=21.5°~22.5°の範囲に観察され、(200)面に相当する回折ピークが、2θ=23°~24.5°の範囲に観察された。そして、非晶質領域によるハローが2θ=17°~27°の広い範囲にブロードに観察された。
(5) Evaluation FIG. 2 shows the XRD spectrum of separator E1-1 measured by the procedure described above. As shown in FIG. 2, a diffraction peak corresponding to the (110) plane of the crystalline region of polyethylene was observed in the range of 2θ = 21.5° to 22.5°, and the diffraction peak corresponding to the (200) plane was observed. A peak was observed in the range 2θ=23° to 24.5°. A broad halo due to the amorphous region was observed over a wide range of 2θ=17° to 27°.
 得られた鉛蓄電池を用いて、既述の手順で高温過充電寿命性能を評価した。高温過充電寿命性能は、鉛蓄電池C1-1のサイクル数を100としたときの各鉛蓄電池のサイクル数の比によって評価した。 Using the obtained lead-acid battery, the high-temperature overcharge life performance was evaluated according to the procedure described above. The high-temperature overcharge life performance was evaluated by the ratio of the number of cycles of each lead-acid battery to 100 cycles of the lead-acid battery C1-1.
 評価結果を表1および表2に示す。E1-1~E1-10は実施例である。C1-1は比較例である。 The evaluation results are shown in Tables 1 and 2. E1-1 to E1-10 are examples. C1-1 is a comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、セパレータの結晶化度が20%以上になると、従来技術に相当する結晶化度が18%のときに比べて、高温過充電寿命性能が大幅に向上した。これは、セパレータの結晶化度が高まることで、耐酸化性が向上したことによると考えられる。 As shown in Table 1, when the crystallinity of the separator was 20% or more, the high-temperature overcharge life performance was significantly improved compared to when the crystallinity was 18%, which corresponds to the conventional technology. It is considered that this is because the oxidation resistance was improved by increasing the crystallinity of the separator.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、セパレータの厚さが100μm以上300μm以下の場合にはより高い高温過充電寿命性能を確保することができる。 As shown in Table 2, when the thickness of the separator is 100 μm or more and 300 μm or less, higher high-temperature overcharge life performance can be ensured.
<実施例2>
《鉛蓄電池E2-1~E2-108およびC2-1~C2-48》
 下記の手順で各鉛蓄電池を作製した。
(1)セパレータの作製
 ポリエチレン100質量部と、シリカ粒子約160質量部と、造孔剤としてのパラフィン系オイル約80質量部と、2質量部の浸透剤とを含む樹脂組成物を、シート状に押出成形し、延伸処理した後、造孔剤の一部を除去することによって、片面にリブを有する微多孔膜(多孔質フィルム)を作製した。このとき、既述の手順で求められる多孔質フィルムの結晶化度が、表3~表5に示す値となるように、押出成形されたシートの冷却速度および延伸処理の倍率を調節した。また、既述の手順で求められる第1細孔容積Vtおよびオイル含有率が表3~表5に示す値となるように、ポリエチレンに対するシリカ粒子および造孔剤の量を調節するとともに、造孔剤の除去量を調節した。なお、実施例2では、多孔質フィルムのみをセパレータとして用いた。また、E2-1のセパレータは、実施例1で作製したE1-1のセパレータと同じものである。
<Example 2>
<<Lead-acid batteries E2-1 to E2-108 and C2-1 to C2-48>>
Each lead-acid battery was produced in the following procedure.
(1) Preparation of Separator A resin composition containing 100 parts by mass of polyethylene, about 160 parts by mass of silica particles, about 80 parts by mass of paraffinic oil as a pore-forming agent, and 2 parts by mass of a penetrating agent was prepared into a sheet. A microporous membrane (porous film) having ribs on one side was produced by extruding the membrane into a single layer, stretching the membrane, and partially removing the pore-forming agent. At this time, the cooling rate and stretching ratio of the extruded sheet were adjusted so that the crystallinity of the porous film determined by the above-described procedure was the value shown in Tables 3 to 5. In addition, the amounts of silica particles and pore-forming agent to polyethylene are adjusted so that the first pore volume Vt and the oil content obtained by the above-described procedure are the values shown in Tables 3 to 5, and the pore-forming The amount of agent removed was adjusted. In addition, in Example 2, only the porous film was used as the separator. The E2-1 separator is the same as the E1-1 separator produced in Example 1.
 既述の手順で求められるシリカ粒子の含有率は、60質量%であった。既述の手順で求められるリブの高さは0.6mmであった。既述の手順で求められるセパレータの厚さ(ベース部の厚さ)は0.2mmであった。 The content of silica particles obtained by the procedure described above was 60% by mass. The rib height determined by the procedure described above was 0.6 mm. The thickness of the separator (thickness of the base portion) determined by the above procedure was 0.2 mm.
 次に、シート状の微多孔膜を外面にリブが配置されるように二つ折りにして袋を形成し、重ね合わせた両端部を圧着して、袋状セパレータを得た。 Next, the sheet-like microporous membrane was folded in two so that ribs were arranged on the outer surface to form a bag, and the overlapped ends were crimped to obtain a bag-like separator.
 なお、多孔質フィルムの結晶化度、第1細孔容積Vt、オイル含有率、シリカ粒子の含有率、ベース部の厚さ、およびリブの高さは、鉛蓄電池の作製前のセパレータについて求めた値であるが、作製後の鉛蓄電池から取り出したセパレータについて既述の手順で測定した値とほぼ同じである。 The crystallinity of the porous film, the first pore volume Vt, the oil content, the silica particle content, the thickness of the base portion, and the height of the ribs were determined for the separator before the lead-acid battery was produced. The value is almost the same as the value measured by the above-described procedure for the separator taken out from the manufactured lead-acid battery.
(2)正極板の作製
 鉛酸化物、補強材(合成樹脂繊維)、水および硫酸を混合して正極ペーストを調製した。正極ペーストを、アンチモンを含まないPb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成および乾燥を行うことによって、幅100mm、高さ110mm、厚さ1.6mmの未化成の正極板を得た。
(2) Production of positive electrode plate A positive electrode paste was prepared by mixing lead oxide, reinforcing material (synthetic resin fiber), water and sulfuric acid. The positive electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 100 mm, a height of 110 mm, and a thickness of 1.6 mm. A positive plate was obtained.
(3)負極板の作製
 鉛酸化物、カーボンブラック、硫酸バリウム、リグニン、補強材(合成樹脂繊維)、水および硫酸を混合して負極ペーストを調製した。負極ペーストを、アンチモンを含まないPb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成および乾燥を行うことによって、幅100mm、高さ110mm、厚さ1.3mmの未化成の負極板を得た。カーボンブラック、硫酸バリウム、リグニンおよび合成樹脂繊維の使用量は、満充電状態の鉛蓄電池から取り出した負極板について各成分の含有率が、それぞれ0.3質量%、2.1質量%、0.1質量%および0.1質量%になるように調節した。
(3) Preparation of Negative Electrode Plate A negative electrode paste was prepared by mixing lead oxide, carbon black, barium sulfate, lignin, reinforcing material (synthetic resin fiber), water and sulfuric acid. The negative electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 100 mm, a height of 110 mm, and a thickness of 1.3 mm. A negative plate was obtained. The amounts of carbon black, barium sulfate, lignin and synthetic resin fiber used were such that the content of each component in the negative electrode plate taken out from a fully charged lead-acid battery was 0.3% by mass, 2.1% by mass and 0.3% by mass, respectively. It was adjusted to be 1% by mass and 0.1% by mass.
(4)鉛蓄電池の作製
 未化成の負極板を、袋状セパレータに収容し、正極板と積層し、未化成の負極板7枚と未化成の正極板6枚とで極板群を形成した。
(4) Preparation of lead-acid battery An unchemically formed negative electrode plate was placed in a bag-like separator and laminated with a positive electrode plate to form an electrode plate group with seven unchemically formed negative electrode plates and six unchemically formed positive electrode plates. .
 正極板の耳部同士および負極板の耳部同士をそれぞれキャストオンストラップ(COS)方式で正極棚部および負極棚部と溶接した。極板群をポリプロピレン製の電槽に挿入し、電解液を注液して、電槽内で化成を施して、定格電圧12Vおよび定格容量が30Ah(5時間率容量(定格容量に記載のAhの数値の1/5の電流(A)で放電するときの容量))の液式の鉛蓄電池を組み立てた。なお、電槽内では6個の極板群が直列に接続されている。 The lugs of the positive electrode plate and the lugs of the negative electrode plate were welded to the positive shelf and the negative shelf by a cast-on-strap (COS) method, respectively. The electrode plate group is inserted into a polypropylene battery case, the electrolyte is injected, and chemical conversion is performed in the battery case so that the rated voltage is 12 V and the rated capacity is 30 Ah (5 hour rate capacity (Ah described in the rated capacity). A liquid lead-acid battery with a capacity when discharged at a current (A) that is 1/5 of the value of )) was assembled. Six electrode plate groups are connected in series in the container.
 電解液としては、硫酸水溶液を用いた。化成後の電解液の20℃における比重は1.285であった。 A sulfuric acid aqueous solution was used as the electrolyte. The specific gravity at 20° C. of the electrolytic solution after chemical conversion was 1.285.
(5)評価
 E2-1のセパレータに用いた多孔質フィルムについて、既述の手順で測定されたXRDスペクトルは、図2に示すE-1のセパレータに用いた多孔質フィルムのXRDスペクトルと良い一致を示した。図2に示されるように、ポリエチレンの結晶質領域の(110)面に相当する回折ピークが、2θ=21.5°~22.5°の範囲に観察され、(200)面に相当する回折ピークが、2θ=23°~24.5°の範囲に観察された。そして、非晶質領域によるハローが2θ=17°~27°の広い範囲にブロードに観察された。
(5) Evaluation For the porous film used for the E2-1 separator, the XRD spectrum measured by the procedure described above is in good agreement with the XRD spectrum of the porous film used for the E-1 separator shown in FIG. showed that. As shown in FIG. 2, a diffraction peak corresponding to the (110) plane of the crystalline region of polyethylene was observed in the range of 2θ = 21.5° to 22.5°, and the diffraction peak corresponding to the (200) plane was observed. A peak was observed in the range 2θ=23° to 24.5°. A broad halo due to the amorphous region was observed over a wide range of 2θ=17° to 27°.
 得られた鉛蓄電池を用いて、既述の手順でIS寿命性能を評価した。また、一部の鉛蓄電池を用いて、CCA性能を評価した。IS寿命性能は、鉛蓄電池C2-1のサイクル数を100(%)としたときの各鉛蓄電池のサイクル数の比率(%)によって評価した。CCA性能は、鉛蓄電池C2-17の30秒目の端子電圧を100としたときの各鉛蓄電池の30秒目の端子電圧の比率(%)によって評価した。 Using the obtained lead-acid battery, the IS life performance was evaluated according to the procedure described above. CCA performance was also evaluated using some lead-acid batteries. The IS life performance was evaluated by the ratio (%) of the number of cycles of each lead-acid battery when the number of cycles of the lead-acid battery C2-1 was taken as 100 (%). The CCA performance was evaluated by the ratio (%) of the terminal voltage at 30 seconds of each lead-acid battery when the terminal voltage at 30 seconds of lead-acid battery C2-17 was taken as 100.
 IS寿命性能の評価結果を表3~表5に示す。CCA性能の評価結果を表6に示す。表中のE2-1~E2-108は電池番号を示し、実施例である。C2-1~C2-48は電池番号を示し、比較例である。表3~表5において、電池番号の下段の数値がIS寿命性能(%)である。 Tables 3 to 5 show the evaluation results of IS life performance. Table 6 shows the evaluation results of CCA performance. E2-1 to E2-108 in the table indicate battery numbers and are examples. C2-1 to C2-48 indicate battery numbers and are comparative examples. In Tables 3 to 5, the numerical value at the bottom of the battery number is the IS life performance (%).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3~表5に示されるように、セパレータの結晶化度が20%未満の場合、第1細孔容積Vtが0.8cm/g未満の場合に比べて0.8cm/gの場合にはIS寿命は向上するが、0.8cm/gよりも大きくなるとIS寿命性能は低下する(C2-1とC2-2~2-13との比較、C2-17とC2-18~C2-29との比較、C2-33とC2-34~C2-45との比較)。また、第1細孔容積Vtが0.8cm/g未満の場合には、結晶化度を変化させてもIS寿命性能に変化は見られない。それに対し、第1細孔容積Vtが0.8cm/g以上になると、結晶化度を20%以上にすることで、IS寿命性能が大きく向上する(実施例)。このことは、オイル含有率が15質量%の場合の第1細孔容積VtとIS寿命性能との関係を示す図3からも明らかである。図3は、表4のC2-17~C2-32およびE2-37~E2-72のIS寿命性能の結果を結晶化度毎にプロットしたグラフである。実施例で優れたIS寿命性能が得られたのは、第1細孔容積Vtが0.8cm/g以上であることで電解液の拡散性が増加するとともに、セパレータの抵抗が低くなったことに加え、結晶化度が高まることで、セパレータの酸化劣化が抑制され、第1細孔容積Vtが大きくなることによる成層化の抑制効果および反応性の向上効果が十分に発揮されたためと考えられる。 As shown in Tables 3 to 5, when the crystallinity of the separator is less than 20%, the first pore volume Vt is 0.8 cm 3 /g compared to when it is less than 0.8 cm 3 /g. The IS life is improved at 0.8 cm 3 /g or more, but the IS life performance decreases (comparison between C2-1 and C2-2 to 2-13, C2-17 and C2-18 to C2 -29, C2-33 and C2-34 to C2-45). Further, when the first pore volume Vt is less than 0.8 cm 3 /g, the IS life performance does not change even if the degree of crystallinity is changed. On the other hand, when the first pore volume Vt is 0.8 cm 3 /g or more, the IS life performance is greatly improved by making the degree of crystallinity 20% or more (Example). This is also clear from FIG. 3, which shows the relationship between the first pore volume Vt and the IS life performance when the oil content is 15% by mass. FIG. 3 is a graph plotting the IS life performance results of C2-17 to C2-32 and E2-37 to E2-72 in Table 4 for each crystallinity. The excellent IS life performance was obtained in the examples because the first pore volume Vt of 0.8 cm 3 /g or more increased the diffusibility of the electrolytic solution and reduced the resistance of the separator. In addition, it is believed that the increase in the degree of crystallinity suppresses oxidation deterioration of the separator, and the effect of suppressing stratification and the effect of improving reactivity due to the increase in the first pore volume Vt are sufficiently exhibited. be done.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、第1細孔容積Vtが0.8cm/g以上である場合には、結晶化度によらず、高いCCA性能を確保できる。表3~表6の結果から、実施例では、高いCCA性能を確保しながら、優れたIS寿命性能が得られることが分かる。 As shown in Table 6, when the first pore volume Vt is 0.8 cm 3 /g or more, high CCA performance can be ensured regardless of the degree of crystallinity. From the results in Tables 3 to 6, it can be seen that the examples provide excellent IS life performance while ensuring high CCA performance.
<実施例3>
《鉛蓄電池E3-1~E3-16およびR3-1~R3-12》
 下記の手順で各鉛蓄電池を作製した。
(1)セパレータの作製
 ポリエチレン100質量部と、シリカ粒子160質量部と、造孔剤としてのパラフィン系オイル80質量部と、2質量部の浸透剤とを含む樹脂組成物を、シート状に押出成形し、延伸処理した後、造孔剤の一部を除去することによって、片面にリブを有する微多孔膜を作製した。このとき、既述の手順で求められる多孔質フィルムの結晶化度が、表7および表8に示す値となるように、押出成形されたシートの冷却速度および延伸処理の倍率を調節した。なお、E3-7の多孔質フィルムは、実施例1で作製したE1-1のセパレータおよび実施例2で作製したE2-1のセパレータと同じものである。
<Example 3>
<<Lead-acid batteries E3-1 to E3-16 and R3-1 to R3-12>>
Each lead-acid battery was produced in the following procedure.
(1) Preparation of Separator A resin composition containing 100 parts by mass of polyethylene, 160 parts by mass of silica particles, 80 parts by mass of paraffin oil as a pore-forming agent, and 2 parts by mass of a penetrating agent is extruded into a sheet. A microporous membrane having ribs on one side was produced by removing part of the pore-forming agent after molding and stretching. At this time, the cooling rate and stretching ratio of the extruded sheet were adjusted so that the crystallinity of the porous film determined by the above-described procedure was the value shown in Tables 7 and 8. The porous film of E3-7 is the same as the separator of E1-1 produced in Example 1 and the separator of E2-1 produced in Example 2.
 既述の手順で求められるセパレータのオイル含有率は、11~18質量%であり、シリカ粒子の含有率は、60質量%であった。既述の手順で求められるリブの高さは0.2mmであった。既述の手順で求められる多孔質フィルムの厚さ(ベース部の厚さ)を表7および表8に示す。 The oil content of the separator obtained by the above procedure was 11 to 18% by mass, and the silica particle content was 60% by mass. The rib height determined by the procedure described above was 0.2 mm. Tables 7 and 8 show the thickness of the porous film (thickness of the base portion) determined by the procedure described above.
 次に、シート状の多孔質フィルムを内面にリブが配置されるように二つ折りにして袋を形成し、重ね合わせた両端部を圧着して、袋状の多孔質フィルム(平置きした状態のサイズ:縦117mm×横152mm)を得た。圧着部は、多孔質フィルムの側端から2mmの位置より内側で、3mmの幅であった。参考例であるR3-1~R3-8では、外面にリブが形成されるとともに、リブの高さを0.6mmとした以外は、上記と同様にして形成した袋状の多孔質フィルムをセパレータとして用いた。 Next, the sheet-like porous film is folded in half so that the ribs are arranged on the inner surface to form a bag, and the overlapped both ends are crimped to form a bag-like porous film (in a flat state). size: length 117 mm x width 152 mm). The crimped portion had a width of 3 mm inside a position 2 mm from the side edge of the porous film. In reference examples R3-1 to R3-8, ribs were formed on the outer surface, and a bag-shaped porous film formed in the same manner as described above was used as a separator, except that the rib height was 0.6 mm. used as
 袋状の多孔質フィルムの両方の外面に、図4に示すようにガラス繊維マット(大気圧下におけるサイズ:縦117mm×横143mm、平均繊維径:17μm、面密度:60g/m)を接着剤で貼り付けた。多孔質フィルムの横幅は、ガラス繊維マットの横幅よりも大きく、多孔質フィルムの両方の側端部には、ガラス繊維マットが重なっていない領域が4.5mmの幅で形成されていた。 A glass fiber mat (size under atmospheric pressure: 117 mm long x 143 mm wide, average fiber diameter: 17 μm, surface density: 60 g/m 2 ) is adhered to both outer surfaces of the bag-like porous film as shown in FIG. pasted with glue. The width of the porous film was greater than the width of the glass fiber mat, and regions with a width of 4.5 mm where the glass fiber mat did not overlap were formed on both side ends of the porous film.
 なお、多孔質フィルムの結晶化度、オイル含有率、シリカ粒子の含有率、ベース部の厚さ、リブの高さ、ガラス繊維マットのサイズ、平均繊維径および面密度は、鉛蓄電池の作製前の多孔質フィルムまたはガラス繊維マットについて求めた値であるが、作製後の鉛蓄電池から取り出した多孔質フィルムまたはガラス繊維マットについて既述の手順で測定した値とほぼ同じである。 The crystallinity, oil content, silica particle content, base thickness, rib height, glass fiber mat size, average fiber diameter, and surface density of the porous film were measured before the lead-acid battery was manufactured. This is the value obtained for the porous film or glass fiber mat of , which is almost the same as the value measured by the above-described procedure for the porous film or glass fiber mat taken out from the lead-acid battery after production.
(2)正極板の作製
 鉛酸化物、補強材(合成樹脂繊維)、水および硫酸を混合して正極ペーストを調製した。正極ペーストを、アンチモンを含まないPb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成および乾燥を行うことによって、幅137mm、高さ110mm、厚さ1.6mmの未化成の正極板を得た。
(2) Production of positive electrode plate A positive electrode paste was prepared by mixing lead oxide, reinforcing material (synthetic resin fiber), water and sulfuric acid. The positive electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 137 mm, a height of 110 mm, and a thickness of 1.6 mm. A positive plate was obtained.
(3)負極板の作製
 鉛酸化物、カーボンブラック、硫酸バリウム、リグニン、補強材(合成樹脂繊維)、水および硫酸を混合して負極ペーストを調製した。負極ペーストを、アンチモンを含まないPb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成および乾燥を行うことによって、幅137mm、高さ110mm、厚さ1.3mmの未化成の負極板を得た。カーボンブラック、硫酸バリウム、リグニンおよび合成樹脂繊維の使用量は、満充電状態の鉛蓄電池から取り出した負極板について各成分の含有率が、それぞれ0.3質量%、2.1質量%、0.1質量%および0.1質量%になるように調節した。
(3) Preparation of Negative Electrode Plate A negative electrode paste was prepared by mixing lead oxide, carbon black, barium sulfate, lignin, reinforcing material (synthetic resin fiber), water and sulfuric acid. The negative electrode paste was filled in the mesh part of an expanded grid made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 137 mm, a height of 110 mm, and a thickness of 1.3 mm. A negative plate was obtained. The amounts of carbon black, barium sulfate, lignin and synthetic resin fiber used were such that the content of each component in the negative electrode plate taken out from a fully charged lead-acid battery was 0.3% by mass, 2.1% by mass and 0.3% by mass, respectively. It was adjusted to be 1% by mass and 0.1% by mass.
(4)鉛蓄電池の作製
 未化成の負極板を、セパレータの袋状の多孔質フィルムに収容した。袋の両方の外表面に貼り付けられたガラス繊維マットが正極板と接触するように負極板と正極板とをセパレータを介して積層した。R3-1~R3-8では、袋状の多孔質フィルムに収容した負極板と正極板とを積層した。このようにして、未化成の負極板7枚と未化成の正極板6枚とで極板群を形成した。
(4) Preparation of lead-acid battery An unformed negative electrode plate was accommodated in a bag-like porous film of a separator. The negative electrode plate and the positive electrode plate were laminated via a separator so that the glass fiber mats attached to both outer surfaces of the bag were in contact with the positive electrode plate. In R3-1 to R3-8, a negative electrode plate and a positive electrode plate housed in a bag-shaped porous film were laminated. In this manner, an electrode plate assembly was formed of seven unformed negative electrode plates and six unformed positive electrode plates.
 正極板の耳部同士および負極板の耳部同士をそれぞれキャストオンストラップ方式で正極棚部および負極棚部と溶接した。極板群をポリプロピレン製の電槽に挿入し、電解液を注液して、電槽内で化成を施して、定格電圧12Vおよび定格容量が30Ah(5時間率容量(定格容量に記載のAhの数値の1/5の電流(A)で放電するときの容量))の液式の鉛蓄電池を組み立てた。なお、電槽内では6個の極板群が直列に接続されている。 The lugs of the positive electrode plate and the lugs of the negative electrode plate were welded to the positive shelf and the negative shelf using the cast-on-strap method, respectively. The electrode plate group is inserted into a polypropylene battery case, the electrolyte is injected, and chemical conversion is performed in the battery case so that the rated voltage is 12 V and the rated capacity is 30 Ah (5 hour rate capacity (Ah described in the rated capacity). A liquid lead-acid battery with a capacity when discharged at a current (A) that is 1/5 of the value of )) was assembled. Six electrode plate groups are connected in series in the container.
 電解液としては、硫酸水溶液を用いた。化成後の電解液の20℃における比重は1.285であった。 A sulfuric acid aqueous solution was used as the electrolyte. The specific gravity at 20° C. of the electrolytic solution after chemical conversion was 1.285.
(5)評価
 鉛蓄電池E3-7のセパレータの多孔質フィルムについて、既述の手順で測定されたXRDスペクトルは、図2に示すE-1のセパレータに用いた多孔質フィルムのXRDスペクトルと良い一致を示した。図2に示されるように、ポリエチレンの結晶質領域の(110)面に相当する第1回折ピークが、2θ=21.5°~22.5°の範囲に観察され、(200)面に相当する第2回折ピークが、2θ=23°~24.5°の範囲に観察された。そして、非晶質領域によるハローが2θ=17°~27°の広い範囲にブロードに観察された。
(5) Evaluation For the porous film of the separator of lead-acid battery E3-7, the XRD spectrum measured by the procedure described above agrees well with the XRD spectrum of the porous film used for the separator of E-1 shown in FIG. showed that. As shown in FIG. 2, the first diffraction peak corresponding to the (110) plane of the crystalline region of polyethylene was observed in the range of 2θ = 21.5 ° to 22.5 °, corresponding to the (200) plane. A second diffraction peak was observed in the range of 2θ=23° to 24.5°. A broad halo due to the amorphous region was observed over a wide range of 2θ=17° to 27°.
 得られた鉛蓄電池を用いて、既述の手順で、鉛蓄電池のCCA性能および高温過充電寿命性能を評価した。CCA性能は、鉛蓄電池R3-4の30秒目の端子電圧を100としたときの各鉛蓄電池の30秒目の端子電圧の比率(%)によって評価した。高温過充電寿命性能は、鉛蓄電池R3-4のサイクル数を100としたときの各鉛蓄電池のサイクル数の比率(%)によって評価した。 Using the obtained lead-acid battery, the CCA performance and high-temperature overcharge life performance of the lead-acid battery were evaluated according to the procedure described above. CCA performance was evaluated by the ratio (%) of the terminal voltage at 30 seconds of each lead-acid battery when the terminal voltage at 30 seconds of lead-acid battery R3-4 was taken as 100. The high-temperature overcharge life performance was evaluated by the ratio (%) of the number of cycles of each lead-acid battery to 100 cycles of the lead-acid battery R3-4.
 評価結果を表7および表8に示す。E3-1~E3-16は実施例である。R3-1~R3-12は参考例である。 The evaluation results are shown in Tables 7 and 8. E3-1 to E3-16 are examples. R3-1 to R3-12 are reference examples.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示されるように、ガラス繊維マットなしのセパレータでは、CCA性能は、セパレータの厚さに影響され、厚さが小さいほど、高いCCA性能が得られる(R3-1~R3-4)。しかし、セパレータの厚さが小さいほど、高温過充電寿命性能は低下する傾向がある(R3-1~R3-4)。これは、セパレータの厚さが小さい場合には、正極電極材料に接触したときにセパレータが破れ易くなり、短絡が生じ易くなるためと考えられる。ガラス繊維マットなしの場合、多孔質フィルムの結晶化度を高めても、CCA性能に変化は見られないが、高温過充電寿命性能もある程度向上する(R3-1~R3-4とR3-5~R3-8との比較)。例えば、多孔質フィルムの厚さが100μmとごく薄い場合でも、高温過充電寿命性能は、89%から104%に15%向上する(R3-1とR3-5との比較)。多孔質フィルムの厚さが大きい場合でも、結果はそれほど変わらず、結晶化度を高めることによる効果は10~12%程度である。 As shown in Table 7, the CCA performance of the separator without the glass fiber mat is affected by the thickness of the separator, and the smaller the thickness, the higher the CCA performance (R3-1 to R3-4). However, the smaller the thickness of the separator, the lower the high temperature overcharge life performance tends to be (R3-1 to R3-4). This is presumably because if the thickness of the separator is small, the separator is likely to break when it comes into contact with the positive electrode material, and short-circuiting is more likely to occur. Without the glass fiber mat, even if the crystallinity of the porous film is increased, there is no change in the CCA performance, but the high temperature overcharge life performance is also improved to some extent (R3-1 to R3-4 and R3-5 ~Comparison with R3-8). For example, even with a very thin porous film thickness of 100 μm, the high temperature overcharge life performance is improved by 15% from 89% to 104% (compare R3-1 and R3-5). Even when the thickness of the porous film is large, the results do not change much, and the effect of increasing the crystallinity is around 10-12%.
 多孔質フィルムをガラス繊維マットと積層すると、軟化した正極電極材料の脱落が抑制されるため、高温過充電寿命性能はある程度向上すると期待される。しかし、多孔質フィルムの結晶化度が20%未満で、厚さが100μmの場合には、ガラス繊維マットと積層しても、89%サイクルから98%に9%向上するだけで向上効果が小さい(R3-1とR3-9との比較)。多孔質フィルムの厚さが大きい場合でも、結果はそれほど変わらず、ガラス繊維マットと積層することによる高温過充電寿命性能の向上効果は、7~10%程度である(R3-2~R3-4とR3-10~R3-12との比較)。一方で、多孔質フィルムの厚さが大きくなると、抵抗が大きくなるため、CCA性能は低下する傾向がある。 When the porous film is laminated with the glass fiber mat, the falling off of the softened positive electrode material is suppressed, so it is expected that the high-temperature overcharge life performance will be improved to some extent. However, when the crystallinity of the porous film is less than 20% and the thickness is 100 μm, even if it is laminated with the glass fiber mat, the improvement effect is small, with only a 9% improvement from 89% cycle to 98%. (Comparison of R3-1 and R3-9). Even when the thickness of the porous film is large, the results do not change much, and the effect of improving the high temperature overcharge life performance by laminating with the glass fiber mat is about 7 to 10% (R3-2 to R3-4 and R3-10 to R3-12). On the other hand, as the thickness of the porous film increases, the CCA performance tends to decrease because the resistance increases.
 上記の結果を考慮すると、多孔質フィルムの結晶化度を18%から25%に高め、ガラス繊維マットと積層しても、高温過充電寿命性能は、14~22%向上する程度であると予想される。ところが実際には、E3-1~E3-4では、R3-1~R3-4に比べて、高温過充電寿命性能が36~41%も向上しており、130~138%の高い値が得られている。しかも、E3-1~E3-4では、CCA性能の低下も低く抑えられている。多孔質フィルムの厚さは300μm以下であれば同様の傾向が見られる。優れた高温過充電寿命性能が得られるとともに、CCA性能をさらに向上する観点からは、多孔質フィルムの厚さを250μm以下または200μm以下としてもよい。 Considering the above results, it is expected that even if the crystallinity of the porous film is increased from 18% to 25% and laminated with a glass fiber mat, the high temperature overcharge life performance will be improved by 14 to 22%. be done. However, in fact, E3-1 to E3-4 have improved high temperature overcharge life performance by 36 to 41% compared to R3-1 to R3-4, and a high value of 130 to 138% is obtained. It is Moreover, in E3-1 to E3-4, the deterioration of CCA performance is suppressed to a low level. A similar tendency is observed when the thickness of the porous film is 300 μm or less. From the viewpoint of obtaining excellent high-temperature overcharge life performance and further improving CCA performance, the thickness of the porous film may be 250 μm or less or 200 μm or less.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示されるように、多孔質フィルムの結晶化度が20%以上であれば、ガラス繊維マットと積層することで、高いCCA性能を確保しながら、優れた高温過充電寿命性能を確保することができる(E3-5~E3-16)。多孔質フィルムの厚さが100μmと非常に小さくても、115%以上もの高い高温過充電寿命性能を得ることができる。 As shown in Table 8, when the crystallinity of the porous film is 20% or more, lamination with the glass fiber mat ensures excellent high-temperature overcharge life performance while ensuring high CCA performance. (E3-5 to E3-16). High temperature overcharge life performance as high as 115% or more can be obtained even with a very small porous film thickness of 100 μm.
 なお、実施例では、上述のサイズの多孔質フィルムおよび極板を用いて鉛蓄電池を作製し、評価を行ったが、多孔質フィルムおよび極板のサイズが上記と異なる場合でも、同様の結果が得られる。 In the examples, lead-acid batteries were produced and evaluated using the porous films and the electrode plates having the sizes described above. can get.
<実施例4>
 (実験例1)
 実験例1では、下記の手順で、複数のセパレータおよび複数の鉛蓄電池を作製した。
<Example 4>
(Experimental example 1)
In Experimental Example 1, a plurality of separators and a plurality of lead-acid batteries were produced by the following procedure.
 (1)セパレータの作製および評価
 ポリエチレン100質量部と、シリカ粒子160質量部と、造孔剤としてのパラフィン系オイル80質量部と、2質量部の浸透剤とを含む樹脂組成物を、シート状に押出成形し、延伸処理した後、造孔剤の一部を除去することによって、片面にリブを有する多孔質フィルムを作製した。このとき、既述の手順で求められる多孔質フィルムの結晶化度が表9に示す値となるように、押出成形されたシートの冷却速度および延伸処理の倍率を調節した。
(1) Production and Evaluation of Separator A resin composition containing 100 parts by mass of polyethylene, 160 parts by mass of silica particles, 80 parts by mass of paraffinic oil as a pore-forming agent, and 2 parts by mass of a penetrating agent was prepared into a sheet. A porous film having ribs on one side was produced by extruding the film, stretching the film, and partially removing the pore-forming agent. At this time, the cooling rate and stretching ratio of the extruded sheet were adjusted so that the crystallinity of the porous film obtained by the procedure described above was the value shown in Table 9.
 次に、形成されたそれぞれの多孔質フィルムの一方の主面(負極板側の主面)に、以下の手順で炭素材料を配置した。まず、セパレータ上にシリカと炭素材料との混合物を堆積させ、次いで、その上にローラーコーティング法またはスプレーコーティング法で純粋な炭素層を堆積した。このようにして、炭素材料を配置した。炭素材料の厚さは、各多孔質フィルムで同じとした。具体的には、10μmとした。以上の手順によって、多孔質フィルムの結晶化度が異なる複数のセパレータを作製した。 Next, a carbon material was placed on one main surface (main surface on the negative electrode plate side) of each of the formed porous films by the following procedure. First, a mixture of silica and carbon material was deposited on the separator, and then a pure carbon layer was deposited thereon by roller coating method or spray coating method. Thus, the carbon material was arranged. The thickness of the carbon material was the same for each porous film. Specifically, it was set to 10 μm. Through the above procedure, a plurality of separators having porous films with different degrees of crystallinity were produced.
 既述の手順で求められるセパレータのオイル含有率は、11~18質量%であり、シリカ粒子の含有率は、60質量%であった。既述の手順で求められるリブの高さは0.6mmであった。既述の手順で求められるセパレータの厚さ(ベース部の厚さ)を表9に示す。 The oil content of the separator obtained by the above procedure was 11 to 18% by mass, and the silica particle content was 60% by mass. The rib height determined by the procedure described above was 0.6 mm. Table 9 shows the thickness of the separator (thickness of the base portion) obtained by the procedure described above.
 上記の手順で得られたシート状のセパレータを、外面にリブが配置されるように二つ折りにして袋を形成した。次に、重ね合わせた両端部を圧着することによって、袋状セパレータを得た。袋状のセパレータの内側の表面は、炭素材料が配置された表面である。 The sheet-like separator obtained by the above procedure was folded in two so that ribs were arranged on the outer surface to form a bag. Next, a bag-like separator was obtained by crimping the overlapped ends. The inner surface of the bag-like separator is the surface on which the carbon material is arranged.
 なお、セパレータにおける多孔質フィルムの結晶化度、オイル含有率、シリカ粒子の含有率、セパレータの厚さ、およびリブの高さは、鉛蓄電池の作製前のセパレータについて求めた値である。これらの値は、作製後の鉛蓄電池から取り出したセパレータについて既述の手順で測定した値とほぼ同じである。 The crystallinity of the porous film, the oil content, the silica particle content, the thickness of the separator, and the height of the ribs in the separator are the values obtained for the separator before production of the lead-acid battery. These values are almost the same as the values measured by the above-described procedure for the separator taken out from the manufactured lead-acid battery.
 (2)正極板の作製
 鉛酸化物、補強材(合成樹脂繊維)、水および硫酸を混合して正極ペーストを調製した。正極ペーストを、アンチモンを含まないPb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成および乾燥を行うことによって、幅100mm、高さ110mm、厚さ1.6mmの未化成の正極板を得た。
(2) Production of positive electrode plate A positive electrode paste was prepared by mixing lead oxide, reinforcing material (synthetic resin fiber), water and sulfuric acid. The positive electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 100 mm, a height of 110 mm, and a thickness of 1.6 mm. A positive plate was obtained.
 (3)負極板の作製
 鉛酸化物、カーボンブラック、硫酸バリウム、リグニン、補強材(合成樹脂繊維)、水および硫酸を混合して負極ペーストを調製した。負極ペーストを、アンチモンを含まないPb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成および乾燥を行うことによって、幅100mm、高さ110mm、厚さ1.3mmの未化成の負極板を得た。カーボンブラック、硫酸バリウム、リグニンおよび合成樹脂繊維の使用量は、満充電状態の鉛蓄電池から取り出した負極板について各成分の含有率が、それぞれ0.3質量%、2.1質量%、0.1質量%および0.1質量%になるように調節した。
(3) Preparation of Negative Electrode Plate A negative electrode paste was prepared by mixing lead oxide, carbon black, barium sulfate, lignin, reinforcing material (synthetic resin fiber), water and sulfuric acid. The negative electrode paste was filled in the mesh part of an expanded lattice made of a Pb-Ca-Sn alloy containing no antimony, and then aged and dried to obtain an unformed unformed grid with a width of 100 mm, a height of 110 mm, and a thickness of 1.3 mm. A negative plate was obtained. The amounts of carbon black, barium sulfate, lignin and synthetic resin fiber used were such that the content of each component in the negative electrode plate taken out from a fully charged lead-acid battery was 0.3% by mass, 2.1% by mass and 0.3% by mass, respectively. It was adjusted to be 1% by mass and 0.1% by mass.
 (4)鉛蓄電池の作製
 未化成の負極板を、袋状セパレータに収容し、正極板と積層し、未化成の負極板7枚と未化成の正極板6枚とで極板群を形成した。
(4) Preparation of lead-acid battery An unchemically formed negative electrode plate was placed in a bag-like separator and laminated with a positive electrode plate to form an electrode plate group with seven unchemically formed negative electrode plates and six unchemically formed positive electrode plates. .
 正極板の耳部同士および負極板の耳部同士をそれぞれキャストオンストラップ(COS)方式で正極棚部および負極棚部と溶接した。極板群をポリプロピレン製の電槽に挿入し、電解液を注液して、電槽内で化成を施して、定格電圧12Vおよび定格容量が30Ah(5時間率容量(定格容量に記載のAhの数値の1/5の電流(A)で放電するときの容量))の液式の鉛蓄電池を組み立てた。なお、電槽内では6個の極板群が直列に接続されている。なお、電池A1に用いたセパレータの多孔質フィルムは、実施例1で用いたE1-1のセパレータ、実施例2で用いたE2-1のセパレータ、および実施例3で用いたE3-7のセパレータの多孔質フィルムと同じものである。 The lugs of the positive electrode plate and the lugs of the negative electrode plate were welded to the positive shelf and the negative shelf by a cast-on-strap (COS) method, respectively. The electrode plate group is inserted into a polypropylene battery case, the electrolyte is injected, and chemical conversion is performed in the battery case so that the rated voltage is 12 V and the rated capacity is 30 Ah (5 hour rate capacity (Ah described in the rated capacity). A liquid lead-acid battery with a capacity when discharged at a current (A) that is 1/5 of the value of )) was assembled. Six electrode plate groups are connected in series in the container. The porous films of the separators used in Battery A1 were the E1-1 separator used in Example 1, the E2-1 separator used in Example 2, and the E3-7 separator used in Example 3. is the same as the porous film of
 電解液としては、硫酸水溶液を用いた。化成後の電解液の20℃における比重は1.285であった。 A sulfuric acid aqueous solution was used as the electrolyte. The specific gravity at 20° C. of the electrolytic solution after chemical conversion was 1.285.
 電池A1のセパレータに用いた多孔質フィルムについて、既述の手順で測定されたXRDスペクトルは、図2に示すE-1のセパレータのXRDスペクトルと良い一致を示した。図2に示されるように、ポリエチレンの結晶質領域の(110)面に相当する回折ピークが、2θ=21.5°~22.5°の範囲に観察され、(200)面に相当する回折ピークが、2θ=23°~24.5°の範囲に観察された。そして、非晶質領域によるハローが2θ=17°~27°の広い範囲にブロードに観察された。 Regarding the porous film used for the separator of battery A1, the XRD spectrum measured by the procedure described above showed good agreement with the XRD spectrum of the E-1 separator shown in FIG. As shown in FIG. 2, a diffraction peak corresponding to the (110) plane of the crystalline region of polyethylene was observed in the range of 2θ = 21.5° to 22.5°, and the diffraction peak corresponding to the (200) plane was observed. A peak was observed in the range 2θ=23° to 24.5°. A broad halo due to the amorphous region was observed over a wide range of 2θ=17° to 27°.
 得られた鉛蓄電池を用いて、既述の手順で高温過充電寿命性能(サイクル数N)を評価した。高温過充電寿命性能は、各鉛蓄電池のサイクル数Nの相対値で評価した。サイクル数Nの相対値は、電池CA1のサイクル数Nを90としたときの値である。評価結果を表9に示す。電池A1~A4は発明例の電池であり、電池CA1は比較例の電池である。 Using the obtained lead-acid battery, the high-temperature overcharge life performance (number of cycles N) was evaluated according to the procedure described above. The high-temperature overcharge life performance was evaluated by the relative value of the cycle number N of each lead-acid battery. The relative value of the cycle number N is a value when the cycle number N of the battery CA1 is 90. Table 9 shows the evaluation results. Batteries A1 to A4 are batteries of invention examples, and battery CA1 is a battery of comparative examples.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9に示されるように、多孔質フィルムの結晶化度が20%以上である場合、従来技術に相当する結晶化度が18%の場合と比べて、寿命性能が大幅に向上した。これは、多孔質フィルムの結晶化度が高いことによってセパレータの耐酸化性が向上したためであると考えられる。 As shown in Table 9, when the crystallinity of the porous film was 20% or more, the life performance was significantly improved compared to the crystallinity of 18% corresponding to the conventional technology. This is probably because the oxidation resistance of the separator was improved due to the high crystallinity of the porous film.
 (実験例2)
 実験例2では、セパレータを変えたことを除いて実験例1と同様に鉛蓄電池を作製して評価した。具体的には、セパレータの厚さと多孔質フィルムの結晶化度とを変化させるための製造条件を変えたことを除いて、実験例1の方法と同様の方法で、複数のセパレータを作製した。炭素材料は、実験例1のセパレータと同様の条件で配置した。
(Experimental example 2)
In Experimental Example 2, a lead-acid battery was produced and evaluated in the same manner as in Experimental Example 1, except that the separator was changed. Specifically, a plurality of separators were produced in the same manner as in Experimental Example 1, except that the production conditions for changing the separator thickness and the crystallinity of the porous film were changed. The carbon material was placed under the same conditions as the separator of Experimental Example 1.
 作製されたセパレータおよび鉛蓄電池を、実験例1と同様に評価した。評価結果を表10に示す。電池B1~B12は発明例であり、電池CB1~CB4は比較例である。表10の高温過充電寿命性能(サイクル数N)は、電池B1のサイクル数Nを100としたときの相対値である。 The manufactured separator and lead-acid battery were evaluated in the same manner as in Experimental Example 1. Table 10 shows the evaluation results. Batteries B1 to B12 are invention examples, and batteries CB1 to CB4 are comparative examples. The high-temperature overcharge life performance (number of cycles N) in Table 10 is a relative value when the number of cycles N of battery B1 is 100.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、セパレータの厚さを100μm以上とすることによって、高温過充電寿命性能を大幅に高めることができた。セパレータが薄い場合(多孔質フィルムが薄い場合)、多孔質フィルムを形成する際の樹脂成型時に金型への樹脂回りが悪くなり、厚さのばらつきや細孔のばらつきが大きくなったり、割れ(セパレータが裂ける)が部分的に発生したりすることがあると考えられる。一方、セパレータの厚さが100μm以上(多孔質フィルムの厚さが90μm以上)の場合は、樹脂回りが良化して均質な多孔質フィルムが得られる。それに加えて、多孔質フィルムの表面に炭素材料を配置することによって、後述するようにセパレータの引っ張り強度が大幅に向上する。そのため、高温過充電寿命特性が大幅に向上したと考えられる。 As shown in Table 10, by setting the thickness of the separator to 100 μm or more, the high-temperature overcharge life performance could be significantly improved. If the separator is thin (if the porous film is thin), the resin does not flow well into the mold during resin molding to form the porous film. Separator tears) may occur partially. On the other hand, when the thickness of the separator is 100 μm or more (the thickness of the porous film is 90 μm or more), the surroundings of the resin are improved and a homogeneous porous film can be obtained. In addition, placing the carbon material on the surface of the porous film significantly improves the tensile strength of the separator, as will be described later. Therefore, it is considered that the high-temperature overcharge life characteristics were greatly improved.
 (実験例3)
 実験例3では、作製条件を変えて複数のセパレータを作製した。具体的には、多孔質フィルムの結晶化度とセパレータの厚さとを変化させるための製造条件、および、炭素材料の配置の有無を変えたことを除いて実験例1の方法と同様の方法で、複数のセパレータを作製した。作製したセパレータについて、実験例1と同様に評価した。
(Experimental example 3)
In Experimental Example 3, a plurality of separators were produced under different production conditions. Specifically, the same method as in Experimental Example 1 was used, except that the manufacturing conditions for changing the crystallinity of the porous film and the thickness of the separator, and the presence or absence of the arrangement of the carbon material were changed. , a plurality of separators were produced. The produced separator was evaluated in the same manner as in Experimental Example 1.
 さらに、作製されたセパレータについて、上述した方法で引っ張り強度を測定した。セパレータの評価結果を表11および表12に示す。セパレータS1~S10は発明例のセパレータであり、セパレータCS1~CS12は比較例のセパレータである。なお、引っ張り強度は、セパレータCS1の引っ張り強度を100としたときの相対値である。 Furthermore, the tensile strength of the manufactured separator was measured by the method described above. Tables 11 and 12 show the evaluation results of the separator. Separators S1 to S10 are invention example separators, and separators CS1 to CS12 are comparative example separators. The tensile strength is a relative value when the tensile strength of the separator CS1 is set to 100.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表11の結果を図5に示し、表12の結果を図6に示す。表11および図5に示すように、炭素材料を表面に配置するとともに多孔質フィルムの結晶化度を20%以上とすることによって、セパレータの引っ張り強度を大幅に高めることができた。表12及び図6に示すように、炭素材料を表面に配置するとともに厚さを100μm以上とすることによって、セパレータの引っ張り強度を大幅に高めることができた。 The results of Table 11 are shown in FIG. 5, and the results of Table 12 are shown in FIG. As shown in Table 11 and FIG. 5, by disposing the carbon material on the surface and setting the crystallinity of the porous film to 20% or more, the tensile strength of the separator could be significantly increased. As shown in Table 12 and FIG. 6, by disposing the carbon material on the surface and setting the thickness to 100 μm or more, the tensile strength of the separator could be significantly increased.
 図5に示すように、炭素材料が配置されたセパレータでは、結晶化度を高めることによる引っ張り強度の増大の効果が、炭素材料が配置されていないセパレータよりも高かった。図6に示すように、炭素材料が配置されたセパレータでは、セパレータを厚くすることによる引っ張り強度の増大の効果が、炭素材料が配置されていないセパレータよりも高かった。これらの理由は明確ではないが、多孔質フィルムの表面に炭素材料を配置することが、何らかの相乗効果を奏していると考えられる。 As shown in FIG. 5, in the separator in which the carbon material was arranged, the effect of increasing the tensile strength by increasing the degree of crystallinity was higher than in the separator in which the carbon material was not arranged. As shown in FIG. 6, in the separator with the carbon material, the effect of increasing the tensile strength by increasing the thickness of the separator was higher than in the separator without the carbon material. Although the reasons for these are not clear, it is believed that placing the carbon material on the surface of the porous film has some kind of synergistic effect.
 本発明の上記側面に係る鉛蓄電池用セパレータは、例えば、IS用途(ISS車用の鉛蓄電池など)、様々な車両(自動車、バイクなど)の始動用電源などに適している。また、鉛蓄電池用セパレータは、電動車両(フォークリフトなど)などの産業用蓄電装置などの電源にも好適に利用できる。なお、これらの用途は単なる例示である。本発明の上記側面に係る鉛蓄電池用セパレータおよび鉛蓄電池の用途は、これらに限定されない。 The lead-acid battery separator according to the above aspect of the present invention is suitable, for example, for IS applications (lead-acid batteries for ISS vehicles, etc.), starting power sources for various vehicles (automobiles, motorcycles, etc.). In addition, the lead-acid battery separator can be suitably used as a power source for industrial power storage devices such as electric vehicles (forklifts, etc.). It should be noted that these uses are merely exemplary. Applications of the lead-acid battery separator and the lead-acid battery according to the above aspects of the present invention are not limited to these.
 1:鉛蓄電池、2:負極板、3:正極板、4:セパレータ、4a:多孔質フィルム、4b:ガラス繊維マット、5:正極棚部、6:負極棚部、7:正極柱、8:貫通接続体、9:負極柱、11:極板群、12:電槽、13:隔壁、14:セル室、15:蓋、16:負極端子、17:正極端子、18:液口栓、20:圧着部、21:多孔質フィルムのガラス繊維マットで覆われていない領域 1: lead-acid battery, 2: negative electrode plate, 3: positive electrode plate, 4: separator, 4a: porous film, 4b: glass fiber mat, 5: positive electrode shelf, 6: negative electrode shelf, 7: positive electrode column, 8: Penetration connector, 9: negative electrode column, 11: electrode plate group, 12: container, 13: partition wall, 14: cell chamber, 15: lid, 16: negative electrode terminal, 17: positive electrode terminal, 18: liquid spout plug, 20 : crimping part, 21: area not covered with the glass fiber mat of the porous film

Claims (16)

  1.  鉛蓄電池用セパレータであって、
     前記セパレータは、多孔質フィルムを含み、前記多孔質フィルムは結晶質領域と非晶質領域とを含み、
     前記多孔質フィルムのX線回折スペクトルにおいて、100×I/(I+I)で表される結晶化度が20%以上であり、
     Iは、前記結晶質領域に相当する回折ピークのうちピーク高さが最大である回折ピークの積分強度であり、
     Iは、前記非晶質領域に相当するハローの積分強度である、鉛蓄電池用セパレータ。
    A lead-acid battery separator,
    the separator comprises a porous film, the porous film comprising a crystalline region and an amorphous region;
    In the X-ray diffraction spectrum of the porous film, the degree of crystallinity represented by 100×I c /(I c +I a ) is 20% or more,
    I c is the integrated intensity of the diffraction peak having the maximum peak height among the diffraction peaks corresponding to the crystalline region;
    A lead-acid battery separator, wherein Ia is the integrated intensity of the halo corresponding to the amorphous region.
  2.  前記多孔質フィルムは、100μm以上300μm以下の厚さを有する、請求項1に記載の鉛蓄電池用セパレータ。 The lead-acid battery separator according to claim 1, wherein the porous film has a thickness of 100 µm or more and 300 µm or less.
  3.  前記結晶化度は、40%以下である、請求項1または2に記載の鉛蓄電池用セパレータ。 The lead-acid battery separator according to claim 1 or 2, wherein the degree of crystallinity is 40% or less.
  4.  前記多孔質フィルムは、オイルを含有する、請求項1~3のいずれか1項に記載の鉛蓄電池用セパレータ。 The lead-acid battery separator according to any one of claims 1 to 3, wherein the porous film contains oil.
  5.  前記多孔質フィルムは、ポリオレフィンを含む、請求項1~4のいずれか1項に記載の鉛蓄電池用セパレータ。 The lead-acid battery separator according to any one of claims 1 to 4, wherein the porous film contains polyolefin.
  6.  前記ポリオレフィンは、少なくともエチレン単位を含み、
     前記ピーク高さが最大である前記回折ピークは、前記結晶質領域による(110)面に相当する、請求項5に記載の鉛蓄電池用セパレータ。
    The polyolefin contains at least ethylene units,
    6. The lead-acid battery separator according to claim 5, wherein said diffraction peak with said maximum peak height corresponds to the (110) plane of said crystalline region.
  7.  前記多孔質フィルムの0.005μm以上10μm以下の細孔径を有する細孔の容積の合計Vtは、0.8cm/g以上である、請求項1~6のいずれか1項に記載の鉛蓄電池用セパレータ。 The lead-acid battery according to any one of claims 1 to 6, wherein the total volume Vt of pores having a pore diameter of 0.005 µm or more and 10 µm or less in the porous film is 0.8 cm 3 /g or more. separator for
  8.  前記結晶化度は、25%以上である、請求項1~7のいずれか1項に記載の鉛蓄電池用セパレータ。 The lead-acid battery separator according to any one of claims 1 to 7, wherein the degree of crystallinity is 25% or more.
  9.  前記容積の合計Vtは、0.9cm/g以上である、請求項7に記載の鉛蓄電池用セパレータ。 8. The lead-acid battery separator according to claim 7, wherein the total volume Vt is 0.9 cm <3> /g or more.
  10.  前記セパレータは、樹脂製の前記多孔質フィルムと、ガラス繊維マットとの積層体を含む、請求項1~9のいずれか1項に記載の鉛蓄電池用セパレータ。 The lead-acid battery separator according to any one of claims 1 to 9, wherein the separator includes a laminate of the porous film made of resin and a glass fiber mat.
  11.  前記多孔質フィルムは、端部の少なくとも一部に、前記ガラス繊維マットで覆われていない領域を有する、請求項10に記載の鉛蓄電池用セパレータ。 11. The lead-acid battery separator according to claim 10, wherein said porous film has a region not covered with said glass fiber mat on at least a part of its edge.
  12.  前記セパレータは、前記多孔質フィルムの表面に配置された炭素材料をさらに含む請求項1~11のいずれか1項に記載の鉛蓄電池用セパレータ。 The lead-acid battery separator according to any one of claims 1 to 11, wherein the separator further includes a carbon material arranged on the surface of the porous film.
  13.  前記炭素材料は、導電性カーボンブラックおよび導電性炭素繊維からなる群より選択される少なくとも一種である、請求項12に記載の鉛蓄電池用セパレータ。 The lead-acid battery separator according to claim 12, wherein said carbon material is at least one selected from the group consisting of conductive carbon black and conductive carbon fiber.
  14.  鉛蓄電池であって、
     前記鉛蓄電池は、極板群および電解液を含む少なくとも1つのセルを含み、
     前記極板群は、正極板と、負極板と、前記正極板および前記負極板の間に介在するセパレータとを含み、
     前記セパレータは、請求項1~13のいずれか1項に記載の鉛蓄電池用セパレータである、鉛蓄電池。
    A lead-acid battery,
    The lead-acid battery includes at least one cell including an electrode group and an electrolyte,
    The electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate,
    A lead-acid battery, wherein the separator is the lead-acid battery separator according to any one of claims 1 to 13.
  15.  鉛蓄電池であって、
     前記鉛蓄電池は、極板群および電解液を含む少なくとも1つのセルを含み、
     前記極板群は、正極板と、負極板と、前記正極板および前記負極板の間に介在するセパレータとを含み、
     前記セパレータは、請求項10又は11に記載の鉛蓄電池用セパレータであり、
     前記ガラス繊維マットは、前記正極板と接触している、鉛蓄電池。
    A lead-acid battery,
    The lead-acid battery includes at least one cell including an electrode group and an electrolyte,
    The electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate,
    The separator is the lead-acid battery separator according to claim 10 or 11,
    A lead-acid battery, wherein the glass fiber mat is in contact with the positive plate.
  16.  鉛蓄電池であって、
     前記鉛蓄電池は、極板群および電解液を含む少なくとも1つのセルを含み、
     前記極板群は、正極板と、負極板と、前記正極板および前記負極板の間に介在するセパレータとを含み、
     前記セパレータは、請求項12又は13に記載の鉛蓄電池用セパレータであり、
     前記炭素材料は、前記多孔質フィルムの2つの主面のうち負極板側の主面に配置されている、鉛蓄電池。
    A lead-acid battery,
    The lead-acid battery includes at least one cell including an electrode group and an electrolyte,
    The electrode plate group includes a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate,
    The separator is the lead-acid battery separator according to claim 12 or 13,
    The lead-acid battery, wherein the carbon material is arranged on one of the two main surfaces of the porous film, which faces the negative electrode plate.
PCT/JP2022/022453 2021-06-04 2022-06-02 Separator for lead-acid battery, and lead-acid battery including same WO2022255443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280039318.3A CN117461210A (en) 2021-06-04 2022-06-02 Separator for lead storage battery and lead storage battery comprising same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2021094467A JP2022186311A (en) 2021-06-04 2021-06-04 Separator for lead storage battery and lead storage battery including the same
JP2021094465A JP2022186309A (en) 2021-06-04 2021-06-04 Separator for lead storage battery and lead storage battery including the same
JP2021-094465 2021-06-04
JP2021-094467 2021-06-04
JP2021152476A JP2023044443A (en) 2021-09-17 2021-09-17 Separator for lead battery, and lead battery containing the same
JP2021-152476 2021-09-17
JP2021154755A JP2023046062A (en) 2021-09-22 2021-09-22 Separator for lead-acid battery, and lead-acid battery including the same
JP2021-154755 2021-09-22

Publications (1)

Publication Number Publication Date
WO2022255443A1 true WO2022255443A1 (en) 2022-12-08

Family

ID=84324248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022453 WO2022255443A1 (en) 2021-06-04 2022-06-02 Separator for lead-acid battery, and lead-acid battery including same

Country Status (1)

Country Link
WO (1) WO2022255443A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116207446A (en) * 2023-05-06 2023-06-02 深圳中兴新材技术股份有限公司 Lithium battery diaphragm with low short circuit rate and preparation method thereof
WO2024166686A1 (en) * 2023-02-08 2024-08-15 株式会社Gsユアサ Lead alloy for lead acid storage batteries, and lead acid storage battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302436A (en) * 1998-04-20 1999-11-02 Mitsui Chem Inc Porous film and separator film for battery
JP2005503650A (en) * 2001-09-20 2005-02-03 ダラミック、インク Multilayer laminated separator for lead acid battery
JP2005503652A (en) * 2001-09-20 2005-02-03 ダラミック、インク Reinforced multilayer separator for lead acid battery
US20170098810A1 (en) * 2015-10-05 2017-04-06 Daramic Llc Functionalized lead acid battery separators, improved lead acid batteries, and related methods
JP2019514173A (en) * 2016-04-08 2019-05-30 ダラミック エルエルシー Improved separator, battery and related method for enhanced liquid battery
CN112753128A (en) * 2018-09-26 2021-05-04 株式会社杰士汤浅国际 Separator for lead-acid battery and lead-acid battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302436A (en) * 1998-04-20 1999-11-02 Mitsui Chem Inc Porous film and separator film for battery
JP2005503650A (en) * 2001-09-20 2005-02-03 ダラミック、インク Multilayer laminated separator for lead acid battery
JP2005503652A (en) * 2001-09-20 2005-02-03 ダラミック、インク Reinforced multilayer separator for lead acid battery
US20170098810A1 (en) * 2015-10-05 2017-04-06 Daramic Llc Functionalized lead acid battery separators, improved lead acid batteries, and related methods
JP2019514173A (en) * 2016-04-08 2019-05-30 ダラミック エルエルシー Improved separator, battery and related method for enhanced liquid battery
CN112753128A (en) * 2018-09-26 2021-05-04 株式会社杰士汤浅国际 Separator for lead-acid battery and lead-acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166686A1 (en) * 2023-02-08 2024-08-15 株式会社Gsユアサ Lead alloy for lead acid storage batteries, and lead acid storage battery
CN116207446A (en) * 2023-05-06 2023-06-02 深圳中兴新材技术股份有限公司 Lithium battery diaphragm with low short circuit rate and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2022255443A1 (en) Separator for lead-acid battery, and lead-acid battery including same
WO2022255444A1 (en) Lead-acid battery separator and lead-acid battery including same
KR101951637B1 (en) Negative electrode for secondary battery, method thereof and lithium secondary batteries fabricated by using the same
US9450222B2 (en) Electric storage device, and vehicle mounted electric storage system
JP2014199775A (en) Power storage element and car onboard storage battery system
KR101586536B1 (en) Manufacturing method of carbon fiber sheet current collector for all solid state rechargeable thin film lithium secondary battery, and all solid state rechargeable thin film lithium secondary battery comprising carbon fiber sheet current collector
JP7424371B2 (en) Separators for liquid lead-acid batteries and liquid lead-acid batteries
WO2021084879A1 (en) Lead acid storage battery
JP2015141822A (en) Electrode paste, manufacturing method of electrode plate, and manufacturing method of battery
JP2023044443A (en) Separator for lead battery, and lead battery containing the same
JP2023046062A (en) Separator for lead-acid battery, and lead-acid battery including the same
JP2023046061A (en) Separator for lead storage battery and lead storage battery including the same
JP2023044442A (en) Separator for lead battery, and lead battery containing the same
WO2024166686A1 (en) Lead alloy for lead acid storage batteries, and lead acid storage battery
JP2022186311A (en) Separator for lead storage battery and lead storage battery including the same
WO2024043226A1 (en) Aqueous electrolyte secondary battery
JP2022186312A (en) Separator for lead storage battery and lead storage battery including the same
WO2024071058A1 (en) Lead storage battery
JP7548241B2 (en) Lead-acid battery
JP2022186310A (en) Separator for lead storage battery and lead storage battery including the same
WO2022210456A1 (en) Separator for lead-acid battery and lead-acid battery including same
JP2022186309A (en) Separator for lead storage battery and lead storage battery including the same
WO2022210457A1 (en) Separator for lead storage battery and lead storage battery comprising same
WO2022210455A1 (en) Separator for lead acid storage batteries, and lead acid storage battery comprising same
JP7533474B2 (en) Lead-acid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280039318.3

Country of ref document: CN

Ref document number: 2301007865

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816188

Country of ref document: EP

Kind code of ref document: A1