WO2022255412A1 - Steering, biometric information detection device, and control system - Google Patents
Steering, biometric information detection device, and control system Download PDFInfo
- Publication number
- WO2022255412A1 WO2022255412A1 PCT/JP2022/022354 JP2022022354W WO2022255412A1 WO 2022255412 A1 WO2022255412 A1 WO 2022255412A1 JP 2022022354 W JP2022022354 W JP 2022022354W WO 2022255412 A1 WO2022255412 A1 WO 2022255412A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric
- piezoelectric substrate
- base material
- biological information
- steering
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims description 71
- 239000000758 substrate Substances 0.000 claims abstract description 136
- 239000004020 conductor Substances 0.000 claims abstract description 115
- 229920001184 polypeptide Polymers 0.000 claims abstract description 53
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 53
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 53
- 239000000463 material Substances 0.000 claims description 110
- 229920001872 Spider silk Polymers 0.000 claims description 41
- 239000012212 insulator Substances 0.000 claims description 24
- 238000002441 X-ray diffraction Methods 0.000 claims description 4
- 239000011162 core material Substances 0.000 description 48
- 108090000623 proteins and genes Proteins 0.000 description 43
- 235000018102 proteins Nutrition 0.000 description 42
- 102000004169 proteins and genes Human genes 0.000 description 42
- 239000000835 fiber Substances 0.000 description 29
- 239000000853 adhesive Substances 0.000 description 26
- 230000001070 adhesive effect Effects 0.000 description 26
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 25
- 150000001413 amino acids Chemical group 0.000 description 20
- 239000011889 copper foil Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 20
- 239000002033 PVDF binder Substances 0.000 description 17
- 238000004891 communication Methods 0.000 description 17
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 17
- 230000035945 sensitivity Effects 0.000 description 17
- 238000003860 storage Methods 0.000 description 14
- 238000004804 winding Methods 0.000 description 13
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 9
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 108010022355 Fibroins Proteins 0.000 description 7
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 7
- 206010044565 Tremor Diseases 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 239000010985 leather Substances 0.000 description 7
- 229920000049 Carbon (fiber) Polymers 0.000 description 6
- 235000001014 amino acid Nutrition 0.000 description 6
- 239000004917 carbon fiber Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 101710112083 Para-Rep C1 Proteins 0.000 description 5
- 102100022881 Rab proteins geranylgeranyltransferase component A 1 Human genes 0.000 description 5
- 108010013296 Sericins Proteins 0.000 description 5
- 101710119887 Trans-acting factor B Proteins 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 229920000747 poly(lactic acid) Polymers 0.000 description 5
- 108010054442 polyalanine Proteins 0.000 description 5
- 239000004626 polylactic acid Substances 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 101000708578 Milk vetch dwarf virus (isolate N) Para-Rep C3 Proteins 0.000 description 4
- 206010041349 Somnolence Diseases 0.000 description 4
- 235000004279 alanine Nutrition 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 210000004907 gland Anatomy 0.000 description 4
- 238000009991 scouring Methods 0.000 description 4
- 241000239290 Araneae Species 0.000 description 3
- 241000238902 Nephila clavipes Species 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- 235000002198 Annona diversifolia Nutrition 0.000 description 2
- 241000282836 Camelus dromedarius Species 0.000 description 2
- 229920001651 Cyanoacrylate Polymers 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 241000282842 Lama glama Species 0.000 description 2
- 101710084218 Master replication protein Proteins 0.000 description 2
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 2
- 101710112078 Para-Rep C2 Proteins 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 102100022880 Rab proteins geranylgeranyltransferase component A 2 Human genes 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 101710119961 Trans-acting factor C Proteins 0.000 description 2
- 241001416177 Vicugna pacos Species 0.000 description 2
- 241000282840 Vicugna vicugna Species 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 210000000077 angora Anatomy 0.000 description 2
- 235000021120 animal protein Nutrition 0.000 description 2
- 210000000085 cashmere Anatomy 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 210000000050 mohair Anatomy 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000005616 pyroelectricity Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- 101150082901 ADF3 gene Proteins 0.000 description 1
- 101150003973 ADF4 gene Proteins 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 241000193935 Araneus diadematus Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- VPZXBVLAVMBEQI-VKHMYHEASA-N Glycyl-alanine Chemical compound OC(=O)[C@H](C)NC(=O)CN VPZXBVLAVMBEQI-VKHMYHEASA-N 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 108010079364 N-glycylalanine Proteins 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 210000000576 arachnoid Anatomy 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- RPOCFUQMSVZQLH-UHFFFAOYSA-N furan-2,5-dione;2-methylprop-1-ene Chemical compound CC(C)=C.O=C1OC(=O)C=C1 RPOCFUQMSVZQLH-UHFFFAOYSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000007965 rubber solvent Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/02—Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
- B62D1/04—Hand wheels
- B62D1/06—Rims, e.g. with heating means; Rim covers
Definitions
- the technology of the present disclosure relates to steering, biological information detection devices, and control systems.
- Japanese Patent Application Laid-Open No. 2016-146953 discloses a technology characterized by acquiring biometric information using a pressure-sensitive sensor to which film-like polyvinylidene fluoride (hereinafter referred to as "PVDF”) is applied. is proposed.
- PVDF film-like polyvinylidene fluoride
- biometric information may not be detected depending on the way of gripping.
- a piezoelectric body containing PVDF described in Japanese Patent Application Laid-Open No. 2016-146953 is used, biometric information can be detected regardless of how it is gripped.
- the interior of the vehicle and the steering wheel portion of the vehicle are exposed to direct sunlight under the scorching sun, and the interior of the vehicle and the steering wheel portion may become hot. Therefore, the sensitivity of the sensor may fluctuate in an environment that can reach high temperatures, and it is not always possible to acquire biological information with high accuracy.
- the technology of the present disclosure has been made in view of the above facts, and provides a steering wheel, a biological information detection device, and a control system that can acquire biological information regardless of how they are gripped even in an environment that can reach high temperatures. intended to
- a grasping body to be grasped by a user a piezoelectric substrate that detects the pressure received by the gripping body,
- the piezoelectric substrate is an axial inner conductor; an elongated piezoelectric body provided coaxially around the inner conductor and containing an optically active polypeptide; steering wheel.
- the length direction of the elongated piezoelectric body is substantially parallel to the main orientation direction of the optically active polypeptide.
- ⁇ 3> The degree of orientation F of the optically active polypeptide determined by the following formula (a) from X-ray diffraction measurement is 0.50 or more and less than 1.00.
- Orientation F (180°- ⁇ )/180°...
- Formula (a) [In the formula (a), ⁇ represents the half width (°) of the orientation-derived peak. ]
- the long piezoelectric body is spirally wound in one direction, The steering according to any one of ⁇ 1> to ⁇ 3>.
- the elongated piezoelectric body includes the piezoelectric base material wound in the clockwise direction, and the piezoelectric base material wound in the counterclockwise direction. , The steering according to ⁇ 1>.
- the piezoelectric base material further comprises an outer conductor on the outer circumference, The steering according to any one of ⁇ 1> to ⁇ 5>.
- the piezoelectric base material further comprises an insulator on the outer circumference of the outer conductor, The steering according to ⁇ 6>.
- the optically active polypeptide comprises at least one of silk and spider silk, The steering according to any one of ⁇ 1> to ⁇ 7>.
- a biological information detection device comprising:
- the holding body includes a plurality of piezoelectric substrates, The detection unit independently detects a signal from each piezoelectric base material, The detection unit detects position information indicating a position where the human body is in contact from the signals detected from each piezoelectric base material.
- the biological information detection device according to ⁇ 9>.
- the biological information detection device according to ⁇ 9> or ⁇ 10>; a control device that controls equipment provided on the moving body operated by the steering, based on the information detected by the biological information detection device; A control system with
- the control device controls the device according to information related to the heartbeat of the human body obtained from the biological information.
- biometric information can be obtained with high accuracy even in an environment that can reach high temperatures.
- FIG. 2 is a front view showing an example of a steering wheel for explaining the arrangement of piezoelectric substrates according to the first embodiment
- FIG. 3 is a cross-sectional view of the steering wheel according to the first embodiment taken along the line X-X' of FIG. 2
- It is a block diagram showing an example of hardware constitutions of a living body information detecting device concerning each embodiment.
- FIG. 2 is a front view showing an example of a steering wheel for explaining the arrangement of piezoelectric substrates according to the first embodiment
- FIG. 3 is a cross-sectional view of the steering wheel according to the first embodiment taken along the line X-X' of FIG. 2
- It is a block diagram showing an example of hardware constitutions of a living body information detecting device concerning each embodiment.
- It is a block diagram which shows
- FIG. 2 is a schematic side view schematically showing a piezoelectric base material according to each embodiment
- 8 is a cross-sectional view taken along the line X-X' of FIG. 7 in the piezoelectric base material according to each embodiment.
- FIG. FIG. 5 is a schematic side view schematically showing a piezoelectric base material according to a modified example of each embodiment
- FIG. 10 is a front view showing an example of a steering for explaining the arrangement of piezoelectric substrates according to the second embodiment
- FIG. 11 is a front view showing an example of a steering for explaining the arrangement of piezoelectric substrates according to the third embodiment
- FIG. 11 is a block diagram showing an example of a functional configuration of a control system according to a third embodiment;
- FIG. 11 is a front view showing an example of a steering for explaining the arrangement of piezoelectric substrates according to a modification of the third embodiment
- FIG. 4 is a diagram showing an example of a piezoelectric base material installed in the steering wheel according to Example 1
- 3 is a block diagram showing an example of a detection circuit that detects biological information from the piezoelectric base material according to Example 1.
- FIG. 5 is a graph showing an example of biological tremor detected from the piezoelectric base material according to Example 1.
- FIG. 7 is a graph showing an example of voltage signals detected from a PVDF and a piezoelectric base material according to a comparative example;
- FIG. 10 is a schematic diagram showing an example of the configuration of a piezoelectric substrate and an instrumentation amplifier according to Example 2; 9 is a graph showing an example of measurement results of FFT analysis when the steering wheel according to Example 2 is gripped. 9 is a graph showing an example of measurement results of FFT analysis when the steering wheel is not held according to Example 2.
- FIG. FIG. 11 is a schematic diagram showing an example of the configuration of a piezoelectric substrate and an instrumentation amplifier according to Example 3; 10 is a graph showing an example of FFT analysis measurement results when the steering wheel according to Example 3 is gripped.
- a numerical range represented by “to” means a range including the numerical values before and after “to” as lower and upper limits.
- the "surface” of a member means the “principal surface” of the member unless otherwise specified.
- thickness, width, and length satisfy the relationship thickness ⁇ width ⁇ length, as is commonly defined.
- the angle formed by two line segments is expressed in the range of 0° or more and 90° or less.
- film is a concept that includes not only what is generally called “film” but also what is generally called “sheet”.
- a vehicle will be described as an example of a mobile object. However, it is not limited to this.
- the mobile body may be an aircraft, a ship, or any vehicle as long as it is movable.
- steering refers to a "steering wheel” in a vehicle. However, it is not limited to this. It may be a "control pole” in an aircraft, a “rudder” in a ship, or any grip that a user grips in order to steer a moving object.
- a control system 1 is mounted on a vehicle 2 and includes a biological information detection device 10, a control device 100, and a device 200.
- the biological information detection device 10 includes a steering wheel 20 and detects biological information of a driver holding the steering wheel 20 from a sensor installed on the steering wheel 20 .
- the control device 100 controls the device 200 mounted on the vehicle 2 using the information detected by the biological information detection device 10 .
- the device 200 includes devices such as air conditioners, seat heaters, lighting, drowsiness prevention devices, diffusers, and audio devices in the vehicle, and actuators for operating steering, throttle, brakes, and the like.
- the control device 100 performs control such as activation of air conditioning, generation of an odor to prevent drowsiness, notification to the driver, and stopping of the vehicle, according to the detected biological information.
- FIG. 2 is a front view showing an example of the steering wheel 20 for explaining the arrangement of the piezoelectric base material according to this embodiment
- FIG. 3 is a cross-sectional view taken along line XX' of FIG.
- the radially outer side of the cross section of the rim 21 is simply referred to as the "radial outer side”
- the radially inner side of the rim 21 is simply referred to as the "radial inner side”.
- the steering wheel 20 includes a rim 21 gripped by the driver and a hub 22 of the steering wheel 20 connected to the steering shaft.
- the rim 21 includes a sensor unit 23.
- the sensor unit 23 includes a piezoelectric substrate 50 that generates a voltage when pressure is input, and wiring 29, which will be described later, connected to the line-shaped piezoelectric substrate 50. , is equipped with
- the rim 21 is an example of a "gripping body".
- the rim 21 includes a core material (not shown) such as an aluminum alloy, and a surface material 24 such as urethane-based resin or polypropylene that covers the core material (not shown).
- the piezoelectric base material 50 is installed on the surface material 24 that constitutes the rim 21 and is provided inside the notch 25 on the outer diameter side of the core material (not shown) of the rim 21 .
- the notch 25 is provided over the entire circumference of the outer diameter side of the rim 21 , and one piezoelectric substrate 50 is placed on the rim 21 on the sponge rubber 26 provided at the bottom of the notch 25 .
- the cut 25 is provided on the outer diameter side of the core material (not shown) of the rim 21 .
- the piezoelectric substrate 50 may be placed directly on the surface material 24 covering the core material of the rim 21 without cutting the core material. As a result, the piezoelectric substrate 50 can detect pressure fluctuations with which the driver grips the rim 21 and weak vibrations related to biological vibrations.
- the biological information detection device 10 detects an output signal from the piezoelectric substrate 50 .
- the biological information detection device 10 includes an AD converter 28 that converts the voltage output, which is an analog signal output from the piezoelectric substrate 50, into a digital signal, and a digital signal of each piezoelectric substrate 50 that has been converted. and a vehicle-mounted device 30 that detects a signal.
- the AD converter 28 is provided with a plurality of input terminals for inputting analog signals, and the piezoelectric substrate 50 is electrically connected to each input terminal via the wiring 29 .
- the vehicle-mounted device 30 includes a CPU (Central Processing Unit) 31, a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a storage 34, a communication I/F (Inter Face) 35, and an input/output I/F 36.
- the CPU 31 , ROM 32 , RAM 33 , storage 34 , communication I/F 35 , and input/output I/F 36 are connected via a bus 37 so as to be able to communicate with each other.
- the CPU 31 is a central processing unit that executes various programs and controls each section. That is, the CPU 31 reads a program from the ROM 32 or the storage 34 and executes the program using the RAM 33 as a work area. In this embodiment, execution programs for executing various processes are stored in the storage 34 .
- the CPU 31 functions as the detection unit 41 and the detection unit 42A shown in FIG. 6 by executing the execution program.
- the ROM 32 stores various programs and various data.
- the RAM 33 temporarily stores programs or data as a work area.
- the storage 34 as a storage unit is configured by a HDD (Hard Disk Drive) or SSD (Solid State Drive), and stores various programs including an operating system and various data.
- the communication I/F 35 is an interface for communicating with the control device 100, and communication is performed according to the CAN (Controller Area Network) protocol. Note that the communication I/F 35 may apply a communication standard based on Ethernet (registered trademark). Communication I/F 35 is connected to an external bus (not shown). In other words, data transmitted/received between the biological information detection device 10 and the control device 100 is transmitted/received as a communication frame based on the CAN protocol on an external bus (not shown). Here, the communication I/F 35 may be directly connected to the device 200 without going through the control device 100 to transmit and receive data between the biological information detection device 10 and the device 200 .
- CAN Controller Area Network
- the control device 100 includes a CPU 101, a ROM 102, a RAM 103, a storage 104, an input/output unit 105, a display unit 106, and a communication I/F 107.
- a CPU 101, a ROM 102, a RAM 103, a storage 104, an input/output unit 105, a display unit 106, and a communication I/F 107 are connected via a bus 108 so as to be able to communicate with each other.
- the CPU 101 is a central processing unit that executes various programs and controls each part. That is, the CPU 101 reads a program from the ROM 102 and executes the program using the RAM 103 as a work area.
- the ROM 102 stores various programs and various data.
- a control program for controlling the control device 100 is stored in the ROM 102 of the present embodiment.
- the RAM 103 temporarily stores programs or data as a work area.
- the storage 104 is, for example, an HDD, SSD, flash memory, or the like. Note that the storage 104 may store control programs and the like.
- the input/output unit 105 is, for example, a mouse, keyboard, touch panel, speaker, and the like.
- the display unit 106 displays a notification to the driver according to the detected biological information.
- the communication I/F 107 is an interface for connecting the biological information detection device 10, the control device 100, and the device 200.
- the interface performs communication according to the CAN protocol.
- a communication standard by Ethernet may be applied.
- Communication I/F 107 is connected to an external bus (not shown). That is, data transmitted/received between the biological information detection device 10, the control device 100, and the device 200 is transmitted/received as a communication frame based on the CAN protocol on an external bus (not shown).
- FIG. 6 is a block diagram showing an example of functional configurations of the biological information detection device 10 and the control device 100.
- the biological information detection device 10 has a detection section 41 and a detection section 42A.
- Each functional configuration is realized by the CPU 31 reading an execution program stored in the storage 34 and executing it.
- the detection unit 41 has a function of detecting a digital signal related to each piezoelectric substrate 50 output from the AD converter 28 via the input/output I/F 36 .
- the detection unit 42A obtains biological information such as respiration and pulse from the magnitude and period of the digital signal detected by the detection unit 41, and vibration due to mechanical micromotion of muscles (so-called biological tremor) as a physiological phenomenon of the living body. and has a function to detect biological information such as respiration and pulse from the magnitude and period of the digital signal detected by the detection unit 41, and vibration due to mechanical micromotion of muscles (so-called biological tremor) as a physiological phenomenon of the living body. and has a function to detect biological information such as respiration and pulse from the magnitude and period of the digital signal detected by the detection unit 41, and vibration due to mechanical micromotion of muscles (so-called biological tremor) as a physiological phenomenon of the living body. and has a function to detect biological information such as respiration and pulse from the magnitude and period of the digital signal detected by the detection unit 41, and vibration due to mechanical micromotion of muscles (so-called biological tremor) as a physiological phenomenon of the living body. and has a function to detect biological information such as respiration and
- control device 100 has an acquisition unit 111A and a control unit 112A. Each functional configuration is realized by the CPU 101 reading an execution program stored in the storage 104 and executing it.
- the acquisition unit 111A has a function of acquiring biometric information from the biometric information detection device 10.
- the control unit 112A has a function of controlling the device 200 using the acquired biological information. For example, the control unit 112A transmits an instruction to execute processing to each device 200 according to the biometric information. Specifically, the control unit 112A detects fluctuations in the interval between heartbeats from the biological information, and when the fluctuations in the heartbeats become smaller (the intervals between heartbeats are stable), the driver is sleepy. , and transmits an instruction to brake the actuator as the device 200 .
- the heartbeat fluctuation may be obtained by directly measuring the heartbeat interval, or by converting the heartbeat interval into a frequency.
- control unit 112A detects the magnitude and number of heartbeats from the biological information, the magnitude of the heartbeat is greater than the average value for the driver, and the number of heartbeats in a predetermined period is greater than the average value for the driver. In this case, it is determined that the driver is in a tense state, and an instruction to apply the brake to the actuator as the device 200 is transmitted.
- the piezoelectric substrate of this embodiment includes an axial inner conductor and an elongated piezoelectric body coaxially provided around the inner conductor and containing an optically active polypeptide.
- the elongated piezoelectric body is provided coaxially around the inner conductor, and the elongated piezoelectric body contains the optically active polypeptide. (piezoelectric sensitivity) is expressed.
- a piezoelectric body is spirally wound in one direction around an inner conductor.
- the piezoelectric substrate of the present embodiment contains an optically active polypeptide that is excellent in hydrolysis resistance in a high-temperature, high-humidity environment, compared with a piezoelectric substrate using polylactic acid, for example, Excellent durability in wet environments).
- excellent in durability means that a decrease in piezoelectric sensitivity is suppressed (especially in a high-temperature and high-humidity environment).
- the piezoelectric substrate of this embodiment includes an elongated piezoelectric body.
- the orientation degree F of the elongated piezoelectric body is in the range of 0.50 or more and less than 1.00.
- the degree of orientation F of the piezoelectric material is a value obtained by the following formula (a) from X-ray diffraction measurement, and means the degree of c-axis orientation.
- Orientation F (180°- ⁇ )/180°...
- Formula (a) [In the formula (a), ⁇ represents the half width (°) of the orientation-derived peak. ]
- the degree of orientation F is an index indicating the degree of orientation of the optically active polypeptide contained in the piezoelectric material.
- the fact that the orientation degree F of the elongated piezoelectric body is 0.50 or more contributes to the development of piezoelectricity.
- the fact that the orientation degree F of the elongated piezoelectric body is less than 1.00 contributes to the productivity of the piezoelectric body.
- the orientation degree F of the elongated piezoelectric body is preferably 0.50 or more and 0.99 or less, more preferably 0.70 or more and 0.98 or less, and 0.80 or more and 0.97 or less. It is particularly preferred to have
- the fact that the length direction of the piezoelectric body and the main orientation direction of the optically active polypeptide contained in the piezoelectric body are substantially parallel also contributes to the development of piezoelectricity.
- the fact that the length direction of the piezoelectric body and the main orientation direction of the optically active polypeptide contained in the piezoelectric body are substantially parallel also has the advantage that the piezoelectric body has excellent tensile strength in the length direction. . Therefore, when the piezoelectric body is spirally wound, the piezoelectric body is less likely to break.
- substantially parallel means that the angle formed by the two line segments is 0° or more and less than 30° when the angle formed by the two line segments is expressed in the range of 0° or more and 90° or less. (Preferably 0° or more and 22.5° or less, more preferably 0° or more and 10° or less, still more preferably 0° or more and 5° or less, particularly preferably 0° or more and 3° or less).
- the piezoelectric body is silk or spider silk
- the length direction of the piezoelectric body (silk or spider silk) and the optically active polypeptide (for example, fibroin) contained in the piezoelectric body or spider silk protein) are substantially parallel to each other.
- the fact that the length direction of the piezoelectric body and the main orientation direction of the optically active polypeptide contained in the piezoelectric body are substantially parallel means that in X-ray diffraction measurement, the installation direction of the sample and the azimuth angle of the crystal peak can be verified by comparing .
- the inclusion of an optically active polypeptide in the piezoelectric also contributes to the development of piezoelectricity.
- optically active polypeptides are excellent in hydrolysis resistance. Excellent material durability.
- the inclusion of the optically active polypeptide in the piezoelectric material is advantageous in that the piezoelectric material and the piezoelectric base material are more advantageous than the piezoelectric material containing PVDF as a main component. Excellent durability.
- the piezoelectric body including PVDF since the piezoelectric body including PVDF has high pyroelectricity, the change in output of the amount of charge due to temperature change is large.
- the piezoelectric body containing the optically active polypeptide of the present embodiment has a smaller change in the output of the charge amount due to temperature changes, and the output of the charge amount is more stable than the piezoelectric body containing PVDF. Excellent in points.
- a piezoelectric body containing polylactic acid tends to lower its sensor sensitivity when the temperature rises above a predetermined temperature.
- the piezoelectric body containing the optically active polypeptide of the present embodiment has more stable sensor sensitivity than the piezoelectric body containing polylactic acid even when the temperature is higher than a predetermined temperature. Excellent in points. Therefore, the piezoelectric body of the present embodiment has excellent sensitivity and is suitable for use in detecting biological information from the human body when placed in an environment that changes to a high temperature.
- an optically active polypeptide means a polypeptide having optical activity (that is, a polypeptide having an asymmetric carbon atom and having a biased abundance of optical isomers).
- the optically active polypeptide preferably has a ⁇ -sheet structure from the viewpoint of piezoelectricity and strength.
- Optically active polypeptides include animal proteins having optical activity (eg, fibroin, sericin, collagen, keratin, elastin, spider silk protein, etc.).
- the optically active polypeptide preferably contains at least one of fibroin and spider silk protein, and particularly preferably consists of at least one of fibroin and spider silk protein.
- the spider silk protein is not particularly limited as long as it is a natural spider silk protein or derived from or similar to a natural spider silk protein (hereinafter collectively referred to as "origin").
- "derived from natural spider silk protein” means having an amino acid sequence that is the same as or similar to the repeating sequence of amino acids that natural spider silk protein has.
- Those derived from natural spider silk proteins include, for example, recombinant spider silk proteins, mutants of natural spider silk proteins, analogues of natural spider silk proteins, derivatives of natural spider silk proteins, and the like.
- the spider silk protein is preferably a major duct dragline protein produced in the greater vasculature gland of spiders or a spider silk protein derived from the major duct dragline protein.
- Major duct dragline proteins include MaSp1 or MaSp2, which are major pituitary gland spidroins derived from Nephila clavipes, ADF3 or ADF4 derived from Araneus diadematus, and the like.
- the spider silk protein may be a spider silk protein produced in the arachnoid glands of spiders or a spider silk protein derived from the silker silk protein.
- Small duct dragline proteins include MiSp1 and MiSp2, which are small humeral gland spidroins derived from Nephila clavipes.
- the spider silk protein may be a weft protein produced in the flagelliform gland of spiders or a spider silk protein derived from this weft protein.
- the weft protein include flagelliform silk protein derived from Nephila clavipes.
- Examples of the spider silk protein derived from the above-described large discharge tube dragline silk protein include recombinant spider silk proteins containing units of the amino acid sequence represented by the following formula (1).
- the recombinant spider silk protein may contain 2 or more (preferably 4 or more, more preferably 6 or more) units of the amino acid sequence represented by the following formula (1).
- the two or more amino acid sequence units may be the same or different.
- REP1-REP2 ... Formula (1)
- REP1 is a polyalanine region composed mainly of alanine and represented by (X1)p
- REP2 is an amino acid sequence consisting of 10 to 200 amino acids.
- REP1 is a polyalanine region composed mainly of alanine and represented by (X1)p.
- REP1 is preferably polyalanine.
- p is not particularly limited, but preferably an integer of 2-20, more preferably an integer of 4-12.
- X1 represents alanine (Ala), serine (Ser), or glycine (Gly).
- the total number of alanine residues is preferably 80% or more (more preferably 85% or more) of the total number of amino acid residues in the polyalanine region.
- the consecutively arranged alanine residues are preferably 2 or more residues, more preferably 3 residues or more, still more preferably 4 residues or more, and particularly preferably is 5 or more residues. Further, in REP1 in formula (1), the consecutively arranged alanines are preferably 20 residues or less, more preferably 16 residues or less, still more preferably 12 residues or less, Particularly preferably, it is 10 residues or less.
- REP2 is an amino acid sequence consisting of 10 to 200 amino acids.
- the total number of glycine, serine, glutamine, proline and alanine residues contained in this amino acid sequence is preferably 40% or more, more preferably 50% or more, and 60% or more of the total number of amino acid residues. Especially preferred.
- spider silk proteins derived from the above-mentioned small discharge tube dragline silk proteins include recombinant spider silk proteins containing the amino acid sequence represented by the following formula (2).
- REP3-REP4-REP5 ...
- REP3 is an amino acid sequence represented by (Gly-Gly-Z)m
- REP4 is an amino acid sequence represented by (Gly-Ala)l
- REP5 is (Ala) It is the amino acid sequence represented by r.
- Z means any one amino acid.
- m is 1-4
- REP4 is 0
- REP5 is 1-6.
- Z means any one amino acid, preferably one amino acid selected from the group consisting of Ala, Tyr and Gln.
- the above-described recombinant spider silk protein (for example, a recombinant spider silk protein containing a unit of the amino acid sequence represented by formula (1), a recombinant spider silk protein containing an amino acid sequence represented by formula (2), etc.) is It can be produced using a host transformed with an expression vector containing a gene encoding a natural spider silk protein to be recombined.
- the elongated piezoelectric body preferably contains fibers made of an optically active polypeptide.
- Fibers composed of optically active polypeptides include fibers composed of optically active animal proteins (eg, silk, wool, mohair, cashmere, camel, llama, alpaca, vicuna, angora, spider silk, etc.).
- the optically active polypeptide fiber preferably contains at least one of silk and spider silk, more preferably at least one of silk and spider silk.
- Silk includes raw silk, refined silk, regenerated silk, and the like.
- raw silk or refined silk is preferable, and refined silk is particularly preferable.
- refined silk means silk obtained by removing sericin from raw silk having a double structure of sericin and fibroin
- refinement means an operation to remove sericin from raw silk.
- the color of raw silk is dull white, but by removing sericin from raw silk (that is, refining), it changes from dull white to shiny silvery white. Refining also increases the softness of the texture.
- the elongated piezoelectric body preferably contains long fibers made of an optically active polypeptide.
- long fiber means a fiber having a length that can be continuously wound from one end to the other end in the longitudinal direction of the piezoelectric substrate.
- the elongated piezoelectric body contains the fiber
- the long piezoelectric body includes the thread
- the long piezoelectric body is made of one thread
- the long piezoelectric body is an aggregate of a plurality of the threads.
- the yarn may be a twisted yarn or a non-twisted yarn, but from the viewpoint of piezoelectricity, a yarn with a twist number of 500 T/m or less It is preferably several 0 T/m)).
- Non-twisted yarns include a single raw yarn, an aggregate of multiple raw yarns, and the like.
- the thickness of the long piezoelectric body (the thickness of the entire assembly when the long piezoelectric body is an assembly of a plurality of threads) is not particularly limited, but is preferably 0.0001 to 2 mm. , 0.001 to 1 mm, and particularly preferably 0.005 to 0.8 mm.
- the fineness of one raw yarn is preferably 0.01 to 10000 denier, more preferably 0.1 to 1000 denier. It is preferred, and 1 to 100 denier is particularly preferred.
- the elongated piezoelectric body is spirally wound.
- an electric charge is generated by applying a shear stress to the spirally wound long piezoelectric body.
- Shear stress applied to the piezoelectric body can be generated, for example, by pulling the entire helically wound long piezoelectric body in the direction of the helical axis, or by pulling part of the helically wound long piezoelectric body. It can be applied by twisting (that is, twisting a part of the piezoelectric body around the helical axis), bending a part or the whole of the helically wound long piezoelectric body, or the like. .
- the elongated piezoelectric body is preferably wound at a spiral angle of 20° to 70°.
- the helical angle means the angle between the helical axis direction (the length direction of the core material when the core material is provided) and the length direction of the wound piezoelectric body (FIG. 7). See spiral angle ⁇ 1 in the middle).
- the helix angle is more preferably 25° to 65°, still more preferably 30° to 60°, and particularly preferably 35° to 55°.
- the elongated piezoelectric body is preferably spirally wound in one direction.
- “helically wound in one direction” means that when viewed from one end of the piezoelectric substrate, it is left-handed (that is, counterclockwise) from the front side to the back side. , the piezoelectric body is spirally wound in a left-handed direction; It means that the piezoelectric body is spirally wound in the right-handed direction.
- the embodiment in which a piezoelectric base material is spirally wound in one direction to include a long piezoelectric body includes not only a mode in which only one layer of the piezoelectric body is provided, but also a mode in which multiple layers of the piezoelectric bodies are stacked. be done.
- a mode in which a plurality of layers of the piezoelectric bodies are stacked for example, the piezoelectric bodies are stacked on the first piezoelectric body spirally wound in one direction, and the second piezoelectric body is spirally wound in the same direction as the one direction.
- An embodiment in which the wire is wound in a shape is mentioned.
- a first piezoelectric body spirally wound in one direction and a spirally wound in a direction different from the one direction and a second piezoelectric body, wherein the chirality of the optically active polypeptide contained in the first piezoelectric body and the chirality of the optically active polypeptide contained in the second piezoelectric body are different from each other.
- the piezoelectric substance may contain components other than the optically active polypeptide, if necessary.
- the piezoelectric body when the piezoelectric body is an assembly of a plurality of raw yarns, the piezoelectric body may contain an adhesive for fixing the assembly of the plurality of raw yarns. A preferred embodiment of the adhesive will be described later.
- the piezoelectric base material of this embodiment includes an elongated core material.
- a long piezoelectric body is helically wound around the long core material.
- the core material may be a conductor.
- the aspect in which the piezoelectric base material includes a core material that is a conductor has the advantage that an electrical signal (voltage signal or charge signal) can be easily extracted from the piezoelectric body through the core material that is a conductor.
- this aspect has the same structure as the internal structure (inner conductor and dielectric) provided in the coaxial cable, for example, when the piezoelectric base material of this aspect is applied to the coaxial cable, the electromagnetic shielding property is high, The structure can be resistant to noise.
- the conductor is preferably a good electrical conductor, such as copper wire, aluminum wire, SUS wire, metal wire coated with an insulating film, carbon fiber, resin fiber integrated with carbon fiber, tinsel wire, organic conductive wire. materials and the like.
- Tinsel wire means a fiber in which copper foil is spirally wound.
- tinsel wire and carbon fiber are preferable from the viewpoint of improving piezoelectric sensitivity and imparting high flexibility.
- a tinsel wire for applications that require low electrical resistance, bendability, and flexibility.
- the form of the tinsel wire has a structure in which a copper foil is spirally wound around a fiber, and the use of copper, which has high electrical conductivity, makes it possible to reduce the output impedance. Therefore, by using the tinsel wire as the core material, the piezoelectricity of the piezoelectric substrate is further improved.
- piezoelectric base material of the present embodiment is used as a fiber to produce a piezoelectric woven fabric or piezoelectric knitted fabric, suppleness and high flexibility are required.
- filamentous or fibrous signal line conductors are preferred.
- a piezoelectric base material having filamentous or fibrous signal line conductors has high flexibility, and therefore is suitable for processing with a loom or a knitting machine.
- the piezoelectric substrate includes a conductor core material
- the piezoelectric substrate includes an outer conductor on the outer peripheral side of the elongated piezoelectric body spirally wound around the core material, and is a conductor. It is preferable that the core material and the outer conductor are electrically insulated.
- the outer conductor can electrostatically shield the inside of the piezoelectric substrate (piezoelectric body and conductive core material). voltage change or charge change is suppressed. Therefore, more stable piezoelectricity can be obtained in the piezoelectric substrate.
- the outer conductor is preferably connected to ground potential.
- the material of the outer conductor there is no particular limitation on the material of the outer conductor, there are mainly the following materials depending on the cross-sectional shape.
- a copper foil ribbon obtained by rolling a copper wire having a circular cross section into a flat plate, an Al foil ribbon, or the like can be used.
- the material of the outer conductor having a circular cross section copper wire, aluminum wire, SUS wire, metal wire coated with an insulating film, carbon fiber, resin fiber integrated with carbon fiber, and tinsel wire can be used.
- an organic conductive material coated with an insulating material may be used as the material of the outer conductor.
- the outer conductor is arranged so as to wrap the conductor core material and the piezoelectric body so as not to cause a short circuit with the conductor core material.
- a method of wrapping the core material and the piezoelectric body which are conductors, select a method of spirally winding a copper foil or the like, or a method of wrapping a copper wire or the like into a cylindrical braid and wrapping it in the braid. can be done.
- the said wrapping method is not limited to these methods.
- the external conductor is arranged so as to enclose the minimum basic structural unit (that is, the conductor and the piezoelectric body) of the piezoelectric base material in a cylindrical shape.
- the minimum basic structural unit that is, the conductor and the piezoelectric body
- the piezoelectric base material having the above minimum basic structural unit
- a planar or sheet-shaped It is also one of the preferred forms to arrange the conductors in close proximity to each other.
- Various cross-sectional shapes such as circular, elliptical, rectangular, and irregular shapes can be applied to the cross-sectional shape of the outer conductor.
- the rectangular cross section can be in flat contact with conductors, piezoelectric bodies, and the like, charges generated by the piezoelectric effect can be efficiently detected as voltage signals.
- the piezoelectric substrate of this embodiment may further comprise the insulator of the first aspect.
- the insulator of the first aspect is preferably spirally wound along the outer peripheral surface of the internal conductor.
- the insulator of the first mode may be arranged on the side opposite to the internal conductor when viewed from the piezoelectric body, or may be arranged between the internal conductor and the piezoelectric body.
- the winding direction of the insulator of the first mode may be the same as or different from the winding direction of the piezoelectric body.
- the piezoelectric base material when the piezoelectric base material includes an outer conductor, the piezoelectric base material further includes the insulator of the first aspect, so that an electrical short circuit occurs between the inner conductor and the outer conductor when the piezoelectric base material bends and deforms. has the advantage of being easier to suppress
- the insulator of the first mode is not particularly limited, but for example, vinyl chloride resin, polyethylene resin, polypropylene resin, ethylene/tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene/hexafluoropropylene copolymer Polymer (FEP), tetrafluoroethylene resin (PTFE), tetrafluoroethylene/perfluoropropyl vinyl ether copolymer (PFA), fluororubber, polyester resin, polyimide resin, polyamide resin, polyethylene terephthalate resin (PET), rubber (including elastomer) and the like.
- the shape of the insulator of the first mode is preferably an elongated shape from the viewpoint of winding around the conductor.
- the insulator of the second mode may be provided on the outer circumference of the first outer conductor. This enables electrostatic shielding and suppresses voltage changes in the conductor (preferably the internal conductor) due to the influence of external static electricity.
- the second insulator is not particularly limited, but examples thereof include the materials exemplified as the insulator of the first aspect. Moreover, the shape of the insulator in the second aspect is not particularly limited as long as it can cover at least a part of the outer conductor.
- a method of winding a long insulator around the piezoelectric base material before the insulator is provided; a method of winding a cylindrical insulator; A method in which a piezoelectric base material before an insulator is provided is placed in the inner space of (e.g., a heat-shrinkable tube), and then the cylindrical insulator is shrunk and adhered by heat; covered with an insulating molten resin and cooled A method of solidifying; a method of coating and solidifying an insulating resin coating liquid; and the like.
- the piezoelectric substrate of this embodiment may contain an adhesive.
- at least the spirally wound piezoelectric body can be mechanically integrated.
- the piezoelectric substrate includes a member other than the piezoelectric body such as a core material (core material, external conductor, etc.)
- the piezoelectric body and the member other than the piezoelectric body can be integrated with an adhesive. .
- Adhesive materials include epoxy adhesives, urethane adhesives, vinyl acetate resin emulsion adhesives, (EVA) emulsion adhesives, acrylic resin emulsion adhesives, and styrene-butadiene rubber latex adhesives.
- Adhesives, silicone resin adhesives, ⁇ -olefin (isobutene-maleic anhydride resin) adhesives, vinyl chloride resin solvent adhesives, rubber adhesives, elastic adhesives, chloroprene rubber solvent adhesives, Nitrile rubber-based solvent-based adhesives, cyanoacrylate-based adhesives, and the like are included.
- the piezoelectric base material of this embodiment may include elements other than the elements described above.
- Other elements include, for example, fibers other than long piezoelectric bodies.
- fibers other than the long piezoelectric body may be wound together with the long piezoelectric body.
- a known extraction electrode can be joined to the piezoelectric base material of the present embodiment. Examples of extraction electrodes include electrode parts such as connectors, crimp terminals, and the like.
- the electrode component can be joined to the piezoelectric base material by brazing such as soldering, a conductive adhesive, or the like.
- piezoelectric substrate of this embodiment will be described below with reference to the drawings, but the piezoelectric substrate of this embodiment is not limited to the following specific examples. It should be noted that substantially the same elements are denoted by the same reference numerals throughout the drawings, and redundant description may be omitted. Further, in specific examples of the piezoelectric substrate of the present embodiment, a piezoelectric substrate 50A, a piezoelectric substrate 50B, and a piezoelectric substrate 50C, which will be described later, are examples of the piezoelectric substrate 50 described above.
- FIG. 7 is a schematic side view schematically showing a piezoelectric substrate according to Specific Example A of the present embodiment
- FIG. 8 is a cross-sectional view taken along line XX' of FIG.
- Specific example A is a specific example of a piezoelectric base material (piezoelectric base material having a core material) of the first embodiment that does not include an external conductor.
- a piezoelectric base material 50A which is a specific example A, includes an elongated core member 52 that is a conductor, and an elongated piezoelectric body 54A.
- the piezoelectric body 54A is spirally wound in one direction along the outer peripheral surface of the core material 52 at a spiral angle ⁇ 1 from one end to the other end without a gap.
- the helix angle ⁇ 1 is an angle formed by the direction of the helix axis G1 (the axial direction of the core material 52 in this example) and the length direction of the piezoelectric body 54A in a side view.
- the piezoelectric body 54A is wound counterclockwise around the core material 52.
- the piezoelectric body 54A is left-handed from the front side of the core material 52 toward the back side. is wound with Also, in FIG. 8, the main orientation direction of the optically active polypeptide contained in the piezoelectric body 54A is indicated by a double arrow E1. That is, the main orientation direction of the optically active polypeptide and the length direction of the piezoelectric body 54A are substantially parallel.
- each member (the core material 52 and the piezoelectric body 54A) is integrated (fixed) by impregnating an adhesive (not shown) between the members.
- the piezoelectric substrate 50A when tension is applied in the longitudinal direction of the piezoelectric substrate 50A, shear stress is applied to the optically active polypeptide contained in the piezoelectric body 54A, and the optically active polypeptide is polarized. The polarization of this optically active polypeptide is considered to occur with the phase aligned in the radial direction of the piezoelectric substrate 50A, as indicated by the arrows in FIG. Thereby, the piezoelectricity of the piezoelectric substrate 50A is exhibited. Furthermore, since the piezoelectric base material 50A includes the core material 52 that is a conductor, an electrical signal (voltage signal or charge signal) generated in the piezoelectric body 54A can be more easily extracted via the core material 52.
- FIG. 9 is a schematic side view schematically showing a piezoelectric base material according to Specific Example B of the present embodiment.
- Specific example B is a specific example of the piezoelectric base material (piezoelectric base material having a core material) of the first embodiment that includes an external conductor.
- the piezoelectric base material 50B of the specific example B has an outer conductor 56 on the outer peripheral side of the piezoelectric body 54A in contrast to the piezoelectric base material 50A of the above-described specific example A, and the core material 52 and the outer conductor 56 are electrically insulated.
- Other configurations are the same as those of the piezoelectric base material 50A of the specific example A described above.
- Preferred aspects of the outer conductor 56 are as described above.
- the outer conductor 56 is formed, for example, by spirally winding a copper foil ribbon around the piezoelectric body 54A spirally wound around the core 52 .
- each member (the core member 52, the piezoelectric body 54A, and the outer conductor 56) is impregnated with an adhesive (not shown) to be integrated (fixed).
- an adhesive not shown
- FIG. 9 in the piezoelectric base material 50B, when viewed from the side, the ends of the wound body of the piezoelectric body 54A (that is, the spirally wound piezoelectric body 54A) and the ends of the external conductor 56 are separated from each other. Out of position.
- the core material 52 and the outer conductor 56 are reliably insulated.
- the positions of these end portions do not necessarily have to be shifted, and as long as the core material and the outer conductor, which are conductors, are electrically insulated, the positions of these end portions overlap when viewed from the side. There may be.
- the piezoelectric base material 50B also has the same effects as the piezoelectric base material 50A. Furthermore, since the piezoelectric base material 50B includes the outer conductor 56, the inside of the piezoelectric base material 50B (the piezoelectric body 54A and the core material 52, which is a conductor) can be electrostatically shielded by the outer conductor 56. Therefore, it is possible to suppress the voltage change of the core material 52 due to the influence of static electricity outside the piezoelectric base material 50B, and as a result, more stable piezoelectricity can be obtained.
- the outer conductor 56 may be omitted from the piezoelectric substrate 50B. Needless to say, even when the outer conductor 56 is omitted, the effect of the core material 52, which is a conductor, is exhibited. In addition, even if the outer conductor 56 is omitted, the structure is the same as the inner structure (inner conductor and dielectric) provided in the coaxial cable. It can be a structure that is strong against
- the steering wheel 20 of this embodiment includes a rim 21 (a grip) that is gripped by the driver, and a piezoelectric substrate 50 that is provided on the rim 21 and detects the pressure that the rim 21 receives from the driver.
- the steering wheel 20 has a piezoelectric substrate 50 coaxially provided around an axial inner conductor (core material 52) and an elongated piezoelectric body containing an optically active polypeptide. 54A.
- the piezoelectric base material 50 can output an electrical signal corresponding to the shear stress in a direction different from the direction in which the pressure is applied by spirally winding the piezoelectric body 54A around the internal conductor (core material 52). be. Therefore, the line-shaped piezoelectric base material 50 installed on the steering wheel 20 outputs an electric signal when tension is generated in the axial direction due to pressure on the steering wheel 20 .
- the piezoelectric body 54A containing an optically active polypeptide that constitutes the piezoelectric substrate 50 can be arranged in a line rather than in a sheet. Compared to piezoelectric bodies, they are superior in that there are fewer restrictions on where they can be placed.
- the piezoelectric body containing PVDF has a large change in output of the amount of electric charge due to temperature change.
- the piezoelectric base material 50 of the present embodiment has a smaller change in the output of the charge amount due to temperature changes, and the output of the charge amount is stable, as compared with the steering wheel including the piezoelectric body containing PVDF.
- a piezoelectric body containing polylactic acid tends to lower its sensor sensitivity when the temperature rises above a predetermined temperature.
- the piezoelectric substrate 50 of the present embodiment has stable sensor sensitivity even when the temperature exceeds a predetermined temperature, compared to a steering wheel including a piezoelectric body containing polylactic acid. excellent in terms of
- the piezoelectric substrate 50 of the present embodiment has excellent sensitivity and is suitable for use in detecting biological information from the human body by placing it on the steering wheel 20 of a vehicle in an environment that changes to high temperatures. is.
- the steering wheel 20 of the present embodiment is provided with the piezoelectric base material 50 over the entire circumference of the rim 21, it is possible to detect the pressure of gripping the rim 21 and biometric information regardless of whether one hand or both hands. is. Moreover, even if static electricity is generated, the piezoelectric substrate 50 is arranged inside the rim 21 and is not affected by static electricity, so erroneous detection of biometric information can be prevented.
- the top film is flexed when touched, and the flexure brings the top film into contact with the bottom film.
- a resistive pressure-sensitive pressure sensor that detects contact with a film by detecting energization from the contact point.
- the resistive pressure sensor is applied to the steering wheel, in order to detect the position of the contact point, it is necessary to constantly supply a voltage to the sensor and measure the resistance by measuring the flowing current, so power is not supplied. I need to continue.
- the steering wheel 20 of the present embodiment detects an electrical signal generated by pressure input to the piezoelectric base material 50, and biometric information can be detected, so power supply is not required.
- the steering wheel 20 of the present embodiment has excellent sensitivity and can suppress power consumption, so it is suitable for use in detecting biological information from the human body.
- FIG. 10 is a front view showing an example of the steering wheel 20 for explaining the arrangement of the piezoelectric base material according to this embodiment.
- the present embodiment differs from the first embodiment only in the arrangement of the piezoelectric substrate 50, but the other aspects are the same.
- the same reference numerals are given to the same configurations as in the first embodiment, and overlapping descriptions are omitted.
- the piezoelectric substrate 50 is arranged inside the rim 21 so as to be wound around the rim 21 .
- the incisions 25 are likewise wound around the surface 24 of the rim 21 .
- one piezoelectric base material 50 is arranged so as to be wound around the rim 21 inside the rim 21, so that the rim 21 can be biometric information is detected from a wide range on the surface of the
- FIG. 11 is a front view showing an example of the steering wheel 20 for explaining the arrangement of the piezoelectric base material according to this embodiment. It should be noted that this embodiment differs from the second embodiment only in the arrangement of the piezoelectric substrate 50 and the functional configuration, but the other aspects are the same. In the following description, the same reference numerals are given to the same configurations as in the second embodiment, and overlapping descriptions are omitted.
- a plurality of independent piezoelectric substrates 50 are arranged inside the rim 21 gripped by the user. Specifically, six piezoelectric substrates 50 are installed at regular intervals along the shape of the rim 21 .
- the biological information detection device 10 has a detection section 41 and a detection section 42B.
- Each functional configuration is realized by the CPU 31 reading an execution program stored in the storage 34 and executing it. 12 that are the same as the functions of the biological information detecting device 10 and the control device 100 shown in FIG. 6 are denoted by the same reference numerals as in FIG. 6, and description thereof will be omitted.
- the detection unit 42B shown in FIG. 12 has a function of detecting biological information such as respiration and pulse from the magnitude and cycle of the digital signal detected by the detection unit 41.
- the detection unit 42B also has a function of detecting position information indicating the position where the driver grips the rim 21 by comparing the output signals of the adjacent piezoelectric substrates 50 .
- control device 100 has an acquisition unit 111B and a control unit 112B. Each functional configuration is realized by the CPU 101 reading an execution program stored in the storage 104 and executing it.
- the acquisition unit 111B has a function of acquiring biometric information and position information from the biometric information detection device 10.
- the control unit 112B has a function of controlling the device 200 using the acquired biological information and position information. For example, the control unit 112B transmits an instruction to execute processing to each device 200 according to the biometric information. Specifically, the control unit 112B detects fluctuations in the interval between heartbeats from the biological information, and when the fluctuations in the heartbeats become smaller (the intervals between heartbeats are stable), the driver is sleepy. , and transmits an instruction to brake the actuator as the device 200 . In addition, the control unit 112B detects the magnitude and number of heartbeats from the biological information, the magnitude of the heartbeat is greater than the average value for the driver, and the number of heartbeats in a predetermined period is greater than the average value for the driver.
- the control unit 112B uses the position information to determine the state in which the driver is gripping the rim 21, and outputs voice information regarding the state in which the driver is gripping the rim 21 and the state in which the rim 21 is not being gripped.
- An instruction to output may be transmitted to the input/output unit 105 such as a speaker, or an instruction to output the character information may be transmitted to the display unit 106 such as a monitor.
- the pressure detected by each piezoelectric substrate 50 is compared and the biological information of the driver and positional information (when the driver is gripping the rim 21) are obtained. positional information) is detected, and the device 200 is controlled using the biological information and the positional information.
- the form in which the plurality of piezoelectric substrates 50 are arranged along the shape of the rim 21 has been described. However, it is not limited to this. As an example, as shown in FIG. 13 , a plurality of piezoelectric substrates 50 may be arranged so as to be wound around the rim 21 . Specifically, eight piezoelectric substrates 50 are arranged at equal intervals so as to be wound around the rim 21 .
- a plurality of mutually independent piezoelectric substrates 50 are arranged so as to be wound around the rim 21, so that biological information and positional information of the driver (when the driver grips the rim 21) is collected from a wide range on the surface of the rim 21. location information) is detected.
- both the piezoelectric base material 50 with the piezoelectric body 54A wound in the right-handed direction and the piezoelectric base material 50 with the piezoelectric body 54A wound in the left-handed direction are arranged on the rim 21, for example, alternately. good too.
- Two piezoelectric substrates 50 wound in the right-handed direction and two piezoelectric substrates wound in the left-handed direction are arranged side by side, and the respective detection signals are differentially amplified to output the vital signal. It is possible to double and cancel the common mode noise superimposed on the signal line. This makes it possible to improve the SN ratio of the vital signal.
- the piezoelectric substrate 50 is installed on the rim 21 (holding body) held by the driver.
- piezoelectric substrate 50 may be mounted on hub 22 .
- the piezoelectric substrate 50 may be arranged on a steering switch (not shown).
- the piezoelectric substrate 50 is placed under a button installed on the steering wheel 20, and the piezoelectric substrate 50 detects the pressure when the button is pressed, thereby detecting that the button has been pressed. It is possible to
- Raw silk was prepared as an optically active polypeptide fiber.
- Raw silk is a long fiber composed of optically active polypeptides.
- Raw silk is 21 denier.
- the thickness of raw silk is 0.06mm-0.04mm.
- the degree of orientation F degree of c-axis orientation
- ⁇ half width of the peak according to the following formula (a) was calculated.
- the orientation degree F of the optically active polypeptide fiber is 0.91.
- Orientation (F) (180°- ⁇ )/180° (a) ( ⁇ is the half width of the peak derived from the orientation)
- a scouring silk was produced by scouring a six-twisted yarn (twisting number: 150 T/m) as a piezoelectric yarn from raw silk by a known method.
- the orientation degree F of the twisted yarn of this refined silk is 0.86. Since the orientation degree F of the optically active polypeptide fiber is 0.86 and the six-piece twisted yarn (piezoelectric yarn) was produced using the scouring silk, the length direction of the piezoelectric yarn and the scouring silk ( It can be evaluated that the main orientation direction of the optically active polypeptide contained in the optically active polypeptide fiber) is substantially parallel.
- a tinsel wire "U24-01-00" (wire diameter 0.26 mm, length 200 mm) manufactured by Meisei Sangyo Co., Ltd. was prepared.
- the piezoelectric thread was wound counterclockwise on the outer peripheral surface of the internal conductor so as to have a spiral angle of about 45° with as few gaps as possible.
- a layer (hereinafter referred to as a "piezoelectric yarn layer") was formed on the outer peripheral surface of the internal conductor, and a piezoelectric substrate precursor was obtained.
- the piezoelectric thread layer covered the entire outer peripheral surface of the internal conductor. That is, the outer peripheral surface of the inner conductor was not exposed.
- Left-handed means that the piezoelectric thread is wound counterclockwise from the front side to the back side of the inner conductor (tinshi wire) when viewed from one end in the axial direction of the inner conductor.
- Helix angle refers to the angle formed by the longitudinal direction of the piezoelectric yarn with respect to the axial direction of the inner conductor.
- This copper foil ribbon was wound around the core material and tightly wound around the mechanically integrated raw silk so that the raw silk was hardly exposed.
- the winding direction of the copper foil ribbon was right-handed.
- the copper foil ribbon was wound so as not to come into contact with the two crimp terminals.
- a PTFE film having a thickness of 0.15 mm was wound counterclockwise to cover the whole so that the external copper foil was not exposed. As described above, a piezoelectric substrate was obtained.
- ⁇ Piezoelectric substrate placed directly under the skin> The end of the piezoelectric substrate is connected to the coaxial line, the inner conductor and the outer conductor are arranged so as not to be in electrical contact, the connection portion is covered with a copper foil so as to wrap it from the outside, and the copper foil and the outer conductor are soldered. were electrically connected, and the whole was fixed with Kapton tape.
- a length of piezoelectric substrate was placed so as to wrap around the rim of the steering wheel. Specifically, as shown in FIG. 14, the genuine leather part of a steering wheel with genuine leather used in a passenger car is once peeled off, and a piezoelectric base material is placed on the urethane resin cushion material under the genuine leather. I installed this and put the genuine leather part back on.
- ⁇ Detection of Piezoelectric Sensitivity of Piezoelectric Substrate Signals from the piezoelectric substrate were detected by the following method.
- a coaxial line connected to the end of the piezoelectric substrate was connected to a detection circuit.
- the wiring on the outer conductor side was connected to the ground side of the detection circuit.
- an amplifier circuit as shown in FIG. 15 was used, and the variable resistance was adjusted to set the amplification factor to 100 times.
- the output voltage (OutPut) of this circuit is connected to NI's USB-6002, converted to a digital signal, input to a personal computer via a USB connection, passed through a high-pass filter using the control software LabView on the personal computer, and moving average After processing, the voltage signal was measured.
- a 3rd order Butterworth filter with a cutoff frequency of 1 Hz was used as the high-pass filter, and the moving average process was performed 50 times.
- grip detection was performed by the following method.
- a portion A of the steering wheel where the piezoelectric base material was installed was gripped and then released (the range of the double arrow A in FIG. 16 is time during which the steering part A is gripped).
- gripping the portion B of the steering wheel where the piezoelectric base material is not installed the range of the double arrow B in FIG. 16 is the time when the steering portion B is gripped in FIG. 14
- the detected voltage confirmed the difference.
- a biological tremor is considered to be a constant frequency vibration detected within a predetermined frequency band (for example, a band of about 5 Hz to 20 Hz) and a voltage level rising at a constant value. Also, when the gripping hand was released, the pressure fluctuation was detected, a large voltage was once detected, and then the voltage dropped to the base level.
- the position where the steering wheel is gripped can be detected from the magnitude of the output of the piezoelectric substrate.
- the detection sensitivity can be adjusted, and the gripped position information can be detected more accurately from the magnitude of the vibration output due to the biological tremor.
- Example 1 As a comparative example of Example 1, a PVDF piezoelectric sensor was arranged on a steering wheel in parallel with the piezoelectric substrate.
- a polarized PVDF sheet (PVDF-P0045) manufactured by Waki Laboratory Co., Ltd. is cut to a length of 200 mm and a width of 15 mm. It was soldered and connected to the coaxial line in the same way as the piezoelectric substrate.
- Example 1 ⁇ Piezoelectric substrate placed directly under the skin>
- the piezoelectric base material of Example 1 and the PVDF piezoelectric sensor are arranged side by side on the urethane resin cushion material under the genuine leather of the steering wheel in the same manner as in Example 1, and the whole is wrapped with Kapton tape. After fixing, the genuine leather portion was reattached and returned in the same manner as in Example 1.
- a piezoelectric base material and a PVDF piezoelectric sensor are used in a detection circuit as shown in FIG.
- the voltage signal was input to a personal computer via a USB connection, and the voltage signal was measured using control software LabView on the personal computer without setting a filter.
- the output of the PVDF piezoelectric sensor was connected to the detection circuit, and the amplification of the detection circuit was set so that the voltage level was the same as in Example 1 when the object was held. After that, the steering wheel is grasped and released several times, and then a signal indicating that the steering wheel is grasped (for example, the range of 0 to 10 seconds in FIG.
- FIG. 17 shows the result of detecting the voltage signal indicating gripping over time when the steering wheel is heated.
- the voltage detected by the piezoelectric substrate is indicated by a solid line
- the voltage detected by the PVDF piezoelectric sensor is indicated by a dotted line.
- the piezoelectric base material stably detects a voltage signal indicating that the steering has been gripped when the steering is repeatedly gripped and released for a period of 10 seconds from the start of heating. did. Also, when 15 seconds or more have passed since the start of heating of the piezoelectric substrate (the temperature of the steering wheel reached 45 degrees or more), when the steering wheel was gripped and released repeatedly, A voltage signal was detected stably (range 15 to 25 seconds in FIG. 17). On the other hand, the PVDF piezoelectric sensor stably detected a voltage signal during a period of 10 seconds after the start of heating, when the operation of gripping and releasing the steering was repeated.
- the piezoelectric base material according to this embodiment can stably detect a voltage signal indicating that the steering wheel is gripped.
- Example 2 A piezoelectric substrate was produced in the same manner as in Example 1, except that two piezoelectric substrates were prepared in which the piezoelectric yarn and the rolled copper foil ribbon were wound in different directions.
- Example 2 an example of detecting biological tremors using two piezoelectric substrates with different winding directions of a piezoelectric yarn and a rolled copper foil ribbon will be described.
- the piezoelectric substrate according to this example includes a first piezoelectric substrate composed of a left-handed piezoelectric yarn and a right-handed rolled copper foil ribbon similar to those in Example 1, and the winding direction of the first piezoelectric substrate is Differently, a second piezoelectric substrate composed of a right-handed piezoelectric yarn and a left-handed rolled copper foil ribbon was prepared.
- Each piezoelectric base material is arranged so that the inner conductor and the outer conductor are not electrically connected, the end is connected to the coaxial line, the connection part is covered with copper foil so as to wrap it from the outside, and the copper foil and the outer conductor are Electrical connection was made by soldering, and the whole was fixed with Kapton tape.
- the respective piezoelectric substrates were arranged in parallel on a urethane resin cushion material so as to be wound around the rim of the steering wheel.
- the leather part was reattached in the same way.
- the inner conductor 50D1 of the first piezoelectric base material 50D is connected to the first lead wire 29A1 on the central axis side of the coaxial line in the wiring 29A, and the outer conductor of the first piezoelectric base material 50D is connected.
- 50D2 was connected to a second conductor 29A2 outside the coaxial line in wiring 29A.
- the inner conductor 50E1 of the second piezoelectric base material 50E is connected to the first conductor 29B1 of the coaxial line of the wiring 29B, and the outer conductor 50E2 of the second piezoelectric base material 50E is connected to the coaxial line of the wiring 29B. was connected to the second conductor 29B2 on the outside of the .
- each of the first piezoelectric substrate 50D and the second piezoelectric substrate 50E was electrically connected to an instrumentation amplifier housed in a metal housing (GND).
- a first conductor 29A1 of the wiring 29A was connected to the first differential input terminal V IN ⁇ of the instrumentation amplifier.
- the second conductor 29B1 of the wiring 29B was connected to the second differential input terminal V IN + of the instrumentation amplifier.
- the reference terminal V ref of the instrumentation amplifier, the second conductor 29A2 of the wiring 29A, and the second conductor 29B2 of the wiring 29B were connected to a metal housing (GND) housing the instrumentation amplifier 30 .
- the part of the steering wheel in which the piezoelectric substrate is embedded is kept lightly gripped with one hand, and signals obtained from each of the first piezoelectric substrate 50D and the second piezoelectric substrate 50E are sent to the instrumentation amplifier.
- the output of the instrumentation amplifier was measured using the "USB-6001" manufactured by National Instruments, the data was imported into a personal computer, the voltage signal was analyzed by FFT (Fast Fourier Transform), and the frequency characteristics were evaluated. .
- FIG. 19 shows the measurement results of the FFT analysis in Example 2.
- FIG. 20 shows the results of FFT analysis of signals detected in the same arrangement as in Example 2, but in a state where the steering wheel is not gripped and left stationary.
- the signal indicating that the steering wheel is gripped is significantly detected by using two piezoelectric substrates with different winding directions of the piezoelectric yarn and the rolled copper foil ribbon. .
- Example 3 Signal detection was performed in the same manner as in Example 2, except that the internal conductor 50E1 of the second piezoelectric substrate 50E was not electrically connected to the second differential input terminal V IN + of the instrumentation amplifier 30. . Specifically, as shown in FIG. 21 as an example, the internal conductor 50D1 of the first piezoelectric substrate 50D is electrically connected to the first differential input terminal V IN ⁇ of the instrumentation amplifier 30, and the second input terminal of the instrumentation amplifier 30 is electrically connected. A metal housing (GND) housing the instrumentation amplifier 30 was connected to the differential input terminal V IN + .
- GND metal housing
- Example 3 shows the measurement results of FFT analysis in Example 3 in the same manner as in Example 2.
- Example 3 shows the measurement results of FFT analysis in Example 3 in the same manner as in Example 2.
- the piezoelectric substrate further comprises an insulator spirally wound along the outer peripheral surface of the internal conductor, the insulator is disposed between the inner conductor and the piezoelectric body; The steering according to ⁇ 6>.
- Control system 10 Biological information detection device 20 Steering wheel 21 Rim (gripping body) 41 detection parts 42A, 42B detection parts 50, 50A, 50B, 50C piezoelectric substrate 52 core material (inner conductor) 54A Piezoelectric body 56 External conductor 100 Control device
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Steering Controls (AREA)
Abstract
This steering comprises a grip body to be gripped by a user and a piezoelectric substrate that detects pressure received by the grip body, the piezoelectric substrate including an axial inner conductor and an elongated piezoelectric body provided coaxially in the periphery of the inner conductor and containing an optically active polypeptide.
Description
本開示の技術は、ステアリング、生体情報検出装置、及び制御システムに関する。
The technology of the present disclosure relates to steering, biological information detection devices, and control systems.
近年、車両を運転する運転者の状態を検出するために、車両等のステアリングホイールにセンサを設置し、当該ハンドルから運転者の生体情報を検出する装置が開示されている。
In recent years, in order to detect the condition of the driver who drives the vehicle, a device has been disclosed in which a sensor is installed on the steering wheel of the vehicle and the biological information of the driver is detected from the steering wheel.
例えば、国際公開第2007/066513号には、ポリウレタン系樹脂を含有する基材上に誘電性フィラーを含有するエポキシ系樹脂からなる接触層が形成された操縦ハンドルにおいて、当該接触層から生体情報を検出することを特徴とする技術が提案されている。
For example, in International Publication No. WO 2007/066513, in a steering handle in which a contact layer made of an epoxy resin containing a dielectric filler is formed on a base material containing a polyurethane resin, biometric information is transmitted from the contact layer. Techniques characterized by detecting have been proposed.
また、例えば、特開2016-146953号公報には、フィルム状のポリフッ化ビニリデン(以下、「PVDF」という。)を適用した感圧センサを用いて、生体情報を取得することを特徴とする技術が提案されている。
Further, for example, Japanese Patent Application Laid-Open No. 2016-146953 discloses a technology characterized by acquiring biometric information using a pressure-sensitive sensor to which film-like polyvinylidene fluoride (hereinafter referred to as "PVDF") is applied. is proposed.
国際公開第2007/066513号は、握り方によって生体情報が検出できないことがある。また、特開2016-146953号公報に記載されているPVDFを含む圧電体を使用すれば、握り方によらず生体情報が検出できるが、車両のような温度変化の激しい環境においては改善の余地がある。
例えば、車両の内部、及び車両におけるハンドル部分は、炎天下の直射日光に晒され、車両の内部、及びハンドル部分が高温になることがある。そのため、高温となり得る環境下において、センサの感度が変動することがあり、必ずしも精度よく生体情報を取得できるとは限らなかった。 According to International Publication No. 2007/066513, biometric information may not be detected depending on the way of gripping. In addition, if a piezoelectric body containing PVDF described in Japanese Patent Application Laid-Open No. 2016-146953 is used, biometric information can be detected regardless of how it is gripped. There is
For example, the interior of the vehicle and the steering wheel portion of the vehicle are exposed to direct sunlight under the scorching sun, and the interior of the vehicle and the steering wheel portion may become hot. Therefore, the sensitivity of the sensor may fluctuate in an environment that can reach high temperatures, and it is not always possible to acquire biological information with high accuracy.
例えば、車両の内部、及び車両におけるハンドル部分は、炎天下の直射日光に晒され、車両の内部、及びハンドル部分が高温になることがある。そのため、高温となり得る環境下において、センサの感度が変動することがあり、必ずしも精度よく生体情報を取得できるとは限らなかった。 According to International Publication No. 2007/066513, biometric information may not be detected depending on the way of gripping. In addition, if a piezoelectric body containing PVDF described in Japanese Patent Application Laid-Open No. 2016-146953 is used, biometric information can be detected regardless of how it is gripped. There is
For example, the interior of the vehicle and the steering wheel portion of the vehicle are exposed to direct sunlight under the scorching sun, and the interior of the vehicle and the steering wheel portion may become hot. Therefore, the sensitivity of the sensor may fluctuate in an environment that can reach high temperatures, and it is not always possible to acquire biological information with high accuracy.
本開示の技術は、上記事実に鑑みてなされたものであり、高温となり得る環境下においても、握り方によらず生体情報を取得することができるステアリング、生体情報検出装置、及び制御システムを提供することを目的とする。
The technology of the present disclosure has been made in view of the above facts, and provides a steering wheel, a biological information detection device, and a control system that can acquire biological information regardless of how they are gripped even in an environment that can reach high temperatures. intended to
前記課題を達成するための具体的手段は、以下の通りである。
The specific means for achieving the above tasks are as follows.
<1> ユーザが把持する把持体と、
前記把持体が受ける圧力を検知する圧電基材と、を備え、
前記圧電基材は、
軸状の内部導体と、
前記内部導体の周囲において同軸状に設けられ、かつ光学活性ポリペプチドを含む長尺状圧電体と、
を備えるステアリング。 <1> A grasping body to be grasped by a user;
a piezoelectric substrate that detects the pressure received by the gripping body,
The piezoelectric substrate is
an axial inner conductor;
an elongated piezoelectric body provided coaxially around the inner conductor and containing an optically active polypeptide;
steering wheel.
前記把持体が受ける圧力を検知する圧電基材と、を備え、
前記圧電基材は、
軸状の内部導体と、
前記内部導体の周囲において同軸状に設けられ、かつ光学活性ポリペプチドを含む長尺状圧電体と、
を備えるステアリング。 <1> A grasping body to be grasped by a user;
a piezoelectric substrate that detects the pressure received by the gripping body,
The piezoelectric substrate is
an axial inner conductor;
an elongated piezoelectric body provided coaxially around the inner conductor and containing an optically active polypeptide;
steering wheel.
<2> 前記圧電基材は、前記長尺状圧電体の長さ方向と、前記光学活性ポリペプチドの主配向方向とが略平行である、
<1>に記載のステアリング。 <2> In the piezoelectric substrate, the length direction of the elongated piezoelectric body is substantially parallel to the main orientation direction of the optically active polypeptide.
The steering according to <1>.
<1>に記載のステアリング。 <2> In the piezoelectric substrate, the length direction of the elongated piezoelectric body is substantially parallel to the main orientation direction of the optically active polypeptide.
The steering according to <1>.
<3> X線回折測定から下記式(a)によって求められる前記光学活性ポリペプチドの配向度Fが0.50以上1.00未満である、
<1>又は<2>に記載のステアリング。
配向度F=(180°-α)/180° … 式(a)
〔式(a)中、αは配向由来のピークの半値幅(°)を表す。〕 <3> The degree of orientation F of the optically active polypeptide determined by the following formula (a) from X-ray diffraction measurement is 0.50 or more and less than 1.00.
The steering according to <1> or <2>.
Orientation F = (180°-α)/180°... Formula (a)
[In the formula (a), α represents the half width (°) of the orientation-derived peak. ]
<1>又は<2>に記載のステアリング。
配向度F=(180°-α)/180° … 式(a)
〔式(a)中、αは配向由来のピークの半値幅(°)を表す。〕 <3> The degree of orientation F of the optically active polypeptide determined by the following formula (a) from X-ray diffraction measurement is 0.50 or more and less than 1.00.
The steering according to <1> or <2>.
Orientation F = (180°-α)/180°... Formula (a)
[In the formula (a), α represents the half width (°) of the orientation-derived peak. ]
<4> 前記長尺状圧電体は、一方向に螺旋状に巻回されている、
<1>から<3>の何れか1つに記載のステアリング。
<5> 前記長尺状圧電体が、右旋方向に巻回されている前記圧電基材と、前記長尺状圧電体が、左旋方向に巻回されている前記圧電基材と、を含む、
<1>に記載のステアリング。 <4> The long piezoelectric body is spirally wound in one direction,
The steering according to any one of <1> to <3>.
<5> The elongated piezoelectric body includes the piezoelectric base material wound in the clockwise direction, and the piezoelectric base material wound in the counterclockwise direction. ,
The steering according to <1>.
<1>から<3>の何れか1つに記載のステアリング。
<5> 前記長尺状圧電体が、右旋方向に巻回されている前記圧電基材と、前記長尺状圧電体が、左旋方向に巻回されている前記圧電基材と、を含む、
<1>に記載のステアリング。 <4> The long piezoelectric body is spirally wound in one direction,
The steering according to any one of <1> to <3>.
<5> The elongated piezoelectric body includes the piezoelectric base material wound in the clockwise direction, and the piezoelectric base material wound in the counterclockwise direction. ,
The steering according to <1>.
<6> 前記圧電基材は、外周に外部導体をさらに備える、
<1>から<5>の何れか1つに記載のステアリング。 <6> The piezoelectric base material further comprises an outer conductor on the outer circumference,
The steering according to any one of <1> to <5>.
<1>から<5>の何れか1つに記載のステアリング。 <6> The piezoelectric base material further comprises an outer conductor on the outer circumference,
The steering according to any one of <1> to <5>.
<7> 前記圧電基材は、前記外部導体の外周にさらに絶縁体を備える、
<6>に記載のステアリング。 <7> The piezoelectric base material further comprises an insulator on the outer circumference of the outer conductor,
The steering according to <6>.
<6>に記載のステアリング。 <7> The piezoelectric base material further comprises an insulator on the outer circumference of the outer conductor,
The steering according to <6>.
<8> 前記光学活性ポリペプチドが、シルク及びクモ糸の少なくとも一方を含む、
<1>から<7>の何れか1つに記載のステアリング。 <8> the optically active polypeptide comprises at least one of silk and spider silk,
The steering according to any one of <1> to <7>.
<1>から<7>の何れか1つに記載のステアリング。 <8> the optically active polypeptide comprises at least one of silk and spider silk,
The steering according to any one of <1> to <7>.
<9> <1>から<8>の何れか1つに記載のステアリングと、
前記圧電基材の圧力に応じた信号を検知する検知部と、
前記検知部から検知した信号に基づき、人体における生体情報を検出する検出部と、
を備える生体情報検出装置。 <9> The steering according to any one of <1> to <8>;
a detection unit that detects a signal corresponding to the pressure of the piezoelectric substrate;
a detection unit that detects biological information in the human body based on the signal detected by the detection unit;
A biological information detection device comprising:
前記圧電基材の圧力に応じた信号を検知する検知部と、
前記検知部から検知した信号に基づき、人体における生体情報を検出する検出部と、
を備える生体情報検出装置。 <9> The steering according to any one of <1> to <8>;
a detection unit that detects a signal corresponding to the pressure of the piezoelectric substrate;
a detection unit that detects biological information in the human body based on the signal detected by the detection unit;
A biological information detection device comprising:
<10> 前記把持体は、複数の圧電基材を備え、
前記検知部は、各々の圧電基材から独立に信号を検知し、
前記検出部は、各々の圧電基材から検知した前記信号から人体が接している位置を示す位置情報を検出する、
<9>に記載の生体情報検出装置。 <10> The holding body includes a plurality of piezoelectric substrates,
The detection unit independently detects a signal from each piezoelectric base material,
The detection unit detects position information indicating a position where the human body is in contact from the signals detected from each piezoelectric base material.
The biological information detection device according to <9>.
前記検知部は、各々の圧電基材から独立に信号を検知し、
前記検出部は、各々の圧電基材から検知した前記信号から人体が接している位置を示す位置情報を検出する、
<9>に記載の生体情報検出装置。 <10> The holding body includes a plurality of piezoelectric substrates,
The detection unit independently detects a signal from each piezoelectric base material,
The detection unit detects position information indicating a position where the human body is in contact from the signals detected from each piezoelectric base material.
The biological information detection device according to <9>.
<11> <9>又は<10>に記載の生体情報検出装置と、
前記生体情報検出装置が検出した情報に基づいて、前記ステアリングにより操作される移動体に設けられた機器を制御する制御装置と、
を備える制御システム。 <11> The biological information detection device according to <9> or <10>;
a control device that controls equipment provided on the moving body operated by the steering, based on the information detected by the biological information detection device;
A control system with
前記生体情報検出装置が検出した情報に基づいて、前記ステアリングにより操作される移動体に設けられた機器を制御する制御装置と、
を備える制御システム。 <11> The biological information detection device according to <9> or <10>;
a control device that controls equipment provided on the moving body operated by the steering, based on the information detected by the biological information detection device;
A control system with
<12> 前記制御装置は、前記生体情報から取得した前記人体の心拍に係る情報に応じて、前記機器を制御する、
<11>に記載の制御システム。 <12> The control device controls the device according to information related to the heartbeat of the human body obtained from the biological information.
The control system according to <11>.
<11>に記載の制御システム。 <12> The control device controls the device according to information related to the heartbeat of the human body obtained from the biological information.
The control system according to <11>.
本開示の技術によれば、高温となり得る環境下においても、精度よく生体情報を取得することができる。
According to the technology of the present disclosure, biometric information can be obtained with high accuracy even in an environment that can reach high temperatures.
以下、本開示の技術の実施形態について説明する。本開示は以下の実施形態に限定されるものではない。
本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書中において、部材の「面」は、特に断りが無い限り、部材の「主面」を意味する。
本明細書において、厚さ、幅、及び長さは、通常の定義どおり、厚さ<幅<長さの関係を満たす。
本明細書において、2つの線分のなす角度は、0°以上90°以下の範囲で表す。
本明細書において、「フィルム」は、一般的に「フィルム」と呼ばれているものだけでなく、一般的に「シート」と呼ばれているものをも包含する概念である。
本明細書において図面を参照して実施形態を説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
本明細書において、移動体の一例として、「車両」について説明する。しかし、これに限定されない。移動体は、航空機であってもよいし、船舶であってもよいし、移動可能である乗り物であれば、如何なる乗り物であってもよい。
また、本明細書において、ステアリングは、車両における「ステアリングホイール」について説明する。しかし、これに限定されない。航空機における「操縦棹」であってもよいし、船舶における「舵輪」であってもよいし、移動体を操縦するためにユーザが把持する把持体であれば如何なるものであってもよい。 Embodiments of the technology of the present disclosure will be described below. The present disclosure is not limited to the following embodiments.
In this specification, a numerical range represented by "to" means a range including the numerical values before and after "to" as lower and upper limits.
In this specification, the "surface" of a member means the "principal surface" of the member unless otherwise specified.
As used herein, thickness, width, and length satisfy the relationship thickness<width<length, as is commonly defined.
In this specification, the angle formed by two line segments is expressed in the range of 0° or more and 90° or less.
In this specification, "film" is a concept that includes not only what is generally called "film" but also what is generally called "sheet".
When embodiments are described herein with reference to the drawings, the configurations of the embodiments are not limited to the configurations shown in the drawings. In addition, the sizes of the members in each drawing are conceptual, and the relative relationship between the sizes of the members is not limited to this.
In this specification, a "vehicle" will be described as an example of a mobile object. However, it is not limited to this. The mobile body may be an aircraft, a ship, or any vehicle as long as it is movable.
Also, in this specification, steering refers to a "steering wheel" in a vehicle. However, it is not limited to this. It may be a "control pole" in an aircraft, a "rudder" in a ship, or any grip that a user grips in order to steer a moving object.
本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書中において、部材の「面」は、特に断りが無い限り、部材の「主面」を意味する。
本明細書において、厚さ、幅、及び長さは、通常の定義どおり、厚さ<幅<長さの関係を満たす。
本明細書において、2つの線分のなす角度は、0°以上90°以下の範囲で表す。
本明細書において、「フィルム」は、一般的に「フィルム」と呼ばれているものだけでなく、一般的に「シート」と呼ばれているものをも包含する概念である。
本明細書において図面を参照して実施形態を説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
本明細書において、移動体の一例として、「車両」について説明する。しかし、これに限定されない。移動体は、航空機であってもよいし、船舶であってもよいし、移動可能である乗り物であれば、如何なる乗り物であってもよい。
また、本明細書において、ステアリングは、車両における「ステアリングホイール」について説明する。しかし、これに限定されない。航空機における「操縦棹」であってもよいし、船舶における「舵輪」であってもよいし、移動体を操縦するためにユーザが把持する把持体であれば如何なるものであってもよい。 Embodiments of the technology of the present disclosure will be described below. The present disclosure is not limited to the following embodiments.
In this specification, a numerical range represented by "to" means a range including the numerical values before and after "to" as lower and upper limits.
In this specification, the "surface" of a member means the "principal surface" of the member unless otherwise specified.
As used herein, thickness, width, and length satisfy the relationship thickness<width<length, as is commonly defined.
In this specification, the angle formed by two line segments is expressed in the range of 0° or more and 90° or less.
In this specification, "film" is a concept that includes not only what is generally called "film" but also what is generally called "sheet".
When embodiments are described herein with reference to the drawings, the configurations of the embodiments are not limited to the configurations shown in the drawings. In addition, the sizes of the members in each drawing are conceptual, and the relative relationship between the sizes of the members is not limited to this.
In this specification, a "vehicle" will be described as an example of a mobile object. However, it is not limited to this. The mobile body may be an aircraft, a ship, or any vehicle as long as it is movable.
Also, in this specification, steering refers to a "steering wheel" in a vehicle. However, it is not limited to this. It may be a "control pole" in an aircraft, a "rudder" in a ship, or any grip that a user grips in order to steer a moving object.
[第1実施形態]
図1~図9を参照して、制御システムについて説明する。 [First embodiment]
The control system will be described with reference to FIGS. 1 to 9. FIG.
図1~図9を参照して、制御システムについて説明する。 [First embodiment]
The control system will be described with reference to FIGS. 1 to 9. FIG.
<制御システムの構成>
一例として図1に示すように、本実施形態に係る制御システム1は、車両2に搭載され、生体情報検出装置10、制御装置100、及び機器200を備えている。生体情報検出装置10は、ステアリングホイール20を備え、ステアリングホイール20に設置されているセンサからステアリングホイール20を把持する運転者の生体情報を検出する。制御装置100は、生体情報検出装置10が検出した情報を用いて、車両2に搭載されている機器200を制御する。ここで、機器200は、車両内のエアコン、シートヒータ、照明、眠気防止装置、ディフューサー、及びオーディオ等の装置、並びに操舵、スロットル、及びブレーキ等を操作するアクチュエータ等を含む。例えば、制御装置100は、検出した生体情報に応じて、冷暖房の起動、眠気防止のための臭いを発生、運転者への通知、及び車両の停止等の制御を行う。 <Configuration of control system>
As an example, as shown in FIG. 1, acontrol system 1 according to this embodiment is mounted on a vehicle 2 and includes a biological information detection device 10, a control device 100, and a device 200. As shown in FIG. The biological information detection device 10 includes a steering wheel 20 and detects biological information of a driver holding the steering wheel 20 from a sensor installed on the steering wheel 20 . The control device 100 controls the device 200 mounted on the vehicle 2 using the information detected by the biological information detection device 10 . Here, the device 200 includes devices such as air conditioners, seat heaters, lighting, drowsiness prevention devices, diffusers, and audio devices in the vehicle, and actuators for operating steering, throttle, brakes, and the like. For example, the control device 100 performs control such as activation of air conditioning, generation of an odor to prevent drowsiness, notification to the driver, and stopping of the vehicle, according to the detected biological information.
一例として図1に示すように、本実施形態に係る制御システム1は、車両2に搭載され、生体情報検出装置10、制御装置100、及び機器200を備えている。生体情報検出装置10は、ステアリングホイール20を備え、ステアリングホイール20に設置されているセンサからステアリングホイール20を把持する運転者の生体情報を検出する。制御装置100は、生体情報検出装置10が検出した情報を用いて、車両2に搭載されている機器200を制御する。ここで、機器200は、車両内のエアコン、シートヒータ、照明、眠気防止装置、ディフューサー、及びオーディオ等の装置、並びに操舵、スロットル、及びブレーキ等を操作するアクチュエータ等を含む。例えば、制御装置100は、検出した生体情報に応じて、冷暖房の起動、眠気防止のための臭いを発生、運転者への通知、及び車両の停止等の制御を行う。 <Configuration of control system>
As an example, as shown in FIG. 1, a
<ステアリングホイールの構成>
図2及び図3を参照して、ステアリングホイール20について説明する。図2は、本実施形態に係る圧電基材の配置の説明に供するステアリングホイール20の一例を示す正面図であり、図3は、図2のX-X’線断面図である。
なお、以下の説明では、リム21の断面の径方向外側を単に「径方向外側」と称し、リム21の断面の径方向内側を単に「径方向内側」と称する。 <Structure of Steering Wheel>
Thesteering wheel 20 will be described with reference to FIGS. 2 and 3. FIG. FIG. 2 is a front view showing an example of the steering wheel 20 for explaining the arrangement of the piezoelectric base material according to this embodiment, and FIG. 3 is a cross-sectional view taken along line XX' of FIG.
In the following description, the radially outer side of the cross section of therim 21 is simply referred to as the "radial outer side", and the radially inner side of the rim 21 is simply referred to as the "radial inner side".
図2及び図3を参照して、ステアリングホイール20について説明する。図2は、本実施形態に係る圧電基材の配置の説明に供するステアリングホイール20の一例を示す正面図であり、図3は、図2のX-X’線断面図である。
なお、以下の説明では、リム21の断面の径方向外側を単に「径方向外側」と称し、リム21の断面の径方向内側を単に「径方向内側」と称する。 <Structure of Steering Wheel>
The
In the following description, the radially outer side of the cross section of the
一例として図2に示すように、本実施形態に係るステアリングホイール20は、運転者が把持するリム21と、ステアリングシャフトへと接続されているステアリングホイール20のハブ22と、を備えている。リム21は、センサユニット23を備えており、センサユニット23は、圧力が入力されることによって電圧を発生する圧電基材50と、ライン状の圧電基材50に接続された後述する配線29と、を備えている。ここで、リム21は「把持体」の一例である。
As shown in FIG. 2 as an example, the steering wheel 20 according to this embodiment includes a rim 21 gripped by the driver and a hub 22 of the steering wheel 20 connected to the steering shaft. The rim 21 includes a sensor unit 23. The sensor unit 23 includes a piezoelectric substrate 50 that generates a voltage when pressure is input, and wiring 29, which will be described later, connected to the line-shaped piezoelectric substrate 50. , is equipped with Here, the rim 21 is an example of a "gripping body".
一例として図3に示すように、リム21は、アルミニウム合金等の図示しない芯材と、図示しない芯材を覆うウレタン系樹脂、又はポリプロピレン等の表面材24と、を含んで構成されている。圧電基材50は、リム21を構成する表面材24に設置され、リム21における図示しない芯材より外径側の切込み25の内部に設けられている。具体的には、切込み25は、リム21の外径側の全周に渡り設けられ、切込み25の底部に設けられたスポンジゴム26の上に対して、1本の圧電基材50がリム21の全周に渡り載置されている。切込み25は、リム21における図示しない芯材より外径側に設けられている。また、圧電基材50は、リム21の芯材に切り込みを加えず、芯材を覆う表面材24の上に直接配置してもよい。これにより、圧電基材50は、運転者がリム21を把持する圧力変動、及び生体振動に関する微弱な振動を検知可能としている。
As shown in FIG. 3 as an example, the rim 21 includes a core material (not shown) such as an aluminum alloy, and a surface material 24 such as urethane-based resin or polypropylene that covers the core material (not shown). The piezoelectric base material 50 is installed on the surface material 24 that constitutes the rim 21 and is provided inside the notch 25 on the outer diameter side of the core material (not shown) of the rim 21 . Specifically, the notch 25 is provided over the entire circumference of the outer diameter side of the rim 21 , and one piezoelectric substrate 50 is placed on the rim 21 on the sponge rubber 26 provided at the bottom of the notch 25 . are placed all around the circumference of the The cut 25 is provided on the outer diameter side of the core material (not shown) of the rim 21 . Alternatively, the piezoelectric substrate 50 may be placed directly on the surface material 24 covering the core material of the rim 21 without cutting the core material. As a result, the piezoelectric substrate 50 can detect pressure fluctuations with which the driver grips the rim 21 and weak vibrations related to biological vibrations.
<生体情報検出装置の構成>
次に、図4を参照して、生体情報検出装置10のハードウェア構成について説明する。生体情報検出装置10は、圧電基材50からの出力信号を検出する。図4に示すように、生体情報検出装置10は、圧電基材50から出力されたアナログ信号である電圧出力をデジタル信号に変換するAD変換器28と、変換された各圧電基材50のデジタル信号を検出する車載器30と、を備えている。AD変換器28は、アナログ信号を入力するための入力端子が複数設けられており、各入力端子に圧電基材50が配線29を介して電気的に接続されている。
車載器30は、CPU(Central Processing Unit)31、ROM(Read Only Memory)32、RAM(Random Access Memory)33、ストレージ34、通信I/F(Inter Face)35、及び入出力I/F36を含んで構成されている。CPU31、ROM32、RAM33、ストレージ34、通信I/F35、及び入出力I/F36は、バス37を介して相互に通信可能に接続されている。 <Configuration of biological information detection device>
Next, the hardware configuration of the biologicalinformation detection device 10 will be described with reference to FIG. 4 . The biological information detection device 10 detects an output signal from the piezoelectric substrate 50 . As shown in FIG. 4, the biological information detection device 10 includes an AD converter 28 that converts the voltage output, which is an analog signal output from the piezoelectric substrate 50, into a digital signal, and a digital signal of each piezoelectric substrate 50 that has been converted. and a vehicle-mounted device 30 that detects a signal. The AD converter 28 is provided with a plurality of input terminals for inputting analog signals, and the piezoelectric substrate 50 is electrically connected to each input terminal via the wiring 29 .
The vehicle-mounteddevice 30 includes a CPU (Central Processing Unit) 31, a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a storage 34, a communication I/F (Inter Face) 35, and an input/output I/F 36. consists of The CPU 31 , ROM 32 , RAM 33 , storage 34 , communication I/F 35 , and input/output I/F 36 are connected via a bus 37 so as to be able to communicate with each other.
次に、図4を参照して、生体情報検出装置10のハードウェア構成について説明する。生体情報検出装置10は、圧電基材50からの出力信号を検出する。図4に示すように、生体情報検出装置10は、圧電基材50から出力されたアナログ信号である電圧出力をデジタル信号に変換するAD変換器28と、変換された各圧電基材50のデジタル信号を検出する車載器30と、を備えている。AD変換器28は、アナログ信号を入力するための入力端子が複数設けられており、各入力端子に圧電基材50が配線29を介して電気的に接続されている。
車載器30は、CPU(Central Processing Unit)31、ROM(Read Only Memory)32、RAM(Random Access Memory)33、ストレージ34、通信I/F(Inter Face)35、及び入出力I/F36を含んで構成されている。CPU31、ROM32、RAM33、ストレージ34、通信I/F35、及び入出力I/F36は、バス37を介して相互に通信可能に接続されている。 <Configuration of biological information detection device>
Next, the hardware configuration of the biological
The vehicle-mounted
CPU31は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU31は、ROM32又はストレージ34からプログラムを読み出し、RAM33を作業領域としてプログラムを実行する。本実施形態では、ストレージ34に各種処理を実行するための実行プログラムが記憶されている。CPU31は、実行プログラムを実行することで、図6に示す検知部41、及び検出部42Aとして機能する。
ROM32は、各種プログラム及び各種データを記憶している。RAM33は、作業領域として一時的にプログラム又はデータを記憶する。記憶部としてのストレージ34は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを記憶している。 TheCPU 31 is a central processing unit that executes various programs and controls each section. That is, the CPU 31 reads a program from the ROM 32 or the storage 34 and executes the program using the RAM 33 as a work area. In this embodiment, execution programs for executing various processes are stored in the storage 34 . The CPU 31 functions as the detection unit 41 and the detection unit 42A shown in FIG. 6 by executing the execution program.
TheROM 32 stores various programs and various data. The RAM 33 temporarily stores programs or data as a work area. The storage 34 as a storage unit is configured by a HDD (Hard Disk Drive) or SSD (Solid State Drive), and stores various programs including an operating system and various data.
ROM32は、各種プログラム及び各種データを記憶している。RAM33は、作業領域として一時的にプログラム又はデータを記憶する。記憶部としてのストレージ34は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラム、及び各種データを記憶している。 The
The
通信I/F35は、制御装置100と通信するためのインタフェースであり、CAN(Controller Area Network)プロトコルによる通信が行われている。なお、通信I/F35は、イーサネット(登録商標)による通信規格を適用してもよい。通信I/F35は、図示しない外部バスに対して接続されている。つまり、図示しない外部バスにおいて、生体情報検出装置10、及び制御装置100の間で送受信されるデータは、CANプロトコルに基づく通信フレームとして送受信される。ここで、通信I/F35は、制御装置100を介さずに機器200と直接接続され、生体情報検出装置10、及び機器200の間でデータを送受信していてもよい。
The communication I/F 35 is an interface for communicating with the control device 100, and communication is performed according to the CAN (Controller Area Network) protocol. Note that the communication I/F 35 may apply a communication standard based on Ethernet (registered trademark). Communication I/F 35 is connected to an external bus (not shown). In other words, data transmitted/received between the biological information detection device 10 and the control device 100 is transmitted/received as a communication frame based on the CAN protocol on an external bus (not shown). Here, the communication I/F 35 may be directly connected to the device 200 without going through the control device 100 to transmit and receive data between the biological information detection device 10 and the device 200 .
<制御装置の構成>
図5に示されるように、制御装置100は、CPU101、ROM102、RAM103、ストレージ104、入出力部105、表示部106、及び通信I/F107を含んで構成されている。制御装置100は、CPU101、ROM102、RAM103、ストレージ104、入出力部105、表示部106、及び通信I/F107は、バス108を介して相互に通信可能に接続されている。 <Configuration of control device>
As shown in FIG. 5, thecontrol device 100 includes a CPU 101, a ROM 102, a RAM 103, a storage 104, an input/output unit 105, a display unit 106, and a communication I/F 107. In the control device 100, a CPU 101, a ROM 102, a RAM 103, a storage 104, an input/output unit 105, a display unit 106, and a communication I/F 107 are connected via a bus 108 so as to be able to communicate with each other.
図5に示されるように、制御装置100は、CPU101、ROM102、RAM103、ストレージ104、入出力部105、表示部106、及び通信I/F107を含んで構成されている。制御装置100は、CPU101、ROM102、RAM103、ストレージ104、入出力部105、表示部106、及び通信I/F107は、バス108を介して相互に通信可能に接続されている。 <Configuration of control device>
As shown in FIG. 5, the
CPU101は、中央演算処理ユニットであり、各種プログラムを実行したり、各部を制御したりする。すなわち、CPU101は、ROM102からプログラムを読み出し、RAM103を作業領域としてプログラムを実行する。
The CPU 101 is a central processing unit that executes various programs and controls each part. That is, the CPU 101 reads a program from the ROM 102 and executes the program using the RAM 103 as a work area.
ROM102は、各種プログラム及び各種データを記憶している。本実施形態のROM102には、制御装置100を制御するための制御プログラムが記憶されている。
RAM103は、作業領域として一時的にプログラム又はデータを記憶する。 TheROM 102 stores various programs and various data. A control program for controlling the control device 100 is stored in the ROM 102 of the present embodiment.
TheRAM 103 temporarily stores programs or data as a work area.
RAM103は、作業領域として一時的にプログラム又はデータを記憶する。 The
The
ストレージ104は、一例としてHDD、SSD、又はフラッシュメモリ等である。なお、ストレージ104には、制御プログラム等を記憶してもよい。入出力部105は、例えば、マウス、キーボード、タッチパネル、及びスピーカ等である。表示部106は、検出した生体情報に応じて、運転者への通知を表示する。
The storage 104 is, for example, an HDD, SSD, flash memory, or the like. Note that the storage 104 may store control programs and the like. The input/output unit 105 is, for example, a mouse, keyboard, touch panel, speaker, and the like. The display unit 106 displays a notification to the driver according to the detected biological information.
通信I/F107は、生体情報検出装置10、制御装置100、及び機器200を接続するためのインタフェースである。当該インタフェースは、CANプロトコルによる通信が行われている。なお、通信I/F107では、イーサネット(登録商標)による通信規格を適用してもよい。通信I/F107は、図示しない外部バスに対して接続されている。つまり、図示しない外部バスにおいて、生体情報検出装置10、制御装置100、及び機器200の間で送受信されるデータは、CANプロトコルに基づく通信フレームとして送受信される。
The communication I/F 107 is an interface for connecting the biological information detection device 10, the control device 100, and the device 200. The interface performs communication according to the CAN protocol. In addition, in the communication I/F 107, a communication standard by Ethernet (registered trademark) may be applied. Communication I/F 107 is connected to an external bus (not shown). That is, data transmitted/received between the biological information detection device 10, the control device 100, and the device 200 is transmitted/received as a communication frame based on the CAN protocol on an external bus (not shown).
<生体情報検出装置及び制御装置の機能構成>
図6は、生体情報検出装置10及び制御装置100の機能構成の例を示すブロック図である。図6に示すように、生体情報検出装置10は、検知部41、及び検出部42Aを有している。各機能構成は、CPU31がストレージ34に記憶された実行プログラムを読み出し、これを実行することによって実現される。 <Functional configuration of biological information detection device and control device>
FIG. 6 is a block diagram showing an example of functional configurations of the biologicalinformation detection device 10 and the control device 100. As shown in FIG. As shown in FIG. 6, the biological information detection device 10 has a detection section 41 and a detection section 42A. Each functional configuration is realized by the CPU 31 reading an execution program stored in the storage 34 and executing it.
図6は、生体情報検出装置10及び制御装置100の機能構成の例を示すブロック図である。図6に示すように、生体情報検出装置10は、検知部41、及び検出部42Aを有している。各機能構成は、CPU31がストレージ34に記憶された実行プログラムを読み出し、これを実行することによって実現される。 <Functional configuration of biological information detection device and control device>
FIG. 6 is a block diagram showing an example of functional configurations of the biological
検知部41は、入出力I/F36を介してAD変換器28から出力された各圧電基材50に係るデジタル信号を検知する機能を有している。
The detection unit 41 has a function of detecting a digital signal related to each piezoelectric substrate 50 output from the AD converter 28 via the input/output I/F 36 .
検出部42Aは、検知部41が検知したデジタル信号の大きさ及び周期から呼吸及び脈拍等の生体情報と、生体の生理現象としての筋肉の機械的な微小運動(いわゆる、生体振戦)による振動と、を検出する機能を有している。
The detection unit 42A obtains biological information such as respiration and pulse from the magnitude and period of the digital signal detected by the detection unit 41, and vibration due to mechanical micromotion of muscles (so-called biological tremor) as a physiological phenomenon of the living body. and has a function to detect
また、図6に示すように、制御装置100は、取得部111A、及び制御部112Aを有している。各機能構成は、CPU101がストレージ104に記憶された実行プログラムを読み出し、これを実行することによって実現される。
Also, as shown in FIG. 6, the control device 100 has an acquisition unit 111A and a control unit 112A. Each functional configuration is realized by the CPU 101 reading an execution program stored in the storage 104 and executing it.
取得部111Aは、生体情報検出装置10から生体情報を取得する機能を有している。
The acquisition unit 111A has a function of acquiring biometric information from the biometric information detection device 10.
制御部112Aは、取得した生体情報を用いて、機器200を制御する機能を有している。例えば、制御部112Aは、生体情報に応じて、各々の機器200に処理を実行する指示を送信する。具体的には、制御部112Aは、生体情報から心拍の間隔のゆらぎを検出し、当該心拍のゆらぎが小さくなった(心拍の間隔が安定している)場合、運転者が眠くなっている状態であると判定して、機器200としてのアクチュエータにブレーキを作用させる指示を送信する。心拍のゆらぎは、直接心拍の間隔を測定するほか、心拍の間隔を周波数に変換してもよい。また、制御部112Aは、生体情報から心拍の大きさ、及び回数を検出し、心拍の大きさが運転者における平均値より大きく、かつ所定の期間の心拍の回数が運転者における平均値より多い場合、運転者は緊張状態にあると判定して、機器200としてのアクチュエータにブレーキを作用させる指示を送信する。
The control unit 112A has a function of controlling the device 200 using the acquired biological information. For example, the control unit 112A transmits an instruction to execute processing to each device 200 according to the biometric information. Specifically, the control unit 112A detects fluctuations in the interval between heartbeats from the biological information, and when the fluctuations in the heartbeats become smaller (the intervals between heartbeats are stable), the driver is sleepy. , and transmits an instruction to brake the actuator as the device 200 . The heartbeat fluctuation may be obtained by directly measuring the heartbeat interval, or by converting the heartbeat interval into a frequency. In addition, the control unit 112A detects the magnitude and number of heartbeats from the biological information, the magnitude of the heartbeat is greater than the average value for the driver, and the number of heartbeats in a predetermined period is greater than the average value for the driver. In this case, it is determined that the driver is in a tense state, and an instruction to apply the brake to the actuator as the device 200 is transmitted.
<圧電基材>
本実施形態の圧電基材は、軸状の内部導体と、内部導体の周囲において同軸状に設けられ、かつ光学活性ポリペプチドを含む長尺状の圧電体と、を備えている。 <Piezoelectric substrate>
The piezoelectric substrate of this embodiment includes an axial inner conductor and an elongated piezoelectric body coaxially provided around the inner conductor and containing an optically active polypeptide.
本実施形態の圧電基材は、軸状の内部導体と、内部導体の周囲において同軸状に設けられ、かつ光学活性ポリペプチドを含む長尺状の圧電体と、を備えている。 <Piezoelectric substrate>
The piezoelectric substrate of this embodiment includes an axial inner conductor and an elongated piezoelectric body coaxially provided around the inner conductor and containing an optically active polypeptide.
本実施形態の圧電基材では、長尺状の圧電体が、内部導体の周囲において同軸状に設けられていること、かつ長尺状の圧電体が光学活性ポリペプチドを含むことにより、圧電性(圧電感度)が発現する。
本実施形態の圧電基材は、内部導体に、圧電体が一方向に螺旋状に巻回されている。 In the piezoelectric base material of the present embodiment, the elongated piezoelectric body is provided coaxially around the inner conductor, and the elongated piezoelectric body contains the optically active polypeptide. (piezoelectric sensitivity) is expressed.
In the piezoelectric substrate of this embodiment, a piezoelectric body is spirally wound in one direction around an inner conductor.
本実施形態の圧電基材は、内部導体に、圧電体が一方向に螺旋状に巻回されている。 In the piezoelectric base material of the present embodiment, the elongated piezoelectric body is provided coaxially around the inner conductor, and the elongated piezoelectric body contains the optically active polypeptide. (piezoelectric sensitivity) is expressed.
In the piezoelectric substrate of this embodiment, a piezoelectric body is spirally wound in one direction around an inner conductor.
さらに、本実施形態の圧電基材は、高温高湿環境での耐加水分解性に優れる光学活性ポリペプチドを含むので、例えばポリ乳酸を用いた圧電基材と比較して、(特に、高温高湿環境下での)耐久性に優れる。
本明細書において、耐久性に優れるとは、(特に、高温高湿環境下において)圧電感度の低下が抑制されることを意味する。 Furthermore, since the piezoelectric substrate of the present embodiment contains an optically active polypeptide that is excellent in hydrolysis resistance in a high-temperature, high-humidity environment, compared with a piezoelectric substrate using polylactic acid, for example, Excellent durability in wet environments).
In this specification, "excellent in durability" means that a decrease in piezoelectric sensitivity is suppressed (especially in a high-temperature and high-humidity environment).
本明細書において、耐久性に優れるとは、(特に、高温高湿環境下において)圧電感度の低下が抑制されることを意味する。 Furthermore, since the piezoelectric substrate of the present embodiment contains an optically active polypeptide that is excellent in hydrolysis resistance in a high-temperature, high-humidity environment, compared with a piezoelectric substrate using polylactic acid, for example, Excellent durability in wet environments).
In this specification, "excellent in durability" means that a decrease in piezoelectric sensitivity is suppressed (especially in a high-temperature and high-humidity environment).
<圧電体>
本実施形態の圧電基材は、長尺状の圧電体を備える。
長尺状の圧電体の配向度Fは、0.50以上1.00未満の範囲である。
圧電体の配向度Fは、X線回折測定から下記式(a)によって求められる値であり、c軸配向度を意味する。 <Piezoelectric material>
The piezoelectric substrate of this embodiment includes an elongated piezoelectric body.
The orientation degree F of the elongated piezoelectric body is in the range of 0.50 or more and less than 1.00.
The degree of orientation F of the piezoelectric material is a value obtained by the following formula (a) from X-ray diffraction measurement, and means the degree of c-axis orientation.
本実施形態の圧電基材は、長尺状の圧電体を備える。
長尺状の圧電体の配向度Fは、0.50以上1.00未満の範囲である。
圧電体の配向度Fは、X線回折測定から下記式(a)によって求められる値であり、c軸配向度を意味する。 <Piezoelectric material>
The piezoelectric substrate of this embodiment includes an elongated piezoelectric body.
The orientation degree F of the elongated piezoelectric body is in the range of 0.50 or more and less than 1.00.
The degree of orientation F of the piezoelectric material is a value obtained by the following formula (a) from X-ray diffraction measurement, and means the degree of c-axis orientation.
配向度F=(180°―α)/180° … 式(a)
〔式(a)中、αは配向由来のピークの半値幅(°)を表す。〕 Orientation F=(180°-α)/180°... Formula (a)
[In the formula (a), α represents the half width (°) of the orientation-derived peak. ]
〔式(a)中、αは配向由来のピークの半値幅(°)を表す。〕 Orientation F=(180°-α)/180°... Formula (a)
[In the formula (a), α represents the half width (°) of the orientation-derived peak. ]
配向度Fは、圧電体に含まれる光学活性ポリペプチドの配向の度合いを示す指標である。
本実施形態において、長尺状の圧電体の配向度Fが0.50以上であることは、圧電性の発現に寄与する。
長尺状の圧電体の配向度Fが1.00未満であることは、圧電体の生産性に寄与する。
長尺状の圧電体の配向度Fは、0.50以上0.99以下であることが好ましく、0.70以上0.98以下であることがさらに好ましく、0.80以上0.97以下であることが特に好ましい。 The degree of orientation F is an index indicating the degree of orientation of the optically active polypeptide contained in the piezoelectric material.
In this embodiment, the fact that the orientation degree F of the elongated piezoelectric body is 0.50 or more contributes to the development of piezoelectricity.
The fact that the orientation degree F of the elongated piezoelectric body is less than 1.00 contributes to the productivity of the piezoelectric body.
The orientation degree F of the elongated piezoelectric body is preferably 0.50 or more and 0.99 or less, more preferably 0.70 or more and 0.98 or less, and 0.80 or more and 0.97 or less. It is particularly preferred to have
本実施形態において、長尺状の圧電体の配向度Fが0.50以上であることは、圧電性の発現に寄与する。
長尺状の圧電体の配向度Fが1.00未満であることは、圧電体の生産性に寄与する。
長尺状の圧電体の配向度Fは、0.50以上0.99以下であることが好ましく、0.70以上0.98以下であることがさらに好ましく、0.80以上0.97以下であることが特に好ましい。 The degree of orientation F is an index indicating the degree of orientation of the optically active polypeptide contained in the piezoelectric material.
In this embodiment, the fact that the orientation degree F of the elongated piezoelectric body is 0.50 or more contributes to the development of piezoelectricity.
The fact that the orientation degree F of the elongated piezoelectric body is less than 1.00 contributes to the productivity of the piezoelectric body.
The orientation degree F of the elongated piezoelectric body is preferably 0.50 or more and 0.99 or less, more preferably 0.70 or more and 0.98 or less, and 0.80 or more and 0.97 or less. It is particularly preferred to have
本実施形態において、上記圧電体の長さ方向と、上記圧電体に含まれる光学活性ポリペプチドの主配向方向と、が略平行であることも、圧電性の発現に寄与する。
上記圧電体の長さ方向と、上記圧電体に含まれる光学活性ポリペプチドの主配向方向と、が略平行であることは、圧電体がその長さ方向への引張強度に優れるという利点も有する。したがって、圧電体を螺旋状に巻回する際に、圧電体が破断しにくい。
本明細書中において、「略平行」とは、2つの線分のなす角度を0°以上90°以下の範囲で表した場合に、2つの線分のなす角度が、0°以上30°未満(好ましくは0°以上22.5°以下、より好ましくは0°以上10°以下、さらに好ましくは0°以上5°以下、特に好ましくは0°以上3°以下)であることを指す。
例えば、圧電体がシルク又はクモ糸である場合、シルク又はクモ糸の生成の過程で、圧電体(シルク又はクモ糸)の長さ方向と、上記圧電体に含まれる光学活性ポリペプチド(例えばフィブロイン又はクモ糸タンパク質)の主配向方向と、が略平行となっている。 In the present embodiment, the fact that the length direction of the piezoelectric body and the main orientation direction of the optically active polypeptide contained in the piezoelectric body are substantially parallel also contributes to the development of piezoelectricity.
The fact that the length direction of the piezoelectric body and the main orientation direction of the optically active polypeptide contained in the piezoelectric body are substantially parallel also has the advantage that the piezoelectric body has excellent tensile strength in the length direction. . Therefore, when the piezoelectric body is spirally wound, the piezoelectric body is less likely to break.
In this specification, the term “substantially parallel” means that the angle formed by the two line segments is 0° or more and less than 30° when the angle formed by the two line segments is expressed in the range of 0° or more and 90° or less. (Preferably 0° or more and 22.5° or less, more preferably 0° or more and 10° or less, still more preferably 0° or more and 5° or less, particularly preferably 0° or more and 3° or less).
For example, when the piezoelectric body is silk or spider silk, in the process of producing silk or spider silk, the length direction of the piezoelectric body (silk or spider silk) and the optically active polypeptide (for example, fibroin) contained in the piezoelectric body or spider silk protein) are substantially parallel to each other.
上記圧電体の長さ方向と、上記圧電体に含まれる光学活性ポリペプチドの主配向方向と、が略平行であることは、圧電体がその長さ方向への引張強度に優れるという利点も有する。したがって、圧電体を螺旋状に巻回する際に、圧電体が破断しにくい。
本明細書中において、「略平行」とは、2つの線分のなす角度を0°以上90°以下の範囲で表した場合に、2つの線分のなす角度が、0°以上30°未満(好ましくは0°以上22.5°以下、より好ましくは0°以上10°以下、さらに好ましくは0°以上5°以下、特に好ましくは0°以上3°以下)であることを指す。
例えば、圧電体がシルク又はクモ糸である場合、シルク又はクモ糸の生成の過程で、圧電体(シルク又はクモ糸)の長さ方向と、上記圧電体に含まれる光学活性ポリペプチド(例えばフィブロイン又はクモ糸タンパク質)の主配向方向と、が略平行となっている。 In the present embodiment, the fact that the length direction of the piezoelectric body and the main orientation direction of the optically active polypeptide contained in the piezoelectric body are substantially parallel also contributes to the development of piezoelectricity.
The fact that the length direction of the piezoelectric body and the main orientation direction of the optically active polypeptide contained in the piezoelectric body are substantially parallel also has the advantage that the piezoelectric body has excellent tensile strength in the length direction. . Therefore, when the piezoelectric body is spirally wound, the piezoelectric body is less likely to break.
In this specification, the term “substantially parallel” means that the angle formed by the two line segments is 0° or more and less than 30° when the angle formed by the two line segments is expressed in the range of 0° or more and 90° or less. (Preferably 0° or more and 22.5° or less, more preferably 0° or more and 10° or less, still more preferably 0° or more and 5° or less, particularly preferably 0° or more and 3° or less).
For example, when the piezoelectric body is silk or spider silk, in the process of producing silk or spider silk, the length direction of the piezoelectric body (silk or spider silk) and the optically active polypeptide (for example, fibroin) contained in the piezoelectric body or spider silk protein) are substantially parallel to each other.
上記圧電体の長さ方向と、上記圧電体に含まれる光学活性ポリペプチドの主配向方向と、が略平行であることは、X線回折測定において、サンプルの設置方向と結晶ピークの方位角と、を比較することによって確認できる。
The fact that the length direction of the piezoelectric body and the main orientation direction of the optically active polypeptide contained in the piezoelectric body are substantially parallel means that in X-ray diffraction measurement, the installation direction of the sample and the azimuth angle of the crystal peak can be verified by comparing .
本実施形態において、圧電体が光学活性ポリペプチドを含むことも、圧電性の発現に寄与する。
また、前述のとおり、光学活性ポリペプチドは耐加水分解性に優れるので、圧電体が光学活性ポリペプチドを含むことは、ポリ乳酸を主成分として含む圧電体と比較して、圧電体及び圧電基材の耐久性に優れる。
また、前述のとおり、光学活性ポリペプチドは焦電性を有しないため、圧電体が光学活性ポリペプチドを含むことは、PVDFを主成分として含む圧電体と比較して、圧電体及び圧電基材の耐久性に優れる。 In this embodiment, the inclusion of an optically active polypeptide in the piezoelectric also contributes to the development of piezoelectricity.
In addition, as described above, optically active polypeptides are excellent in hydrolysis resistance. Excellent material durability.
In addition, as described above, since the optically active polypeptide does not have pyroelectricity, the inclusion of the optically active polypeptide in the piezoelectric material is advantageous in that the piezoelectric material and the piezoelectric base material are more advantageous than the piezoelectric material containing PVDF as a main component. Excellent durability.
また、前述のとおり、光学活性ポリペプチドは耐加水分解性に優れるので、圧電体が光学活性ポリペプチドを含むことは、ポリ乳酸を主成分として含む圧電体と比較して、圧電体及び圧電基材の耐久性に優れる。
また、前述のとおり、光学活性ポリペプチドは焦電性を有しないため、圧電体が光学活性ポリペプチドを含むことは、PVDFを主成分として含む圧電体と比較して、圧電体及び圧電基材の耐久性に優れる。 In this embodiment, the inclusion of an optically active polypeptide in the piezoelectric also contributes to the development of piezoelectricity.
In addition, as described above, optically active polypeptides are excellent in hydrolysis resistance. Excellent material durability.
In addition, as described above, since the optically active polypeptide does not have pyroelectricity, the inclusion of the optically active polypeptide in the piezoelectric material is advantageous in that the piezoelectric material and the piezoelectric base material are more advantageous than the piezoelectric material containing PVDF as a main component. Excellent durability.
また、PVDFを含む圧電体は、高い焦電性を有しているため、温度変化による電荷量の出力の変化が大きい。これに対して、本実施形態の光学活性ポリペプチドを含む圧電体は、PVDFを含む圧電体と比較して、温度変化による電荷量の出力の変化が小さく、電荷量の出力が安定している点において優れる。
一方、ポリ乳酸を含む圧電体は、昇温時に所定の温度より高温になった場合、センサ感度が低下する傾向にある。これに対して、本実施形態の光学活性ポリペプチドを含む圧電体は、ポリ乳酸を含む圧電体と比較して、所定の温度より高温になった場合であってもセンサ感度が安定している点において優れる。
したがって、本実施形態の圧電体は、感度に優れており、かつ高温に変化する環境下に配置して、人体から生体情報を検出するために用いるのに適切である。 In addition, since the piezoelectric body including PVDF has high pyroelectricity, the change in output of the amount of charge due to temperature change is large. On the other hand, the piezoelectric body containing the optically active polypeptide of the present embodiment has a smaller change in the output of the charge amount due to temperature changes, and the output of the charge amount is more stable than the piezoelectric body containing PVDF. Excellent in points.
On the other hand, a piezoelectric body containing polylactic acid tends to lower its sensor sensitivity when the temperature rises above a predetermined temperature. In contrast, the piezoelectric body containing the optically active polypeptide of the present embodiment has more stable sensor sensitivity than the piezoelectric body containing polylactic acid even when the temperature is higher than a predetermined temperature. Excellent in points.
Therefore, the piezoelectric body of the present embodiment has excellent sensitivity and is suitable for use in detecting biological information from the human body when placed in an environment that changes to a high temperature.
一方、ポリ乳酸を含む圧電体は、昇温時に所定の温度より高温になった場合、センサ感度が低下する傾向にある。これに対して、本実施形態の光学活性ポリペプチドを含む圧電体は、ポリ乳酸を含む圧電体と比較して、所定の温度より高温になった場合であってもセンサ感度が安定している点において優れる。
したがって、本実施形態の圧電体は、感度に優れており、かつ高温に変化する環境下に配置して、人体から生体情報を検出するために用いるのに適切である。 In addition, since the piezoelectric body including PVDF has high pyroelectricity, the change in output of the amount of charge due to temperature change is large. On the other hand, the piezoelectric body containing the optically active polypeptide of the present embodiment has a smaller change in the output of the charge amount due to temperature changes, and the output of the charge amount is more stable than the piezoelectric body containing PVDF. Excellent in points.
On the other hand, a piezoelectric body containing polylactic acid tends to lower its sensor sensitivity when the temperature rises above a predetermined temperature. In contrast, the piezoelectric body containing the optically active polypeptide of the present embodiment has more stable sensor sensitivity than the piezoelectric body containing polylactic acid even when the temperature is higher than a predetermined temperature. Excellent in points.
Therefore, the piezoelectric body of the present embodiment has excellent sensitivity and is suitable for use in detecting biological information from the human body when placed in an environment that changes to a high temperature.
本明細書において、光学活性ポリペプチドとは、光学活性を有するポリペプチド(すなわち、不斉炭素原子を有し、かつ、光学異性体の存在量に偏りがあるポリペプチド)を意味する。
光学活性ポリペプチドは、圧電性や強度の観点から、βシート構造を有することが好ましい。
光学活性ポリペプチドとしては、光学活性を有する動物性タンパク質(例えば、フィブロイン、セリシン、コラーゲン、ケラチン、エラスチン、クモ糸タンパク質等)が挙げられる。
光学活性ポリペプチドは、フィブロイン及びクモ糸タンパク質の少なくとも一方を含むことが好ましく、フィブロイン及びクモ糸タンパク質の少なくとも一方からなることが特に好ましい。 As used herein, an optically active polypeptide means a polypeptide having optical activity (that is, a polypeptide having an asymmetric carbon atom and having a biased abundance of optical isomers).
The optically active polypeptide preferably has a β-sheet structure from the viewpoint of piezoelectricity and strength.
Optically active polypeptides include animal proteins having optical activity (eg, fibroin, sericin, collagen, keratin, elastin, spider silk protein, etc.).
The optically active polypeptide preferably contains at least one of fibroin and spider silk protein, and particularly preferably consists of at least one of fibroin and spider silk protein.
光学活性ポリペプチドは、圧電性や強度の観点から、βシート構造を有することが好ましい。
光学活性ポリペプチドとしては、光学活性を有する動物性タンパク質(例えば、フィブロイン、セリシン、コラーゲン、ケラチン、エラスチン、クモ糸タンパク質等)が挙げられる。
光学活性ポリペプチドは、フィブロイン及びクモ糸タンパク質の少なくとも一方を含むことが好ましく、フィブロイン及びクモ糸タンパク質の少なくとも一方からなることが特に好ましい。 As used herein, an optically active polypeptide means a polypeptide having optical activity (that is, a polypeptide having an asymmetric carbon atom and having a biased abundance of optical isomers).
The optically active polypeptide preferably has a β-sheet structure from the viewpoint of piezoelectricity and strength.
Optically active polypeptides include animal proteins having optical activity (eg, fibroin, sericin, collagen, keratin, elastin, spider silk protein, etc.).
The optically active polypeptide preferably contains at least one of fibroin and spider silk protein, and particularly preferably consists of at least one of fibroin and spider silk protein.
クモ糸タンパク質は、天然クモ糸タンパク質、又は、天然クモ糸タンパク質に由来若しくは類似(以下、これらをまとめて「由来」という。)するものであればよく、特に限定されない。
ここで、「天然クモ糸タンパク質に由来するもの」とは、天然クモ糸タンパク質が有するアミノ酸の反復配列と同様又は類似のアミノ酸配列を有するものである。
「天然クモ糸タンパク質に由来するもの」として、例えば、組換えクモ糸タンパク質、天然クモ糸タンパク質の変異体、天然クモ糸タンパク質の類似体、又は、天然クモ糸タンパク質の誘導体などが挙げられる。 The spider silk protein is not particularly limited as long as it is a natural spider silk protein or derived from or similar to a natural spider silk protein (hereinafter collectively referred to as "origin").
Here, "derived from natural spider silk protein" means having an amino acid sequence that is the same as or similar to the repeating sequence of amino acids that natural spider silk protein has.
"Those derived from natural spider silk proteins" include, for example, recombinant spider silk proteins, mutants of natural spider silk proteins, analogues of natural spider silk proteins, derivatives of natural spider silk proteins, and the like.
ここで、「天然クモ糸タンパク質に由来するもの」とは、天然クモ糸タンパク質が有するアミノ酸の反復配列と同様又は類似のアミノ酸配列を有するものである。
「天然クモ糸タンパク質に由来するもの」として、例えば、組換えクモ糸タンパク質、天然クモ糸タンパク質の変異体、天然クモ糸タンパク質の類似体、又は、天然クモ糸タンパク質の誘導体などが挙げられる。 The spider silk protein is not particularly limited as long as it is a natural spider silk protein or derived from or similar to a natural spider silk protein (hereinafter collectively referred to as "origin").
Here, "derived from natural spider silk protein" means having an amino acid sequence that is the same as or similar to the repeating sequence of amino acids that natural spider silk protein has.
"Those derived from natural spider silk proteins" include, for example, recombinant spider silk proteins, mutants of natural spider silk proteins, analogues of natural spider silk proteins, derivatives of natural spider silk proteins, and the like.
クモ糸タンパク質としては、強靭性に優れるという観点から、クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質、又は、大吐糸管しおり糸タンパク質に由来するクモ糸タンパク質が好ましい。
大吐糸管しおり糸タンパク質としては、アメリカジョロウグモ(Nephila clavipes)に由来する大瓶状腺スピドロインである、MaSp1又はMaSp2、ニワオニグモ(Araneus diadematus)に由来する、ADF3又はADF4などが挙げられる。 From the viewpoint of excellent toughness, the spider silk protein is preferably a major duct dragline protein produced in the greater vasculature gland of spiders or a spider silk protein derived from the major duct dragline protein.
Major duct dragline proteins include MaSp1 or MaSp2, which are major pituitary gland spidroins derived from Nephila clavipes, ADF3 or ADF4 derived from Araneus diadematus, and the like.
大吐糸管しおり糸タンパク質としては、アメリカジョロウグモ(Nephila clavipes)に由来する大瓶状腺スピドロインである、MaSp1又はMaSp2、ニワオニグモ(Araneus diadematus)に由来する、ADF3又はADF4などが挙げられる。 From the viewpoint of excellent toughness, the spider silk protein is preferably a major duct dragline protein produced in the greater vasculature gland of spiders or a spider silk protein derived from the major duct dragline protein.
Major duct dragline proteins include MaSp1 or MaSp2, which are major pituitary gland spidroins derived from Nephila clavipes, ADF3 or ADF4 derived from Araneus diadematus, and the like.
クモ糸タンパク質は、クモの小瓶状腺で産生される小吐糸管しおり糸タンパク質、又は、小吐糸管しおり糸タンパク質に由来するクモ糸タンパク質であってもよい。
小吐糸管しおり糸タンパク質としては、アメリカジョロウグモ(Nephila clavipes)に由来する小瓶状腺スピドロインである、MiSp1、MiSp2が挙げられる。 The spider silk protein may be a spider silk protein produced in the arachnoid glands of spiders or a spider silk protein derived from the silker silk protein.
Small duct dragline proteins include MiSp1 and MiSp2, which are small humeral gland spidroins derived from Nephila clavipes.
小吐糸管しおり糸タンパク質としては、アメリカジョロウグモ(Nephila clavipes)に由来する小瓶状腺スピドロインである、MiSp1、MiSp2が挙げられる。 The spider silk protein may be a spider silk protein produced in the arachnoid glands of spiders or a spider silk protein derived from the silker silk protein.
Small duct dragline proteins include MiSp1 and MiSp2, which are small humeral gland spidroins derived from Nephila clavipes.
その他にも、上記クモ糸タンパク質は、クモの鞭毛状腺(flagelliform gland)で産生される横糸タンパク質、又は、この横糸タンパク質に由来するクモ糸タンパク質であってもよい。
上記横糸タンパク質としては、例えば、アメリカジョロウグモ(Nephila clavipes)に由来する鞭毛状絹タンパク質(flagelliform silk protein)などが挙げられる。 Alternatively, the spider silk protein may be a weft protein produced in the flagelliform gland of spiders or a spider silk protein derived from this weft protein.
Examples of the weft protein include flagelliform silk protein derived from Nephila clavipes.
上記横糸タンパク質としては、例えば、アメリカジョロウグモ(Nephila clavipes)に由来する鞭毛状絹タンパク質(flagelliform silk protein)などが挙げられる。 Alternatively, the spider silk protein may be a weft protein produced in the flagelliform gland of spiders or a spider silk protein derived from this weft protein.
Examples of the weft protein include flagelliform silk protein derived from Nephila clavipes.
上述した大吐糸管しおり糸タンパク質に由来するクモ糸タンパク質としては、例えば、下記式(1)で示されるアミノ酸配列の単位を含む組換えクモ糸タンパク質が挙げられる。
組換えクモ糸タンパク質は、下記式(1)で示されるアミノ酸配列の単位を2以上(好ましくは4以上、より好ましくは6以上)含んでもよい。
組換えクモ糸タンパク質が下記式(1)で示されるアミノ酸配列の単位を2以上含む場合、2以上のアミノ酸配列の単位は、同一であっても異なっていてもよい。 Examples of the spider silk protein derived from the above-described large discharge tube dragline silk protein include recombinant spider silk proteins containing units of the amino acid sequence represented by the following formula (1).
The recombinant spider silk protein may contain 2 or more (preferably 4 or more, more preferably 6 or more) units of the amino acid sequence represented by the following formula (1).
When the recombinant spider silk protein contains two or more amino acid sequence units represented by the following formula (1), the two or more amino acid sequence units may be the same or different.
組換えクモ糸タンパク質は、下記式(1)で示されるアミノ酸配列の単位を2以上(好ましくは4以上、より好ましくは6以上)含んでもよい。
組換えクモ糸タンパク質が下記式(1)で示されるアミノ酸配列の単位を2以上含む場合、2以上のアミノ酸配列の単位は、同一であっても異なっていてもよい。 Examples of the spider silk protein derived from the above-described large discharge tube dragline silk protein include recombinant spider silk proteins containing units of the amino acid sequence represented by the following formula (1).
The recombinant spider silk protein may contain 2 or more (preferably 4 or more, more preferably 6 or more) units of the amino acid sequence represented by the following formula (1).
When the recombinant spider silk protein contains two or more amino acid sequence units represented by the following formula (1), the two or more amino acid sequence units may be the same or different.
REP1-REP2 … 式(1)
〔式(1)中、REP1は、主としてアラニンにより構成され(X1)pで表されるポリアラニン領域であり、REP2は、10~200残基のアミノ酸からなるアミノ酸配列である。〕 REP1-REP2 ... Formula (1)
[In the formula (1), REP1 is a polyalanine region composed mainly of alanine and represented by (X1)p, and REP2 is an amino acid sequence consisting of 10 to 200 amino acids. ]
〔式(1)中、REP1は、主としてアラニンにより構成され(X1)pで表されるポリアラニン領域であり、REP2は、10~200残基のアミノ酸からなるアミノ酸配列である。〕 REP1-REP2 ... Formula (1)
[In the formula (1), REP1 is a polyalanine region composed mainly of alanine and represented by (X1)p, and REP2 is an amino acid sequence consisting of 10 to 200 amino acids. ]
式(1)において、REP1は、主としてアラニンにより構成され(X1)pで表されるポリアラニン領域である。REP1として、好ましくはポリアラニンである。
(X1)pにおいて、pは、特に限定されるものではないが、好ましくは2~20の整数、より好ましくは4~12の整数を示す。
(X1)pにおいて、X1は、アラニン(Ala)、セリン(Ser)、又はグリシン(Gly)を示す。
(X1)pで表されるポリアラニン領域において、アラニンの合計残基数が、上記ポリアラニン領域のアミノ酸の合計残基数の80%以上(より好ましくは85%以上)であることが好ましい。
式(1)中のREP1において、連続して並んでいるアラニンは、2残基以上であることが好ましく、より好ましくは3残基以上であり、さらに好ましくは4残基以上であり、特に好ましくは5残基以上である。
また、式(1)中のREP1において、連続して並んでいるアラニンは、20残基以下であることが好ましく、より好ましくは16残基以下であり、さらに好ましくは12残基以下であり、特に好ましくは10残基以下である。 In formula (1), REP1 is a polyalanine region composed mainly of alanine and represented by (X1)p. REP1 is preferably polyalanine.
In (X1) p, p is not particularly limited, but preferably an integer of 2-20, more preferably an integer of 4-12.
In (X1) p, X1 represents alanine (Ala), serine (Ser), or glycine (Gly).
(X1) In the polyalanine region represented by p, the total number of alanine residues is preferably 80% or more (more preferably 85% or more) of the total number of amino acid residues in the polyalanine region.
In REP1 in formula (1), the consecutively arranged alanine residues are preferably 2 or more residues, more preferably 3 residues or more, still more preferably 4 residues or more, and particularly preferably is 5 or more residues.
Further, in REP1 in formula (1), the consecutively arranged alanines are preferably 20 residues or less, more preferably 16 residues or less, still more preferably 12 residues or less, Particularly preferably, it is 10 residues or less.
(X1)pにおいて、pは、特に限定されるものではないが、好ましくは2~20の整数、より好ましくは4~12の整数を示す。
(X1)pにおいて、X1は、アラニン(Ala)、セリン(Ser)、又はグリシン(Gly)を示す。
(X1)pで表されるポリアラニン領域において、アラニンの合計残基数が、上記ポリアラニン領域のアミノ酸の合計残基数の80%以上(より好ましくは85%以上)であることが好ましい。
式(1)中のREP1において、連続して並んでいるアラニンは、2残基以上であることが好ましく、より好ましくは3残基以上であり、さらに好ましくは4残基以上であり、特に好ましくは5残基以上である。
また、式(1)中のREP1において、連続して並んでいるアラニンは、20残基以下であることが好ましく、より好ましくは16残基以下であり、さらに好ましくは12残基以下であり、特に好ましくは10残基以下である。 In formula (1), REP1 is a polyalanine region composed mainly of alanine and represented by (X1)p. REP1 is preferably polyalanine.
In (X1) p, p is not particularly limited, but preferably an integer of 2-20, more preferably an integer of 4-12.
In (X1) p, X1 represents alanine (Ala), serine (Ser), or glycine (Gly).
(X1) In the polyalanine region represented by p, the total number of alanine residues is preferably 80% or more (more preferably 85% or more) of the total number of amino acid residues in the polyalanine region.
In REP1 in formula (1), the consecutively arranged alanine residues are preferably 2 or more residues, more preferably 3 residues or more, still more preferably 4 residues or more, and particularly preferably is 5 or more residues.
Further, in REP1 in formula (1), the consecutively arranged alanines are preferably 20 residues or less, more preferably 16 residues or less, still more preferably 12 residues or less, Particularly preferably, it is 10 residues or less.
式(1)において、REP2は、10~200残基のアミノ酸からなるアミノ酸配列である。このアミノ酸配列中に含まれる、グリシン、セリン、グルタミン、プロリン及びアラニンの合計残基数は、上記アミノ酸残基数全体に対し、40%以上が好ましく、50%以上がより好ましく、60%以上が特に好ましい。
In formula (1), REP2 is an amino acid sequence consisting of 10 to 200 amino acids. The total number of glycine, serine, glutamine, proline and alanine residues contained in this amino acid sequence is preferably 40% or more, more preferably 50% or more, and 60% or more of the total number of amino acid residues. Especially preferred.
上記小吐糸管しおり糸タンパク質に由来するクモ糸タンパク質としては、例えば、下記式(2)で示されるアミノ酸配列を含む組換えクモ糸タンパク質が挙げられる。
Examples of spider silk proteins derived from the above-mentioned small discharge tube dragline silk proteins include recombinant spider silk proteins containing the amino acid sequence represented by the following formula (2).
REP3-REP4-REP5 … 式(2)
〔式(2)中、REP3は、(Gly-Gly-Z)mで表されるアミノ酸配列であり、REP4は、(Gly-Ala)lで表されるアミノ酸配列であり、REP5は(Ala)rで表されるアミノ酸配列である。
REP3において、Zは任意の一つのアミノ酸を意味する。
REP3において、mは1~4であり、REP4において、lは、0~4であり、REP5において、rは、1~6である。〕 REP3-REP4-REP5... Formula (2)
[In formula (2), REP3 is an amino acid sequence represented by (Gly-Gly-Z)m, REP4 is an amino acid sequence represented by (Gly-Ala)l, and REP5 is (Ala) It is the amino acid sequence represented by r.
In REP3, Z means any one amino acid.
In REP3, m is 1-4, in REP4, l is 0-4, and in REP5, r is 1-6. ]
〔式(2)中、REP3は、(Gly-Gly-Z)mで表されるアミノ酸配列であり、REP4は、(Gly-Ala)lで表されるアミノ酸配列であり、REP5は(Ala)rで表されるアミノ酸配列である。
REP3において、Zは任意の一つのアミノ酸を意味する。
REP3において、mは1~4であり、REP4において、lは、0~4であり、REP5において、rは、1~6である。〕 REP3-REP4-REP5... Formula (2)
[In formula (2), REP3 is an amino acid sequence represented by (Gly-Gly-Z)m, REP4 is an amino acid sequence represented by (Gly-Ala)l, and REP5 is (Ala) It is the amino acid sequence represented by r.
In REP3, Z means any one amino acid.
In REP3, m is 1-4, in REP4, l is 0-4, and in REP5, r is 1-6. ]
REP3において、Zは任意の一つのアミノ酸を意味するが、特にAla、Tyr及びGlnからなる群から選ばれる一つのアミノ酸であることが好ましい。
In REP3, Z means any one amino acid, preferably one amino acid selected from the group consisting of Ala, Tyr and Gln.
上述した組換えクモ糸タンパク質(例えば、式(1)で示されるアミノ酸配列の単位を含む組換えクモ糸タンパク質、式(2)で示されるアミノ酸配列を含む組換えクモ糸タンパク質、等)は、組換えの対象となる天然型クモ糸タンパク質をコードする遺伝子を含有する発現ベクターで形質転換した宿主を用いて製造することができる。
The above-described recombinant spider silk protein (for example, a recombinant spider silk protein containing a unit of the amino acid sequence represented by formula (1), a recombinant spider silk protein containing an amino acid sequence represented by formula (2), etc.) is It can be produced using a host transformed with an expression vector containing a gene encoding a natural spider silk protein to be recombined.
長尺状の圧電体は、圧電性の観点から、光学活性ポリペプチドからなる繊維を含むことが好ましい。
光学活性ポリペプチドからなる繊維としては、光学活性を有する動物性タンパク質からなる繊維(例えば、シルク、ウール、モヘヤ、カシミア、キャメル、ラマ、アルパカ、ビキューナ、アンゴラ、クモ糸、等)が挙げられる。
光学活性ポリペプチドからなる繊維は、圧電性の観点から、シルク及びクモ糸の少なくとも一方を含むことが好ましく、シルク及びクモ糸の少なくとも一方からなることがより好ましい。 From the viewpoint of piezoelectricity, the elongated piezoelectric body preferably contains fibers made of an optically active polypeptide.
Fibers composed of optically active polypeptides include fibers composed of optically active animal proteins (eg, silk, wool, mohair, cashmere, camel, llama, alpaca, vicuna, angora, spider silk, etc.).
From the viewpoint of piezoelectricity, the optically active polypeptide fiber preferably contains at least one of silk and spider silk, more preferably at least one of silk and spider silk.
光学活性ポリペプチドからなる繊維としては、光学活性を有する動物性タンパク質からなる繊維(例えば、シルク、ウール、モヘヤ、カシミア、キャメル、ラマ、アルパカ、ビキューナ、アンゴラ、クモ糸、等)が挙げられる。
光学活性ポリペプチドからなる繊維は、圧電性の観点から、シルク及びクモ糸の少なくとも一方を含むことが好ましく、シルク及びクモ糸の少なくとも一方からなることがより好ましい。 From the viewpoint of piezoelectricity, the elongated piezoelectric body preferably contains fibers made of an optically active polypeptide.
Fibers composed of optically active polypeptides include fibers composed of optically active animal proteins (eg, silk, wool, mohair, cashmere, camel, llama, alpaca, vicuna, angora, spider silk, etc.).
From the viewpoint of piezoelectricity, the optically active polypeptide fiber preferably contains at least one of silk and spider silk, more preferably at least one of silk and spider silk.
シルクとしては、生糸(raw silk)、精錬シルク、再生シルク等が挙げられる。
シルクとしては、生糸又は精錬シルクが好ましく、精製シルクが特に好ましい。
ここで、精錬シルクとは、セリシンとフィブロインとの2重構造である生糸からセリシンを取り除いたシルクを意味し、精錬とは、生糸からセリシンを取り除く操作を意味する。生糸の色は艶の無い白色であるが、生糸からセリシンを取り除くこと(すなわち、精錬)により、艶の無い白色から光沢がある白銀色へと変化する。また、精錬により、柔らかい風合いが増す。 Silk includes raw silk, refined silk, regenerated silk, and the like.
As silk, raw silk or refined silk is preferable, and refined silk is particularly preferable.
Here, refined silk means silk obtained by removing sericin from raw silk having a double structure of sericin and fibroin, and refinement means an operation to remove sericin from raw silk. The color of raw silk is dull white, but by removing sericin from raw silk (that is, refining), it changes from dull white to shiny silvery white. Refining also increases the softness of the texture.
シルクとしては、生糸又は精錬シルクが好ましく、精製シルクが特に好ましい。
ここで、精錬シルクとは、セリシンとフィブロインとの2重構造である生糸からセリシンを取り除いたシルクを意味し、精錬とは、生糸からセリシンを取り除く操作を意味する。生糸の色は艶の無い白色であるが、生糸からセリシンを取り除くこと(すなわち、精錬)により、艶の無い白色から光沢がある白銀色へと変化する。また、精錬により、柔らかい風合いが増す。 Silk includes raw silk, refined silk, regenerated silk, and the like.
As silk, raw silk or refined silk is preferable, and refined silk is particularly preferable.
Here, refined silk means silk obtained by removing sericin from raw silk having a double structure of sericin and fibroin, and refinement means an operation to remove sericin from raw silk. The color of raw silk is dull white, but by removing sericin from raw silk (that is, refining), it changes from dull white to shiny silvery white. Refining also increases the softness of the texture.
長尺状の圧電体は、圧電性の観点から、光学活性ポリペプチドからなる長繊維を含むことが好ましい。この理由は、短繊維に比べて長繊維の方が、圧電基材に印加された応力が圧電体へ伝わり易いためと考えられる。
ここで、「長繊維」とは、圧電基材の長尺方向の一端から他端まで連続して巻回できる長さを有する繊維を意味する。
前述した、シルク、ウール、モヘヤ、カシミア、キャメル、ラマ、アルパカ、ビキューナ、アンゴラ、及びクモ糸は、何れも長繊維に該当する。
長繊維の中でも、シルク及びクモ糸が、圧電性の観点から、好ましい。 From the viewpoint of piezoelectricity, the elongated piezoelectric body preferably contains long fibers made of an optically active polypeptide. The reason for this is thought to be that the stress applied to the piezoelectric base material is more easily transmitted to the piezoelectric body in long fibers than in short fibers.
Here, "long fiber" means a fiber having a length that can be continuously wound from one end to the other end in the longitudinal direction of the piezoelectric substrate.
Silk, wool, mohair, cashmere, camel, llama, alpaca, vicuna, angora, and spider silk described above all correspond to long fibers.
Among long fibers, silk and spider silk are preferable from the viewpoint of piezoelectricity.
ここで、「長繊維」とは、圧電基材の長尺方向の一端から他端まで連続して巻回できる長さを有する繊維を意味する。
前述した、シルク、ウール、モヘヤ、カシミア、キャメル、ラマ、アルパカ、ビキューナ、アンゴラ、及びクモ糸は、何れも長繊維に該当する。
長繊維の中でも、シルク及びクモ糸が、圧電性の観点から、好ましい。 From the viewpoint of piezoelectricity, the elongated piezoelectric body preferably contains long fibers made of an optically active polypeptide. The reason for this is thought to be that the stress applied to the piezoelectric base material is more easily transmitted to the piezoelectric body in long fibers than in short fibers.
Here, "long fiber" means a fiber having a length that can be continuously wound from one end to the other end in the longitudinal direction of the piezoelectric substrate.
Silk, wool, mohair, cashmere, camel, llama, alpaca, vicuna, angora, and spider silk described above all correspond to long fibers.
Among long fibers, silk and spider silk are preferable from the viewpoint of piezoelectricity.
長尺状の圧電体が上記繊維を含む場合、長尺状の圧電体は、少なくとも1本の上記繊維からなる糸を少なくとも1本含むことが好ましい。
長尺状の圧電体が上記糸を含む場合の態様としては、長尺状の圧電体が1本の上記糸からなる態様、長尺状の圧電体が複数の上記糸の集合体である態様、等が挙げられる。
上記糸は、撚糸であっても無撚糸であってもよいが、圧電性の観点から、撚数が500T/m以下である糸(すなわち、撚数500T/m以下の撚糸又は無撚糸(撚数0T/m))であることが好ましい。
無撚糸としては、1本の原糸、複数本の原糸の集合体、等が挙げられる。 When the elongated piezoelectric body contains the fiber, it is preferable that the elongated piezoelectric body includes at least one thread made of at least one fiber.
When the long piezoelectric body includes the thread, the long piezoelectric body is made of one thread, and the long piezoelectric body is an aggregate of a plurality of the threads. , etc.
The yarn may be a twisted yarn or a non-twisted yarn, but from the viewpoint of piezoelectricity, a yarn with a twist number of 500 T/m or less It is preferably several 0 T/m)).
Non-twisted yarns include a single raw yarn, an aggregate of multiple raw yarns, and the like.
長尺状の圧電体が上記糸を含む場合の態様としては、長尺状の圧電体が1本の上記糸からなる態様、長尺状の圧電体が複数の上記糸の集合体である態様、等が挙げられる。
上記糸は、撚糸であっても無撚糸であってもよいが、圧電性の観点から、撚数が500T/m以下である糸(すなわち、撚数500T/m以下の撚糸又は無撚糸(撚数0T/m))であることが好ましい。
無撚糸としては、1本の原糸、複数本の原糸の集合体、等が挙げられる。 When the elongated piezoelectric body contains the fiber, it is preferable that the elongated piezoelectric body includes at least one thread made of at least one fiber.
When the long piezoelectric body includes the thread, the long piezoelectric body is made of one thread, and the long piezoelectric body is an aggregate of a plurality of the threads. , etc.
The yarn may be a twisted yarn or a non-twisted yarn, but from the viewpoint of piezoelectricity, a yarn with a twist number of 500 T/m or less It is preferably several 0 T/m)).
Non-twisted yarns include a single raw yarn, an aggregate of multiple raw yarns, and the like.
長尺状の圧電体の太さ(長尺状の圧電体が複数の糸の集合体である場合には集合体全体の太さ)には特に制限はないが、0.0001~2mmが好ましく、0.001~1mmがより好ましく、0.005~0.8mmが特に好ましい。
The thickness of the long piezoelectric body (the thickness of the entire assembly when the long piezoelectric body is an assembly of a plurality of threads) is not particularly limited, but is preferably 0.0001 to 2 mm. , 0.001 to 1 mm, and particularly preferably 0.005 to 0.8 mm.
長尺状の圧電体が、1本の原糸又は複数の原糸の集合体である場合、原糸1本の繊度は、0.01~10000デニールが好ましく、0.1~1000デニールがより好ましく、1~100デニールが特に好ましい。
When the long piezoelectric body is one raw yarn or an aggregate of a plurality of raw yarns, the fineness of one raw yarn is preferably 0.01 to 10000 denier, more preferably 0.1 to 1000 denier. It is preferred, and 1 to 100 denier is particularly preferred.
本実施形態において、長尺状の圧電体は、螺旋状に巻回されている。
本実施形態では、螺旋状に巻回されている長尺状の圧電体にずり応力が印加されることにより、電荷が発生する。これにより、圧電性が発現する。
圧電体に対するずり応力は、例えば、螺旋状に巻回されている長尺状の圧電体全体を螺旋軸方向に引っ張ること、螺旋状に巻回されている長尺状の圧電体の一部をねじる(すなわち、上記圧電体の一部を螺旋軸を軸としてねじる)こと、螺旋状に巻回されている長尺状の圧電体の一部又は全体を曲げること、等によって印加することができる。 In this embodiment, the elongated piezoelectric body is spirally wound.
In this embodiment, an electric charge is generated by applying a shear stress to the spirally wound long piezoelectric body. Thereby, piezoelectricity is exhibited.
Shear stress applied to the piezoelectric body can be generated, for example, by pulling the entire helically wound long piezoelectric body in the direction of the helical axis, or by pulling part of the helically wound long piezoelectric body. It can be applied by twisting (that is, twisting a part of the piezoelectric body around the helical axis), bending a part or the whole of the helically wound long piezoelectric body, or the like. .
本実施形態では、螺旋状に巻回されている長尺状の圧電体にずり応力が印加されることにより、電荷が発生する。これにより、圧電性が発現する。
圧電体に対するずり応力は、例えば、螺旋状に巻回されている長尺状の圧電体全体を螺旋軸方向に引っ張ること、螺旋状に巻回されている長尺状の圧電体の一部をねじる(すなわち、上記圧電体の一部を螺旋軸を軸としてねじる)こと、螺旋状に巻回されている長尺状の圧電体の一部又は全体を曲げること、等によって印加することができる。 In this embodiment, the elongated piezoelectric body is spirally wound.
In this embodiment, an electric charge is generated by applying a shear stress to the spirally wound long piezoelectric body. Thereby, piezoelectricity is exhibited.
Shear stress applied to the piezoelectric body can be generated, for example, by pulling the entire helically wound long piezoelectric body in the direction of the helical axis, or by pulling part of the helically wound long piezoelectric body. It can be applied by twisting (that is, twisting a part of the piezoelectric body around the helical axis), bending a part or the whole of the helically wound long piezoelectric body, or the like. .
長尺状の圧電体は、螺旋角度20°~70°にて巻回されていることが好ましい。
ここで、螺旋角度とは、螺旋軸方向(芯材を備える場合には芯材の長さ方向)と、巻回されている圧電体の長さ方向と、のなす角度を意味する(図7中の螺旋角度β1参照)。
螺旋角度としては、25°~65°がより好ましく、30°~60°がさらに好ましく、35°~55°が特に好ましい。 The elongated piezoelectric body is preferably wound at a spiral angle of 20° to 70°.
Here, the helical angle means the angle between the helical axis direction (the length direction of the core material when the core material is provided) and the length direction of the wound piezoelectric body (FIG. 7). See spiral angle β1 in the middle).
The helix angle is more preferably 25° to 65°, still more preferably 30° to 60°, and particularly preferably 35° to 55°.
ここで、螺旋角度とは、螺旋軸方向(芯材を備える場合には芯材の長さ方向)と、巻回されている圧電体の長さ方向と、のなす角度を意味する(図7中の螺旋角度β1参照)。
螺旋角度としては、25°~65°がより好ましく、30°~60°がさらに好ましく、35°~55°が特に好ましい。 The elongated piezoelectric body is preferably wound at a spiral angle of 20° to 70°.
Here, the helical angle means the angle between the helical axis direction (the length direction of the core material when the core material is provided) and the length direction of the wound piezoelectric body (FIG. 7). See spiral angle β1 in the middle).
The helix angle is more preferably 25° to 65°, still more preferably 30° to 60°, and particularly preferably 35° to 55°.
長尺状の圧電体は、一方向に螺旋状に巻回されていることが好ましい。
ここで、「一方向に螺旋状に巻回されている」とは、圧電基材の一端から見たときに、手前側から奥側に向けて左巻き(すなわち、反時計回り)となるように、圧電体が螺旋状に左旋方向に巻回されていること、又は、圧電基材の一端から見たときに手前側から奥側に向けて右巻き(すなわち、時計回り)となるように、圧電体が螺旋状に右旋方向に巻回されていることを意味する。
長尺状の圧電体が一方向に螺旋状に巻回されている場合には、発生した電荷の極性が打ち消し合う現象(すなわち、圧電性が低下する現象)が抑制される。したがって、圧電基材の圧電性がより向上する。 The elongated piezoelectric body is preferably spirally wound in one direction.
Here, "helically wound in one direction" means that when viewed from one end of the piezoelectric substrate, it is left-handed (that is, counterclockwise) from the front side to the back side. , the piezoelectric body is spirally wound in a left-handed direction; It means that the piezoelectric body is spirally wound in the right-handed direction.
When the long piezoelectric body is spirally wound in one direction, the phenomenon in which the polarities of the generated charges cancel each other out (that is, the phenomenon in which the piezoelectricity decreases) is suppressed. Therefore, the piezoelectricity of the piezoelectric substrate is further improved.
ここで、「一方向に螺旋状に巻回されている」とは、圧電基材の一端から見たときに、手前側から奥側に向けて左巻き(すなわち、反時計回り)となるように、圧電体が螺旋状に左旋方向に巻回されていること、又は、圧電基材の一端から見たときに手前側から奥側に向けて右巻き(すなわち、時計回り)となるように、圧電体が螺旋状に右旋方向に巻回されていることを意味する。
長尺状の圧電体が一方向に螺旋状に巻回されている場合には、発生した電荷の極性が打ち消し合う現象(すなわち、圧電性が低下する現象)が抑制される。したがって、圧電基材の圧電性がより向上する。 The elongated piezoelectric body is preferably spirally wound in one direction.
Here, "helically wound in one direction" means that when viewed from one end of the piezoelectric substrate, it is left-handed (that is, counterclockwise) from the front side to the back side. , the piezoelectric body is spirally wound in a left-handed direction; It means that the piezoelectric body is spirally wound in the right-handed direction.
When the long piezoelectric body is spirally wound in one direction, the phenomenon in which the polarities of the generated charges cancel each other out (that is, the phenomenon in which the piezoelectricity decreases) is suppressed. Therefore, the piezoelectricity of the piezoelectric substrate is further improved.
圧電基材が一方向に螺旋状に巻回されている長尺状の圧電体を備える態様には、上記圧電体を一層のみ備える態様だけでなく、上記圧電体を複数層重ねた態様も包含される。
上記圧電体を複数層重ねた態様として、例えば、一方向に螺旋状に巻回されている一層目の圧電体の上に重ねて、二層目の圧電体を上記一方向と同じ方向に螺旋状に巻回した態様が挙げられる。 The embodiment in which a piezoelectric base material is spirally wound in one direction to include a long piezoelectric body includes not only a mode in which only one layer of the piezoelectric body is provided, but also a mode in which multiple layers of the piezoelectric bodies are stacked. be done.
As a mode in which a plurality of layers of the piezoelectric bodies are stacked, for example, the piezoelectric bodies are stacked on the first piezoelectric body spirally wound in one direction, and the second piezoelectric body is spirally wound in the same direction as the one direction. An embodiment in which the wire is wound in a shape is mentioned.
上記圧電体を複数層重ねた態様として、例えば、一方向に螺旋状に巻回されている一層目の圧電体の上に重ねて、二層目の圧電体を上記一方向と同じ方向に螺旋状に巻回した態様が挙げられる。 The embodiment in which a piezoelectric base material is spirally wound in one direction to include a long piezoelectric body includes not only a mode in which only one layer of the piezoelectric body is provided, but also a mode in which multiple layers of the piezoelectric bodies are stacked. be done.
As a mode in which a plurality of layers of the piezoelectric bodies are stacked, for example, the piezoelectric bodies are stacked on the first piezoelectric body spirally wound in one direction, and the second piezoelectric body is spirally wound in the same direction as the one direction. An embodiment in which the wire is wound in a shape is mentioned.
本実施形態の圧電基材の態様としては、長尺状の圧電体として、一方向に螺旋状に巻回されている第1圧電体と、前記一方向とは異なる方向に螺旋状に巻回されている第2圧電体と、を備え、第1圧電体に含まれる光学活性ポリペプチドのキラリティと、第2圧電体に含まれる光学活性ポリペプチドのキラリティと、が互いに異なる態様も挙げられる。
As an aspect of the piezoelectric base material of this embodiment, as an elongated piezoelectric body, a first piezoelectric body spirally wound in one direction and a spirally wound in a direction different from the one direction and a second piezoelectric body, wherein the chirality of the optically active polypeptide contained in the first piezoelectric body and the chirality of the optically active polypeptide contained in the second piezoelectric body are different from each other.
圧電体は、必要に応じ、光学活性ポリペプチド以外の成分を含んでいてもよい。
例えば、圧電体が複数本の原糸の集合体である場合、圧電体は、複数の原糸の集合体を固定するための接着剤を含んでいてもよい。接着剤の好ましい態様は後述する。 The piezoelectric substance may contain components other than the optically active polypeptide, if necessary.
For example, when the piezoelectric body is an assembly of a plurality of raw yarns, the piezoelectric body may contain an adhesive for fixing the assembly of the plurality of raw yarns. A preferred embodiment of the adhesive will be described later.
例えば、圧電体が複数本の原糸の集合体である場合、圧電体は、複数の原糸の集合体を固定するための接着剤を含んでいてもよい。接着剤の好ましい態様は後述する。 The piezoelectric substance may contain components other than the optically active polypeptide, if necessary.
For example, when the piezoelectric body is an assembly of a plurality of raw yarns, the piezoelectric body may contain an adhesive for fixing the assembly of the plurality of raw yarns. A preferred embodiment of the adhesive will be described later.
<芯材、外部導体>
本実施形態の圧電基材は、長尺状の芯材を備える。
本実施形態の圧電基材では、かかる長尺状の芯材の周りに、長尺状の圧電体が螺旋状に巻回される。 <Core material, outer conductor>
The piezoelectric base material of this embodiment includes an elongated core material.
In the piezoelectric base material of the present embodiment, a long piezoelectric body is helically wound around the long core material.
本実施形態の圧電基材は、長尺状の芯材を備える。
本実施形態の圧電基材では、かかる長尺状の芯材の周りに、長尺状の圧電体が螺旋状に巻回される。 <Core material, outer conductor>
The piezoelectric base material of this embodiment includes an elongated core material.
In the piezoelectric base material of the present embodiment, a long piezoelectric body is helically wound around the long core material.
芯材は、導体であってもよい。
圧電基材が、導体である芯材を備える態様は、導体である芯材を通じ、圧電体から電気的信号(電圧信号又は電荷信号)を取り出しやすいという利点を有する。
また、この態様は、同軸ケーブルに備えられる内部構造(内部導体及び誘電体)と同一の構造となるため、例えば、この態様の圧電基材を同軸ケーブルに適用した場合、電磁シールド性が高く、ノイズに強い構造となり得る。
導体としては、電気的な良導体であることが好ましく、例えば、銅線、アルミ線、SUS線、絶縁皮膜被覆された金属線、カーボンファイバー、カーボンファイバーと一体化した樹脂繊維、錦糸線、有機導電材料等が挙げられる。
錦糸線とは、繊維に銅箔がスパイラル状に巻回されたものを意味する。
導体の中でも、圧電感度を向上し、高い屈曲性を付与する観点から、錦糸線、カーボンファイバーが好ましい。 The core material may be a conductor.
The aspect in which the piezoelectric base material includes a core material that is a conductor has the advantage that an electrical signal (voltage signal or charge signal) can be easily extracted from the piezoelectric body through the core material that is a conductor.
In addition, since this aspect has the same structure as the internal structure (inner conductor and dielectric) provided in the coaxial cable, for example, when the piezoelectric base material of this aspect is applied to the coaxial cable, the electromagnetic shielding property is high, The structure can be resistant to noise.
The conductor is preferably a good electrical conductor, such as copper wire, aluminum wire, SUS wire, metal wire coated with an insulating film, carbon fiber, resin fiber integrated with carbon fiber, tinsel wire, organic conductive wire. materials and the like.
Tinsel wire means a fiber in which copper foil is spirally wound.
Among the conductors, tinsel wire and carbon fiber are preferable from the viewpoint of improving piezoelectric sensitivity and imparting high flexibility.
圧電基材が、導体である芯材を備える態様は、導体である芯材を通じ、圧電体から電気的信号(電圧信号又は電荷信号)を取り出しやすいという利点を有する。
また、この態様は、同軸ケーブルに備えられる内部構造(内部導体及び誘電体)と同一の構造となるため、例えば、この態様の圧電基材を同軸ケーブルに適用した場合、電磁シールド性が高く、ノイズに強い構造となり得る。
導体としては、電気的な良導体であることが好ましく、例えば、銅線、アルミ線、SUS線、絶縁皮膜被覆された金属線、カーボンファイバー、カーボンファイバーと一体化した樹脂繊維、錦糸線、有機導電材料等が挙げられる。
錦糸線とは、繊維に銅箔がスパイラル状に巻回されたものを意味する。
導体の中でも、圧電感度を向上し、高い屈曲性を付与する観点から、錦糸線、カーボンファイバーが好ましい。 The core material may be a conductor.
The aspect in which the piezoelectric base material includes a core material that is a conductor has the advantage that an electrical signal (voltage signal or charge signal) can be easily extracted from the piezoelectric body through the core material that is a conductor.
In addition, since this aspect has the same structure as the internal structure (inner conductor and dielectric) provided in the coaxial cable, for example, when the piezoelectric base material of this aspect is applied to the coaxial cable, the electromagnetic shielding property is high, The structure can be resistant to noise.
The conductor is preferably a good electrical conductor, such as copper wire, aluminum wire, SUS wire, metal wire coated with an insulating film, carbon fiber, resin fiber integrated with carbon fiber, tinsel wire, organic conductive wire. materials and the like.
Tinsel wire means a fiber in which copper foil is spirally wound.
Among the conductors, tinsel wire and carbon fiber are preferable from the viewpoint of improving piezoelectric sensitivity and imparting high flexibility.
特に、電気的抵抗が低く、かつ屈曲性、可撓性が要求される用途においては、錦糸線を用いることが好ましい。
錦糸線の形態は、繊維に対して、銅箔が螺旋状に巻回された構造を有するが、電気伝導度の高い銅が用いられていることにより出力インピーダンスを低下することが可能となる。したがって、芯材として錦糸線を用いることにより、圧電基材の圧電性がより向上する。 In particular, it is preferable to use a tinsel wire for applications that require low electrical resistance, bendability, and flexibility.
The form of the tinsel wire has a structure in which a copper foil is spirally wound around a fiber, and the use of copper, which has high electrical conductivity, makes it possible to reduce the output impedance. Therefore, by using the tinsel wire as the core material, the piezoelectricity of the piezoelectric substrate is further improved.
錦糸線の形態は、繊維に対して、銅箔が螺旋状に巻回された構造を有するが、電気伝導度の高い銅が用いられていることにより出力インピーダンスを低下することが可能となる。したがって、芯材として錦糸線を用いることにより、圧電基材の圧電性がより向上する。 In particular, it is preferable to use a tinsel wire for applications that require low electrical resistance, bendability, and flexibility.
The form of the tinsel wire has a structure in which a copper foil is spirally wound around a fiber, and the use of copper, which has high electrical conductivity, makes it possible to reduce the output impedance. Therefore, by using the tinsel wire as the core material, the piezoelectricity of the piezoelectric substrate is further improved.
また、非常に高い屈曲性、しなやかさが求められる、織物や、編物などへの加工用途(例えば圧電織物、圧電編物、圧電センサ(織物状圧電センサ、編物状圧電センサ))においては、カーボンファイバーを用いることが好ましい。
また、本実施形態の圧電基材を繊維として用い、圧電織物又は圧電編物を製造する場合は、しなやかさ、高屈曲性が求められる。そのような用途においては、糸状又は繊維状の信号線導体が好ましい。糸状又は繊維状の信号線導体を備える圧電基材は、高い屈曲性を有するため、織機又は編機での加工が好適である。 In addition, in processing applications for woven fabrics and knitted fabrics (for example, piezoelectric fabrics, piezoelectric knitted fabrics, piezoelectric sensors (woven piezoelectric sensors, knitted piezoelectric sensors)) that require extremely high flexibility and flexibility, carbon fiber is preferably used.
Moreover, when the piezoelectric base material of the present embodiment is used as a fiber to produce a piezoelectric woven fabric or piezoelectric knitted fabric, suppleness and high flexibility are required. In such applications, filamentous or fibrous signal line conductors are preferred. A piezoelectric base material having filamentous or fibrous signal line conductors has high flexibility, and therefore is suitable for processing with a loom or a knitting machine.
また、本実施形態の圧電基材を繊維として用い、圧電織物又は圧電編物を製造する場合は、しなやかさ、高屈曲性が求められる。そのような用途においては、糸状又は繊維状の信号線導体が好ましい。糸状又は繊維状の信号線導体を備える圧電基材は、高い屈曲性を有するため、織機又は編機での加工が好適である。 In addition, in processing applications for woven fabrics and knitted fabrics (for example, piezoelectric fabrics, piezoelectric knitted fabrics, piezoelectric sensors (woven piezoelectric sensors, knitted piezoelectric sensors)) that require extremely high flexibility and flexibility, carbon fiber is preferably used.
Moreover, when the piezoelectric base material of the present embodiment is used as a fiber to produce a piezoelectric woven fabric or piezoelectric knitted fabric, suppleness and high flexibility are required. In such applications, filamentous or fibrous signal line conductors are preferred. A piezoelectric base material having filamentous or fibrous signal line conductors has high flexibility, and therefore is suitable for processing with a loom or a knitting machine.
圧電基材が導体である芯材を備える場合、圧電基材は、芯材の周りに螺旋状に巻回されている長尺状の圧電体よりも外周側に外部導体を備え、導体である芯材と外部導体とが電気的に絶縁されていることが好ましい。
この態様では、外部導体によって圧電基材の内部(圧電体、及び、導体である芯材)を静電シールドすることができるので、圧電基材の外部の静電気の影響による、導体である芯材の電圧変化又は電荷変化が抑制される。
したがって、圧電基材において、より安定した圧電性が得られる。
外部導体には、グラウンド電位に接続されることが好ましい。 In the case where the piezoelectric substrate includes a conductor core material, the piezoelectric substrate includes an outer conductor on the outer peripheral side of the elongated piezoelectric body spirally wound around the core material, and is a conductor. It is preferable that the core material and the outer conductor are electrically insulated.
In this aspect, the outer conductor can electrostatically shield the inside of the piezoelectric substrate (piezoelectric body and conductive core material). voltage change or charge change is suppressed.
Therefore, more stable piezoelectricity can be obtained in the piezoelectric substrate.
The outer conductor is preferably connected to ground potential.
この態様では、外部導体によって圧電基材の内部(圧電体、及び、導体である芯材)を静電シールドすることができるので、圧電基材の外部の静電気の影響による、導体である芯材の電圧変化又は電荷変化が抑制される。
したがって、圧電基材において、より安定した圧電性が得られる。
外部導体には、グラウンド電位に接続されることが好ましい。 In the case where the piezoelectric substrate includes a conductor core material, the piezoelectric substrate includes an outer conductor on the outer peripheral side of the elongated piezoelectric body spirally wound around the core material, and is a conductor. It is preferable that the core material and the outer conductor are electrically insulated.
In this aspect, the outer conductor can electrostatically shield the inside of the piezoelectric substrate (piezoelectric body and conductive core material). voltage change or charge change is suppressed.
Therefore, more stable piezoelectricity can be obtained in the piezoelectric substrate.
The outer conductor is preferably connected to ground potential.
外部導体の材料には特に限定はないが、断面形状によって、主に以下のものが挙げられる。
例えば、矩形断面を有する外部導体の材料としては、円形断面の銅線を圧延して平板状に加工した銅箔リボンや、Al箔リボンなどを用いることができる。
例えば、円形断面を有する外部導体の材料としては、銅線、アルミ線、SUS線、絶縁皮膜被覆された金属線、カーボンファイバー、カーボンファイバーと一体化した樹脂繊維、錦糸線を用いることができる。
また、外部導体の材料として、有機導電材料を絶縁材料でコーティングしたものを用いてもよい。 Although there is no particular limitation on the material of the outer conductor, there are mainly the following materials depending on the cross-sectional shape.
For example, as the material of the outer conductor having a rectangular cross section, a copper foil ribbon obtained by rolling a copper wire having a circular cross section into a flat plate, an Al foil ribbon, or the like can be used.
For example, as the material of the outer conductor having a circular cross section, copper wire, aluminum wire, SUS wire, metal wire coated with an insulating film, carbon fiber, resin fiber integrated with carbon fiber, and tinsel wire can be used.
Also, as the material of the outer conductor, an organic conductive material coated with an insulating material may be used.
例えば、矩形断面を有する外部導体の材料としては、円形断面の銅線を圧延して平板状に加工した銅箔リボンや、Al箔リボンなどを用いることができる。
例えば、円形断面を有する外部導体の材料としては、銅線、アルミ線、SUS線、絶縁皮膜被覆された金属線、カーボンファイバー、カーボンファイバーと一体化した樹脂繊維、錦糸線を用いることができる。
また、外部導体の材料として、有機導電材料を絶縁材料でコーティングしたものを用いてもよい。 Although there is no particular limitation on the material of the outer conductor, there are mainly the following materials depending on the cross-sectional shape.
For example, as the material of the outer conductor having a rectangular cross section, a copper foil ribbon obtained by rolling a copper wire having a circular cross section into a flat plate, an Al foil ribbon, or the like can be used.
For example, as the material of the outer conductor having a circular cross section, copper wire, aluminum wire, SUS wire, metal wire coated with an insulating film, carbon fiber, resin fiber integrated with carbon fiber, and tinsel wire can be used.
Also, as the material of the outer conductor, an organic conductive material coated with an insulating material may be used.
外部導体は、導体である芯材と短絡しないように、導体である芯材及び圧電体を包むように配置されていることが好ましい。
導体である芯材及び圧電体の包み方としては、銅箔などを螺旋状に巻回して包む方法や、銅線などを筒状の組紐にして、その中に包みこむ方法などを選択することができる。
なお、上記包み方は、これら方法に限定されない。
導体である芯材及び圧電体を包み込むことにより、静電シールドの効果をより高めることができる。
また、外部導体の配置は、圧電基材の最小基本構成単位(すなわち、導体及び圧電体)を円筒状に包接するように配置することも好ましい形態の一つである。
また、例えば、上記最小基本構成単位を備えた圧電基材を用いて、後述する圧電編物や圧電織物をシート状に加工した場合、その加工物の対向する片面若しくは両面に、面状若しくはシート状の導体を近接して配置することも好ましい形態の一つである。 It is preferable that the outer conductor is arranged so as to wrap the conductor core material and the piezoelectric body so as not to cause a short circuit with the conductor core material.
As a method of wrapping the core material and the piezoelectric body, which are conductors, select a method of spirally winding a copper foil or the like, or a method of wrapping a copper wire or the like into a cylindrical braid and wrapping it in the braid. can be done.
In addition, the said wrapping method is not limited to these methods.
By wrapping the conductive core material and the piezoelectric body, the electrostatic shielding effect can be further enhanced.
In addition, it is also one of the preferred forms that the external conductor is arranged so as to enclose the minimum basic structural unit (that is, the conductor and the piezoelectric body) of the piezoelectric base material in a cylindrical shape.
Further, for example, when a piezoelectric knitted fabric or a piezoelectric woven fabric, which will be described later, is processed into a sheet by using a piezoelectric base material having the above minimum basic structural unit, a planar or sheet-shaped It is also one of the preferred forms to arrange the conductors in close proximity to each other.
導体である芯材及び圧電体の包み方としては、銅箔などを螺旋状に巻回して包む方法や、銅線などを筒状の組紐にして、その中に包みこむ方法などを選択することができる。
なお、上記包み方は、これら方法に限定されない。
導体である芯材及び圧電体を包み込むことにより、静電シールドの効果をより高めることができる。
また、外部導体の配置は、圧電基材の最小基本構成単位(すなわち、導体及び圧電体)を円筒状に包接するように配置することも好ましい形態の一つである。
また、例えば、上記最小基本構成単位を備えた圧電基材を用いて、後述する圧電編物や圧電織物をシート状に加工した場合、その加工物の対向する片面若しくは両面に、面状若しくはシート状の導体を近接して配置することも好ましい形態の一つである。 It is preferable that the outer conductor is arranged so as to wrap the conductor core material and the piezoelectric body so as not to cause a short circuit with the conductor core material.
As a method of wrapping the core material and the piezoelectric body, which are conductors, select a method of spirally winding a copper foil or the like, or a method of wrapping a copper wire or the like into a cylindrical braid and wrapping it in the braid. can be done.
In addition, the said wrapping method is not limited to these methods.
By wrapping the conductive core material and the piezoelectric body, the electrostatic shielding effect can be further enhanced.
In addition, it is also one of the preferred forms that the external conductor is arranged so as to enclose the minimum basic structural unit (that is, the conductor and the piezoelectric body) of the piezoelectric base material in a cylindrical shape.
Further, for example, when a piezoelectric knitted fabric or a piezoelectric woven fabric, which will be described later, is processed into a sheet by using a piezoelectric base material having the above minimum basic structural unit, a planar or sheet-shaped It is also one of the preferred forms to arrange the conductors in close proximity to each other.
外部導体の断面形状は、円形状、楕円形状、矩形状、異形状など様々な断面形状を適用することができる。特に、矩形断面は、導体及び圧電体などに対して、平面で密着することができるため、効率的に圧電効果により発生した電荷を電圧信号として検出することできる。
Various cross-sectional shapes such as circular, elliptical, rectangular, and irregular shapes can be applied to the cross-sectional shape of the outer conductor. In particular, since the rectangular cross section can be in flat contact with conductors, piezoelectric bodies, and the like, charges generated by the piezoelectric effect can be efficiently detected as voltage signals.
<絶縁体>
(第1態様の絶縁体)
本実施形態の圧電基材は、さらに、第1態様の絶縁体を備えていてもよい。
第1態様の絶縁体は、内部導体の外周面に沿って螺旋状に巻回されることが好ましい。
この場合、第1態様の絶縁体は、圧電体から見て、内部導体とは反対側に配置されていてもよく、内部導体と圧電体との間に配置されていてもよい。
また、第1態様の絶縁体の巻回方向は、圧電体の巻回方向と同じ方向であってもよく、異なる方向であってもよい。
特に、圧電基材が外部導体を備える場合においては、圧電基材がさらに第1態様の絶縁体を備えることにより、圧電基材が屈曲変形する時に、内部導体と外部導体の電気的短絡の発生を抑制しやすくなるという利点がある。 <Insulator>
(Insulator of first aspect)
The piezoelectric substrate of this embodiment may further comprise the insulator of the first aspect.
The insulator of the first aspect is preferably spirally wound along the outer peripheral surface of the internal conductor.
In this case, the insulator of the first mode may be arranged on the side opposite to the internal conductor when viewed from the piezoelectric body, or may be arranged between the internal conductor and the piezoelectric body.
Moreover, the winding direction of the insulator of the first mode may be the same as or different from the winding direction of the piezoelectric body.
In particular, when the piezoelectric base material includes an outer conductor, the piezoelectric base material further includes the insulator of the first aspect, so that an electrical short circuit occurs between the inner conductor and the outer conductor when the piezoelectric base material bends and deforms. has the advantage of being easier to suppress
(第1態様の絶縁体)
本実施形態の圧電基材は、さらに、第1態様の絶縁体を備えていてもよい。
第1態様の絶縁体は、内部導体の外周面に沿って螺旋状に巻回されることが好ましい。
この場合、第1態様の絶縁体は、圧電体から見て、内部導体とは反対側に配置されていてもよく、内部導体と圧電体との間に配置されていてもよい。
また、第1態様の絶縁体の巻回方向は、圧電体の巻回方向と同じ方向であってもよく、異なる方向であってもよい。
特に、圧電基材が外部導体を備える場合においては、圧電基材がさらに第1態様の絶縁体を備えることにより、圧電基材が屈曲変形する時に、内部導体と外部導体の電気的短絡の発生を抑制しやすくなるという利点がある。 <Insulator>
(Insulator of first aspect)
The piezoelectric substrate of this embodiment may further comprise the insulator of the first aspect.
The insulator of the first aspect is preferably spirally wound along the outer peripheral surface of the internal conductor.
In this case, the insulator of the first mode may be arranged on the side opposite to the internal conductor when viewed from the piezoelectric body, or may be arranged between the internal conductor and the piezoelectric body.
Moreover, the winding direction of the insulator of the first mode may be the same as or different from the winding direction of the piezoelectric body.
In particular, when the piezoelectric base material includes an outer conductor, the piezoelectric base material further includes the insulator of the first aspect, so that an electrical short circuit occurs between the inner conductor and the outer conductor when the piezoelectric base material bends and deforms. has the advantage of being easier to suppress
第1態様の絶縁体としては、特に限定はないが、例えば、塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン・四フッ化エチレン共重合体(ETFE)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、四フッ化エチレン樹脂(PTFE)、四フッ化エチレン・パーフロロプロピルビニルエーテル共重合体(PFA)、フッ素ゴム、ポリエステル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂(PET)、ゴム(エラストマーを含む)等が挙げられる。
第1態様の絶縁体の形状は、導体に対する巻回の観点から、長尺形状であることが好ましい。
(第2態様の絶縁体)
本開示の圧電基材において、外周に外部導体を備える場合、さらに、第1の外部導体の外周に第2態様の絶縁体を備えていてもよい。
これにより、静電シールドすることが可能となり、外部の静電気の影響による、導体(好ましくは内部導体)の電圧変化が抑制される。 The insulator of the first mode is not particularly limited, but for example, vinyl chloride resin, polyethylene resin, polypropylene resin, ethylene/tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene/hexafluoropropylene copolymer Polymer (FEP), tetrafluoroethylene resin (PTFE), tetrafluoroethylene/perfluoropropyl vinyl ether copolymer (PFA), fluororubber, polyester resin, polyimide resin, polyamide resin, polyethylene terephthalate resin (PET), rubber (including elastomer) and the like.
The shape of the insulator of the first mode is preferably an elongated shape from the viewpoint of winding around the conductor.
(Insulator of Second Aspect)
In the piezoelectric base material of the present disclosure, when the outer conductor is provided on the outer circumference, the insulator of the second mode may be provided on the outer circumference of the first outer conductor.
This enables electrostatic shielding and suppresses voltage changes in the conductor (preferably the internal conductor) due to the influence of external static electricity.
第1態様の絶縁体の形状は、導体に対する巻回の観点から、長尺形状であることが好ましい。
(第2態様の絶縁体)
本開示の圧電基材において、外周に外部導体を備える場合、さらに、第1の外部導体の外周に第2態様の絶縁体を備えていてもよい。
これにより、静電シールドすることが可能となり、外部の静電気の影響による、導体(好ましくは内部導体)の電圧変化が抑制される。 The insulator of the first mode is not particularly limited, but for example, vinyl chloride resin, polyethylene resin, polypropylene resin, ethylene/tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene/hexafluoropropylene copolymer Polymer (FEP), tetrafluoroethylene resin (PTFE), tetrafluoroethylene/perfluoropropyl vinyl ether copolymer (PFA), fluororubber, polyester resin, polyimide resin, polyamide resin, polyethylene terephthalate resin (PET), rubber (including elastomer) and the like.
The shape of the insulator of the first mode is preferably an elongated shape from the viewpoint of winding around the conductor.
(Insulator of Second Aspect)
In the piezoelectric base material of the present disclosure, when the outer conductor is provided on the outer circumference, the insulator of the second mode may be provided on the outer circumference of the first outer conductor.
This enables electrostatic shielding and suppresses voltage changes in the conductor (preferably the internal conductor) due to the influence of external static electricity.
第2の絶縁体には特に限定はないが、例えば、第1態様の絶縁体として例示した材料が挙げられる。
また、第2態様の絶縁体の形状は特に限定はなく、外部導体の少なくとも一部を被覆できる形状であればよい。 The second insulator is not particularly limited, but examples thereof include the materials exemplified as the insulator of the first aspect.
Moreover, the shape of the insulator in the second aspect is not particularly limited as long as it can cover at least a part of the outer conductor.
また、第2態様の絶縁体の形状は特に限定はなく、外部導体の少なくとも一部を被覆できる形状であればよい。 The second insulator is not particularly limited, but examples thereof include the materials exemplified as the insulator of the first aspect.
Moreover, the shape of the insulator in the second aspect is not particularly limited as long as it can cover at least a part of the outer conductor.
本実施形態の圧電基材の最外周に、絶縁体を設ける方法としては、絶縁体が設けられる前の圧電基材に対し、長尺状の絶縁体を巻回する方法;円筒形状の絶縁体(例えば熱収縮チューブ)の内部空間に絶縁体が設けられる前の圧電基材を配置し、次いで熱によって円筒形状の絶縁体を収縮させて密着させる方法;絶縁性の溶融樹脂で被覆して冷却固化させる方法;絶縁性の樹脂塗工液をコーティングして固化させる方法;等が挙げられる。
As a method of providing an insulator on the outermost periphery of the piezoelectric base material of this embodiment, a method of winding a long insulator around the piezoelectric base material before the insulator is provided; a method of winding a cylindrical insulator; A method in which a piezoelectric base material before an insulator is provided is placed in the inner space of (e.g., a heat-shrinkable tube), and then the cylindrical insulator is shrunk and adhered by heat; covered with an insulating molten resin and cooled A method of solidifying; a method of coating and solidifying an insulating resin coating liquid; and the like.
<接着剤>
本実施形態の圧電基材は、接着剤を含んでいてもよい。
圧電基材が接着剤を含む態様では、少なくとも、螺旋状に巻回されている圧電体を機械的に一体化させることができる。
また、圧電基材が芯材等の圧電体以外の部材(芯材、外部導体、等)を備える場合には、接着剤により、圧電体と圧電体以外の部材とを一体化させることもできる。
圧電体(又は、圧電体及び圧電体以外の部材)を機械的に一体化させることにより、圧電基材に力が印加された場合に、圧電基材中の圧電体に力が作用しやすくなる。したがって、圧電性がより向上する。 <Adhesive>
The piezoelectric substrate of this embodiment may contain an adhesive.
In a mode in which the piezoelectric substrate contains an adhesive, at least the spirally wound piezoelectric body can be mechanically integrated.
In addition, when the piezoelectric substrate includes a member other than the piezoelectric body such as a core material (core material, external conductor, etc.), the piezoelectric body and the member other than the piezoelectric body can be integrated with an adhesive. .
By mechanically integrating the piezoelectric body (or the piezoelectric body and a member other than the piezoelectric body), when a force is applied to the piezoelectric base material, the force tends to act on the piezoelectric body in the piezoelectric base material. . Therefore, piezoelectricity is further improved.
本実施形態の圧電基材は、接着剤を含んでいてもよい。
圧電基材が接着剤を含む態様では、少なくとも、螺旋状に巻回されている圧電体を機械的に一体化させることができる。
また、圧電基材が芯材等の圧電体以外の部材(芯材、外部導体、等)を備える場合には、接着剤により、圧電体と圧電体以外の部材とを一体化させることもできる。
圧電体(又は、圧電体及び圧電体以外の部材)を機械的に一体化させることにより、圧電基材に力が印加された場合に、圧電基材中の圧電体に力が作用しやすくなる。したがって、圧電性がより向上する。 <Adhesive>
The piezoelectric substrate of this embodiment may contain an adhesive.
In a mode in which the piezoelectric substrate contains an adhesive, at least the spirally wound piezoelectric body can be mechanically integrated.
In addition, when the piezoelectric substrate includes a member other than the piezoelectric body such as a core material (core material, external conductor, etc.), the piezoelectric body and the member other than the piezoelectric body can be integrated with an adhesive. .
By mechanically integrating the piezoelectric body (or the piezoelectric body and a member other than the piezoelectric body), when a force is applied to the piezoelectric base material, the force tends to act on the piezoelectric body in the piezoelectric base material. . Therefore, piezoelectricity is further improved.
接着剤の材料としては、エポキシ系接着剤、ウレタン系接着剤、酢酸ビニル樹脂系エマルション形接着剤、(EVA)系エマルション形接着剤、アクリル樹脂系エマルション形接着剤、スチレン・ブタジエンゴム系ラテックス形接着剤、シリコーン樹脂系接着剤、α-オレフィン(イソブテン-無水マレイン酸樹脂)系接着剤、塩化ビニル樹脂系溶剤形接着剤、ゴム系接着剤、弾性接着剤、クロロプレンゴム系溶剤形接着剤、ニトリルゴム系溶剤形接着剤等、シアノアクリレート系接着剤等が挙げられる。
Adhesive materials include epoxy adhesives, urethane adhesives, vinyl acetate resin emulsion adhesives, (EVA) emulsion adhesives, acrylic resin emulsion adhesives, and styrene-butadiene rubber latex adhesives. Adhesives, silicone resin adhesives, α-olefin (isobutene-maleic anhydride resin) adhesives, vinyl chloride resin solvent adhesives, rubber adhesives, elastic adhesives, chloroprene rubber solvent adhesives, Nitrile rubber-based solvent-based adhesives, cyanoacrylate-based adhesives, and the like are included.
<その他の要素>
本実施形態の圧電基材は、上述した各要素以外のその他の要素を備えていてもよい。
その他の要素として、例えば、長尺状の圧電体以外の繊維が挙げられる。
本実施形態の圧電基材では、長尺状の圧電体とともに、長尺状の圧電体以外の繊維が巻回されていてもよい。
また、本実施形態の圧電基材には公知の取出し電極を接合することができる。取出し電極としては、コネクター等の電極部品、圧着端子などが挙げられる。電極部品は、半田付けなどのろう付け、導電性接合剤等により圧電基材と接合することができる。 <Other elements>
The piezoelectric base material of this embodiment may include elements other than the elements described above.
Other elements include, for example, fibers other than long piezoelectric bodies.
In the piezoelectric substrate of the present embodiment, fibers other than the long piezoelectric body may be wound together with the long piezoelectric body.
Also, a known extraction electrode can be joined to the piezoelectric base material of the present embodiment. Examples of extraction electrodes include electrode parts such as connectors, crimp terminals, and the like. The electrode component can be joined to the piezoelectric base material by brazing such as soldering, a conductive adhesive, or the like.
本実施形態の圧電基材は、上述した各要素以外のその他の要素を備えていてもよい。
その他の要素として、例えば、長尺状の圧電体以外の繊維が挙げられる。
本実施形態の圧電基材では、長尺状の圧電体とともに、長尺状の圧電体以外の繊維が巻回されていてもよい。
また、本実施形態の圧電基材には公知の取出し電極を接合することができる。取出し電極としては、コネクター等の電極部品、圧着端子などが挙げられる。電極部品は、半田付けなどのろう付け、導電性接合剤等により圧電基材と接合することができる。 <Other elements>
The piezoelectric base material of this embodiment may include elements other than the elements described above.
Other elements include, for example, fibers other than long piezoelectric bodies.
In the piezoelectric substrate of the present embodiment, fibers other than the long piezoelectric body may be wound together with the long piezoelectric body.
Also, a known extraction electrode can be joined to the piezoelectric base material of the present embodiment. Examples of extraction electrodes include electrode parts such as connectors, crimp terminals, and the like. The electrode component can be joined to the piezoelectric base material by brazing such as soldering, a conductive adhesive, or the like.
以下、本実施形態の圧電基材の具体例について、図面を参照しながら説明するが、本実施形態の圧電基材は以下の具体例に限定されるものではない。
なお、全図面を通じ、実質的に同一の要素には同一の符号を付し、重複した説明を省略することがある。また、本実施形態の圧電基材の具体例において、後述する圧電基材50A、圧電基材50B、及び圧電基材50Cは、上述した圧電基材50の一例である。 Specific examples of the piezoelectric substrate of this embodiment will be described below with reference to the drawings, but the piezoelectric substrate of this embodiment is not limited to the following specific examples.
It should be noted that substantially the same elements are denoted by the same reference numerals throughout the drawings, and redundant description may be omitted. Further, in specific examples of the piezoelectric substrate of the present embodiment, apiezoelectric substrate 50A, a piezoelectric substrate 50B, and a piezoelectric substrate 50C, which will be described later, are examples of the piezoelectric substrate 50 described above.
なお、全図面を通じ、実質的に同一の要素には同一の符号を付し、重複した説明を省略することがある。また、本実施形態の圧電基材の具体例において、後述する圧電基材50A、圧電基材50B、及び圧電基材50Cは、上述した圧電基材50の一例である。 Specific examples of the piezoelectric substrate of this embodiment will be described below with reference to the drawings, but the piezoelectric substrate of this embodiment is not limited to the following specific examples.
It should be noted that substantially the same elements are denoted by the same reference numerals throughout the drawings, and redundant description may be omitted. Further, in specific examples of the piezoelectric substrate of the present embodiment, a
<具体例A>
図7は、本実施形態の具体例Aに係る圧電基材を模式的に示す概略側面図であり、図8は、図7のX-X’線断面図である。
具体例Aは、第1態様の圧電基材(芯材を備える圧電基材)のうち、外部導体を備えない態様の具体例である。 <Specific example A>
FIG. 7 is a schematic side view schematically showing a piezoelectric substrate according to Specific Example A of the present embodiment, and FIG. 8 is a cross-sectional view taken along line XX' of FIG.
Specific example A is a specific example of a piezoelectric base material (piezoelectric base material having a core material) of the first embodiment that does not include an external conductor.
図7は、本実施形態の具体例Aに係る圧電基材を模式的に示す概略側面図であり、図8は、図7のX-X’線断面図である。
具体例Aは、第1態様の圧電基材(芯材を備える圧電基材)のうち、外部導体を備えない態様の具体例である。 <Specific example A>
FIG. 7 is a schematic side view schematically showing a piezoelectric substrate according to Specific Example A of the present embodiment, and FIG. 8 is a cross-sectional view taken along line XX' of FIG.
Specific example A is a specific example of a piezoelectric base material (piezoelectric base material having a core material) of the first embodiment that does not include an external conductor.
図7に示されるように、具体例Aである圧電基材50Aは、導体である長尺状の芯材52と、長尺状の圧電体54Aと、を備えている。圧電体54Aは、芯材52の外周面に沿って、螺旋角度β1にて一端から他端にかけて、隙間がないように一方向に螺旋状に巻回されている。
ここで、螺旋角度β1は、側面視において、螺旋軸G1の方向(この例では芯材52の軸方向)と、圧電体54Aの長さ方向と、のなす角度である。
この圧電基材50Aでは、圧電体54Aは、芯材52に対して左巻きで巻回している。具体的には、圧電基材50Aを芯材52の軸方向の一端側(図8の右端側)から見たときに、圧電体54Aは、芯材52の手前側から奥側に向かって左巻きで巻回している。
また、図8において、圧電体54Aに含まれる光学活性ポリペプチドの主配向方向は、両矢印E1で示されている。すなわち、光学活性ポリペプチドの主配向方向と、圧電体54Aの長さ方向とが、略平行となっている。
圧電基材50Aでは、各部材(芯材52及び圧電体54A)間に接着剤(不図示)が含浸されることにより、各部材が一体化(固定化)されている。 As shown in FIG. 7, apiezoelectric base material 50A, which is a specific example A, includes an elongated core member 52 that is a conductor, and an elongated piezoelectric body 54A. The piezoelectric body 54A is spirally wound in one direction along the outer peripheral surface of the core material 52 at a spiral angle β1 from one end to the other end without a gap.
Here, the helix angle β1 is an angle formed by the direction of the helix axis G1 (the axial direction of thecore material 52 in this example) and the length direction of the piezoelectric body 54A in a side view.
In thispiezoelectric base material 50A, the piezoelectric body 54A is wound counterclockwise around the core material 52. As shown in FIG. Specifically, when the piezoelectric base material 50A is viewed from one end side of the core material 52 in the axial direction (the right end side in FIG. 8), the piezoelectric body 54A is left-handed from the front side of the core material 52 toward the back side. is wound with
Also, in FIG. 8, the main orientation direction of the optically active polypeptide contained in thepiezoelectric body 54A is indicated by a double arrow E1. That is, the main orientation direction of the optically active polypeptide and the length direction of the piezoelectric body 54A are substantially parallel.
In thepiezoelectric base material 50A, each member (the core material 52 and the piezoelectric body 54A) is integrated (fixed) by impregnating an adhesive (not shown) between the members.
ここで、螺旋角度β1は、側面視において、螺旋軸G1の方向(この例では芯材52の軸方向)と、圧電体54Aの長さ方向と、のなす角度である。
この圧電基材50Aでは、圧電体54Aは、芯材52に対して左巻きで巻回している。具体的には、圧電基材50Aを芯材52の軸方向の一端側(図8の右端側)から見たときに、圧電体54Aは、芯材52の手前側から奥側に向かって左巻きで巻回している。
また、図8において、圧電体54Aに含まれる光学活性ポリペプチドの主配向方向は、両矢印E1で示されている。すなわち、光学活性ポリペプチドの主配向方向と、圧電体54Aの長さ方向とが、略平行となっている。
圧電基材50Aでは、各部材(芯材52及び圧電体54A)間に接着剤(不図示)が含浸されることにより、各部材が一体化(固定化)されている。 As shown in FIG. 7, a
Here, the helix angle β1 is an angle formed by the direction of the helix axis G1 (the axial direction of the
In this
Also, in FIG. 8, the main orientation direction of the optically active polypeptide contained in the
In the
以下、圧電基材50Aの作用効果について説明する。
例えば、圧電基材50Aの長さ方向に張力が印加されると、圧電体54Aに含まれる光学活性ポリペプチドにずり応力が加わり、光学活性ポリペプチドは分極する。この光学活性ポリペプチドの分極は、図8において矢印で示されるように、圧電基材50Aの径方向に位相が揃えられて生じると考えられる。これにより、圧電基材50Aの圧電性が発現する。
さらに、圧電基材50Aは、導体である芯材52を備えるので、圧電体54Aに生じた電気的信号(電圧信号又は電荷信号)を、芯材52を介してより容易に取り出すことができる。 The effects of thepiezoelectric substrate 50A will be described below.
For example, when tension is applied in the longitudinal direction of thepiezoelectric substrate 50A, shear stress is applied to the optically active polypeptide contained in the piezoelectric body 54A, and the optically active polypeptide is polarized. The polarization of this optically active polypeptide is considered to occur with the phase aligned in the radial direction of the piezoelectric substrate 50A, as indicated by the arrows in FIG. Thereby, the piezoelectricity of the piezoelectric substrate 50A is exhibited.
Furthermore, since thepiezoelectric base material 50A includes the core material 52 that is a conductor, an electrical signal (voltage signal or charge signal) generated in the piezoelectric body 54A can be more easily extracted via the core material 52.
例えば、圧電基材50Aの長さ方向に張力が印加されると、圧電体54Aに含まれる光学活性ポリペプチドにずり応力が加わり、光学活性ポリペプチドは分極する。この光学活性ポリペプチドの分極は、図8において矢印で示されるように、圧電基材50Aの径方向に位相が揃えられて生じると考えられる。これにより、圧電基材50Aの圧電性が発現する。
さらに、圧電基材50Aは、導体である芯材52を備えるので、圧電体54Aに生じた電気的信号(電圧信号又は電荷信号)を、芯材52を介してより容易に取り出すことができる。 The effects of the
For example, when tension is applied in the longitudinal direction of the
Furthermore, since the
<具体例B>
図9は、本実施形態の具体例Bに係る圧電基材を模式的に示す概略側面図である。
具体例Bは、第1態様の圧電基材(芯材を備える圧電基材)のうち、外部導体を備える態様の具体例である。 <Specific example B>
FIG. 9 is a schematic side view schematically showing a piezoelectric base material according to Specific Example B of the present embodiment.
Specific example B is a specific example of the piezoelectric base material (piezoelectric base material having a core material) of the first embodiment that includes an external conductor.
図9は、本実施形態の具体例Bに係る圧電基材を模式的に示す概略側面図である。
具体例Bは、第1態様の圧電基材(芯材を備える圧電基材)のうち、外部導体を備える態様の具体例である。 <Specific example B>
FIG. 9 is a schematic side view schematically showing a piezoelectric base material according to Specific Example B of the present embodiment.
Specific example B is a specific example of the piezoelectric base material (piezoelectric base material having a core material) of the first embodiment that includes an external conductor.
図9に示されるように、具体例Bである圧電基材50Bは、前述の具体例Aである圧電基材50Aに対し、圧電体54Aよりも外周側に外部導体56を備え、芯材52と外部導体56とが電気的に絶縁されている点で異なる。その他の構成は、前述の具体例Aである圧電基材50Aと同様である。
外部導体56の好ましい態様は前述のとおりである。外部導体56は、例えば、芯材52の周りに螺旋状に巻回されている圧電体54Aの周りに、銅箔リボンを螺旋状に巻回することによって形成される。
圧電基材50Bでは、各部材(芯材52、圧電体54A、及び外部導体56)間に接着剤(不図示)が含浸されることにより、各部材が一体化(固定化)されている。
図9に示されるように圧電基材50Bでは、側面視において、圧電体54Aの巻回体(すなわち、螺旋状に巻回された圧電体54A)の端部と外部導体56の端部との位置がずれている。これにより、芯材52と外部導体56とが確実に絶縁されるようになっている。但し、これらの端部の位置は必ずしもずれている必要はなく、導体である芯材と外部導体とが電気的に絶縁されている限りにおいて、これらの端部の位置は側面視において重なる位置であってもよい。 As shown in FIG. 9, thepiezoelectric base material 50B of the specific example B has an outer conductor 56 on the outer peripheral side of the piezoelectric body 54A in contrast to the piezoelectric base material 50A of the above-described specific example A, and the core material 52 and the outer conductor 56 are electrically insulated. Other configurations are the same as those of the piezoelectric base material 50A of the specific example A described above.
Preferred aspects of theouter conductor 56 are as described above. The outer conductor 56 is formed, for example, by spirally winding a copper foil ribbon around the piezoelectric body 54A spirally wound around the core 52 .
In thepiezoelectric substrate 50B, each member (the core member 52, the piezoelectric body 54A, and the outer conductor 56) is impregnated with an adhesive (not shown) to be integrated (fixed).
As shown in FIG. 9, in thepiezoelectric base material 50B, when viewed from the side, the ends of the wound body of the piezoelectric body 54A (that is, the spirally wound piezoelectric body 54A) and the ends of the external conductor 56 are separated from each other. Out of position. Thereby, the core material 52 and the outer conductor 56 are reliably insulated. However, the positions of these end portions do not necessarily have to be shifted, and as long as the core material and the outer conductor, which are conductors, are electrically insulated, the positions of these end portions overlap when viewed from the side. There may be.
外部導体56の好ましい態様は前述のとおりである。外部導体56は、例えば、芯材52の周りに螺旋状に巻回されている圧電体54Aの周りに、銅箔リボンを螺旋状に巻回することによって形成される。
圧電基材50Bでは、各部材(芯材52、圧電体54A、及び外部導体56)間に接着剤(不図示)が含浸されることにより、各部材が一体化(固定化)されている。
図9に示されるように圧電基材50Bでは、側面視において、圧電体54Aの巻回体(すなわち、螺旋状に巻回された圧電体54A)の端部と外部導体56の端部との位置がずれている。これにより、芯材52と外部導体56とが確実に絶縁されるようになっている。但し、これらの端部の位置は必ずしもずれている必要はなく、導体である芯材と外部導体とが電気的に絶縁されている限りにおいて、これらの端部の位置は側面視において重なる位置であってもよい。 As shown in FIG. 9, the
Preferred aspects of the
In the
As shown in FIG. 9, in the
圧電基材50Bにおいても、圧電基材50Aと同様の作用効果が奏される。
さらに、圧電基材50Bは外部導体56を備えるので、外部導体56によって圧電基材50Bの内部(圧電体54A、及び、導体である芯材52)を静電シールドすることができる。このため、圧電基材50Bの外部の静電気の影響による、芯材52の電圧変化を抑制でき、その結果、より安定した圧電性が得られる。 Thepiezoelectric base material 50B also has the same effects as the piezoelectric base material 50A.
Furthermore, since thepiezoelectric base material 50B includes the outer conductor 56, the inside of the piezoelectric base material 50B (the piezoelectric body 54A and the core material 52, which is a conductor) can be electrostatically shielded by the outer conductor 56. Therefore, it is possible to suppress the voltage change of the core material 52 due to the influence of static electricity outside the piezoelectric base material 50B, and as a result, more stable piezoelectricity can be obtained.
さらに、圧電基材50Bは外部導体56を備えるので、外部導体56によって圧電基材50Bの内部(圧電体54A、及び、導体である芯材52)を静電シールドすることができる。このため、圧電基材50Bの外部の静電気の影響による、芯材52の電圧変化を抑制でき、その結果、より安定した圧電性が得られる。 The
Furthermore, since the
なお、圧電基材50Bにおいて、外部導体56は省略されていてもよい。
外部導体56が省略されている場合においても、導体である芯材52による作用効果が奏されることは言うまでもない。
また、外部導体56が省略されている場合においても、同軸ケーブルに備えられる内部構造(内部導体及び誘電体)と同一の構造となるため、同軸ケーブルに適用した場合、電磁シールド性が高く、ノイズに強い構造となり得る。 Note that theouter conductor 56 may be omitted from the piezoelectric substrate 50B.
Needless to say, even when theouter conductor 56 is omitted, the effect of the core material 52, which is a conductor, is exhibited.
In addition, even if theouter conductor 56 is omitted, the structure is the same as the inner structure (inner conductor and dielectric) provided in the coaxial cable. It can be a structure that is strong against
外部導体56が省略されている場合においても、導体である芯材52による作用効果が奏されることは言うまでもない。
また、外部導体56が省略されている場合においても、同軸ケーブルに備えられる内部構造(内部導体及び誘電体)と同一の構造となるため、同軸ケーブルに適用した場合、電磁シールド性が高く、ノイズに強い構造となり得る。 Note that the
Needless to say, even when the
In addition, even if the
<第1実施形態のまとめ>
本実施形態のステアリングホイール20は、運転者が把持するリム21(把持体)と、リム21に設けられ、運転者からリム21が受ける圧力を検知する圧電基材50と、を備える。ステアリングホイール20は、圧電基材50が軸状の内部導体(芯材52)と、内部導体(芯材52)の周囲において同軸状に設けられ、かつ光学活性ポリペプチドを含む長尺状圧電体54Aと、を備える。 <Summary of the first embodiment>
Thesteering wheel 20 of this embodiment includes a rim 21 (a grip) that is gripped by the driver, and a piezoelectric substrate 50 that is provided on the rim 21 and detects the pressure that the rim 21 receives from the driver. The steering wheel 20 has a piezoelectric substrate 50 coaxially provided around an axial inner conductor (core material 52) and an elongated piezoelectric body containing an optically active polypeptide. 54A.
本実施形態のステアリングホイール20は、運転者が把持するリム21(把持体)と、リム21に設けられ、運転者からリム21が受ける圧力を検知する圧電基材50と、を備える。ステアリングホイール20は、圧電基材50が軸状の内部導体(芯材52)と、内部導体(芯材52)の周囲において同軸状に設けられ、かつ光学活性ポリペプチドを含む長尺状圧電体54Aと、を備える。 <Summary of the first embodiment>
The
圧電基材50は、圧電体54Aが内部導体(芯材52)に螺旋状に巻回されることにより、加圧された方向と異なる方向に、ずり応力に応じた電気的信号を出力可能である。そのため、ステアリングホイール20に設置されたライン状の圧電基材50は、当該ステアリングホイール20に対する圧力による軸方向に張力が生じることで電気的信号を出力する。
また、圧電基材50を構成する光学活性ポリペプチドを含む圧電体54Aは、シート状ではなく、ライン状に配置可能であり、本実施形態によれば、シート状に配置されているPVDFを含む圧電体と比較して、配置箇所の制約が少ない点において優れている。 Thepiezoelectric base material 50 can output an electrical signal corresponding to the shear stress in a direction different from the direction in which the pressure is applied by spirally winding the piezoelectric body 54A around the internal conductor (core material 52). be. Therefore, the line-shaped piezoelectric base material 50 installed on the steering wheel 20 outputs an electric signal when tension is generated in the axial direction due to pressure on the steering wheel 20 .
In addition, thepiezoelectric body 54A containing an optically active polypeptide that constitutes the piezoelectric substrate 50 can be arranged in a line rather than in a sheet. Compared to piezoelectric bodies, they are superior in that there are fewer restrictions on where they can be placed.
また、圧電基材50を構成する光学活性ポリペプチドを含む圧電体54Aは、シート状ではなく、ライン状に配置可能であり、本実施形態によれば、シート状に配置されているPVDFを含む圧電体と比較して、配置箇所の制約が少ない点において優れている。 The
In addition, the
また、PVDFを含む圧電体は、温度変化による電荷量の出力の変化が大きい。これに対して、本実施形態の圧電基材50は、PVDFを含む圧電体を備えたステアリングホイールと比較して、温度変化による電荷量の出力の変化が小さく、電荷量の出力が安定している点において優れている。
一方、ポリ乳酸を含む圧電体は、昇温時に所定の温度より高温になった場合、センサ感度が低下する傾向にある。これに対して、本実施形態の圧電基材50は、ポリ乳酸を含む圧電体を備えたステアリングホイールと比較して、所定の温度より高温になった場合であってもセンサ感度が安定している点において優れている。 In addition, the piezoelectric body containing PVDF has a large change in output of the amount of electric charge due to temperature change. On the other hand, thepiezoelectric base material 50 of the present embodiment has a smaller change in the output of the charge amount due to temperature changes, and the output of the charge amount is stable, as compared with the steering wheel including the piezoelectric body containing PVDF. excellent in terms of
On the other hand, a piezoelectric body containing polylactic acid tends to lower its sensor sensitivity when the temperature rises above a predetermined temperature. In contrast, thepiezoelectric substrate 50 of the present embodiment has stable sensor sensitivity even when the temperature exceeds a predetermined temperature, compared to a steering wheel including a piezoelectric body containing polylactic acid. excellent in terms of
一方、ポリ乳酸を含む圧電体は、昇温時に所定の温度より高温になった場合、センサ感度が低下する傾向にある。これに対して、本実施形態の圧電基材50は、ポリ乳酸を含む圧電体を備えたステアリングホイールと比較して、所定の温度より高温になった場合であってもセンサ感度が安定している点において優れている。 In addition, the piezoelectric body containing PVDF has a large change in output of the amount of electric charge due to temperature change. On the other hand, the
On the other hand, a piezoelectric body containing polylactic acid tends to lower its sensor sensitivity when the temperature rises above a predetermined temperature. In contrast, the
したがって、本実施形態の圧電基材50は、感度に優れており、かつ高温に変化する環境下である車両のステアリングホイール20に配置して、人体から生体情報を検出するために用いるのに適切である。
Therefore, the piezoelectric substrate 50 of the present embodiment has excellent sensitivity and is suitable for use in detecting biological information from the human body by placing it on the steering wheel 20 of a vehicle in an environment that changes to high temperatures. is.
また、電極を設け、当該電極に接している人体によって生じる電極間の電位差から生体情報を検知する方法をステリングホイールに適用した場合、両手でステアリングホイールにおける電極を把持する必要があるため、生体情報を検出するために制約がある。また、ステアリングホイールにおける電極で静電気が発生し、生体情報を誤検出することがある。
一方、本実施形態のステアリングホイール20は、リム21の全周に渡り圧電基材50を設けているため、片手及び両手に関わらず、リム21を把持する圧力を検知し、生体情報を検出可能である。また、静電気が発生した場合であっても、圧電基材50はリム21の内部に配置されており、静電気に影響されないため、生体情報の誤検出を防止可能である。 In addition, when the method of providing electrodes and detecting the biological information from the potential difference between the electrodes caused by the human body in contact with the electrodes is applied to the steering wheel, it is necessary to hold the electrodes on the steering wheel with both hands. There are constraints to detect In addition, static electricity is generated in the electrodes of the steering wheel, which may result in erroneous detection of biometric information.
On the other hand, since thesteering wheel 20 of the present embodiment is provided with the piezoelectric base material 50 over the entire circumference of the rim 21, it is possible to detect the pressure of gripping the rim 21 and biometric information regardless of whether one hand or both hands. is. Moreover, even if static electricity is generated, the piezoelectric substrate 50 is arranged inside the rim 21 and is not affected by static electricity, so erroneous detection of biometric information can be prevented.
一方、本実施形態のステアリングホイール20は、リム21の全周に渡り圧電基材50を設けているため、片手及び両手に関わらず、リム21を把持する圧力を検知し、生体情報を検出可能である。また、静電気が発生した場合であっても、圧電基材50はリム21の内部に配置されており、静電気に影響されないため、生体情報の誤検出を防止可能である。 In addition, when the method of providing electrodes and detecting the biological information from the potential difference between the electrodes caused by the human body in contact with the electrodes is applied to the steering wheel, it is necessary to hold the electrodes on the steering wheel with both hands. There are constraints to detect In addition, static electricity is generated in the electrodes of the steering wheel, which may result in erroneous detection of biometric information.
On the other hand, since the
また、ステアリングホイールを把持するユーザの手に光を照射し、当該ユーザの手から反射した反射光を検知して生体情報を検出する方法をステアリングホイールに適用した場合、車両を操作するために、ユーザの手が光を照射した箇所から外れることがある。そのため、生体情報が精度よく検出できないことがあり、生体情報の検出感度が低下することがある。
一方、本実施形態のステアリングホイール20は、リム21の全周に渡り圧電基材50を設けているため、リム21を把持している間、生体情報が検出可能である。したがって、車両を操作するために、ユーザが手を動かした場合であっても生体情報の検出感度が低下しない。 Further, when applying a method of detecting biological information by irradiating a hand of a user holding a steering wheel and detecting reflected light reflected from the hand of the user to the steering wheel, in order to operate the vehicle, The user's hand may move out of the illuminated area. Therefore, the biometric information may not be detected with high accuracy, and the detection sensitivity of the biometric information may be lowered.
On the other hand, in thesteering wheel 20 of the present embodiment, since the piezoelectric base material 50 is provided over the entire circumference of the rim 21, biological information can be detected while the rim 21 is held. Therefore, even if the user moves his/her hand to operate the vehicle, the detection sensitivity of biometric information does not decrease.
一方、本実施形態のステアリングホイール20は、リム21の全周に渡り圧電基材50を設けているため、リム21を把持している間、生体情報が検出可能である。したがって、車両を操作するために、ユーザが手を動かした場合であっても生体情報の検出感度が低下しない。 Further, when applying a method of detecting biological information by irradiating a hand of a user holding a steering wheel and detecting reflected light reflected from the hand of the user to the steering wheel, in order to operate the vehicle, The user's hand may move out of the illuminated area. Therefore, the biometric information may not be detected with high accuracy, and the detection sensitivity of the biometric information may be lowered.
On the other hand, in the
また、所定の間隔を設けて重畳する2枚のフィルムにおいて、上面のフィルムが触れられることによってたわみ、たわみによって上面のフィルムが下面のフィルムに接触する。当該接触した箇所から通電することを検知することによって、フィルムへの接触を検知する抵抗感圧式の感圧センサがある。当該抵抗感圧式の感圧センサをステアリングホイールに適用した場合、接触箇所の位置を検出するためには、センサに常時電圧を供給し、流れる電流測定による抵抗測定が必要になり、電力を供給し続ける必要がある。
一方、本実施形態のステアリングホイール20は、圧電基材50に圧力が入力されることによって発生した電気的信号を検出し、生体情報が検出可能であるため、電力の供給を要しない。 In addition, when two films are superimposed with a predetermined gap therebetween, the top film is flexed when touched, and the flexure brings the top film into contact with the bottom film. There is a resistive pressure-sensitive pressure sensor that detects contact with a film by detecting energization from the contact point. When the resistive pressure sensor is applied to the steering wheel, in order to detect the position of the contact point, it is necessary to constantly supply a voltage to the sensor and measure the resistance by measuring the flowing current, so power is not supplied. I need to continue.
On the other hand, thesteering wheel 20 of the present embodiment detects an electrical signal generated by pressure input to the piezoelectric base material 50, and biometric information can be detected, so power supply is not required.
一方、本実施形態のステアリングホイール20は、圧電基材50に圧力が入力されることによって発生した電気的信号を検出し、生体情報が検出可能であるため、電力の供給を要しない。 In addition, when two films are superimposed with a predetermined gap therebetween, the top film is flexed when touched, and the flexure brings the top film into contact with the bottom film. There is a resistive pressure-sensitive pressure sensor that detects contact with a film by detecting energization from the contact point. When the resistive pressure sensor is applied to the steering wheel, in order to detect the position of the contact point, it is necessary to constantly supply a voltage to the sensor and measure the resistance by measuring the flowing current, so power is not supplied. I need to continue.
On the other hand, the
したがって、本実施形態のステアリングホイール20は、感度に優れており、かつ電力の消費が抑制可能であるため、人体から生体情報を検出するために用いるのに適切である。
Therefore, the steering wheel 20 of the present embodiment has excellent sensitivity and can suppress power consumption, so it is suitable for use in detecting biological information from the human body.
[第2実施形態]
次に、図10を参照して、第2実施形態に係るステアリングホイール20について説明する。図10は、本実施形態に係る圧電基材の配置の説明に供するステアリングホイール20の一例を示す正面図である。なお、本実施形態は、第1実施形態とは、圧電基材50の配置のみ異なるが、その他の形態は同一である。以下の説明では、第1実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。 [Second embodiment]
Next, asteering wheel 20 according to a second embodiment will be described with reference to FIG. FIG. 10 is a front view showing an example of the steering wheel 20 for explaining the arrangement of the piezoelectric base material according to this embodiment. The present embodiment differs from the first embodiment only in the arrangement of the piezoelectric substrate 50, but the other aspects are the same. In the following description, the same reference numerals are given to the same configurations as in the first embodiment, and overlapping descriptions are omitted.
次に、図10を参照して、第2実施形態に係るステアリングホイール20について説明する。図10は、本実施形態に係る圧電基材の配置の説明に供するステアリングホイール20の一例を示す正面図である。なお、本実施形態は、第1実施形態とは、圧電基材50の配置のみ異なるが、その他の形態は同一である。以下の説明では、第1実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。 [Second embodiment]
Next, a
一例として図10に示すように、圧電基材50は、リム21の内部において、リム21に巻回されるように配置されている。この場合、切込み25は、同様にリム21の表面材24に対して巻回した状態に形成されている。
As shown in FIG. 10 as an example, the piezoelectric substrate 50 is arranged inside the rim 21 so as to be wound around the rim 21 . In this case, the incisions 25 are likewise wound around the surface 24 of the rim 21 .
第2実施形態によれば、第1実施形態に加えて、以下の効果を有している。すなわち、本実施形態では、リム21の内部において、1本の圧電基材50がリム21に巻回するように配置されることによって、リム21の内径側及び外径側に関わらず、リム21の表面における広い範囲から生体情報が検出される。
According to the second embodiment, in addition to the effects of the first embodiment, the following effects are obtained. That is, in the present embodiment, one piezoelectric base material 50 is arranged so as to be wound around the rim 21 inside the rim 21, so that the rim 21 can be biometric information is detected from a wide range on the surface of the
[第3実施形態]
次に、図11を参照して、第3実施形態に係るステアリングホイール20について説明する。図11は、本実施形態に係る圧電基材の配置の説明に供するステアリングホイール20の一例を示す正面図である。なお、本実施形態は、第2実施形態とは、圧電基材50の配置、及び機能構成のみ異なるが、その他の形態は同一である。以下の説明では、第2実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。 [Third embodiment]
Next, asteering wheel 20 according to a third embodiment will be described with reference to FIG. FIG. 11 is a front view showing an example of the steering wheel 20 for explaining the arrangement of the piezoelectric base material according to this embodiment. It should be noted that this embodiment differs from the second embodiment only in the arrangement of the piezoelectric substrate 50 and the functional configuration, but the other aspects are the same. In the following description, the same reference numerals are given to the same configurations as in the second embodiment, and overlapping descriptions are omitted.
次に、図11を参照して、第3実施形態に係るステアリングホイール20について説明する。図11は、本実施形態に係る圧電基材の配置の説明に供するステアリングホイール20の一例を示す正面図である。なお、本実施形態は、第2実施形態とは、圧電基材50の配置、及び機能構成のみ異なるが、その他の形態は同一である。以下の説明では、第2実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。 [Third embodiment]
Next, a
一例として図11に示すように、ステアリングホイール20において、ユーザが把持するリム21の内部に、互いに独立した複数の圧電基材50が配置されている。具体的には、リム21の形状に沿って6本の圧電基材50が等間隔に設置されている。
As an example, as shown in FIG. 11, in the steering wheel 20, a plurality of independent piezoelectric substrates 50 are arranged inside the rim 21 gripped by the user. Specifically, six piezoelectric substrates 50 are installed at regular intervals along the shape of the rim 21 .
次に、図12を参照して、互いに独立した複数のセンサユニット23を配置した場合における生体情報検出装置10及び制御装置100の機能構成について説明する。図12に示すように、生体情報検出装置10は、検知部41、及び検出部42Bを有している。各機能構成は、CPU31がストレージ34に記憶された実行プログラムを読み出し、これを実行することによって実現される。なお、図12における図6に示す生体情報検出装置10及び制御装置100の機能と同一の機能については、図6と同一の符号を付して、その説明を省略する。
Next, with reference to FIG. 12, functional configurations of the biological information detection device 10 and the control device 100 when a plurality of sensor units 23 are arranged independently of each other will be described. As shown in FIG. 12, the biological information detection device 10 has a detection section 41 and a detection section 42B. Each functional configuration is realized by the CPU 31 reading an execution program stored in the storage 34 and executing it. 12 that are the same as the functions of the biological information detecting device 10 and the control device 100 shown in FIG. 6 are denoted by the same reference numerals as in FIG. 6, and description thereof will be omitted.
図12に示す検出部42Bは、検知部41が検知したデジタル信号の大きさ、及び周期から呼吸、及び脈拍等の生体情報を検出する機能を有している。また、検出部42Bは、隣接する圧電基材50同士の出力信号を比較することで、運転者がリム21を把持している位置を示す位置情報を検出する機能を有している。
The detection unit 42B shown in FIG. 12 has a function of detecting biological information such as respiration and pulse from the magnitude and cycle of the digital signal detected by the detection unit 41. The detection unit 42B also has a function of detecting position information indicating the position where the driver grips the rim 21 by comparing the output signals of the adjacent piezoelectric substrates 50 .
また、図12に示すように、制御装置100は、取得部111B、及び制御部112Bを有している。各機能構成は、CPU101がストレージ104に記憶された実行プログラムを読み出し、これを実行することによって実現される。
Also, as shown in FIG. 12, the control device 100 has an acquisition unit 111B and a control unit 112B. Each functional configuration is realized by the CPU 101 reading an execution program stored in the storage 104 and executing it.
取得部111Bは、生体情報検出装置10から生体情報及び位置情報を取得する機能を有している。
The acquisition unit 111B has a function of acquiring biometric information and position information from the biometric information detection device 10.
制御部112Bは、取得した生体情報及び位置情報を用いて、機器200を制御する機能を有している。例えば、制御部112Bは、生体情報に応じて、各々の機器200に処理を実行する指示を送信する。具体的には、制御部112Bは、生体情報から心拍の間隔のゆらぎを検出し、当該心拍のゆらぎが小さくなった(心拍の間隔が安定している)場合、運転者が眠くなっている状態であると判定して、機器200としてのアクチュエータにブレーキを作用させる指示を送信する。また、制御部112Bは、生体情報から心拍の大きさ、及び回数を検出し、心拍の大きさが運転者における平均値より大きく、かつ所定の期間の心拍の回数が運転者における平均値より多い場合、運転者は緊張状態にあると判定して、機器200としてのアクチュエータにブレーキを作用させる指示を送信する。また、制御部112Bは、位置情報を用いて、運転者のリム21を把持している状況を判定し、リム21を把持している状況、及びリム21を把持していない状況に関する音声情報を出力する指示をスピーカ等の入出力部105に送信してもよいし、文字情報を出力する指示をモニタ等の表示部106に送信してもよい。
The control unit 112B has a function of controlling the device 200 using the acquired biological information and position information. For example, the control unit 112B transmits an instruction to execute processing to each device 200 according to the biometric information. Specifically, the control unit 112B detects fluctuations in the interval between heartbeats from the biological information, and when the fluctuations in the heartbeats become smaller (the intervals between heartbeats are stable), the driver is sleepy. , and transmits an instruction to brake the actuator as the device 200 . In addition, the control unit 112B detects the magnitude and number of heartbeats from the biological information, the magnitude of the heartbeat is greater than the average value for the driver, and the number of heartbeats in a predetermined period is greater than the average value for the driver. In this case, it is determined that the driver is in a tense state, and an instruction to apply the brake to the actuator as the device 200 is transmitted. In addition, the control unit 112B uses the position information to determine the state in which the driver is gripping the rim 21, and outputs voice information regarding the state in which the driver is gripping the rim 21 and the state in which the rim 21 is not being gripped. An instruction to output may be transmitted to the input/output unit 105 such as a speaker, or an instruction to output the character information may be transmitted to the display unit 106 such as a monitor.
互いに独立した複数の圧電基材50が配置されることによって、各々の圧電基材50が独立に検知した圧力を比較して、運転者の生体情報、及び位置情報(運転者がリム21を把持している位置情報)が検出され、生体情報、及び位置情報を用いて機器200が制御される。
By arranging a plurality of piezoelectric substrates 50 that are independent of each other, the pressure detected by each piezoelectric substrate 50 is compared and the biological information of the driver and positional information (when the driver is gripping the rim 21) are obtained. positional information) is detected, and the device 200 is controlled using the biological information and the positional information.
[第3実施形態の変形例]
第3実施形態では、複数の圧電基材50がリム21の形状に沿って配置されている形態について説明した。しかし、これに限定されない。一例として図13に示すように、複数の圧電基材50がリム21に巻回されるように配置されてもよい。具体的には、8本の圧電基材50が、リム21に巻回されるように等間隔に設置されている。 [Modified example of the third embodiment]
In the third embodiment, the form in which the plurality ofpiezoelectric substrates 50 are arranged along the shape of the rim 21 has been described. However, it is not limited to this. As an example, as shown in FIG. 13 , a plurality of piezoelectric substrates 50 may be arranged so as to be wound around the rim 21 . Specifically, eight piezoelectric substrates 50 are arranged at equal intervals so as to be wound around the rim 21 .
第3実施形態では、複数の圧電基材50がリム21の形状に沿って配置されている形態について説明した。しかし、これに限定されない。一例として図13に示すように、複数の圧電基材50がリム21に巻回されるように配置されてもよい。具体的には、8本の圧電基材50が、リム21に巻回されるように等間隔に設置されている。 [Modified example of the third embodiment]
In the third embodiment, the form in which the plurality of
互いに独立した複数の圧電基材50がリム21に巻回されるように配置されることによって、リム21の表面における広い範囲から運転者の生体情報、及び位置情報(運転者がリム21を把持している位置情報)が検出される。
A plurality of mutually independent piezoelectric substrates 50 are arranged so as to be wound around the rim 21, so that biological information and positional information of the driver (when the driver grips the rim 21) is collected from a wide range on the surface of the rim 21. location information) is detected.
ここで、互いに独立した複数の圧電基材50をリム21に設ける場合、圧電体54Aが右旋方向に巻回された圧電基材50のみをリム21に配置してもよいし、圧電体54Aが左旋方向に巻回された圧電基材50のみをリム21に配置してもよい。また、交互に設置する等、圧電体54Aが右旋方向に巻回された圧電基材50、及び圧電体54Aが左旋方向に巻回された圧電基材50の両方をリム21に配置してもよい。右旋方向に巻回された圧電基材50と、左旋方向に巻回された圧電基材と、を2本並べて配置し、それぞれの検出信号の差動増幅することによって、バイタル信号の出力を倍増し、信号線に重畳している同相ノイズをキャンセルすることが可能である。これによりバイタル信号のSN比を向上することが可能である。
Here, when a plurality of mutually independent piezoelectric substrates 50 are provided on the rim 21, only the piezoelectric substrates 50 in which the piezoelectric members 54A are wound in the clockwise direction may be arranged on the rim 21, or the piezoelectric members 54A may be arranged on the rim 21. Alternatively, only the piezoelectric substrate 50 wound counterclockwise may be arranged on the rim 21 . In addition, both the piezoelectric base material 50 with the piezoelectric body 54A wound in the right-handed direction and the piezoelectric base material 50 with the piezoelectric body 54A wound in the left-handed direction are arranged on the rim 21, for example, alternately. good too. Two piezoelectric substrates 50 wound in the right-handed direction and two piezoelectric substrates wound in the left-handed direction are arranged side by side, and the respective detection signals are differentially amplified to output the vital signal. It is possible to double and cancel the common mode noise superimposed on the signal line. This makes it possible to improve the SN ratio of the vital signal.
なお、上記実施形態では、圧電基材50は、運転者が把持するリム21(把持体)に設置される形態について説明した。しかし、これに限定されない。例えば、圧電基材50は、ハブ22に設置されてもよい。ハブ22に圧電基材50を設置することによって、運転者がハブ22を把持していることを検知可能となり、運転者に運転姿勢、特にリム21を把持していない場合等に、リム21を把持するように通知を行うことが可能となる。
また、図示しないステアリングスイッチに圧電基材50を配置してもよい。例えば、ステアリングホイール20に設置されたボタンの下に圧電基材50を配置して、当該ボタンが押下された際に圧電基材50が圧力を検知することによって、ボタンが押下されたことを検出することが可能である。 In the above embodiment, thepiezoelectric substrate 50 is installed on the rim 21 (holding body) held by the driver. However, it is not limited to this. For example, piezoelectric substrate 50 may be mounted on hub 22 . By installing the piezoelectric substrate 50 on the hub 22, it becomes possible to detect that the driver is gripping the hub 22, and the rim 21 can be adjusted to the driver's driving posture, especially when the rim 21 is not gripped. It is possible to make a notification to grasp.
Also, thepiezoelectric substrate 50 may be arranged on a steering switch (not shown). For example, the piezoelectric substrate 50 is placed under a button installed on the steering wheel 20, and the piezoelectric substrate 50 detects the pressure when the button is pressed, thereby detecting that the button has been pressed. It is possible to
また、図示しないステアリングスイッチに圧電基材50を配置してもよい。例えば、ステアリングホイール20に設置されたボタンの下に圧電基材50を配置して、当該ボタンが押下された際に圧電基材50が圧力を検知することによって、ボタンが押下されたことを検出することが可能である。 In the above embodiment, the
Also, the
以下、本開示の技術を実施例によりさらに具体的に説明するが、本開示はその主旨を越えない限り、以下の実施例に限定されるものではない。
The technology of the present disclosure will be described in more detail below with reference to examples, but the present disclosure is not limited to the following examples as long as it does not exceed the gist of the present disclosure.
〔実施例1〕
<光学活性ポリペプチド繊維の準備>
光学活性ポリペプチド繊維として、生糸シルクを準備した。生糸シルクは、光学活性ポリペプチドからなる長繊維である。生糸シルクは、21デニールである。生糸シルクの太さは0.06mm-0.04mmである。
(光学活性ポリペプチド繊維の配向度Fの測定)
広角X線回折装置(リガク社製の「RINT2550」、付属装置:回転試料台、X線源:CuKα、出力:40kV 370mA、検出器:シンチレーションカウンター)を用い、生糸シルク(光学活性ポリペプチド繊維)をホルダーに固定し、結晶面ピーク[2θ=20°]の方位角分布強度を測定した。
得られた方位角分布曲線(X線干渉図)において、ピークの半値幅(α)から、下記式(a)により、生糸シルク(光学活性ポリペプチド繊維)の配向度F(c軸配向度)を算出した。
光学活性ポリペプチド繊維の配向度Fは、0.91である。
配向度(F)=(180°-α)/180° … (a)
(αは配向由来のピークの半値幅) [Example 1]
<Preparation of Optically Active Polypeptide Fiber>
Raw silk was prepared as an optically active polypeptide fiber. Raw silk is a long fiber composed of optically active polypeptides. Raw silk is 21 denier. The thickness of raw silk is 0.06mm-0.04mm.
(Measurement of Orientation Degree F of Optically Active Polypeptide Fiber)
Using a wide-angle X-ray diffractometer ("RINT2550" manufactured by Rigaku Co., Ltd., accessory: rotating sample stage, X-ray source: CuKα, output: 40 kV 370 mA, detector: scintillation counter), raw silk (optically active polypeptide fiber) was fixed to a holder, and the azimuth angle distribution intensity of the crystal face peak [2θ=20°] was measured.
In the obtained azimuth angle distribution curve (X-ray interferogram), the degree of orientation F (degree of c-axis orientation) of raw silk (optically active polypeptide fiber) is calculated from the half width (α) of the peak according to the following formula (a) was calculated.
The orientation degree F of the optically active polypeptide fiber is 0.91.
Orientation (F) = (180°-α)/180° (a)
(α is the half width of the peak derived from the orientation)
<光学活性ポリペプチド繊維の準備>
光学活性ポリペプチド繊維として、生糸シルクを準備した。生糸シルクは、光学活性ポリペプチドからなる長繊維である。生糸シルクは、21デニールである。生糸シルクの太さは0.06mm-0.04mmである。
(光学活性ポリペプチド繊維の配向度Fの測定)
広角X線回折装置(リガク社製の「RINT2550」、付属装置:回転試料台、X線源:CuKα、出力:40kV 370mA、検出器:シンチレーションカウンター)を用い、生糸シルク(光学活性ポリペプチド繊維)をホルダーに固定し、結晶面ピーク[2θ=20°]の方位角分布強度を測定した。
得られた方位角分布曲線(X線干渉図)において、ピークの半値幅(α)から、下記式(a)により、生糸シルク(光学活性ポリペプチド繊維)の配向度F(c軸配向度)を算出した。
光学活性ポリペプチド繊維の配向度Fは、0.91である。
配向度(F)=(180°-α)/180° … (a)
(αは配向由来のピークの半値幅) [Example 1]
<Preparation of Optically Active Polypeptide Fiber>
Raw silk was prepared as an optically active polypeptide fiber. Raw silk is a long fiber composed of optically active polypeptides. Raw silk is 21 denier. The thickness of raw silk is 0.06mm-0.04mm.
(Measurement of Orientation Degree F of Optically Active Polypeptide Fiber)
Using a wide-angle X-ray diffractometer ("RINT2550" manufactured by Rigaku Co., Ltd., accessory: rotating sample stage, X-ray source: CuKα, output: 40 kV 370 mA, detector: scintillation counter), raw silk (optically active polypeptide fiber) was fixed to a holder, and the azimuth angle distribution intensity of the crystal face peak [2θ=20°] was measured.
In the obtained azimuth angle distribution curve (X-ray interferogram), the degree of orientation F (degree of c-axis orientation) of raw silk (optically active polypeptide fiber) is calculated from the half width (α) of the peak according to the following formula (a) was calculated.
The orientation degree F of the optically active polypeptide fiber is 0.91.
Orientation (F) = (180°-α)/180° (a)
(α is the half width of the peak derived from the orientation)
<圧電糸の作製>
生糸シルクを公知の方法により、圧電糸として、6本片撚り(撚数150T/m)した糸を精錬して、精練シルクを作製した。この精錬シルクの撚り糸の配向度Fは、0.86である。
光学活性ポリペプチド繊維の配向度Fが0.86であること、及び精練シルクを用いて6本片撚りした糸(圧電糸)を作製したことから、圧電糸の長さ方向と、精練シルク(光学活性ポリペプチド繊維)に含まれる光学活性ポリペプチドの主配向方向とは略平行であると評価することができる。 <Production of piezoelectric yarn>
A scouring silk was produced by scouring a six-twisted yarn (twisting number: 150 T/m) as a piezoelectric yarn from raw silk by a known method. The orientation degree F of the twisted yarn of this refined silk is 0.86.
Since the orientation degree F of the optically active polypeptide fiber is 0.86 and the six-piece twisted yarn (piezoelectric yarn) was produced using the scouring silk, the length direction of the piezoelectric yarn and the scouring silk ( It can be evaluated that the main orientation direction of the optically active polypeptide contained in the optically active polypeptide fiber) is substantially parallel.
生糸シルクを公知の方法により、圧電糸として、6本片撚り(撚数150T/m)した糸を精錬して、精練シルクを作製した。この精錬シルクの撚り糸の配向度Fは、0.86である。
光学活性ポリペプチド繊維の配向度Fが0.86であること、及び精練シルクを用いて6本片撚りした糸(圧電糸)を作製したことから、圧電糸の長さ方向と、精練シルク(光学活性ポリペプチド繊維)に含まれる光学活性ポリペプチドの主配向方向とは略平行であると評価することができる。 <Production of piezoelectric yarn>
A scouring silk was produced by scouring a six-twisted yarn (twisting number: 150 T/m) as a piezoelectric yarn from raw silk by a known method. The orientation degree F of the twisted yarn of this refined silk is 0.86.
Since the orientation degree F of the optically active polypeptide fiber is 0.86 and the six-piece twisted yarn (piezoelectric yarn) was produced using the scouring silk, the length direction of the piezoelectric yarn and the scouring silk ( It can be evaluated that the main orientation direction of the optically active polypeptide contained in the optically active polypeptide fiber) is substantially parallel.
<圧電基材の作製>
内部導体として、株式会社明清産業製の錦糸線「U24-01-00」(線径0.26mm、長さ200mm)を準備した。
圧電糸を内部導体の外周面上に、螺旋角度が約45°となるように、左巻きで極力隙間なく、巻きつけた。これにより、内部導体の外周面上に層(以下、「圧電糸層」という。)を形成し、圧電基材前駆体を得た。圧電糸層は、内部導体の外周面の全面を覆っていた。つまり、内部導体の外周面は露出していなかった。
なお、「左巻き」とは、内部導体(錦糸線)の軸方向の一端から見たときに、内部導体の手前側から奥側に向かって圧電糸が左巻きで巻回していることを示す。「螺旋角度」とは、内部導体の軸方向に対する、圧電糸の長さ方向とがなす角度を示す。
次に、接着剤として東亞合成社製のアロンアルファ902H3(シアノアクリレート系接着剤)を滴下し、含浸させることにより、生糸を機械的に一体化させた。
次に、外部導体として、幅0.3mmにスリットカットした銅箔リボンを準備した。この銅箔リボンを、芯材の周りに巻回し、機械的に一体化した生糸の周りに、生糸がほぼ露出しないように隙間無く巻回した。ここで、銅箔リボンの巻回方向は、右巻きとした。また、銅箔リボンは、2つの圧着端子に接触しないように巻回した。
次に、さらに絶縁被覆として、厚さ0.15mmのPTFEフィルムを左巻きにカバリング巻回して、外部銅箔が露出しないように、全体を覆った。
以上により、圧電基材を得た。 <Production of Piezoelectric Substrate>
As an internal conductor, a tinsel wire "U24-01-00" (wire diameter 0.26 mm,length 200 mm) manufactured by Meisei Sangyo Co., Ltd. was prepared.
The piezoelectric thread was wound counterclockwise on the outer peripheral surface of the internal conductor so as to have a spiral angle of about 45° with as few gaps as possible. As a result, a layer (hereinafter referred to as a "piezoelectric yarn layer") was formed on the outer peripheral surface of the internal conductor, and a piezoelectric substrate precursor was obtained. The piezoelectric thread layer covered the entire outer peripheral surface of the internal conductor. That is, the outer peripheral surface of the inner conductor was not exposed.
"Left-handed" means that the piezoelectric thread is wound counterclockwise from the front side to the back side of the inner conductor (tinshi wire) when viewed from one end in the axial direction of the inner conductor. "Helix angle" refers to the angle formed by the longitudinal direction of the piezoelectric yarn with respect to the axial direction of the inner conductor.
Next, Aron Alpha 902H3 (a cyanoacrylate-based adhesive) manufactured by Toagosei Co., Ltd. was dripped as an adhesive and impregnated to mechanically integrate the raw silk.
Next, a copper foil ribbon slit to a width of 0.3 mm was prepared as an outer conductor. This copper foil ribbon was wound around the core material and tightly wound around the mechanically integrated raw silk so that the raw silk was hardly exposed. Here, the winding direction of the copper foil ribbon was right-handed. Also, the copper foil ribbon was wound so as not to come into contact with the two crimp terminals.
Next, as an insulating coating, a PTFE film having a thickness of 0.15 mm was wound counterclockwise to cover the whole so that the external copper foil was not exposed.
As described above, a piezoelectric substrate was obtained.
内部導体として、株式会社明清産業製の錦糸線「U24-01-00」(線径0.26mm、長さ200mm)を準備した。
圧電糸を内部導体の外周面上に、螺旋角度が約45°となるように、左巻きで極力隙間なく、巻きつけた。これにより、内部導体の外周面上に層(以下、「圧電糸層」という。)を形成し、圧電基材前駆体を得た。圧電糸層は、内部導体の外周面の全面を覆っていた。つまり、内部導体の外周面は露出していなかった。
なお、「左巻き」とは、内部導体(錦糸線)の軸方向の一端から見たときに、内部導体の手前側から奥側に向かって圧電糸が左巻きで巻回していることを示す。「螺旋角度」とは、内部導体の軸方向に対する、圧電糸の長さ方向とがなす角度を示す。
次に、接着剤として東亞合成社製のアロンアルファ902H3(シアノアクリレート系接着剤)を滴下し、含浸させることにより、生糸を機械的に一体化させた。
次に、外部導体として、幅0.3mmにスリットカットした銅箔リボンを準備した。この銅箔リボンを、芯材の周りに巻回し、機械的に一体化した生糸の周りに、生糸がほぼ露出しないように隙間無く巻回した。ここで、銅箔リボンの巻回方向は、右巻きとした。また、銅箔リボンは、2つの圧着端子に接触しないように巻回した。
次に、さらに絶縁被覆として、厚さ0.15mmのPTFEフィルムを左巻きにカバリング巻回して、外部銅箔が露出しないように、全体を覆った。
以上により、圧電基材を得た。 <Production of Piezoelectric Substrate>
As an internal conductor, a tinsel wire "U24-01-00" (wire diameter 0.26 mm,
The piezoelectric thread was wound counterclockwise on the outer peripheral surface of the internal conductor so as to have a spiral angle of about 45° with as few gaps as possible. As a result, a layer (hereinafter referred to as a "piezoelectric yarn layer") was formed on the outer peripheral surface of the internal conductor, and a piezoelectric substrate precursor was obtained. The piezoelectric thread layer covered the entire outer peripheral surface of the internal conductor. That is, the outer peripheral surface of the inner conductor was not exposed.
"Left-handed" means that the piezoelectric thread is wound counterclockwise from the front side to the back side of the inner conductor (tinshi wire) when viewed from one end in the axial direction of the inner conductor. "Helix angle" refers to the angle formed by the longitudinal direction of the piezoelectric yarn with respect to the axial direction of the inner conductor.
Next, Aron Alpha 902H3 (a cyanoacrylate-based adhesive) manufactured by Toagosei Co., Ltd. was dripped as an adhesive and impregnated to mechanically integrate the raw silk.
Next, a copper foil ribbon slit to a width of 0.3 mm was prepared as an outer conductor. This copper foil ribbon was wound around the core material and tightly wound around the mechanically integrated raw silk so that the raw silk was hardly exposed. Here, the winding direction of the copper foil ribbon was right-handed. Also, the copper foil ribbon was wound so as not to come into contact with the two crimp terminals.
Next, as an insulating coating, a PTFE film having a thickness of 0.15 mm was wound counterclockwise to cover the whole so that the external copper foil was not exposed.
As described above, a piezoelectric substrate was obtained.
<表皮直下に圧電基材を配置>
圧電基材の末端を同軸線に接続し、内部導体と外部導体が電気的接触をしないように配置し、前記接続部分を外部から包むように銅箔で覆い、前記銅箔と外部導体を半田付けにより電気的に接続し、全体をカプトンテープ固定した。ステアリングホイールのリムに巻回するように、1本の圧電基材を配置した。具体的には、図14に示すように、乗用車に用いられる本革貼りのステアリングホイールの本革部分を一旦剥がし、本革の下にあるウレタン樹脂のクッション材の上に、圧電基材を1本設置し、本革部分を再度取り付けて戻した。 <Piezoelectric substrate placed directly under the skin>
The end of the piezoelectric substrate is connected to the coaxial line, the inner conductor and the outer conductor are arranged so as not to be in electrical contact, the connection portion is covered with a copper foil so as to wrap it from the outside, and the copper foil and the outer conductor are soldered. were electrically connected, and the whole was fixed with Kapton tape. A length of piezoelectric substrate was placed so as to wrap around the rim of the steering wheel. Specifically, as shown in FIG. 14, the genuine leather part of a steering wheel with genuine leather used in a passenger car is once peeled off, and a piezoelectric base material is placed on the urethane resin cushion material under the genuine leather. I installed this and put the genuine leather part back on.
圧電基材の末端を同軸線に接続し、内部導体と外部導体が電気的接触をしないように配置し、前記接続部分を外部から包むように銅箔で覆い、前記銅箔と外部導体を半田付けにより電気的に接続し、全体をカプトンテープ固定した。ステアリングホイールのリムに巻回するように、1本の圧電基材を配置した。具体的には、図14に示すように、乗用車に用いられる本革貼りのステアリングホイールの本革部分を一旦剥がし、本革の下にあるウレタン樹脂のクッション材の上に、圧電基材を1本設置し、本革部分を再度取り付けて戻した。 <Piezoelectric substrate placed directly under the skin>
The end of the piezoelectric substrate is connected to the coaxial line, the inner conductor and the outer conductor are arranged so as not to be in electrical contact, the connection portion is covered with a copper foil so as to wrap it from the outside, and the copper foil and the outer conductor are soldered. were electrically connected, and the whole was fixed with Kapton tape. A length of piezoelectric substrate was placed so as to wrap around the rim of the steering wheel. Specifically, as shown in FIG. 14, the genuine leather part of a steering wheel with genuine leather used in a passenger car is once peeled off, and a piezoelectric base material is placed on the urethane resin cushion material under the genuine leather. I installed this and put the genuine leather part back on.
<圧電基材の圧電感度の検出>
また、圧電基材からの信号の検出は、以下の方法とした。
圧電基材の末端に接続した同軸線を検出回路に接続した。ここで、外部導体側の配線を検出回路のグラウンド側に接続した。検出回路は、図15に示すような増幅回路を用い、可変抵抗を調整し、100倍の増幅度に設定した。この回路の出力電圧(OutPut)をNI製 USB-6002に接続し、デジタル信号に変換し、USB接続でパソコンに入力し、パソコン上で制御用ソフトLabViewを用いて、ハイパスフィルターを通し、移動平均処理をして、電圧信号を測定した。ここで、ハイパスフィルターはカットオフ周波数1Hzのバターワ―スフィルター3次を用い、移動平均処理は50回とした。
このシステムを用い、把持検知を以下の方法で行った。
図14に示すステアリングホイールにおいて、把持を検出するために、圧電基材を設置したステアリングホイールの部位Aを把持し、その後手を放した(図16中における両矢印Aの範囲が、図14においてステアリングの部位Aを把持している時間)。一方、圧電基材を設置していないステアリングホイールの部分Bを把持して(図16中における両矢印Bの範囲が、図14においてステアリングの部位Bを把持している時間)、その検出した電圧の違いを確認した。
その結果、図16に示すように、ステアリングホイールを把持する前は低い電圧が検出されたが、ステアリングホイールの部位Aを把持したときに大きな電圧が検出され、把持した状態が検出される。さらに、把持している間については、生体の生理的現象としての筋肉の機械的な微小振動(いわゆる、生体振戦)による振動を検出する。生体振戦は、所定の周波数帯域(例えば5Hz~20Hz程度の帯域)内における一定周波数の振動が検出され、電圧レベルが一定の値で上昇すると考えられる。
また、把持している手を放した際に、その圧力変動を検知し、一旦大きな電圧を検出し、その後、基底レベルに電圧が低下した。 <Detection of Piezoelectric Sensitivity of Piezoelectric Substrate>
Signals from the piezoelectric substrate were detected by the following method.
A coaxial line connected to the end of the piezoelectric substrate was connected to a detection circuit. Here, the wiring on the outer conductor side was connected to the ground side of the detection circuit. As the detection circuit, an amplifier circuit as shown in FIG. 15 was used, and the variable resistance was adjusted to set the amplification factor to 100 times. The output voltage (OutPut) of this circuit is connected to NI's USB-6002, converted to a digital signal, input to a personal computer via a USB connection, passed through a high-pass filter using the control software LabView on the personal computer, and moving average After processing, the voltage signal was measured. Here, a 3rd order Butterworth filter with a cutoff frequency of 1 Hz was used as the high-pass filter, and the moving average process was performed 50 times.
Using this system, grip detection was performed by the following method.
In the steering wheel shown in FIG. 14, in order to detect gripping, a portion A of the steering wheel where the piezoelectric base material was installed was gripped and then released (the range of the double arrow A in FIG. 16 is time during which the steering part A is gripped). On the other hand, gripping the portion B of the steering wheel where the piezoelectric base material is not installed (the range of the double arrow B in FIG. 16 is the time when the steering portion B is gripped in FIG. 14), and the detected voltage confirmed the difference.
As a result, as shown in FIG. 16, a low voltage was detected before the steering wheel was gripped, but a large voltage was detected when the steering wheel portion A was gripped, indicating the gripped state. Furthermore, during the gripping period, vibration due to mechanical micro-vibration of muscles (so-called biological tremor) is detected as a physiological phenomenon of the living body. A biological tremor is considered to be a constant frequency vibration detected within a predetermined frequency band (for example, a band of about 5 Hz to 20 Hz) and a voltage level rising at a constant value.
Also, when the gripping hand was released, the pressure fluctuation was detected, a large voltage was once detected, and then the voltage dropped to the base level.
また、圧電基材からの信号の検出は、以下の方法とした。
圧電基材の末端に接続した同軸線を検出回路に接続した。ここで、外部導体側の配線を検出回路のグラウンド側に接続した。検出回路は、図15に示すような増幅回路を用い、可変抵抗を調整し、100倍の増幅度に設定した。この回路の出力電圧(OutPut)をNI製 USB-6002に接続し、デジタル信号に変換し、USB接続でパソコンに入力し、パソコン上で制御用ソフトLabViewを用いて、ハイパスフィルターを通し、移動平均処理をして、電圧信号を測定した。ここで、ハイパスフィルターはカットオフ周波数1Hzのバターワ―スフィルター3次を用い、移動平均処理は50回とした。
このシステムを用い、把持検知を以下の方法で行った。
図14に示すステアリングホイールにおいて、把持を検出するために、圧電基材を設置したステアリングホイールの部位Aを把持し、その後手を放した(図16中における両矢印Aの範囲が、図14においてステアリングの部位Aを把持している時間)。一方、圧電基材を設置していないステアリングホイールの部分Bを把持して(図16中における両矢印Bの範囲が、図14においてステアリングの部位Bを把持している時間)、その検出した電圧の違いを確認した。
その結果、図16に示すように、ステアリングホイールを把持する前は低い電圧が検出されたが、ステアリングホイールの部位Aを把持したときに大きな電圧が検出され、把持した状態が検出される。さらに、把持している間については、生体の生理的現象としての筋肉の機械的な微小振動(いわゆる、生体振戦)による振動を検出する。生体振戦は、所定の周波数帯域(例えば5Hz~20Hz程度の帯域)内における一定周波数の振動が検出され、電圧レベルが一定の値で上昇すると考えられる。
また、把持している手を放した際に、その圧力変動を検知し、一旦大きな電圧を検出し、その後、基底レベルに電圧が低下した。 <Detection of Piezoelectric Sensitivity of Piezoelectric Substrate>
Signals from the piezoelectric substrate were detected by the following method.
A coaxial line connected to the end of the piezoelectric substrate was connected to a detection circuit. Here, the wiring on the outer conductor side was connected to the ground side of the detection circuit. As the detection circuit, an amplifier circuit as shown in FIG. 15 was used, and the variable resistance was adjusted to set the amplification factor to 100 times. The output voltage (OutPut) of this circuit is connected to NI's USB-6002, converted to a digital signal, input to a personal computer via a USB connection, passed through a high-pass filter using the control software LabView on the personal computer, and moving average After processing, the voltage signal was measured. Here, a 3rd order Butterworth filter with a cutoff frequency of 1 Hz was used as the high-pass filter, and the moving average process was performed 50 times.
Using this system, grip detection was performed by the following method.
In the steering wheel shown in FIG. 14, in order to detect gripping, a portion A of the steering wheel where the piezoelectric base material was installed was gripped and then released (the range of the double arrow A in FIG. 16 is time during which the steering part A is gripped). On the other hand, gripping the portion B of the steering wheel where the piezoelectric base material is not installed (the range of the double arrow B in FIG. 16 is the time when the steering portion B is gripped in FIG. 14), and the detected voltage confirmed the difference.
As a result, as shown in FIG. 16, a low voltage was detected before the steering wheel was gripped, but a large voltage was detected when the steering wheel portion A was gripped, indicating the gripped state. Furthermore, during the gripping period, vibration due to mechanical micro-vibration of muscles (so-called biological tremor) is detected as a physiological phenomenon of the living body. A biological tremor is considered to be a constant frequency vibration detected within a predetermined frequency band (for example, a band of about 5 Hz to 20 Hz) and a voltage level rising at a constant value.
Also, when the gripping hand was released, the pressure fluctuation was detected, a large voltage was once detected, and then the voltage dropped to the base level.
また、圧電基材を設置していないステアリングホイールの部位B(対角位置)を把持した際に、同様に把持した圧力変動を検知し、電圧レベルが上昇したが、直ぐに減少した。さらに、ステアリングホイールの部位Bを把持している間は、生体振戦の振動を検出した。ただし、把持した位置が圧電基材を設置した位置から離れているため、信号レベルは低い値を示した。さらに、ステアリングホイールの部位Bを把持している手を放した際に、圧力変動による電圧を検出し、その後基底レベルの電圧に低下した。
Also, when gripping the part B (diagonal position) of the steering wheel where the piezoelectric base material is not installed, the gripped pressure fluctuation was detected in the same way, and the voltage level increased, but immediately decreased. In addition, biotremor vibrations were detected while gripping the steering wheel at region B. However, since the gripped position was far from the position where the piezoelectric base material was installed, the signal level showed a low value. Furthermore, when the hand holding the steering wheel portion B was released, the voltage due to the pressure fluctuation was detected and then dropped to the base level.
以上説明したように、ステアリングホイールの把持の有無を生体振戦による電圧上昇及び揺らぎにより検出可能である。また、ステアリングホイールを把持した部位は、圧電基材の出力の大小から、把持位置を検知することが可能となる。
ステアリングホイールにおける分割数を適正に増やし、圧電基材を配置することによって、検出感度が調整でき、生体振戦による振動出力の大小から把持している位置情報をより正確に検出可能である。 As described above, it is possible to detect whether or not the steering wheel is being gripped by voltage rise and fluctuation due to biological tremor. In addition, the position where the steering wheel is gripped can be detected from the magnitude of the output of the piezoelectric substrate.
By appropriately increasing the number of divisions in the steering wheel and arranging the piezoelectric base material, the detection sensitivity can be adjusted, and the gripped position information can be detected more accurately from the magnitude of the vibration output due to the biological tremor.
ステアリングホイールにおける分割数を適正に増やし、圧電基材を配置することによって、検出感度が調整でき、生体振戦による振動出力の大小から把持している位置情報をより正確に検出可能である。 As described above, it is possible to detect whether or not the steering wheel is being gripped by voltage rise and fluctuation due to biological tremor. In addition, the position where the steering wheel is gripped can be detected from the magnitude of the output of the piezoelectric substrate.
By appropriately increasing the number of divisions in the steering wheel and arranging the piezoelectric base material, the detection sensitivity can be adjusted, and the gripped position information can be detected more accurately from the magnitude of the vibration output due to the biological tremor.
〔比較例〕
次に、実施例1の比較例として、ステアリングホイールに、圧電基材と並べて、PVDF圧電センサを配置した。株式会社和貴研究所製の分極済みのPVDFシート(PVDFーP0045)を長さ200mm幅15mmにカットし、両面に10mm幅の銅箔テープを190mmの長さで貼り付け、端部をリード線で半田付けし、圧電基材と同様に同軸線に接続した。 [Comparative example]
Next, as a comparative example of Example 1, a PVDF piezoelectric sensor was arranged on a steering wheel in parallel with the piezoelectric substrate. A polarized PVDF sheet (PVDF-P0045) manufactured by Waki Laboratory Co., Ltd. is cut to a length of 200 mm and a width of 15 mm. It was soldered and connected to the coaxial line in the same way as the piezoelectric substrate.
次に、実施例1の比較例として、ステアリングホイールに、圧電基材と並べて、PVDF圧電センサを配置した。株式会社和貴研究所製の分極済みのPVDFシート(PVDFーP0045)を長さ200mm幅15mmにカットし、両面に10mm幅の銅箔テープを190mmの長さで貼り付け、端部をリード線で半田付けし、圧電基材と同様に同軸線に接続した。 [Comparative example]
Next, as a comparative example of Example 1, a PVDF piezoelectric sensor was arranged on a steering wheel in parallel with the piezoelectric substrate. A polarized PVDF sheet (PVDF-P0045) manufactured by Waki Laboratory Co., Ltd. is cut to a length of 200 mm and a width of 15 mm. It was soldered and connected to the coaxial line in the same way as the piezoelectric substrate.
<表皮直下に圧電基材を配置>
実施例1の圧電基材と、PVDF圧電センサと、を実施例1と同様に、ステアリングホイールの本革の下にあるウレタン樹脂のクッション材の上に横に並べて配置し、カプトンテープで全体を固定した後、実施例1と同様に本革部分を再度取り付けて戻した。 <Piezoelectric substrate placed directly under the skin>
The piezoelectric base material of Example 1 and the PVDF piezoelectric sensor are arranged side by side on the urethane resin cushion material under the genuine leather of the steering wheel in the same manner as in Example 1, and the whole is wrapped with Kapton tape. After fixing, the genuine leather portion was reattached and returned in the same manner as in Example 1.
実施例1の圧電基材と、PVDF圧電センサと、を実施例1と同様に、ステアリングホイールの本革の下にあるウレタン樹脂のクッション材の上に横に並べて配置し、カプトンテープで全体を固定した後、実施例1と同様に本革部分を再度取り付けて戻した。 <Piezoelectric substrate placed directly under the skin>
The piezoelectric base material of Example 1 and the PVDF piezoelectric sensor are arranged side by side on the urethane resin cushion material under the genuine leather of the steering wheel in the same manner as in Example 1, and the whole is wrapped with Kapton tape. After fixing, the genuine leather portion was reattached and returned in the same manner as in Example 1.
<圧電基材の圧電感度の検出>
圧電基材、及びPVDF圧電センサを実施例1と同様に図15に示すような検出回路を用い、検出回路の出力電圧(OutPut)をNI製 USB-6002に接続し、デジタル信号に変換し、USB接続でパソコンに入力し、パソコン上で制御用ソフトLabViewを用いて、フィルターを設定せず、電圧信号を測定した。PVDF圧電センサの出力を検出回路に接続し、把持したときに実施例1と同等の電圧レベルになるように検出回路の増幅度を設定した。
その後、ステアリングホイールを把持、及び放す動作を数回行った後で把持したことを示す信号(例えば、図17における0秒から10秒の範囲)を検知し、2つのセンサが同等の電圧を検出したことを確認した。その後、クリプトン球54Wの電球をセンサ部の上部約15cmの距離に配置し、ステアリングホイールを加熱し、加熱を開始してから約12秒後にステアリングホイールの表面温度が約45度まで上昇したことを確認した。図17にステアリングホイールを加熱した場合における時間経過に伴う把持したことを示す電圧信号を検出した結果を示す。ここで、図17において、圧電基材によって検出された電圧を実線で示し、PVDF圧電センサによって検出された電圧を点線で示す。 <Detection of Piezoelectric Sensitivity of Piezoelectric Substrate>
A piezoelectric base material and a PVDF piezoelectric sensor are used in a detection circuit as shown in FIG. The voltage signal was input to a personal computer via a USB connection, and the voltage signal was measured using control software LabView on the personal computer without setting a filter. The output of the PVDF piezoelectric sensor was connected to the detection circuit, and the amplification of the detection circuit was set so that the voltage level was the same as in Example 1 when the object was held.
After that, the steering wheel is grasped and released several times, and then a signal indicating that the steering wheel is grasped (for example, the range of 0 to 10 seconds in FIG. 17) is detected, and the two sensors detect the same voltage. I confirmed that I did. After that, a 54 W krypton bulb was placed at a distance of about 15 cm above the sensor to heat the steering wheel. After about 12 seconds from the start of heating, it was confirmed that the surface temperature of the steering wheel had risen to about 45 degrees. confirmed. FIG. 17 shows the result of detecting the voltage signal indicating gripping over time when the steering wheel is heated. Here, in FIG. 17, the voltage detected by the piezoelectric substrate is indicated by a solid line, and the voltage detected by the PVDF piezoelectric sensor is indicated by a dotted line.
圧電基材、及びPVDF圧電センサを実施例1と同様に図15に示すような検出回路を用い、検出回路の出力電圧(OutPut)をNI製 USB-6002に接続し、デジタル信号に変換し、USB接続でパソコンに入力し、パソコン上で制御用ソフトLabViewを用いて、フィルターを設定せず、電圧信号を測定した。PVDF圧電センサの出力を検出回路に接続し、把持したときに実施例1と同等の電圧レベルになるように検出回路の増幅度を設定した。
その後、ステアリングホイールを把持、及び放す動作を数回行った後で把持したことを示す信号(例えば、図17における0秒から10秒の範囲)を検知し、2つのセンサが同等の電圧を検出したことを確認した。その後、クリプトン球54Wの電球をセンサ部の上部約15cmの距離に配置し、ステアリングホイールを加熱し、加熱を開始してから約12秒後にステアリングホイールの表面温度が約45度まで上昇したことを確認した。図17にステアリングホイールを加熱した場合における時間経過に伴う把持したことを示す電圧信号を検出した結果を示す。ここで、図17において、圧電基材によって検出された電圧を実線で示し、PVDF圧電センサによって検出された電圧を点線で示す。 <Detection of Piezoelectric Sensitivity of Piezoelectric Substrate>
A piezoelectric base material and a PVDF piezoelectric sensor are used in a detection circuit as shown in FIG. The voltage signal was input to a personal computer via a USB connection, and the voltage signal was measured using control software LabView on the personal computer without setting a filter. The output of the PVDF piezoelectric sensor was connected to the detection circuit, and the amplification of the detection circuit was set so that the voltage level was the same as in Example 1 when the object was held.
After that, the steering wheel is grasped and released several times, and then a signal indicating that the steering wheel is grasped (for example, the range of 0 to 10 seconds in FIG. 17) is detected, and the two sensors detect the same voltage. I confirmed that I did. After that, a 54 W krypton bulb was placed at a distance of about 15 cm above the sensor to heat the steering wheel. After about 12 seconds from the start of heating, it was confirmed that the surface temperature of the steering wheel had risen to about 45 degrees. confirmed. FIG. 17 shows the result of detecting the voltage signal indicating gripping over time when the steering wheel is heated. Here, in FIG. 17, the voltage detected by the piezoelectric substrate is indicated by a solid line, and the voltage detected by the PVDF piezoelectric sensor is indicated by a dotted line.
図17に示すように、圧電基材は、加熱を開始してから10秒までの期間において、ステアリングを把持、及び放す動作を繰り返し行った所、把持したことを示す電圧信号を安定的に検出した。また、圧電基材は、加熱を開始してから15秒以上が経過した(ステアリングホイールの温度が45度以上となった)場合も同様に、ステアリングを把持、及び放す動作を繰り返し行った所、電圧信号を安定的に検出した(図17の15秒から25秒の範囲)。
一方、PVDF圧電センサは、加熱を開始してから10秒までの期間において、ステアリングを把持、及び放す動作を繰り返し行った所、電圧信号を安定的に検出した。しかしながら、PVDF圧電センサは、加熱を開始してから15秒が経過した(ステアリングホイールの温度が45度以上となった)場合に、ステアリングを把持、及び放す動作を繰り返し行った所、電圧変化が大きく増加し、加熱を開始してから20秒以上となった際にオーバーレンジとなり、把持したことを示す電圧信号が検出できなかった。 As shown in FIG. 17, the piezoelectric base material stably detects a voltage signal indicating that the steering has been gripped when the steering is repeatedly gripped and released for a period of 10 seconds from the start of heating. did. Also, when 15 seconds or more have passed since the start of heating of the piezoelectric substrate (the temperature of the steering wheel reached 45 degrees or more), when the steering wheel was gripped and released repeatedly, A voltage signal was detected stably (range 15 to 25 seconds in FIG. 17).
On the other hand, the PVDF piezoelectric sensor stably detected a voltage signal during a period of 10 seconds after the start of heating, when the operation of gripping and releasing the steering was repeated. However, when 15 seconds have passed since the start of heating (the temperature of the steering wheel reached 45 degrees or higher), the PVDF piezoelectric sensor repeatedly gripped and released the steering wheel, and the voltage changed. The range increased significantly, and when 20 seconds or more had passed since the start of heating, the range was over, and the voltage signal indicating the gripping could not be detected.
一方、PVDF圧電センサは、加熱を開始してから10秒までの期間において、ステアリングを把持、及び放す動作を繰り返し行った所、電圧信号を安定的に検出した。しかしながら、PVDF圧電センサは、加熱を開始してから15秒が経過した(ステアリングホイールの温度が45度以上となった)場合に、ステアリングを把持、及び放す動作を繰り返し行った所、電圧変化が大きく増加し、加熱を開始してから20秒以上となった際にオーバーレンジとなり、把持したことを示す電圧信号が検出できなかった。 As shown in FIG. 17, the piezoelectric base material stably detects a voltage signal indicating that the steering has been gripped when the steering is repeatedly gripped and released for a period of 10 seconds from the start of heating. did. Also, when 15 seconds or more have passed since the start of heating of the piezoelectric substrate (the temperature of the steering wheel reached 45 degrees or more), when the steering wheel was gripped and released repeatedly, A voltage signal was detected stably (
On the other hand, the PVDF piezoelectric sensor stably detected a voltage signal during a period of 10 seconds after the start of heating, when the operation of gripping and releasing the steering was repeated. However, when 15 seconds have passed since the start of heating (the temperature of the steering wheel reached 45 degrees or higher), the PVDF piezoelectric sensor repeatedly gripped and released the steering wheel, and the voltage changed. The range increased significantly, and when 20 seconds or more had passed since the start of heating, the range was over, and the voltage signal indicating the gripping could not be detected.
以上説明したように、ステアリングホイールの温度が上昇した場合であっても、本実施例に係る圧電基材は、ステアホイールを把持したことを示す電圧信号を安定して検出可能である。
As described above, even when the temperature of the steering wheel rises, the piezoelectric base material according to this embodiment can stably detect a voltage signal indicating that the steering wheel is gripped.
〔実施例2〕
圧電糸、及び圧延銅箔リボンの巻回方向がそれぞれ異なる2本の圧電基材を準備したことの他は、実施例1と同様に圧電基材を作製した。実施例2では、圧電糸、及び圧延銅箔リボンの巻回方向がそれぞれ異なる2本の圧電基材を用いて、生体振戦を検出する実施例について説明する。 [Example 2]
A piezoelectric substrate was produced in the same manner as in Example 1, except that two piezoelectric substrates were prepared in which the piezoelectric yarn and the rolled copper foil ribbon were wound in different directions. In Example 2, an example of detecting biological tremors using two piezoelectric substrates with different winding directions of a piezoelectric yarn and a rolled copper foil ribbon will be described.
圧電糸、及び圧延銅箔リボンの巻回方向がそれぞれ異なる2本の圧電基材を準備したことの他は、実施例1と同様に圧電基材を作製した。実施例2では、圧電糸、及び圧延銅箔リボンの巻回方向がそれぞれ異なる2本の圧電基材を用いて、生体振戦を検出する実施例について説明する。 [Example 2]
A piezoelectric substrate was produced in the same manner as in Example 1, except that two piezoelectric substrates were prepared in which the piezoelectric yarn and the rolled copper foil ribbon were wound in different directions. In Example 2, an example of detecting biological tremors using two piezoelectric substrates with different winding directions of a piezoelectric yarn and a rolled copper foil ribbon will be described.
<圧電基材の作製>
本実施例に係る圧電基材は、実施例1と同様の左巻きの圧電糸、及び右巻きの圧延銅箔リボンによって構成される第1圧電基材と、第1圧電基材と巻回方向が異なり、右巻きの圧電糸、及び左巻きの圧延銅箔リボンによって構成される第2圧電基材と、を準備した。 <Production of Piezoelectric Substrate>
The piezoelectric substrate according to this example includes a first piezoelectric substrate composed of a left-handed piezoelectric yarn and a right-handed rolled copper foil ribbon similar to those in Example 1, and the winding direction of the first piezoelectric substrate is Differently, a second piezoelectric substrate composed of a right-handed piezoelectric yarn and a left-handed rolled copper foil ribbon was prepared.
本実施例に係る圧電基材は、実施例1と同様の左巻きの圧電糸、及び右巻きの圧延銅箔リボンによって構成される第1圧電基材と、第1圧電基材と巻回方向が異なり、右巻きの圧電糸、及び左巻きの圧延銅箔リボンによって構成される第2圧電基材と、を準備した。 <Production of Piezoelectric Substrate>
The piezoelectric substrate according to this example includes a first piezoelectric substrate composed of a left-handed piezoelectric yarn and a right-handed rolled copper foil ribbon similar to those in Example 1, and the winding direction of the first piezoelectric substrate is Differently, a second piezoelectric substrate composed of a right-handed piezoelectric yarn and a left-handed rolled copper foil ribbon was prepared.
各々の圧電基材を、内部導体と外部導体が電気的に接続しないように配置して末端を同軸線に接続し、当該接続部分を外部から包むように銅箔で覆い、銅箔と外部導体を半田付けにより電気的に接続し、全体をカプトンテープ固定した。
Each piezoelectric base material is arranged so that the inner conductor and the outer conductor are not electrically connected, the end is connected to the coaxial line, the connection part is covered with copper foil so as to wrap it from the outside, and the copper foil and the outer conductor are Electrical connection was made by soldering, and the whole was fixed with Kapton tape.
<表皮直下に圧電基材を配置>
ステアリングホイールのリムに巻回するように、各々の圧電基材を並列にウレタン樹脂のクッション材の上に配置し、各々のカプトンテープで圧電基材をクッション材に固定した後、実施例1と同様に本革部分を再度取り付けた。ここで、一例として図18に示すように、第1圧電基材50Dの内部導体50D1を配線29Aにおける同軸線の中心軸側の第1導線29A1に接続し、第1圧電基材50Dの外部導体50D2を配線29Aにおける同軸線の外側の第2導線29A2に接続した。また、同様に、第2圧電基材50Eの内部導体50E1を配線29Bにおける同軸線の中心軸側の第1導体29B1に接続し、第2圧電基材50Eの外部導体50E2を配線29Bにおける同軸線の外側の第2導線29B2に接続した。 <Piezoelectric substrate placed directly under the skin>
The respective piezoelectric substrates were arranged in parallel on a urethane resin cushion material so as to be wound around the rim of the steering wheel. The leather part was reattached in the same way. Here, as an example, as shown in FIG. 18, the inner conductor 50D1 of the firstpiezoelectric base material 50D is connected to the first lead wire 29A1 on the central axis side of the coaxial line in the wiring 29A, and the outer conductor of the first piezoelectric base material 50D is connected. 50D2 was connected to a second conductor 29A2 outside the coaxial line in wiring 29A. Similarly, the inner conductor 50E1 of the second piezoelectric base material 50E is connected to the first conductor 29B1 of the coaxial line of the wiring 29B, and the outer conductor 50E2 of the second piezoelectric base material 50E is connected to the coaxial line of the wiring 29B. was connected to the second conductor 29B2 on the outside of the .
ステアリングホイールのリムに巻回するように、各々の圧電基材を並列にウレタン樹脂のクッション材の上に配置し、各々のカプトンテープで圧電基材をクッション材に固定した後、実施例1と同様に本革部分を再度取り付けた。ここで、一例として図18に示すように、第1圧電基材50Dの内部導体50D1を配線29Aにおける同軸線の中心軸側の第1導線29A1に接続し、第1圧電基材50Dの外部導体50D2を配線29Aにおける同軸線の外側の第2導線29A2に接続した。また、同様に、第2圧電基材50Eの内部導体50E1を配線29Bにおける同軸線の中心軸側の第1導体29B1に接続し、第2圧電基材50Eの外部導体50E2を配線29Bにおける同軸線の外側の第2導線29B2に接続した。 <Piezoelectric substrate placed directly under the skin>
The respective piezoelectric substrates were arranged in parallel on a urethane resin cushion material so as to be wound around the rim of the steering wheel. The leather part was reattached in the same way. Here, as an example, as shown in FIG. 18, the inner conductor 50D1 of the first
<圧電基材の圧電感度の検出>
次に、第1圧電基材50D、及び第2圧電基材50Eの各々を金属筐体(GND)に収容された計装アンプに電気的に接続した。計装アンプの第1差動入力端子VIN -に配線29Aの第1導線29A1を接続した。計装アンプの第2差動入力端子VIN +に配線29Bの第2導線29B1を接続した。計装アンプの基準端子Vref、配線29Aの第2導線29A2、及び配線29Bの第2導線29B2を、計装アンプ30を収容する金属筐体(GND)に接続した。 <Detection of Piezoelectric Sensitivity of Piezoelectric Substrate>
Next, each of the firstpiezoelectric substrate 50D and the second piezoelectric substrate 50E was electrically connected to an instrumentation amplifier housed in a metal housing (GND). A first conductor 29A1 of the wiring 29A was connected to the first differential input terminal V IN − of the instrumentation amplifier. The second conductor 29B1 of the wiring 29B was connected to the second differential input terminal V IN + of the instrumentation amplifier. The reference terminal V ref of the instrumentation amplifier, the second conductor 29A2 of the wiring 29A, and the second conductor 29B2 of the wiring 29B were connected to a metal housing (GND) housing the instrumentation amplifier 30 .
次に、第1圧電基材50D、及び第2圧電基材50Eの各々を金属筐体(GND)に収容された計装アンプに電気的に接続した。計装アンプの第1差動入力端子VIN -に配線29Aの第1導線29A1を接続した。計装アンプの第2差動入力端子VIN +に配線29Bの第2導線29B1を接続した。計装アンプの基準端子Vref、配線29Aの第2導線29A2、及び配線29Bの第2導線29B2を、計装アンプ30を収容する金属筐体(GND)に接続した。 <Detection of Piezoelectric Sensitivity of Piezoelectric Substrate>
Next, each of the first
配置終了後、ステアリングの圧電基材を埋め込んだ部分を軽く片手で握った状態をキープして、第1圧電基材50D、及び第2圧電基材50Eの各々から得られる信号を計装アンプに入力し、計装アンプの出力をNathional Instrument社製の「USB-6001」を用いて電圧計測を行い、パソコンにデータを取り込み、電圧信号をFFT(Fast Fourier Transform)解析し、周波数特性を評価した。
After the arrangement is completed, the part of the steering wheel in which the piezoelectric substrate is embedded is kept lightly gripped with one hand, and signals obtained from each of the first piezoelectric substrate 50D and the second piezoelectric substrate 50E are sent to the instrumentation amplifier. The output of the instrumentation amplifier was measured using the "USB-6001" manufactured by National Instruments, the data was imported into a personal computer, the voltage signal was analyzed by FFT (Fast Fourier Transform), and the frequency characteristics were evaluated. .
FFT解析は、LabViewのスペクトル計測構成ExpressVIを用い、振幅計測、ハニング窓、サンプル数:32768、レート1kHzの条件を用いて、測定を行った。図19に実施例2におけるFFT解析を行った測定結果を示す。
また、比較として、 図20に、実施例2と同様の配置のまま、ステアリングホイールを握らず静置した状態で信号を検出し、FFT解析した測定結果を示す。 The FFT analysis was performed using the spectrum measurement configuration Express VI of LabView under the conditions of amplitude measurement, Hanning window, number of samples: 32768, and rate of 1 kHz. FIG. 19 shows the measurement results of the FFT analysis in Example 2. FIG.
For comparison, FIG. 20 shows the results of FFT analysis of signals detected in the same arrangement as in Example 2, but in a state where the steering wheel is not gripped and left stationary.
また、比較として、 図20に、実施例2と同様の配置のまま、ステアリングホイールを握らず静置した状態で信号を検出し、FFT解析した測定結果を示す。 The FFT analysis was performed using the spectrum measurement configuration Express VI of LabView under the conditions of amplitude measurement, Hanning window, number of samples: 32768, and rate of 1 kHz. FIG. 19 shows the measurement results of the FFT analysis in Example 2. FIG.
For comparison, FIG. 20 shows the results of FFT analysis of signals detected in the same arrangement as in Example 2, but in a state where the steering wheel is not gripped and left stationary.
図19、及び図20を比較すると、圧電糸、及び圧延銅箔リボンの巻回方向が異なる2本の圧電基材を用いることによって、ステアリングホイールを把持したことを示す信号が顕著に検出される。
Comparing FIG. 19 and FIG. 20, the signal indicating that the steering wheel is gripped is significantly detected by using two piezoelectric substrates with different winding directions of the piezoelectric yarn and the rolled copper foil ribbon. .
〔実施例3〕
第2圧電基材50Eの内部導体50E1を計装アンプ30の第2差動入力端子VIN +に電気的に接続しなかったことの他は、実施例2と同様に信号の検出を行った。詳しくは、一例として図21に示すように、計装アンプの第1差動入力端子VIN -に第1圧電基材50Dの内部導体50D1を電気的に接続し、計装アンプ30の第2差動入力端子VIN +に、計装アンプ30を収容する金属筐体(GND)を接続した。また、計装アンプの基準端子Vref、配線29Aの第2導線29A2、及び配線29Bの第2導線29B2を、計装アンプ30を収容する金属筐体(GND)に接続した。すなわち、実施例3では、第1圧電基材50Dのみを用いて、把持したことを示す信号を検出し、FFT解析を行った。
図22に実施例3において、実施例2と同様にしてFFT解析した測定結果を示す。 [Example 3]
Signal detection was performed in the same manner as in Example 2, except that the internal conductor 50E1 of the second piezoelectric substrate 50E was not electrically connected to the second differential input terminal V IN + of theinstrumentation amplifier 30. . Specifically, as shown in FIG. 21 as an example, the internal conductor 50D1 of the first piezoelectric substrate 50D is electrically connected to the first differential input terminal V IN − of the instrumentation amplifier 30, and the second input terminal of the instrumentation amplifier 30 is electrically connected. A metal housing (GND) housing the instrumentation amplifier 30 was connected to the differential input terminal V IN + . In addition, the reference terminal V ref of the instrumentation amplifier, the second conductor 29A2 of the wiring 29A, and the second conductor 29B2 of the wiring 29B were connected to the metal housing (GND) housing the instrumentation amplifier 30 . That is, in Example 3, only the first piezoelectric substrate 50D was used to detect a signal indicating that it was gripped, and FFT analysis was performed.
FIG. 22 shows the measurement results of FFT analysis in Example 3 in the same manner as in Example 2. In FIG.
第2圧電基材50Eの内部導体50E1を計装アンプ30の第2差動入力端子VIN +に電気的に接続しなかったことの他は、実施例2と同様に信号の検出を行った。詳しくは、一例として図21に示すように、計装アンプの第1差動入力端子VIN -に第1圧電基材50Dの内部導体50D1を電気的に接続し、計装アンプ30の第2差動入力端子VIN +に、計装アンプ30を収容する金属筐体(GND)を接続した。また、計装アンプの基準端子Vref、配線29Aの第2導線29A2、及び配線29Bの第2導線29B2を、計装アンプ30を収容する金属筐体(GND)に接続した。すなわち、実施例3では、第1圧電基材50Dのみを用いて、把持したことを示す信号を検出し、FFT解析を行った。
図22に実施例3において、実施例2と同様にしてFFT解析した測定結果を示す。 [Example 3]
Signal detection was performed in the same manner as in Example 2, except that the internal conductor 50E1 of the second piezoelectric substrate 50E was not electrically connected to the second differential input terminal V IN + of the
FIG. 22 shows the measurement results of FFT analysis in Example 3 in the same manner as in Example 2. In FIG.
図20、及び図22を比較すると、第1圧電基材50Dのみを用いた場合であっても、把持したことを示す信号が検出される。一方、図19、及び図22を比較すると、第1圧電基材50Dのみを用いた場合は、圧電糸、及び圧延銅箔リボンの巻回方向が異なる2本の圧電基材を用いた場合よりも、信号の電圧が小さくなる。換言すると、巻回方向が異なる2本の圧電基材を用いた場合、1本の圧電基材を用いた場合よりもステアリングホイールを把持したことを示す信号が顕著に検出される。
Comparing FIGS. 20 and 22, a signal indicating gripping is detected even when only the first piezoelectric substrate 50D is used. On the other hand, when comparing FIGS. 19 and 22, when only the first piezoelectric substrate 50D is used, the piezoelectric yarn and the rolled copper foil ribbon are wound in different directions in two piezoelectric substrates. also reduces the voltage of the signal. In other words, when two piezoelectric substrates with different winding directions are used, the signal indicating that the steering wheel is gripped is more prominently detected than when one piezoelectric substrate is used.
なお、上記に開示する技術の一実施形態に関し、さらに以下の付記を開示する。
In addition, regarding one embodiment of the technology disclosed above, the following additional remarks are disclosed.
(付記1)
前記圧電基材は、前記内部導体の外周面に沿って螺旋状に巻回された絶縁体をさらに備え、
前記絶縁体が、前記内部導体と前記圧電体との間に配置されている、
<6>に記載のステアリング。 (Appendix 1)
The piezoelectric substrate further comprises an insulator spirally wound along the outer peripheral surface of the internal conductor,
the insulator is disposed between the inner conductor and the piezoelectric body;
The steering according to <6>.
前記圧電基材は、前記内部導体の外周面に沿って螺旋状に巻回された絶縁体をさらに備え、
前記絶縁体が、前記内部導体と前記圧電体との間に配置されている、
<6>に記載のステアリング。 (Appendix 1)
The piezoelectric substrate further comprises an insulator spirally wound along the outer peripheral surface of the internal conductor,
the insulator is disposed between the inner conductor and the piezoelectric body;
The steering according to <6>.
2021年6月3日に出願された日本国特許出願2021-093908号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2021-093908 filed on June 3, 2021 is incorporated herein by reference in its entirety. All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually noted to be incorporated by reference. incorporated herein by reference.
1 制御システム
10 生体情報検出装置
20 ステアリングホイール
21 リム(把持体)
41 検知部
42A、42B 検出部
50、50A、50B、50C 圧電基材
52 芯材(内部導体)
54A 圧電体
56 外部導体
100 制御装置 1Control system 10 Biological information detection device 20 Steering wheel 21 Rim (gripping body)
41 detection parts 42A, 42B detection parts 50, 50A, 50B, 50C piezoelectric substrate 52 core material (inner conductor)
54A Piezoelectric body 56 External conductor 100 Control device
10 生体情報検出装置
20 ステアリングホイール
21 リム(把持体)
41 検知部
42A、42B 検出部
50、50A、50B、50C 圧電基材
52 芯材(内部導体)
54A 圧電体
56 外部導体
100 制御装置 1
41
Claims (12)
- ユーザが把持する把持体と、
前記把持体が受ける圧力を検知する圧電基材と、を備え、
前記圧電基材は、
軸状の内部導体と、
前記内部導体の周囲において同軸状に設けられ、かつ光学活性ポリペプチドを含む長尺状圧電体と、
を備えるステアリング。 a grasping body to be grasped by a user;
a piezoelectric substrate that detects the pressure received by the gripping body,
The piezoelectric substrate is
an axial inner conductor;
an elongated piezoelectric body provided coaxially around the inner conductor and containing an optically active polypeptide;
steering wheel. - 前記圧電基材は、前記長尺状圧電体の長さ方向と、前記光学活性ポリペプチドの主配向方向とが略平行である、
請求項1に記載のステアリング。 In the piezoelectric substrate, the length direction of the elongated piezoelectric body and the main orientation direction of the optically active polypeptide are substantially parallel.
A steering according to claim 1. - X線回折測定から下記式(a)によって求められる前記光学活性ポリペプチドの配向度Fが0.50以上1.00未満である、
請求項1又は請求項2に記載のステアリング。
配向度F=(180°-α)/180° … 式(a)
〔式(a)中、αは配向由来のピークの半値幅(°)を表す。〕 The orientation degree F of the optically active polypeptide determined by the following formula (a) from X-ray diffraction measurement is 0.50 or more and less than 1.00.
The steering according to claim 1 or 2.
Orientation F = (180°-α)/180°... Formula (a)
[In the formula (a), α represents the half width (°) of the orientation-derived peak. ] - 前記長尺状圧電体は、一方向に螺旋状に巻回されている、
請求項1から請求項3の何れか1項に記載のステアリング。 The elongated piezoelectric body is spirally wound in one direction,
The steering according to any one of claims 1 to 3. - 前記長尺状圧電体が、右旋方向に巻回されている前記圧電基材と、
前記長尺状圧電体が、左旋方向に巻回されている前記圧電基材と、を含む、
請求項4に記載のステアリング。 the piezoelectric substrate in which the elongated piezoelectric body is wound in a right-handed direction;
and the piezoelectric substrate on which the elongated piezoelectric body is wound in a counterclockwise direction.
A steering according to claim 4. - 前記圧電基材は、外周に外部導体をさらに備える、
請求項1から請求項5の何れか1項に記載のステアリング。 The piezoelectric substrate further comprises an outer conductor on its perimeter,
A steering according to any one of claims 1 to 5. - 前記圧電基材は、前記外部導体の外周にさらに絶縁体を備える請求項6に記載のステアリング。 The steering according to claim 6, wherein the piezoelectric base material further comprises an insulator around the outer conductor.
- 前記光学活性ポリペプチドが、シルク及びクモ糸の少なくとも一方を含む、
請求項1から請求項7の何れか1項に記載のステアリング。 wherein the optically active polypeptide comprises at least one of silk and spider silk;
A steering according to any one of claims 1 to 7. - 請求項1から請求項8の何れか1項に記載のステアリングと、
前記圧電基材の圧力に応じた信号を検知する検知部と、
前記検知部から検知した信号に基づき、人体における生体情報を検出する検出部と、
を備える生体情報検出装置。 A steering according to any one of claims 1 to 8;
a detection unit that detects a signal corresponding to the pressure of the piezoelectric substrate;
a detection unit that detects biological information in the human body based on the signal detected by the detection unit;
A biological information detection device comprising: - 前記把持体は、複数の圧電基材を備え、
前記検知部は、各々の圧電基材から独立に信号を検知し、
前記検出部は、各々の圧電基材から検知した前記信号から人体が接している位置を示す位置情報を検出する、
請求項9に記載の生体情報検出装置。 The gripping body comprises a plurality of piezoelectric substrates,
The detection unit independently detects a signal from each piezoelectric base material,
The detection unit detects position information indicating a position where the human body is in contact from the signals detected from each piezoelectric base material.
The biological information detecting device according to claim 9. - 請求項9又は請求項10に記載の生体情報検出装置と、
前記生体情報検出装置が検出した情報に基づいて、前記ステアリングにより操作される移動体に設けられた機器を制御する制御装置と、
を備える制御システム。 A biological information detection device according to claim 9 or claim 10,
a control device that controls equipment provided on the moving body operated by the steering, based on the information detected by the biological information detection device;
A control system with - 前記制御装置は、前記生体情報から取得した前記人体の心拍に係る情報に応じて、前記機器を制御する、
請求項11に記載の制御システム。 The control device controls the device according to information related to the heartbeat of the human body obtained from the biological information.
12. The control system of claim 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023525893A JPWO2022255412A1 (en) | 2021-06-03 | 2022-06-01 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-093908 | 2021-06-03 | ||
JP2021093908 | 2021-06-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022255412A1 true WO2022255412A1 (en) | 2022-12-08 |
Family
ID=84324194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/022354 WO2022255412A1 (en) | 2021-06-03 | 2022-06-01 | Steering, biometric information detection device, and control system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2022255412A1 (en) |
TW (1) | TW202302030A (en) |
WO (1) | WO2022255412A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220252432A1 (en) * | 2019-07-23 | 2022-08-11 | ZF Automotive Safety Germany GmbH | Steering device sensor, measurement system, operator control system, and steering device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007066513A1 (en) * | 2005-12-05 | 2007-06-14 | Pioneer Corporation | Bioinformation detector, steering wheel member, steering wheel cover and process for producing steering wheel member |
US20120296528A1 (en) * | 2011-05-20 | 2012-11-22 | Matthias Marcus Wellhoefer | Haptic steering wheel, steering-wheel system and driver assistance system for a motor vehicle |
WO2018092886A1 (en) * | 2016-11-18 | 2018-05-24 | 三井化学株式会社 | Piezoelectric base material, sensor, actuator, biological information acquisition device, and piezoelectric fiber structure |
JP2020040587A (en) * | 2018-09-12 | 2020-03-19 | トヨタ自動車株式会社 | Vehicle control device |
-
2022
- 2022-06-01 JP JP2023525893A patent/JPWO2022255412A1/ja active Pending
- 2022-06-01 WO PCT/JP2022/022354 patent/WO2022255412A1/en active Application Filing
- 2022-06-02 TW TW111120718A patent/TW202302030A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007066513A1 (en) * | 2005-12-05 | 2007-06-14 | Pioneer Corporation | Bioinformation detector, steering wheel member, steering wheel cover and process for producing steering wheel member |
US20120296528A1 (en) * | 2011-05-20 | 2012-11-22 | Matthias Marcus Wellhoefer | Haptic steering wheel, steering-wheel system and driver assistance system for a motor vehicle |
WO2018092886A1 (en) * | 2016-11-18 | 2018-05-24 | 三井化学株式会社 | Piezoelectric base material, sensor, actuator, biological information acquisition device, and piezoelectric fiber structure |
JP2020040587A (en) * | 2018-09-12 | 2020-03-19 | トヨタ自動車株式会社 | Vehicle control device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220252432A1 (en) * | 2019-07-23 | 2022-08-11 | ZF Automotive Safety Germany GmbH | Steering device sensor, measurement system, operator control system, and steering device |
US12025475B2 (en) * | 2019-07-23 | 2024-07-02 | ZF Automotive Safety Germany GmbH | Steering device sensor, measurement system, operator control system, and steering device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022255412A1 (en) | 2022-12-08 |
TW202302030A (en) | 2023-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109844971B (en) | Structure for piezoelectric element, string-like piezoelectric element, cloth-like piezoelectric element, and device using same | |
Zhao et al. | A multifunctional and highly stretchable electronic device based on silver nanowire/wrap yarn composite for a wearable strain sensor and heater | |
EP3534419B1 (en) | Piezoelectric base material, and sensor, biological information acquisition device, and piezoelectric fiber structure including the same | |
WO2022255412A1 (en) | Steering, biometric information detection device, and control system | |
CN109716084B (en) | Mounting structure of piezoelectric substrate and sensor assembly | |
JP2021170022A (en) | Tactile sensor | |
US20210028784A1 (en) | Capacitive sensor and method of manufacturing the same | |
JP2022185958A (en) | Seat for movable body, biological information detector, and control system | |
JP6845710B2 (en) | Cable-shaped pressure sensor and tactile sensor using it | |
EP4300063A1 (en) | Piezoelectric base material, sensor, actuator, and biometric information acquisition device | |
JP6969883B2 (en) | Bag-shaped tactile sensor | |
CN117063632A (en) | Piezoelectric substrate, sensor, actuator, and biological information acquisition device | |
JP2024136265A (en) | Piezoelectric substrates, sensors, actuators, and bioinformation acquisition devices | |
JP2024136263A (en) | Piezoelectric substrates, sensors, actuators, and bioinformation acquisition devices | |
JP7466676B2 (en) | Piezoelectric devices, force sensors, and biometric information acquisition devices | |
JP6835309B2 (en) | Structures used for piezoelectric elements and devices using them | |
JP2024136264A (en) | Piezoelectric devices, sensors, actuators, and biometric information acquisition devices | |
WO2018181261A1 (en) | Piezoelectric element | |
JP6600494B2 (en) | Telescopic cable with excellent twisting resistance | |
JP2023049853A (en) | Biological information detection device | |
JP7143983B2 (en) | sensor module | |
WO2022138862A1 (en) | Sensing fiber member | |
JP4051797B2 (en) | Pressure detection device | |
JP2018074002A (en) | Structure used for piezoelectric element, and device using the same | |
JP2009266401A (en) | Flexible wiring structure, flexible electronic component, and their manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22816157 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023525893 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22816157 Country of ref document: EP Kind code of ref document: A1 |