WO2022254677A1 - Processing method and processing apparatus for optical device - Google Patents

Processing method and processing apparatus for optical device Download PDF

Info

Publication number
WO2022254677A1
WO2022254677A1 PCT/JP2021/021268 JP2021021268W WO2022254677A1 WO 2022254677 A1 WO2022254677 A1 WO 2022254677A1 JP 2021021268 W JP2021021268 W JP 2021021268W WO 2022254677 A1 WO2022254677 A1 WO 2022254677A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
scan
wafer
axis
optical device
Prior art date
Application number
PCT/JP2021/021268
Other languages
French (fr)
Japanese (ja)
Inventor
雅 太田
慶太 山口
賢哉 鈴木
摂 森脇
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023525298A priority Critical patent/JPWO2022254677A1/ja
Priority to PCT/JP2021/021268 priority patent/WO2022254677A1/en
Publication of WO2022254677A1 publication Critical patent/WO2022254677A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to an optical device processing method and processing apparatus, and more particularly, to a light beam capable of processing a clad film and a core film formed on a wafer into a shape that makes the optical characteristics of the optical device uniform.
  • the present invention relates to a device processing method and processing apparatus.
  • optical circuits such as optical wavelength multiplexing/demultiplexing circuits and optical switch circuits are being actively carried out.
  • these optical circuit components consist of embedded optical waveguides formed on a wafer, and include a plurality of optical signal paths with different optical path lengths and multiplexing/demultiplexing elements.
  • functions such as multiplexing/demultiplexing and switching of light of multiple wavelengths are realized.
  • the interference characteristics of light waves depend on the difference in optical path length between optical signal paths. It is mainly determined by the height, width, etc. Therefore, the optical characteristics of an optical circuit fabricated on a wafer fluctuate depending on the wafer in-plane distribution of the optical constant of the optical waveguide material and the dimensional variation of the waveguide structure.
  • the height of the waveguide core is determined by the film thickness during core deposition, and variations in optical characteristics of the fabricated optical device depend on the accuracy of the deposition process.
  • Patent Document 1 As a method for arbitrarily adjusting the distribution of the core film thickness formed by the flame deposition method or the like, for example, the manufacturing method described in Patent Document 1 has been known.
  • the first thin film is processed into a coarse-dense pattern according to a predetermined film thickness distribution to form the second thin film.
  • Low viscosity in the process to form the core In order to accurately form the core film thickness, it is necessary to process the pattern shape of the first thin film formed on the substrate with high accuracy.
  • An object of the present invention is to provide an optical device processing method and processing apparatus capable of microfabrication of the core film and the clad film in a minute area of the wafer surface, particularly the film thickness, with high accuracy.
  • one embodiment of the present invention is an optical device processing method for processing a film of a desired thickness by scanning along an arbitrary coordinate axis on a wafer, comprising: A step of calculating scan information, which is processing information for each scan when performing processing along the scan axis, based on the distribution of the desired film thickness; and a control of controlling a processing unit based on the scan information. and processing the wafer to the desired film thickness distribution by scanning the processing unit along the scan axis based on the control signal. do.
  • FIG. 1 is a diagram showing a schematic configuration of a processing apparatus according to one embodiment of the present invention
  • FIG. 2 is a diagram showing a first example of the processing unit of the processing device according to the present embodiment
  • FIG. 3 is a diagram showing a second example of the processing unit of the processing device according to the present embodiment
  • FIG. 4 is a diagram for explaining a wafer processing method in a processing unit
  • FIG. 5 is a diagram for explaining a method of calculating scan information
  • FIG. 6 is a diagram showing the scan speed distribution of the calculated scan information
  • FIG. 7 is a diagram showing the processing result of the wafer in the processing unit
  • FIG. 8 is a diagram showing a processing example of the Mach-Zehnder interferometer according to the first embodiment of the present invention
  • FIG. 9 is a diagram showing a processing example of an arrayed waveguide grating according to Example 2 of the present invention.
  • FIG. 1 shows a schematic configuration of a processing device according to one embodiment of the present invention.
  • the processing apparatus 10 includes an analysis unit 11 that analyzes the waveguide distribution of an optical circuit fabricated on a wafer, a processing unit 12 that processes the wafer, and a controller that controls the processing unit 12 based on the analysis results of the analysis unit 11. a portion 13;
  • the analysis unit 11 analyzes this information and determines the scan axis.
  • the scan axis is set in the direction in which the ratio of the optical axis direction is the largest in the waveguide formed in the optical circuit. Specifically, for each waveguide of an optical circuit fabricated on a wafer, the waveguide length is calculated for each predetermined optical axis direction.
  • the optical axis direction is, for example, divided into 18 directions within a range of angles of 5 degrees from the direction parallel to the orientation flat of the wafer to the direction perpendicular to it. Next, the length of each waveguide is summed up for each section, and the direction of the longest waveguide length is taken as the scan axis.
  • the analysis unit 11 obtains processing profile information derived in advance, and calculates scan information including scan speed distribution and pitch information.
  • the processing profile information is processing information obtained from the structure of an optical circuit to be fabricated on a wafer. is the shape information of That is, a desired height distribution of the waveguide cores formed according to the function of the optical circuit is defined.
  • the machining profile information includes characteristic information regarding machining characteristics in the machining unit 12 . For example, in the case of a microwave plasma etching processing unit, processing characteristics such as how much a film on a wafer can be etched are defined according to the scan speed and microwave power.
  • the scan information is processing information for each scan when processing is performed along the determined scan axis in the processing unit 12 that processes the wafer.
  • the shape information of the processing profile information is scanned along the scan axis, and the film thickness distribution of the core film is calculated for each scan.
  • the distribution of the scan speed for each scan, the pitch, etc. are defined according to the characteristic information of the processing profile information. For example, in the case of a microwave plasma etching method, if the height of the waveguide core is to be lowered (the core film is made thinner), the scanning speed of the capillary, which will be described later, is decreased, and the height of the waveguide core is increased. If you want to thicken the core film, increase the scan speed. Also, the pitch is narrowed where the shape change of the core is large, and the pitch is widened where the shape change is small.
  • the control unit 13 sends an instruction signal to the analysis unit 11 , inputs the scan information from the analysis unit 11 , converts it into a control signal for controlling the processing unit 12 , and outputs it to the processing unit 12 .
  • the control signal is for supply of raw material gas, control of the position of a capillary described later, control of a stage on which a wafer is placed, and control of microwave (RF signal) output. is a signal of
  • the processing unit 12 processes the wafer based on the input control signal.
  • the wafer will be processed based on the scan information along the determined scan axis.
  • the processing unit 12 is equipped with a sensor that scans the wafer surface, and a detected sensor signal is fed back to the control unit 13 .
  • the control unit 13 calculates an adjustment amount (feedback amount) to be added to the control signal described above from the sensor signal from the processing unit 12 .
  • FIG. 2 shows a first example of the processing section of the processing device according to this embodiment.
  • the microwave plasma etching type processing unit 20 applies microwaves (RF signals) to a capillary that discharges a raw material gas to generate plasma, and irradiates the wafer with the plasma to etch the wafer.
  • a wafer 26 is fixed on a stage 22 provided in a vacuum chamber 21 of a processing section 20 , and a plasma source gas is irradiated from a capillary 24 at the tip of a nozzle 23 .
  • a microwave (RF) power supply 27 is connected between the nozzle 23 and an RF electrode 25 on the stage 22, and the material gas discharged from the capillary 24 is turned into plasma.
  • the raw material gas is supplied from the gas chambers 28a, b to the vacuum chamber 21 and the nozzle 23 via MFCs (Mass Flow Controllers) 29a, b, MFMs (Mass Flow Meters) 34a, b, and valves 30a, b. 31 is discharged.
  • the type of raw material gas is fluorine-based, hydrogen-based or chlorine-based. Further, these raw material gases may be mixed with a combustion-supporting gas or an inert gas and supplied to the vacuum chamber.
  • the control unit 13 controls the RF power supply 27 that outputs microwaves (RF signals), the MFC 29 that controls the gas flow rate, and the valve 30, controls the nozzle 23 and the stage 22, and moves the wafer 26 along the scan axis. A film having a desired film thickness is processed by scanning along the . Further, the control unit 13 receives signals from the RF power meter 32, the vacuum gauge 33, and the MFM 34 as sensors, calculates the feedback amount as described above, and sends control signals to the RF power supply 27, MFC 29, and valve 30. Output to perform feedback control.
  • the processing unit 20 is a processing device in which the raw material gas is discharged from the capillary 24 of the nozzle 23, but is a suction type processing device that sucks the raw material gas from the nozzle and locally applies microwaves (RF signals).
  • RF signals microwaves
  • FIG. 3 shows a second example of the processing section of the processing device according to this embodiment.
  • the ion milling processing unit 40 irradiates the wafer with an Ar (argon) ion beam to etch the wafer.
  • a wafer 46 is fixed to a wafer holder 45 on a stage 42 provided in a vacuum chamber 41 of a processing section 40 and is irradiated with an Ar ion beam from an ion gun 43 .
  • the raw material gas is supplied from the gas chamber 48 to the vacuum chamber 41 via the MFC 49 and the valve 50 and discharged from the exhaust port 51 .
  • Ar or Ga (gallium) or the like is mainly used as the ion beam species.
  • the control unit 13 controls the ion gas flow rate, controls the stage 42 on which the wafer 46 is mounted, and the ion gun 43, and scans the wafer 46 along the scan axis to process a film of a desired thickness. .
  • the control unit 13 also receives a signal from a sensor (not shown), calculates the amount of feedback as described above, and performs feedback control.
  • FIG. 4(a) shows an optical circuit formed on a wafer.
  • a plurality of optical circuits 26 a are formed on one wafer 26 .
  • the scan axis is determined by analyzing the waveguide included in this optical circuit 26a.
  • FIG. 4(b) shows how processing is performed for each scan along the x-axis direction, where the direction parallel to the orientation flat is the x-axis and the direction perpendicular to the orientation flat is the y-axis.
  • a plasma material is discharged from a capillary 24 at the tip of a nozzle 23 according to scan information.
  • the scan axis is set in the direction in which the ratio of the optical axis direction of the waveguide is the largest, but depending on the function of the optical circuit, the scan axis may be the direction in which the ratio is the smallest.
  • FIG. 4(c) shows how processing is performed for each scan along the y-axis direction.
  • the scan axis is not parallel to the orientation flat, as shown in FIGS. You may
  • FIG. 5(a) shows how the wafer 26 shown in FIG. 4(a) is processed for each scan along the x-axis direction as shown in FIG. 4(b).
  • w is the machining width
  • A is the peak value of the machining depth.
  • FIG. 5B shows the obtained machining distribution, showing the machining depth in the y-axis direction from the central axis of the capillary 24 .
  • the next one scan 26c is processed in the -x-axis direction at intervals of pitch p.
  • the peak value A and the processing width w are, for example, proportional to the scan speed and the power of the microwave in the case of a processing portion of the microwave plasma etching method. stipulated. Specifically, when the scan speed value is small, the residence time of the nozzle on the wafer is long, and the processing is deeper. Further, the larger the microwave power, the wider the area processed by the plasma, and the wider the processing width of the processing region.
  • the peak value A of the machining depth is calculated so that the superposition of machining distributions for one scan becomes the target machining distribution shown in FIG. Derive the scan speed distribution.
  • the method of least squares, regression analysis, etc. are used.
  • FIG. 6 shows the scan speed distribution of the calculated scan information.
  • One black dot indicates the scan speed in one scan, and indicates the distribution of the scan speed in the y-axis direction at arbitrary positions a, b, and c on the x-axis.
  • FIG. 7 shows the processing result of the wafer in the processing section.
  • This is an example in which a core film is formed on a substrate using a processing unit 20 of a microwave plasma etching method.
  • the core film thickness distribution is formed in the range of 2.0 to 2.5 ⁇ m.
  • the circular mark is the processing result obtained by superimposing the processing distribution of one scan. It can be seen that the film thickness distribution of the target processing amount is processed with high accuracy.
  • FIG. 8 shows a processing example of the Mach-Zehnder interferometer according to Example 1 of the present invention.
  • a Mach-Zehnder interferometer (MZI) 60 shown in FIG. 8A includes a first arm 63 and a first arm 63 having a path length longer than the first arm 63 by ⁇ L between two directional couplers 61 and 62 . 2 arms 64 are connected.
  • the horizontal direction in FIG. 8A is taken as the x-axis
  • the length of the waveguide in the x-axis direction is the longest, so this direction is taken as the scan axis.
  • FIG. 8(b) shows the processing result when the target processing amount is 10 ⁇ m.
  • the film thickness variation in the y-axis direction is suppressed to ⁇ 0.1 ⁇ m or less. Since the waveguide width of the MZI 60 is on the micro-order or nano-order, it is made sufficiently narrower than the scan pitch, and the scan axis is set in the direction in which the ratio of the optical axis direction of the waveguide is the largest. can be minimized.
  • the height of the waveguide core (film thickness of the core film) is in the range of 100 nm to 20 ⁇ m, and the width of the waveguide core is in the range of 100 nm to 100 ⁇ m.
  • Circuit waveguides can be made.
  • FIG. 9 shows a processing example of an arrayed waveguide grating according to Example 2 of the present invention.
  • Arrayed waveguide grating (AWG) 70 shown in FIG. are connected by a plurality of arrayed waveguides 75 having different path lengths by ⁇ L.
  • the AWG 70 is used for optical wavelength filters and the like.
  • FIG. 9(b) is a cross-sectional view taken along line BB' of FIG. 9(a), in which a plurality of cores 75a to 75n of an arrayed waveguide 75 are embedded in a clad layer 77 formed on a substrate 76. ing.
  • a central wavelength ⁇ 0 which is a typical optical characteristic of the AWG 70, is obtained by the following formula.
  • narray is the equivalent refractive index of the arrayed waveguide 75
  • .DELTA.L is the path length difference between the arrayed waveguides
  • m is the diffraction order.
  • the distribution of n array has the following relationship.
  • n core is the core refractive index
  • n clad is the clad refractive index
  • w is the waveguide width
  • T(x, y) is the core film thickness distribution.
  • the scan axis is set in the y-axis direction where the ratio of the waveguides in the optical axis direction is the smallest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Provided is a processing method for an optical device, the method allowing the thickness of a film in a minute region on a wafer surface to be accurately processed. The processing method for an optical device in which a film with a desired film thickness is processed by scanning along an arbitrary coordinate axis on a wafer includes; a step for calculating, on the basis of distribution of the desired film thickness, scanning information that is processing information for each scanning when processing is performed along a scanning axis; a step for converting, on the basis of the scanning information, a control signal for controlling a processing unit; and a step for processing, on the basis of the control signal, the wafer to have the distribution of the desired film thickness by scanning along the scanning axis by the processing unit.

Description

光デバイスの加工方法および加工装置Optical device processing method and processing apparatus
 本発明は、光デバイスの加工方法および加工装置に関し、より詳細には、ウェハ上に成膜されたクラッド膜およびコア膜を、光デバイスの光学特性が均一になる形状に加工することができる光デバイスの加工方法及び加工装置に関する。 The present invention relates to an optical device processing method and processing apparatus, and more particularly, to a light beam capable of processing a clad film and a core film formed on a wafer into a shape that makes the optical characteristics of the optical device uniform. The present invention relates to a device processing method and processing apparatus.
 波長多重光通信の更なる大容量化に伴い、これを支える光波長合分波回路、光スイッチ回路などの光回路の研究開発が盛んに行われている。多くの場合、これら光回路の構成要素は、ウェハ上に形成された埋め込み型光導波路からなり、光路長の異なる複数の光信号経路と合分波素子が含まれる。光回路を伝搬する光波の干渉を利用して、複数の波長の光の合分波、スイッチング等の機能を実現している。 With the further increase in capacity of wavelength multiplexing optical communication, research and development of optical circuits such as optical wavelength multiplexing/demultiplexing circuits and optical switch circuits are being actively carried out. In many cases, these optical circuit components consist of embedded optical waveguides formed on a wafer, and include a plurality of optical signal paths with different optical path lengths and multiplexing/demultiplexing elements. Using the interference of light waves propagating in an optical circuit, functions such as multiplexing/demultiplexing and switching of light of multiple wavelengths are realized.
 光波の干渉特性は、光信号経路間の光路長差に依存しており、光路長を決定する実効屈折率は、光信号経路である光導波路を構成する材料の屈折率、導波路コアの高さ、幅等によって主に決定される。従って、ウェハ上に作製される光回路の光学特性は、光導波路材料の光学定数のウェハ面内分布と、導波路構造の寸法ばらつきとに依存して変動する。特に、導波路コアの高さは、コア成膜時の膜厚によって決定され、作製した光デバイスの光学特性ばらつきは、成膜プロセスの精度に依存していた。 The interference characteristics of light waves depend on the difference in optical path length between optical signal paths. It is mainly determined by the height, width, etc. Therefore, the optical characteristics of an optical circuit fabricated on a wafer fluctuate depending on the wafer in-plane distribution of the optical constant of the optical waveguide material and the dimensional variation of the waveguide structure. In particular, the height of the waveguide core is determined by the film thickness during core deposition, and variations in optical characteristics of the fabricated optical device depend on the accuracy of the deposition process.
 従来、火炎堆積法等で成膜したコア膜厚の分布を任意に調節する方法として、例えば、特許文献1に記載された製造方法が知られていた。第1の薄膜の上に第2の薄膜を形成して導波路コアとする場合に、所定の膜厚分布に応じて第1の薄膜を粗密パターンに加工して、第2の薄膜を形成する工程で低粘度してコアを形成する。コア膜厚を精度よく形成するためには、基板上に形成された第1の薄膜のパターン形状を、高精度に加工する必要がある。しかしながら、従来、ウェハ表面に、1mm径未満となるような微小な領域の形状を、高精度に加工することは困難であった。 Conventionally, as a method for arbitrarily adjusting the distribution of the core film thickness formed by the flame deposition method or the like, for example, the manufacturing method described in Patent Document 1 has been known. When the second thin film is formed on the first thin film to form the waveguide core, the first thin film is processed into a coarse-dense pattern according to a predetermined film thickness distribution to form the second thin film. Low viscosity in the process to form the core. In order to accurately form the core film thickness, it is necessary to process the pattern shape of the first thin film formed on the substrate with high accuracy. However, conventionally, it has been difficult to process the shape of a very small area with a diameter of less than 1 mm on the surface of a wafer with high accuracy.
特開2003-4966号公報JP-A-2003-4966
 本発明の目的は、ウェハ表面の微小な領域におけるコア膜およびクラッド膜の微細加工、特に膜厚を精度よく加工することができる光デバイスの加工方法及び加工装置を提供することにある。 An object of the present invention is to provide an optical device processing method and processing apparatus capable of microfabrication of the core film and the clad film in a minute area of the wafer surface, particularly the film thickness, with high accuracy.
 本発明は、このような目的を達成するために、一実施態様は、ウェハ上の任意の座標軸に沿ってスキャンすることにより所望の膜厚の膜を加工する光デバイスの加工方法であって、前記所望の膜厚の分布に基づいて、スキャン軸に沿って加工を行う際の1スキャンごとの加工情報であるスキャン情報を算出する工程と、前記スキャン情報に基づいて、加工部を制御する制御信号に変換する工程と、前記制御信号に基づいて、前記加工部が前記スキャン軸に沿ってスキャンすることにより前記ウェハを前記所望の膜厚の分布に加工する工程とを備えたことを特徴とする。 In order to achieve such an object, one embodiment of the present invention is an optical device processing method for processing a film of a desired thickness by scanning along an arbitrary coordinate axis on a wafer, comprising: A step of calculating scan information, which is processing information for each scan when performing processing along the scan axis, based on the distribution of the desired film thickness; and a control of controlling a processing unit based on the scan information. and processing the wafer to the desired film thickness distribution by scanning the processing unit along the scan axis based on the control signal. do.
図1は、本発明の一実施形態にかかる加工装置の概略構成を示す図、FIG. 1 is a diagram showing a schematic configuration of a processing apparatus according to one embodiment of the present invention; 図2は、本実施形態にかかる加工装置の加工部の第1例を示す図、FIG. 2 is a diagram showing a first example of the processing unit of the processing device according to the present embodiment; 図3は、本実施形態にかかる加工装置の加工部の第2例を示す図、FIG. 3 is a diagram showing a second example of the processing unit of the processing device according to the present embodiment; 図4は、加工部におけるウェハの加工方法を説明するための図、FIG. 4 is a diagram for explaining a wafer processing method in a processing unit; 図5は、スキャン情報の算出方法を説明するための図、FIG. 5 is a diagram for explaining a method of calculating scan information; 図6は、算出されたスキャン情報のスキャンスピード分布を示す図、FIG. 6 is a diagram showing the scan speed distribution of the calculated scan information; 図7は、加工部におけるウェハの加工結果を示す図、FIG. 7 is a diagram showing the processing result of the wafer in the processing unit; 図8は、本発明の実施例1にかかるマッハツェンダ干渉計の加工例を示す図、FIG. 8 is a diagram showing a processing example of the Mach-Zehnder interferometer according to the first embodiment of the present invention; 図9は、本発明の実施例2にかかるアレイ導波路格子の加工例を示す図である。FIG. 9 is a diagram showing a processing example of an arrayed waveguide grating according to Example 2 of the present invention.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1に、本発明の一実施形態にかかる加工装置の概略構成を示す。加工装置10は、ウェハ上に作製する光回路の導波路分布を解析する解析部11と、ウェハの加工を行う加工部12と、解析部11の解析結果に基づいて加工部12を制御する制御部13とを備えている。 FIG. 1 shows a schematic configuration of a processing device according to one embodiment of the present invention. The processing apparatus 10 includes an analysis unit 11 that analyzes the waveguide distribution of an optical circuit fabricated on a wafer, a processing unit 12 that processes the wafer, and a controller that controls the processing unit 12 based on the analysis results of the analysis unit 11. a portion 13;
 解析部11は、ウェハの加工を行うためのマスク情報または導波路分布情報が、入力信号として入力されると、これら情報を解析してスキャン軸を決定する。スキャン軸は、光回路に形成される導波路において、光軸方向の比率が最も大きい方向に設定する。具体的には、ウェハ上に作製する光回路の導波路の各々について、所定の光軸方向ごとに導波路長を算出する。光軸方向は、例えば、ウェハのオリエンテーションフラットに対して平行する方向から垂直方向まで、角度5度の範囲で18方向に区分する。次に、この区分ごとに各導波路の長さを合算し、最も導波路長の長い方向をスキャン軸とする。 When mask information or waveguide distribution information for processing a wafer is input as an input signal, the analysis unit 11 analyzes this information and determines the scan axis. The scan axis is set in the direction in which the ratio of the optical axis direction is the largest in the waveguide formed in the optical circuit. Specifically, for each waveguide of an optical circuit fabricated on a wafer, the waveguide length is calculated for each predetermined optical axis direction. The optical axis direction is, for example, divided into 18 directions within a range of angles of 5 degrees from the direction parallel to the orientation flat of the wafer to the direction perpendicular to it. Next, the length of each waveguide is summed up for each section, and the direction of the longest waveguide length is taken as the scan axis.
 解析部11は、予め導出されている加工プロファイル情報を所得し、スキャンスピード分布とピッチ情報を含むスキャン情報を算出する。加工プロファイル情報は、ウェハ上に作製する光回路の構造から求められた加工情報であり、例えば、ウェハ面(xy平面)上に形成するコア膜の膜厚(z軸)が規定された3次元の形状情報である。すなわち、光回路の機能に応じて形成される導波路コアの所望の高さの分布が定義されている。また、加工プロファイル情報には、加工部12における加工特性に関する特性情報が含まれている。例えば、マイクロ波プラズマエッチング方式の加工部であれば、スキャンスピード、マイクロ波の電力に応じて、ウェハ上の膜をどの程度エッチングできるか等の加工特性が定義されている。スキャン情報は、ウェハの加工を行う加工部12において、決定されたスキャン軸に沿って加工を行う際の1スキャンごとの加工情報である。加工プロファイル情報の形状情報をスキャン軸に沿って走査し、1スキャンごとにコア膜の膜厚の分布を算出する。算出された膜厚となるように、加工プロファイル情報の特性情報に応じて、1スキャンごとのスキャンスピードの分布、ピッチなどが規定される。例えば、マイクロ波プラズマエッチング方式の加工部であれば、導波路コアの高さを低く(コア膜を薄く)するのであれば、後述するキャピラリのスキャンスピードを遅く、導波路コアの高さを高く(コア膜を厚く)するのであれば、スキャンスピードを速くする。また、コアの形状変化の大きい所はピッチを狭く、形状変化の小さい所はピッチを広くする。 The analysis unit 11 obtains processing profile information derived in advance, and calculates scan information including scan speed distribution and pitch information. The processing profile information is processing information obtained from the structure of an optical circuit to be fabricated on a wafer. is the shape information of That is, a desired height distribution of the waveguide cores formed according to the function of the optical circuit is defined. Further, the machining profile information includes characteristic information regarding machining characteristics in the machining unit 12 . For example, in the case of a microwave plasma etching processing unit, processing characteristics such as how much a film on a wafer can be etched are defined according to the scan speed and microwave power. The scan information is processing information for each scan when processing is performed along the determined scan axis in the processing unit 12 that processes the wafer. The shape information of the processing profile information is scanned along the scan axis, and the film thickness distribution of the core film is calculated for each scan. In order to obtain the calculated film thickness, the distribution of the scan speed for each scan, the pitch, etc. are defined according to the characteristic information of the processing profile information. For example, in the case of a microwave plasma etching method, if the height of the waveguide core is to be lowered (the core film is made thinner), the scanning speed of the capillary, which will be described later, is decreased, and the height of the waveguide core is increased. If you want to thicken the core film, increase the scan speed. Also, the pitch is narrowed where the shape change of the core is large, and the pitch is widened where the shape change is small.
 制御部13は、解析部11に指示信号を送出して、解析部11からスキャン情報を入力し、加工部12を制御するための制御信号に変換し、加工部12に出力する。制御信号は、例えば、マイクロ波プラズマエッチング方式の加工部であれば、原料ガスの供給、後述するキャピラリの位置制御、ウェハを載置するステージの制御、マイクロ波(RF信号)の出力制御のための信号である。 The control unit 13 sends an instruction signal to the analysis unit 11 , inputs the scan information from the analysis unit 11 , converts it into a control signal for controlling the processing unit 12 , and outputs it to the processing unit 12 . For example, in the case of a microwave plasma etching processing unit, the control signal is for supply of raw material gas, control of the position of a capillary described later, control of a stage on which a wafer is placed, and control of microwave (RF signal) output. is a signal of
 加工部12は、入力された制御信号に基づいて、ウェハの加工を行う。ウェハは、決定されたスキャン軸に沿ったスキャン情報に基づいて加工されることになる。加工部12には、ウェハ面を走査するセンサが備えられており、検出されたセンサ信号が制御部13にフィードバックされる。 The processing unit 12 processes the wafer based on the input control signal. The wafer will be processed based on the scan information along the determined scan axis. The processing unit 12 is equipped with a sensor that scans the wafer surface, and a detected sensor signal is fed back to the control unit 13 .
 制御部13におけるフィードバック制御について説明する。制御部13は、加工部12からのセンサ信号から、上述した制御信号に加える調整量(フィードバック量)を算出する。フィードバック量は、各々のセンサから出力される信号ごとにフィードバック関数とフィードバック係数を定義して算出される。例えば、2種類のセンサからのフィードバック信号をそれぞれs,sとし、フィードバック関数をsは2次関数、sは1次関数としたとき、フィードバック量は、係数A~Dが予め定められ、
  f(s,s)=As +Bs+Cs+D
として求められる。
Feedback control in the control unit 13 will be described. The control unit 13 calculates an adjustment amount (feedback amount) to be added to the control signal described above from the sensor signal from the processing unit 12 . A feedback amount is calculated by defining a feedback function and a feedback coefficient for each signal output from each sensor. For example, when the feedback signals from the two types of sensors are s 1 and s 2 respectively, and the feedback function is s 1 as a quadratic function and s 2 as a linear function, the feedback amount is predetermined by the coefficients A to D. be
f( s1 , s2 )= As12 + Bs1 + Cs2 + D
is required as
 図2に、本実施形態にかかる加工装置の加工部の第1例を示す。マイクロ波プラズマエッチング方式の加工部20は、原料ガスを吐出するキャピラリにマイクロ波(RF信号)を印加してプラズマ化し、ウェハに照射してエッチングを行う。加工部20の真空チャンバ21内に設けられたステージ22上にウェハ26が固定され、ノズル23の先端のキャピラリ24からプラズマ化された原料ガスが照射される。ノズル23とステージ22上のRF電極25との間に、マイクロ波(RF)電源27が接続され、キャピラリ24から吐出される原料ガスがプラズマ化される。 FIG. 2 shows a first example of the processing section of the processing device according to this embodiment. The microwave plasma etching type processing unit 20 applies microwaves (RF signals) to a capillary that discharges a raw material gas to generate plasma, and irradiates the wafer with the plasma to etch the wafer. A wafer 26 is fixed on a stage 22 provided in a vacuum chamber 21 of a processing section 20 , and a plasma source gas is irradiated from a capillary 24 at the tip of a nozzle 23 . A microwave (RF) power supply 27 is connected between the nozzle 23 and an RF electrode 25 on the stage 22, and the material gas discharged from the capillary 24 is turned into plasma.
 原料ガスは、ガスチャンバー28a,bからMFC(Mass Flow Controller)29a,b、MFM(Mass Flow Meter)34a,b、バルブ30a,bを介して真空チャンバ21とノズル23とに供給され、排気ポート31から排出される。原料ガスの種類は、フッ素系、水素系または塩素系である。また、これらの原料ガスに、支燃性ガスまたは不活性ガスを混合して真空チャンバへ供給しても良い。 The raw material gas is supplied from the gas chambers 28a, b to the vacuum chamber 21 and the nozzle 23 via MFCs (Mass Flow Controllers) 29a, b, MFMs (Mass Flow Meters) 34a, b, and valves 30a, b. 31 is discharged. The type of raw material gas is fluorine-based, hydrogen-based or chlorine-based. Further, these raw material gases may be mixed with a combustion-supporting gas or an inert gas and supplied to the vacuum chamber.
 制御部13は、マイクロ波(RF信号)を出力するRF電源27と、ガスの流量を制御するMFC29およびバルブ30とを制御し、ノズル23とステージ22とを制御して、ウェハ26をスキャン軸に沿ってスキャンすることにより所望の膜厚の膜を加工する。また、制御部13は、センサとしてのRF電力計32、真空計33、MFM34から信号を入力し、上述したように、フィードバック量を算出して、RF電源27、MFC29、バルブ30に制御信号を出力して、フィードバック制御を行う。 The control unit 13 controls the RF power supply 27 that outputs microwaves (RF signals), the MFC 29 that controls the gas flow rate, and the valve 30, controls the nozzle 23 and the stage 22, and moves the wafer 26 along the scan axis. A film having a desired film thickness is processed by scanning along the . Further, the control unit 13 receives signals from the RF power meter 32, the vacuum gauge 33, and the MFM 34 as sensors, calculates the feedback amount as described above, and sends control signals to the RF power supply 27, MFC 29, and valve 30. Output to perform feedback control.
 なお、加工部20は、ノズル23のキャピラリ24から原料ガスが吐出される加工装置であるが、ノズルから原料ガスを吸引し、局所的にマイクロ波(RF信号)を印加する吸引型の加工装置であってもよい。 The processing unit 20 is a processing device in which the raw material gas is discharged from the capillary 24 of the nozzle 23, but is a suction type processing device that sucks the raw material gas from the nozzle and locally applies microwaves (RF signals). may be
 図3に、本実施形態にかかる加工装置の加工部の第2例を示す。イオンミリング方式の加工部40は、Ar(アルゴン)イオンビームをウェハに照射してエッチングを行う。加工部40の真空チャンバ41内に設けられたステージ42上のウェハホルダ45にウェハ46が固定され、イオンガン43からArイオンビームが照射される。原料ガスは、ガスチャンバー48からMFC49、バルブ50を介して真空チャンバ41に供給され、排気ポート51から排出される。イオンビーム種は、ArまたはGa(ガリウム)等が主に採用される。 FIG. 3 shows a second example of the processing section of the processing device according to this embodiment. The ion milling processing unit 40 irradiates the wafer with an Ar (argon) ion beam to etch the wafer. A wafer 46 is fixed to a wafer holder 45 on a stage 42 provided in a vacuum chamber 41 of a processing section 40 and is irradiated with an Ar ion beam from an ion gun 43 . The raw material gas is supplied from the gas chamber 48 to the vacuum chamber 41 via the MFC 49 and the valve 50 and discharged from the exhaust port 51 . Ar or Ga (gallium) or the like is mainly used as the ion beam species.
 制御部13は、イオンガスの流量を制御し、ウェハ46を載置したステージ42、イオンガン43を制御して、ウェハ46をスキャン軸に沿ってスキャンすることにより所望の膜厚の膜を加工する。また、制御部13は、図示しないが、センサからの信号を入力し、上述したように、フィードバック量を算出して、フィードバック制御も行う。 The control unit 13 controls the ion gas flow rate, controls the stage 42 on which the wafer 46 is mounted, and the ion gun 43, and scans the wafer 46 along the scan axis to process a film of a desired thickness. . The control unit 13 also receives a signal from a sensor (not shown), calculates the amount of feedback as described above, and performs feedback control.
 図4を参照して、加工部におけるウェハの加工方法を説明する。図4(a)は、ウェハ上に形成される光回路を示している。1つのウェハ26に、複数の光回路26aが作成される。上述したように、この光回路26aに含まれる導波路を解析して、スキャン軸が決定される。図4(b)は、オリエンテーションフラットに対して平行する方向をx軸、垂直方向をy軸としたとき、x軸方向に沿って1スキャンごとに加工する様子を示している。例えば、マイクロ波プラズマエッチング方式の加工部20では、ノズル23の先端のキャピラリ24からプラズマ化された原料が、スキャン情報に従って吐出される。 A method of processing a wafer in the processing unit will be described with reference to FIG. FIG. 4(a) shows an optical circuit formed on a wafer. A plurality of optical circuits 26 a are formed on one wafer 26 . As described above, the scan axis is determined by analyzing the waveguide included in this optical circuit 26a. FIG. 4(b) shows how processing is performed for each scan along the x-axis direction, where the direction parallel to the orientation flat is the x-axis and the direction perpendicular to the orientation flat is the y-axis. For example, in the processing unit 20 of the microwave plasma etching method, a plasma material is discharged from a capillary 24 at the tip of a nozzle 23 according to scan information.
 上述したように、導波路の光軸方向の比率が最も大きい方向にスキャン軸を設定したが、光回路の機能によっては、最も小さい方向をスキャン軸としてもよい。図4(c)は、y軸方向に沿って1スキャンごとに加工する様子を示している。また、スキャン軸がオリエンテーションフラットに対して平行でない場合は、図4(d),(e)に示すように、スキャン軸に沿った座標軸を設定して、x軸またはy軸方向に沿って加工してもよい。 As described above, the scan axis is set in the direction in which the ratio of the optical axis direction of the waveguide is the largest, but depending on the function of the optical circuit, the scan axis may be the direction in which the ratio is the smallest. FIG. 4(c) shows how processing is performed for each scan along the y-axis direction. In addition, when the scan axis is not parallel to the orientation flat, as shown in FIGS. You may
 図5を参照して、スキャン情報の算出方法を説明する。図5(a)は、図4(a)に示したウェハ26に対して、図4(b)に示したように、x軸方向に沿って1スキャンごとに加工する様子を示している。1スキャン26bにおいて、スキャン軸(x軸)方向に対して垂直な方向(y軸)の加工分布がガウス分布で近似できるとき、加工幅をw、加工深さの尖頭値をAとすると、加工分布は、 A method of calculating scan information will be described with reference to FIG. FIG. 5(a) shows how the wafer 26 shown in FIG. 4(a) is processed for each scan along the x-axis direction as shown in FIG. 4(b). In one scan 26b, when the machining distribution in the direction (y-axis) perpendicular to the scan axis (x-axis) direction can be approximated by a Gaussian distribution, w is the machining width and A is the peak value of the machining depth. The processing distribution is
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
として求められる。図5(b)は、求めた加工分布であり、キャピラリ24の中心軸から、y軸方向の加工深さを示している。同様にして、次の1スキャン26cが、ピッチpの間隔をあけて、-x軸方向に加工される。尖頭値A、加工幅wは、例えば、マイクロ波プラズマエッチング方式の加工部であれば、スキャンスピード、マイクロ波の電力に対して、それぞれ比例関係にあり、上述した加工プロファイル情報の特性情報に規定されている。具体的には、スキャンスピードの値が小さいと、ウェハ上のノズルの滞在時間が長くなり、より深く加工される。また、マイクロ波の電力が大きいほどプラズマによる加工面積も広くなり、加工領域の加工幅が大きくなる。 is required as FIG. 5B shows the obtained machining distribution, showing the machining depth in the y-axis direction from the central axis of the capillary 24 . Similarly, the next one scan 26c is processed in the -x-axis direction at intervals of pitch p. The peak value A and the processing width w are, for example, proportional to the scan speed and the power of the microwave in the case of a processing portion of the microwave plasma etching method. stipulated. Specifically, when the scan speed value is small, the residence time of the nozzle on the wafer is long, and the processing is deeper. Further, the larger the microwave power, the wider the area processed by the plasma, and the wider the processing width of the processing region.
 このようにして、スキャン軸に沿って往復の走査が続けられる。図5(c)は、ウェハ26の中心をx=0,y=0をとしたとき、x=0の位置におけるy軸方向の目標加工量であり、ウェハ26上に形成される膜厚の分布である。1スキャンの加工分布の重ね合わせが、図5(c)に示す目標加工分布となるように、加工深さの尖頭値Aを算出し、加工部20の加工特性に応じて、キャピラリ24のスキャンスピード分布を導出する。導出には、最小二乗法や回帰分析等を用いる。 In this way, reciprocating scanning is continued along the scanning axis. FIG. 5C shows the target processing amount in the y-axis direction at the position of x=0 when the center of the wafer 26 is set to x=0 and y=0. distribution. The peak value A of the machining depth is calculated so that the superposition of machining distributions for one scan becomes the target machining distribution shown in FIG. Derive the scan speed distribution. For the derivation, the method of least squares, regression analysis, etc. are used.
 図6に、算出されたスキャン情報のスキャンスピード分布を示す。ウェハ26の中心をx=0,y=0をとしたとき、任意のx軸上の位置a,b,cにおけるスキャンスピードである。黒点1つは、1スキャンにおけるスキャンスピードであり、任意のx軸上の位置a,b,cのそれぞれにおいて、y軸方向のスキャンスピードの分布を示している。 FIG. 6 shows the scan speed distribution of the calculated scan information. When the center of the wafer 26 is set to x=0 and y=0, it is the scan speed at arbitrary positions a, b, and c on the x-axis. One black dot indicates the scan speed in one scan, and indicates the distribution of the scan speed in the y-axis direction at arbitrary positions a, b, and c on the x-axis.
 図7に、加工部におけるウェハの加工結果を示す。マイクロ波プラズマエッチング方式の加工部20を用いて、基板上にコア膜を形成した例である。太い破線は、ウェハ26の中心をx=0,y=0をとしたとき、x=0の位置におけるy軸方向の目標加工量である。この例では、2.0~2.5μmの範囲でコア膜厚の分布を形成する。細線は、1スキャンごとの加工量を示しており、y軸方向のピッチp=1mm間隔でスキャンしたときの加工量である。 FIG. 7 shows the processing result of the wafer in the processing section. This is an example in which a core film is formed on a substrate using a processing unit 20 of a microwave plasma etching method. The thick dashed line is the target machining amount in the y-axis direction at the position of x=0 when the center of the wafer 26 is x=0 and y=0. In this example, the core film thickness distribution is formed in the range of 2.0 to 2.5 μm. A thin line indicates the amount of processing for each scan, which is the amount of processing when scanning is performed at a pitch p=1 mm in the y-axis direction.
 丸印は、1スキャンの加工分布を重ね合わせた加工結果である。目標加工量の膜厚の分布に対して、精度よく加工されていることが分かる。 The circular mark is the processing result obtained by superimposing the processing distribution of one scan. It can be seen that the film thickness distribution of the target processing amount is processed with high accuracy.
 図8に、本発明の実施例1にかかるマッハツェンダ干渉計の加工例を示す。図8(a)に示したマッハツェンダ干渉計(MZI)60は、2つの方向性結合器61,62の間を、第1のアーム63と、第1のアーム63よりΔLだけ経路長が長い第2のアーム64とにより接続した構成を有する。図8(a)の水平方向をx軸としたとき、x軸方向の導波路の長さが最も長いので、この方向をスキャン軸とする。 FIG. 8 shows a processing example of the Mach-Zehnder interferometer according to Example 1 of the present invention. A Mach-Zehnder interferometer (MZI) 60 shown in FIG. 8A includes a first arm 63 and a first arm 63 having a path length longer than the first arm 63 by ΔL between two directional couplers 61 and 62 . 2 arms 64 are connected. When the horizontal direction in FIG. 8A is taken as the x-axis, the length of the waveguide in the x-axis direction is the longest, so this direction is taken as the scan axis.
 上述したように、スキャン軸に沿って複数のスキャンを、順次、重ね合わせていくと、隣接する異なる2つのスキャンが重なる領域には、微小な加工誤差が残る。スキャン軸を導波路の光軸方向とすると、この加工誤差に起因する実効屈折率のむらによって生ずる挿入損失と位相誤差の増大を抑制することができる。 As described above, when multiple scans are sequentially superimposed along the scan axis, minute processing errors remain in the area where two different adjacent scans overlap. If the scanning axis is set in the direction of the optical axis of the waveguide, it is possible to suppress an increase in insertion loss and phase error caused by unevenness in the effective refractive index caused by this processing error.
 図8(b)は、目標加工量を10μmとしたときの加工結果を示す。y軸方向の膜厚の変化は、±0.1μm以下に抑えられている。MZI60の導波路幅は、マイクロオーダまたはナノオーダとなるため、スキャンピッチよりも十分狭くして、スキャン軸を、導波路の光軸方向の比率が最も大きい方向に設定ことにより、光学特性の劣化を最小限に抑えることができる。 FIG. 8(b) shows the processing result when the target processing amount is 10 μm. The film thickness variation in the y-axis direction is suppressed to ±0.1 μm or less. Since the waveguide width of the MZI 60 is on the micro-order or nano-order, it is made sufficiently narrower than the scan pitch, and the scan axis is set in the direction in which the ratio of the optical axis direction of the waveguide is the largest. can be minimized.
 実施例1によれば、導波路コアの高さ(コア膜の膜厚)は100nm~20μm、導波路コアの幅は100nm~100μmの範囲において、上記の膜厚の変化量に抑えられた光回路の導波路を作製することができる。 According to Example 1, the height of the waveguide core (film thickness of the core film) is in the range of 100 nm to 20 μm, and the width of the waveguide core is in the range of 100 nm to 100 μm. Circuit waveguides can be made.
 図9に、本発明の実施例2にかかるアレイ導波路格子の加工例を示す。図9(a)に示したアレイ導波路回折格子(AWG)70は、入力導波路73に接続された入力スラブ導波路71と、出力導波路74に接続された出力スラブ導波路72との間を、ΔLずつ経路長が異なる複数のアレイ導波路75により接続した構成を有する。AWG70は、光波長フィルタ等に用いられる。 FIG. 9 shows a processing example of an arrayed waveguide grating according to Example 2 of the present invention. Arrayed waveguide grating (AWG) 70 shown in FIG. are connected by a plurality of arrayed waveguides 75 having different path lengths by ΔL. The AWG 70 is used for optical wavelength filters and the like.
 図9(b)は、図9(a)のB-B’間の断面図であり、基板76上に形成されたクラッド層77に、アレイ導波路75の複数のコア75a~75nが埋め込まれている。AWG70の代表的な光学特性である中心波長λは、以下の式で求められる。 FIG. 9(b) is a cross-sectional view taken along line BB' of FIG. 9(a), in which a plurality of cores 75a to 75n of an arrayed waveguide 75 are embedded in a clad layer 77 formed on a substrate 76. ing. A central wavelength λ 0 , which is a typical optical characteristic of the AWG 70, is obtained by the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
ここで、narrayはアレイ導波路75の等価屈折率、ΔLはアレイ導波路間の経路長差、mは回折次数を示している。また、narrayの分布は、次式の関係を有する。 Here, narray is the equivalent refractive index of the arrayed waveguide 75, .DELTA.L is the path length difference between the arrayed waveguides, and m is the diffraction order. Also, the distribution of n array has the following relationship.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
ここで、ncoreはコア屈折率、ncladはクラッド屈折率、wは導波路幅、T(x,y)はコア膜厚分布を示す。 Here, n core is the core refractive index, n clad is the clad refractive index, w is the waveguide width, and T(x, y) is the core film thickness distribution.
 上式から、アレイ導波路75間のコア膜厚分布T(x,y)を均一にすることにより、AWG70の、光デバイスの特性ばらつきを抑えることができる。すなわち、AWG70のように、複数の異なる経路長の導波路が広い領域に渡って分布している場合、導波路の光軸方向ではなく、アレイ方向の膜厚を均一にした方が光デバイスの特性が良くなる。従って、導波路間の等価屈折率の均一性を確保するためには、導波路の光軸方向の比率が最も小さいy軸方向にスキャン軸を設定する。 From the above equation, by making the core film thickness distribution T(x, y) between the arrayed waveguides 75 uniform, it is possible to suppress variations in the characteristics of the optical device of the AWG 70 . That is, when a plurality of waveguides with different path lengths are distributed over a wide area like the AWG 70, it is better to make the film thickness uniform in the array direction rather than in the optical axis direction of the waveguides. better characteristics. Therefore, in order to ensure the uniformity of the equivalent refractive index between waveguides, the scan axis is set in the y-axis direction where the ratio of the waveguides in the optical axis direction is the smallest.

Claims (8)

  1.  ウェハ上の任意の座標軸に沿ってスキャンすることにより所望の膜厚の膜を加工する光デバイスの加工方法であって、
     前記所望の膜厚の分布に基づいて、スキャン軸に沿って加工を行う際の1スキャンごとの加工情報であるスキャン情報を算出する工程と、
     前記スキャン情報に基づいて、加工部を制御する制御信号に変換する工程と、
     前記制御信号に基づいて、前記加工部が前記スキャン軸に沿ってスキャンすることにより前記ウェハを前記所望の膜厚の分布に加工する工程と
     を備えたことを特徴とする光デバイスの加工方法。
    An optical device processing method for processing a film of a desired film thickness by scanning along an arbitrary coordinate axis on a wafer, comprising:
    a step of calculating scan information, which is processing information for each scan when performing processing along the scan axis, based on the distribution of the desired film thickness;
    a step of converting the scan information into a control signal for controlling the processing unit;
    and processing the wafer into the desired film thickness distribution by scanning the processing unit along the scan axis based on the control signal.
  2.  前記スキャン軸は、前記ウェハ上に形成される光回路の導波路において、光軸方向の比率が最も大きい方向または最も小さい方向に設定されることを特徴とする請求項1に記載の光デバイスの加工方法。 2. The optical device according to claim 1, wherein the scan axis is set in a direction having the largest or smallest ratio of optical axis directions in a waveguide of an optical circuit formed on the wafer. processing method.
  3.  前記加工部は、マイクロ波プラズマエッチング方式であり、前記スキャン情報は、スキャンスピード分布とピッチとを含み、前記制御信号は、マイクロ波電源の出力、ガスの流量、プラズマ化された原料ガスを照射するノズル、および前記ウェハが固定されたステージを制御することを特徴とする請求項1または2に記載の光デバイスの加工方法。 The processing unit uses a microwave plasma etching method, the scan information includes a scan speed distribution and a pitch, and the control signal includes the output of a microwave power supply, gas flow rate, and plasma source gas irradiation. 3. The method of processing an optical device according to claim 1, further comprising controlling a nozzle that holds the wafer and a stage on which the wafer is fixed.
  4.  前記加工部は、イオンミリング方式であり、前記スキャン情報は、スキャンスピード分布とピッチとを含み、前記制御信号は、イオンガスの流量、イオンガン、および前記ウェハが固定されたステージを制御することを特徴とする請求項1または2に記載の光デバイスの加工方法。 The processing unit uses an ion milling method, the scan information includes a scan speed distribution and a pitch, and the control signal controls an ion gas flow rate, an ion gun, and a stage on which the wafer is fixed. 3. The method for processing an optical device according to claim 1 or 2.
  5.  ウェハ上の任意の座標軸に沿ってスキャンすることにより所望の膜厚の膜を加工する光デバイスの加工装置であって、
     前記所望の膜厚の分布に基づいて、スキャン軸に沿って加工を行う際の1スキャンごとの加工情報であるスキャン情報を算出する解析部と、
     前記スキャン情報に基づいて変換された制御信号により、前記スキャン軸に沿ってスキャンすることにより前記ウェハを前記所望の膜厚の分布に加工する加工部と
     を備えたことを特徴とする光デバイスの加工装置。
    An optical device processing apparatus for processing a film of a desired film thickness by scanning along an arbitrary coordinate axis on a wafer,
    an analysis unit that calculates scan information, which is processing information for each scan when performing processing along the scan axis, based on the distribution of the desired film thickness;
    a processing unit that processes the wafer into the desired film thickness distribution by scanning along the scan axis with a control signal converted based on the scan information. processing equipment.
  6.  前記スキャン軸は、前記ウェハ上に形成される光回路の導波路において、光軸方向の比率が最も大きい方向または最も小さい方向に設定されることを特徴とする請求項5に記載の光デバイスの加工装置。 6. The optical device according to claim 5, wherein the scan axis is set in a direction having the largest or smallest ratio of optical axis directions in the waveguide of the optical circuit formed on the wafer. processing equipment.
  7.  前記加工部は、マイクロ波プラズマエッチング方式であり、前記スキャン情報は、スキャンスピード分布とピッチとを含み、前記制御信号は、マイクロ波電源の出力、ガスの流量、プラズマ化された原料ガスを照射するノズル、および前記ウェハが固定されたステージを制御することを特徴とする請求項5または6に記載の光デバイスの加工装置。 The processing unit uses a microwave plasma etching method, the scan information includes a scan speed distribution and a pitch, and the control signal includes the output of a microwave power supply, gas flow rate, and plasma source gas irradiation. 7. The optical device processing apparatus according to claim 5 or 6, wherein the nozzle for processing and the stage on which the wafer is fixed are controlled.
  8.  前記加工部は、イオンミリング方式であり、前記スキャン情報は、スキャンスピード分布とピッチとを含み、前記制御信号は、イオンガスの流量、イオンガン、および前記ウェハが固定されたステージを制御することを特徴とする請求項5または6に記載の光デバイスの加工装置。 The processing unit uses an ion milling method, the scan information includes a scan speed distribution and a pitch, and the control signal controls an ion gas flow rate, an ion gun, and a stage on which the wafer is fixed. 7. The optical device processing apparatus according to claim 5 or 6.
PCT/JP2021/021268 2021-06-03 2021-06-03 Processing method and processing apparatus for optical device WO2022254677A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023525298A JPWO2022254677A1 (en) 2021-06-03 2021-06-03
PCT/JP2021/021268 WO2022254677A1 (en) 2021-06-03 2021-06-03 Processing method and processing apparatus for optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021268 WO2022254677A1 (en) 2021-06-03 2021-06-03 Processing method and processing apparatus for optical device

Publications (1)

Publication Number Publication Date
WO2022254677A1 true WO2022254677A1 (en) 2022-12-08

Family

ID=84322915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021268 WO2022254677A1 (en) 2021-06-03 2021-06-03 Processing method and processing apparatus for optical device

Country Status (2)

Country Link
JP (1) JPWO2022254677A1 (en)
WO (1) WO2022254677A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087175A (en) * 2008-09-30 2010-04-15 Speedfam Co Ltd Multistage local dry etching method for correcting thickness shape or surface shape of semiconductor wafer
JP2014205160A (en) * 2013-04-11 2014-10-30 住友ベークライト株式会社 Laser processing mask, laser processing method, and method for manufacturing optical waveguide with recessed part
JP2018533214A (en) * 2015-10-14 2018-11-08 エクソジェネシス コーポレーション Etching method very shallow using neutral beam processing based on gas cluster ion beam technology
JP2019201168A (en) * 2018-05-18 2019-11-21 スピードファム株式会社 Local dry etching device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087175A (en) * 2008-09-30 2010-04-15 Speedfam Co Ltd Multistage local dry etching method for correcting thickness shape or surface shape of semiconductor wafer
JP2014205160A (en) * 2013-04-11 2014-10-30 住友ベークライト株式会社 Laser processing mask, laser processing method, and method for manufacturing optical waveguide with recessed part
JP2018533214A (en) * 2015-10-14 2018-11-08 エクソジェネシス コーポレーション Etching method very shallow using neutral beam processing based on gas cluster ion beam technology
JP2019201168A (en) * 2018-05-18 2019-11-21 スピードファム株式会社 Local dry etching device

Also Published As

Publication number Publication date
JPWO2022254677A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
US11404278B2 (en) Optical component having variable depth gratings and method of formation
Hung et al. Fabrication of highly ordered silicon nanowire arrays with controllable sidewall profiles for achieving low-surface reflection
CN101243535B (en) Optical emission interferometry for PECVD using a gas injection hole
JP2021502590A (en) Methods and systems for adjustable gradient patterning with shadow masks
JP2013077859A (en) Etching system and etching method
KR102606559B1 (en) Methods of forming optical grating components and augmented reality/virtual reality devices
JP6600391B2 (en) Real-time correction of template distortion in nanoimprint lithography
JP3975321B2 (en) Silica glass substrate for photomask and method for planarizing silica glass substrate for photomask
JP5697571B2 (en) Template manufacturing apparatus and template manufacturing method
WO2022254677A1 (en) Processing method and processing apparatus for optical device
KR20190013525A (en) Overlay improvement in nanoimprint lithography
TW202147368A (en) Shadow mask apparatus and method of forming optical grating
KR102496037B1 (en) method and apparatus for plasma etching
KR102606558B1 (en) How to Create Optical Grating Components
JP2006013362A (en) Exposure device, exposure method, and exposure mask
JP5552776B2 (en) Manufacturing method and inspection method of mold for nanoimprint
US11519065B2 (en) Method of coating substrates
EP2549224B1 (en) Methods for improving integrated photonic device uniformity
US20060027325A1 (en) Method and apparatus for photomask fabrication
WO2022180832A1 (en) Optical integrated circuit manufacturing system and manufacturing method
US20240085627A1 (en) Manufacturing Apparatus of Optical Circuit and Manufacturing Method of Optical Circuit
JP2006243011A (en) Method and mask for adjusting wavelength characteristic of arrayed waveguide grating
JP3967328B2 (en) Manufacturing method of optical waveguide
JP6806432B2 (en) Adjustment method of variable rectangular molding type charged beam drawing device, charged beam drawing method, resist pattern forming method, and photomask manufacturing method
WO2022180840A1 (en) Optical integrated circuit manufacturing system and manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944173

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525298

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944173

Country of ref document: EP

Kind code of ref document: A1