WO2022254699A1 - Zinc oxide-containing composition and food and beverage - Google Patents

Zinc oxide-containing composition and food and beverage Download PDF

Info

Publication number
WO2022254699A1
WO2022254699A1 PCT/JP2021/021392 JP2021021392W WO2022254699A1 WO 2022254699 A1 WO2022254699 A1 WO 2022254699A1 JP 2021021392 W JP2021021392 W JP 2021021392W WO 2022254699 A1 WO2022254699 A1 WO 2022254699A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
containing composition
zinc
mass
composition according
Prior art date
Application number
PCT/JP2021/021392
Other languages
French (fr)
Japanese (ja)
Inventor
泰崇 杉山
将光 森脇
健斗 鬼頭
寛央 福原
Original Assignee
太陽化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽化学株式会社 filed Critical 太陽化学株式会社
Priority to PCT/JP2021/021392 priority Critical patent/WO2022254699A1/en
Priority to JP2022502162A priority patent/JP7101324B1/en
Publication of WO2022254699A1 publication Critical patent/WO2022254699A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/294Inorganic additives, e.g. silica
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • the present invention relates to a zinc oxide-containing composition and food and drink containing it.
  • Zinc is found in large amounts in animal foods such as seafood and meat, especially in oysters. lacking in There are also known methods using seaweed powder, bird liver, wheat bran and rice bran extracts, but the foods that can be used are limited in terms of flavor.
  • Non-food minerals in the form of oxides, salts, protein complexes or their decomposition products, polysaccharide complexes or their decomposition products, modified starch complexes, cyclodextrin complexes, etc.
  • Complexes, yeast zinc, metalloenzymes, metal-activating enzymes and the like are generally used.
  • Water-soluble zinc gluconate and zinc sulfate are excellent in terms of application to food because they are easily water-soluble, but on the other hand, they are ionized, so they have a significant effect on taste, texture, color tone, etc. due to chemical reactions with food.
  • Insoluble yeast zinc has a significant adverse effect on flavor and color.
  • Milk, soy milk, and liquid diet are foods and drinks that are generally eaten as protein sources, but when the above water-soluble zinc gluconate, zinc sulfate, and insoluble zinc yeast are added to these, they react with the protein. It is difficult to apply because it spoils the appearance.
  • Patent Literature 1 discloses a food preparation in which a food emulsifier is added to zinc oxide.
  • Zinc oxide (specific gravity: 5.61) has a higher specific gravity than other metal oxides used in food and drink (for example, specific gravity of magnesium oxide: 3.58). Therefore, zinc oxide tends to settle in a liquid, and when used in foods and drinks, the sedimentation may affect the flavor, texture, and the like.
  • the dispersibility of zinc oxide used in food and drink has been improved by adding an emulsifier, but the effect of adding a zinc oxide composition on the flavor and texture of food and drink is further reduced. From the point of view of improving performance, it is necessary to improve the dispersibility in liquids or solutions.
  • the present invention has been made in view of the problems described above, and an object of the present invention is to provide a zinc oxide-containing composition with improved dispersibility in liquids or solutions.
  • One aspect of the invention is a zinc oxide-containing composition comprising zinc oxide having particular particle size parameters.
  • the particle diameter ( ⁇ m) at which the cumulative volume percentage of the zinc oxide-containing composition is 10%, the particle diameter ( ⁇ m) at which the cumulative volume percentage is 50%, and the particle diameter ( ⁇ m) at which the cumulative volume percentage is 90%, as measured by a laser diffraction light scattering method. are respectively D10, D50, and D90, (D90-D10)/D50 is less than 2.0.
  • Another aspect of the present invention is a food or drink containing the zinc oxide-containing composition described above.
  • a zinc oxide-containing composition according to an embodiment contains zinc oxide.
  • the cumulative volume percentage of the particles of the zinc oxide-containing composition measured by the laser diffraction light scattering method is 10%.
  • the particle diameter ( ⁇ m), the 50% particle diameter ( ⁇ m), and the 90% particle diameter ( ⁇ m) are D10, D50, and D90, respectively, (D90 ⁇ D10)/D50 is 2.0. is less than, preferably 1.5 or less, more preferably 1.0 or less.
  • the lower limit of (D90-D10)/D50 is not particularly limited, but is preferably 0.1 or more, more preferably 0.2 or more, and even more preferably 0.3 or more.
  • (D90-D10)/D50 is an index indicating that the smaller the value, the smaller the variation in the particle size of the zinc oxide-containing composition.
  • the upper limit of D50 is preferably 1.0 ⁇ m or less, and 0 0.8 ⁇ m or less is more preferable, and 0.6 ⁇ m or less is even more preferable.
  • the lower limit of D50 is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and even more preferably 0.3 ⁇ m or more.
  • the upper limit of D50 of the zinc oxide-containing composition By setting the upper limit of D50 of the zinc oxide-containing composition to the above value, it is possible to improve the dispersibility when the zinc oxide-containing composition of the present embodiment is added to a solution.
  • the lower limit of D50 of the zinc oxide-containing composition By setting the lower limit of D50 of the zinc oxide-containing composition to the above value, the time required for pulverizing zinc oxide particles (refining treatment) is reduced while improving the dispersibility, and thus zinc oxide is contained. The manufacturing cost of the composition can be suppressed.
  • Addition components other than zinc oxide in the zinc oxide-containing composition of the present embodiment include polysaccharide thickeners and emulsifiers. Inclusion of the additive component can further improve the dispersibility of zinc oxide when the zinc oxide-containing composition is added to a liquid or solution. In the zinc oxide-containing composition, a part or all of the surface of the zinc oxide particles may be coated with the additive component. The details of each additive component will be described below.
  • Polysaccharide thickeners used in the zinc oxide-containing composition of the present embodiment include pectin, soybean polysaccharides, xanthan gum, gellan gum, carrageenan, alginic acid, agar, fucoidan, agaropectin, hyaluronic acid, chondroitin sulfate, karaya gum, porphyran, and welan gum.
  • galactomannans e.g., locust bean gum, guar gum, tara gum, etc.
  • tamarind seed gum glucomannan
  • psyllium seed gum macrohomopsis gum
  • pullulan curdlan
  • tragacanth gum ghatti gum
  • arabic gum arabinogalactan, farcereran
  • cellulose One or two selected from derivatives (e.g., carboxymethylcellulose sodium, carboxymethylcellulose calcium, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylethylcellulose, hydroxyethylcellulose, hydroxymethylcellulose, ethylcellulose, methylcellulose, water-soluble hemicellulose, etc.) The above are mentioned.
  • Emulsifiers used in the zinc oxide-containing composition of the present embodiment include polyglycerin fatty acid esters, sucrose fatty acid esters, glycerin fatty acid esters, propylene glycol fatty acid esters, sorbitan fatty acid esters, pentaerythritol fatty acid esters, organic acid fatty acid esters, and lecithin. 1 type or 2 or more types chosen from etc. are mentioned.
  • the lecithin used in the zinc oxide-containing composition of the present embodiment has a glycerin skeleton, a fatty acid residue, and a phosphoric acid residue as essential constituents, to which bases, polyhydric alcohols, etc. are bound, and is also called phospholipids. It is what is done.
  • lecithin with a purity of 60 or more is used as lecithin, and can also be used in the present invention. 80% or more, more preferably 90% or more. This lecithin purity is obtained by subtracting the weight of toluene-insoluble matter and acetone-soluble matter, taking advantage of the fact that lecithin is easily soluble in toluene and not soluble in acetone.
  • lecithin is defined by its structural characteristics and solubility in toluene and acetone, and chemically it is a mixture of compounds that satisfy these conditions.
  • Specific chemical species include phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidic acid, lysophosphatidylcholine, phosphatidylglycerol, N-amylphosphatidylethanolamine, phosphatidylserine, lysophosphatidylethanolamine and the like.
  • a mixture of two or more may be referred to as lecithin.
  • lecithin obtained from soybeans, sunflowers, rapeseeds and other oilseeds, eggs, and animal brains can be used, but sunflower lecithin is preferred from the viewpoint of flavor and dispersibility.
  • Enzymatically decomposed lecithin may also be used as lecithin.
  • Examples of the enzymatically decomposed lecithin include, but are not limited to, those obtained by subjecting plant lecithin or egg yolk lecithin to limited hydrolysis of the fatty acid ester moiety with phospholipase.
  • lysophosphatidylcholine obtained using phospholipase A, lysophosphatidylethanolamine, lysophosphatidylinositol, monoacylglycerophospholipids such as lysophosphatidylserine, and phosphatidylic acid obtained using phospholipase D, lyso phosphatidic acid, phosphatidylglycerol, lysophosphatidylglycerol and the like.
  • the above enzymatically decomposed lecithins may be used singly or in combination of two or more.
  • the enzymatically degraded lecithin used in the present invention is preferably one or more selected from the group consisting of lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylserine, more preferably. , lysophosphatidylcholine.
  • the phospholipase used for enzymatic decomposition may be of animal origin such as swine pancreas, plant origin such as cabbage, or microbial origin such as fungi, and has phospholipase A and/or D activity. Any one can be preferably used as long as it has.
  • the zinc oxide-containing composition of the present embodiment can also contain other components as long as the effects of the present embodiment are not impaired.
  • sugars sorbitol, xylitol, maltitol, lactitol
  • sorbitan xylose, arabinose, mannose, lactose, sugar, glucose, enzyme starch syrup, acid-saccharified starch syrup, maltose starch syrup, maltose, isomerized sugar, fructose, reduced maltose starch syrup, reduced starch syrup, honey, fructose glucose syrup, etc.
  • polysaccharide thickeners are excluded), polyhydric alcohols (glycerin, propylene glycol, ethylene glycol, etc.), chelating agents (citric acid, sodium citrate, lactic acid, sodium lactate, sodium hexametaphosphate, phosphoric acid, etc.), proteins ( casein, sodium caseinate, acid casein, micellar casein, soybean protein, pea protein, egg white powder, collagen, gelatin, etc.), peptides and amino acid sugars obtained by decomposing these, oils and fats (vegetable oil, animal fat, processed oil, etc.) ).
  • polyhydric alcohols glycerin, propylene glycol, ethylene glycol, etc.
  • chelating agents citric acid, sodium citrate, lactic acid, sodium lactate, sodium hexametaphosphate, phosphoric acid, etc.
  • proteins casein, sodium caseinate, acid casein, micellar casein, soybean protein, pea protein, egg white powder, collagen, gelatin, etc
  • the form of the zinc oxide-containing composition of the present embodiment includes powder or liquid (including slurry).
  • the zinc oxide-containing composition of the present embodiment is powdery, it preferably contains a polysaccharide thickener and an emulsifier in addition to the zinc oxide having the particle size distribution described above.
  • the lower limit of the zinc oxide content is preferably 1% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, and 15% by mass. % by mass or more is most preferred.
  • the upper limit of the zinc oxide content is preferably 100% or less, more preferably 80% or less, further preferably 50% or less, and 45%. Most preferred are:
  • the body can be supplied with an appropriate amount of zinc by ingesting the food or drink. .
  • the lower limit of the content of the thickening polysaccharide is preferably 0.1% by mass or more, more preferably 1% by mass or more, and 3% by mass or more. More preferred.
  • the upper limit of the polysaccharide thickener content is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 9% by mass or less.
  • the dispersibility of the powdery zinc oxide-containing composition when added to a liquid or solution can be enhanced.
  • the powdery zinc oxide-containing composition can be obtained while suppressing the influence on the taste and flavor of the food to which the powdery zinc oxide-containing composition is added. Dispersibility can be enhanced when the containing composition is added to a liquid or solution.
  • the lower limit of the emulsifier content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 0.1% by mass or more. is more preferred.
  • the upper limit of the emulsifier content is preferably 10% by mass or less, more preferably 9% by mass or less, and even more preferably 8% by mass or less, when the powdery zinc oxide-containing composition as a whole is 100% by mass.
  • the dispersibility of the powdery zinc oxide-containing composition when added to a liquid or solution can be enhanced.
  • the powdery zinc oxide-containing composition can be obtained while suppressing the influence on the taste and flavor of the food to which the powdery zinc oxide-containing composition is added. can enhance dispersibility when added to a liquid or solution.
  • a powdery zinc oxide-containing composition has excellent preservability, so it has the advantage of expanding the range of use of the zinc oxide-containing composition in foods.
  • the zinc oxide-containing composition of the present embodiment is liquid, it is selected from the group consisting of polysaccharide thickeners, emulsifiers and polyhydric alcohols, in addition to zinc oxide particles having the particle size distribution described above and water. It is preferable to include one or more.
  • the polyhydric alcohol used in the present invention is not particularly limited, and has a plurality of hydroxyl groups in the molecule. Examples thereof include glycerin, propylene glycol, ethylene glycol, and sugar alcohols, preferably glycerin.
  • the lower limit of the zinc oxide content is preferably 1% by mass or more, more preferably 2% by mass or more, and even more preferably 8% by mass or more.
  • the upper limit of the zinc oxide content is preferably 40% by mass or less, more preferably 35% by mass or less, and even more preferably 30% by mass or less. .
  • the body By setting the lower limit of the zinc oxide content to the above value, when the liquid zinc oxide-containing composition is added to food or drink, the body can be supplied with an appropriate amount of zinc by ingesting the food or drink.
  • the upper limit of the content of zinc oxide By setting the upper limit of the content of zinc oxide to the above value, aggregation of zinc oxide can be suppressed.
  • the lower limit of the polysaccharide thickener content is preferably 0.5% by mass or more, more preferably 1% by mass or more, and 1.5% by mass. The above is more preferable.
  • the upper limit of the content of the polysaccharide thickener is preferably 10% by mass or less, more preferably 9% by mass or less, and even more preferably 8% by mass or less.
  • the liquid zinc oxide-containing composition can be added to the liquid zinc oxide-containing composition while suppressing the effect on the taste and flavor of the food to which the liquid zinc oxide-containing composition is added. Dispersibility can be enhanced when the containing composition is added to a liquid or solution.
  • the lower limit of the emulsifier content is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and 0.05% by mass or more. is more preferred.
  • the upper limit of the emulsifier content is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less.
  • the dispersibility of the liquid zinc oxide-containing composition when added to a liquid or solution can be enhanced.
  • the upper limit of the emulsifier content can be set to the above value, the liquid zinc oxide-containing composition can be obtained while suppressing the influence on the taste and flavor of the food to which the liquid zinc oxide-containing composition is added. can enhance dispersibility when added to a liquid or solution.
  • the lower limit of the content in the case of containing a polyhydric alcohol is preferably 1% by mass or more, more preferably 15% by mass or more, and further preferably 30% by mass or more. Preferably, 40% by mass or more is most preferable.
  • the upper limit of the polyhydric alcohol content is preferably 60% by mass or less, more preferably 55% by mass or less, and even more preferably 50% by mass or less when the zinc oxide-containing composition as a whole is 100% by mass.
  • the dispersibility of the liquid zinc oxide-containing composition when added to a liquid or solution can be enhanced, and the generation or increase of microorganisms can be suppressed.
  • the liquid zinc oxide-containing composition can be added while suppressing the influence on the taste and flavor of the food to which the liquid zinc oxide-containing composition is added. Dispersibility can be enhanced when the composition is added to a liquid or solution.
  • the amount of water (ion-exchanged water) in the liquid zinc oxide-containing composition is the balance of each component described above.
  • the amount of water in the liquid zinc oxide-containing composition is from 1 to 99% by mass when the entire liquid zinc oxide-containing composition is taken as 100% by mass, from the viewpoint of maintaining the viscosity of the zinc oxide-containing composition at an appropriate level. %, more preferably 2 to 90% by mass, even more preferably 3 to 45% by mass.
  • a liquid zinc oxide-containing composition has the advantage of being easily dispersed in a liquid or solution as it is.
  • Dispersion index In the zinc oxide-containing composition of the present embodiment, when M1/M2 and M3/M4 obtained in the following dispersibility test are defined as the initial dispersity S and the dispersity T after standing for two weeks, respectively, T/S ⁇ It is preferable that the dispersion index represented by 100(%) is 80% or more. The dispersion index is more preferably 90% or higher, even more preferably 95% or higher. Although the upper limit of the dispersion index is not particularly limited, it is preferably as close to 100% as possible, but typically 99% or less. (Dispersibility test) (1) A mixed solution is prepared by adding a zinc oxide-containing composition to milk at 65° C. so that the zinc concentration is 5 mg/100 ml.
  • the mixed solution is stirred at 7000 rpm for 5 minutes, and then filled into a 100 ml (inner diameter: 3.7 cm, height: 12 cm) glass bottle (Mighty Vial No. 8).
  • the mixed solution is equally divided into three layers in the height direction into upper, middle and lower layers, and a part of the mixed solution is sampled from each of the upper and lower layers.
  • the zinc concentration (mg/100 ml) of each sample obtained by wet incineration of a part of the sample is determined using an atomic absorption photometer (Z-2000, manufactured by Hitachi Chemical Co., Ltd.).
  • the zinc concentrations (mg/100 ml) in the upper and lower layers are defined as M1 and M2, respectively.
  • the zinc concentration (mg/100ml) of the upper layer and the lower layer is determined by the same procedure as in (2) above, and M3 and M4 are obtained, respectively. .
  • the lower limit of the dispersion index By setting the lower limit of the dispersion index to 80% or more, it is possible to obtain a zinc oxide-containing composition that maintains a uniformly dispersed state over a long period of time when added to a liquid or solution.
  • the zinc oxide-containing composition of the present embodiment can be produced by mixing and stirring zinc oxide with each additive component described above.
  • the adjustment of the particle size parameter of zinc oxide which will be described later, may be performed before mixing with each additive component, or may be performed during the mixing process or after completion of mixing with each additive component.
  • the above parameters related to the particle size of the zinc oxide used in the zinc oxide-containing composition according to the embodiment can be set to desired values by highly controlling the D50 of zinc oxide as a raw material, the dispersion treatment before pulverization, and the pulverization treatment. adjusted. More specifically, D50 of zinc oxide as a raw material is preferably in the range of 5 ⁇ m to 200 ⁇ m. In the dispersing treatment before pulverization, it is preferable to disperse the particles of zinc oxide using a homomixer. The operating conditions when using a homomixer are preferably set in the range of 6000 to 10000 rpm for 5 to 20 minutes.
  • the particle size parameter can be controlled to a desired value by performing the pulverization treatment multiple times, or by performing the series of dispersion treatment and pulverization treatment described above again as necessary. can. Further, by repeating the series of dispersing treatment and pulverizing treatment described above as necessary, the particle size parameter can be controlled to a desired value.
  • Another aspect of the present embodiment is a food or drink containing the zinc oxide-containing composition described above.
  • Examples of food and drink include processed flour foods such as bread and noodles, processed rice products such as rice porridge and cooked rice, biscuits, cakes, candy, chocolate, rice crackers, rice crackers, tablets, and confectionery such as Japanese sweets.
  • soybean foods such as soybean processed foods, soft drinks, fruit juice drinks, milk drinks, lactic acid drinks, carbonated drinks, alcoholic beverages, yogurt, cheese, butter, ice cream, coffee whitener, whipped cream, Milk and other dairy products, soy sauce, miso, dressings, sauces, sauces, margarine, mayonnaise and other seasonings, ham, venin, sausage and other processed meat foods, boiled fish paste, hanpen, chikuwa, canned fish and other marine products, rich Oral and enteral nutritional diets such as liquid diets, semi-digested nutritional diets, component nutritional diets, and the like are included.
  • the zinc oxide-containing composition of the present embodiment is excellent in dispersibility in a solution, so among the above uses, it is suitable for use in beverages, and particularly suitable for use in dairy beverages.
  • the zinc oxide-containing composition of the present embodiment can be used for feeds, cosmetics, pharmaceutical compositions, etc., in addition to the above-described food and drink.
  • Feeds include, for example, feeds for pets, livestock, farmed fish, and the like.
  • cosmetics include lotions, milky lotions, bath agents, detergents such as cleansing agents, and toothpastes.
  • When used as a pharmaceutical composition it can be widely used as a quasi-drug. For example, it can be used for treatment or prevention of any disease for which zinc supplementation or maintenance is desired.
  • Example 10.0 g of zinc oxide (D50: 12.08 ⁇ m) was mixed with 20.0 g of ion-exchanged water and 10.0 g of glycerin, and mixed with a homomixer (manufactured by Primix, TK Robotics, 8,000 rpm, 10 minutes). and subjected to a rotation/revolution mixer treatment (manufactured by Thinky, NP-100, 2,000 rpm, 15 minutes, repeated twice) to homogenize the size of the zinc oxide particles and oxidize to 25% by mass. 30 g of zinc solution were obtained.
  • a homomixer manufactured by Primix, TK Robotics, 8,000 rpm, 10 minutes.
  • a rotation/revolution mixer treatment manufactured by Thinky, NP-100, 2,000 rpm, 15 minutes, repeated twice
  • Example 2 10.0 g of zinc oxide (D50: 12.08 ⁇ m) was mixed with 20.0 g of ion-exchanged water and 10.0 g of glycerin, and mixed in a homomixer (manufactured by Primix, TK Robotics, 8,000 rpm, 10 minutes). and subjected to a rotation/revolution mixer treatment (manufactured by THINKY Co., Ltd., NP-100, 2,000 rpm, 15 minutes, repeated once) to homogenize the size of zinc oxide particles and obtain 15% by mass of zinc oxide. 30 g of solution were obtained.
  • a homomixer manufactured by Primix, TK Robotics, 8,000 rpm, 10 minutes.
  • a rotation/revolution mixer treatment manufactured by THINKY Co., Ltd., NP-100, 2,000 rpm, 15 minutes, repeated once
  • Example 3 1.5 g of zinc oxide (D50: 12.08 ⁇ m), 1.5 g of ion-exchanged water, 46.55 g of reduced starch saccharified product (manufactured by Amamir Towa Kasei Kogyo Co., Ltd.) heated to 60 ° C., sodium hexametaphosphate (Yoneyama Chemical) Kogyo Co., Ltd.) 0.15 g, heated polyglycerin fatty acid ester (Sunsoft A-141E HLB value: 12.2, Taiyo Kagaku Co., Ltd.) 0.15 g, enzymatically decomposed lecithin (Sun Lecithin A-1, Taiyo Kagaku Co., Ltd.) Lysolecithin content 33%, HLB value: 12.0), mixed with 0.15 g, dispersed with a homomixer (manufactured by Primix, TK Robomix, 8,000 rpm, 10 minutes), and a rotation / revolution mixer Treatment (
  • Comparative Example 1-4 About 250 g of liquid zinc oxide-containing compositions of Comparative Examples 1 to 5 were prepared in the same manner as in Example 1, except for the rotation/revolution mixer treatment and homogenizer treatment, with the blending ratio of each component being the value shown in Table 1. got
  • Comparative Example 5 About 250 g of a liquid zinc oxide-containing composition of Comparative Example 5 was obtained in the same manner as in Example 3 except for the rotation/revolution mixer treatment and homogenizer treatment, with the blending ratio of each component being the value shown in Table 1. rice field.
  • Example 4 12.5 g of zinc oxide (D50: 12.08 ⁇ m) was mixed with 38.5 g of ion-exchanged water, dispersed with a homomixer (manufactured by Primix, TK Robomix, 8,000 rpm, 10 minutes), and rotated. - A revolution mixer treatment (manufactured by THINKY Co., Ltd., NP-100, 2,000 rpm, 10 minutes, once) was performed to homogenize the particle size of zinc oxide to obtain 30 g of a 25% by mass zinc oxide solution. This operation was repeated 10 times to obtain 300 g of zinc oxide-containing slurry containing zinc oxide whose particle size distribution had been adjusted.
  • a homomixer manufactured by Primix, TK Robomix, 8,000 rpm, 10 minutes
  • the zinc oxide-containing composition () was measured using a laser diffraction particle size distribution analyzer (LS-230, manufactured by Beckman Coulter, Inc.). The particle size distribution of was measured. D10, D50 and D90 determined from the obtained results were 0.24 ⁇ m, 0.37 ⁇ m and 0.68 ⁇ m, respectively. (D90-D10)/D50 calculated using the obtained D10, D50 and D90 was 1.21.
  • Example 5 To 38.64 g of ion-exchanged water, 1.8 g of heated polyglycerin fatty acid ester (Sunsoft Q-12D, HLB value 8.5, manufactured by Taiyo Kagaku Co., Ltd.), enzymatically degraded lecithin (Sun Lecithin A-1, HLB value: 12 0.0, manufactured by Taiyo Kagaku Co., Ltd.) was dissolved and mixed, and 9.0 g of zinc oxide (D50: 12.08 ⁇ m) was added to a homomixer (manufactured by Primix Co., Ltd., TK Robotics, 8,000 rpm, 10 minutes).
  • a homomixer manufactured by Primix Co., Ltd., TK Robotics, 8,000 rpm, 10 minutes.
  • Comparative Example 6-7 120 g of the powdery zinc oxide-containing composition of Comparative Examples 6-7 was prepared in the same manner as in Example 4, except for the rotation/revolution mixer treatment and homogenizer treatment, with the blending ratio of each component being the value shown in Table 2. Obtained.
  • Comparative Example 8 120 g of a powdery zinc oxide-containing composition of Comparative Example 8 was obtained in the same manner as in Example 5 except that the blending ratio of each component was set to the value shown in Table 2 and the rotation/revolution mixer treatment and homogenizer treatment were omitted. .
  • the mixed solution is divided evenly into three layers in the height direction to form an upper layer, a middle layer and a lower layer, and a part of the material collected from the upper layer and the lower layer is wet-ashed.
  • the zinc concentration (mg/100 ml) was determined using an atomic absorption photometer (Z-2000, manufactured by Hitachi Chemical Co., Ltd.).
  • the zinc concentrations (mg/100 ml) in the upper and lower layers were defined as M1 and M2, respectively.
  • the zinc concentration (mg/100ml) of the upper layer and lower layer was determined by the same procedure as in (2) above, and was defined as M3 and M4, respectively.
  • M1/M2 and M3/M4 were calculated as the initial dispersity S and the dispersity T after standing for two weeks.
  • a dispersion index represented by T/S ⁇ 100 (%) was calculated using the obtained initial dispersion degree S and dispersion degree T after standing for two weeks. The obtained results are shown in Tables 1 and 2.
  • the mixed solution stored at 5 ° C. for 1 week was subjected to the same procedure as in (2) above to obtain the zinc concentrations (mg / 100 ml) of the upper layer and the lower layer.
  • M6 was calculated and regarded as the degree of dispersion U after standing for one week.
  • a dispersion index represented by T/U ⁇ 100 (%) was calculated using the obtained dispersion degree U after standing for 1 week and dispersion degree T after standing for 2 weeks. The obtained results are shown in Tables 1 and 2.
  • each of the zinc oxide-containing compositions of Examples 1 to 5 had a dispersion index represented by T/U x 100 (%) of 80% or more, indicating that the amount of zinc oxide in milk was An unexpected effect was confirmed in that the well-dispersed state continued for a long period of time.
  • the zinc oxide-containing compositions of Comparative Examples 1 to 8 had a dispersion index represented by T/U ⁇ 100 (%) of less than 80%, and a dispersion index of U and 2 after standing for one week.
  • T dispersibility

Abstract

Provided is a zinc oxide-containing composition having improved dispersibility in liquids or solutions. One embodiment of the present invention is a zinc oxide-containing composition. The zinc oxide-containing composition satisfies that (D90-D10)/D50 is less than 2.0 where the 10 vol% cumulative volume particle size (μm), the 50 vol% cumulative volume particle size (μm), and the 90 vol% cumulative volume particle size (μm) of the zinc oxide-containing composition measured by laser diffraction scattering are D10, D50, and D90, respectively.

Description

酸化亜鉛含有組成物および飲食品Zinc oxide-containing composition and food and drink
 本発明は、酸化亜鉛含有組成物およびそれを含有する飲食品に関する。 The present invention relates to a zinc oxide-containing composition and food and drink containing it.
 近年、ミネラル摂取量の不足が指摘され、その原因により引き起こされる成人病の予防や健康維持等に関して、いろいろな種類のミネラルの役割が重要視されており、そのようなミネラルとして、カルシウムを初めとして、鉄、マグネシウム、亜鉛等が挙げられている。 In recent years, the lack of mineral intake has been pointed out, and the role of various types of minerals in preventing adult diseases and maintaining health, etc. caused by such causes has been emphasized. As such minerals, calcium is the first. , iron, magnesium, and zinc.
 その中で亜鉛は、ヨウ素、銅、モリブデン、セレン等と同様に生体内に不可欠な微量元素であり、生理作用としては、成長・骨格の発育、味覚・嗅覚の維持、成長・骨格の発育、皮膚及び毛、爪、皮膚腺等の付属器官の新陳代謝の活性化、創傷治癒、生殖機能維持、精神・行動への影響、免疫機能増加があり注目されている。しかし、日本における摂取状況は、令和元年の厚生省国民栄養調査では、成人で85%と不足傾向にある。 Among them, zinc, like iodine, copper, molybdenum, selenium, etc., is an indispensable trace element in the body. It is attracting attention because of activation of metabolism of skin, hair, nails, skin glands and other appendages, wound healing, maintenance of reproductive function, influence on mind and behavior, and increase of immune function. However, according to the National Nutrition Survey by the Ministry of Health and Welfare in the first year of Reiwa, the intake status in Japan is 85% for adults, which tends to be insufficient.
 亜鉛については、魚介類、肉類等の動物性食品に多く含まれ、特に牡蠣に多く含まれるが、牡蠣は特有の臭いが強く、栄養成分が季節的に変動するため加工適正が低く、汎用性に乏しい。また、海藻粉末、鳥獣類の肝臓、小麦ふすまや米糠の抽出物を用いる方法が知られているが、風味の点から使用できる食品に限りがある。食品以外のミネラルの形態として、酸化物、塩、たん白複合体又はその分解物の複合体、多糖類複合体、又はその分解物の複合体、その他加工デンプン複合体、シクロデキストリン複合体、その他複合体、酵母亜鉛、金属酵素、金属活性化酵素等が挙げられる。これらの中で、水溶性のグルコン酸亜鉛、硫酸亜鉛、水不溶性の酵母亜鉛等が一般に用いられている。水溶性のグルコン酸亜鉛、硫酸亜鉛は易水溶性のため食品への応用面において優れているが、反面、イオン化するために食品との化学反応等により味、食感、色調等へ著しく影響を与えるという欠点がある。不溶性の酵母亜鉛は、風味、色調に著しい悪影響を与える。牛乳、豆乳、流動食はたん白源として一般に広く食される飲食品であるが、これらに上記の水溶性のグルコン酸亜鉛、硫酸亜鉛、不溶性の酵母亜鉛を添加すると、たん白と反応したり外観を損なったりするために、適用は困難である。 Zinc is found in large amounts in animal foods such as seafood and meat, especially in oysters. lacking in There are also known methods using seaweed powder, bird liver, wheat bran and rice bran extracts, but the foods that can be used are limited in terms of flavor. Non-food minerals in the form of oxides, salts, protein complexes or their decomposition products, polysaccharide complexes or their decomposition products, modified starch complexes, cyclodextrin complexes, etc. Complexes, yeast zinc, metalloenzymes, metal-activating enzymes and the like. Among these, water-soluble zinc gluconate, zinc sulfate, water-insoluble zinc yeast and the like are generally used. Water-soluble zinc gluconate and zinc sulfate are excellent in terms of application to food because they are easily water-soluble, but on the other hand, they are ionized, so they have a significant effect on taste, texture, color tone, etc. due to chemical reactions with food. There is a drawback of giving Insoluble yeast zinc has a significant adverse effect on flavor and color. Milk, soy milk, and liquid diet are foods and drinks that are generally eaten as protein sources, but when the above water-soluble zinc gluconate, zinc sulfate, and insoluble zinc yeast are added to these, they react with the protein. It is difficult to apply because it spoils the appearance.
 上述したような課題を解決するため、飲食品用の添加物として不溶性の酸化亜鉛を用いることが知られている。たとえば、特許文献1には、酸化亜鉛に食品用乳化剤を加えた食品用製剤が開示されている。 In order to solve the above-mentioned problems, it is known to use insoluble zinc oxide as an additive for food and drink. For example, Patent Literature 1 discloses a food preparation in which a food emulsifier is added to zinc oxide.
特開2008-245622号公報JP 2008-245622 A
 酸化亜鉛(比重:5.61)は、飲食品に使用される他の金属酸化物(たとえば、酸化マグネシムの比重:3.58)と比べると、比重が大きい。このため、酸化亜鉛は液体中で沈降しやすいという特性があり、飲食品に用いた場合に沈降により、風味や食感等へ影響を及ぼすことがある。従来、乳化剤を添加することにより、飲食品に使用される酸化亜鉛の分散性向上が図られているが、飲食品の風味や食感等への酸化亜鉛組成物の添加の影響をより一層低減する観点から、液体または溶液における分散性を一層良好にすることが必要となっている。 Zinc oxide (specific gravity: 5.61) has a higher specific gravity than other metal oxides used in food and drink (for example, specific gravity of magnesium oxide: 3.58). Therefore, zinc oxide tends to settle in a liquid, and when used in foods and drinks, the sedimentation may affect the flavor, texture, and the like. Conventionally, the dispersibility of zinc oxide used in food and drink has been improved by adding an emulsifier, but the effect of adding a zinc oxide composition on the flavor and texture of food and drink is further reduced. From the point of view of improving performance, it is necessary to improve the dispersibility in liquids or solutions.
 本発明は上述のような課題を鑑みたものであり、液体または溶液への分散性が向上した酸化亜鉛含有組成物を提供することを目的とする。 The present invention has been made in view of the problems described above, and an object of the present invention is to provide a zinc oxide-containing composition with improved dispersibility in liquids or solutions.
 本発明のある態様は、特定の粒径パラメータを有する酸化亜鉛含む酸化亜鉛含有組成物である。レーザー回折光散乱法により測定される前記酸化亜鉛含有組成物の累積体積百分率が10%となる粒子径(μm)、50%となる粒子径(μm)、および90%となる粒子径(μm)を、それぞれ、D10、D50、D90としたとき、(D90-D10)/D50が2.0未満である。
 本発明の他の態様は、上述した酸化亜鉛含有組成物を含む飲食品である。
One aspect of the invention is a zinc oxide-containing composition comprising zinc oxide having particular particle size parameters. The particle diameter (μm) at which the cumulative volume percentage of the zinc oxide-containing composition is 10%, the particle diameter (μm) at which the cumulative volume percentage is 50%, and the particle diameter (μm) at which the cumulative volume percentage is 90%, as measured by a laser diffraction light scattering method. are respectively D10, D50, and D90, (D90-D10)/D50 is less than 2.0.
Another aspect of the present invention is a food or drink containing the zinc oxide-containing composition described above.
 本発明によれば、液体または溶液への分散性が向上した酸化亜鉛を含む酸化亜鉛含有組成物に関する技術を提供することができる。 According to the present invention, it is possible to provide a technique relating to zinc oxide-containing compositions containing zinc oxide with improved dispersibility in liquids or solutions.
 以下、本発明の実施形態について、詳細に説明する。なお、本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下であることを表す。 Hereinafter, embodiments of the present invention will be described in detail. In this specification, the notation "a to b" in the description of numerical ranges means from a to b, unless otherwise specified.
(酸化亜鉛含有組成物)
 実施形態に係る酸化亜鉛含有組成物は、酸化亜鉛を含有する。
 本実施形態では、レーザー回折光散乱法により測定される上記酸化亜鉛含有組成物の粒子の累積体積百分率(粒径が小さい方からプロットしたときの体積粒度分布における累積体積百分率)が10%となる粒子径(μm)、50%となる粒子径(μm)、および90%となる粒子径(μm)を、それぞれ、D10、D50、D90としたとき、(D90-D10)/D50が2.0未満であり、1.5以下が好ましく、1.0以下がより好ましい。一方、(D90-D10)/D50の下限は、特に限定されないが、0.1以上が好ましく、0.2以上がより好ましく、0.3以上がさらに好ましい。
 なお、(D90-D10)/D50は、その値が小さいほど、酸化亜鉛含有組成物の粒子径のばらつきが小さいことを示す指標である。
(Zinc oxide-containing composition)
A zinc oxide-containing composition according to an embodiment contains zinc oxide.
In the present embodiment, the cumulative volume percentage of the particles of the zinc oxide-containing composition measured by the laser diffraction light scattering method (the cumulative volume percentage in the volume particle size distribution when plotted from the smaller particle size) is 10%. When the particle diameter (μm), the 50% particle diameter (μm), and the 90% particle diameter (μm) are D10, D50, and D90, respectively, (D90−D10)/D50 is 2.0. is less than, preferably 1.5 or less, more preferably 1.0 or less. On the other hand, the lower limit of (D90-D10)/D50 is not particularly limited, but is preferably 0.1 or more, more preferably 0.2 or more, and even more preferably 0.3 or more.
(D90-D10)/D50 is an index indicating that the smaller the value, the smaller the variation in the particle size of the zinc oxide-containing composition.
 (D90-D10)/D50の上限を上記値とすることにより、本実施形態の酸化亜鉛含有組成物を液体または溶液に添加したときの分散性を向上させることができる。一方、(D90-D10)/D50の下限を上記値とすることにより、上記分散性の向上を図りつつ、後述する酸化亜鉛粒子の粉砕(微細化)処理に要する時間を低減し、ひいては酸化亜鉛含有組成物の製造コストを抑制することができる。 By setting the upper limit of (D90-D10)/D50 to the above value, it is possible to improve dispersibility when the zinc oxide-containing composition of the present embodiment is added to a liquid or solution. On the other hand, by setting the lower limit of (D90-D10)/D50 to the above value, it is possible to improve the dispersibility and reduce the time required for the pulverization (miniaturization) treatment of zinc oxide particles, which will be described later. The manufacturing cost of the containing composition can be suppressed.
 また、レーザー回折光散乱法により測定される上記酸化亜鉛含有組成物の累積体積百分率が50%となる粒径(μm)をD50としたとき、D50の上限は、1.0μm以下が好ましく、0.8μm以下がより好ましく、0.6μm以下がさらに好ましい。一方、D50の下限は、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.3μm以上がさらに好ましい。 In addition, when the particle size (μm) at which the cumulative volume percentage of the zinc oxide-containing composition is 50% measured by a laser diffraction light scattering method is defined as D50, the upper limit of D50 is preferably 1.0 μm or less, and 0 0.8 μm or less is more preferable, and 0.6 μm or less is even more preferable. On the other hand, the lower limit of D50 is preferably 0.1 μm or more, more preferably 0.2 μm or more, and even more preferably 0.3 μm or more.
 上記酸化亜鉛含有組成物のD50の上限を上記値とすることにより、本実施形態の酸化亜鉛含有組成物を溶液に添加したときの分散性を向上させることができる。また、上記酸化亜鉛含有組成物のD50の下限を上記値とすることにより、上記分散性の向上を図りつつ、酸化亜鉛粒子の粉砕(微細化処理)に要する時間を低減し、ひいては酸化亜鉛含有組成物の製造コストを抑制することができる。 By setting the upper limit of D50 of the zinc oxide-containing composition to the above value, it is possible to improve the dispersibility when the zinc oxide-containing composition of the present embodiment is added to a solution. In addition, by setting the lower limit of D50 of the zinc oxide-containing composition to the above value, the time required for pulverizing zinc oxide particles (refining treatment) is reduced while improving the dispersibility, and thus zinc oxide is contained. The manufacturing cost of the composition can be suppressed.
 本実施形態の酸化亜鉛含有組成物における、酸化亜鉛以外の添加成分として、増粘多糖類および乳化剤が挙げられる。当該添加成分を含むことにより、当該酸化亜鉛含有組成物を液体または溶液に添加したときの酸化亜鉛の分散性をより一層向上させることができる。なお、当該酸化亜鉛含有組成物において、酸化亜鉛粒子の表面の一部または全部が、当該添加成分により被覆されていてもよい。以下、各添加成分の詳細について説明する。 Addition components other than zinc oxide in the zinc oxide-containing composition of the present embodiment include polysaccharide thickeners and emulsifiers. Inclusion of the additive component can further improve the dispersibility of zinc oxide when the zinc oxide-containing composition is added to a liquid or solution. In the zinc oxide-containing composition, a part or all of the surface of the zinc oxide particles may be coated with the additive component. The details of each additive component will be described below.
(増粘多糖類)
 本実施形態の酸化亜鉛含有組成物に用いられる増粘多糖類としては、ペクチン、大豆多糖類、キサンタンガム、ジェランガム、カラギナン、アルギン酸、寒天、フコイダン、アガロペクチン、ヒアルロン酸、コンドロイチン硫酸、カラヤガム、ポルフィラン、ウェランガム、ガラクトマンナン(例えば、ローカストビーンガム、グァーガム、タラガム等)、タマリンドシードガム、グルコマンナン、サイリウムシードガム、マクロホモプシスガム、プルラン、カードラン、トラガントガム、ガティガム、アラビアガム、アラビノガラクタン、ファーセレラン、セルロース誘導体(例えば、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカルシウム、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース、ヒドロキシエチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、メチルセルロース、水溶性ヘミセルロース等)より選ばれる1種又は2種以上が挙げられる。
(polysaccharide thickener)
Polysaccharide thickeners used in the zinc oxide-containing composition of the present embodiment include pectin, soybean polysaccharides, xanthan gum, gellan gum, carrageenan, alginic acid, agar, fucoidan, agaropectin, hyaluronic acid, chondroitin sulfate, karaya gum, porphyran, and welan gum. , galactomannans (e.g., locust bean gum, guar gum, tara gum, etc.), tamarind seed gum, glucomannan, psyllium seed gum, macrohomopsis gum, pullulan, curdlan, tragacanth gum, ghatti gum, arabic gum, arabinogalactan, farcereran, cellulose One or two selected from derivatives (e.g., carboxymethylcellulose sodium, carboxymethylcellulose calcium, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxypropylethylcellulose, hydroxyethylcellulose, hydroxymethylcellulose, ethylcellulose, methylcellulose, water-soluble hemicellulose, etc.) The above are mentioned.
(乳化剤)
 本実施形態の酸化亜鉛含有組成物に用いられる乳化剤としては、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ペンタエリスリトール脂肪酸エステル、有機酸脂肪酸エステル、レシチン等より選ばれる1種又は2種以上が挙げられる。
(emulsifier)
Emulsifiers used in the zinc oxide-containing composition of the present embodiment include polyglycerin fatty acid esters, sucrose fatty acid esters, glycerin fatty acid esters, propylene glycol fatty acid esters, sorbitan fatty acid esters, pentaerythritol fatty acid esters, organic acid fatty acid esters, and lecithin. 1 type or 2 or more types chosen from etc. are mentioned.
<レシチン>
 本実施形態の酸化亜鉛含有組成物に用いられるレシチンとはグリセリン骨格と脂肪酸残基及びリン酸残基を必須構成分とし、これに塩基や多価アルコール等が結合したもので、リン脂質とも称されるものである。産業的にはレシチン純度60以上のものがレシチンとして利用されており、本発明でも利用できるが、好ましくは一般に風味や色の観点から高純度レシチンと称されるものであり、これはレシチン純度が80%以上、より好ましくは90%以上のものである。このレシチン純度は、レシチンがトルエンに溶解しやすくアセトンに溶解しない性質を利用して、トルエン不溶物とアセトン可溶物の重量を差し引く事により求められる。なお、レシチンは上述のように構造的特徴やトルエン・アセトンに対する溶解性で定義されるが、化学的にはこれらの条件を満たす化合物の混合物である。具体的な化学種としてはホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルイノシトール、ホスファチジン酸、リゾホスファチジルコリン、ホスファチジルグリセロール、N-アミルホスファチジルエタノールアミン、ホスファチジルセリン、リゾホスファチジルエタノールアミン等が挙げられ、これら個別の化学種又は2種以上の混合物をレシチンと称してもよい。なお、レシチンの起源は特に問わず、大豆、ヒマワリ、ナタネその他油糧種子や、卵、動物の脳から得られたものが使用できるが、風味、分散性の観点から、ヒマワリレシチンが好ましい。
<Lecithin>
The lecithin used in the zinc oxide-containing composition of the present embodiment has a glycerin skeleton, a fatty acid residue, and a phosphoric acid residue as essential constituents, to which bases, polyhydric alcohols, etc. are bound, and is also called phospholipids. It is what is done. Industrially, lecithin with a purity of 60 or more is used as lecithin, and can also be used in the present invention. 80% or more, more preferably 90% or more. This lecithin purity is obtained by subtracting the weight of toluene-insoluble matter and acetone-soluble matter, taking advantage of the fact that lecithin is easily soluble in toluene and not soluble in acetone. As described above, lecithin is defined by its structural characteristics and solubility in toluene and acetone, and chemically it is a mixture of compounds that satisfy these conditions. Specific chemical species include phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidic acid, lysophosphatidylcholine, phosphatidylglycerol, N-amylphosphatidylethanolamine, phosphatidylserine, lysophosphatidylethanolamine and the like. A mixture of two or more may be referred to as lecithin. The origin of lecithin is not particularly limited, and lecithin obtained from soybeans, sunflowers, rapeseeds and other oilseeds, eggs, and animal brains can be used, but sunflower lecithin is preferred from the viewpoint of flavor and dispersibility.
 また、レシチンとして、酵素分解レシチンを用いてもよい。当該酵素分解レシチンとしては、例えば、植物レシチン又は卵黄レシチンをホスホリパーゼによって脂肪酸エステル部分を限定的に加水分解する事で得られるものが挙げられるが、これらに限定されない。具体的には、例えば、ホスホリパーゼAを用いて得られるリゾホスファチジルコリン、リゾホスファチジルエタノールアミン、リゾホスファチジルイノシートル、リゾホスファチジルセリン等のモノアシルグリセロリン脂質、及びホスホリパーゼDを用いて得られるホスファチジル酸、リゾホスファチジン酸、ホスファチジルグリセロール、リゾホスファチジルグリセロール等が挙げられる。本発明に用いられる酵素分解レシチンとしては、上記のような酵素分解レシチンを1種で用いてもよく、また、2種以上を併用して用いてもよい。本発明に用いられる酵素分解レシチンとしては、風味、分散性の観点から好ましくはリゾホスファチジルコリン、リゾホスファチジルエタノールアミン、リゾホスファチジルセリンからなる群より選択される1種又は2種以上であり、より好ましくは、リゾホスファチジルコリンである。 Enzymatically decomposed lecithin may also be used as lecithin. Examples of the enzymatically decomposed lecithin include, but are not limited to, those obtained by subjecting plant lecithin or egg yolk lecithin to limited hydrolysis of the fatty acid ester moiety with phospholipase. Specifically, for example, lysophosphatidylcholine obtained using phospholipase A, lysophosphatidylethanolamine, lysophosphatidylinositol, monoacylglycerophospholipids such as lysophosphatidylserine, and phosphatidylic acid obtained using phospholipase D, lyso phosphatidic acid, phosphatidylglycerol, lysophosphatidylglycerol and the like. As the enzymatically decomposed lecithin used in the present invention, the above enzymatically decomposed lecithins may be used singly or in combination of two or more. From the viewpoint of flavor and dispersibility, the enzymatically degraded lecithin used in the present invention is preferably one or more selected from the group consisting of lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylserine, more preferably. , lysophosphatidylcholine.
 酵素分解レシチンの製造に際し、酵素分解に用いるホスホリパーゼとしては、豚膵臓等の動物起源、キャベツ等の植物起源、又はカビ類等の微生物起源等の由来を問わず、ホスホリパーゼA及び/又はD活性を有したものであればいずれも好ましく使用できる。 In the production of enzymatically decomposed lecithin, the phospholipase used for enzymatic decomposition may be of animal origin such as swine pancreas, plant origin such as cabbage, or microbial origin such as fungi, and has phospholipase A and/or D activity. Any one can be preferably used as long as it has.
(その他の成分)
 本実施形態の酸化亜鉛含有組成物は、本実施形態の効果を損なわない範囲において他の成分も含有可能であり、特に限定するものではないが、例えば、水、澱粉類(例えば、澱粉、カルボキシメチルスターチナトリウム、カルボキシメチルスターチ、ヒドロキシプロピルスターチ、α化澱粉、リン酸化澱粉、リン酸架橋澱粉、オクテニルコハク酸澱粉ナトリウム、酸化澱粉、難消化性澱粉等)、糖類(ソルビトール、キシリトール、マルチトール、ラクチトール、ソルビタン、キシロース、アラビノース、マンノース、乳糖、砂糖、ブドウ糖、酵素水飴、 酸糖化水飴、麦芽糖水飴、麦芽糖、異性化糖、果糖、還元麦芽糖水飴、還元澱粉糖水飴、蜂蜜、果糖ブドウ糖液糖等、但し、増粘多糖類は除く)、多価アルコール(グリセリン、プロピレングリコール、エチレングリコール等)、キレート剤(クエン酸、クエン酸ナトリウム、乳酸、乳酸ナトリウム、ヘキサメタリン酸ナトリウム、リン酸等)、タンパク質(カゼイン、カゼインナトリウム、酸カゼイン、ミセルカゼイン、大豆タンパク、えんどう豆タンパク、卵白粉末、コラーゲン、ゼラチン等)、これらを分解したぺプチドやアミノ酸類糖、油脂類(植物油、動物脂、加工油脂等)を含有することができる。
(other ingredients)
The zinc oxide-containing composition of the present embodiment can also contain other components as long as the effects of the present embodiment are not impaired. Sodium methyl starch, carboxymethyl starch, hydroxypropyl starch, pregelatinized starch, phosphated starch, phosphate cross-linked starch, sodium octenyl succinate, oxidized starch, resistant starch, etc.), sugars (sorbitol, xylitol, maltitol, lactitol) , sorbitan, xylose, arabinose, mannose, lactose, sugar, glucose, enzyme starch syrup, acid-saccharified starch syrup, maltose starch syrup, maltose, isomerized sugar, fructose, reduced maltose starch syrup, reduced starch syrup, honey, fructose glucose syrup, etc. However, polysaccharide thickeners are excluded), polyhydric alcohols (glycerin, propylene glycol, ethylene glycol, etc.), chelating agents (citric acid, sodium citrate, lactic acid, sodium lactate, sodium hexametaphosphate, phosphoric acid, etc.), proteins ( casein, sodium caseinate, acid casein, micellar casein, soybean protein, pea protein, egg white powder, collagen, gelatin, etc.), peptides and amino acid sugars obtained by decomposing these, oils and fats (vegetable oil, animal fat, processed oil, etc.) ).
 本実施形態の酸化亜鉛含有組成物の形態としては、粉末状または液体状(スラリー状を含む)が挙げられる。 The form of the zinc oxide-containing composition of the present embodiment includes powder or liquid (including slurry).
(粉末状酸化亜鉛含有組成物)
 本実施形態の酸化亜鉛含有組成物が粉末状の場合には、上述した粒径分布を有する酸化亜鉛の他に、増粘多糖類や乳化剤を含むことが好ましい。
(Powder zinc oxide-containing composition)
When the zinc oxide-containing composition of the present embodiment is powdery, it preferably contains a polysaccharide thickener and an emulsifier in addition to the zinc oxide having the particle size distribution described above.
 粉末状の酸化亜鉛含有組成物全体を100質量%としたとき、酸化亜鉛の含有率の下限は、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上がさらに好ましく、15質量%以上が最も好ましい。一方、粉末状の酸化亜鉛含有組成物全体を100質量%としたとき、酸化亜鉛の含有率の上限は、100%以下が好ましく、80%以下がより好ましく、50%以下がさらに好ましく、45%以下が最も好ましい。 When the powdery zinc oxide-containing composition as a whole is 100% by mass, the lower limit of the zinc oxide content is preferably 1% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, and 15% by mass. % by mass or more is most preferred. On the other hand, when the entire powdery zinc oxide-containing composition is 100% by mass, the upper limit of the zinc oxide content is preferably 100% or less, more preferably 80% or less, further preferably 50% or less, and 45%. Most preferred are:
 酸化亜鉛の含有率の下限を上記値とすることにより、例えば、粉末状の酸化亜鉛含有組成物を飲食品に添加したとき、当該飲食品の摂取により体に適量な亜鉛を補給することができる。 By setting the lower limit of the zinc oxide content to the above value, for example, when the powdery zinc oxide-containing composition is added to food or drink, the body can be supplied with an appropriate amount of zinc by ingesting the food or drink. .
 粉末状の酸化亜鉛含有組成物全体を100質量%としたとき、増粘多糖類の含有率の下限は、0.1質量%以上が好ましく、1質量%以上がより好ましく、3質量%以上がさらに好ましい。一方、酸化亜鉛含有組成物全体を100質量%としたとき、増粘多糖類の含有率の上限は、15質量%以下が好ましく、10質量%以下がより好ましく、9質量%以下がさらに好ましい。 When the powdery zinc oxide-containing composition as a whole is 100% by mass, the lower limit of the content of the thickening polysaccharide is preferably 0.1% by mass or more, more preferably 1% by mass or more, and 3% by mass or more. More preferred. On the other hand, when the zinc oxide-containing composition as a whole is taken as 100% by mass, the upper limit of the polysaccharide thickener content is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 9% by mass or less.
 増粘多糖類の含有率の下限を上記値とすることにより、粉末状の酸化亜鉛含有組成物を液体または溶液に添加したときの分散性を高めることができる。一方、増粘多糖類の含有率の上限を上記値とすることにより、粉末状の酸化亜鉛含有組成物の添加対象となる食品の味や風味への影響を抑制しつつ、粉末状の酸化亜鉛含有組成物を液体または溶液に添加したときの分散性を高めることができる。 By setting the lower limit of the polysaccharide thickener content to the above value, the dispersibility of the powdery zinc oxide-containing composition when added to a liquid or solution can be enhanced. On the other hand, by setting the upper limit of the polysaccharide thickener content to the above value, the powdery zinc oxide-containing composition can be obtained while suppressing the influence on the taste and flavor of the food to which the powdery zinc oxide-containing composition is added. Dispersibility can be enhanced when the containing composition is added to a liquid or solution.
 粉末状の酸化亜鉛含有組成物全体を100質量%としたとき、乳化剤の含有率の下限は、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましい。一方、粉末状の酸化亜鉛含有組成物全体を100質量%としたとき、乳化剤の含有率の上限は、10質量%以下が好ましく、9質量%以下がより好ましく、8質量%以下がさらに好ましい。 When the powdery zinc oxide-containing composition as a whole is 100% by mass, the lower limit of the emulsifier content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 0.1% by mass or more. is more preferred. On the other hand, the upper limit of the emulsifier content is preferably 10% by mass or less, more preferably 9% by mass or less, and even more preferably 8% by mass or less, when the powdery zinc oxide-containing composition as a whole is 100% by mass.
 乳化剤の含有率の下限を上記値とすることにより、粉末状の酸化亜鉛含有組成物を液体または溶液に添加したときの分散性を高めることができる。一方、乳化剤の含有率の上限を上記値とすることにより、粉末状の酸化亜鉛含有組成物の添加対象となる食品の味や風味への影響を抑制しつつ、粉末状の酸化亜鉛含有組成物を液体または溶液に添加したときの分散性を高めることができる。 By setting the lower limit of the emulsifier content to the above value, the dispersibility of the powdery zinc oxide-containing composition when added to a liquid or solution can be enhanced. On the other hand, by setting the upper limit of the emulsifier content to the above value, the powdery zinc oxide-containing composition can be obtained while suppressing the influence on the taste and flavor of the food to which the powdery zinc oxide-containing composition is added. can enhance dispersibility when added to a liquid or solution.
 粉末状の酸化亜鉛含有組成物は、保存性に優れるため、当該酸化亜鉛含有組成物の食品への利用範囲が広がるという利点がある。 A powdery zinc oxide-containing composition has excellent preservability, so it has the advantage of expanding the range of use of the zinc oxide-containing composition in foods.
(液体状酸化亜鉛含有組成物)
 本実施形態の酸化亜鉛含有組成物が液体状の場合には、上述した粒径分布を有する酸化亜鉛の粒子および水の他に、増粘多糖類、乳化剤および多価アルコールからなる群より選ばれる1種以上を含むことが好ましい。本発明における多価アルコールは、特に限定されるものではなく、分子中に複数の水酸基を有するものであり、例えばグリセリン、プロピレングリコール、エチレングリコール、糖アルコール等があげられ、好ましくはグリセリンである。
(Liquid Zinc Oxide-Containing Composition)
When the zinc oxide-containing composition of the present embodiment is liquid, it is selected from the group consisting of polysaccharide thickeners, emulsifiers and polyhydric alcohols, in addition to zinc oxide particles having the particle size distribution described above and water. It is preferable to include one or more. The polyhydric alcohol used in the present invention is not particularly limited, and has a plurality of hydroxyl groups in the molecule. Examples thereof include glycerin, propylene glycol, ethylene glycol, and sugar alcohols, preferably glycerin.
 液体状の酸化亜鉛含有組成物全体を100質量%としたとき、酸化亜鉛の含有率の下限は、1質量%以上が好ましく、2質量%以上がより好ましく、8質量%以上がさらに好ましい。一方、液体状の酸化亜鉛含有組成物全体を100質量%としたとき、酸化亜鉛の含有率の上限は、40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下がさらに好ましい。 When the entire liquid zinc oxide-containing composition is 100% by mass, the lower limit of the zinc oxide content is preferably 1% by mass or more, more preferably 2% by mass or more, and even more preferably 8% by mass or more. On the other hand, when the entire liquid zinc oxide-containing composition is 100% by mass, the upper limit of the zinc oxide content is preferably 40% by mass or less, more preferably 35% by mass or less, and even more preferably 30% by mass or less. .
 酸化亜鉛の含有率の下限を上記値とすることにより、液体状の酸化亜鉛含有組成物を飲食品に添加したとき、当該飲食品の摂取により体に適量な亜鉛を補給することができる。酸化亜鉛の含有率の上限を上記値とすることにより、酸化亜鉛が凝集することを抑制することができる。 By setting the lower limit of the zinc oxide content to the above value, when the liquid zinc oxide-containing composition is added to food or drink, the body can be supplied with an appropriate amount of zinc by ingesting the food or drink. By setting the upper limit of the content of zinc oxide to the above value, aggregation of zinc oxide can be suppressed.
 液体状の酸化亜鉛含有組成物全体を100質量%としたとき、増粘多糖類の含有率の下限は、0.5質量%以上が好ましく、1質量%以上がより好ましく、1.5質量%以上がさらに好ましい。一方、酸化亜鉛含有組成物全体を100質量%としたとき、増粘多糖類の含有率の上限は、10質量%以下が好ましく、9質量%以下がより好ましく、8質量%以下がさらに好ましい。 When the entire liquid zinc oxide-containing composition is 100% by mass, the lower limit of the polysaccharide thickener content is preferably 0.5% by mass or more, more preferably 1% by mass or more, and 1.5% by mass. The above is more preferable. On the other hand, when the zinc oxide-containing composition as a whole is 100% by mass, the upper limit of the content of the polysaccharide thickener is preferably 10% by mass or less, more preferably 9% by mass or less, and even more preferably 8% by mass or less.
 増粘多糖類の含有率の下限を上記値とすることにより、液体状の酸化亜鉛含有組成物を液体または溶液に添加したときの分散性を高めることができる。一方、増粘多糖類の含有率の上限を上記値とすることにより、液体状の酸化亜鉛含有組成物の添加対象となる食品の味や風味への影響を抑制しつつ、液体状の酸化亜鉛含有組成物を液体または溶液に添加したときの分散性を高めることができる。 By setting the lower limit of the polysaccharide thickener content to the above value, it is possible to enhance the dispersibility when the liquid zinc oxide-containing composition is added to a liquid or solution. On the other hand, by setting the upper limit of the polysaccharide thickener content to the above value, the liquid zinc oxide-containing composition can be added to the liquid zinc oxide-containing composition while suppressing the effect on the taste and flavor of the food to which the liquid zinc oxide-containing composition is added. Dispersibility can be enhanced when the containing composition is added to a liquid or solution.
 液体状の酸化亜鉛含有組成物全体を100質量%としたとき、乳化剤の含有率の下限は、0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上がさらに好ましい。一方、液体状の酸化亜鉛含有組成物全体を100質量%としたとき、乳化剤の含有率の上限は、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下がさらに好ましい。 When the entire liquid zinc oxide-containing composition is 100% by mass, the lower limit of the emulsifier content is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and 0.05% by mass or more. is more preferred. On the other hand, when the entire liquid zinc oxide-containing composition is taken as 100% by mass, the upper limit of the emulsifier content is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less.
 乳化剤の含有率の下限を上記値とすることにより、液体状の酸化亜鉛含有組成物を液体または溶液に添加したときの分散性を高めることができる。一方、乳化剤の含有率の上限を上記値とすることにより、液体状の酸化亜鉛含有組成物の添加対象となる食品の味や風味への影響を抑制しつつ、液体状の酸化亜鉛含有組成物を液体または溶液に添加したときの分散性を高めることができる。 By setting the lower limit of the emulsifier content to the above value, the dispersibility of the liquid zinc oxide-containing composition when added to a liquid or solution can be enhanced. On the other hand, by setting the upper limit of the emulsifier content to the above value, the liquid zinc oxide-containing composition can be obtained while suppressing the influence on the taste and flavor of the food to which the liquid zinc oxide-containing composition is added. can enhance dispersibility when added to a liquid or solution.
 液体状の酸化亜鉛含有組成物全体を100質量%としたとき、多価アルコールを含む場合の含有率の下限は、1質量%以上が好ましく、15質量%以上より好ましく、30質量%以上がさらに好ましく、40質量%以上が最も好ましい。一方、酸化亜鉛含有組成物全体を100質量%としたとき、多価アルコールの含有率の上限は、60質量%以下が好ましく、55質量%以下がより好ましく、50質量%以下がさらに好ましい。 When the entire liquid zinc oxide-containing composition is 100% by mass, the lower limit of the content in the case of containing a polyhydric alcohol is preferably 1% by mass or more, more preferably 15% by mass or more, and further preferably 30% by mass or more. Preferably, 40% by mass or more is most preferable. On the other hand, the upper limit of the polyhydric alcohol content is preferably 60% by mass or less, more preferably 55% by mass or less, and even more preferably 50% by mass or less when the zinc oxide-containing composition as a whole is 100% by mass.
 多価アルコールの含有率の下限を上記値とすることにより、液体状の酸化亜鉛含有組成物を液体または溶液に添加したときの分散性を高めつつ、微生物の発生または増加を抑制することができる。一方、多価アルコールの含有率の上限を上記値とすることにより、液体状の酸化亜鉛含有組成物の添加対象となる食品の味や風味への影響を抑制しつつ、液体状の酸化亜鉛含有組成物を液体または溶液に添加したときの分散性を高めることができる。 By setting the lower limit of the content of the polyhydric alcohol to the above value, the dispersibility of the liquid zinc oxide-containing composition when added to a liquid or solution can be enhanced, and the generation or increase of microorganisms can be suppressed. . On the other hand, by setting the upper limit of the polyhydric alcohol content to the above value, the liquid zinc oxide-containing composition can be added while suppressing the influence on the taste and flavor of the food to which the liquid zinc oxide-containing composition is added. Dispersibility can be enhanced when the composition is added to a liquid or solution.
(水)
 液体状の酸化亜鉛含有組成物における水(イオン交換水)の量は、上述した各成分の残余部分である。液体状の酸化亜鉛含有組成物における水の量は、当該酸化亜鉛含有組成物の粘性を適度に保つ観点から、液体状の酸化亜鉛含有組成物全体を100質量%としたとき、1~99質量%が好ましく、2~90質量%がより好ましく、3~45質量%がさらに好ましい。
(water)
The amount of water (ion-exchanged water) in the liquid zinc oxide-containing composition is the balance of each component described above. The amount of water in the liquid zinc oxide-containing composition is from 1 to 99% by mass when the entire liquid zinc oxide-containing composition is taken as 100% by mass, from the viewpoint of maintaining the viscosity of the zinc oxide-containing composition at an appropriate level. %, more preferably 2 to 90% by mass, even more preferably 3 to 45% by mass.
 液体状の酸化亜鉛含有組成物は、液体または溶液にそのまま分散させやすいという利点がある。 A liquid zinc oxide-containing composition has the advantage of being easily dispersed in a liquid or solution as it is.
(分散指数)
 本実施形態の酸化亜鉛含有組成物は、下記分散性試験で得られるM1/M2およびM3/M4を、それぞれ、初期分散度S、2週間静置後分散度Tとしたとき、T/S×100(%)で表される分散指数が80%以上であることが好ましい。当該分散指数は、90%以上がより好ましく、95%以上がさらに好ましい。当該分散指数の上限に特に制限はないが、100%に近いほど好ましいが、典型的には99%以下である。
(分散性試験)
(1)亜鉛濃度が5mg/100mlになるように、酸化亜鉛含有組成物を65℃の牛乳に加えて混合溶液を作製する。前記混合溶液を、7000rpmで5分間撹拌した後、100ml(内径:3.7cm、高さ:12cm)のガラス瓶(マイティバイアルNo.8)に充填する。
(2)撹拌停止直後の初期状態において、前記混合溶液を高さ方向に均等に3分割し、上層、中層および下層とし、前記上層および前記下層からそれぞれ前記混合溶液の一部を採取する。採取物の一部を湿式灰化して得られる各試料について、原子吸光光度計(日立化成社製、Z-2000)により亜鉛濃度(mg/100ml)を求める。上層および下層の亜鉛濃度(mg/100ml)をそれぞれ、M1、M2とする。
(3)撹拌停止後、5℃で2週間保存した前記混合溶液について、上記(2)と同様な手順により、上層および下層の亜鉛濃度(mg/100ml)を求め、それぞれ、M3、M4とする。
(Dispersion index)
In the zinc oxide-containing composition of the present embodiment, when M1/M2 and M3/M4 obtained in the following dispersibility test are defined as the initial dispersity S and the dispersity T after standing for two weeks, respectively, T/S× It is preferable that the dispersion index represented by 100(%) is 80% or more. The dispersion index is more preferably 90% or higher, even more preferably 95% or higher. Although the upper limit of the dispersion index is not particularly limited, it is preferably as close to 100% as possible, but typically 99% or less.
(Dispersibility test)
(1) A mixed solution is prepared by adding a zinc oxide-containing composition to milk at 65° C. so that the zinc concentration is 5 mg/100 ml. The mixed solution is stirred at 7000 rpm for 5 minutes, and then filled into a 100 ml (inner diameter: 3.7 cm, height: 12 cm) glass bottle (Mighty Vial No. 8).
(2) In the initial state immediately after stopping the stirring, the mixed solution is equally divided into three layers in the height direction into upper, middle and lower layers, and a part of the mixed solution is sampled from each of the upper and lower layers. The zinc concentration (mg/100 ml) of each sample obtained by wet incineration of a part of the sample is determined using an atomic absorption photometer (Z-2000, manufactured by Hitachi Chemical Co., Ltd.). The zinc concentrations (mg/100 ml) in the upper and lower layers are defined as M1 and M2, respectively.
(3) After stopping stirring, for the mixed solution stored at 5°C for 2 weeks, the zinc concentration (mg/100ml) of the upper layer and the lower layer is determined by the same procedure as in (2) above, and M3 and M4 are obtained, respectively. .
 上記分散指数の下限が80%以上であることにより、液体または溶液に添加したとき、長期にわたって均一に分散した状態が継続する酸化亜鉛含有組成物とすることができる。 By setting the lower limit of the dispersion index to 80% or more, it is possible to obtain a zinc oxide-containing composition that maintains a uniformly dispersed state over a long period of time when added to a liquid or solution.
(酸化亜鉛含有組成物の製造方法)
 本実施形態の酸化亜鉛含有組成物は、酸化亜鉛に上述した各添加成分を混合、撹拌することで製造することができる。後述する酸化亜鉛の粒度パラメータの調整は、各添加成分との混合前に行ってもよいが、各添加成分との混合過程または混合が完了した後に行ってもよい。
(Method for producing zinc oxide-containing composition)
The zinc oxide-containing composition of the present embodiment can be produced by mixing and stirring zinc oxide with each additive component described above. The adjustment of the particle size parameter of zinc oxide, which will be described later, may be performed before mixing with each additive component, or may be performed during the mixing process or after completion of mixing with each additive component.
(酸化亜鉛の粒度分布の調製方法)
 実施形態に係る酸化亜鉛含有組成物に用いられる酸化亜鉛の粒子径に関する上記パラメータは、原料となる酸化亜鉛のD50、粉砕前の分散処理および粉砕処理を高度に制御することにより、所望の値に調節される。より具体的には、原料となる酸化亜鉛のD50は、5μm~200μmの範囲であることが好ましい。粉砕前の分散処理では、ホモミキサーを用いて酸化亜鉛の粒子を分散させることが好ましい。ホモミキサー使用時の作動条件は、6000~10000rpm、5~20分の範囲で設定することが好ましい。粉砕処理では、自転・公転ミキサーを用いて酸化亜鉛の粒子径を所望の値に揃えることが好ましい。自転・公転ミキサー使用時の作動条件は、1000~2000rpm、5~30分である。なお、必要に応じて、粉砕処理を複数回実施、または、上述した一連の分散処理および粉砕処理を必要に応じて再度実施することにより、上述の粒径パラメータを所望の値に制御することができる。また、上述した一連の分散処理および粉砕処理を必要に応じて再度実施することにより、上述の粒径パラメータを所望の値に制御することができる。
(Method for preparing particle size distribution of zinc oxide)
The above parameters related to the particle size of the zinc oxide used in the zinc oxide-containing composition according to the embodiment can be set to desired values by highly controlling the D50 of zinc oxide as a raw material, the dispersion treatment before pulverization, and the pulverization treatment. adjusted. More specifically, D50 of zinc oxide as a raw material is preferably in the range of 5 μm to 200 μm. In the dispersing treatment before pulverization, it is preferable to disperse the particles of zinc oxide using a homomixer. The operating conditions when using a homomixer are preferably set in the range of 6000 to 10000 rpm for 5 to 20 minutes. In the pulverization treatment, it is preferable to adjust the particle size of zinc oxide to a desired value using a rotation/revolution mixer. The operating conditions when using the rotation/revolution mixer are 1000 to 2000 rpm and 5 to 30 minutes. In addition, if necessary, the above-mentioned particle size parameter can be controlled to a desired value by performing the pulverization treatment multiple times, or by performing the series of dispersion treatment and pulverization treatment described above again as necessary. can. Further, by repeating the series of dispersing treatment and pulverizing treatment described above as necessary, the particle size parameter can be controlled to a desired value.
(酸化亜鉛含有組成物の用途)
 本実施形態の他の態様は、上述した酸化亜鉛含有組成物を含む飲食品である。飲食品としては、例えば、パン、麺類等に代表される小麦粉加工食品、お粥、炊き込み飯等の米加工品、ビスケツト、ケーキ、キャンディ、チョコレート、せんべい、あられ、錠菓、和菓子等の菓子類、豆腐、その加工食品等の大豆加工食品、清涼飲料、果汁飲料、乳飲料、乳酸菌飲料、炭酸飲料、アルコール飲料等の飲料類、ヨーグルト、チーズ、バター、アイスクリーム、コーヒーホワイトナー、ホイップクリーム、牛乳等の乳製品、醤油、味噌、ドレッシング、ソース、たれ、マーガリン、マヨネーズ等の調味料、ハム、ベーニン、ソーセージ等の畜肉加工食品、蒲鉾、はんぺん、ちくわ、魚の缶詰等の水産加工食品、濃厚流動食、半消化態栄養食、成分栄養食等の経口経腸栄養食等が挙げられる。
(Use of zinc oxide-containing composition)
Another aspect of the present embodiment is a food or drink containing the zinc oxide-containing composition described above. Examples of food and drink include processed flour foods such as bread and noodles, processed rice products such as rice porridge and cooked rice, biscuits, cakes, candy, chocolate, rice crackers, rice crackers, tablets, and confectionery such as Japanese sweets. , tofu, processed soybean foods such as soybean processed foods, soft drinks, fruit juice drinks, milk drinks, lactic acid drinks, carbonated drinks, alcoholic beverages, yogurt, cheese, butter, ice cream, coffee whitener, whipped cream, Milk and other dairy products, soy sauce, miso, dressings, sauces, sauces, margarine, mayonnaise and other seasonings, ham, venin, sausage and other processed meat foods, boiled fish paste, hanpen, chikuwa, canned fish and other marine products, rich Oral and enteral nutritional diets such as liquid diets, semi-digested nutritional diets, component nutritional diets, and the like are included.
 本実施形態の酸化亜鉛含有組成物は、溶液中での分散性に優れるため、上記用途のうち、飲料に用いることが好適であり、特に乳飲料に用いることが好適である。 The zinc oxide-containing composition of the present embodiment is excellent in dispersibility in a solution, so among the above uses, it is suitable for use in beverages, and particularly suitable for use in dairy beverages.
 なお、本実施形態の酸化亜鉛含有組成物は、上述した飲食品の他、飼料、化粧品、医薬組成物等に使用することができる。飼料としては、例えば、ペット、家畜、養殖魚等の餌等が挙げられる。化粧品としては、化粧水、乳液、浴用剤、クレンジング剤等の洗浄剤、歯磨剤等が挙げられる。医薬組成物として用いる場合には、医薬部外品等として幅広く利用することができる。例えば、亜鉛の補給あるいは維持が望まれている任意の疾患の治療や予防のために用いることができる。 In addition, the zinc oxide-containing composition of the present embodiment can be used for feeds, cosmetics, pharmaceutical compositions, etc., in addition to the above-described food and drink. Feeds include, for example, feeds for pets, livestock, farmed fish, and the like. Examples of cosmetics include lotions, milky lotions, bath agents, detergents such as cleansing agents, and toothpastes. When used as a pharmaceutical composition, it can be widely used as a quasi-drug. For example, it can be used for treatment or prevention of any disease for which zinc supplementation or maintenance is desired.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than those described above can also be adopted.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 The present invention will be described below with examples and comparative examples, but the present invention is not limited to these.
(実施例1)
 酸化亜鉛(D50:12.08μm)10.0gを、イオン交換水20.0g、グリセリン10.0gに混合し、ホモミキサー(プライミクス社製、T.K.ロボミックス、8,000rpm、10分)にて分散させ、自転・公転ミキサー処理(シンキー社製、NP-100、2,000rpm、15分、2回繰り返す)を実施し、酸化亜鉛の粒子の大きさを均一化し、25質量%の酸化亜鉛溶液30gを得た。これを5回繰り返し、得られた酸化亜鉛溶液に、表1に記載の配合割合となるようにアラビアガムとグリセリンを混合した後、ホモジナイザー(600bar、6pass処理)にて分散均一化して、酸化亜鉛含有組成物(15質量%酸化亜鉛分散液)200gを得た。後述するように、得られた酸化亜鉛含有組成物の粒子径を分析し、体積平均粒子径を測定した。
(Example 1)
10.0 g of zinc oxide (D50: 12.08 μm) was mixed with 20.0 g of ion-exchanged water and 10.0 g of glycerin, and mixed with a homomixer (manufactured by Primix, TK Robotics, 8,000 rpm, 10 minutes). and subjected to a rotation/revolution mixer treatment (manufactured by Thinky, NP-100, 2,000 rpm, 15 minutes, repeated twice) to homogenize the size of the zinc oxide particles and oxidize to 25% by mass. 30 g of zinc solution were obtained. This was repeated 5 times, and gum arabic and glycerin were mixed with the obtained zinc oxide solution so as to have the mixing ratio shown in Table 1, and then dispersed and homogenized with a homogenizer (600 bar, 6 pass treatment) to obtain zinc oxide. 200 g of the containing composition (15 mass % zinc oxide dispersion) was obtained. As described later, the particle size of the obtained zinc oxide-containing composition was analyzed to measure the volume average particle size.
 得られた酸化亜鉛含有組成物のうち1gを水100gに希釈した後、レーザー回折型粒度分布測定機(LS-230、ベックマン・コールター株式会社製)を用いて酸化亜鉛含有組成物()の粒径分布を測定した。得られた結果から求めたD10、D50およびD90は、それぞれ、0.10μm、0.14μmおよび0.22μmであった。得られたD10、D50およびD90を用いて算出される(D90-D10)/D50は0.91であった。 After diluting 1 g of the resulting zinc oxide-containing composition with 100 g of water, particles of the zinc oxide-containing composition () were measured using a laser diffraction particle size distribution analyzer (LS-230, manufactured by Beckman Coulter, Inc.). The size distribution was measured. D10, D50 and D90 determined from the obtained results were 0.10 μm, 0.14 μm and 0.22 μm, respectively. (D90-D10)/D50 calculated using the obtained D10, D50 and D90 was 0.91.
 (実施例2)
 酸化亜鉛(D50:12.08μm)10.0gを、イオン交換水20.0g、グリセリン10.0gに混合、ホモミキサー(プライミクス社製、T.K.ロボミックス、8,000rpm、10分)にて分散させ、自転・公転ミキサー処理(シンキー社製、NP-100、2,000rpm、15分、1回繰り返す)を実施し、酸化亜鉛の粒子の大きさを均一化し、15質量%の酸化亜鉛溶液30gを得た。これを5回繰り返し、得られた酸化亜鉛溶液に、表1に記載の配合割合となるようにアラビアガムとグリセリンを混合した後、ホモジナイザー(600bar、6pass処理)にて分散均一化して、酸化亜鉛含有組成物(10質量%酸化亜鉛分散液)200gを得た。後述するように、得られた酸化亜鉛含有組成物の粒子径を分析し、体積平均粒子径を測定した。
(Example 2)
10.0 g of zinc oxide (D50: 12.08 μm) was mixed with 20.0 g of ion-exchanged water and 10.0 g of glycerin, and mixed in a homomixer (manufactured by Primix, TK Robotics, 8,000 rpm, 10 minutes). and subjected to a rotation/revolution mixer treatment (manufactured by THINKY Co., Ltd., NP-100, 2,000 rpm, 15 minutes, repeated once) to homogenize the size of zinc oxide particles and obtain 15% by mass of zinc oxide. 30 g of solution were obtained. This was repeated 5 times, and gum arabic and glycerin were mixed with the obtained zinc oxide solution so as to have the mixing ratio shown in Table 1, and then dispersed and homogenized with a homogenizer (600 bar, 6 pass treatment) to obtain zinc oxide. 200 g of the containing composition (10 mass % zinc oxide dispersion) was obtained. As described later, the particle size of the obtained zinc oxide-containing composition was analyzed to measure the volume average particle size.
(実施例3)
 酸化亜鉛(D50:12.08μm)1.5gを、イオン交換水1.5g、60℃まで加温した還元澱粉糖化物(アマミール 東和化成工業株式会社製)46.55g、ヘキサメタリン酸ナトリウム(米山化学工業社製)0.15g、加温したポリグリセリン脂肪酸エステル(サンソフトA-141E HLB値:12.2太陽化学株式会社製)0.15g、酵素分解レシチン(サンレシチンA-1 太陽化学株式会社製、HLB値:12.0のリゾレシチン含量33%)0.15gに混合、ホモミキサー(プライミクス社製、T.K.ロボミックス、8,000rpm、10分)にて分散させ、自転・公転ミキサー処理(シンキー社製、NP-100、2,000rpm、15分、2回繰り返す)を実施し、酸化亜鉛の粒子の大きさを均一化し、3質量%の酸化亜鉛溶液30gを得た。これを8回繰り返し、得られた酸化亜鉛溶液を、ホモジナイザー(600bar、6pass処理)にて分散均一化して、酸化亜鉛含有組成物(3質量%酸化亜鉛分散液)190gを得た。後述するように、得られた酸化亜鉛含有組成物の粒子径を分析し、体積平均粒子径を測定した。
(Example 3)
1.5 g of zinc oxide (D50: 12.08 μm), 1.5 g of ion-exchanged water, 46.55 g of reduced starch saccharified product (manufactured by Amamir Towa Kasei Kogyo Co., Ltd.) heated to 60 ° C., sodium hexametaphosphate (Yoneyama Chemical) Kogyo Co., Ltd.) 0.15 g, heated polyglycerin fatty acid ester (Sunsoft A-141E HLB value: 12.2, Taiyo Kagaku Co., Ltd.) 0.15 g, enzymatically decomposed lecithin (Sun Lecithin A-1, Taiyo Kagaku Co., Ltd.) Lysolecithin content 33%, HLB value: 12.0), mixed with 0.15 g, dispersed with a homomixer (manufactured by Primix, TK Robomix, 8,000 rpm, 10 minutes), and a rotation / revolution mixer Treatment (manufactured by Thinky, NP-100, 2,000 rpm, 15 minutes, repeated twice) was performed to homogenize the size of the zinc oxide particles to obtain 30 g of a 3% by mass zinc oxide solution. This was repeated 8 times, and the resulting zinc oxide solution was dispersed and homogenized with a homogenizer (600 bar, 6 pass treatment) to obtain 190 g of a zinc oxide-containing composition (3% by mass zinc oxide dispersion). As described later, the particle size of the obtained zinc oxide-containing composition was analyzed to measure the volume average particle size.
 実施例2、3の酸化亜鉛含有組成物について、実施例1と同様な手法により、D10、D50およびD90を計測し、(D90-D10)/D50を算出した。得られた結果を表1に示す。 For the zinc oxide-containing compositions of Examples 2 and 3, D10, D50 and D90 were measured by the same method as in Example 1, and (D90-D10)/D50 was calculated. Table 1 shows the results obtained.
(比較例1-4)
 各成分の配合割合を表1に示した値とし、自転・公転ミキサー処理ならびにホモジナイザー処理を除き、実施例1と同様な手順により、比較例1~5の液体状の酸化亜鉛含有組成物約250gを得た。
(Comparative Example 1-4)
About 250 g of liquid zinc oxide-containing compositions of Comparative Examples 1 to 5 were prepared in the same manner as in Example 1, except for the rotation/revolution mixer treatment and homogenizer treatment, with the blending ratio of each component being the value shown in Table 1. got
(比較例5)
 各成分の配合割合を表1に示した値とし、自転・公転ミキサー処理ならびにホモジナイザー処理を除き、実施例3と同様な手順により、比較例5の液体状の酸化亜鉛含有組成物約250gを得た。
(Comparative Example 5)
About 250 g of a liquid zinc oxide-containing composition of Comparative Example 5 was obtained in the same manner as in Example 3 except for the rotation/revolution mixer treatment and homogenizer treatment, with the blending ratio of each component being the value shown in Table 1. rice field.
 比較例1-5の酸化亜鉛含有組成物について、実施例1と同様な手法により、D10、D50およびD90を計測し、(D90-D10)/D50を算出した。得られた結果を表1に示す。 For the zinc oxide-containing compositions of Comparative Examples 1-5, D10, D50 and D90 were measured by the same method as in Example 1, and (D90-D10)/D50 was calculated. Table 1 shows the results obtained.
(実施例4)
 酸化亜鉛(D50:12.08μm)12.5gを、イオン交換水38.5gに混合、ホモミキサー(プライミクス社製、T.K.ロボミックス、8,000rpm、10分)にて分散させ、自転・公転ミキサー処理(シンキー社製、NP-100、2,000rpm、10分、1回)を実施し、酸化亜鉛の粒子の大きさを均一化し、25質量%の酸化亜鉛溶液30gを得た。この操作を10回繰り返し、粒度分布調整済みの酸化亜鉛を含む酸化亜鉛含有スラリー300gを得た。
 上述した粒度分布調整済みの酸化亜鉛スラリーに、アラビアガム(ネキシラ社製、インスタントガム)16.0g、デキストリン(松谷化学工業社製、パインデックス#1)123.6g、ヒマワリレシチン(Lasenor Emul S.L.社製、GIRALEC PREMIUM)0.1g、イオン交換水60.0gをそれぞれ所定量秤量のうえ、60℃まで加熱溶解・混合し、ホモジナイザー(600bar、6pass処理)にて分散均一化して、スプレードライによって噴霧乾燥させ、酸化亜鉛含有組成物120gを得た。得られた酸化亜鉛含有組成物における各成分の配合割合(質量%)を表2に示す。
(Example 4)
12.5 g of zinc oxide (D50: 12.08 μm) was mixed with 38.5 g of ion-exchanged water, dispersed with a homomixer (manufactured by Primix, TK Robomix, 8,000 rpm, 10 minutes), and rotated. - A revolution mixer treatment (manufactured by THINKY Co., Ltd., NP-100, 2,000 rpm, 10 minutes, once) was performed to homogenize the particle size of zinc oxide to obtain 30 g of a 25% by mass zinc oxide solution. This operation was repeated 10 times to obtain 300 g of zinc oxide-containing slurry containing zinc oxide whose particle size distribution had been adjusted.
16.0 g of gum arabic (manufactured by Nexila Inc., instant gum), 123.6 g of dextrin (manufactured by Matsutani Chemical Industry Co., Ltd., Paindex #1), sunflower lecithin (Lasenor Emul S.P. GIRALEC PREMIUM manufactured by L. Corporation) and 60.0 g of deionized water are weighed in predetermined amounts, dissolved and mixed by heating to 60° C., dispersed and homogenized with a homogenizer (600 bar, 6 pass treatment), and sprayed. It was spray-dried by drying to obtain 120 g of a zinc oxide-containing composition. Table 2 shows the blending ratio (% by mass) of each component in the obtained zinc oxide-containing composition.
 得られた酸化亜鉛含有組成物のうち0.5gを水100gに希釈した後、レーザー回折型粒度分布測定機(LS-230、ベックマン・コールター株式会社製)を用いて酸化亜鉛含有組成物()の粒径分布を測定した。得られた結果から求めたD10、D50およびD90は、それぞれ、0.24μm、0.37μmおよび0.68μmであった。得られたD10、D50およびD90を用いて算出される(D90-D10)/D50は1.21であった。 After diluting 0.5 g of the resulting zinc oxide-containing composition with 100 g of water, the zinc oxide-containing composition () was measured using a laser diffraction particle size distribution analyzer (LS-230, manufactured by Beckman Coulter, Inc.). The particle size distribution of was measured. D10, D50 and D90 determined from the obtained results were 0.24 μm, 0.37 μm and 0.68 μm, respectively. (D90-D10)/D50 calculated using the obtained D10, D50 and D90 was 1.21.
(実施例5)
 イオン交換水38.64gに、加温したポリグリセリン脂肪酸エステル(サンソフトQ-12D、HLB値8.5 太陽化学社製)1.8g、酵素分解レシチン(サンレシチンA-1、HLB値:12.0、太陽化学社製)0.56gを溶解混合し、酸化亜鉛(D50:12.08μm)9.0gホモミキサー(プライミクス社製、T.K.ロボミックス、8,000rpm、10分)にて分散させ、自転・公転ミキサー処理(シンキー社製、NP-100、2,000rpm、10分、1回)を実施し、酸化亜鉛の粒子の大きさを均一化し、18質量%の酸化亜鉛溶液30gを得た。この操作を13回繰り返し、粒度分布調整済みの酸化亜鉛を含む酸化亜鉛含有スラリー360gを得た。
 上述した粒度分布調整済みの酸化亜鉛含有スラリーに、デキストリン(松谷化学工業社製、パインデックス#1)130.0gを秤量のうえ、60℃まで加熱溶解・混合し、スプレードライによって噴霧乾燥させ、酸化亜鉛含有組成物120gを得た。得られた酸化亜鉛含有組成物における各成分の配合割合(質量%)を表2に示す。
(Example 5)
To 38.64 g of ion-exchanged water, 1.8 g of heated polyglycerin fatty acid ester (Sunsoft Q-12D, HLB value 8.5, manufactured by Taiyo Kagaku Co., Ltd.), enzymatically degraded lecithin (Sun Lecithin A-1, HLB value: 12 0.0, manufactured by Taiyo Kagaku Co., Ltd.) was dissolved and mixed, and 9.0 g of zinc oxide (D50: 12.08 μm) was added to a homomixer (manufactured by Primix Co., Ltd., TK Robotics, 8,000 rpm, 10 minutes). and subjected to a rotation/revolution mixer treatment (manufactured by THINKY Co., Ltd., NP-100, 2,000 rpm, 10 minutes, once) to homogenize the size of the zinc oxide particles and obtain a 18% by mass zinc oxide solution. 30 g was obtained. This operation was repeated 13 times to obtain 360 g of zinc oxide-containing slurry containing zinc oxide whose particle size distribution had been adjusted.
130.0 g of dextrin (Pine Index #1, manufactured by Matsutani Chemical Industry Co., Ltd.) is weighed into the zinc oxide-containing slurry whose particle size distribution has been adjusted, heated to 60° C., dissolved and mixed, and spray-dried by spray drying. 120 g of zinc oxide-containing composition were obtained. Table 2 shows the blending ratio (% by mass) of each component in the obtained zinc oxide-containing composition.
 実施例4、5の酸化亜鉛含有組成物について、実施例1と同様な手法により、D10、D50およびD90を計測し、(D90-D10)/D50を算出した。得られた結果を表2に示す。 For the zinc oxide-containing compositions of Examples 4 and 5, D10, D50 and D90 were measured by the same method as in Example 1, and (D90-D10)/D50 was calculated. Table 2 shows the results obtained.
(比較例6-7)
 各成分の配合割合を表2に示した値とし、自転・公転ミキサー処理ならびにホモジナイザー処理を除き、実施例4と同様な手順により、比較例6-7の粉末状の酸化亜鉛含有組成物120gを得た。
(Comparative Example 6-7)
120 g of the powdery zinc oxide-containing composition of Comparative Examples 6-7 was prepared in the same manner as in Example 4, except for the rotation/revolution mixer treatment and homogenizer treatment, with the blending ratio of each component being the value shown in Table 2. Obtained.
(比較例8)
 各成分の配合割合を表2に示した値とし、自転・公転ミキサー処理ならびにホモジナイザー処理を除き、実施例5と同様な手順により、比較例8の粉末状の酸化亜鉛含有組成物120gを得た。
(Comparative Example 8)
120 g of a powdery zinc oxide-containing composition of Comparative Example 8 was obtained in the same manner as in Example 5 except that the blending ratio of each component was set to the value shown in Table 2 and the rotation/revolution mixer treatment and homogenizer treatment were omitted. .
 比較例6-8の酸化亜鉛含有組成物について、実施例1と同様な手法により、D10、D50およびD90を計測し、(D90-D10)/D50を算出した。得られた結果を表2に示す。 For the zinc oxide-containing compositions of Comparative Examples 6-8, D10, D50 and D90 were measured by the same method as in Example 1, and (D90-D10)/D50 was calculated. Table 2 shows the results obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(分散性試験)
 実施例1~6、比較例1~8の各酸化亜鉛含有組成物について、牛乳中での分散性(安定性)を以下のようにして調べた。
 牛乳をホモミキサーで軽く攪拌しながら65℃付近まで加熱した。加熱後の牛乳に、亜鉛濃度が5mg/100mlになるように酸化亜鉛含有組成物を少しずつ加え、混合溶液を得た。この混合溶液を、ホモミキサー(プライミクス社製、T.K.ロボミックス)を用いて7000rpmで5分間撹拌した後、得られた混合溶液を100ml(内径:3.7cm、高さ:12cm)のガラス瓶(マイティバイアルNo.8)に充填した。
(Dispersibility test)
The dispersibility (stability) in milk of each zinc oxide-containing composition of Examples 1 to 6 and Comparative Examples 1 to 8 was examined as follows.
Milk was heated to about 65° C. while being lightly stirred with a homomixer. The zinc oxide-containing composition was added little by little to the heated milk so that the zinc concentration was 5 mg/100 ml to obtain a mixed solution. This mixed solution was stirred at 7000 rpm for 5 minutes using a homomixer (TK Robomix, manufactured by Primix), and then the resulting mixed solution was added to 100 ml (inner diameter: 3.7 cm, height: 12 cm). A glass bottle (Mighty Vial No. 8) was filled.
 次に、撹拌停止直後の初期状態において、前記混合溶液を高さ方向に均等に3分割し、上層、中層および下層とし、前記上層および前記下層から採取物の一部を湿式灰化して得られる各試料について、原子吸光光度計(日立化成社製、Z-2000)により亜鉛濃度(mg/100ml)を求めた。上層および下層の亜鉛濃度(mg/100ml)をそれぞれ、M1、M2とした。 Next, in the initial state immediately after stopping stirring, the mixed solution is divided evenly into three layers in the height direction to form an upper layer, a middle layer and a lower layer, and a part of the material collected from the upper layer and the lower layer is wet-ashed. For each sample, the zinc concentration (mg/100 ml) was determined using an atomic absorption photometer (Z-2000, manufactured by Hitachi Chemical Co., Ltd.). The zinc concentrations (mg/100 ml) in the upper and lower layers were defined as M1 and M2, respectively.
 さらに、撹拌停止後、5℃で2週間保存した混合溶液について、上記(2)と同様な手順により、上層および下層の亜鉛濃度(mg/100ml)を求め、それぞれ、M3、M4とした。 Furthermore, for the mixed solution stored at 5°C for 2 weeks after stopping the stirring, the zinc concentration (mg/100ml) of the upper layer and lower layer was determined by the same procedure as in (2) above, and was defined as M3 and M4, respectively.
 上記分散性試験で得られたM1~M4を用いて、M1/M2およびM3/M4を算出し、初期分散度S、2週間静置後分散度Tとした。得られた初期分散度Sおよび2週間静置後分散度Tを用いて、T/S×100(%)で表される分散指数を算出した。得られた結果を表1、2に示す。 Using M1 to M4 obtained in the above dispersibility test, M1/M2 and M3/M4 were calculated as the initial dispersity S and the dispersity T after standing for two weeks. A dispersion index represented by T/S×100 (%) was calculated using the obtained initial dispersion degree S and dispersion degree T after standing for two weeks. The obtained results are shown in Tables 1 and 2.
 また、撹拌停止後、5℃で1週間保存した混合溶液について、上記(2)と同様な手順により、上層および下層の亜鉛濃度(mg/100ml)を求め、それぞれ、M5、M6とし、M5/M6を算出し、1週間静置後分散度Uとした。得られた、得られた1週間静置後分散度Uおよび2週間静置後分散度Tを用いて、T/U×100(%)で表される分散指数を算出した。得られた結果を表1、2に示す。 In addition, after stopping the stirring, the mixed solution stored at 5 ° C. for 1 week was subjected to the same procedure as in (2) above to obtain the zinc concentrations (mg / 100 ml) of the upper layer and the lower layer. M6 was calculated and regarded as the degree of dispersion U after standing for one week. A dispersion index represented by T/U×100 (%) was calculated using the obtained dispersion degree U after standing for 1 week and dispersion degree T after standing for 2 weeks. The obtained results are shown in Tables 1 and 2.
 表1、2に示すように、実施例1~5の各酸化亜鉛含有組成物では、T/U×100(%)で表される分散指数が80%以上であり、牛乳中で酸化亜鉛が良好に分散した状態が長期にわたり継続するという予期されない効果が確認された。これに対して、比較例1~8の各酸化亜鉛含有組成物では、T/U×100(%)で表される分散指数が80%未満であり、1週間静置後分散度Uと2週間静置後分散度Tとを比較すると、1週間静置後から2週間静置後の間に、分散性が顕著に悪化することが確認された。 As shown in Tables 1 and 2, each of the zinc oxide-containing compositions of Examples 1 to 5 had a dispersion index represented by T/U x 100 (%) of 80% or more, indicating that the amount of zinc oxide in milk was An unexpected effect was confirmed in that the well-dispersed state continued for a long period of time. On the other hand, the zinc oxide-containing compositions of Comparative Examples 1 to 8 had a dispersion index represented by T/U×100 (%) of less than 80%, and a dispersion index of U and 2 after standing for one week. When the dispersibility T after standing for a week was compared, it was confirmed that the dispersibility significantly deteriorated between after standing for 1 week and after standing for 2 weeks.

Claims (8)

  1.  酸化亜鉛を含む酸化亜鉛含有組成物であって、
    レーザー回折光散乱法により測定される前記酸化亜鉛含有組成物の累積体積百分率が10%となる粒子径(μm)、50%となる粒子径(μm)、および90%となる粒子径(μm)を、それぞれ、D10、D50、D90としたとき、(D90-D10)/D50が2.0未満である、酸化亜鉛含有組成物。
    A zinc oxide-containing composition comprising zinc oxide,
    The particle diameter (μm) at which the cumulative volume percentage of the zinc oxide-containing composition is 10%, the particle diameter (μm) at which the cumulative volume percentage is 50%, and the particle diameter (μm) at which the cumulative volume percentage is 90%, as measured by a laser diffraction light scattering method. are D10, D50 and D90, respectively, (D90-D10)/D50 is less than 2.0.
  2.  レーザー回折光散乱法により測定される前記酸化亜鉛含有組成物の累積体積百分率が50%となる粒子径(μm)をD50としたとき、D50が0.1~1.0μmである、請求項1に記載の酸化亜鉛含有組成物。 Claim 1, wherein D50 is 0.1 to 1.0 µm, where D50 is the particle diameter (µm) at which the zinc oxide-containing composition has a cumulative volume percentage of 50% as measured by a laser diffraction light scattering method. The zinc oxide-containing composition according to .
  3.  下記分散性試験で得られるM1/M2およびM3/M4を、それぞれ、初期分散度S、2週間静置後分散度Tとしたとき、T/S×100(%)で表される分散指数が80%以上である、請求項1または2に記載の酸化亜鉛含有組成物。
    (分散性試験)
    (1)亜鉛濃度が5mg/100mlになるように、酸化亜鉛含有組成物を65℃の牛乳に加えて混合溶液を作製する。
     前記混合溶液を、7000rpmで5分間撹拌した後、100mlのガラス瓶に充填する。
    (2)撹拌停止直後の初期状態において、前記混合溶液を高さ方向に均等に3分割し、
     上層、中層および下層とし、前記上層および前記下層からそれぞれ前記混合溶液の一部を採取する。
     採取物の一部を湿式灰化して得られる各試料について、原子吸光光度計により亜鉛濃度(mg/100ml)を求める。
     上層および下層の亜鉛濃度(mg/100ml)をそれぞれ、M1、M2とする。
    (3)撹拌停止後、5℃で2週間保存した前記混合溶液について、上記(2)と同様な手順により、
     前記上層および前記下層における前記亜鉛の濃度の測定値を、それぞれ、M3、M4とする。
    When M1 / M2 and M3 / M4 obtained in the following dispersibility test are respectively defined as the initial dispersity S and the dispersity after standing for 2 weeks as T, the dispersion index represented by T / S × 100 (%) is 3. The zinc oxide-containing composition according to claim 1, which is 80% or more.
    (Dispersibility test)
    (1) A mixed solution is prepared by adding a zinc oxide-containing composition to milk at 65° C. so that the zinc concentration is 5 mg/100 ml.
    After stirring the mixed solution at 7000 rpm for 5 minutes, it is filled into a 100 ml glass bottle.
    (2) In the initial state immediately after stopping stirring, the mixed solution is divided evenly into three in the height direction,
    An upper layer, a middle layer and a lower layer are formed, and a part of the mixed solution is sampled from each of the upper layer and the lower layer.
    The zinc concentration (mg/100 ml) is determined with an atomic absorption photometer for each sample obtained by wet ashing a part of the sample.
    The zinc concentrations (mg/100 ml) in the upper and lower layers are defined as M1 and M2, respectively.
    (3) After stopping stirring, for the mixed solution stored at 5 ° C. for 2 weeks, by the same procedure as in (2) above,
    Let M3 and M4 be the measured values of the zinc concentration in the upper layer and the lower layer, respectively.
  4.  増粘多糖類を含む、請求項1乃至3のいずれか1項に記載の酸化亜鉛含有組成物。 The zinc oxide-containing composition according to any one of claims 1 to 3, which contains a polysaccharide thickener.
  5.  乳化剤を含む、請求項1乃至4のいずれか1項に記載の酸化亜鉛含有組成物。 The zinc oxide-containing composition according to any one of claims 1 to 4, which contains an emulsifier.
  6.  液体状である、請求項1乃至5のいずれか1項に記載の酸化亜鉛含有組成物。 The zinc oxide-containing composition according to any one of claims 1 to 5, which is liquid.
  7.  粉末状である、請求項1乃至6のいずれか1項に記載の酸化亜鉛含有組成物。 The zinc oxide-containing composition according to any one of claims 1 to 6, which is powdery.
  8.  請求項1乃至7のいずれか1項に記載の酸化亜鉛含有組成物を含む飲食品。

     
    Food and drink containing the zinc oxide-containing composition according to any one of claims 1 to 7.

PCT/JP2021/021392 2021-06-04 2021-06-04 Zinc oxide-containing composition and food and beverage WO2022254699A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/021392 WO2022254699A1 (en) 2021-06-04 2021-06-04 Zinc oxide-containing composition and food and beverage
JP2022502162A JP7101324B1 (en) 2021-06-04 2021-06-04 Zinc oxide-containing compositions and foods and drinks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021392 WO2022254699A1 (en) 2021-06-04 2021-06-04 Zinc oxide-containing composition and food and beverage

Publications (1)

Publication Number Publication Date
WO2022254699A1 true WO2022254699A1 (en) 2022-12-08

Family

ID=82402553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021392 WO2022254699A1 (en) 2021-06-04 2021-06-04 Zinc oxide-containing composition and food and beverage

Country Status (2)

Country Link
JP (1) JP7101324B1 (en)
WO (1) WO2022254699A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245622A (en) * 2007-03-30 2008-10-16 Taiyo Kagaku Co Ltd Zinc-enriched food and drink
WO2018079487A1 (en) * 2016-10-24 2018-05-03 石原産業株式会社 Composite pigment and production method thereof, paint composition containing composite pigment, and coating film
JP2018099659A (en) * 2016-12-22 2018-06-28 東亞合成株式会社 Absorbent for acidic gas and deodorant processed product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6833308B2 (en) * 2015-05-29 2021-02-24 テイカ株式会社 Oil-based dispersion and cosmetics using this oil-based dispersion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245622A (en) * 2007-03-30 2008-10-16 Taiyo Kagaku Co Ltd Zinc-enriched food and drink
WO2018079487A1 (en) * 2016-10-24 2018-05-03 石原産業株式会社 Composite pigment and production method thereof, paint composition containing composite pigment, and coating film
JP2018099659A (en) * 2016-12-22 2018-06-28 東亞合成株式会社 Absorbent for acidic gas and deodorant processed product

Also Published As

Publication number Publication date
JPWO2022254699A1 (en) 2022-12-08
JP7101324B1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
EP2773223B2 (en) Eggless mayonnaise comprising plant-based egg substitute
DE60308851T2 (en) PROTEINISOLATES, COMPOSITIONS CONTAINING PROTEINOLATE, AND METHOD FOR THEIR USE
JP4945132B2 (en) Manufacturing method of konjac fluid material
JP4024155B2 (en) Container-filled oil-in-water emulsified pasta sauce
JPH11299435A (en) Composition for emulsion stabilizer and foods
WO2022101938A1 (en) Plant - based egg liquid formulations and processes thereof
EP4324332A1 (en) Scrambled-egg-like food product and cooked-egg-like food product
JP6715930B2 (en) Gel-like food composition and food using the same
RU2647271C1 (en) Mayonnaise sauce
WO2015080233A1 (en) Acidic oil-in-water type emulsified condiment
SK281350B6 (en) Foodstuff composition based on vegetable oil
WO2022254699A1 (en) Zinc oxide-containing composition and food and beverage
JP2008245622A (en) Zinc-enriched food and drink
JP4859680B2 (en) Pasta sauce
EP2724624A1 (en) Composition for water-soluble powder dispersion and method for producing same, as well as food product using composition for water-soluble powder dispersion
JP5995344B2 (en) Method for producing emulsifying composition, method for producing emulsion, composition for emulsifying and emulsion
RU2702177C1 (en) Dry composition for custard cream production
JPH11266832A (en) Food composition and its production
JP5345711B2 (en) Konjac fluid material, beverages and foods using it
JP2004065016A (en) Mineral-containing solution, method for producing the solution, and product using the solution
JP2016165246A (en) Texture improvement material for baked confectionery
JP7021396B2 (en) Iron-containing composition
RU2601570C1 (en) Mayonnaise
JP2015154751A (en) Sterilized emulsified soup
JP6454487B2 (en) Iron-containing powder composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022502162

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE