WO2022255382A1 - Composition for temporary fixing of thin layer glass, and method for processing thin layer glass - Google Patents

Composition for temporary fixing of thin layer glass, and method for processing thin layer glass Download PDF

Info

Publication number
WO2022255382A1
WO2022255382A1 PCT/JP2022/022202 JP2022022202W WO2022255382A1 WO 2022255382 A1 WO2022255382 A1 WO 2022255382A1 JP 2022022202 W JP2022022202 W JP 2022022202W WO 2022255382 A1 WO2022255382 A1 WO 2022255382A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin
fine particles
composition
layer glass
glass
Prior art date
Application number
PCT/JP2022/022202
Other languages
French (fr)
Japanese (ja)
Inventor
佳希 永田
章滋 桑原
Original Assignee
積水フーラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水フーラー株式会社 filed Critical 積水フーラー株式会社
Priority to JP2023525873A priority Critical patent/JPWO2022255382A1/ja
Publication of WO2022255382A1 publication Critical patent/WO2022255382A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to a thin-layer glass temporary fixing composition and a thin-layer glass processing method.
  • Thin-layer glass is used in portable electronic devices such as smartphones and tablet terminals, and glass substrates for solar cells.
  • a single sheet of thin glass is extremely thin and weak in strength. is being improved, and the laminated thin glass is processed.
  • the laminated thin-layer glass is peeled off one by one. requested.
  • Temporary fixing agents include (1) (1-1) imide (meth)acrylate and/or cyclic trimethylolpropane formal (meth)acrylate, (1-2) urethane (meth)acrylate, ( 1-3) polyfunctional (meth)acrylate other than (1-2), (1-4) polymerizable vinyl derivative containing alkyl (meth)acrylate, (2) radical polymerization initiator, (3) organic heat A composition containing expandable particles and (4) a particulate material, wherein (1) a composition containing 3 to 20 parts by mass of (1-4) an alkyl (meth)acrylate in 100 parts by mass of a polymerizable vinyl derivative. disclosed.
  • Patent Document 2 (1) (1-1) imide (meth)acrylate, (1-2) polyether-based urethane (meth)acrylate having a weight average molecular weight of 1,000 to 34,000, (1 -3) Polymerizable vinyl derivative containing polyfunctional (meth)acrylate other than (1-2), (2) radical polymerization initiator, (3) organic thermally expandable particles, and (4) particulate matter A composition for thin substrates is disclosed.
  • composition of Patent Document 1 is a two-part composition comprising a first agent containing a thermal radical polymerization initiator and a second agent containing a reducing agent. Mixing is required, and there are problems that the work is complicated and requires a long time for curing.
  • the composition for a thin film substrate of Patent Document 2 has a low photocuring property, and it is necessary to irradiate the composition for a thin film substrate with ultraviolet rays each time a thin glass layer is laminated. have.
  • the present invention is a one-liquid type composition for temporary fixing of thin glass, which is excellent in photocurability and can firmly temporarily fix thin glass to each other. To provide a composition for temporarily fixing a thin layer glass which can be easily peeled off in time.
  • the composition for temporarily fixing a thin layer glass of the present invention comprises an acrylic monofunctional monomer, a polyfunctional monomer, thermally expandable fine particles, and a photoradical polymerized polymer having a molar extinction coefficient ⁇ at 400 nm of 100 L/(mol ⁇ cm) or more. Contains initiator.
  • the composition for thin-layer glass temporary fixing contains the acrylic monofunctional monomer.
  • (meth)acrylate is preferable because of its excellent photocurability.
  • the (meth)acrylate is not particularly limited, and examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec- Butyl (meth)acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, Alkyl (meth)acrylates such as n-decyl (meth)acrylate, isodecyl (
  • the alkyl (meth)acrylate is used. preferably included.
  • the alkyl group is an atomic group remaining after removing one hydrogen atom from an aliphatic saturated hydrocarbon. Hydrogens of alkyl groups are not replaced by other atoms or groups of atoms.
  • the alkyl (meth)acrylate preferably does not have polyethylene oxide [--(O--CH 2 CH 2 )n--OH] having a terminal hydroxy group, which will be described later, in the molecule.
  • the number of carbon atoms in the alkyl group of the alkyl (meth)acrylate is preferably 1 or more, more preferably 4 or more, and more preferably 8 or more.
  • the number of carbon atoms in the alkyl group of the alkyl (meth)acrylate is preferably 22 or less, more preferably 18 or less, and even more preferably 14 or less.
  • the number of carbon atoms in the alkyl group is 1 or more, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily separated one by one in a short time, which is preferable.
  • the number of carbon atoms in the alkyl group is 22 or less, the composition for thin-layer glass temporary fixing is excellent in photocurability.
  • the content of the alkyl (meth)acrylate in the acrylic monofunctional monomer is preferably 20% by mass or more, more preferably 30% by mass or more, more preferably 35% by mass or more, and more preferably 40% by mass or more.
  • the content of the alkyl (meth)acrylate in the acrylic monofunctional monomer is preferably 80% by mass or less, more preferably 70% by mass or less, more preferably 60% by mass or less, and more preferably 50% by mass or less.
  • the content of the alkyl (meth)acrylate is 20% by mass or more, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily separated one by one in a short time. is possible and preferable.
  • the content of the alkyl (meth)acrylate is 80% by mass or less, the thin glass layers can be firmly temporarily fixed to each other, which is preferable.
  • the acrylic monofunctional monomer contains hydroxyalkyl (meth)acrylate because it can firmly temporarily fix the thin glass layers together.
  • Hydroxyalkyl (meth)acrylate refers to (meth)acrylate in which one hydrogen of the alkyl group of alkyl (meth)acrylate is substituted with a hydroxy group (--OH). Hydroxyalkyl (meth)acrylates are not included in the category of alkyl (meth)acrylates because the hydrogen of the alkyl group is substituted with a hydroxy group.
  • Hydroxyalkyl (meth)acrylates include, for example, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2-hydroxy butyl (meth) acrylate, 5-hydroxypentyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 3-hydroxy-3-methylbutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3 -Hydroxypropyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate are preferred, and 2-hydroxyethyl (meth)acrylate is more preferred.
  • the number of carbon atoms in the alkyl group to which the hydroxy group is bonded is preferably 2 or more. In the hydroxyalkyl (meth)acrylate, the number of carbon atoms in the alkyl group to which the hydroxy group is bonded is preferably 4 or less.
  • the number of carbon atoms in the alkyl group to which the hydroxy group is bonded is 2 or more, the thin glass layers can be firmly temporarily fixed together, which is preferable.
  • the number of carbon atoms in the alkyl group to which the hydroxy group is bonded is 4 or less, the thin glass layers can be firmly temporarily fixed to each other, which is preferable.
  • the content of hydroxyalkyl (meth)acrylate in the acrylic monofunctional monomer is preferably 1% by mass or more, more preferably 3% by mass or more, and more preferably 5% by mass or more.
  • the content of hydroxyalkyl (meth)acrylate in the acrylic monofunctional monomer is preferably 15% by mass or less, more preferably 12% by mass or less, and more preferably 10% by mass or less.
  • the thin glass layers can be firmly temporarily fixed to each other, which is preferable.
  • the content of the hydroxyalkyl (meth)acrylate is 15% by mass or less, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily separated one by one in a short time. It is possible and preferable.
  • the acrylic monofunctional monomer can firmly temporarily fix the thin glass layers, it preferably contains a (meth)acrylate having an alicyclic skeleton, and includes a (meth)acrylate having a polycyclic alicyclic skeleton. is more preferable.
  • a (meth)acrylate having an alicyclic skeleton refers to a (meth)acrylate in which the alkyl group of an alkyl (meth)acrylate is substituted with an atomic group having an alicyclic skeleton.
  • An alicyclic skeleton is a hydrocarbon group that does not contain an aromatic ring structure, and includes a monocyclic alicyclic skeleton or a polycyclic alicyclic skeleton.
  • Examples of the monocyclic alicyclic skeleton group include a cyclopentyl group and a cyclohexyl group.
  • Examples of polycyclic alicyclic skeleton groups include a norbornyl group, an isobornyl group, a tricyclononyl group, a tricyclodecyl group, and a tetracyclododecyl group.
  • the content of (meth)acrylate having an alicyclic skeleton in the acrylic monofunctional monomer is preferably 5% by mass or more, more preferably 10% by mass or more, and more preferably 15% by mass or more.
  • the content of (meth)acrylate having an alicyclic skeleton in the acrylic monofunctional monomer is preferably 50% by mass or less, more preferably 40% by mass or less, and more preferably 30% by mass or less. It is preferable that the content of the (meth)acrylate having an alicyclic skeleton is 5% by mass or more because the thin glass layers can be firmly temporarily fixed to each other.
  • the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily formed into one sheet in a short time. It is preferable because it can be peeled off one by one.
  • the acrylic monofunctional monomer preferably contains an acrylic monofunctional monomer having polyethylene oxide with a terminal hydroxy group.
  • An acrylic monofunctional monomer having polyethylene oxide having a terminal hydroxy group has polyethylene oxide [--(O--CH 2 CH 2 )n--OH] having a terminal hydroxy group in the molecule.
  • n is a repeating unit and is a natural number. n is preferably 2 to 20 because the composition for temporarily fixing the thin glass has excellent photocurability and can firmly temporarily fix the thin glasses.
  • the acrylic monofunctional monomer contains an acrylic monofunctional monomer having a polyoxyethylene oxide having a hydroxyl group at the end
  • the dispersibility of the thermally expandable fine particles in the composition for temporarily fixing thin-layer glass can be improved.
  • the storage stability of the thin-layer glass temporary fixing composition is improved.
  • the thin glass temporary fixing composition contains an acrylic monofunctional monomer having polyethylene oxide having a hydroxyl group at the terminal, so that the thin glass can be firmly temporarily fixed to each other.
  • the adhesiveness to thin glass can be improved due to the polyoxyethylene oxide having hydroxyl groups at the terminals.
  • the acrylic monofunctional monomer having polyethylene oxide having a hydroxyl group at its terminal is preferably an alkyl (meth)acrylate in which the hydrogen of the alkyl group is substituted with --(O-- CH.sub.2 CH.sub.2 )n--OH.
  • Alkyl (meth)acrylates in which the hydrogen of the alkyl group is replaced with --(O--CH 2 CH 2 )n--OH are obtained by replacing the hydrogen of the alkyl group with --(O--CH 2 CH 2 )n--OH. Therefore, it is not included in the category of alkyl (meth)acrylates.
  • the content of the acrylic monofunctional monomer having polyethylene oxide having a terminal hydroxyl group is preferably 1% by mass or more, more preferably 3% by mass or more, and more preferably 5% by mass or more.
  • the content of the acrylic monofunctional monomer having polyethylene oxide having a terminal hydroxyl group is preferably 15% by mass or less, more preferably 12% by mass or less, and more preferably 10% by mass or less.
  • the content of the acrylic monofunctional monomer having polyethylene oxide having a hydroxyl group at its end is 1% by mass or more, thin glass layers can be firmly temporarily fixed to each other, which is preferable.
  • the thin glass sheets temporarily fixed to each other via the thin glass temporary fixing composition can be formed in a short time. It is preferable because it can be easily peeled off one by one.
  • the acrylic monofunctional monomer includes an acrylic monofunctional monomer having polyethylene oxide having a terminal hydroxy group, an alkyl (meth)acrylate, a hydroxyalkyl (meth)acrylate, and a (meth)acrylate having an alicyclic skeleton. is preferably contained.
  • the thin-layer glass temporary fixing composition has an excellent balance of photocurability, adhesiveness and peelability, and a thin layer While the glasses can be firmly temporarily fixed to each other, the thin-layer glasses temporarily fixed via the thin-layer glass temporary-fixing composition can be easily separated one by one in a short time.
  • an alkyl (meth)acrylate having a carboxy group (-COOH) in the molecule it is preferable to include an alkyl (meth)acrylate having a carboxy group (-COOH) in the molecule.
  • An alkyl (meth)acrylate having a carboxy group (-COOH) in the molecule refers to a (meth)acrylate in which one hydrogen atom of the alkyl group of the alkyl (meth)acrylate is substituted with an atomic group containing a carboxy group.
  • Alkyl (meth)acrylates having a carboxy group in the molecule are not included in the category of alkyl (meth)acrylates because the hydrogen of the alkyl group is replaced with an atomic group containing a carboxy group.
  • alkylalkyl (meth)acrylates having a carboxy group in the molecule examples include ⁇ -carboxyethyl (meth)acrylate, 2-acryloyloxyethyl succinate, 2-acryloyloxyethyl phthalate, 2-acryloyloxy Examples include ethylhexahydrophthalic acid, and 2-acryloyloxyethylhexahydrophthalic acid is preferred.
  • the alkylalkyl (meth)acrylates having a carboxy group in the molecule may be used alone or in combination of two or more.
  • the content of the alkylalkyl (meth)acrylate having a carboxy group in the molecule in the acrylic monofunctional monomer is preferably 1% by mass or more, more preferably 3% by mass or more, and more preferably 5% by mass or more.
  • the content of the alkylalkyl (meth)acrylate having a carboxy group in the molecule in the acrylic monofunctional monomer is preferably 30% by mass or less, more preferably 25% by mass or less, and more preferably 20% by mass or less.
  • the thin glass sheets temporarily fixed to each other via the thin glass temporary fixing composition can be easily fixed in a short time. It is preferable that the sheets can be peeled off one by one.
  • the composition for thin-layer glass temporary fixing contains the polyfunctional monomer.
  • the polyfunctional monomer radically polymerizes with the acrylic monofunctional monomer to form a crosslinked structure, cure the composition for temporary fixing of thin layer glass, and allow the resulting cured product to exhibit adhesiveness.
  • a polyfunctional monomer refers to a monomer having a plurality of unsaturated double bonds in its molecule that can form a crosslinked structure by radical polymerization with the unsaturated double bond of an acrylic monofunctional monomer.
  • the polyfunctional monomer is not particularly limited as long as it can be radically polymerized with an acrylic monofunctional monomer to form a crosslinked structure.
  • the content of the polyfunctional monomer in the composition for temporarily fixing thin layer glass is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, more preferably 0.1 part by mass or more based on 100 parts by mass of the acrylic monofunctional monomer. 5 parts by mass or more is more preferable, and 0.8 parts by mass or more is more preferable.
  • the content of the polyfunctional monomer in the composition for temporarily fixing thin layer glass is preferably 3 parts by mass or less, more preferably 2.5 parts by mass or less, and 2 parts by mass or less with respect to 100 parts by mass of the acrylic monofunctional monomer. is more preferable, and 1.5 parts by mass or less is more preferable.
  • the content of the polyfunctional monomer is 0.05 parts by mass or more, an appropriate crosslinked structure is imparted to the thin-layer glass temporary fixing composition, so that the thin-layer glasses can be firmly and temporarily fixed together by an appropriate cohesive force.
  • the cured product of the composition for temporarily fixing the thin glass is easily peeled off from the thin glass in a sheet form due to the crosslinked structure contained in the cured product, and the thin layer Removes from the glass surface without sticky residue.
  • the content of the polyfunctional monomer is 3 parts by mass or less, the cured product of the thin-layer glass temporary fixing composition is prevented from becoming too hard, and the cured product does not pulverize from the surface of the thin-layer glass. It can be easily peeled off in a sheet form, and can be peeled off from the surface of the thin layer glass without leaving any sticky residue.
  • the thin-layer glass temporary fixing composition contains thermally expandable fine particles.
  • Thermally expandable microparticles are microparticles that expand upon application of a predetermined amount of heat.
  • the thin glass is laminated and integrated with each other through the cured product of the composition for temporary fixing of the thin glass to form a cured body, and after processing the cured body, the thin glass is separated from each other. peeled off.
  • the composition for temporarily fixing the thin glass contains thermally expandable fine particles in order to reduce the adhesive strength of the cured product of the composition for temporarily fixing the thin glass when the thin glasses are separated from each other.
  • the thermally expandable fine particles are expanded by heating to reduce the adhesive force between the thin glass sheets by the cured product of the composition for temporarily fixing the thin layer glass, and the thin glass sheets in the laminated state after processing are formed one by one. It can be peeled off easily and without damage.
  • the thermally expandable fine particles are not particularly limited as long as they can be expanded by heating to reduce the adhesiveness of the cured product of the thin-layer glass temporary fixing composition.
  • Examples of the thermally expandable fine particles include fine particles obtained by sealing a volatile expanding agent in hollow fine particles made of synthetic resin such as nitrile resin and olefin resin.
  • Fine particles made of synthetic resin in which a volatile expanding agent is enclosed in hollow fine particles are softened by heating, and the volume of the volatile expanding agent in the hollow fine particles is expanded by heating, thereby thermally expanding. It is configured.
  • the volatile expansion agent inside the hollow fine particles in the thermally expandable fine particles is not released to the outside of the hollow fine particles when the thermally expandable fine particles are thermally expanded.
  • the nitrile-based resin contains nitrile-based monomer units.
  • Nitrile monomers include, for example, acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethoxyacrylonitrile, fumaronitrile and the like.
  • the nitrile-based monomers may be used alone or in combination of two or more.
  • the nitrile-based resin may contain monomer units other than nitrile-based monomer units.
  • monomers include vinyl chloride-based monomers such as vinylidene chloride; acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate and dicyclopentenyl acrylate; methacrylate and the like. These monomers may be used alone or in combination of two or more.
  • Volatile expanding agents include, for example, low molecular weight hydrocarbons such as ethane, ethylene, propane, propene, n-butane, isobutane, butene, isobutene, n-pentane, isopentane, neopentane, n-hexane, heptane, petroleum ether.
  • chlorofluorocarbons such as CCL 3 F, CCl 2 F 2 , CClF 3 , CClF 2 --CCl 2 F 2 ; tetraalkylsilanes such as tetramethylsilane, trimethylethylsilane, trimethylisopropylsilane and trimethyl-n-propylsilane; mentioned.
  • the volatile swelling agents may be used alone or in combination of two or more.
  • the thermally expandable fine particles preferably contain first thermally expandable fine particles having a triple expansion temperature of 100°C or less and second thermally expandable fine particles having a triple expansion temperature of more than 100°C.
  • first thermally expandable fine particles are thermally expanded first, and then the second thermally expandable fine particles are thermally expanded. can be done.
  • the cured product of the composition for temporarily fixing the thin glass which integrates the thin glasses, is gradually cured.
  • the thin glass can be easily peeled off from each other without damage while reducing the stress applied to the thin glass.
  • the triple expansion temperature of the first thermally expandable fine particles is 100°C or lower, preferably 99°C or lower, and more preferably 98°C or lower.
  • the triple expansion temperature of the first thermally expandable fine particles is 100° C. or lower, the thin glass layers can be separated from each other while reducing the amount of heat applied to the thin glass layers.
  • the triple expansion temperature of the first thermally expandable fine particles is preferably 80°C or higher, more preferably 85°C or higher, and more preferably 90°C or higher.
  • the triple expansion temperature of the first thermally expandable fine particles is 80° C. or more, the thin glass layers can be easily separated without damaging each other.
  • the triple expansion temperature of the second thermally expandable fine particles exceeds 100°C.
  • the triple expansion temperature of the second thermally expandable fine particles is preferably 101° C. or higher, more preferably 102° C. or higher, and even more preferably 103° C. or higher.
  • the triple expansion temperature of the second thermally expandable fine particles exceeds 100° C., the thin glass layers can be easily separated one by one while reducing the stress applied to the thin glass layers.
  • the triple expansion temperature of the second thermally expandable fine particles is preferably 120°C or lower, more preferably 115°C or lower, and more preferably 110°C or lower.
  • the triple expansion temperature of the second thermally expandable fine particles is 120° C. or lower, the thin glass layers can be separated from each other while reducing the amount of heat applied to the thin glass layers.
  • the triple expansion temperature of the thermally expandable fine particles refers to the temperature at which the volume of the thermally expandable fine particles, when heated and expanded, becomes three times the volume before expansion.
  • the radius D1 of the thermally expandable fine particles at the end of expansion is The temperature at which the radius D 0 of the thermally expandable fine particles is multiplied by the “cubic root of 3” (approximately 1.44 times) can be used as a guideline.
  • the radius of the thermally expandable fine particles means the radius of a true sphere having the same volume as the thermally expandable fine particles.
  • the temperature at which the thermally expandable fine particles are three-fold expanded depends on the softening temperature of the synthetic resin forming the hollow fine particles and the shell of the hollow fine particles.
  • the triple expansion temperature of the thermally expandable fine particles can be increased (lowered).
  • the triple expansion temperature of the thermally expandable fine particles can be increased (lowered).
  • the triple expansion temperature of the thermally expandable microparticles can be lowered (higher).
  • the triple expansion temperature of the thermally expandable fine particles can be increased (lowered).
  • the average particle size of the thermally expandable fine particles is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the average particle size of the thermally expandable fine particles is preferably 25 ⁇ m or less, more preferably 22 ⁇ m or less, more preferably 20 ⁇ m or less, and more preferably 18 ⁇ m or less.
  • the average particle size of the thermally expandable fine particles is 5 ⁇ m or more, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily separated one by one in a short time. .
  • the average particle size of the thermally expandable fine particles is 25 ⁇ m or less, the thin glass can be easily peeled off one by one while reducing the stress applied to the thin glass.
  • the average particle size of the thermally expandable fine particles refers to the 50% cumulative particle size in the volume-based particle size distribution according to the dynamic light scattering method.
  • the average particle size of the first thermally expandable fine particles is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the average particle size of the first thermally expandable microparticles is more preferably 25 ⁇ m or less, more preferably 22 ⁇ m or less, more preferably 20 ⁇ m or less, and more preferably 18 ⁇ m or less.
  • the average particle size of the first heat-expandable fine particles is 5 ⁇ m or more, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily separated one by one in a short time. can be done.
  • the average particle size of the first thermally expandable fine particles is 25 ⁇ m or less, the thin glass can be easily peeled off sheet by sheet while reducing the stress applied to the thin glass.
  • the average particle size of the second thermally expandable fine particles is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the average particle size of the second thermally expandable microparticles is more preferably 25 ⁇ m or less, more preferably 22 ⁇ m or less, more preferably 20 ⁇ m or less, and more preferably 18 ⁇ m or less.
  • the average particle diameter of the second thermally expandable fine particles is 5 ⁇ m or more, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily separated one by one in a short time. can be done.
  • the average particle diameter of the second thermally expandable fine particles is 25 ⁇ m or less, the thin glass can be easily peeled off one by one while reducing the stress applied to the thin glass.
  • the total content of the thermally expandable fine particles in the composition for temporarily fixing thin-layer glass is preferably 20 parts by mass or more, more preferably 25 parts by mass or more with respect to 100 parts by mass of the total content of the acrylic monofunctional monomer and the polyfunctional monomer. is more preferable, and 30 parts by mass or more is more preferable.
  • the total content of thermally expandable fine particles in the composition for temporarily fixing thin-layer glass is preferably 40 parts by mass or less, and 35 parts by mass or less with respect to 100 parts by mass of the total content of acrylic monofunctional monomers and polyfunctional monomers. is more preferred.
  • the adhesion strength of the cured composition for temporarily fixing the thin-layer glass that integrates the thin-layer glass is smoothly reduced, and the thin-layer glass is bonded. They can be easily separated from each other.
  • the total content of the thermally expandable fine particles is 40 parts by mass or less, the rapid expansion of the cured composition for temporarily fixing the thin glass, which integrates the thin glass, is suppressed, and the thin glass is unfavorable. The application of necessary stress can be reduced, and the thin glass layers can be peeled off from each other without damage.
  • the content of the first thermally expandable fine particles in the thermally expandable fine particles is preferably 30% by mass or more, and % by mass or more is more preferable, and 50% by mass or more is more preferable.
  • the content of the first thermally expandable fine particles in the thermally expandable fine particles is preferably 80% by mass or less, more preferably 70% by mass or less.
  • the thin glass layers can be easily separated from each other.
  • the content of the first heat-expandable fine particles in the heat-expandable fine particles is 80% by mass or less, rapid expansion of the hardened composition for temporarily fixing the thin-layer glass that integrates the thin-layer glasses is suppressed.
  • the application of unnecessary stress to the thin-layer glass can be reduced, and the thin-layer glass can be peeled off from each other without damage.
  • the content of the second heat-expandable fine particles in the heat-expandable fine particles is preferably 20% by mass or more, and 30% by mass. % or more by mass is more preferable.
  • the content of the second thermally expandable fine particles in the thermally expandable fine particles is preferably 70% by mass or less, more preferably 60% by mass or less, and more preferably 50% by mass or less.
  • the application of unnecessary stress to the thin-layer glass can be reduced, and the thin-layer glass can be peeled off from each other without damage.
  • the content of the second heat-expandable fine particles in the heat-expandable fine particles is 70% by mass or less, the adhesion strength of the cured composition for temporarily fixing the thin-layer glass, which integrates the thin-layer glasses, can be improved smoothly. By lowering it, the thin glass layers can be easily separated from each other.
  • the total content of the first heat-expandable fine particles and the second heat-expandable fine particles is more preferably 85% by mass or more, more preferably 90% by mass or more, more preferably 95% by mass or more, 100% by mass is more preferred.
  • the thin-layer glass temporary fixing composition contains a radical photopolymerization initiator having a molar extinction coefficient ⁇ at 400 nm of 100 L/(mol ⁇ cm) or more.
  • the molar extinction coefficient ⁇ of the radical photopolymerization initiator at 400 nm is preferably 1500 L/(mol ⁇ cm) or less, more preferably 1000 L/(mol ⁇ cm) or less.
  • the molar extinction coefficient ⁇ at 400 nm of the radical photopolymerization initiator is a value measured in the following manner.
  • An acetonitrile solution is prepared by dissolving a photoradical polymerization initiator in acetonitrile.
  • the prepared acetonitrile solution of a photoradical polymerization initiator is put into a cell having an optical path length B of 1 cm, and the absorbance A of the acetonitrile solution at 400 nm is measured using a spectrophotometer.
  • the concentration c (mol/L) of the photoradical polymerization initiator in the acetonitrile solution is adjusted so that the absorbance A of the acetonitrile solution is 0.3 to 2.0.
  • the molar extinction coefficient ⁇ is calculated by the following formula (Lambert-Beer law).
  • a device commercially available from Shimadzu Corporation under the trade name “UV-3600” can be used.
  • c Molar concentration (mol/L) of photoradical polymerization initiator in acetonitrile solution
  • a photoradical polymerization initiator generates radicals upon irradiation with curing light having a wavelength of 400 nm or more, and radically polymerizes monomers including acrylic monofunctional monomers and polyfunctional monomers.
  • the photoradical polymerization initiator can initiate radical polymerization of acrylic monofunctional monomers and polyfunctional monomers by irradiation with curing light having a wavelength of 400 nm or more.
  • the composition for temporary fixing of the thin glass interposed between the thin glasses can be reliably photocured, and a plurality of sheets of the thin glass can be easily cured through the cured composition for temporarily fixing the thin glass. In addition, they can be smoothly laminated and integrated and temporarily fixed.
  • a laminate is formed by laminating a plurality of sheets of thin glass via a composition for temporary fixing of thin glass, and the laminated body is formed between the thin glasses and is used for temporary fixing of thin glass.
  • the composition is irradiated with light to cure the multiple layers of the thin glass temporary fixing composition.
  • the thin-layer glass temporary fixing composition contains thermally expandable fine particles and is cloudy.
  • the thin-layer glass temporary fixing composition uses a photoradical polymerization initiator that generates radicals upon irradiation with curing light having a wavelength of 400 nm or more, and can radically polymerize acrylic monofunctional monomers and polyfunctional monomers. It is preferable to irradiate curing light having a wavelength of 400 nm or more as irradiation light for curing the thin layer glass temporary fixing composition. In this way, by using curing light with a wavelength of 400 nm or more as the irradiation light for curing the thin-layer glass temporary fixing composition, it is possible to prevent the thin-layer glass from being absorbed by the thin-layer glass.
  • the fixing composition is sufficiently permeable, and the multiple layers of the thin layer glass temporary fixing composition are configured to be fully cured by one irradiation of light.
  • the wavelength of curing light irradiated to generate radicals is preferably 500 nm or less.
  • the wavelength of the curing light is 500 nm or less, the composition for thin layer glass temporary fixing is excellent in photocurability.
  • the photoradical polymerization initiator having a molar extinction coefficient ⁇ of 100 L/(mol ⁇ cm) or more at 400 nm is not particularly limited.
  • the photo-radical polymerization initiator for example, an acylphosphine oxide-based photo-radical polymerization initiator, a thioxanthone-based photo-radical polymerization initiator, and a triazine-based photo-radical polymerization initiator are preferable.
  • Acylphosphine oxide-based radical photopolymerization initiators are more preferable because the workability of the thin-layer glass temporary fixing composition is excellent and the light-curing property of the thin-layer glass temporary fixing composition is excellent.
  • acylphosphine oxide photoradical polymerization initiators include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide.
  • thioxanthone photoradical polymerization initiators examples include 2,4-diethylthioxanthone.
  • Triazine photoradical polymerization initiators include, for example, 2-[2-(furan-2-yl)vinyl]-4,6-bis(trichloromethyl)-1,3,5-triazine, 2-[2- (5-methylfuran-2-yl)vinyl]-4,6-bis(trichloromethyl)-1,3,5-triazine, 2-[(4-methoxyphenyl)vinyl]-4,6-bis(trichloro methyl)-1,3,5-triazine, 2-[(3,4-dimethoxyphenyl)vinyl]-4,6-bis(trichloromethyl)-1,3,5-triazine and the like.
  • the content of the photoradical polymerization initiator having a molar extinction coefficient ⁇ at 400 nm of 100 L/(mol cm) or more is the total content of the acrylic monofunctional monomer and the polyfunctional monomer. It is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, and more preferably 0.3 parts by mass or more with respect to 100 parts by mass.
  • the content of the photoradical polymerization initiator having a molar extinction coefficient ⁇ at 400 nm of 100 L/(mol cm) or more is the total content of the acrylic monofunctional monomer and the polyfunctional monomer.
  • the composition for temporarily fixing a thin layer glass has excellent photocurability.
  • the content of the photoradical polymerization initiator having a molar extinction coefficient ⁇ at 400 nm of 100 L/(mol ⁇ cm) or more is 0.1 parts by mass or more, the composition for temporarily fixing a thin layer glass has excellent photocurability.
  • the composition for temporarily fixing a thin layer glass has excellent photocurability. ing.
  • the thin-layer glass temporary fixing composition contains thixotropic agents, urethane acrylates, acrylic polymers, adhesion-imparting resins, plasticizers, non-thermally expansible fine particles, dyes, pigments, and flame retardants, as long as they do not interfere with the physical properties of the composition. , a silane coupling agent, a surfactant, and the like.
  • composition for temporary fixing of thin-layer glass The method for producing the thin-layer glass temporary fixing composition is not particularly limited. ) It can be produced by uniformly mixing the photoradical polymerization initiators described above in a general-purpose manner, preferably under reduced pressure.
  • the composition for temporary fixing of the thin glass is used for temporarily fixing the thin glass by superimposing the thin glass in the thickness direction thereof in a laminated state during processing of the thin glass.
  • the thin-layer glass temporary fixing composition is suitably used for processing thin-layer glass, and can be particularly suitably used for processing thin-layer glass having a thickness of 200 ⁇ m or less.
  • the thickness of the thin layer glass is preferably 30 ⁇ m or more.
  • a laminate is produced by laminating a plurality of sheets of thin glass in the thickness direction with a thin glass temporary fixing composition interposed between the opposing surfaces of the thin glasses (lamination step ).
  • the thin-layer glass temporary fixing composition is a one-liquid type, it is possible to easily produce a laminate without the need for complicated work such as mixing two liquids when producing a laminate.
  • the entire obtained laminate is irradiated with curing light having a wavelength of 400 nm or more from the lamination direction of the laminate (thickness direction of the thin layer glass), and a plurality of curing light interposed between the thin layers of glass in the laminate is irradiated.
  • All the layers of the thin glass temporary fixing composition are cured to produce a cured product (curing step).
  • the curing light may contain light having a wavelength of 400 nm or more.
  • the thin glass sheets are temporarily fixed to each other by this cured product to produce a cured body in which a plurality of thin glass sheets are laminated and integrated by the cured product of the composition for temporary fixing of the thin glass.
  • the peak wavelength of the curing light is preferably 500 nm or less because the composition for temporarily fixing a thin layer glass has excellent curability.
  • Curing light is irradiated in the stacking direction (thickness direction) of the laminate. Even a thin-layer glass temporary fixing composition in the form of a thin-layer glass is sufficiently permeable.
  • the thin-layer glass temporary fixing composition contains a photoradical polymerization initiator capable of radically polymerizing acrylic monofunctional monomers and polyfunctional monomers by generating radicals by absorbing light having a wavelength of 400 nm or more. This photo-radical polymerization initiator effectively absorbs the curing light to facilitate the radical polymerization of the acrylic monofunctional monomer and polyfunctional monomer.
  • irradiation of the laminate with curing light does not need to be performed for each thin layer glass temporary fixing composition that exists in a plurality of layers.
  • all of the multiple layers of the composition for temporary fixing of the thin-layer glass interposed between the thin-layer glasses are irradiated with the curing light to surely cure the thin-layer glass in a short period of time.
  • a cured body can be manufactured by temporarily fixing and integrating them.
  • the thin glass layers are laminated and integrated by the cured product of the thin glass temporary fixing composition, and the overall mechanical strength is excellent. can be easily performed without damage (processing step).
  • thin layer glass can be obtained one by one (peeling step).
  • the second thermally expandable fine particles are added after or during the first thermal expansion of the first thermally expandable fine particles.
  • Thermally expands, the first thermally expandable fine particles and the second thermally expandable fine particles thermally expand with a time lag, gradually thermally expand the cured product of the composition for temporarily fixing a thin layer glass, and gradually reduce the adhesive strength. be able to. Therefore, application of excessive stress to the thin-layer glass can be reduced, and the thin-layer glass can be easily separated by peeling one sheet at a time without damage.
  • composition for temporarily fixing thin-layer glass has the above-described structure, adhesive residue is hardly left on the surface of the thin-layer glass, and the quality of the thin-layer glass can be ensured.
  • the method for heating the cured body is not particularly limited, and for example, the cured body is immersed in warm water, and the cured body is brought into contact with warm water to obtain a cured body (a cured body of a thin-layer glass temporary fixing composition ), and the like.
  • the temperature of the hot water is preferably between the triple expansion temperature of the first thermally expandable fine particles and the triple expansion temperature of the second thermally expandable fine particles.
  • the first heat-expandable fine particles and the second heat-expandable fine particles thermally expand with a time difference, and the thin-layer glass is separated from each other without damage by reducing the adhesiveness of the cured product without applying almost any stress to the thin-layer glass. can do.
  • composition for temporarily fixing thin-layer glass of the present invention has the structure as described above, it is excellent in photocurability and can temporarily fix thin-layer glasses to each other regardless of the stress during processing. After processing the layer glass, the thin layer glasses can be easily separated in a short time without damage.
  • FIG. 4 is a cross-sectional view showing a procedure for measuring adhesive strength; It is the top view which showed the measuring point of adhesive strength.
  • [Acrylic Monofunctional Monomer] ⁇ Isobornyl methacrylate ⁇ Isodecyl methacrylate ⁇ 2-Hydroxyethyl methacrylate ⁇ 2-Acryloyloxyethyl hexahydrophthalic acid (trade name “Light acrylate HOA-HH” manufactured by Kyoeisha Chemical Co., Ltd.)
  • ⁇ Acrylic monofunctional monomer having a polyethylene oxide having a hydroxyl group at the end POE acrylic monofunctional monomer 1, trade name “Blenmer AE-400” manufactured by NOF Corporation
  • POE acrylic monofunctional monomer 2 trade name “Blenmer AE-200” manufactured by NOF Corporation
  • Photoradical polymerization initiator 1 [2,4,6-trimethylbenzoyldiphenylphosphine oxide, IGM Resins B.I. V. Company product name “Omnirad TPO H”, molar extinction coefficient ⁇ at 400 nm: 349 L / (mol cm)]
  • Photoradical polymerization initiator 2 [1-hydroxycyclohexyl-phenylketone, IGM Resins B.I. V. Company trade name “Omnirad 184”, molar extinction coefficient ⁇ at 400 nm: 0 L / (mol cm)]
  • the molar extinction coefficient ⁇ of photoradical polymerization initiator 1 was measured in the following manner. 9.7 mg (2.78 ⁇ 10 ⁇ 5 mol) of radical photopolymerization initiator 1 was weighed and dissolved in 9.7547 g (12.506 mL) of acetonitrile (density: 0.78 g/mL). The concentration c of photoradical polymerization initiator 1 was 0.00233 (mol/L). The absorbance A at 400 nm of the acetonitrile solution was 0.754. As a result of calculating the molar extinction coefficient ⁇ using the above formula (Lambert-Beer's law), the molar extinction coefficient ⁇ of the radical photopolymerization initiator 1 was 349 L/(mol ⁇ cm).
  • the mixture in the reaction vessel is stirred at a rotation speed of 1000 rpm using a stirrer (trade name "BL-300D” manufactured by AS ONE, stirring blade: disper blade used), and a thixotropic mixture is added to the mixture.
  • a stirrer trade name "BL-300D” manufactured by AS ONE, stirring blade: disper blade used
  • a predetermined amount of hydrophobic fumed silica as an agent shown in Table 1 was supplied and stirred for 30 minutes to disperse the thixotropic agent in the mixture.
  • the mixed liquid in the reaction container is supplied to a decompressible decompression container (trade name "Vacuum Oven: VOS-310C” manufactured by Tokyo Rika Kikai Co., Ltd.) and subjected to decompression treatment at 25°C for 30 minutes (vacuum pump : DTC-22 (manufactured by ULVAC KIKO)) to degas the mixed liquid.
  • a decompressible decompression container trade name "Vacuum Oven: VOS-310C” manufactured by Tokyo Rika Kikai Co., Ltd.
  • the first heat-expandable fine particles, the second heat-expandable fine particles, and a photoradical polymerization initiator are supplied to the mixed liquid, and the first heat-expandable fine particles and the second heat-expandable fine particles are uniformly dispersed and The mixture was mixed until the radical photopolymerization initiator was completely dissolved in the mixed liquid to obtain a composition for temporary fixing of thin layer glass.
  • the obtained composition for temporary fixing of thin-layer glass was an opaque white liquid.
  • a lower protective glass plate having a length of 100 mm, a width of 50 mm, and a thickness of 0.5 mm was prepared.
  • a thin-layer glass temporary fixing composition was placed on the central portion of the protective glass plate.
  • a thin layer glass having a length of 100 mm, a width of 50 mm, and a thickness of 0.1 mm is placed on the thin layer glass temporary fixing composition, and a thin layer is placed between the opposing surfaces of the thin layer glass and the lower protective glass plate facing it.
  • the composition for temporary fixing of layer glass was completely filled.
  • the thickness of the thin-layer glass temporary fixing composition was 50 ⁇ m.
  • a thin-layer glass temporary fixing composition was placed on the center of the upper surface of the thin-layer glass.
  • a thin layer glass having a length of 100 mm, a width of 50 mm, and a thickness of 0.1 mm is placed on the thin layer glass temporary fixing composition, and the thin layer glass temporary fixing composition is placed between the opposing surfaces of the two thin layer glasses. It was left completely filled.
  • the thickness of the thin-layer glass temporary fixing composition was 50 ⁇ m.
  • the above procedure of stacking the thin-layer glasses was repeated, and five thin-layer glasses were laminated on the lower protective glass plate via the composition for temporary fixing of the thin-layer glass to produce a laminate. Furthermore, the composition for temporary fixing of thin glass was placed on the center of the top surface of the uppermost thin glass among the five laminated thin glasses. An upper protective glass plate having a length of 100 mm, a width of 50 mm, and a thickness of 0.5 mm is placed on the thin-layer glass temporary fixing composition, and the thin-layer glass is placed between the facing surfaces of the upper protective glass plate facing the thin-layer glass. The composition for temporary fixing of thin layer glass was completely filled. The thickness of the thin-layer glass temporary fixing composition was 50 ⁇ m.
  • the laminate was irradiated with visible light having a peak wavelength of 420 nm at an illuminance of 2 mW / cm for 10 minutes to form a thin layer.
  • a cured body was produced by curing the composition for glass temporary fixing.
  • the visible light lamp was placed vertically above the laminate and at a height of 80 mm from the mounting surface on which the lower protective glass plate was mounted.
  • the uppermost layer of thin glass in the obtained cured product is touched with a fingertip and moved horizontally to determine whether or not the thin layers of glass are integrated with each other by the cured product of the composition for temporary fixing of thin layer glass. confirmed.
  • one glass plate 1 is placed on a horizontal mounting surface 3, and a long side of the other glass plate 2 is placed on the edge of the long side of the glass plate 1. were overlapped.
  • the overlapping width between the edge portions of the two sheet glasses 1 and 2 was 12.5 mm.
  • a thin-layer glass temporary fixing composition 5 is interposed between the edges of the long sides of the two plate glasses 1 and 2, and the thin-layer glass temporary fixing composition 5 is applied to the two plate glasses 1 and 2. 2, the entire length in the horizontal direction between the facing surfaces of the end edges on the long sides was filled.
  • the thin layer glass temporary fixing composition 5 had a length of 25 mm, a width of 12.5 mm, and a thickness of 0.1 mm.
  • a support plate glass 4 was arranged in a gap between the plate glass superimposed on the upper side and the mounting surface, and the upper plate glass 2 was supported by the support plate glass 4 .
  • a visible light lamp (manufactured by Sekisui Fuller Co., Ltd., trade name “FL-V”) was used on the thin-layer glass temporary fixing composition 5 interposed in the overlapping portion of the two sheet glasses 1 and 2, and the peak wavelength was 420 nm.
  • the composition 5 for temporary fixing of the thin layer glass was cured by irradiating it with visible light at an illuminance of 2 mW/cm 2 for 10 minutes to prepare a cured body.
  • the visible light lamp was placed vertically above the overlapped portion of the two plate glasses and at a height of 80 mm from the mounting surface.
  • the resulting hardened body is subjected to a three-point bending test using a desktop precision universal testing machine (manufactured by Shimadzu Corporation, trade name "Autograph AGS-100NX”), and two sheets of glass are superimposed at an indentation speed of 10 mm / min.
  • the maximum strength obtained by pressing the part was used as the measured strength (N), the peel strength was calculated based on the following formula, and the failure mode was evaluated according to the following criteria.
  • Comparative Example 2 could not be evaluated because the thin-layer glass temporary fixing composition did not harden.
  • Adhesive residue The area of the adhesive residue remaining on both sides of each thin-layer glass was measured, and the total area S1 of the adhesive residue of the five thin-layer glasses was calculated. The total area of both surfaces of the five sheets of thin glass was defined as S 0 .
  • A The thermally expandable fine particles were uniformly dispersed in the composition for temporarily fixing the thin layer glass, and no separation or sedimentation of the thermally expandable fine particles could be confirmed.
  • B In the composition for temporarily fixing thin-layer glass, the thermally expandable fine particles are separated or sedimented, and the thermally expandable fine particles cannot be dispersed in less than 50% by volume of the composition for temporarily fixing thin-layer glass. there was a spot. Re-dispersion was possible by stirring and shaking the thin layer glass temporary fixing composition.
  • C In the composition for thin-layer glass temporary fixing, the thermally expandable fine particles are separated or sedimented, and the thermally expandable fine particles cannot be dispersed in 50% by volume or more of the composition for thin-layer glass temporary fixing. there was a spot. Even if the thin-layer glass temporary fixing composition was stirred and shaken, the thermally expandable fine particles could not be redispersed.
  • D Thermally expandable fine particles were not contained in the thin-layer glass temporary fixing composition, and the storage stability could not be evaluated.
  • composition for temporarily fixing thin-layer glass of the present invention can temporarily fix thin-layer glasses and process the thin-layer glasses without causing separation between the thin-layer glasses.
  • the thin-layer glass temporary fixing composition of the present invention can easily separate the thin-layer glasses in a short time without damaging them after processing the thin-layer glasses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

The present invention provides a single component composition for temporary fixing of thin layer glass. The composition exhibits excellent photocuring properties and enables thin layer glasses to be strongly temporarily fixed to each other while enabling the thin layer glasses to be easily peeled from each other in a short time at the time of peeling. This composition for temporary fixing of thin layer glass contains a monofunctional acrylic monomer, a polyfunctional monomer, thermally expandable fine particles and a radical photopolymerization initiator having a molar absorption coefficient ε of 100 L/(mol·cm) or more at a wavelength of 400 nm, exhibits excellent photocuring properties, and enables thin layer glasses to be temporarily fixed to each other regardless of stress at the time of processing while enabling the thin layer glasses to be easily peeled from each other in a short time with no damage following processing of the thin layer glasses.

Description

薄層ガラス仮固定用組成物及び薄層ガラスの加工方法Thin-layer glass temporary fixing composition and thin-layer glass processing method
 本発明は、薄層ガラス仮固定用組成物及び薄層ガラスの加工方法に関する。 The present invention relates to a thin-layer glass temporary fixing composition and a thin-layer glass processing method.
 スマートフォンやタブレット端末などの携帯用電子機器や太陽電池用ガラス基板などにおいて薄層ガラスが用いられている。薄層ガラスは、一枚のみでは厚みが極めて薄く強度が低いことから、仮固定剤を用いて複数枚の薄層ガラスを多層に積層させて積層体を形成し、積層体全体としての機械強度を向上させ、積層体とされた薄層ガラスを加工することが行われている。 Thin-layer glass is used in portable electronic devices such as smartphones and tablet terminals, and glass substrates for solar cells. A single sheet of thin glass is extremely thin and weak in strength. is being improved, and the laminated thin glass is processed.
 そして、薄層ガラスの加工が完了した後、積層状態の薄層ガラス同士を一枚ずつに剥離させるため、仮固定剤は、積層状態の薄層ガラス同士を加工後に容易に剥離可能な性能も要求される。 After the processing of the thin-layer glass is completed, the laminated thin-layer glass is peeled off one by one. requested.
 仮固定剤としては、特許文献1には、(1)(1-1)イミド(メタ)アクリレート及び/又は環状トリメチロールプロパンホルマール(メタ)アクリレート、(1-2)ウレタン(メタ)アクリレート、(1-3)(1-2)以外の多官能(メタ)アクリレート、(1-4)アルキル(メタ)アクリレートを含有する重合性ビニル誘導体、(2)ラジカル重合開始剤、(3)有機系熱膨張性粒子、(4)粒状物質を含有する組成物であり、(1)重合性ビニル誘導体100質量部中、(1-4)アルキル(メタ)アクリレートを3~20質量部含有する組成物が開示されている。 Temporary fixing agents include (1) (1-1) imide (meth)acrylate and/or cyclic trimethylolpropane formal (meth)acrylate, (1-2) urethane (meth)acrylate, ( 1-3) polyfunctional (meth)acrylate other than (1-2), (1-4) polymerizable vinyl derivative containing alkyl (meth)acrylate, (2) radical polymerization initiator, (3) organic heat A composition containing expandable particles and (4) a particulate material, wherein (1) a composition containing 3 to 20 parts by mass of (1-4) an alkyl (meth)acrylate in 100 parts by mass of a polymerizable vinyl derivative. disclosed.
 又、特許文献2には、(1)(1-1)イミド(メタ)アクリレート、(1-2)重量平均分子量が1,000~34,000のポリエーテル系ウレタン(メタ)アクリレート、(1-3)(1-2)以外の多官能(メタ)アクリレートを含有する重合性ビニル誘導体、(2)ラジカル重合開始剤、(3)有機系熱膨張性粒子、(4)粒状物質を含有する薄厚基板用組成物が開示されている。 Further, in Patent Document 2, (1) (1-1) imide (meth)acrylate, (1-2) polyether-based urethane (meth)acrylate having a weight average molecular weight of 1,000 to 34,000, (1 -3) Polymerizable vinyl derivative containing polyfunctional (meth)acrylate other than (1-2), (2) radical polymerization initiator, (3) organic thermally expandable particles, and (4) particulate matter A composition for thin substrates is disclosed.
特開2017-125178号公報JP 2017-125178 A 特開2017-179125号公報JP 2017-179125 A
 しかしながら、特許文献1の組成物は、熱ラジカル重合開始剤を含む第一剤と、還元剤を含む第二剤との二液型の組成物であり、使用にあたって第一剤と第二剤の混合が必要であり、作業が煩雑であると共に養生に長時間を要するという問題点を有している。 However, the composition of Patent Document 1 is a two-part composition comprising a first agent containing a thermal radical polymerization initiator and a second agent containing a reducing agent. Mixing is required, and there are problems that the work is complicated and requires a long time for curing.
 又、特許文献2の薄膜基板用組成物は、光硬化性が低く、薄層ガラスを積層するごとに薄膜基板用組成物に紫外線を照射する必要があり、作業が煩雑であるという問題点を有している。 Moreover, the composition for a thin film substrate of Patent Document 2 has a low photocuring property, and it is necessary to irradiate the composition for a thin film substrate with ultraviolet rays each time a thin glass layer is laminated. have.
 本発明は、一液型の薄層ガラス仮固定用組成物であって光硬化性に優れており、薄層ガラス同士を強固に仮固定できる一方、薄層ガラス同士を剥離する際には短時間にて容易に剥離することができる薄層ガラス仮固定用組成物を提供する。 INDUSTRIAL APPLICABILITY The present invention is a one-liquid type composition for temporary fixing of thin glass, which is excellent in photocurability and can firmly temporarily fix thin glass to each other. To provide a composition for temporarily fixing a thin layer glass which can be easily peeled off in time.
 本発明の薄層ガラス仮固定用組成物は、アクリル系単官能モノマー、多官能モノマー、熱膨張性微粒子、及び、400nmにおけるモル吸光係数εが100L/(mol・cm)以上である光ラジカル重合開始剤を含む。 The composition for temporarily fixing a thin layer glass of the present invention comprises an acrylic monofunctional monomer, a polyfunctional monomer, thermally expandable fine particles, and a photoradical polymerized polymer having a molar extinction coefficient ε at 400 nm of 100 L/(mol·cm) or more. Contains initiator.
[アクリル系単官能モノマー]
 薄層ガラス仮固定用組成物は、アクリル系単官能モノマーを含有している。アクリル系単官能モノマーとしては、光硬化性に優れているので、(メタ)アクリレートが好ましい。(メタ)アクリレートとしては、特に限定されず、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)メタクリレート、ステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート;イソボルニル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、トリシクロノニル(メタ)アクリレート、トリシクロデシル(メタ)アクリレート、テトラシクロデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、tert-ブチルシクロヘキシル(メタ)アクリレート、3,5,5-トリメチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、アダマンチル(メタ)アクリレートなどの脂環式骨格を有する(メタ)アクリレート;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートなどの芳香環を有する(メタ)アクリレートなどが挙げられる。なお、(メタ)アクリレートは、アクリレート又はメタクリレートを意味する。アクリル系単官能モノマーは、単独で用いられても二種以上が併用されてもよい。
[Acrylic Monofunctional Monomer]
The composition for thin-layer glass temporary fixing contains the acrylic monofunctional monomer. As the acrylic monofunctional monomer, (meth)acrylate is preferable because of its excellent photocurability. The (meth)acrylate is not particularly limited, and examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, sec- Butyl (meth)acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, Alkyl (meth)acrylates such as n-decyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)methacrylate, stearyl (meth)acrylate; isobornyl (meth)acrylate, norbornyl (meth)acrylate, tricyclononyl (meth)acrylate; ) acrylate, tricyclodecyl (meth)acrylate, tetracyclodecyl (meth)acrylate, cyclohexyl (meth)acrylate, tert-butylcyclohexyl (meth)acrylate, 3,5,5-trimethylcyclohexyl (meth)acrylate, dicyclopenta (meth)acrylates having an alicyclic skeleton such as nyl (meth)acrylate, dicyclopentenyl (meth)acrylate and adamantyl (meth)acrylate; having aromatic rings such as phenyl (meth)acrylate and benzyl (meth)acrylate ( meth) acrylate and the like. (Meth)acrylate means acrylate or methacrylate. The acrylic monofunctional monomers may be used alone or in combination of two or more.
 本発明において、アクリル系単官能モノマーとは、アクリロイル基 [CH2=CHCO-]又はメタクリロイル基[CH2=C(CH3)CO-]を分子内に1個のみ有するモノマーをいう。 In the present invention, the acrylic monofunctional monomer refers to a monomer having only one acryloyl group [CH 2 =CHCO-] or methacryloyl group [CH 2 =C(CH 3 )CO-] in the molecule.
 アクリル系単官能モノマーは、薄層ガラス仮固定用組成物を介して仮固定された薄層ガラス同士を短時間にて容易に一枚ずつに剥離することができるので、アルキル(メタ)アクリレートを含むことが好ましい。なお、アルキル基とは、脂肪族飽和炭化水素から水素原子1個を除いた残りの原子団をいう。アルキル基の水素は、他の原子又は原子団によって置換されない。アルキル(メタ)アクリレートは、後述する、末端にヒドロキシ基を有するポリエチレンオキサイド[-(O-CH2CH2)n-OH]を分子内に有しないことが好ましい。 Since the acrylic monofunctional monomer can easily separate the thin glass sheets temporarily fixed via the thin glass temporary fixing composition one by one in a short time, the alkyl (meth)acrylate is used. preferably included. The alkyl group is an atomic group remaining after removing one hydrogen atom from an aliphatic saturated hydrocarbon. Hydrogens of alkyl groups are not replaced by other atoms or groups of atoms. The alkyl (meth)acrylate preferably does not have polyethylene oxide [--(O--CH 2 CH 2 )n--OH] having a terminal hydroxy group, which will be described later, in the molecule.
 アルキル(メタ)アクリレートのアルキル基の炭素数は、1以上が好ましく、4以上がより好ましく、8以上がより好ましい。アルキル(メタ)アクリレートのアルキル基の炭素数は、22以下が好ましく、18以下がより好ましく、14以下がより好ましい。アルキル基の炭素数が1以上であると、薄層ガラス仮固定用組成物を介して仮固定された薄層ガラス同士を短時間にて容易に一枚ずつに剥離することができ好ましい。アルキル基の炭素数が22以下であると、薄層ガラス仮固定用組成物が光硬化性に優れる。 The number of carbon atoms in the alkyl group of the alkyl (meth)acrylate is preferably 1 or more, more preferably 4 or more, and more preferably 8 or more. The number of carbon atoms in the alkyl group of the alkyl (meth)acrylate is preferably 22 or less, more preferably 18 or less, and even more preferably 14 or less. When the number of carbon atoms in the alkyl group is 1 or more, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily separated one by one in a short time, which is preferable. When the number of carbon atoms in the alkyl group is 22 or less, the composition for thin-layer glass temporary fixing is excellent in photocurability.
 アクリル系単官能モノマー中におけるアルキル(メタ)アクリレートの含有量は、20質量%以上が好ましく、30質量%以上がより好ましく、35質量%以上がより好ましく、40質量%以上がより好ましい。アクリル系単官能モノマー中におけるアルキル(メタ)アクリレートの含有量は、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下がより好ましく、50質量%以下がより好ましい。アルキル(メタ)アクリレートの含有量が20質量%以上であると、薄層ガラス仮固定用組成物を介して仮固定された薄層ガラス同士を短時間にて容易に一枚ずつに剥離することができ好ましい。アルキル(メタ)アクリレートの含有量が80質量%以下であると、薄層ガラス同士を強固に仮固定できるので好ましい。 The content of the alkyl (meth)acrylate in the acrylic monofunctional monomer is preferably 20% by mass or more, more preferably 30% by mass or more, more preferably 35% by mass or more, and more preferably 40% by mass or more. The content of the alkyl (meth)acrylate in the acrylic monofunctional monomer is preferably 80% by mass or less, more preferably 70% by mass or less, more preferably 60% by mass or less, and more preferably 50% by mass or less. When the content of the alkyl (meth)acrylate is 20% by mass or more, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily separated one by one in a short time. is possible and preferable. When the content of the alkyl (meth)acrylate is 80% by mass or less, the thin glass layers can be firmly temporarily fixed to each other, which is preferable.
 アクリル系単官能モノマーは、薄層ガラス同士を強固に仮固定することができるので、ヒドロキシアルキル(メタ)アクリレートを含むことが好ましい。ヒドロキシアルキル(メタ)アクリレートは、アルキル(メタ)アクリレートのアルキル基の1個の水素がヒドロキシ基(-OH)で置換された(メタ)アクリレートをいう。なお、ヒドロキシアルキル(メタ)アクリレートは、アルキル基の水素がヒドロキシ基で置換されているため、アルキル(メタ)アクリレートの範疇には含まれない。 It is preferable that the acrylic monofunctional monomer contains hydroxyalkyl (meth)acrylate because it can firmly temporarily fix the thin glass layers together. Hydroxyalkyl (meth)acrylate refers to (meth)acrylate in which one hydrogen of the alkyl group of alkyl (meth)acrylate is substituted with a hydroxy group (--OH). Hydroxyalkyl (meth)acrylates are not included in the category of alkyl (meth)acrylates because the hydrogen of the alkyl group is substituted with a hydroxy group.
 ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、5-ヒドロキシペンチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、3-ヒドロキシ-3-メチルブチル(メタ)アクリレートなどが挙げられ、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートが好ましく、2-ヒドロキシエチル(メタ)アクリレートがより好ましい。 Hydroxyalkyl (meth)acrylates include, for example, 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2-hydroxy butyl (meth) acrylate, 5-hydroxypentyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 3-hydroxy-3-methylbutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3 -Hydroxypropyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate are preferred, and 2-hydroxyethyl (meth)acrylate is more preferred.
 ヒドロキシアルキル(メタ)アクリレートにおいて、ヒドロキシ基が結合しているアルキル基の炭素数は、2以上が好ましい。ヒドロキシアルキル(メタ)アクリレートにおいて、ヒドロキシ基が結合しているアルキル基の炭素数は、4以下が好ましい。ヒドロキシ基が結合しているアルキル基の炭素数が、2以上であると、薄層ガラス同士を強固に仮固定できるので好ましい。ヒドロキシ基が結合しているアルキル基の炭素数が、4以下であると、薄層ガラス同士を強固に仮固定できるので好ましい。 In the hydroxyalkyl (meth)acrylate, the number of carbon atoms in the alkyl group to which the hydroxy group is bonded is preferably 2 or more. In the hydroxyalkyl (meth)acrylate, the number of carbon atoms in the alkyl group to which the hydroxy group is bonded is preferably 4 or less. When the number of carbon atoms in the alkyl group to which the hydroxy group is bonded is 2 or more, the thin glass layers can be firmly temporarily fixed together, which is preferable. When the number of carbon atoms in the alkyl group to which the hydroxy group is bonded is 4 or less, the thin glass layers can be firmly temporarily fixed to each other, which is preferable.
 アクリル系単官能モノマー中におけるヒドロキシアルキル(メタ)アクリレートの含有量は、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がより好ましい。アクリル系単官能モノマー中におけるヒドロキシアルキル(メタ)アクリレートの含有量は、15質量%以下が好ましく、12質量%以下がより好ましく、10質量%以下がより好ましい。ヒドロキシアルキル(メタ)アクリレートの含有量が1質量%以上であると、薄層ガラス同士を強固に仮固定できるので好ましい。ヒドロキシアルキル(メタ)アクリレートの含有量が15質量%以下であると、薄層ガラス仮固定用組成物を介して仮固定された薄層ガラス同士を短時間にて容易に一枚ずつに剥離することができ好ましい。 The content of hydroxyalkyl (meth)acrylate in the acrylic monofunctional monomer is preferably 1% by mass or more, more preferably 3% by mass or more, and more preferably 5% by mass or more. The content of hydroxyalkyl (meth)acrylate in the acrylic monofunctional monomer is preferably 15% by mass or less, more preferably 12% by mass or less, and more preferably 10% by mass or less. When the content of the hydroxyalkyl (meth)acrylate is 1% by mass or more, the thin glass layers can be firmly temporarily fixed to each other, which is preferable. When the content of the hydroxyalkyl (meth)acrylate is 15% by mass or less, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily separated one by one in a short time. It is possible and preferable.
 アクリル系単官能モノマーは、薄層ガラス同士を強固に仮固定できるので、脂環式骨格を有する(メタ)アクリレートを含むことが好ましく、多環の脂環式骨格を有する(メタ)アクリレートを含むことがより好ましい。脂環式骨格を有する(メタ)アクリレートは、アルキル(メタ)アクリレートのアルキル基が、脂環式骨格を有する原子団で置換された(メタ)アクリレートをいう。 Since the acrylic monofunctional monomer can firmly temporarily fix the thin glass layers, it preferably contains a (meth)acrylate having an alicyclic skeleton, and includes a (meth)acrylate having a polycyclic alicyclic skeleton. is more preferable. A (meth)acrylate having an alicyclic skeleton refers to a (meth)acrylate in which the alkyl group of an alkyl (meth)acrylate is substituted with an atomic group having an alicyclic skeleton.
 脂環式骨格とは、芳香環構造を含まない炭化水素基であり、単環の脂環式骨格又は多環の脂環式骨格を含む。単環の脂環式骨格の基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。また、多環の脂環式骨格の基としては、ノルボルニル基、イソボルニル基、トリシクロノニル基、トリシクロデシル基、テトラシクロドデシル基などが挙げられる。 An alicyclic skeleton is a hydrocarbon group that does not contain an aromatic ring structure, and includes a monocyclic alicyclic skeleton or a polycyclic alicyclic skeleton. Examples of the monocyclic alicyclic skeleton group include a cyclopentyl group and a cyclohexyl group. Examples of polycyclic alicyclic skeleton groups include a norbornyl group, an isobornyl group, a tricyclononyl group, a tricyclodecyl group, and a tetracyclododecyl group.
 アクリル系単官能モノマー中における脂環式骨格を有する(メタ)アクリレートの含有量は、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がより好ましい。アクリル系単官能モノマー中における脂環式骨格を有する(メタ)アクリレートの含有量は、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がより好ましい。脂環式骨格を有する(メタ)アクリレートの含有量が5質量%以上であると、薄層ガラス同士を強固に仮固定でき好ましい。脂環式骨格を有する(メタ)アクリレートの含有量が50質量%以下であると、薄層ガラス仮固定用組成物を介して仮固定された薄層ガラス同士を短時間にて容易に一枚ずつに剥離することができ好ましい。 The content of (meth)acrylate having an alicyclic skeleton in the acrylic monofunctional monomer is preferably 5% by mass or more, more preferably 10% by mass or more, and more preferably 15% by mass or more. The content of (meth)acrylate having an alicyclic skeleton in the acrylic monofunctional monomer is preferably 50% by mass or less, more preferably 40% by mass or less, and more preferably 30% by mass or less. It is preferable that the content of the (meth)acrylate having an alicyclic skeleton is 5% by mass or more because the thin glass layers can be firmly temporarily fixed to each other. When the content of the (meth)acrylate having an alicyclic skeleton is 50% by mass or less, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily formed into one sheet in a short time. It is preferable because it can be peeled off one by one.
 アクリル系単官能モノマーは、末端にヒドロキシ基を有するポリエチレンオキサイドを有するアクリル系単官能モノマーを含むことが好ましい。末端にヒドロキシ基を有するポリエチレンオキサイドを有するアクリル系単官能モノマーは、分子内に、末端にヒドロキシ基を有するポリエチレンオキサイド[-(O-CH2CH2)n-OH]を有している。nは、繰り返し単位であって自然数である。nは、薄層ガラス仮固定用組成物が光硬化性に優れ、薄層ガラス同士を強固に仮固定することができるので、2~20が好ましい。 The acrylic monofunctional monomer preferably contains an acrylic monofunctional monomer having polyethylene oxide with a terminal hydroxy group. An acrylic monofunctional monomer having polyethylene oxide having a terminal hydroxy group has polyethylene oxide [--(O--CH 2 CH 2 )n--OH] having a terminal hydroxy group in the molecule. n is a repeating unit and is a natural number. n is preferably 2 to 20 because the composition for temporarily fixing the thin glass has excellent photocurability and can firmly temporarily fix the thin glasses.
 アクリル系単官能モノマーが、末端にヒドロキシ基を有するポリオキシエチレンオキサイドを有するアクリル系単官能モノマーを含むと、薄層ガラス仮固定用組成物中における熱膨張性微粒子の分散性を向上させることができ、薄層ガラス仮固定用組成物の貯蔵安定性が向上する。更に、薄層ガラス仮固定用組成物中に、末端にヒドロキシ基を有するポリエチレンオキサイドを有するアクリル系単官能モノマーを含有させることによって、薄層ガラス同士を強固に仮固定することができ好ましい。更に、末端にヒドロキシ基を有するポリオキシエチレンオキサイドに起因して薄層ガラスに対する接着性を向上させることができる。 When the acrylic monofunctional monomer contains an acrylic monofunctional monomer having a polyoxyethylene oxide having a hydroxyl group at the end, the dispersibility of the thermally expandable fine particles in the composition for temporarily fixing thin-layer glass can be improved. The storage stability of the thin-layer glass temporary fixing composition is improved. Further, it is preferable that the thin glass temporary fixing composition contains an acrylic monofunctional monomer having polyethylene oxide having a hydroxyl group at the terminal, so that the thin glass can be firmly temporarily fixed to each other. Furthermore, the adhesiveness to thin glass can be improved due to the polyoxyethylene oxide having hydroxyl groups at the terminals.
 末端にヒドロキシ基を有するポリエチレンオキサイドを有するアクリル系単官能モノマーは、アルキル基の水素が-(O-CH2CH2)n-OHで置換されてなるアルキル(メタ)アクリレートが好ましい。アルキル基の水素が-(O-CH2CH2)n-OHで置換されてなるアルキル(メタ)アクリレートは、アルキル基の水素が-(O-CH2CH2)n-OHで置換されているため、アルキル(メタ)アクリレートの範疇には含まれない。 The acrylic monofunctional monomer having polyethylene oxide having a hydroxyl group at its terminal is preferably an alkyl (meth)acrylate in which the hydrogen of the alkyl group is substituted with --(O-- CH.sub.2 CH.sub.2 )n--OH. Alkyl (meth)acrylates in which the hydrogen of the alkyl group is replaced with --(O--CH 2 CH 2 )n--OH are obtained by replacing the hydrogen of the alkyl group with --(O--CH 2 CH 2 )n--OH. Therefore, it is not included in the category of alkyl (meth)acrylates.
 アクリル系単官能モノマー中において、末端にヒドロキシ基を有するポリエチレンオキサイドを有するアクリル系単官能モノマーの含有量は、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がより好ましい。アクリル系単官能モノマー中において、末端にヒドロキシ基を有するポリエチレンオキサイドを有するアクリル系単官能モノマーの含有量は、15質量%以下が好ましく、12質量%以下がより好ましく、10質量%以下がより好ましい。末端にヒドロキシ基を有するポリエチレンオキサイドを有するアクリル系単官能モノマーの含有量が1質量%以上であると、薄層ガラス同士を強固に仮固定することができ好ましい。末端にヒドロキシ基を有するポリエチレンオキサイドを有するアクリル系単官能モノマーの含有量が15質量%以下であると、薄層ガラス仮固定用組成物を介して仮固定された薄層ガラス同士を短時間にて容易に一枚ずつに剥離することができ好ましい。 In the acrylic monofunctional monomer, the content of the acrylic monofunctional monomer having polyethylene oxide having a terminal hydroxyl group is preferably 1% by mass or more, more preferably 3% by mass or more, and more preferably 5% by mass or more. . In the acrylic monofunctional monomer, the content of the acrylic monofunctional monomer having polyethylene oxide having a terminal hydroxyl group is preferably 15% by mass or less, more preferably 12% by mass or less, and more preferably 10% by mass or less. . When the content of the acrylic monofunctional monomer having polyethylene oxide having a hydroxyl group at its end is 1% by mass or more, thin glass layers can be firmly temporarily fixed to each other, which is preferable. When the content of the acrylic monofunctional monomer having polyethylene oxide having a hydroxyl group at its end is 15% by mass or less, the thin glass sheets temporarily fixed to each other via the thin glass temporary fixing composition can be formed in a short time. It is preferable because it can be easily peeled off one by one.
 アクリル系単官能モノマーは、末端にヒドロキシ基を有するポリエチレンオキサイドを有するアクリル系単官能モノマーと、アルキル(メタ)アクリレートと、ヒドロキシアルキル(メタ)アクリレートと、脂環式骨格を有する(メタ)アクリレートとを含有していることが好ましい。アクリル系単官能モノマーが、これらの(メタ)アクリレートを組み合わせて含有していることによって、薄層ガラス仮固定用組成物は光硬化性、接着性及び剥離性のバランスに優れており、薄層ガラス同士を強固に仮固定することができる一方、薄層ガラス仮固定用組成物を介して仮固定された薄層ガラス同士を短時間にて容易に一枚ずつに剥離することができる。 The acrylic monofunctional monomer includes an acrylic monofunctional monomer having polyethylene oxide having a terminal hydroxy group, an alkyl (meth)acrylate, a hydroxyalkyl (meth)acrylate, and a (meth)acrylate having an alicyclic skeleton. is preferably contained. By containing a combination of these (meth)acrylates in the acrylic monofunctional monomer, the thin-layer glass temporary fixing composition has an excellent balance of photocurability, adhesiveness and peelability, and a thin layer While the glasses can be firmly temporarily fixed to each other, the thin-layer glasses temporarily fixed via the thin-layer glass temporary-fixing composition can be easily separated one by one in a short time.
 アクリル系単官能モノマーは、薄層ガラス同士を強固に仮固定することができるので、分子内にカルボキシ基(-COOH)を有するアルキル(メタ)アクリレートを含むことが好ましい。分子内にカルボキシ基(-COOH)を有するアルキル(メタ)アクリレートは、アルキル(メタ)アクリレートのアルキル基の1個の水素が、カルボキシ基を含む原子団で置換された(メタ)アクリレートをいう。なお、分子内にカルボキシ基を有するアルキル(メタ)アクリレートは、アルキル基の水素が、カルボキシ基を含む原子団で置換されているため、アルキル(メタ)アクリレートの範疇には含まれない。 Since the acrylic monofunctional monomer can firmly temporarily fix the thin glass layers together, it is preferable to include an alkyl (meth)acrylate having a carboxy group (-COOH) in the molecule. An alkyl (meth)acrylate having a carboxy group (-COOH) in the molecule refers to a (meth)acrylate in which one hydrogen atom of the alkyl group of the alkyl (meth)acrylate is substituted with an atomic group containing a carboxy group. Alkyl (meth)acrylates having a carboxy group in the molecule are not included in the category of alkyl (meth)acrylates because the hydrogen of the alkyl group is replaced with an atomic group containing a carboxy group.
 分子内にカルボキシ基を有するアルキルアルキル(メタ)アクリレートとしては、例えば、β-カルボキシエチル(メタ)アクリレート、2-アクリロイロキシエチルコハク酸、2-アクリロイロキシエチルフタル酸、2-アクリロイロキシエチルヘキサヒドロフタル酸などが挙げられ、2-アクリロイロキシエチルヘキサヒドロフタル酸が好ましい。なお、分子内にカルボキシ基を有するアルキルアルキル(メタ)アクリレートは、単独で用いられても二種以上が併用されてもよい。 Examples of alkylalkyl (meth)acrylates having a carboxy group in the molecule include β-carboxyethyl (meth)acrylate, 2-acryloyloxyethyl succinate, 2-acryloyloxyethyl phthalate, 2-acryloyloxy Examples include ethylhexahydrophthalic acid, and 2-acryloyloxyethylhexahydrophthalic acid is preferred. The alkylalkyl (meth)acrylates having a carboxy group in the molecule may be used alone or in combination of two or more.
 アクリル系単官能モノマー中における分子内にカルボキシ基を有するアルキルアルキル(メタ)アクリレートの含有量は、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がより好ましい。アクリル系単官能モノマー中における分子内にカルボキシ基を有するアルキルアルキル(メタ)アクリレートの含有量は、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下がより好ましい。分子内にカルボキシ基を有するアルキルアルキル(メタ)アクリレートの含有量が1質量%以上であると、薄層ガラス同士を強固に仮固定できるので好ましい。分子内にカルボキシ基を有するアルキルアルキル(メタ)アクリレートの含有量が30質量%以下であると、薄層ガラス仮固定用組成物を介して仮固定された薄層ガラス同士を短時間にて容易に一枚ずつに剥離することができ好ましい。 The content of the alkylalkyl (meth)acrylate having a carboxy group in the molecule in the acrylic monofunctional monomer is preferably 1% by mass or more, more preferably 3% by mass or more, and more preferably 5% by mass or more. The content of the alkylalkyl (meth)acrylate having a carboxy group in the molecule in the acrylic monofunctional monomer is preferably 30% by mass or less, more preferably 25% by mass or less, and more preferably 20% by mass or less. When the content of the alkylalkyl (meth)acrylate having a carboxyl group in the molecule is 1% by mass or more, the thin glass layers can be firmly temporarily fixed together, which is preferable. When the content of the alkylalkyl (meth)acrylate having a carboxyl group in the molecule is 30% by mass or less, the thin glass sheets temporarily fixed to each other via the thin glass temporary fixing composition can be easily fixed in a short time. It is preferable that the sheets can be peeled off one by one.
[多官能モノマー]
 薄層ガラス仮固定用組成物は、多官能モノマーを含有している。多官能モノマーは、上記アクリル系単官能モノマーとラジカル重合することによって架橋構造を形成し、薄層ガラス仮固定用組成物を硬化させ、生成された硬化物に接着性を発現させる。
[Polyfunctional monomer]
The composition for thin-layer glass temporary fixing contains the polyfunctional monomer. The polyfunctional monomer radically polymerizes with the acrylic monofunctional monomer to form a crosslinked structure, cure the composition for temporary fixing of thin layer glass, and allow the resulting cured product to exhibit adhesiveness.
 本発明において、多官能モノマーとは、アクリル系単官能モノマーの有する不飽和二重結合とラジカル重合して架橋構造を形成可能な不飽和二重結合を分子中に複数個有するモノマーをいう。 In the present invention, a polyfunctional monomer refers to a monomer having a plurality of unsaturated double bonds in its molecule that can form a crosslinked structure by radical polymerization with the unsaturated double bond of an acrylic monofunctional monomer.
 多官能モノマーとしては、アクリル系単官能モノマーとラジカル重合して架橋構造を形成することができれば、特に限定されず、例えば、多官能性モノマーとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、デカエチレングリコールジ(メタ)アクリレート、ペンタデカエチレングリコールジ(メタ)アクリレート、ペンタコンタヘクタエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、アリル(メタ)アクリレートなどのアクリル系多官能モノマー、ジビニルベンゼン、ジビニルナフタレン又はこれらの誘導体などの芳香族ジビニル化合物などが挙げられ、薄層ガラス仮固定用組成物の光硬化性に優れているので、アクリル系多官能モノマーが好ましい。なお、多官能モノマーは、単独で用いられても二種以上が併用されてもよい。 The polyfunctional monomer is not particularly limited as long as it can be radically polymerized with an acrylic monofunctional monomer to form a crosslinked structure. ) acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate , triethylene glycol di(meth)acrylate, decaethylene glycol di(meth)acrylate, pentadecaethylene glycol di(meth)acrylate, pentacontahectorethylene glycol di(meth)acrylate, pentaerythritol tetra(meth)acrylate, propylene glycol Di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, acrylic polyfunctional monomers such as allyl (meth) acrylate, aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene or derivatives thereof, and the like. , acrylic polyfunctional monomers are preferable because they are excellent in photocurability of the composition for temporary fixing of thin layer glass. In addition, a polyfunctional monomer may be used independently or 2 or more types may be used together.
 薄層ガラス仮固定用組成物中における多官能モノマーの含有量は、アクリル系単官能モノマー100質量部に対して0.05質量部以上が好ましく、0.1質量部以上がより好ましく、0.5質量部以上がより好ましく、0.8質量部以上がより好ましい。薄層ガラス仮固定用組成物中における多官能モノマーの含有量は、アクリル系単官能モノマー100質量部に対して3質量部以下が好ましく、2.5質量部以下がより好ましく、2質量部以下がより好ましく、1.5質量部以下がより好ましい。多官能モノマーの含有量が0.05質量部以上であると、薄層ガラス仮固定用組成物に適度な架橋構造を付与して適度な凝集力によって薄層ガラス同士を強固に仮固定することができる一方、薄層ガラス同士の剥離時には、薄層ガラス仮固定用組成物の硬化物は、この硬化物に含まれる架橋構造によって、薄層ガラス上からシート状に容易に剥離し、薄層ガラス表面から糊残りなく剥離される。多官能モノマーの含有量が3質量部以下であると、薄層ガラス仮固定用組成物の硬化物が硬くなりすぎるのを防止し、硬化物は、薄層ガラス表面から粉砕状となることなくシート状にて容易に剥離され、薄層ガラス表面から糊残りなく剥離される。 The content of the polyfunctional monomer in the composition for temporarily fixing thin layer glass is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, more preferably 0.1 part by mass or more based on 100 parts by mass of the acrylic monofunctional monomer. 5 parts by mass or more is more preferable, and 0.8 parts by mass or more is more preferable. The content of the polyfunctional monomer in the composition for temporarily fixing thin layer glass is preferably 3 parts by mass or less, more preferably 2.5 parts by mass or less, and 2 parts by mass or less with respect to 100 parts by mass of the acrylic monofunctional monomer. is more preferable, and 1.5 parts by mass or less is more preferable. When the content of the polyfunctional monomer is 0.05 parts by mass or more, an appropriate crosslinked structure is imparted to the thin-layer glass temporary fixing composition, so that the thin-layer glasses can be firmly and temporarily fixed together by an appropriate cohesive force. On the other hand, when the thin glass is peeled off, the cured product of the composition for temporarily fixing the thin glass is easily peeled off from the thin glass in a sheet form due to the crosslinked structure contained in the cured product, and the thin layer Removes from the glass surface without sticky residue. When the content of the polyfunctional monomer is 3 parts by mass or less, the cured product of the thin-layer glass temporary fixing composition is prevented from becoming too hard, and the cured product does not pulverize from the surface of the thin-layer glass. It can be easily peeled off in a sheet form, and can be peeled off from the surface of the thin layer glass without leaving any sticky residue.
[熱膨張性微粒子]
 薄層ガラス仮固定用組成物は、熱膨張性微粒子を含有している。熱膨張性微粒子は、所定の熱を加えることによって膨張する微粒子である。薄層ガラスの加工時において、薄層ガラス同士が薄層ガラス仮固定用組成物の硬化物を介して積層一体化されて硬化体を形成しており、硬化体の加工後に薄層ガラス同士が剥離される。薄層ガラス同士の剥離時に薄層ガラス仮固定用組成物の硬化物による接着力を低下させるために、薄層ガラス仮固定用組成物は熱膨張性微粒子を含有している。
[Thermal expandable particles]
The thin-layer glass temporary fixing composition contains thermally expandable fine particles. Thermally expandable microparticles are microparticles that expand upon application of a predetermined amount of heat. At the time of processing the thin glass, the thin glass is laminated and integrated with each other through the cured product of the composition for temporary fixing of the thin glass to form a cured body, and after processing the cured body, the thin glass is separated from each other. peeled off. The composition for temporarily fixing the thin glass contains thermally expandable fine particles in order to reduce the adhesive strength of the cured product of the composition for temporarily fixing the thin glass when the thin glasses are separated from each other.
 熱膨張性微粒子は、加熱により膨張することによって、薄層ガラス仮固定用組成物の硬化物による薄層ガラス同士の接着力を低下させて、加工後の積層状態の薄層ガラスを一枚ずつに損傷なく且つ容易に剥離可能にしている。 The thermally expandable fine particles are expanded by heating to reduce the adhesive force between the thin glass sheets by the cured product of the composition for temporarily fixing the thin layer glass, and the thin glass sheets in the laminated state after processing are formed one by one. It can be peeled off easily and without damage.
 熱膨張性微粒子は、加熱により膨張して薄層ガラス仮固定用組成物の硬化物の接着性を低下させることができれば、特に限定されない。熱膨張性微粒子としては、例えば、ニトリル系樹脂、オレフィン系樹脂などの合成樹脂製の中空微粒子内に揮発性膨張剤を密封してなる微粒子などが挙げられる。 The thermally expandable fine particles are not particularly limited as long as they can be expanded by heating to reduce the adhesiveness of the cured product of the thin-layer glass temporary fixing composition. Examples of the thermally expandable fine particles include fine particles obtained by sealing a volatile expanding agent in hollow fine particles made of synthetic resin such as nitrile resin and olefin resin.
 合成樹脂製の中空微粒子内に揮発性膨張剤を密封してなる微粒子は、加熱によって中空微粒子が軟化すると共に、中空微粒子内の揮発性膨張剤が加熱により体積膨張することによって熱膨張するように構成されている。なお、熱膨張性微粒子における中空微粒子内の揮発性膨張剤は、熱膨張性微粒子の熱膨張時に中空微粒子の外部に放出されることはない。 Fine particles made of synthetic resin in which a volatile expanding agent is enclosed in hollow fine particles are softened by heating, and the volume of the volatile expanding agent in the hollow fine particles is expanded by heating, thereby thermally expanding. It is configured. The volatile expansion agent inside the hollow fine particles in the thermally expandable fine particles is not released to the outside of the hollow fine particles when the thermally expandable fine particles are thermally expanded.
 ニトリル系樹脂はニトリル系モノマー単位を含む。ニトリル系モノマーとしては、例えば、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エトキシアクリロニトリル、フマロニトリルなどが挙げられる。なお、ニトリル系モノマーは、単独で用いられても二種以上が併用されてもよい。 The nitrile-based resin contains nitrile-based monomer units. Nitrile monomers include, for example, acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethoxyacrylonitrile, fumaronitrile and the like. Incidentally, the nitrile-based monomers may be used alone or in combination of two or more.
 ニトリル系樹脂は、ニトリル系モノマー単位以外のモノマー単位を含有していてもよい。このようなモノマーとしては、例えば、塩化ビニリデンなどの塩化ビニル系モノマー;メチルアクリレート、エチルアクリレート、ブチルアクリレート、ジシクロペンテニルアクリレートなどのアクリレート;メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、イソボルニルメタクリレートなどのメタクリレートなどが挙げられる。なお、これらのモノマーは、単独で用いられても二種以上が併用されてもよい。 The nitrile-based resin may contain monomer units other than nitrile-based monomer units. Examples of such monomers include vinyl chloride-based monomers such as vinylidene chloride; acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate and dicyclopentenyl acrylate; methacrylate and the like. These monomers may be used alone or in combination of two or more.
 そして、熱膨張性微粒子を構成している中空微粒子内には、加熱によって揮発する揮発性膨張剤が密封されている。揮発性膨張剤としては、例えば、エタン、エチレン、プロパン、プロペン、n-ブタン、イソブタン、ブテン、イソブテン、n-ペンタン、イソペンタン、ネオペンタン、n-へキサン、ヘプタン、石油エーテルなどの低分子量炭化水素;CCL3F、CCl22、CClF3、CClF2-CCl22などのクロロフルオロカーボン;テトラメチルシラン、トリメチルエチルシラン、トリメチルイソプロピルシラン、トリメチル-n-プロピルシランなどのテトラアルキルシランなどが挙げられる。なお、揮発性膨張剤は、単独で用いられても二種以上が併用されてもよい。 A volatile expansion agent that volatilizes by heating is sealed in the hollow fine particles that constitute the thermally expandable fine particles. Volatile expanding agents include, for example, low molecular weight hydrocarbons such as ethane, ethylene, propane, propene, n-butane, isobutane, butene, isobutene, n-pentane, isopentane, neopentane, n-hexane, heptane, petroleum ether. chlorofluorocarbons such as CCL 3 F, CCl 2 F 2 , CClF 3 , CClF 2 --CCl 2 F 2 ; tetraalkylsilanes such as tetramethylsilane, trimethylethylsilane, trimethylisopropylsilane and trimethyl-n-propylsilane; mentioned. The volatile swelling agents may be used alone or in combination of two or more.
 熱膨張性微粒子は、3倍膨張温度が100℃以下の第1熱膨張性微粒子と、3倍膨張温度が100℃を超える第2熱膨張性微粒子とを含有していることが好ましい。3倍膨張温度が相違する二種類の熱膨張性微粒子を用いることによって、先ず第1熱膨張性微粒子が熱膨張した後又は熱膨張中に、続いて第2熱膨張性微粒子が熱膨張させることができる。このように、第1熱膨張性微粒子及び第2熱膨張性微粒子の熱膨張開始のタイミングをずらすことによって、薄層ガラス同士を一体化している薄層ガラス仮固定用組成物の硬化物を徐々に熱膨張させて接着強度を徐々に低下させることができる。薄層ガラス仮固定用組成物の硬化物を徐々に熱膨張させることによって、薄層ガラスに加わる応力を低減しながら、薄層ガラス同士を損傷なく且つ容易に剥離させることができる。 The thermally expandable fine particles preferably contain first thermally expandable fine particles having a triple expansion temperature of 100°C or less and second thermally expandable fine particles having a triple expansion temperature of more than 100°C. By using two types of thermally expandable fine particles having different triple expansion temperatures, the first thermally expandable fine particles are thermally expanded first, and then the second thermally expandable fine particles are thermally expanded. can be done. In this manner, by shifting the timing of the start of thermal expansion of the first and second thermally expandable fine particles, the cured product of the composition for temporarily fixing the thin glass, which integrates the thin glasses, is gradually cured. can be thermally expanded to gradually reduce the adhesive strength. By gradually thermally expanding the cured product of the composition for temporarily fixing thin glass, the thin glass can be easily peeled off from each other without damage while reducing the stress applied to the thin glass.
 第1熱膨張性微粒子の3倍膨張温度は、100℃以下であり、99℃以下が好ましく、98℃以下がより好ましい。第1熱膨張性微粒子の3倍膨張温度が100℃以下であることによって、薄層ガラスに加えられる熱量を低減させながら、薄層ガラス同士を剥離させることができる。 The triple expansion temperature of the first thermally expandable fine particles is 100°C or lower, preferably 99°C or lower, and more preferably 98°C or lower. When the triple expansion temperature of the first thermally expandable fine particles is 100° C. or lower, the thin glass layers can be separated from each other while reducing the amount of heat applied to the thin glass layers.
 第1熱膨張性微粒子の3倍膨張温度は、80℃以上が好ましく、85℃以上がより好ましく、90℃以上がより好ましい。第1熱膨張性微粒子の3倍膨張温度が80℃以上であると、薄層ガラス同士を損傷させることなく容易に剥離させることができる。 The triple expansion temperature of the first thermally expandable fine particles is preferably 80°C or higher, more preferably 85°C or higher, and more preferably 90°C or higher. When the triple expansion temperature of the first thermally expandable fine particles is 80° C. or more, the thin glass layers can be easily separated without damaging each other.
 第2熱膨張性微粒子の3倍膨張温度は、100℃を超える。第2熱膨張性微粒子の3倍膨張温度は、101℃以上が好ましく、102℃以上がより好ましく、103℃以上がより好ましい。第2熱膨張性微粒子の3倍膨張温度が100℃を超えることによって、薄層ガラスに加わる応力を低減しながら薄層ガラス同士を容易に一枚ずつに剥離することができる。 The triple expansion temperature of the second thermally expandable fine particles exceeds 100°C. The triple expansion temperature of the second thermally expandable fine particles is preferably 101° C. or higher, more preferably 102° C. or higher, and even more preferably 103° C. or higher. When the triple expansion temperature of the second thermally expandable fine particles exceeds 100° C., the thin glass layers can be easily separated one by one while reducing the stress applied to the thin glass layers.
 第2熱膨張性微粒子の3倍膨張温度は、120℃以下が好ましく、115℃以下がより好ましく、110℃以下がより好ましい。第2熱膨張性微粒子の3倍膨張温度が120℃以下であると、薄層ガラスに加えられる熱量を低減させながら、薄層ガラス同士を剥離させることができる。 The triple expansion temperature of the second thermally expandable fine particles is preferably 120°C or lower, more preferably 115°C or lower, and more preferably 110°C or lower. When the triple expansion temperature of the second thermally expandable fine particles is 120° C. or lower, the thin glass layers can be separated from each other while reducing the amount of heat applied to the thin glass layers.
 ここで、熱膨張性微粒子の3倍膨張温度とは、熱膨張性微粒子を加熱して膨張させた時、膨張終了時の体積が膨張前の体積の3倍となる温度をいう。例えば、膨張前の熱膨張性微粒子の半径をD0とし、膨張終了時の熱膨張性微粒子の半径をD1とした時、膨張終了時の熱膨張性微粒子の半径D1が、膨張前の熱膨張性微粒子の半径D0の「3の三乗根」倍(約1.44倍)となる温度を目安とすることができる。なお、熱膨張性微粒子の半径とは、熱膨張性微粒子と同一体積を有する真球の半径をいう。 Here, the triple expansion temperature of the thermally expandable fine particles refers to the temperature at which the volume of the thermally expandable fine particles, when heated and expanded, becomes three times the volume before expansion. For example, when the radius of the thermally expandable fine particles before expansion is D0 and the radius of the thermally expandable fine particles at the end of expansion is D1 , the radius D1 of the thermally expandable fine particles at the end of expansion is The temperature at which the radius D 0 of the thermally expandable fine particles is multiplied by the “cubic root of 3” (approximately 1.44 times) can be used as a guideline. The radius of the thermally expandable fine particles means the radius of a true sphere having the same volume as the thermally expandable fine particles.
 合成樹脂製の中空微粒子内に揮発性膨張剤を密封してなる微粒子の場合、熱膨張性微粒子の3倍膨張温度は、中空微粒子を構成している合成樹脂の軟化温度や、中空微粒子の殻部の厚み、中空微粒子内に密封する揮発性膨張剤の量を調整することによって、熱膨張性微粒子の3倍膨張温度を調整することができる。 In the case of fine particles in which a volatile expanding agent is enclosed in hollow fine particles made of synthetic resin, the temperature at which the thermally expandable fine particles are three-fold expanded depends on the softening temperature of the synthetic resin forming the hollow fine particles and the shell of the hollow fine particles. By adjusting the thickness of the part and the amount of the volatile expanding agent sealed in the hollow fine particles, the triple expansion temperature of the thermally expandable fine particles can be adjusted.
 具体的には、例えば、中空微粒子を構成している合成樹脂の軟化温度を高く(低く)することによって熱膨張性微粒子の3倍膨張温度を高く(低く)することができる。中空微粒子の殻部の厚みを厚く(薄く)することによって熱膨張性微粒子の3倍膨張温度を高く(低く)することができる。中空微粒子内に密封する揮発性膨張剤の量を多く(少なく)することによって熱膨張性微粒子の3倍膨張温度を低く(高く)することができる。揮発性膨張剤の沸点を高く(低く)することによって熱膨張性微粒子の3倍膨張温度を高く(低く)することができる。 Specifically, for example, by increasing (lowering) the softening temperature of the synthetic resin forming the hollow fine particles, the triple expansion temperature of the thermally expandable fine particles can be increased (lowered). By increasing (thinning) the thickness of the shell portion of the hollow fine particles, the triple expansion temperature of the thermally expandable fine particles can be increased (lowered). By increasing (decreasing) the amount of the volatile expanding agent sealed in the hollow microparticles, the triple expansion temperature of the thermally expandable microparticles can be lowered (higher). By increasing (lowering) the boiling point of the volatile expanding agent, the triple expansion temperature of the thermally expandable fine particles can be increased (lowered).
 熱膨張性微粒子の平均粒子径は、5μm以上が好ましく、7μm以上がより好ましく、10μm以上がより好ましい。熱膨張性微粒子の平均粒子径は、25μm以下がより好ましく、22μm以下がより好ましく、20μm以下がより好ましく、18μm以下がより好ましい。熱膨張性微粒子の平均粒子径が5μm以上であると、薄層ガラス仮固定用組成物を介して仮固定された薄層ガラス同士を短時間にて容易に一枚ずつに剥離することができる。熱膨張性微粒子の平均粒子径が25μm以下であると、薄層ガラスに加わる応力を低減しながら、薄層ガラスを一枚ずつに容易に剥離することができる。なお、熱膨張性微粒子の平均粒子径は、動的光散乱法による体積基準の粒度分布における50%累積粒子径をいう。 The average particle size of the thermally expandable fine particles is preferably 5 µm or more, more preferably 7 µm or more, and more preferably 10 µm or more. The average particle size of the thermally expandable fine particles is preferably 25 μm or less, more preferably 22 μm or less, more preferably 20 μm or less, and more preferably 18 μm or less. When the average particle size of the thermally expandable fine particles is 5 μm or more, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily separated one by one in a short time. . When the average particle size of the thermally expandable fine particles is 25 μm or less, the thin glass can be easily peeled off one by one while reducing the stress applied to the thin glass. The average particle size of the thermally expandable fine particles refers to the 50% cumulative particle size in the volume-based particle size distribution according to the dynamic light scattering method.
 第一熱膨張性微粒子の平均粒子径は、5μm以上が好ましく、7μm以上がより好ましく、10μm以上がより好ましい。第一熱膨張性微粒子の平均粒子径は、25μm以下がより好ましく、22μm以下がより好ましく、20μm以下がより好ましく、18μm以下がより好ましい。第一熱膨張性微粒子の平均粒子径が5μm以上であると、薄層ガラス仮固定用組成物を介して仮固定された薄層ガラス同士を短時間にて容易に一枚ずつに剥離することができる。第一熱膨張性微粒子の平均粒子径が25μm以下であると、薄層ガラスに加わる応力を低減しながら、薄層ガラスを一枚ずつに容易に剥離することができる。 The average particle size of the first thermally expandable fine particles is preferably 5 µm or more, more preferably 7 µm or more, and more preferably 10 µm or more. The average particle size of the first thermally expandable microparticles is more preferably 25 μm or less, more preferably 22 μm or less, more preferably 20 μm or less, and more preferably 18 μm or less. When the average particle size of the first heat-expandable fine particles is 5 μm or more, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily separated one by one in a short time. can be done. When the average particle size of the first thermally expandable fine particles is 25 μm or less, the thin glass can be easily peeled off sheet by sheet while reducing the stress applied to the thin glass.
 第二熱膨張性微粒子の平均粒子径は、5μm以上が好ましく、7μm以上がより好ましく、10μm以上がより好ましい。第二熱膨張性微粒子の平均粒子径は、25μm以下がより好ましく、22μm以下がより好ましく、20μm以下がより好ましく、18μm以下がより好ましい。第二熱膨張性微粒子の平均粒子径が5μm以上であると、薄層ガラス仮固定用組成物を介して仮固定された薄層ガラス同士を短時間にて容易に一枚ずつに剥離することができる。第二熱膨張性微粒子の平均粒子径が25μm以下であると、薄層ガラスに加わる応力を低減しながら、薄層ガラスを一枚ずつに容易に剥離することができる。 The average particle size of the second thermally expandable fine particles is preferably 5 µm or more, more preferably 7 µm or more, and more preferably 10 µm or more. The average particle size of the second thermally expandable microparticles is more preferably 25 μm or less, more preferably 22 μm or less, more preferably 20 μm or less, and more preferably 18 μm or less. When the average particle diameter of the second thermally expandable fine particles is 5 μm or more, the thin glass sheets temporarily fixed via the thin glass temporary fixing composition can be easily separated one by one in a short time. can be done. When the average particle diameter of the second thermally expandable fine particles is 25 μm or less, the thin glass can be easily peeled off one by one while reducing the stress applied to the thin glass.
 薄層ガラス仮固定用組成物中における熱膨張性微粒子の総含有量は、アクリル系単官能モノマー及び多官能モノマーの総含有量100質量部に対して20質量部以上が好ましく、25質量部以上がより好ましく、30質量部以上がより好ましい。薄層ガラス仮固定用組成物中における熱膨張性微粒子の総含有量は、アクリル系単官能モノマー及び多官能モノマーの総含有量100質量部に対して40質量部以下が好ましく、35質量部以下がより好ましい。熱膨張性微粒子の総含有量が20質量部以上であると、薄層ガラス同士を一体化している薄層ガラス仮固定用組成物の硬化物の接着強度を円滑に低下させて、薄層ガラス同士を容易に剥離させることができる。熱膨張性微粒子の総含有量が40質量部以下であると、薄層ガラス同士を一体化している薄層ガラス仮固定用組成物の硬化物の急激な膨張を抑制し、薄層ガラスに不必要な応力が加わるのを低減して薄層ガラス同士を損傷なく剥離させることができる。 The total content of the thermally expandable fine particles in the composition for temporarily fixing thin-layer glass is preferably 20 parts by mass or more, more preferably 25 parts by mass or more with respect to 100 parts by mass of the total content of the acrylic monofunctional monomer and the polyfunctional monomer. is more preferable, and 30 parts by mass or more is more preferable. The total content of thermally expandable fine particles in the composition for temporarily fixing thin-layer glass is preferably 40 parts by mass or less, and 35 parts by mass or less with respect to 100 parts by mass of the total content of acrylic monofunctional monomers and polyfunctional monomers. is more preferred. When the total content of the heat-expandable fine particles is 20 parts by mass or more, the adhesion strength of the cured composition for temporarily fixing the thin-layer glass that integrates the thin-layer glass is smoothly reduced, and the thin-layer glass is bonded. They can be easily separated from each other. When the total content of the thermally expandable fine particles is 40 parts by mass or less, the rapid expansion of the cured composition for temporarily fixing the thin glass, which integrates the thin glass, is suppressed, and the thin glass is unfavorable. The application of necessary stress can be reduced, and the thin glass layers can be peeled off from each other without damage.
 熱膨張性微粒子が第1熱膨張性微粒子及び第2熱膨張性微粒子を含有している場合、熱膨張性微粒子中における第1熱膨張性微粒子の含有量は、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上がより好ましい。熱膨張性微粒子中における第1熱膨張性微粒子の含有量は、80質量%以下が好ましく、70質量%以下がより好ましい。熱膨張性微粒子中における第1熱膨張性微粒子の含有量が30質量%以上であると、薄層ガラス同士を一体化している薄層ガラス仮固定用組成物の硬化物の接着強度を円滑に低下させて、薄層ガラス同士を容易に剥離させることができる。熱膨張性微粒子中における第1熱膨張性微粒子の含有量が80質量%以下であると、薄層ガラス同士を一体化している薄層ガラス仮固定用組成物の硬化物の急激な膨張を抑制し、薄層ガラスに不必要な応力が加わるのを低減して薄層ガラス同士を損傷なく剥離させることができる。 When the thermally expandable fine particles contain the first thermally expandable fine particles and the second thermally expandable fine particles, the content of the first thermally expandable fine particles in the thermally expandable fine particles is preferably 30% by mass or more, and % by mass or more is more preferable, and 50% by mass or more is more preferable. The content of the first thermally expandable fine particles in the thermally expandable fine particles is preferably 80% by mass or less, more preferably 70% by mass or less. When the content of the first heat-expandable fine particles in the heat-expandable fine particles is 30% by mass or more, the adhesive strength of the cured composition for temporarily fixing the thin-layer glass, which integrates the thin-layer glasses, can be improved smoothly. By lowering it, the thin glass layers can be easily separated from each other. When the content of the first heat-expandable fine particles in the heat-expandable fine particles is 80% by mass or less, rapid expansion of the hardened composition for temporarily fixing the thin-layer glass that integrates the thin-layer glasses is suppressed. In addition, the application of unnecessary stress to the thin-layer glass can be reduced, and the thin-layer glass can be peeled off from each other without damage.
 熱膨張性微粒子が第1熱膨張性微粒子及び第2熱膨張性微粒子を含有している場合、熱膨張性微粒子中における第2熱膨張性微粒子の含有量は、20質量%以上が好ましく、30質量%以上がより好ましい。熱膨張性微粒子中における第2熱膨張性微粒子の含有量は、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下がより好ましい。熱膨張性微粒子中における第2熱膨張性微粒子の含有量が20質量%以上であると、薄層ガラス同士を一体化している薄層ガラス仮固定用組成物の硬化物の急激な膨張を抑制し、薄層ガラスに不必要な応力が加わるのを低減して薄層ガラス同士を損傷なく剥離させることができる。熱膨張性微粒子中における第2熱膨張性微粒子の含有量が70質量%以下であると、薄層ガラス同士を一体化している薄層ガラス仮固定用組成物の硬化物の接着強度を円滑に低下させて、薄層ガラス同士を容易に剥離させることができる。 When the heat-expandable fine particles contain the first heat-expandable fine particles and the second heat-expandable fine particles, the content of the second heat-expandable fine particles in the heat-expandable fine particles is preferably 20% by mass or more, and 30% by mass. % or more by mass is more preferable. The content of the second thermally expandable fine particles in the thermally expandable fine particles is preferably 70% by mass or less, more preferably 60% by mass or less, and more preferably 50% by mass or less. When the content of the second heat-expandable fine particles in the heat-expandable fine particles is 20% by mass or more, rapid expansion of the hardened composition for temporarily fixing the thin-layer glass that integrates the thin-layer glasses is suppressed. In addition, the application of unnecessary stress to the thin-layer glass can be reduced, and the thin-layer glass can be peeled off from each other without damage. When the content of the second heat-expandable fine particles in the heat-expandable fine particles is 70% by mass or less, the adhesion strength of the cured composition for temporarily fixing the thin-layer glass, which integrates the thin-layer glasses, can be improved smoothly. By lowering it, the thin glass layers can be easily separated from each other.
 熱膨張性微粒子中において、第1熱膨張性微粒子及び第2熱膨張性微粒子の総含有量は、85質量%以上がより好ましく、90質量%以上がより好ましく、95質量%以上がより好ましく、100質量%がより好ましい。 In the heat-expandable fine particles, the total content of the first heat-expandable fine particles and the second heat-expandable fine particles is more preferably 85% by mass or more, more preferably 90% by mass or more, more preferably 95% by mass or more, 100% by mass is more preferred.
[光ラジカル重合開始剤]
 薄層ガラス仮固定用組成物は、400nmにおけるモル吸光係数εが100L/(mol・cm)以上である光ラジカル重合開始剤を含む。光ラジカル重合開始剤の400nmにおけるモル吸光係数εは、1500L/(mol・cm)以下が好ましく、1000L/(mol・cm)以下がより好ましい。
[Radical photopolymerization initiator]
The thin-layer glass temporary fixing composition contains a radical photopolymerization initiator having a molar extinction coefficient ε at 400 nm of 100 L/(mol·cm) or more. The molar extinction coefficient ε of the radical photopolymerization initiator at 400 nm is preferably 1500 L/(mol·cm) or less, more preferably 1000 L/(mol·cm) or less.
 光ラジカル重合開始剤の400nmにおけるモル吸光係数εは、下記の要領で測定された値をいう。光ラジカル重合開始剤をアセトニトリルに溶解させてアセトニトリル溶液を作製する。調製した光ラジカル重合開始剤のアセトニトリル溶液を1cmの光路長Bを有するセルに投入し、分光光度計を用いて400nmにおけるアセトニトリル溶液の吸光度Aを測定する。この際、アセトニトリル溶液の吸光度Aが0.3~2.0となるように、アセトニトリル溶液中の光ラジカル重合開始剤の濃度c(mol/L)を調整する。下記式(ランベルト・ベールの法則)により、モル吸光係数εを算出する。なお、分光光度計は、例えば、島津製作所社から商品名「UV-3600」にて市販されている装置を用いることができる。
 A=ε×B×c
 ε=A/(B×c)
 ε:モル吸光係数[L/(mol・cm)]
 A:吸光度(単位なし)
 B:光路長(cm)
 c:アセトニトリル溶液中の光ラジカル重合開始剤のモル濃度(mol/L)
The molar extinction coefficient ε at 400 nm of the radical photopolymerization initiator is a value measured in the following manner. An acetonitrile solution is prepared by dissolving a photoradical polymerization initiator in acetonitrile. The prepared acetonitrile solution of a photoradical polymerization initiator is put into a cell having an optical path length B of 1 cm, and the absorbance A of the acetonitrile solution at 400 nm is measured using a spectrophotometer. At this time, the concentration c (mol/L) of the photoradical polymerization initiator in the acetonitrile solution is adjusted so that the absorbance A of the acetonitrile solution is 0.3 to 2.0. The molar extinction coefficient ε is calculated by the following formula (Lambert-Beer law). As the spectrophotometer, for example, a device commercially available from Shimadzu Corporation under the trade name “UV-3600” can be used.
A=ε×B×c
ε=A/(B×c)
ε: molar extinction coefficient [L/(mol cm)]
A: absorbance (no unit)
B: optical path length (cm)
c: Molar concentration (mol/L) of photoradical polymerization initiator in acetonitrile solution
 光ラジカル重合開始剤は、波長400nm以上の硬化光の照射によってラジカルを発生し、アクリル系単官能モノマー及び多官能モノマーを含むモノマーをラジカル重合させる。 A photoradical polymerization initiator generates radicals upon irradiation with curing light having a wavelength of 400 nm or more, and radically polymerizes monomers including acrylic monofunctional monomers and polyfunctional monomers.
 光ラジカル重合開始剤は、波長400nm以上の硬化光の照射によって、アクリル系単官能モノマー及び多官能モノマーのラジカル重合を開始させることができるので、硬化光が薄層ガラスに吸収されることなく、薄層ガラス間に介在させた薄層ガラス仮固定用組成物の光硬化を確実に行うことができ、複数枚の薄層ガラスを薄層ガラス仮固定用組成物の硬化物を介して容易に且つ円滑に積層一体化させて仮固定することができる。 The photoradical polymerization initiator can initiate radical polymerization of acrylic monofunctional monomers and polyfunctional monomers by irradiation with curing light having a wavelength of 400 nm or more. The composition for temporary fixing of the thin glass interposed between the thin glasses can be reliably photocured, and a plurality of sheets of the thin glass can be easily cured through the cured composition for temporarily fixing the thin glass. In addition, they can be smoothly laminated and integrated and temporarily fixed.
 更に、複数枚の薄層ガラスが薄層ガラス仮固定用組成物を介して積層されて積層体が形成されており、薄層ガラス間に形成された多層状に重なり合った薄層ガラス仮固定用組成物に光を照射して、複数層の薄層ガラス仮固定用組成物を硬化させる。一方、薄層ガラス仮固定用組成物は、熱膨張性微粒子を含有しており白濁している。 Furthermore, a laminate is formed by laminating a plurality of sheets of thin glass via a composition for temporary fixing of thin glass, and the laminated body is formed between the thin glasses and is used for temporary fixing of thin glass. The composition is irradiated with light to cure the multiple layers of the thin glass temporary fixing composition. On the other hand, the thin-layer glass temporary fixing composition contains thermally expandable fine particles and is cloudy.
 そこで、薄層ガラス仮固定用組成物は、波長400nm以上の硬化光の照射によってラジカルを発生し、アクリル系単官能モノマー及び多官能モノマーをラジカル重合可能な光ラジカル重合開始剤を用いている。薄層ガラス仮固定用組成物を硬化させるための照射光として波長400nm以上を有する硬化光を照射することが好ましい。このように、薄層ガラス仮固定用組成物を硬化させる照射光として、波長400nm以上の硬化光を用いることによって、薄層ガラスに吸収されることを概ね防止しながら、白濁した薄層ガラス仮固定用組成物を十分に透過させ、一度の光の照射によって、複数層の薄層ガラス仮固定用組成物が全体的に十分に硬化可能に構成されている。 Therefore, the thin-layer glass temporary fixing composition uses a photoradical polymerization initiator that generates radicals upon irradiation with curing light having a wavelength of 400 nm or more, and can radically polymerize acrylic monofunctional monomers and polyfunctional monomers. It is preferable to irradiate curing light having a wavelength of 400 nm or more as irradiation light for curing the thin layer glass temporary fixing composition. In this way, by using curing light with a wavelength of 400 nm or more as the irradiation light for curing the thin-layer glass temporary fixing composition, it is possible to prevent the thin-layer glass from being absorbed by the thin-layer glass. The fixing composition is sufficiently permeable, and the multiple layers of the thin layer glass temporary fixing composition are configured to be fully cured by one irradiation of light.
 400nmにおけるモル吸光係数εが100L/(mol・cm)以上である光ラジカル重合開始剤において、ラジカルを発生させるために照射される硬化光の波長は500nm以下であることが好ましい。硬化光の波長が500nm以下であると、薄層ガラス仮固定用組成物は光硬化性に優れる。 In a radical photopolymerization initiator having a molar extinction coefficient ε at 400 nm of 100 L/(mol·cm) or more, the wavelength of curing light irradiated to generate radicals is preferably 500 nm or less. When the wavelength of the curing light is 500 nm or less, the composition for thin layer glass temporary fixing is excellent in photocurability.
 400nmにおけるモル吸光係数εが100L/(mol・cm)以上である光ラジカル重合開始剤は、特に限定されない。光ラジカル重合開始剤としては、例えば、アシルホスフィンオキサイド系光ラジカル重合開始剤、チオキサントン系光ラジカル重合開始剤、トリアジン系光ラジカル重合開始剤が好ましく、薄層ガラス仮固定用組成物を一液型とすることができ薄層ガラス仮固定用組成物の作業性に優れ且つ薄層ガラス仮固定用組成物の光硬化性に優れているので、アシルホスフィンオキサイド系光ラジカル重合開始剤がより好ましい。 The photoradical polymerization initiator having a molar extinction coefficient ε of 100 L/(mol·cm) or more at 400 nm is not particularly limited. As the photo-radical polymerization initiator, for example, an acylphosphine oxide-based photo-radical polymerization initiator, a thioxanthone-based photo-radical polymerization initiator, and a triazine-based photo-radical polymerization initiator are preferable. Acylphosphine oxide-based radical photopolymerization initiators are more preferable because the workability of the thin-layer glass temporary fixing composition is excellent and the light-curing property of the thin-layer glass temporary fixing composition is excellent.
 アシルホスフィンオキサイド系光ラジカル重合開始剤としては、例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイドなどが挙げられる。 Examples of acylphosphine oxide photoradical polymerization initiators include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide.
 チオキサントン系光ラジカル重合開始剤としては、例えば、2,4-ジエチルチオキサントンなどが挙げられる。 Examples of thioxanthone photoradical polymerization initiators include 2,4-diethylthioxanthone.
 トリアジン系光ラジカル重合開始剤としては、例えば、2-[2-(フラン-2-イル)ビニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-[2-(5-メチルフラン-2-イル)ビニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-[(4-メトキシフェニル)ビニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-[(3,4-ジメトキシフェニル)ビニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジンなどが挙げられる。 Triazine photoradical polymerization initiators include, for example, 2-[2-(furan-2-yl)vinyl]-4,6-bis(trichloromethyl)-1,3,5-triazine, 2-[2- (5-methylfuran-2-yl)vinyl]-4,6-bis(trichloromethyl)-1,3,5-triazine, 2-[(4-methoxyphenyl)vinyl]-4,6-bis(trichloro methyl)-1,3,5-triazine, 2-[(3,4-dimethoxyphenyl)vinyl]-4,6-bis(trichloromethyl)-1,3,5-triazine and the like.
 薄層ガラス仮固定用組成物において、400nmにおけるモル吸光係数εが100L/(mol・cm)以上である光ラジカル重合開始剤の含有量は、アクリル系単官能モノマー及び多官能モノマーの総含有量100質量部に対して0.1質量部以上が好ましく、0.2質量部以上がより好ましく、0.3質量部以上がより好ましい。薄層ガラス仮固定用組成物において、400nmにおけるモル吸光係数εが100L/(mol・cm)以上である光ラジカル重合開始剤の含有量は、アクリル系単官能モノマー及び多官能モノマーの総含有量100質量部に対して5.0質量部以下が好ましく、3.0質量部以下がより好ましく、1.0質量部以下がより好ましい。400nmにおけるモル吸光係数εが100L/(mol・cm)以上である光ラジカル重合開始剤の含有量が0.1質量部以上であると、薄層ガラス仮固定用組成物が光硬化性に優れているので好ましい。400nmにおけるモル吸光係数εが100L/(mol・cm)以上である光ラジカル重合開始剤の含有量が5.0質量部以下であると、薄層ガラス仮固定用組成物は光硬化性に優れている。 In the thin-layer glass temporary fixing composition, the content of the photoradical polymerization initiator having a molar extinction coefficient ε at 400 nm of 100 L/(mol cm) or more is the total content of the acrylic monofunctional monomer and the polyfunctional monomer. It is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, and more preferably 0.3 parts by mass or more with respect to 100 parts by mass. In the thin-layer glass temporary fixing composition, the content of the photoradical polymerization initiator having a molar extinction coefficient ε at 400 nm of 100 L/(mol cm) or more is the total content of the acrylic monofunctional monomer and the polyfunctional monomer. It is preferably 5.0 parts by mass or less, more preferably 3.0 parts by mass or less, and more preferably 1.0 parts by mass or less based on 100 parts by mass. When the content of the photoradical polymerization initiator having a molar extinction coefficient ε at 400 nm of 100 L/(mol·cm) or more is 0.1 parts by mass or more, the composition for temporarily fixing a thin layer glass has excellent photocurability. preferred because When the content of the photoradical polymerization initiator having a molar extinction coefficient ε at 400 nm of 100 L/(mol·cm) or more is 5.0 parts by mass or less, the composition for temporarily fixing a thin layer glass has excellent photocurability. ing.
[添加剤]
 薄層ガラス仮固定用組成物は、その物性を阻害しない範囲内において、チクソトロピック剤、ウレタンアクリレート、アクリル系ポリマー、接着性付与樹脂、可塑剤、非熱膨張性微粒子、染料、顔料、難燃剤、シランカップリング剤、界面活性剤などを含有してもよい。
[Additive]
The thin-layer glass temporary fixing composition contains thixotropic agents, urethane acrylates, acrylic polymers, adhesion-imparting resins, plasticizers, non-thermally expansible fine particles, dyes, pigments, and flame retardants, as long as they do not interfere with the physical properties of the composition. , a silane coupling agent, a surfactant, and the like.
[薄層ガラス仮固定用組成物]
 薄層ガラス仮固定用組成物の製造方法は、特に限定されず、例えば、アクリル系単官能モノマー、多官能モノマー、熱膨張性微粒子、及び、400nmにおけるモル吸光係数εが100L/(mol・cm)以上である光ラジカル重合開始剤を汎用の要領で好ましくは減圧下において均一に混合することによって製造することができる。
[Composition for temporary fixing of thin-layer glass]
The method for producing the thin-layer glass temporary fixing composition is not particularly limited. ) It can be produced by uniformly mixing the photoradical polymerization initiators described above in a general-purpose manner, preferably under reduced pressure.
[薄層ガラスの加工方法]
 上記薄層ガラス仮固定用組成物は、薄層ガラスの加工時に薄層ガラス同士をその厚み方向に積層状態に重ね合わせて薄層ガラス同士を仮固定するために用いられる。薄層ガラス仮固定用組成物は、厚みの薄い薄層ガラスの加工のために好適に用いられ、厚みが200μm以下の薄層ガラスの加工に特に好適に用いることができる。薄層ガラスの厚みは、30μm以上が好ましい。
[Processing method of thin glass]
The composition for temporary fixing of the thin glass is used for temporarily fixing the thin glass by superimposing the thin glass in the thickness direction thereof in a laminated state during processing of the thin glass. The thin-layer glass temporary fixing composition is suitably used for processing thin-layer glass, and can be particularly suitably used for processing thin-layer glass having a thickness of 200 μm or less. The thickness of the thin layer glass is preferably 30 μm or more.
 薄層ガラス仮固定用組成物を用いた薄層ガラスの加工方法の一例を説明する。先ず、複数枚の薄層ガラスをこれらの薄層ガラスの対向面間のそれぞれに薄層ガラス仮固定用組成物を介在させた状態にして厚み方向に積層させて積層体を製造する(積層工程)。 An example of a thin-layer glass processing method using a thin-layer glass temporary fixing composition will be described. First, a laminate is produced by laminating a plurality of sheets of thin glass in the thickness direction with a thin glass temporary fixing composition interposed between the opposing surfaces of the thin glasses (lamination step ).
 薄層ガラス仮固定用組成物は一液型であるため、積層体を作製するにあたって二液を混合するといった煩雑な作業を必要とせず、積層体を容易に製造することができる。 Since the thin-layer glass temporary fixing composition is a one-liquid type, it is possible to easily produce a laminate without the need for complicated work such as mixing two liquids when producing a laminate.
 次に、得られた積層体全体に、この積層体の積層方向(薄層ガラスの厚み方向)から、波長400nm以上を有する硬化光を照射し、積層体の薄層ガラス間に介在させた複数層の薄層ガラス仮固定用組成物を全て硬化させて硬化物を生成する(硬化工程)。なお、硬化光は、波長400nm以上の光が含まれていればよい。この硬化物によって薄層ガラス同士を仮固定して、複数枚の薄層ガラスが薄層ガラス仮固定用組成物の硬化物によって積層一体化されてなる硬化体を製造する。硬化光のピーク波長は、薄層ガラス仮固定用組成物の硬化性に優れているので、500nm以下であることが好ましい。 Next, the entire obtained laminate is irradiated with curing light having a wavelength of 400 nm or more from the lamination direction of the laminate (thickness direction of the thin layer glass), and a plurality of curing light interposed between the thin layers of glass in the laminate is irradiated. All the layers of the thin glass temporary fixing composition are cured to produce a cured product (curing step). The curing light may contain light having a wavelength of 400 nm or more. The thin glass sheets are temporarily fixed to each other by this cured product to produce a cured body in which a plurality of thin glass sheets are laminated and integrated by the cured product of the composition for temporary fixing of the thin glass. The peak wavelength of the curing light is preferably 500 nm or less because the composition for temporarily fixing a thin layer glass has excellent curability.
 硬化光を積層体の積層方向(厚み方向)に照射するが、硬化光は、波長が400nm以上の光であり、薄層ガラスに吸収されるのを概ね防止されていると共に、複数層の白濁状の薄層ガラス仮固定用組成物であっても十分に透過する。そして、薄層ガラス仮固定用組成物は、波長400nm以上の光を吸収してラジカルを発生させてアクリル系単官能モノマー及び多官能モノマーをラジカル重合可能な光ラジカル重合開始剤を含有しており、この光ラジカル重合開始剤は、硬化光を効果的に吸収して、アクリル系単官能モノマー及び多官能モノマーのラジカル重合を円滑に進行させる。 Curing light is irradiated in the stacking direction (thickness direction) of the laminate. Even a thin-layer glass temporary fixing composition in the form of a thin-layer glass is sufficiently permeable. The thin-layer glass temporary fixing composition contains a photoradical polymerization initiator capable of radically polymerizing acrylic monofunctional monomers and polyfunctional monomers by generating radicals by absorbing light having a wavelength of 400 nm or more. This photo-radical polymerization initiator effectively absorbs the curing light to facilitate the radical polymerization of the acrylic monofunctional monomer and polyfunctional monomer.
 更に、積層体に対する硬化光の照射は、複数層存在する薄層ガラス仮固定用組成物ごとに行う必要がなく、積層体を作製した後、この積層体の積層方向に積層体の厚み全体に硬化光を照射することによって、薄層ガラス間に介在している複数層の薄層ガラス仮固定用組成物の全てに硬化光を照射して短時間のうちに確実に硬化させ、薄層ガラス同士を仮固定して一体化させて硬化体を製造することができる。 Furthermore, irradiation of the laminate with curing light does not need to be performed for each thin layer glass temporary fixing composition that exists in a plurality of layers. By irradiating with the curing light, all of the multiple layers of the composition for temporary fixing of the thin-layer glass interposed between the thin-layer glasses are irradiated with the curing light to surely cure the thin-layer glass in a short period of time. A cured body can be manufactured by temporarily fixing and integrating them.
 積層体は、薄層ガラス同士が薄層ガラス仮固定用組成物の硬化物によって積層一体化され、全体として機械的強度に優れており、薄層ガラスの研磨、切削などの加工を薄層ガラスの破損なく容易に行うことができる(加工工程)。 In the laminated body, the thin glass layers are laminated and integrated by the cured product of the thin glass temporary fixing composition, and the overall mechanical strength is excellent. can be easily performed without damage (processing step).
 しかる後、硬化体を加熱して、薄層ガラス仮固定用組成物の硬化物中の熱膨張性微粒子を熱膨張させることによって、硬化物の接着強度を低下させて薄層ガラス同士を剥離させ、一枚ずつの薄層ガラスを得ることができる(剥離工程)。 After that, the cured body is heated to thermally expand the thermally expandable fine particles in the cured composition for temporarily fixing the thin layer glass, thereby reducing the adhesion strength of the cured body and causing the thin glass layers to separate from each other. , thin layer glass can be obtained one by one (peeling step).
 熱膨張性微粒子が第1熱膨張性微粒子及び第2熱膨張性微粒子を含有している場合、第1熱膨張性微粒子がはじめに熱膨張した後に又は熱膨張中に、第2熱膨張性微粒子が熱膨張し、第1熱膨張性微粒子及び第2熱膨張性微粒子が時間差でもって熱膨張し、薄層ガラス仮固定用組成物の硬化物を徐々に熱膨張させて接着強度を徐々に低下させることができる。従って、薄層ガラスに過度な応力が加わることを低減し、薄層ガラス同士を損傷なく一枚ずつに剥離して容易に分離することができる。 When the thermally expandable fine particles contain the first thermally expandable fine particles and the second thermally expandable fine particles, the second thermally expandable fine particles are added after or during the first thermal expansion of the first thermally expandable fine particles. Thermally expands, the first thermally expandable fine particles and the second thermally expandable fine particles thermally expand with a time lag, gradually thermally expand the cured product of the composition for temporarily fixing a thin layer glass, and gradually reduce the adhesive strength. be able to. Therefore, application of excessive stress to the thin-layer glass can be reduced, and the thin-layer glass can be easily separated by peeling one sheet at a time without damage.
 そして、薄層ガラス仮固定用組成物は、上述の如き構成を有しているので、薄層ガラス表面に糊残りを生じることは殆どなく、薄層ガラスの品質を担保することができる。 In addition, since the composition for temporarily fixing thin-layer glass has the above-described structure, adhesive residue is hardly left on the surface of the thin-layer glass, and the quality of the thin-layer glass can be ensured.
 硬化体を加熱する方法としては、特に限定されず、例えば、硬化体を温水に浸漬するなどして、硬化体を温水に接触させて、硬化体(薄層ガラス仮固定用組成物の硬化物)を加熱する方法などが挙げられる。 The method for heating the cured body is not particularly limited, and for example, the cured body is immersed in warm water, and the cured body is brought into contact with warm water to obtain a cured body (a cured body of a thin-layer glass temporary fixing composition ), and the like.
 温水の温度は、第1熱膨張性微粒子の3倍膨張温度と、第2熱膨張性微粒子の3倍膨張温度との間の温度であることが好ましい。第1熱膨張性微粒子及び第2熱膨張性微粒子が時間差でもって熱膨張し、薄層ガラスに応力を殆ど加えることなく、硬化物の接着性を低下させて、薄層ガラス同士を損傷なく分離することができる。 The temperature of the hot water is preferably between the triple expansion temperature of the first thermally expandable fine particles and the triple expansion temperature of the second thermally expandable fine particles. The first heat-expandable fine particles and the second heat-expandable fine particles thermally expand with a time difference, and the thin-layer glass is separated from each other without damage by reducing the adhesiveness of the cured product without applying almost any stress to the thin-layer glass. can do.
 本発明の薄層ガラス仮固定用組成物は、上述の如き構成を有しているので、光硬化性に優れており、薄層ガラス同士を加工時の応力にかかわらず仮固定できる一方、薄層ガラスの加工後は、薄層ガラス同士を損傷なく短時間にて容易に剥離することができる。 Since the composition for temporarily fixing thin-layer glass of the present invention has the structure as described above, it is excellent in photocurability and can temporarily fix thin-layer glasses to each other regardless of the stress during processing. After processing the layer glass, the thin layer glasses can be easily separated in a short time without damage.
接着強度の測定要領を示した断面図である。FIG. 4 is a cross-sectional view showing a procedure for measuring adhesive strength; 接着強度の測定要領を示した平面図である。It is the top view which showed the measuring point of adhesive strength.
 以下に、本発明を実施例を用いてより具体的に説明するが、本発明はこれに限定されない。 The present invention will be described in more detail below using examples, but the present invention is not limited to these.
 実施例及び比較例において、下記の化合物を用いた。 The following compounds were used in Examples and Comparative Examples.
[アクリル系単官能モノマー]
・イソボルニルメタクリレート
・イソデシルメタクリレート
・2-ヒドロキシエチルメタクリレート
・2-アクリロイロキシエチルヘキサヒドロフタル酸(共栄社化学社製 商品名「ライトアクリレートHOA-HH」)
・末端にヒドロキシ基を有するポリエチレンオキサイドを有するアクリル系単官能モノマー(POEアクリル系単官能モノマー1、日油社製 商品名「ブレンマーAE-400」)
・末端にヒドロキシ基を有するポリエチレンオキサイドを有するアクリル系単官能モノマー(POEアクリル系単官能モノマー2、日油社製 商品名「ブレンマーAE-200」)
[Acrylic Monofunctional Monomer]
・Isobornyl methacrylate ・Isodecyl methacrylate ・2-Hydroxyethyl methacrylate ・2-Acryloyloxyethyl hexahydrophthalic acid (trade name “Light acrylate HOA-HH” manufactured by Kyoeisha Chemical Co., Ltd.)
・Acrylic monofunctional monomer having a polyethylene oxide having a hydroxyl group at the end (POE acrylic monofunctional monomer 1, trade name “Blenmer AE-400” manufactured by NOF Corporation)
・Acrylic monofunctional monomer having a polyethylene oxide having a hydroxyl group at the end (POE acrylic monofunctional monomer 2, trade name “Blenmer AE-200” manufactured by NOF Corporation)
[多官能モノマー]
・1,6-ヘキサンジオールジメタクリレート
[Polyfunctional monomer]
・1,6-hexanediol dimethacrylate
[熱膨張性微粒子]
・第1熱膨張性微粒子(3倍膨張温度:98℃、平均粒子径:13μm、アクリロニトリル共重合体)
・第2熱膨張性微粒子(3倍膨張温度:105℃、平均粒子径:14μm、塩化ビニリデン-アクリロニトリル共重合体)
[Thermal expandable particles]
・First thermally expandable microparticles (3-fold expansion temperature: 98°C, average particle size: 13 µm, acrylonitrile copolymer)
・Second thermally expandable fine particles (triple expansion temperature: 105 ° C., average particle size: 14 μm, vinylidene chloride-acrylonitrile copolymer)
[光ラジカル重合開始剤]
・光ラジカル重合開始剤1[2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、IGM Resins B.V.社製 商品名「Omnirad TPO H」、400nmにおけるモル吸光係数ε:349L/(mol・cm)]
・光ラジカル重合開始剤2[1-ヒドロキシシクロヘキシル-フェニルケトン、IGM Resins B.V.社製 商品名「Omnirad 184」、400nmにおけるモル吸光係数ε:0L/(mol・cm)]
[Radical photopolymerization initiator]
- Photoradical polymerization initiator 1 [2,4,6-trimethylbenzoyldiphenylphosphine oxide, IGM Resins B.I. V. Company product name “Omnirad TPO H”, molar extinction coefficient ε at 400 nm: 349 L / (mol cm)]
Photoradical polymerization initiator 2 [1-hydroxycyclohexyl-phenylketone, IGM Resins B.I. V. Company trade name “Omnirad 184”, molar extinction coefficient ε at 400 nm: 0 L / (mol cm)]
 光ラジカル重合開始剤1のモル吸光係数εを下記の要領で測定した。光ラジカル重合開始剤1を9.7mg(2.78×10-5mol)を計量し、アセトニトリル(密度:0.78g/mL)9.7547g(12.506mL)に溶解した。光ラジカル重合開始剤1の濃度cは0.00233(mol/L)であった。アセトニトリル溶液の400nmにおける吸光度Aは0.754であった。上記した式(ランベルト・ベールの法則)を用いてモル吸光係数εを算出した結果、光ラジカル重合開始剤1のモル吸光係数εは、349L/(mol・cm)であった。 The molar extinction coefficient ε of photoradical polymerization initiator 1 was measured in the following manner. 9.7 mg (2.78×10 −5 mol) of radical photopolymerization initiator 1 was weighed and dissolved in 9.7547 g (12.506 mL) of acetonitrile (density: 0.78 g/mL). The concentration c of photoradical polymerization initiator 1 was 0.00233 (mol/L). The absorbance A at 400 nm of the acetonitrile solution was 0.754. As a result of calculating the molar extinction coefficient ε using the above formula (Lambert-Beer's law), the molar extinction coefficient ε of the radical photopolymerization initiator 1 was 349 L/(mol·cm).
[チクソトロピック剤]
・疎水性ヒュームドシリカ(エボニック社製 商品名「AEROSIL R972」)
[Thixotropic agent]
・ Hydrophobic fumed silica (trade name “AEROSIL R972” manufactured by Evonik)
(実施例1~9、比較例1及び2)
 表1に示す所定量のアクリル系単官能モノマー及び多官能モノマーをそれぞれ、ポリプロピレン製の反応容器内に供給して混合、溶解させて混合液を作製した。
(Examples 1 to 9, Comparative Examples 1 and 2)
Predetermined amounts of acrylic monofunctional monomers and polyfunctional monomers shown in Table 1 were respectively fed into a reaction vessel made of polypropylene, mixed and dissolved to prepare a mixed solution.
 次に、反応容器内の混合液を攪拌装置(アズワン社製 商品名「BL-300D」、攪拌翼:ディスパ―翼使用)を用いて回転速度1000rpmにて攪拌させながら、混合液中にチクソトロピック剤として疎水性ヒュームドシリカを表1に示す所定量供給して30分間に亘って攪拌して混合液中にチクソトロピック剤を分散させた。 Next, the mixture in the reaction vessel is stirred at a rotation speed of 1000 rpm using a stirrer (trade name "BL-300D" manufactured by AS ONE, stirring blade: disper blade used), and a thixotropic mixture is added to the mixture. A predetermined amount of hydrophobic fumed silica as an agent shown in Table 1 was supplied and stirred for 30 minutes to disperse the thixotropic agent in the mixture.
 次に、反応容器内の混合液を減圧可能な減圧容器(東京理化器械製 商品名「真空オーブン:VOS-310C」)内に供給し、25℃にて30分間に亘って減圧処理(真空ポンプ:DTC-22 アルバック機工製)を行って混合液の脱泡を行った。 Next, the mixed liquid in the reaction container is supplied to a decompressible decompression container (trade name "Vacuum Oven: VOS-310C" manufactured by Tokyo Rika Kikai Co., Ltd.) and subjected to decompression treatment at 25°C for 30 minutes (vacuum pump : DTC-22 (manufactured by ULVAC KIKO)) to degas the mixed liquid.
 しかる後、混合液中に、第1熱膨張性微粒子、第2熱膨張性微粒子及び光ラジカル重合開始剤を供給し、第1熱膨張性微粒子及び第2熱膨張性微粒子が均一に分散し且つ光ラジカル重合開始剤が混合液中に完全に溶解するまで混合して薄層ガラス仮固定用組成物を得た。得られた薄層ガラス仮固定用組成物は、不透明な白色の液体であった。 Thereafter, the first heat-expandable fine particles, the second heat-expandable fine particles, and a photoradical polymerization initiator are supplied to the mixed liquid, and the first heat-expandable fine particles and the second heat-expandable fine particles are uniformly dispersed and The mixture was mixed until the radical photopolymerization initiator was completely dissolved in the mixed liquid to obtain a composition for temporary fixing of thin layer glass. The obtained composition for temporary fixing of thin-layer glass was an opaque white liquid.
 得られた薄層ガラス仮固定用組成物について、薄層ガラス固定確認試験、接着強度、剥離試験及び貯蔵安定性を下記の要領で測定し、その結果を表1に示した。 For the obtained composition for temporary fixing of thin-layer glass, the thin-layer glass fixing confirmation test, adhesive strength, peeling test and storage stability were measured in the following manner, and the results are shown in Table 1.
[薄層ガラス固定確認試験]
 縦100mm×横50mm×厚み0.5mmの下側保護用ガラス板を用意した。保護用ガラス板の中央部に薄層ガラス仮固定用組成物を載置した。この薄層ガラス仮固定用組成物上に縦100mm×横50mm×厚み0.1mmの薄層ガラスを載置し、薄層ガラスとこれに対向する下側保護用ガラス板の対向面間に薄層ガラス仮固定用組成物が完全に充填された状態とした。薄層ガラス仮固定用組成物の厚みは50μmであった。
[Thin-layer glass fixation confirmation test]
A lower protective glass plate having a length of 100 mm, a width of 50 mm, and a thickness of 0.5 mm was prepared. A thin-layer glass temporary fixing composition was placed on the central portion of the protective glass plate. A thin layer glass having a length of 100 mm, a width of 50 mm, and a thickness of 0.1 mm is placed on the thin layer glass temporary fixing composition, and a thin layer is placed between the opposing surfaces of the thin layer glass and the lower protective glass plate facing it. The composition for temporary fixing of layer glass was completely filled. The thickness of the thin-layer glass temporary fixing composition was 50 μm.
 次に、上記薄層ガラスの上面中央部に薄層ガラス仮固定用組成物を載置した。この薄層ガラス仮固定用組成物上に縦100mm×横50mm×厚み0.1mmの薄層ガラスを載置し、2枚の薄層ガラスの対向面間に薄層ガラス仮固定用組成物が完全に充填された状態とした。薄層ガラス仮固定用組成物の厚みは50μmであった。 Next, a thin-layer glass temporary fixing composition was placed on the center of the upper surface of the thin-layer glass. A thin layer glass having a length of 100 mm, a width of 50 mm, and a thickness of 0.1 mm is placed on the thin layer glass temporary fixing composition, and the thin layer glass temporary fixing composition is placed between the opposing surfaces of the two thin layer glasses. It was left completely filled. The thickness of the thin-layer glass temporary fixing composition was 50 µm.
 薄層ガラスを重ね合わせる上述の要領を繰り返して行い、下側保護用ガラス板上に、5枚の薄層ガラスを薄層ガラス仮固定用組成物を介して積層して積層体を製造した。更に、積層された5枚の薄層ガラスのうちの最上層の薄層ガラスの上面中央部に薄層ガラス仮固定用組成物を載置した。この薄層ガラス仮固定用組成物上に縦100mm×横50mm×厚み0.5mmの上側保護用ガラス板を載置し、薄層ガラスとこれに対向する上側保護用ガラス板の対向面間に薄層ガラス仮固定用組成物が完全に充填された状態とした。薄層ガラス仮固定用組成物の厚みは50μmであった。 The above procedure of stacking the thin-layer glasses was repeated, and five thin-layer glasses were laminated on the lower protective glass plate via the composition for temporary fixing of the thin-layer glass to produce a laminate. Furthermore, the composition for temporary fixing of thin glass was placed on the center of the top surface of the uppermost thin glass among the five laminated thin glasses. An upper protective glass plate having a length of 100 mm, a width of 50 mm, and a thickness of 0.5 mm is placed on the thin-layer glass temporary fixing composition, and the thin-layer glass is placed between the facing surfaces of the upper protective glass plate facing the thin-layer glass. The composition for temporary fixing of thin layer glass was completely filled. The thickness of the thin-layer glass temporary fixing composition was 50 μm.
 上記積層体に可視光ランプ(積水フーラー社製 商品名「FL-V」)を用いて、ピーク波長が420nmである可視光を照度2mW/cm2にて10分間に亘って照射して薄層ガラス仮固定用組成物を硬化させて硬化体を作製した。可視光ランプは、積層体の垂直上方で且つ下側保護用ガラス板を載置した載置面から高さ80mmの位置に配設した。 Using a visible light lamp (trade name “FL-V” manufactured by Sekisui Fuller Co., Ltd.) , the laminate was irradiated with visible light having a peak wavelength of 420 nm at an illuminance of 2 mW / cm for 10 minutes to form a thin layer. A cured body was produced by curing the composition for glass temporary fixing. The visible light lamp was placed vertically above the laminate and at a height of 80 mm from the mounting surface on which the lower protective glass plate was mounted.
 得られた硬化体における最上層の薄層ガラスを指先で触って水平方向に指先を動かし、薄層ガラス同士が、薄層ガラス仮固定用組成物の硬化物で一体化されているか否かを確認した。 The uppermost layer of thin glass in the obtained cured product is touched with a fingertip and moved horizontally to determine whether or not the thin layers of glass are integrated with each other by the cured product of the composition for temporary fixing of thin layer glass. confirmed.
 全ての互いに隣接する薄層ガラス間において薄層ガラス同士が一体化されている場合は「A」、互いに隣接する薄層ガラス間の何れかにおいて薄層ガラス同士が一体化されていない場合は「B」として評価した。 "A" if the thin glass sheets are integrated between all adjacent thin glass sheets, and "A" if the thin glass sheets are not integrated between any of the adjacent thin glass sheets. It was evaluated as "B".
[接着強度]
 縦50mm×横25mm×厚み5mmの直方体形状の板ガラス1、2を2枚用意した。2枚の板ガラスの表面全面をエタノールによって洗浄し乾燥した。
[Adhesion strength]
Two sheets of plate glass 1 and 2 each having a rectangular parallelepiped shape of 50 mm long×25 mm wide×5 mm thick were prepared. The entire surfaces of the two plate glasses were washed with ethanol and dried.
 図1及び図2に示したように、一方の板ガラス1を水平な載置面3上に載置し、この板ガラス1の長辺側の端縁部上に、他方の板ガラス2の長辺側の端縁部を重ね合わせた。2枚の板ガラス1、2の端縁部同士の重なり幅は12.5mmであった。2枚の板ガラス1、2の長辺側の端縁部間には薄層ガラス仮固定用組成物5が介在しており、薄層ガラス仮固定用組成物5は、2枚の板ガラス1、2における長辺側の端縁部の対向面間における横方向の全長に充填されていた。薄層ガラス仮固定用組成物5は、長さ25mm×幅12.5mm×厚み0.1mmであった。上側に重ね合わせた板ガラスと載置面間の隙間に支持用板ガラス4を配設し、上側の板ガラス2を支持用板ガラス4で支持した。 As shown in FIGS. 1 and 2, one glass plate 1 is placed on a horizontal mounting surface 3, and a long side of the other glass plate 2 is placed on the edge of the long side of the glass plate 1. were overlapped. The overlapping width between the edge portions of the two sheet glasses 1 and 2 was 12.5 mm. A thin-layer glass temporary fixing composition 5 is interposed between the edges of the long sides of the two plate glasses 1 and 2, and the thin-layer glass temporary fixing composition 5 is applied to the two plate glasses 1 and 2. 2, the entire length in the horizontal direction between the facing surfaces of the end edges on the long sides was filled. The thin layer glass temporary fixing composition 5 had a length of 25 mm, a width of 12.5 mm, and a thickness of 0.1 mm. A support plate glass 4 was arranged in a gap between the plate glass superimposed on the upper side and the mounting surface, and the upper plate glass 2 was supported by the support plate glass 4 .
 2枚の板ガラス1、2の重ね合わせ部分に介在させた薄層ガラス仮固定用組成物5に、可視光ランプ(積水フーラー社製 商品名「FL-V」)を用いて、ピーク波長が420nmである可視光を照度2mW/cm2にて10分間に亘って照射して薄層ガラス仮固定用組成物5を硬化させて硬化体を作製した。可視光ランプは、2枚の板ガラスの重ね合わせ部の垂直上方で且つ載置面から高さ80mmの位置に配設した。 A visible light lamp (manufactured by Sekisui Fuller Co., Ltd., trade name “FL-V”) was used on the thin-layer glass temporary fixing composition 5 interposed in the overlapping portion of the two sheet glasses 1 and 2, and the peak wavelength was 420 nm. The composition 5 for temporary fixing of the thin layer glass was cured by irradiating it with visible light at an illuminance of 2 mW/cm 2 for 10 minutes to prepare a cured body. The visible light lamp was placed vertically above the overlapped portion of the two plate glasses and at a height of 80 mm from the mounting surface.
 得られた硬化体について、卓上形精密万能試験機(島津製作所製 商品名「オートグラフAGS-100NX」)を用いて3点曲げ試験により10mm/minの押込速度にて2枚の板ガラスの重ね合わせ部を押し込み、得られた最大強度を測定強度(N)とし、下記式に基づいて剥離強度を算出すると共に、破壊モードを下記基準にて評価した。 The resulting hardened body is subjected to a three-point bending test using a desktop precision universal testing machine (manufactured by Shimadzu Corporation, trade name "Autograph AGS-100NX"), and two sheets of glass are superimposed at an indentation speed of 10 mm / min. The maximum strength obtained by pressing the part was used as the measured strength (N), the peel strength was calculated based on the following formula, and the failure mode was evaluated according to the following criteria.
 なお、比較例2は、薄層ガラス仮固定用組成物が硬化しなかったため、評価できなかった。 Comparative Example 2 could not be evaluated because the thin-layer glass temporary fixing composition did not harden.
(剥離強度)
 剥離強度(N/mm2)=測定強度(N)/(25×12.5)(mm2
(Peel strength)
Peel strength (N/mm 2 ) = measured strength (N)/(25 x 12.5) (mm 2 )
(破壊モード)
 MF:材料破壊(板ガラスは割れるが、板ガラスと硬化物との間の界面剥離及び硬化物の凝集破壊は発生しなかった。)
 CF:凝集破壊(硬化物の凝集破壊が発生した。)
 AF:界面破壊(板ガラスと硬化物との間で界面剥離が発生した。)
(destruction mode)
MF: Material failure (Although the plate glass cracked, interfacial peeling between the plate glass and the cured product and cohesive failure of the cured product did not occur.)
CF: Cohesive failure (cohesive failure of the cured product occurred.)
AF: Interfacial failure (Interfacial peeling occurred between the plate glass and the cured product.)
[剥離試験]
 薄層ガラス固定確認試験にて作製した硬化体を95℃に保持した温水に浸漬した。硬化体を温水に浸漬した直後から、5枚の薄層ガラスが1枚ずつに剥離されるまでの剥離時間(秒)を測定した。
[Peeling test]
The hardened body prepared in the thin-layer glass fixation confirmation test was immersed in warm water maintained at 95°C. The peeling time (seconds) from immediately after the cured body was immersed in warm water until the five sheets of thin glass were peeled off one by one was measured.
 剥離後の5枚の薄層ガラスを観察し、薄層ガラスにおいて、損傷の有無及び薄層ガラス仮固定用組成物の硬化物の付着(糊残り)の有無を目視観察した。なお、比較例2は、薄層ガラス仮固定用組成物が硬化しなかったため、評価できなかった。 The five sheets of thin-layer glass after peeling were observed, and the thin-layer glass was visually observed for damage and adhesion (adhesive residue) of the cured product of the thin-layer glass temporary fixing composition. Comparative Example 2 could not be evaluated because the thin-layer glass temporary fixing composition was not cured.
(薄層ガラスの損傷の有無)
 A:全ての薄層ガラスに損傷はなかった。
 B:角部が掛けた薄層ガラスがあった。
 C:粉砕した薄層ガラスがあった。
 D:温水で薄層ガラスを剥離することができなかった。
 E:薄層ガラス仮固定用組成物が硬化しなかった。
(Presence or absence of damage to thin-layer glass)
A: No damage was found on any of the thin-layer glasses.
B: There was thin-layer glass with the corner part hanging.
C: There was crushed thin layer glass.
D: The thin layer glass could not be peeled off with warm water.
E: The thin-layer glass temporary fixing composition did not cure.
(糊残り)
 各薄層ガラスの両面に残存した糊残り部分の面積を測定し、5枚の薄層ガラスの糊残り部分の総面積S1を算出した。5枚の薄層ガラスの両面の総面積をS0とした。下記式に基づいて糊残り度を算出し、下記基準に基づいて評価した。
 糊残り度(%)=100×S1/S0
(adhesive residue)
The area of the adhesive residue remaining on both sides of each thin-layer glass was measured, and the total area S1 of the adhesive residue of the five thin-layer glasses was calculated. The total area of both surfaces of the five sheets of thin glass was defined as S 0 . The degree of adhesive residue was calculated based on the following formula and evaluated based on the following criteria.
Adhesive residue degree (%) = 100 x S1 / S0
 A:糊残り度が0%であった。
 B:糊残り度が0%を超え且つ5%以下であった。
 C:糊残り度が5%を超えていた。
 D:温水で薄層ガラスを剥離することができなかった。
 E:薄層ガラス仮固定用組成物が硬化しなかった。
A: The degree of adhesive residue was 0%.
B: The degree of adhesive residue exceeded 0% and was 5% or less.
C: The degree of adhesive residue exceeded 5%.
D: The thin layer glass could not be peeled off with warm water.
E: The thin-layer glass temporary fixing composition did not cure.
[貯蔵安定性]
 薄層ガラス仮固定用組成物を透明な20mLのガラスバイアル瓶に15mL供給し、25℃にて暗所且つ振動などにより液が振とうされることのない場所に放置した。放置してから2日後及び7日後に、薄層ガラス仮固定用組成物の状態を目視観察し、下記基準に基づいて評価した。
[Storage stability]
15 mL of the composition for temporary fixing of thin layer glass was supplied to a transparent 20 mL glass vial and left at 25° C. in a dark place where the liquid would not be shaken by vibration or the like. After 2 days and 7 days from standing, the state of the composition for temporary fixing of thin layer glass was visually observed and evaluated based on the following criteria.
A:薄層ガラス仮固定用組成物中に熱膨張性微粒子が均一に分散しており、熱膨張性微粒子の分離や沈降は確認できなかった。
B:薄層ガラス仮固定用組成物中において、熱膨張微粒子が分離又は沈降を生じており、薄層ガラス仮固定用組成物組成物の50体積%未満において熱膨張性微粒子が分散できていない箇所が存在していた。薄層ガラス仮固定用組成物を攪拌、振とうすることで再分散が可能であった。
C:薄層ガラス仮固定用組成物中において、熱膨張微粒子が分離又は沈降を生じており、薄層ガラス仮固定用組成物組成物の50体積%以上において熱膨張性微粒子が分散できていない箇所が存在していた。薄層ガラス仮固定用組成物を攪拌、振とうしても、熱膨張性微粒子の再分散はできなかった。
D:薄層ガラス仮固定用組成物に熱膨張性微粒子は含有されておらず、貯蔵安定性の評価ができなかった。
A: The thermally expandable fine particles were uniformly dispersed in the composition for temporarily fixing the thin layer glass, and no separation or sedimentation of the thermally expandable fine particles could be confirmed.
B: In the composition for temporarily fixing thin-layer glass, the thermally expandable fine particles are separated or sedimented, and the thermally expandable fine particles cannot be dispersed in less than 50% by volume of the composition for temporarily fixing thin-layer glass. there was a spot. Re-dispersion was possible by stirring and shaking the thin layer glass temporary fixing composition.
C: In the composition for thin-layer glass temporary fixing, the thermally expandable fine particles are separated or sedimented, and the thermally expandable fine particles cannot be dispersed in 50% by volume or more of the composition for thin-layer glass temporary fixing. there was a spot. Even if the thin-layer glass temporary fixing composition was stirred and shaken, the thermally expandable fine particles could not be redispersed.
D: Thermally expandable fine particles were not contained in the thin-layer glass temporary fixing composition, and the storage stability could not be evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の薄層ガラス仮固定用組成物は、薄層ガラス同士を仮固定して、薄層ガラス同士の剥離を生じさせることなく、薄層ガラスの加工を行うことができる。 The composition for temporarily fixing thin-layer glass of the present invention can temporarily fix thin-layer glasses and process the thin-layer glasses without causing separation between the thin-layer glasses.
 本発明の薄層ガラス仮固定用組成物は、薄層ガラスの加工後、薄層ガラス同士を損傷なく短時間にて容易に剥離することができる。 The thin-layer glass temporary fixing composition of the present invention can easily separate the thin-layer glasses in a short time without damaging them after processing the thin-layer glasses.
(関連出願の相互参照)
 本出願は、2021年5月31日に出願された日本国特許出願第2021-091954号に基づく優先権を主張し、この出願の開示はこれらの全体を参照することにより本明細書に組み込まれる。
(Cross reference to related applications)
This application claims priority based on Japanese Patent Application No. 2021-091954 filed on May 31, 2021, and the disclosure of this application is incorporated herein by reference in its entirety. .
1 板ガラス
2 板ガラス
3 載置面
4 支持用板ガラス
5 薄層ガラス仮固定用組成物
1 Sheet glass 2 Sheet glass 3 Mounting surface 4 Supporting sheet glass 5 Composition for temporary fixing of thin layer glass

Claims (6)

  1.  アクリル系単官能モノマー、多官能モノマー、熱膨張性微粒子、及び、400nmにおけるモル吸光係数εが100L/(mol・cm)以上である光ラジカル重合開始剤を含むことを特徴とする薄層ガラス仮固定用組成物。 A thin-layer glass temporary characterized by comprising an acrylic monofunctional monomer, a multifunctional monomer, thermally expandable fine particles, and a photoradical polymerization initiator having a molar extinction coefficient ε at 400 nm of 100 L/(mol cm) or more. Fixing composition.
  2.  熱膨張性微粒子は、3倍膨張温度が100℃以下の第1熱膨張性微粒子と、3倍膨張温度が100℃を超える第2熱膨張性微粒子とを含有していることを特徴とする請求項1に記載の薄層ガラス仮固定用組成物。 A claim characterized in that the thermally expandable fine particles contain first thermally expandable fine particles having a triple expansion temperature of 100°C or less and second thermally expandable fine particles having a triple expansion temperature of over 100°C. Item 1. The composition for temporarily fixing thin layer glass according to item 1.
  3.  アクリル系単官能モノマーは、末端にヒドロキシ基を有するポリエチレンオキサイドを有するアクリル系単官能モノマーを含むことを特徴とする請求項1又は請求項2に記載の薄層ガラス仮固定用組成物。 The composition for temporarily fixing a thin layer glass according to claim 1 or claim 2, wherein the acrylic monofunctional monomer contains an acrylic monofunctional monomer having polyethylene oxide having a hydroxyl group at its end.
  4.  アクリル系単官能モノマー100質量部に対して熱膨張性微粒子20~40質量部を含有することを特徴とする請求項1又は請求項2に記載の薄層ガラス仮固定用組成物。 The composition for temporarily fixing a thin layer glass according to claim 1 or claim 2, characterized by containing 20 to 40 parts by mass of thermally expandable fine particles with respect to 100 parts by mass of an acrylic monofunctional monomer.
  5.  熱膨張性微粒子中における第1熱膨張性微粒子の含有量が30~80質量%であることを特徴とする請求項2に記載の薄層ガラス仮固定用組成物。 The composition for temporarily fixing a thin layer glass according to claim 2, wherein the content of the first thermally expandable fine particles in the thermally expandable fine particles is 30 to 80% by mass.
  6.  請求項1又は請求項2の薄層ガラス仮固定用組成物を介して複数枚の薄層ガラスを積層して積層体を製造する積層工程と、
     上記積層体に波長400nm以上の硬化光を照射して上記薄層ガラス仮固定用組成物を硬化させて硬化物を生成し、この硬化物によって上記複数枚の薄層ガラス同士を仮固定して硬化体を製造する硬化工程と、
     上記硬化体の薄層ガラスを加工する加工工程と、
     上記硬化体の硬化物を加熱して上記熱膨張性微粒子を膨張させて上記薄層ガラス同士を剥離させる剥離工程とを含むことを特徴とする薄層ガラスの加工方法。
    A lamination step of laminating a plurality of sheets of thin glass via the thin glass temporary fixing composition of claim 1 or claim 2 to produce a laminated body;
    The laminate is irradiated with curing light having a wavelength of 400 nm or more to cure the thin-layer glass temporary fixing composition to produce a cured product, and the plurality of thin-layer glasses are temporarily fixed together by the cured product. A curing step for producing a cured body,
    a processing step of processing the thin layer glass of the cured body;
    and a peeling step of heating the cured body to expand the thermally expandable fine particles to separate the thin glasses.
PCT/JP2022/022202 2021-05-31 2022-05-31 Composition for temporary fixing of thin layer glass, and method for processing thin layer glass WO2022255382A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023525873A JPWO2022255382A1 (en) 2021-05-31 2022-05-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-091954 2021-05-31
JP2021091954 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022255382A1 true WO2022255382A1 (en) 2022-12-08

Family

ID=84323460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022202 WO2022255382A1 (en) 2021-05-31 2022-05-31 Composition for temporary fixing of thin layer glass, and method for processing thin layer glass

Country Status (2)

Country Link
JP (1) JPWO2022255382A1 (en)
WO (1) WO2022255382A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326917A (en) * 2006-06-06 2007-12-20 Sharp Corp Active energy ray-curable resin composition with thermal peelability
JP2013076077A (en) * 2011-09-14 2013-04-25 Denki Kagaku Kogyo Kk Composition and method for tentatively fixing of member using the same
JP2013194056A (en) * 2012-03-15 2013-09-30 Sanwa Kagaku Kogyo Kk Temporary fixing adhesive composition for glass lamination and method for processing plate glass using the composition
JP2016030702A (en) * 2014-07-25 2016-03-07 サンライズ・エム・エス・アイ株式会社 Method for manufacturing glass base used for touch panel or the like
JP2016147989A (en) * 2015-02-13 2016-08-18 積水化学工業株式会社 Production method of adhesive material and cut object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326917A (en) * 2006-06-06 2007-12-20 Sharp Corp Active energy ray-curable resin composition with thermal peelability
JP2013076077A (en) * 2011-09-14 2013-04-25 Denki Kagaku Kogyo Kk Composition and method for tentatively fixing of member using the same
JP2013194056A (en) * 2012-03-15 2013-09-30 Sanwa Kagaku Kogyo Kk Temporary fixing adhesive composition for glass lamination and method for processing plate glass using the composition
JP2016030702A (en) * 2014-07-25 2016-03-07 サンライズ・エム・エス・アイ株式会社 Method for manufacturing glass base used for touch panel or the like
JP2016147989A (en) * 2015-02-13 2016-08-18 積水化学工業株式会社 Production method of adhesive material and cut object

Also Published As

Publication number Publication date
JPWO2022255382A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
TWI738637B (en) Adhesive resin layer, adhesive resin film, laminated body and method for manufacturing the laminated body
EP2855616B1 (en) Triply curable optically clear adhesive
JP2006522856A (en) Adhesive blends, articles and methods
KR101932489B1 (en) Photo curable adhesive and bonding film composition, adhesive and bonding film and method for preparing adhesive and bonding film
JP2003129020A (en) Clear adhesive composition and adhesive sheet thereof
TWI625542B (en) Adhesive composition for optical use
JP7109270B2 (en) Heat-peeling adhesive member and display device including the same
JP2011079888A (en) (meth)acrylic resin composition, adhesive composition, and temporary fixation and peeling method
JP2011219686A (en) Adhesive composition, and temporary fixation method of member using the same
JP2010202833A (en) Adhesive tape for processing electronic element
JP5350056B2 (en) Photo-curable easy-to-disassemble adhesive and disassembly method using the same
JPH0790028A (en) Photopolymerizable composition, and adhesive tape and pressure-sensitive adhesive tape using the same
JP4936908B2 (en) Active energy ray polymerizable composition, pressure-sensitive adhesive, and pressure-sensitive adhesive tape
KR100618749B1 (en) Low-staining adhesive sheets and method for removing resist material
WO2022255382A1 (en) Composition for temporary fixing of thin layer glass, and method for processing thin layer glass
JP5350055B2 (en) (Meth) acrylic resin composition for adhesives
WO2023135855A1 (en) Composition for thin layer glass temporary fixation
JP2018150521A (en) Surface protective tape
JPWO2016158414A1 (en) Thermosensitive adhesive tape and thermosensitive adhesive sheet
JP2008202001A (en) Adhesive tape
JP4495813B2 (en) Low-fouling adhesive sheets and resist removal methods
JPWO2018225543A1 (en) Compound and photocurable composition using the same
JP2009246011A (en) Double coated adhesive tape
JP6153384B2 (en) Adhesive composition for polarizing plate
JP7209831B2 (en) coating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023525873

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE