WO2022254923A1 - Nickel-phosphorus alloy coated substrate, solution for electroless plating of nickel-phosphorus alloy film, and method for producing nickel-phosphorus alloy coated substrate - Google Patents

Nickel-phosphorus alloy coated substrate, solution for electroless plating of nickel-phosphorus alloy film, and method for producing nickel-phosphorus alloy coated substrate Download PDF

Info

Publication number
WO2022254923A1
WO2022254923A1 PCT/JP2022/015275 JP2022015275W WO2022254923A1 WO 2022254923 A1 WO2022254923 A1 WO 2022254923A1 JP 2022015275 W JP2022015275 W JP 2022015275W WO 2022254923 A1 WO2022254923 A1 WO 2022254923A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
nip
phosphorus alloy
coated substrate
solution
Prior art date
Application number
PCT/JP2022/015275
Other languages
French (fr)
Japanese (ja)
Inventor
真利江 佐々木
彩香 瀧本
和正 嶋田
隆広 吉田
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Publication of WO2022254923A1 publication Critical patent/WO2022254923A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a nickel-phosphorus alloy coated substrate, a solution for electroless plating of a nickel-phosphorus alloy film, and a method for manufacturing a nickel-phosphorus alloy coated substrate.
  • Magnetic recording media used in hard disk drives are generally manufactured by forming a nickel-phosphorus alloy (NiP) film on a substrate by electroless plating, polishing the NiP film, and forming a magnetic layer on the NiP film. be done.
  • NiP nickel-phosphorus alloy
  • Patent Document 1 describes a magnetic recording medium having a nonmagnetic substrate, a nickel-phosphorus plating film, and a magnetic layer.
  • This NiP plating film contains 0.05 to 1% by weight of at least one selected from the group consisting of tin, manganese, indium and antimony.
  • Patent Document 2 describes an aqueous plating bath composition for the electroless deposition of nickel and nickel alloys.
  • This composition contains a nickel ion source and a stabilizer, and the stabilizer comprises at least one metal ion selected from indium ions and gallium ions, elemental iodine, an iodide ion-containing compound, and iodic acid. It contains at least one selected from ion-containing compounds and periodate ion-containing compounds.
  • the concentration of at least one metal ion selected from indium ions and gallium ions is within the range of 0.01 to 0.5 mmol/L.
  • JP-A-01-269224 Japanese Patent No. 6667525
  • NiP film When a NiP film is formed on a substrate by electroless plating, a relatively thick NiP film may be formed in the vicinity of the outer peripheral edge of the substrate. Polishing of the NiP film is performed in order to uniformize such a film thickness distribution. However, longer polishing times can lead to poor quality (eg, increased defects) of the NiP film. Therefore, it is desired to reduce the film thickness distribution of the NiP film formed by electroless plating to shorten the polishing time. Also, the NiP film is required to have high corrosion resistance.
  • a solution for electroless plating capable of reducing the thickness distribution of the NiP film at the outer peripheral edge of the substrate without impairing the corrosion resistance of the NiP film, a method for manufacturing a NiP-coated substrate using the solution, and the A manufacturable NiP coated substrate is provided.
  • the nickel- A phosphorous alloy coated substrate is provided.
  • a nickel-phosphorus alloy film containing nickel ions, hypophosphite ions, a complexing agent, and indium ions, wherein the concentration of the indium ions is 0.18 to 1.8 ppm.
  • a solution for electroless plating of is provided.
  • a method for manufacturing a nickel-phosphorus alloy coated substrate which includes forming a nickel-phosphorus alloy film by electroless plating using the solution of the above aspects.
  • a magnetic recording medium having the nickel-phosphorus alloy-coated substrate of the aspect described above.
  • the thickness distribution of the NiP film at the outer peripheral edge of the substrate can be reduced without impairing the corrosion resistance of the NiP film.
  • a solution for electroless plating according to an embodiment contains nickel ions, hypophosphite ions, a complexing agent, and indium ions.
  • the concentration of indium ions in the solution is 0.18-1.8 ppm, 0.3-1.5 ppm, or 0.3-0.8 ppm. This makes it possible to form a NiP film having high corrosion resistance and a narrow film thickness distribution at the outer peripheral edge of the substrate, as will be shown in Examples to be described later.
  • Water-soluble indium salts such as indium nitrate, indium sulfate, and indium chloride can be used as a source of indium ions. These indium salts may be used alone or in combination of two or more.
  • Nickel sulfate, nickel chloride, nickel carbonate, nickel acetate, and nickel sulfamate are used as nickel ion sources. These nickel salts may be used alone or in combination of two or more.
  • concentration of nickel ions in the solution may be, for example, 1-30 g/L.
  • hypophosphite ions for example, hypophosphorous acid or a salt thereof such as sodium hypophosphite or potassium hypophosphite can be used.
  • concentration of hypophosphite ions in solution may be from 5 to 80 g/L.
  • Hypophosphite ion acts as a reducing agent.
  • Complexing agents include dicarboxylic acids or alkali salts thereof such as tartaric acid, malic acid, citric acid, succinic acid, malonic acid, glycolic acid, gluconic acid, oxalic acid, phthalic acid, fumaric acid, maleic acid, lactic acid, or These sodium salts, potassium salts, or ammonium salts can be used. Two or more of these may be used in combination, and at least one of them may be an oxydicarboxylic acid. The concentration of the complexing agent in the solution may be 0.01-2.0 mol/L.
  • a stabilizer, pH adjuster, brightener, anti-mold agent, or surfactant may be added to the solution according to the embodiment.
  • a stabilizer a lead compound, such as lead(II) acetate, can be used, in which case the solution according to embodiments contains lead ions. Acids, alkalis, or salts can be used as pH adjusters.
  • a solution according to embodiments may include water as a solvent.
  • the solution according to the embodiment does not have to contain iodine.
  • "not containing” means substantially not containing, and specifically means not detected by inductively coupled plasma atomic emission spectrometry (ICP-AES).
  • the chemical species of iodine is not limited, and includes, for example, simple iodine, iodide ion, iodate ion, and periodate ion. Accordingly, solutions according to embodiments may not contain elemental iodine, iodide ions, iodate ions, or periodate ions.
  • NiP-coated substrate A NiP-coated substrate is obtained by immersing the substrate in the above solution and performing electroless plating.
  • a NiP-coated substrate has a substrate and a NiP film formed thereon.
  • the substrate may have an annular shape.
  • the substrate may be non-conductive (insulating), conductive, or semi-conductive.
  • Non-conductive substrates include substrates made of glass, ceramics, or plastics.
  • Conductive substrates include substrates made of metals or conductive metal oxides.
  • Semiconductive substrates include substrates made of semimetals or compound semiconductors. In particular, the substrate may be made of aluminum, an aluminum alloy or glass.
  • the NiP film contains In at a concentration of 70-620 ppm, preferably 170-410 ppm, more preferably 170-200 ppm. Such a NiP film has a high corrosion resistance and a small film thickness distribution at the outer peripheral edge of the substrate, as will be shown in Examples described later. Also, the NiP film may contain phosphorus (P) at a concentration of 10 to 13% by weight.
  • the composition of the NiP film can be obtained by dissolving the NiP film in nitric acid and quantifying the elements in the resulting solution by ICP-AES.
  • the NiP film may not contain iodine. Here, "does not contain” means that it does not substantially contain, and specifically means that it is not detected by ICP-AES.
  • the chemical species of iodine is not limited, and includes, for example, simple iodine, iodide ion, iodate ion, and periodate ion. Therefore, the NiP film need not contain elemental iodine, iodide ions, iodate ions, or periodate ions.
  • the NiP film has a sufficiently small film thickness distribution at the outer edge of the NiP-coated substrate.
  • the maximum value of the height of the surface of the NiP film from the reference plane in the region where the distance from the outer peripheral edge of the NiP-coated substrate is 0 to 2 mm is 3% or less, 2% or less with respect to the thickness of the NiP film. .9% or less, 2.8% or less, 2.5% or less, or 2.4% or less, and 0% or more, 0% or more, or 1.6% or more with respect to the thickness of the NiP film. obtain.
  • the maximum height of the surface of the NiP film from the reference plane in the area where the distance from the outer peripheral edge of the NiP-coated substrate is 0 to 2 mm was measured using a stylus surface profilometer (for example, "Dektak 150" manufactured by Bruker). ) is obtained based on the surface profile of the NiP film measured by ).
  • the reference planes are a first point on the surface of the NiP film that is 2 to 5 mm away from the outer edge of the NiP-coated substrate toward the center of the NiP-coated substrate, and a point that is 1 to 5 mm from the first point toward the center of the NiP-coated substrate.
  • a second point on the surface of the distant NiP film is defined as a plane containing a straight line.
  • the NiP film has good corrosion resistance. Specifically, when the NiP-coated substrate is immersed in 30% nitric acid heated to 45° C. for 150 seconds, the area ratio of holes formed on the surface of the NiP film can be 0.75% or less. The area ratio of the holes is determined from an image of the surface of the NiP film observed with an optical microscope after the NiP-coated substrate was immersed in nitric acid.
  • a NiP-coated substrate can be used for any purpose.
  • a magnetic recording medium can be manufactured by forming a magnetic layer on a NiP-coated substrate.
  • An annular aluminum alloy plate (JIS A-5052, inner diameter 25 mm, outer diameter 95 mm) was subjected to alkali etching treatment and zinc replacement treatment. An aluminum alloy plate was immersed in a plating solution heated to 85°C. As a result, a NiP film having a thickness shown in Table 1 was formed on the aluminum alloy plate. In this way, specimens of each example and comparative example were obtained.
  • the NiP films of Comparative Example 5 using the plating solution containing bismuth and Comparative Example 6 using the plating solution containing antimony had a large maximum height and a large area ratio of corrosion holes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

The present invention provides: a solution for electroless plating, the solution being capable of reducing the film thickness distribution of an NiP film on the outer peripheral edge of a substrate without deteriorating the corrosion resistance of the NiP film; a method for producing an NiP coated substrate, the method using this solution for electroless plating; and an NiP coated substrate which is able to be produced by this method for producing an NiP coated substrate. This solution for electroless plating of an NiP film contains nickel ions, hypophosphite ions, a complexing agent and indium ions; and the concentration of the indium ions is from 0.18 ppm to 1.8 ppm. This method for producing an NiP coated substrate comprises a process for forming an NiP film by means of the above-described solution. This NiP coated substrate comprises a substrate and an NiP film that is formed on the substrate; and the NiP film contains indium at a concentration of 70 ppm to 620 ppm.

Description

ニッケル-リン合金被覆基板、ニッケル-リン合金膜の無電解めっきのための溶液、及びニッケル-リン合金被覆基板の製造方法Nickel-Phosphorus Alloy Coated Substrate, Solution for Electroless Plating of Nickel-Phosphorus Alloy Film, and Method for Producing Nickel-Phosphorus Alloy Coated Substrate
 本発明は、ニッケル-リン合金被覆基板、ニッケル-リン合金膜の無電解めっきのための溶液、及びニッケル-リン合金被覆基板の製造方法に関する。 The present invention relates to a nickel-phosphorus alloy coated substrate, a solution for electroless plating of a nickel-phosphorus alloy film, and a method for manufacturing a nickel-phosphorus alloy coated substrate.
 ハードディスクドライブに用いられる磁気記録媒体は、一般に、基板上に無電解めっき法によりニッケル-リン合金(NiP)膜を形成し、NiP膜を研磨し、NiP膜上に磁性層を形成することによって製造される。 Magnetic recording media used in hard disk drives are generally manufactured by forming a nickel-phosphorus alloy (NiP) film on a substrate by electroless plating, polishing the NiP film, and forming a magnetic layer on the NiP film. be done.
 特許文献1において、非磁性基板、ニッケル-リンめっき膜、及び磁性層を有する磁気記録媒体が記載されている。このNiPめっき膜は、錫、マンガン、インジウム、及びアンチモンからなる群から選択された少なくとも一種を0.05~1重量%含む。 Patent Document 1 describes a magnetic recording medium having a nonmagnetic substrate, a nickel-phosphorus plating film, and a magnetic layer. This NiP plating film contains 0.05 to 1% by weight of at least one selected from the group consisting of tin, manganese, indium and antimony.
 特許文献2において、ニッケル及びニッケル合金の無電解析出のための水性めっき浴組成物が記載されている。この組成物は、ニッケルイオン源、及び安定化剤を含み、安定化剤は、インジウムイオン及びガリウムイオンから選択される少なくとも1種の金属イオンと、単体のヨウ素、ヨウ化物イオン含有化合物、ヨウ素酸イオン含有化合物、及び過ヨウ素酸イオン含有化合物から選択される少なくとも1種を含有する。インジウムイオン及びガリウムイオンから選択される少なくとも1種の金属イオンの濃度は、0.01~0.5mmol/Lの範囲内である。 Patent Document 2 describes an aqueous plating bath composition for the electroless deposition of nickel and nickel alloys. This composition contains a nickel ion source and a stabilizer, and the stabilizer comprises at least one metal ion selected from indium ions and gallium ions, elemental iodine, an iodide ion-containing compound, and iodic acid. It contains at least one selected from ion-containing compounds and periodate ion-containing compounds. The concentration of at least one metal ion selected from indium ions and gallium ions is within the range of 0.01 to 0.5 mmol/L.
特開平01-269224号公報JP-A-01-269224 特許第6667525号公報Japanese Patent No. 6667525
 基板上に無電解めっき法によりNiP膜を形成すると、基板の外周端近傍において、相対的に厚みの大きいNiP膜が形成されることがある。このような膜厚分布を均一化するために、NiP膜の研磨が行われる。しかし、研磨の時間が長いと、NiP膜の品質の低下(例えば欠陥の増加)を引き起こすことがある。そのため、無電解めっきで形成されるNiP膜の膜厚分布を小さくして、研磨時間を短くすることが望まれる。また、NiP膜は高い耐腐食性を有することが求められる。 When a NiP film is formed on a substrate by electroless plating, a relatively thick NiP film may be formed in the vicinity of the outer peripheral edge of the substrate. Polishing of the NiP film is performed in order to uniformize such a film thickness distribution. However, longer polishing times can lead to poor quality (eg, increased defects) of the NiP film. Therefore, it is desired to reduce the film thickness distribution of the NiP film formed by electroless plating to shorten the polishing time. Also, the NiP film is required to have high corrosion resistance.
 そこで、NiP膜の耐食性を損なうことなく、基板の外周端におけるNiP膜の膜厚分布を小さくすることができる無電解めっきのための溶液、それを用いたNiP被覆基板の製造方法、及びそれにより製造することができるNiP被覆基板を提供する。 Therefore, a solution for electroless plating capable of reducing the thickness distribution of the NiP film at the outer peripheral edge of the substrate without impairing the corrosion resistance of the NiP film, a method for manufacturing a NiP-coated substrate using the solution, and the A manufacturable NiP coated substrate is provided.
 本発明の一態様に従えば、基板と、前記基板上に形成されたニッケル-リン合金膜と、を有し、前記ニッケル-リン合金膜がインジウムを70~620ppmの濃度で含有する、ニッケル-リン合金被覆基板が提供される。 According to one aspect of the present invention, the nickel- A phosphorous alloy coated substrate is provided.
 本発明の一態様に従えば、ニッケルイオン、次亜リン酸イオン、錯化剤、及びインジウムイオンを含有し、前記インジウムイオンの濃度が0.18~1.8ppmである、ニッケル-リン合金膜の無電解めっきのための溶液が提供される。 According to one aspect of the present invention, a nickel-phosphorus alloy film containing nickel ions, hypophosphite ions, a complexing agent, and indium ions, wherein the concentration of the indium ions is 0.18 to 1.8 ppm. A solution for electroless plating of is provided.
 本発明の一態様に従えば、上記態様の溶液を用いた無電解めっきによりニッケル-リン合金膜を形成することを含む、ニッケル-リン合金被覆基板の製造方法が提供される。 According to one aspect of the present invention, there is provided a method for manufacturing a nickel-phosphorus alloy coated substrate, which includes forming a nickel-phosphorus alloy film by electroless plating using the solution of the above aspects.
 本発明の一態様に従えば、上記態様のニッケル-リン合金被覆基板を有する磁気記録媒体が提供される。 According to one aspect of the present invention, there is provided a magnetic recording medium having the nickel-phosphorus alloy-coated substrate of the aspect described above.
 本発明により、NiP膜の耐食性を損なうことなく、基板の外周端におけるNiP膜の膜厚分布を小さくすることができる。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2021-093867号の開示内容を包含する。
According to the present invention, the thickness distribution of the NiP film at the outer peripheral edge of the substrate can be reduced without impairing the corrosion resistance of the NiP film.
This specification includes the disclosure content of Japanese Patent Application No. 2021-093867, which is the basis of priority of this application.
 以下、実施形態を説明する。本発明は、以下の実施形態に限定されず、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができる。本願において、記号「~」を用いて表される数値範囲は、記号「~」の前後に記載される数値のそれぞれを下限値及び上限値として含む。 The embodiment will be described below. The present invention is not limited to the following embodiments, and various design changes can be made without departing from the spirit of the invention described in the claims. In the present application, a numerical range represented using the symbol "~" includes the numerical values described before and after the symbol "~" as the lower and upper limits, respectively.
(1)NiP膜の無電解めっきのための溶液
 実施形態に係る無電解めっきのための溶液は、ニッケルイオン、次亜リン酸イオン、錯化剤、及びインジウムイオンを含有する。
(1) Solution for Electroless Plating of NiP Film A solution for electroless plating according to an embodiment contains nickel ions, hypophosphite ions, a complexing agent, and indium ions.
 溶液中のインジウムイオンの濃度は、0.18~1.8ppm、0.3~1.5ppm、又は0.3~0.8ppmである。それにより、後述する実施例で示すように、高い耐食性を有しつつ、基板の外周端における膜厚分布が小さいNiP膜の形成が可能になる。インジウムイオンの供給源としては、水溶性のインジウム塩、例えば、硝酸インジウム、硫酸インジウム、塩化インジウムを用いることができる。これらのインジウム塩は、単独で用いてもよいし、2種以上を併用してもよい。 The concentration of indium ions in the solution is 0.18-1.8 ppm, 0.3-1.5 ppm, or 0.3-0.8 ppm. This makes it possible to form a NiP film having high corrosion resistance and a narrow film thickness distribution at the outer peripheral edge of the substrate, as will be shown in Examples to be described later. Water-soluble indium salts such as indium nitrate, indium sulfate, and indium chloride can be used as a source of indium ions. These indium salts may be used alone or in combination of two or more.
 実施形態に係る溶液が含有するその他の成分及びその濃度は、一般にNiP膜の無電解めっきに用いられる溶液と同様であってよい。 Other components contained in the solution according to the embodiment and their concentrations may be similar to solutions generally used for electroless plating of NiP films.
 ニッケルイオンの供給源として水溶性のニッケル塩、例えば、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、酢酸ニッケル、スルファミン酸ニッケルが用いられる。これらのニッケル塩は、単独で用いてもよいし、2種以上を併用してもよい。溶液中のニッケルイオンの濃度は、例えば、1~30g/Lであってよい。  Water-soluble nickel salts such as nickel sulfate, nickel chloride, nickel carbonate, nickel acetate, and nickel sulfamate are used as nickel ion sources. These nickel salts may be used alone or in combination of two or more. The concentration of nickel ions in the solution may be, for example, 1-30 g/L.
 次亜リン酸イオンの供給源として、例えば、次亜リン酸又はその塩、例えば、次亜リン酸ナトリウム若しくは次亜リン酸カリウムを用いることができる。溶液中の次亜リン酸イオンの濃度は、5~80g/Lであってよい。次亜リン酸イオンは、還元剤として働く。 As a source of hypophosphite ions, for example, hypophosphorous acid or a salt thereof such as sodium hypophosphite or potassium hypophosphite can be used. The concentration of hypophosphite ions in solution may be from 5 to 80 g/L. Hypophosphite ion acts as a reducing agent.
 錯化剤としては、ジカルボン酸又はそのアルカリ塩、例えば、酒石酸、リンゴ酸、クエン酸、コハク酸、マロン酸、グリコール酸、グルコン酸、シュウ酸、フタル酸、フマル酸、マレイン酸、乳酸、又はこれらのナトリウム塩、カリウム塩、若しくはアンモニウム塩を用いることができる。これらのうち2種以上を併用してよく、そのうちの少なくとも1種はオキシジカルボン酸であってよい。溶液中の錯化剤の濃度は、0.01~2.0mol/Lであってよい。 Complexing agents include dicarboxylic acids or alkali salts thereof such as tartaric acid, malic acid, citric acid, succinic acid, malonic acid, glycolic acid, gluconic acid, oxalic acid, phthalic acid, fumaric acid, maleic acid, lactic acid, or These sodium salts, potassium salts, or ammonium salts can be used. Two or more of these may be used in combination, and at least one of them may be an oxydicarboxylic acid. The concentration of the complexing agent in the solution may be 0.01-2.0 mol/L.
 実施形態に係る溶液には、さらに、安定剤、pH調整剤、光沢剤、防黴剤、又は界面活性剤が添加されてよい。安定剤としては、鉛化合物、例えば酢酸鉛(II)を用いることができ、この場合、実施形態に係る溶液は鉛イオンを含む。pH調整剤としては、酸、アルカリ、又は塩を用いることができる。実施形態に係る溶液は、溶媒として水を含んでよい。 A stabilizer, pH adjuster, brightener, anti-mold agent, or surfactant may be added to the solution according to the embodiment. As a stabilizer, a lead compound, such as lead(II) acetate, can be used, in which case the solution according to embodiments contains lead ions. Acids, alkalis, or salts can be used as pH adjusters. A solution according to embodiments may include water as a solvent.
 実施形態に係る溶液は、ヨウ素を含有しなくてよい。ここで、「含有しない」とは、実質的に含有しないことを意味し、具体的には、誘導結合プラズマ発光分析(ICP-AES)で検出されないことを意味する。また、ヨウ素の化学種は限定されず、例えば、単体のヨウ素、ヨウ化物イオン、ヨウ素酸イオン、過ヨウ素酸イオンを含む。したがって、実施形態に係る溶液は、単体のヨウ素、ヨウ化物イオン、ヨウ素酸イオン又は過ヨウ素酸イオンのいずれも含有しなくてよい。 The solution according to the embodiment does not have to contain iodine. Here, "not containing" means substantially not containing, and specifically means not detected by inductively coupled plasma atomic emission spectrometry (ICP-AES). Also, the chemical species of iodine is not limited, and includes, for example, simple iodine, iodide ion, iodate ion, and periodate ion. Accordingly, solutions according to embodiments may not contain elemental iodine, iodide ions, iodate ions, or periodate ions.
(2)NiP被覆基板
 上記の溶液に基板を浸漬して無電解めっきを行うことにより、NiP被覆基板が得られる。NiP被覆基板は、基板と、その上に形成されたNiP膜とを有する。
(2) NiP-coated substrate A NiP-coated substrate is obtained by immersing the substrate in the above solution and performing electroless plating. A NiP-coated substrate has a substrate and a NiP film formed thereon.
 基板は、円環状の形状を有してよい。また、基板は、非導電性(絶縁性)、導電性、又は半導電性であってよい。非導電性基板としては、ガラス、セラミックス、又はプラスチック製の基板が挙げられる。導電性基板としては、金属又は導電性金属酸化物製の基板が挙げられる。半導電性基材としては、半金属又は化合物半導体製の基板が挙げられる。特に、基板は、アルミニウム、アルミニウム合金、又はガラス製であってよい。 The substrate may have an annular shape. Also, the substrate may be non-conductive (insulating), conductive, or semi-conductive. Non-conductive substrates include substrates made of glass, ceramics, or plastics. Conductive substrates include substrates made of metals or conductive metal oxides. Semiconductive substrates include substrates made of semimetals or compound semiconductors. In particular, the substrate may be made of aluminum, an aluminum alloy or glass.
 NiP膜は、Inを70~620ppm、好ましくは170~410ppm、より好ましくは170~200ppmの濃度で含有する。このようなNiP膜は、後述する実施例で示すように、高い耐食性を有しつつ、基板の外周端における膜厚分布が小さい。また、NiP膜は、リン(P)を10~13重量%の濃度で含有してよい。NiP膜の組成は、NiP膜を硝酸に溶解させ、得られた溶液中の元素をICP-AESにより定量して求めることができる。NiP膜はヨウ素を含有しなくてよい。ここで、「含有しない」とは、実質的に含有しないことを意味し、具体的には、ICP-AESで検出されないことを意味する。また、ヨウ素の化学種は限定されず、例えば、単体のヨウ素、ヨウ化物イオン、ヨウ素酸イオン、過ヨウ素酸イオンを含む。したがって、NiP膜は、単体のヨウ素、ヨウ化物イオン、ヨウ素酸イオン又は過ヨウ素酸イオンのいずれも含有しなくてよい。 The NiP film contains In at a concentration of 70-620 ppm, preferably 170-410 ppm, more preferably 170-200 ppm. Such a NiP film has a high corrosion resistance and a small film thickness distribution at the outer peripheral edge of the substrate, as will be shown in Examples described later. Also, the NiP film may contain phosphorus (P) at a concentration of 10 to 13% by weight. The composition of the NiP film can be obtained by dissolving the NiP film in nitric acid and quantifying the elements in the resulting solution by ICP-AES. The NiP film may not contain iodine. Here, "does not contain" means that it does not substantially contain, and specifically means that it is not detected by ICP-AES. Also, the chemical species of iodine is not limited, and includes, for example, simple iodine, iodide ion, iodate ion, and periodate ion. Therefore, the NiP film need not contain elemental iodine, iodide ions, iodate ions, or periodate ions.
 NiP膜は、NiP被覆基板の外周端において、十分に小さい膜厚分布を有する。具体的には、NiP被覆基板の外周端からの距離が0~2mmである領域におけるNiP膜の表面の基準面からの高さの最大値が、NiP膜の厚みに対して3%以下、2.9%以下、2.8%以下、2.5%以下、又は2.4%以下であり得、NiP膜の厚みに対して0%以上、0%超、又は1.6%以上であり得る。NiP被覆基板の外周端からの距離が0~2mmである領域におけるNiP膜の表面の基準面からの高さの最大値は、触針式表面形状測定器(例えば、Bruker社製「Dektak 150」)により測定したNiP膜の表面プロファイルに基づいて求められる。基準面は、NiP被覆基板の外周端からNiP被覆基板の中心に向かって2~5mm離れたNiP膜の表面上の第1点と、第1点からNiP被覆基板の中心に向かって1~5mm離れたNiP膜の表面上の第2点とを通る直線を含む面と定義される。 The NiP film has a sufficiently small film thickness distribution at the outer edge of the NiP-coated substrate. Specifically, the maximum value of the height of the surface of the NiP film from the reference plane in the region where the distance from the outer peripheral edge of the NiP-coated substrate is 0 to 2 mm is 3% or less, 2% or less with respect to the thickness of the NiP film. .9% or less, 2.8% or less, 2.5% or less, or 2.4% or less, and 0% or more, 0% or more, or 1.6% or more with respect to the thickness of the NiP film. obtain. The maximum height of the surface of the NiP film from the reference plane in the area where the distance from the outer peripheral edge of the NiP-coated substrate is 0 to 2 mm was measured using a stylus surface profilometer (for example, "Dektak 150" manufactured by Bruker). ) is obtained based on the surface profile of the NiP film measured by ). The reference planes are a first point on the surface of the NiP film that is 2 to 5 mm away from the outer edge of the NiP-coated substrate toward the center of the NiP-coated substrate, and a point that is 1 to 5 mm from the first point toward the center of the NiP-coated substrate. A second point on the surface of the distant NiP film is defined as a plane containing a straight line.
 さらに、NiP膜は良好な耐食性を有する。具体的には、NiP被覆基板を45℃に加熱した濃度30%の硝酸に150秒間浸漬した場合にNiP膜の表面に形成される穴の面積割合が、0.75%以下であり得る。穴の面積割合は、NiP被覆基板を硝酸に浸漬した後にNiP膜の表面を光学顕微鏡で観察した画像から求められる。 Furthermore, the NiP film has good corrosion resistance. Specifically, when the NiP-coated substrate is immersed in 30% nitric acid heated to 45° C. for 150 seconds, the area ratio of holes formed on the surface of the NiP film can be 0.75% or less. The area ratio of the holes is determined from an image of the surface of the NiP film observed with an optical microscope after the NiP-coated substrate was immersed in nitric acid.
 NiP被覆基板は、任意の用途に使用することができる。例えば、NiP被覆基板上に磁性層を形成して、磁気記録媒体を製造することができる。 A NiP-coated substrate can be used for any purpose. For example, a magnetic recording medium can be manufactured by forming a magnetic layer on a NiP-coated substrate.
 以上、本発明の実施形態について詳述したが、本発明は、上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の変更を行うことができる。上記実施形態を組み合わせてさらなる実施形態を提供することもできる。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention described in the scope of claims. It can be carried out. The above embodiments may also be combined to provide further embodiments.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
 27g/Lの硫酸ニッケル、30g/Lの次亜リン酸ナトリウム、30g/Lの乳酸、30g/Lのリンゴ酸、6g/Lのコハク酸、20.5g/Lの水酸化ナトリウム、及び酢酸鉛(II)を含む水溶液を調製した。さらに、実施例1~8及び比較例2~4では、溶液に硝酸インジウムを加えた。比較例5では溶液に硫酸ビスマス(III)を加えた。比較例6では、溶液に酢酸アンチモン(III)を加えた。比較例7では溶液にモリブデン酸アンモニウム4水和物を加えた。それぞれの添加量は、添加後の溶液がIn、Bi、Sb、又はMoイオンを表1に記載の濃度で含有するように設定した。こうして、各実施例及び比較例のめっき液を得た。 27 g/L nickel sulfate, 30 g/L sodium hypophosphite, 30 g/L lactic acid, 30 g/L malic acid, 6 g/L succinic acid, 20.5 g/L sodium hydroxide, and lead acetate An aqueous solution containing (II) was prepared. Additionally, in Examples 1-8 and Comparative Examples 2-4, indium nitrate was added to the solution. In Comparative Example 5, bismuth(III) sulfate was added to the solution. In Comparative Example 6, antimony(III) acetate was added to the solution. In Comparative Example 7, ammonium molybdate tetrahydrate was added to the solution. The amount of each addition was set so that the solution after addition contained In, Bi, Sb, or Mo ions at the concentrations shown in Table 1. In this way, the plating solution of each example and comparative example was obtained.
 円環状のアルミニウム合金板(JIS A-5052、内径25mm、外形95mm)にアルカリエッチング処理及び亜鉛置換処理を行った。アルミニウム合金板を85℃に加熱しためっき液に浸漬した。それにより、アルミニウム合金板上に、表1に示す厚さを有するNiP膜が形成された。こうして各実施例及び比較例の試験体を得た。 An annular aluminum alloy plate (JIS A-5052, inner diameter 25 mm, outer diameter 95 mm) was subjected to alkali etching treatment and zinc replacement treatment. An aluminum alloy plate was immersed in a plating solution heated to 85°C. As a result, a NiP film having a thickness shown in Table 1 was formed on the aluminum alloy plate. In this way, specimens of each example and comparative example were obtained.
(1)元素分析
 各試験体のNiP膜を硝酸に溶解させ、得られた溶液中の元素をICP-AESにより定量した。Ni、P、Pb及びInの総量を基準とするInの濃度(すなわち、NiP膜中のIn濃度)及びPの濃度(すなわち、NiP膜中のP濃度)を求めた。結果を表1中に示す。
(1) Elemental Analysis The NiP film of each specimen was dissolved in nitric acid, and the elements in the resulting solution were quantified by ICP-AES. The In concentration (that is, the In concentration in the NiP film) and the P concentration (that is, the P concentration in the NiP film) were determined based on the total amount of Ni, P, Pb, and In. The results are shown in Table 1.
(2)表面プロファイル測定
 各試験体のNiP膜の表面プロファイルを触針式表面形状測定器(Bruker社製「Dektak 150」)で測定した。得られた表面プロファイルに基づき、試験体の外周端からの距離が0~2mmである領域における、NiP膜の表面の基準面からの高さの最大値(最大高さ)を求めた。同様の測定を7回行い、高さの最大値の平均を求めた。結果を表1中に示す。なお、試験体の外周端から試験体の中心に向かって2~5mm離れたNiP膜の表面上の第1点と、第1点から試験体の中心に向かって1~5mm離れたNiP膜の表面上の第2点とを通る直線を含む面を基準面とした。
(2) Surface profile measurement The surface profile of the NiP film of each specimen was measured with a stylus surface profiler (“Dektak 150” manufactured by Bruker). Based on the obtained surface profile, the maximum height (maximum height) of the surface of the NiP film from the reference plane was determined in a region with a distance of 0 to 2 mm from the outer peripheral edge of the specimen. The same measurement was performed 7 times, and the average of the maximum height values was obtained. The results are shown in Table 1. A first point on the surface of the NiP film 2 to 5 mm away from the outer peripheral edge of the test piece toward the center of the test piece and a NiP film 1 to 5 mm away from the first point toward the center of the test piece. A plane including a straight line passing through the second point on the surface was used as a reference plane.
(3)耐食性評価
 各試験体を45℃に加熱した濃度30%の硝酸に150秒間浸漬した。NiP膜の表面の光学顕微鏡像を画像処理して、表面に形成された穴の面積割合を求めた。結果を表1中に示す。
(3) Corrosion resistance evaluation Each specimen was immersed in 30% nitric acid heated to 45°C for 150 seconds. An optical microscope image of the surface of the NiP film was image-processed to determine the area ratio of holes formed on the surface. The results are shown in Table 1.
(4)研磨
 実施例1~8の試験体を研磨した。研磨した試験体の表面プロファイルを測定し、試験体の外周端からの距離が0~2mmである領域における、NiP膜の表面の基準面からの高さの最大値(最大高さ)を求めた。いずれの試験体も、ハードディスクドライブの磁気記録媒体の製造に使用に適した十分に小さい最大高さを有していた。
(4) Polishing The specimens of Examples 1 to 8 were polished. The surface profile of the polished specimen was measured, and the maximum height (maximum height) of the surface of the NiP film from the reference plane was obtained in the region where the distance from the outer peripheral edge of the specimen was 0 to 2 mm. . All specimens had a sufficiently small maximum height suitable for use in manufacturing magnetic recording media for hard disk drives.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、インジウムを0.18~1.8ppmの濃度で含有するめっき液を用いて形成した、インジウムを79~620ppmの濃度で含有する実施例1~8のNiP膜は、最大高さが小さかった。また、実施例1~8のNiP膜は、腐食穴の面積割合も小さかった。さらに、インジウムを0.36~1.44ppmの濃度で含有するめっき液を用いて形成した、インジウムを176~410ppmの濃度で含有する実施例2~7のNiP膜は、最大高さがさらに小さかった。インジウムを0.36~0.72ppmの濃度で含有するめっき液を用いて形成した、インジウムを176~194ppmの濃度で含有する実施例2~4のNiP膜は、最大高さが特に小さかった。 As shown in Table 1, the NiP films of Examples 1 to 8 containing indium at a concentration of 79 to 620 ppm, formed using a plating solution containing indium at a concentration of 0.18 to 1.8 ppm, The maximum height was too small. In addition, the NiP films of Examples 1 to 8 had small area ratios of corrosion holes. Furthermore, the NiP films of Examples 2 to 7 containing indium at a concentration of 176 to 410 ppm, which were formed using plating solutions containing indium at a concentration of 0.36 to 1.44 ppm, had even smaller maximum heights. rice field. The NiP films of Examples 2 to 4 containing indium at a concentration of 176 to 194 ppm formed using a plating solution containing indium at a concentration of 0.36 to 0.72 ppm had particularly small maximum heights.
 インジウムの濃度が0.18ppm未満、又は1.8ppm超であるめっき液を用いて形成した、インジウムの濃度が70ppm未満、又は620ppm超である比較例1~4のNiP膜は、最大高さが大きかった。比較例3、4のNiP膜は腐食穴の面積割合も大きかった。ビスマスを含有するめっき液を用いた比較例5、及びアンチモンを含有するめっき液を用いた比較例6のNiP膜は、最大高さが大きく、且つ腐食穴の面積割合も大きかった。モリブデンを含有するめっき液を用いた比較例7のNiP膜は、最大高さは小さかったが、腐食穴の面積割合が大きかった。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
The NiP films of Comparative Examples 1 to 4 with an indium concentration of less than 70 ppm or more than 620 ppm, formed using a plating solution having an indium concentration of less than 0.18 ppm or more than 1.8 ppm, have a maximum height of It was big. The NiP films of Comparative Examples 3 and 4 also had a large area ratio of corrosion holes. The NiP films of Comparative Example 5 using the plating solution containing bismuth and Comparative Example 6 using the plating solution containing antimony had a large maximum height and a large area ratio of corrosion holes. The NiP film of Comparative Example 7, which used the plating solution containing molybdenum, had a small maximum height, but a large area ratio of corrosion holes.
All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety.

Claims (10)

  1.  基板と、
     前記基板上に形成されたニッケル-リン合金膜と、
    を有し、
     前記ニッケル-リン合金膜がインジウムを70~620ppmの濃度で含有する、ニッケル-リン合金被覆基板。
    a substrate;
    a nickel-phosphorus alloy film formed on the substrate;
    has
    A nickel-phosphorus alloy coated substrate, wherein the nickel-phosphorus alloy film contains indium at a concentration of 70 to 620 ppm.
  2.  前記ニッケル-リン合金膜が、リンを10~13重量%の濃度で含有する、請求項1に記載のニッケル-リン合金被覆基板。 The nickel-phosphorus alloy coated substrate according to claim 1, wherein the nickel-phosphorus alloy film contains phosphorus at a concentration of 10 to 13% by weight.
  3.  前記ニッケル-リン合金膜が、前記インジウムを170~410ppmの濃度で含有する、請求項1又は2に記載のニッケル-リン合金被覆基板。 The nickel-phosphorus alloy coated substrate according to claim 1 or 2, wherein said nickel-phosphorus alloy film contains said indium at a concentration of 170 to 410 ppm.
  4.  前記ニッケル-リン合金膜が、ヨウ素を含まない、請求項1~3のいずれか一項に記載のニッケル-リン合金被覆基板。 The nickel-phosphorus alloy coated substrate according to any one of claims 1 to 3, wherein the nickel-phosphorus alloy film does not contain iodine.
  5.  ニッケルイオン、次亜リン酸イオン、錯化剤、及びインジウムイオンを含有し、
     前記インジウムイオンの濃度が0.18~1.8ppmである、ニッケル-リン合金膜の無電解めっきのための溶液。
    containing nickel ions, hypophosphite ions, a complexing agent, and indium ions;
    A solution for electroless plating of a nickel-phosphorus alloy film, wherein the indium ion concentration is 0.18-1.8 ppm.
  6.  前記インジウムイオンを0.3~1.5ppmの濃度で含有する、請求項5に記載の溶液。 The solution according to claim 5, containing the indium ions at a concentration of 0.3 to 1.5 ppm.
  7.  ヨウ素を含まない、請求項5又は6に記載の溶液。 The solution according to claim 5 or 6, which does not contain iodine.
  8.  鉛イオンをさらに含む、請求項5~7のいずれか一項に記載の溶液。 The solution according to any one of claims 5 to 7, further comprising lead ions.
  9.  請求項5~8のいずれか一項に記載の溶液を用いた無電解めっきによりニッケル-リン合金膜を形成することを含む、ニッケル-リン合金被覆基板の製造方法。 A method for producing a nickel-phosphorus alloy coated substrate, comprising forming a nickel-phosphorus alloy film by electroless plating using the solution according to any one of claims 5 to 8.
  10.  請求項1~4のいずれか一項に記載のニッケル-リン合金被覆基板を有する磁気記録媒体。 A magnetic recording medium having the nickel-phosphorus alloy-coated substrate according to any one of claims 1 to 4.
PCT/JP2022/015275 2021-06-03 2022-03-29 Nickel-phosphorus alloy coated substrate, solution for electroless plating of nickel-phosphorus alloy film, and method for producing nickel-phosphorus alloy coated substrate WO2022254923A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-093867 2021-06-03
JP2021093867A JP2022185929A (en) 2021-06-03 2021-06-03 Nickel phosphorus alloy coated substrate, solution for electroless plating nickel phosphorus alloy film, and method for manufacturing nickel phosphorus alloy coated substrate

Publications (1)

Publication Number Publication Date
WO2022254923A1 true WO2022254923A1 (en) 2022-12-08

Family

ID=84323047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015275 WO2022254923A1 (en) 2021-06-03 2022-03-29 Nickel-phosphorus alloy coated substrate, solution for electroless plating of nickel-phosphorus alloy film, and method for producing nickel-phosphorus alloy coated substrate

Country Status (3)

Country Link
JP (1) JP2022185929A (en)
TW (1) TW202307265A (en)
WO (1) WO2022254923A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194562A (en) * 2004-01-06 2005-07-21 Murata Mfg Co Ltd Electroless nickel plating liquid, and method for producing ceramic electronic component
JP2008169787A (en) * 2007-01-15 2008-07-24 Toyota Industries Corp Sliding member for compressor
JP2017535674A (en) * 2014-11-26 2017-11-30 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH Plating bath and method for electroless deposition of nickel layers
JP2018523019A (en) * 2015-07-17 2018-08-16 コベントヤ,インコーポレイテッド Electroless nickel-phosphorous plating bath having reduced ion concentration and method of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194562A (en) * 2004-01-06 2005-07-21 Murata Mfg Co Ltd Electroless nickel plating liquid, and method for producing ceramic electronic component
JP2008169787A (en) * 2007-01-15 2008-07-24 Toyota Industries Corp Sliding member for compressor
JP2017535674A (en) * 2014-11-26 2017-11-30 アトテツク・ドイチユラント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングAtotech Deutschland GmbH Plating bath and method for electroless deposition of nickel layers
JP2018523019A (en) * 2015-07-17 2018-08-16 コベントヤ,インコーポレイテッド Electroless nickel-phosphorous plating bath having reduced ion concentration and method of use

Also Published As

Publication number Publication date
JP2022185929A (en) 2022-12-15
TW202307265A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP6388910B2 (en) Electroless copper plating solution
EP2494094B1 (en) Immersion tin silver plating in electronics manufacture
JP5867761B2 (en) Blackening solution for black Cr-Co alloy plating film
JP2022141949A (en) Controlled method for depositing chromium layer or chromium alloy layer on at least one substrate
JP2017516920A (en) Aqueous electroless nickel plating bath and method of using the same
WO2022254923A1 (en) Nickel-phosphorus alloy coated substrate, solution for electroless plating of nickel-phosphorus alloy film, and method for producing nickel-phosphorus alloy coated substrate
JP2017525851A (en) Copper circuit, copper alloy circuit, and method for reducing light reflectivity of touch screen devices
JP6667525B2 (en) Plating bath and method for electroless deposition of nickel layer
KR101447110B1 (en) Lead-free and cadmium-free electroless plating solution, method of electroless plating using the same, and nickel plating layer using the same
JP2007154223A (en) Electroless nickel-plating liquid and plating method using the same
WO2019004057A1 (en) Electroless nickel strike plating solution and method for forming nickel plating film
WO2012052832A2 (en) Electroless nickel plating bath and electroless nickel plating method using same
WO2012046712A1 (en) Method for producing substrate for hard disk, and substrate for hard disk
KR101979870B1 (en) Spacer for camera lens and preparing method thereof
JPH0565661A (en) Production of electroless nickel plating film
JP2020117803A (en) Indium electroplating composition and method for electroplating indium on nickel
JP2018095926A (en) Electroless nickel-phosphorus plating bath
TWI725581B (en) A method for electrolytically passivating a surface of silver, silver alloy, gold, or gold alloy
JPH05266457A (en) Magnetic recording body
US11718916B2 (en) Electroless Co—W plating film
TWI781771B (en) Tin plating solution for drum plating
WO2021145300A1 (en) Electroless plating process and two-layer plating film
US20120114870A1 (en) Manufacturing method of noble metal plating layer
JP2015030885A (en) Ni-B ELECTROLESS PLATED FILM, AND MACHINE PART
US20220389588A1 (en) Electroless nickel alloy plating baths, a method for deposition of nickel alloys, nickel alloy deposits and uses of such formed nickel alloy deposits

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE