WO2022254663A1 - Battery sealing method, battery production method, and battery - Google Patents

Battery sealing method, battery production method, and battery Download PDF

Info

Publication number
WO2022254663A1
WO2022254663A1 PCT/JP2021/021222 JP2021021222W WO2022254663A1 WO 2022254663 A1 WO2022254663 A1 WO 2022254663A1 JP 2021021222 W JP2021021222 W JP 2021021222W WO 2022254663 A1 WO2022254663 A1 WO 2022254663A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
battery
hole
exterior member
injection port
Prior art date
Application number
PCT/JP2021/021222
Other languages
French (fr)
Japanese (ja)
Inventor
稔英 有川
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2023525287A priority Critical patent/JPWO2022254663A1/ja
Priority to PCT/JP2021/021222 priority patent/WO2022254663A1/en
Publication of WO2022254663A1 publication Critical patent/WO2022254663A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • H01M50/664Temporary seals, e.g. for storage of instant batteries or seawater batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to a battery sealing method, a battery manufacturing method, and a battery.
  • Secondary batteries typified by lithium-ion secondary batteries, are traded at high prices, but defective batteries occur at a certain rate in the battery manufacturing process. Defects that occur in the process closer to completion of a battery are more costly to the manufacturer because more materials have been used and more processing has been done.
  • the sealing process is one of the processes in which many defects occur in the actual battery manufacturing process.
  • a temporary sealing process for example, a temporary sealing process, a degassing process, and a final sealing process are performed.
  • the electrolytic solution is injected into the battery through the injection port, and the injection port is closed with a temporary sealing plug. After that, gas is generated inside the battery under predetermined conditions.
  • the degassing step the temporary sealing plug is removed and the generated gas is withdrawn from the inlet.
  • a sealing lid is placed so as to cover the liquid injection port, and the lid is welded to permanently seal the battery. Defects that occur in the main sealing process are particularly damaging because they occur after all the members necessary for manufacturing the battery have been assembled.
  • the present invention aims to provide a battery sealing method capable of sealing a battery with a high yield, a battery manufacturing method including a step of sealing a battery by this sealing method, and a battery capable of achieving a high yield. aim.
  • a battery sealing method is a method of sealing a battery including a positive electrode, a negative electrode, and an exterior member having a liquid inlet.
  • the liquid inlet has a first hole facing the inner wall of the exterior member, and a second hole communicating with the first hole and facing the outer wall of the exterior member.
  • the second hole has a larger diameter than the first hole.
  • a battery sealing method includes a liquid filling step, a first sealing step, a gas generating step, a gas releasing step, and a second sealing step.
  • the injection step is a step of injecting the electrolytic solution into the exterior member through the injection port.
  • a 1st sealing process is a 1st sealing process which temporarily seals a 1st hole with a temporary sealing plug.
  • the gas generation step is a step of generating gas in the exterior member by heating the exterior member and/or subjecting the battery to initial charging.
  • the gas releasing step is a step of removing the temporary sealing plug and releasing the gas generated in the exterior member from the inlet.
  • the second sealing step is a step of placing a sealing lid on the outer wall of the exterior member so as to cover the liquid inlet and welding the sealing lid to the exterior member.
  • a method of manufacturing a battery includes a step of housing an electrode group including a positive electrode, a negative electrode, and a separator in an exterior member, and a step of sealing the battery by the battery sealing method according to the embodiment.
  • a battery includes an exterior member and an electrode group.
  • the exterior member includes a liquid inlet and a sealing lid.
  • the electrode group is housed in the exterior member and includes a positive electrode, a negative electrode and a separator.
  • the liquid inlet has a first hole facing the inner wall of the exterior member and a second hole communicating with the first hole and facing the outer wall of the exterior member, the second hole being compared with the first hole. diameter is large.
  • the sealing lid is welded to the outer wall of the exterior member to seal the injection port.
  • FIG. 1 is an exploded perspective view of a battery according to an embodiment
  • FIG. FIG. 2 is a partially exploded perspective view of the battery shown in FIG. 1 as seen from below
  • FIG. 2 is a partially exploded perspective view of an electrode group used in the battery shown in FIG. 1
  • FIG. 2 is a perspective view of the battery shown in FIG. 1
  • FIG. 2 is a top view of the battery shown in FIG. 1
  • FIG. 6 is a top view showing an enlarged portion A of FIG. 5 ;
  • FIG. 4 is a schematic cross-sectional view showing a liquid injection port of a battery according to a reference example
  • FIG. 9 is a cross-sectional view schematically showing one step of the battery sealing method according to the reference example shown in FIG. 8 ;
  • FIG. 9 is a cross-sectional view schematically showing one step of the battery sealing method according to the reference example shown in FIG. 8 ;
  • FIG. 9 is a cross-sectional view schematically showing one step of the battery sealing method according to the reference example shown in FIG. 8 ;
  • FIG. 9 is a cross-sectional view schematically showing one step of the battery sealing method according to the reference example shown in FIG. 8 ;
  • FIG. 4 is a cross-sectional view schematically showing an example of an injection step in the battery sealing method according to the embodiment;
  • FIG. 4 is a cross-sectional view schematically showing an example of a first sealing step in the battery sealing method according to the embodiment.
  • FIG. 4 is a cross-sectional view schematically showing another example of the first sealing step in the battery sealing method according to the embodiment;
  • FIG. 4 is a cross-sectional view schematically showing another example of the first sealing step in the battery sealing method according to the embodiment;
  • FIG. 4 is a cross-sectional view schematically showing an example of a gas generation step in the battery sealing method according to the embodiment;
  • FIG. 4 is a cross-sectional view schematically showing an example of a gas release step in the battery sealing method according to the embodiment;
  • FIG. 4 is a cross-sectional view schematically showing an example of a second sealing step in the battery sealing method according to the embodiment;
  • FIG. 4 is a cross-sectional view schematically showing an example of a second sealing step in the battery sealing method according to the embodiment;
  • FIG. 4 is a cross-sectional view schematically showing another example of the liquid inlet in the battery sealing method according to the embodiment;
  • FIG. 4 is an enlarged schematic cross-sectional view showing the vicinity of the liquid
  • a battery sealing method is a method of sealing a battery including a positive electrode, a negative electrode, and an exterior member having a liquid inlet.
  • a battery sealing method includes a liquid filling step, a first sealing step, a gas generating step, a gas releasing step, and a second sealing step.
  • the battery may be a non-aqueous electrolyte secondary battery.
  • the battery is a sealed prismatic non-aqueous electrolyte battery.
  • the battery includes an exterior member 1 , a flat electrode group 2 housed in the exterior member 1 , and a non-aqueous electrolyte (not shown) impregnated in the flat electrode group 2 .
  • the exterior member 1 has a bottomed prismatic container 3 and a sealing plate 4 fixed to the opening of the container 3 by, for example, welding.
  • FIG. 1 is an exploded perspective view of the battery according to the embodiment.
  • FIG. 2 is a partially exploded perspective view of the battery shown in FIG. 1 as seen from below.
  • 3 is a partially exploded perspective view of an electrode group used in the battery shown in FIG. 1.
  • FIG. 4 is a perspective view of the battery shown in FIG. 1.
  • FIG. 5 is a top view of the battery shown in FIG. 1.
  • the flat electrode group 2 is formed by winding a positive electrode 5 and a negative electrode 6 in a flat shape with a separator 7 interposed therebetween.
  • the positive electrode 5 includes, for example, a strip-shaped positive electrode current collector made of metal foil, a positive electrode current collector tab 5a composed of one end parallel to the long side of the positive electrode current collector, and a positive electrode except for at least the positive electrode current collector tab 5a. and a positive electrode active material layer 5b formed on the current collector.
  • the negative electrode 6 includes, for example, a strip-shaped negative electrode current collector made of metal foil, a negative electrode current collector tab 6a composed of one end portion parallel to the long side of the negative electrode current collector, and at least the negative electrode current collector tab 6a being excluded. and a negative electrode active material layer 6b formed on the negative electrode current collector.
  • the positive electrode collector tab 5a protrudes from the separator 7 in the direction of the winding axis of the electrode assembly, and the negative electrode collector tab 6a protrudes from the separator 7 in the opposite direction. , the positions of the positive electrode 5 and the negative electrode 6 are shifted.
  • the spirally wound positive electrode current collecting tab 5a protrudes from one end face and is spirally wound from the other end face.
  • a negative electrode current collecting tab 6a protrudes.
  • the positive lead 8 includes a connection plate 8a for electrically connecting to the positive electrode terminal 9, a through hole 8b formed in the connection plate 8a, and a bifurcated branch from the connection plate 8a. and a strip-shaped collector portion 8c extending downward.
  • the current collecting portion 8c of the positive lead 8 sandwiches the positive current collecting tab 5a of the electrode group 2 therebetween and is electrically connected to the positive current collecting tab 5a by welding.
  • the negative electrode lead 10 includes a connection plate 10a for electrically connecting to the negative electrode terminal 11, a through hole 10b opened in the connection plate 10a, and a strip extending downward from the connection plate 10a. and a current collecting portion 10c.
  • the current collecting portion 10c of the negative electrode lead 10 sandwiches the negative electrode current collecting tab 6a of the electrode group 2 therebetween and is electrically connected to the negative electrode current collecting tab 6a by welding.
  • a method for electrically connecting the positive and negative leads 8 and 10 to the positive and negative current collecting tabs 5a and 6a is not particularly limited, but examples thereof include welding such as ultrasonic welding and laser welding.
  • the electrode guard 12 has a side plate 12a that covers the end faces of the positive and negative electrode current collecting tabs 5a and 6a, and a side plate 12b curved in a U shape so as to cover the outermost periphery of the positive and negative electrode current collecting tabs 5a and 6a.
  • the top end of the electrode guard 12 is open to receive the electrode group 2 therefrom.
  • the positive electrode current collecting tab 5a of the electrode group 2 is covered with the electrode guard 12 while the current collecting portion 8c of the positive electrode lead 8 is welded thereto.
  • a connection plate 8 a of the positive lead 8 is positioned above the electrode guard 12 .
  • the negative electrode current collecting tab 6a of the electrode group 2 is covered with the electrode guard 12 while the current collecting portion 10c of the negative electrode lead 10 is welded thereto.
  • a connection plate 10 a of the negative lead 10 is positioned above the electrode guard 12 .
  • Two electrode guards 12 are fixed to the electrode group 2 with an insulating tape 13 .
  • the sealing plate 4 has a rectangular plate shape.
  • the sealing plate 4 has through holes 4 a and 4 b for attaching the positive and negative terminals 9 and 11 .
  • the sealing plate 4 has a liquid injection port 20 .
  • the through-holes provided in the sealing plate 4 can be only three, the through-holes 4 a and 4 b and the injection port 20 .
  • the injection port 20 also serves as a gas vent hole, there is no need to provide a separate gas vent hole. Therefore, there is an advantage that the manufacturing process of the sealing plate 4 can be reduced.
  • the liquid injection port 20 may be provided on the wall surface of the bottomed prismatic container 3 .
  • the injection port 20 is also used to release gas generated inside the battery after the electrolyte is injected through it.
  • the details of the injection port 20 will be described later with reference to FIGS. 6 and 7.
  • FIG. The injection port 20 is sealed with a sealing lid 14 .
  • the sealing lid 14 here has a disk-like shape.
  • the sealing lid 14 is fixed to the surface of the sealing plate 4 by welding, for example.
  • FIG. 5 shows a top view of the sealing plate 4 to which the sealing lid 14 is attached.
  • the sealing lid 14 is made of, for example, metal such as aluminum or aluminum alloy. Further, the shape of the sealing lid 14 is not limited to a disk shape, and can be changed as appropriate according to the shape of the liquid injection port.
  • an insulating plate 16 is arranged on the rear surface of the sealing plate 4 .
  • the insulating plate 16 has a concave portion 16a in which the connection plate 8a of the positive electrode lead 8 is accommodated at one end and a concave portion 16b in which the connection plate 10a of the negative electrode lead 10 is accommodated at the other end.
  • An opening is provided between the recess 16a and the recess 16b, and the rear surface of the sealing plate 4 is exposed.
  • the recesses 16a and 16b of the insulating plate 16 have through holes communicating with the through holes 4a and 4b of the sealing plate 4, respectively.
  • the positive and negative terminals 9, 11 respectively have rectangular plate-shaped heads 9a, 11a and shafts 9b, 11b extending from the heads 9a, 11a.
  • the insulating gasket 17 has through holes 17a into which the shafts 9b and 11b of the positive and negative terminals 9 and 11 are inserted.
  • the shaft portion 9b of the positive electrode terminal 9 is inserted into the through hole 17a of the insulating gasket 17, the through hole 4a of the sealing plate 4, the through hole of the insulating plate 16, and the through hole 8b of the connection plate 8a of the positive electrode lead 8. It is crimped and fixed. Thereby, the positive electrode terminal 9 is electrically connected to the positive electrode current collecting tab 5a via the positive electrode lead 8 .
  • the shaft portion 11b of the negative electrode terminal 11 is inserted into the through hole 17a of the insulating gasket 17, the through hole 4b of the sealing plate 4, the through hole of the insulating plate 16, and the through hole 10b of the connection plate 10a of the negative electrode lead 10. It is caulked and fixed to the member. Thereby, the negative electrode terminal 11 is electrically connected to the negative electrode current collecting tab 6a via the negative electrode lead 10 .
  • FIG. 6 is a top view showing an enlarged portion
  • a of FIG. 7 is a cross-sectional view of the battery according to FIG. 4 along line VII-VII.
  • a sealing lid 14 is welded onto the surface of the sealing plate 4 .
  • the sealing plate 4 has a welded portion 50 connected to the sealing lid 14 .
  • the sealing lid 14 and the welded portion 50 block the injection port 20 .
  • the liquid injection port 20 includes a first hole 21 facing the back surface of the sealing plate 4 , that is, the inner wall of the exterior member 1 , and a first hole 21 facing the surface of the sealing plate 4 , that is, the outer wall of the exterior member 1 . 2 holes 22 .
  • the first hole 21 and the second hole 22 communicate with each other as shown in FIG.
  • the liquid injection port 20 is a through hole penetrating the wall surface of the exterior member 1 along the thickness direction.
  • the liquid injection port 20 may be provided so as to penetrate the sealing plate 4 of the exterior member 1 or may be provided so as to penetrate the wall surface of the bottomed prismatic container 3 .
  • the diameter of the second hole 22 is larger than that of the first hole 21 .
  • the diameter of the first hole 21 refers to the diameter of the hole at the position of the boundary 21 a between the first hole 21 and the second hole 22 .
  • the boundary 21 a is also referred to as the open end 21 a of the first hole 21 .
  • the diameter of the second hole 22 refers to the diameter of the opening end 22 a of the second hole 22 facing the surface of the sealing plate 4 . A specific method for measuring the diameter of the first hole 21 and the diameter of the second hole 22 will be described later.
  • first hole 21 defines a cylindrical hollow portion as an example, but the shape of the first hole 21 is not limited to this.
  • the shape of the first hole 21 may define, for example, a prism-shaped hollow portion or a cone-shaped hollow portion.
  • the shape of the opening end 21a of the first hole 21 may be circular, or polygonal such as rectangular or square.
  • the shape of the second hole 22 is such that the diameter continuously decreases from the open end 22a of the second hole 22 toward the open end 21a of the first hole 21 ( tapered).
  • the shape of the second hole 22 may have a hemispherical shape with a reduced diameter as shown in FIG. 7, or may have a conical shape with a reduced diameter.
  • the shape of the second hole 22 may be cylindrical like the first hole 21, or may be prismatic.
  • FIG. 8 is a cross-sectional view schematically showing the periphery of the liquid injection port 200 of the battery according to the reference example.
  • the liquid injection port 200 is a through hole that penetrates the sealing plate 4 along the thickness direction.
  • the battery according to the reference example has the same structure as the battery shown in FIGS. 1 to 7, except that the structure of the injection port is different.
  • Electrolyte is injected into the exterior member through the injection port 200 .
  • a nozzle (not shown) is arranged on the surface side of the sealing plate 4 and in the vicinity of the liquid injection port 200 , and the electrolytic solution is discharged from the nozzle toward the liquid injection port 200 .
  • Most of the discharged electrolytic solution is injected into the exterior member.
  • a small amount of the electrolytic solution 30 may adhere to the inner wall of the inlet 200 and the surface of the sealing plate 4 as shown in FIG.
  • FIG. 9 is a cross-sectional view schematically showing a state in which the electrolytic solution 30 adheres around the injection port 200. As shown in FIG.
  • FIG. 10 is a cross-sectional view schematically showing a state in which the temporary sealing plug 40 is inserted into the injection port 200 shown in FIG.
  • the temporary sealing plug 40 has a head portion 41 and a shaft portion 42 extending from the head portion 41 .
  • the head 41 of the temporary sealing plug 40 is gripped by, for example, an arbitrarily selected device, and after the position is adjusted, the shaft 42 is inserted into the injection port 200 .
  • the battery With the temporary sealing plug 40 inserted into the liquid inlet 200, the battery is subjected to the gas generation process under predetermined conditions. Specifically, for example, gas is generated in the exterior member by heating the exterior member and/or subjecting the battery to initial charging. The gas is generated, for example, by the reaction between the electrolyte and the electrode material. During this time, the electrolytic solution 30 may dry and crystallize over time.
  • FIG. 11 is a cross-sectional view schematically showing a state in which the temporary sealing plug 40 is pulled out from the injection port 200 after the gas generation step.
  • the gas generated inside the exterior member in the above gas generation step is discharged from the injection port 200 .
  • crystals 31 of the electrolytic solution adhere to the periphery of the liquid injection port 200 , for example, the inner wall of the liquid injection port 200 and the surface 4 c of the sealing plate 4 .
  • FIG. 12 is a cross-sectional view schematically showing a state after the sealing lid 14 is placed on the liquid inlet 200 shown in FIG. 11 and then welded to the sealing plate 4 . If the electrolyte crystals 31 adhere around the liquid injection port 200 , the electrolyte crystals 31 are caught between the surface 4 c of the sealing plate 4 and the sealing lid 14 . If a laser is radiated in this state and welding is attempted, the heat conduction from the sealing lid 14, which is heated by the laser, to the sealing plate 4 will be insufficient, and the sealing plate 4 will be sealed by the gas generated from the crystals. The stopper lid 14 cannot be uniformly melted. As a result, for example, a pinhole 140 may occur near the welded portion 50 . The pinhole 140 deteriorates the sealing performance of the battery, which in turn reduces the yield of the battery.
  • the first factor is that the crystals 31 of the electrolytic solution are present on the surface of the sealing plate 4 and at the welded portion, which hinders heat conduction from the sealing lid 14 to the sealing plate 4 .
  • the second factor is that since the crystals 31 of the electrolytic solution are present between the sealing plate 4 and the sealing lid 14, the sealing lid 14 is lifted, and the sealing plate 4 and the sealing lid 14 do not adhere to each other. It is the prevention of sexuality.
  • the method for sealing the battery according to the present embodiment it is possible to prevent the electrolyte crystals 31 from sticking to the surface of the sealing plate 4 .
  • the adhesion between the sealing lid 14 and the sealing plate 4 can be ensured during welding, so that the occurrence of defects such as pinholes can be suppressed.
  • the yield of batteries can be improved.
  • FIG. 13 A battery sealing method according to an embodiment will be described below with reference to FIGS. 13 to 21.
  • FIG. 13 A battery sealing method according to an embodiment will be described below with reference to FIGS. 13 to 21.
  • the liquid injection port 20 includes a first hole 21 facing the inner wall of the exterior member (sealing plate 4) and a second hole 22 communicating with the first hole 21 and facing the outer wall of the exterior member.
  • the second hole 22 has a larger diameter than the first hole 21 .
  • the electrolytic solution is injected through the injection port 20 into the exterior member.
  • the inside of the exterior member may be previously decompressed compared to the outside. This makes it easy to inject the electrolytic solution into the exterior member even if the injection port 20 is relatively small.
  • the electrolytic solution 30 may adhere around the injection port 20 after the injection.
  • the electrolytic solution 30 mainly adheres to the inner wall of the second hole 22 . Therefore, the electrolytic solution 30 does not adhere to the surface 4c of the sealing plate 4, or adheres with difficulty.
  • the electrolyte seeps out from the interior of the exterior member to the exterior through the injection port 20 , the electrolyte does not easily reach the surface 4 c of the sealing plate 4 .
  • a temporary sealing plug 40 is inserted into the first hole 21 to temporarily seal the battery.
  • the step of performing temporary sealing is also referred to as a first sealing step in the specification and claims of the present application.
  • Temporary sealing by the temporary sealing plug 40 is performed, for example, by closing the opening end 21a of the first hole 21 with the shaft portion 42 of the temporary sealing plug 40, as shown in FIG.
  • the electrolytic solution 30 mainly adheres to the inner walls of the second holes 22 . Therefore, even if the temporary sealing plug 40 is inserted into the first hole 21 , the adhering electrolytic solution 30 is less likely to be spread by the temporary sealing plug 40 .
  • the shape of the temporary sealing plug 40 is not particularly limited as long as it can temporarily seal the first hole 21 .
  • the head 41 of the temporary sealing plug 40 is gripped by, for example, an arbitrarily selected device, and the shaft portion 42 is inserted into the first hole 21 after the position is adjusted.
  • the head 41 has, for example, a columnar shape or a cuboid shape.
  • the shaft portion 42 is connected to the main surface of the head portion 41 and is, for example, a semi-conical body tapering from this connecting portion.
  • the shape of the head 41 and the shape of the shank 42 can be determined independently of each other.
  • the head 41 of the temporary sealing plug 40 is made of, for example, polyphenylene ether (PPE), polyetheretherketone (PEEK), polyethylene (PE), polypropylene (PP), polybutylene terephthalate (PBT), polytetrafluoroethylene ( It is at least one resin selected from the group consisting of tetrafluoroethylene (PTFE) and polyvinyl chloride (PVC). It is preferable that the head 41 is made of a material that has an appropriate hardness so as not to be deformed even when the head 41 is gripped and that does not dissolve in the electrolytic solution. At least one resin as described above fulfills this requirement.
  • the shaft portion 42 of the temporary sealing plug 40 is made of, for example, at least one selected from the group consisting of ethylene propylene diene terpolymer (EPDM) and fluoroethylene perfluoroalkyl vinyl ether copolymer (FFKM). Resin.
  • the material of the shaft portion 42 is preferably a material that can reliably seal the battery when the shaft portion 42 is inserted into the first hole 21 and that does not dissolve in the electrolytic solution. At least one resin as described above fulfills this requirement.
  • the distance between the temporary sealing plug 40 and the surface 4c of the sealing plate 4 is, for example, 0.05 mm or more, preferably 0.2 mm, at the point where they are closest to each other. That's it. That is, the distance between the temporary sealing plug 40 and the surface 4c of the sealing plate 4 can be at least 0.05 mm or more.
  • the upper limit of the distance is not particularly limited, it is, for example, 5.0 mm.
  • the temporary sealing plug 40 may consist of the shaft portion 42 only.
  • the above-mentioned problem that can occur when the temporary sealing plug 40 is provided with the head 41, that is, the head 41 may spread the electrolytic solution 30 over the surface 4c of the sealing plate 4. problem does not occur.
  • the temporary sealing plug 40 may have the shape shown in FIG. A head portion 41 provided in the temporary sealing plug 40 shown in FIG.
  • the shaft portion 42 of the temporary sealing plug 40 temporarily seals the first hole 21 , and the protrusion 41 a contacts the surface 4 c of the sealing plate 4 .
  • the protrusion 41a has, for example, a cylindrical shape.
  • the protrusion 41a has, for example, a prismatic shape.
  • the height of the protrusion 41a is, for example, 0.05 mm or more, preferably 0.2 mm or more. According to one example, the height of the protrusion 41a is 5.0 mm or less.
  • the battery is subjected to the gas generation process.
  • gas generation step gas is generated in the exterior member by heating the exterior member and/or by subjecting the battery to initial charging.
  • the exterior member (battery) is heated, for example, at a temperature of 30° C. to 100° C. for 60 minutes to several days.
  • Moisture that cannot be completely removed exists in the exterior member of the battery. This moisture is electrolyzed during the initial charge, generating hydrogen gas and the like.
  • the battery may be subjected to charge-discharge cycles.
  • the battery is subjected to the gas release process.
  • the gas releasing step at least part of the gas generated inside the exterior member in the gas generating step is released to the outside of the exterior member. Specifically, by removing the temporary sealing plug used for temporary sealing in the first sealing step from the first hole, the gas inside the exterior member is released to the outside of the exterior member through the inlet 20. . Before the gas release step, the pressure inside the exterior member is higher than the atmospheric pressure outside the exterior member. Therefore, by removing the temporary sealing plug from the first hole, part of the gas present in the exterior member is released to the outside of the exterior member. Note that the released gas contains the non-aqueous electrolyte. Therefore, the gas may be prevented from diffusing over a wide area by setting the atmosphere in which the gas is released to a negative pressure environment.
  • FIG. 17 is a cross-sectional view schematically showing the state around the injection port 20 after the gas generation process and before the gas discharge process.
  • the electrolyte 30 adhering to the inner walls of the second holes 22 for example, dries and crystallizes over time to change into crystals 31 of the electrolyte. At least some of the electrolyte crystals 31 are fixed or remain in the space defined by the second holes 22 . In other words, it is highly probable that the electrolyte crystals 31 do not adhere to the surface 4 c of the sealing plate 4 . Therefore, the problems described above with reference to FIG. 12, for example, can be resolved.
  • the crystals 31 of the electrolytic solution interfere with the adhesion between the sealing plate 4 and the sealing lid 14. can be obtained. Even if the electrolytic solution 30 adheres to the surface 4c of the sealing plate 4, it is possible to make it difficult for it to reach the welding location.
  • FIG. 18 is a cross-sectional view schematically showing an example of a state in which the temporary sealing plug 40 is removed from the first hole 21.
  • FIG. 18 After the gas release process, in the stage before the second sealing process, the crystals 31 of the electrolytic solution protrude from the surface 4c of the sealing plate 4 in the thickness direction as shown in FIG. may include The crystal 31a is formed, for example, by drying the electrolytic solution 30 adhering to the wall surface of the shaft portion 42 of the temporary sealing plug 40 in the first sealing step in the gas generating step.
  • FIG. 20 is a cross-sectional view schematically showing an example of a state in which the injection port 20 is sealed through the second sealing process.
  • the sealing lid 14 is placed on the surface (outer wall) 4c of the sealing plate 4 so as to cover the liquid inlet 20, and the sealing lid 14 is placed against the sealing plate 4.
  • Welding is not particularly limited as long as the sealing plate 4 and the sealing lid 14 can be welded to hermetically seal the battery, but it is desirable to employ laser welding.
  • the use of laser welding has the advantage of not requiring an additional material such as a sealing material and ensuring a high-strength hermeticity in a short period of time over a long period of time.
  • the welding point in the second sealing step is, for example, as shown in FIG. 6, outside the open end 22a of the second hole 22 and inside the outer edge of the sealing lid .
  • the in-plane direction of the surface 4 c of the sealing plate 4 is outside the open end 22 a of the second hole 22 and inside the outer edge of the sealing lid 14 .
  • a welded portion 50 is formed by welding.
  • the welded portion 50 is formed, for example, concentrically with the inlet 20 .
  • the weld 50 may overlap the outer edge of the sealing lid 14 .
  • the welded portion 50 may be provided in an annular shape, as shown in FIGS. 6 and 7, or may be provided in a rectangular annular shape.
  • the shape of the welded portion 50 can be appropriately changed according to the shapes of the outer edges of the liquid inlet 20 and the sealing lid 14 .
  • the battery is hermetically sealed.
  • the liquid injection port 20 sealed by the battery sealing method according to the embodiment is not limited to the mode shown in FIG. 7 and the like, and may have the mode shown in FIG.
  • FIG. 21 is a cross-sectional view schematically showing a liquid injection port and its vicinity according to another example.
  • part of the sealing plate 4 has a convex portion protruding toward the interior of the exterior member 1 .
  • the liquid injection port 20 penetrates the sealing plate 4 along the thickness direction at the position of the projection.
  • the injection port 20 shown in FIG. 21 can be manufactured even when the thickness of the sealing plate 4 is relatively thin. Therefore, there is no need to excessively increase the thickness of the exterior member such as the sealing plate 4 for the purpose of forming the injection port.
  • the weight of the entire battery can be reduced and the manufacturing cost can be reduced.
  • the depth of the second hole 22 can be easily increased.
  • the electrolytic solution that seeps out from the inside of the exterior member to reach the outer surface of the sealing plate 4 .
  • the yield can be further improved.
  • the thickness of the sealing plate 4 should be such that it can withstand the mechanical load from the outside of the battery and the gas pressure generated inside the battery, and has the mechanical strength to hold the positive and negative terminals.
  • the thickness is not particularly limited as long as the thickness is sufficient. Details of dimensions such as the depth and diameter of the first hole 21 and the second hole 22 will be described later with reference to FIG. 22 .
  • a method for measuring the diameter of the first hole and the diameter of the second hole will be described.
  • These diameters can be measured as follows using, for example, a scanning electron microscope (SEM). These diameters can also be measured using a microscope capable of optical length measurement or a microscope.
  • a part of the exterior member is cut out from the battery including the exterior member so as to include the injection port.
  • the entire cut piece is then hardened using a resin such as epoxy resin.
  • the piece is cut using a rotating blade or the like across the injection port to obtain a cross section such as that shown in FIG.
  • the direction in which the pieces are cut is, for example, the direction along the thickness direction of the sealing plate.
  • the cutting position is such that the diameter of the circle defined by the open end 22a of the second hole 22 has the maximum length.
  • the cross section thus obtained is observed with an SEM, and the diameter of the second hole 22 and the diameter of the first hole 21 are measured using the length measurement function of the SEM.
  • the diameter of the second hole may be the diameter of the circle defined by the open end 22a of the second hole 22 at the position where the diameter of the circle has the maximum length.
  • the diameter of the first hole may be the diameter of the circle defined by the open end 21a of the first hole 21 at this cutting position.
  • the schematic cross-sectional view shown in FIG. 22 shows the periphery of the injection port 20 according to an example cut according to the above-described measuring method.
  • the diameter 21d of the first hole 21 is not particularly limited, it is preferably in the range of 0.1 mm or more and 50 mm or less, for example, from the viewpoint of being able to pour the electrolytic solution in a short time. should be in the range of 1.0 mm or more and 10 mm or less.
  • the sealing of the first hole 21 using the temporary sealing plug can be made more reliable. That is, it is possible to improve the airtightness of the battery after temporary sealing in the first sealing step.
  • the diameter 22d of the second hole 22 is not particularly limited, but is, for example, within the range of 1.0 mm or more and 50 mm or less, preferably 1.5 mm or more and 15 mm or less. It is preferable that the diameter 22 d of the second hole 22 is determined in relation to the diameter 21 d of the first hole 21 . Specifically, the difference ⁇ D between the diameter 22d of the second hole 22 and the diameter 21d of the first hole 21 preferably satisfies Equation 1 below. ⁇ D ⁇ 0.05 [mm] (1)
  • ⁇ D is more preferably 0.2 mm or more.
  • the volume of the hollow portion defined by the second hole 22 is sufficiently large. Therefore, in this case, it becomes easy to retain the electrolytic solution 30 within the space defined by the second holes 22 . As a result, proper sealing of the injection port 20 by the sealing lid 14 is facilitated, thereby improving the yield of the battery. From the viewpoint of keeping the electrolyte solution 30 within the space defined by the second hole 22, there is no problem if ⁇ D is large, but according to one example, the upper limit of ⁇ D is 10 mm.
  • the depth 21h of the first hole 21 is, for example, 0.05 mm or more and 10 mm or less, preferably 0.2 mm or more and 3 mm or less. If the depth 21h of the first hole 21 is excessively small, the mechanical strength of the first hole 21 is insufficient, and there is a possibility that temporary sealing in the first sealing step cannot be performed appropriately.
  • the depth 22h of the second hole 22 is, for example, 0.01 mm or more and 10 mm or less, preferably 0.2 mm or more and 5 mm or less. If the depth 22h is too small, it may become difficult to keep the electrolytic solution 30 in the space defined by the second holes 22 .
  • the width 14w of the sealing lid 14 is, for example, within the range of 5 mm to 50 mm.
  • the thickness of the sealing lid 14 is, for example, within the range of 0.05 mm to 10 mm in order to improve the sealing performance of the injection port 20 by laser welding.
  • the width and thickness of the sealing lid 14 are not particularly limited as long as they are dimensions capable of sealing the injection port 20 in the second sealing step.
  • the width of the cell parallel to the X-axis is, for example, in the range of 1 cm to 30 cm.
  • the cell thickness parallel to the Y-axis is, for example, in the range of 1 cm to 30 cm.
  • the cell height parallel to the Z-axis is, for example, in the range of 1 cm to 30 cm.
  • the X-axis and the Y-axis are directions perpendicular to each other, and the Z-axis is a direction perpendicular to both the X-axis and the Y-axis.
  • the battery capacity is not particularly limited, it is, for example, within the range of 3Ah to 30Ah.
  • the shape of the exterior member is not limited to a rectangular shape as long as the liquid injection port according to the embodiment can be provided.
  • the shape of the exterior member may be, for example, a flat type (thin type), a cylindrical type, a coin type, a button type, or the like.
  • the exterior member can be appropriately selected according to the size of the battery and the application of the battery.
  • the wall thickness of the exterior member may be, for example, 3.0 mm or less, 1.0 mm or less, or 0.5 mm or less.
  • the wall thicknesses of the sealing plate 4 and bottomed prismatic container 3 are desirably adjusted so that they can withstand the mechanical load from the outside of the battery and the gas pressure generated inside the battery.
  • a battery sealing method is a method of sealing a battery including a positive electrode, a negative electrode, and an exterior member having a liquid inlet.
  • the liquid inlet has a first hole facing the inner wall of the exterior member, and a second hole communicating with the first hole and facing the outer wall of the exterior member.
  • the second hole has a larger diameter than the first hole.
  • a battery sealing method includes a liquid filling step, a first sealing step, a gas generating step, a gas releasing step, and a second sealing step.
  • the injection step is a step of injecting the electrolytic solution into the exterior member through the injection port.
  • a 1st sealing process is a 1st sealing process which temporarily seals a 1st hole with a temporary sealing plug.
  • the gas generation step is a step of generating gas in the exterior member by heating the exterior member and/or subjecting the battery to initial charging.
  • the gas releasing step is a step of removing the temporary sealing plug and releasing the gas generated in the exterior member from the inlet.
  • the second sealing step is a step of placing a sealing lid on the outer wall of the exterior member so as to cover the liquid inlet and welding the sealing lid to the exterior member.
  • the electrolyte can remain in the space defined by the second hole. There is a high probability that it can be sealed. Therefore, according to the method, an excellent yield can be achieved when manufacturing the battery.
  • the battery manufacturing method according to the embodiment includes a step of sealing the battery by the battery sealing method according to the first embodiment. Therefore, according to the second embodiment, batteries can be manufactured with a high yield.
  • the batteries shown in FIGS. 1 to 7 are produced, for example, by the following method.
  • the electrode group 2 is produced and housed in an exterior member. Specifically, after drying the produced electrode group 2 , the positive and negative electrode leads 8 and 10 are welded to the positive and negative current collecting tabs 5 a and 6 a of the electrode group 2 .
  • the electrode guard 12 is attached to the positive and negative electrode current collecting tabs 5 a and 6 a of the electrode group 2 , and the electrode guard 12 is fixed to the electrode group 2 with an insulating tape 13 .
  • the sealing plate 4 is fixed to the opening of the exterior member 1 by welding.
  • the electrode group 2 is housed inside the exterior member 1 .
  • the positive and negative leads 8 and 10, the electrode guard 12 and the insulating tape 13 are also housed inside the exterior member 1. As shown in FIG.
  • the liquid injection port 20 having the first hole 21 and the second hole 22 can be formed, for example, by pressing and/or punching a metal flat plate serving as the base of the sealing plate 4 .
  • a mold can be selected that forms the first and second holes 21 and 22 having desired dimensions and shapes.
  • the battery sealing method including a liquid injection step, a first sealing step, a gas generating step, a gas releasing step, and a second sealing step.
  • the battery according to the embodiment can be manufactured.
  • the positive and negative electrode active materials, separator, non-aqueous electrolyte, exterior member, sealing plate, and electrode guard included in the battery will be explained.
  • the positive electrode active material is not particularly limited, for example, oxides or sulfides can be used.
  • the positive electrode may contain one type of compound alone as a positive electrode active material, or may contain two or more types of compounds in combination.
  • oxides and sulfides include Li or compounds capable of intercalating and deintercalating Li ions.
  • Examples of such compounds include manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, and lithium manganese composite oxides (eg, Li x Mn 2 O 4 or Li x MnO 2 ; 0 ⁇ x ⁇ 1). , lithium nickel composite oxide (eg Li x NiO 2 ; 0 ⁇ x ⁇ 1), lithium cobalt composite oxide (eg Li x CoO 2 ; 0 ⁇ x ⁇ 1), lithium nickel cobalt composite oxide (eg Li x Ni 1-y Co y O 2 ; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), lithium manganese cobalt composite oxide (for example, Li x Mny Co 1-y O 2 ; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) Lithium-manganese-nickel composite oxides having a spinel structure (e.g., Li x Mn 2-y Ni y O 4 ; 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 2), lithium phosphorous oxides having an olivine
  • LixNi1 - yzCoyMnzO2 lithium-nickel-cobalt-manganese composite oxide
  • the negative electrode active material is not particularly limited, but at least one selected from the group consisting of carbon materials, silicon, silicon oxides and titanium-containing oxides can be used.
  • carbon materials include artificial graphite, natural graphite, and spindle-shaped graphite obtained by compacting natural graphite and coating it with carbon.
  • titanium-containing oxides examples include lithium titanate having a ramsdellite structure (e.g. Li 2+y Ti 3 O 7 , 0 ⁇ y ⁇ 3), lithium titanate having a spinel structure (e.g. Li 4+x Ti 5 O 12 , 0 ⁇ x ⁇ 3), monoclinic titanium dioxide (TiO 2 ), anatase titanium dioxide, rutile titanium dioxide, hollandite titanium composite oxide, monoclinic niobium titanium composite oxide, and rectangular Orthorhombic titanium-containing composite oxides can be mentioned.
  • ramsdellite structure e.g. Li 2+y Ti 3 O 7 , 0 ⁇ y ⁇ 3
  • lithium titanate having a spinel structure e.g. Li 4+x Ti 5 O 12 , 0 ⁇ x ⁇ 3
  • monoclinic titanium dioxide TiO 2
  • anatase titanium dioxide rutile titanium dioxide
  • hollandite titanium composite oxide hollandite titanium composite oxide
  • monoclinic niobium titanium composite oxide monoclinic
  • the separator is not particularly limited, and may be, for example, a microporous membrane, woven fabric, non-woven fabric, or a laminate of the same or different materials among these.
  • Materials for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, cellulose, and the like.
  • An inorganic solid electrolyte, an organic solid electrolyte, or the like may be used as the separator.
  • a non-aqueous electrolyte is prepared by dissolving an electrolyte (eg, lithium salt) in a non-aqueous solvent.
  • Non-aqueous solvents include, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), ⁇ -butyrolactone ( ⁇ - BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran, and the like.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • ⁇ -butyrolactone ⁇ - BL
  • Non-aqueous solvents may be used alone or in combination of two or more.
  • the electrolyte is, for example, lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), trifluoromethanesulfonic acid Lithium salts such as lithium (LiCF 3 SO 3 ) may be mentioned.
  • the electrolytes may be used alone or in combination of two or more.
  • the amount of the electrolyte dissolved in the non-aqueous solvent is preferably 0.2 mol/L to 3 mol/L. If the electrolyte concentration is too low, sufficient ionic conductivity may not be obtained. On the other hand, if it is too high, it may not dissolve completely in the electrolytic solution.
  • the positive and negative terminals 9 and 11 are made of aluminum or an aluminum alloy
  • the positive and negative leads 8 and 10 can be made of aluminum or an aluminum alloy.
  • any resin can be used as long as it is resistant to corrosion by the electrolytic solution.
  • examples include polyethylene, polypropylene, ethylene vinyl acetate copolymer, ethylene vinyl acetate alcohol copolymer, Ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene methacrylic acrylate copolymer, ethylene-methyl methacrylic acid copolymer, ionomer, polyacrylonitrile, polyvinylidene chloride, poly Tetrafluoroethylene, polychlorotrifluoroethylene, polyphenylene ether, polyethylene terephthalate, polytetrafluoroethylene, etc. can be used, and the above resins may be used singly or in combination. may be used as Among them, it is preferable to use polypropylene or polyethylene.
  • the battery manufacturing method according to the second embodiment includes a step of sealing the battery by the battery sealing method according to the first embodiment. Therefore, according to the battery manufacturing method according to the second embodiment, batteries can be manufactured with excellent yield.
  • a battery includes an exterior member having a liquid inlet and a sealing lid, and an electrode group housed in the exterior member and having a positive electrode, a negative electrode, and a separator.
  • the liquid inlet has a first hole facing the inner wall of the exterior member, and a second hole communicating with the first hole and facing the outer wall of the exterior member.
  • the second hole has a larger diameter than the first hole.
  • the sealing lid is welded to the outer wall of the exterior member to seal the injection port.
  • the battery according to this embodiment is obtained through, for example, the battery sealing method according to the first embodiment.
  • the configuration of the battery according to one example is as described with reference to FIGS. 1 to 7 in the first embodiment.
  • the material of each member included in the battery for example, those described in the second embodiment can be used.
  • the liquid inlet has the first hole and the second hole.
  • the diameter of the second hole is larger than the diameter of the first hole. Therefore, in the space defined by the second hole, for example, the electrolytic solution that seeps out from the interior of the exterior member during the manufacturing process of the battery can remain. Therefore, in the main sealing step (second sealing step), welding can be performed in a state of high adhesion between the sealing lid and the periphery of the liquid inlet of the exterior member. Therefore, in the obtained battery, the sealability of the injection port by the sealing lid is excellent.
  • the liquid injection port has the first hole and the second hole, even if a plurality of batteries according to the embodiment are manufactured, it is highly likely that a battery with high airtightness can be obtained. That is, the battery according to the third embodiment can achieve high yield.

Abstract

An embodiment of the present invention provides a battery sealing method. This battery sealing method seals a battery which is equipped with a positive electrode, a negative electrode and an outer member provided with a liquid pouring spout. The liquid pouring spout is equipped with a first hole which faces the inner wall of the outer member, and a second hole which faces the outer wall of the outer member and is connected to the first hole. The second hole has a larger diameter than does the first hole. The battery sealing method includes a liquid-pouring step, a first sealing step, a gas generation step, a gas discharge step, and a second sealing step. The first sealing step involves temporarily sealing the first hole with a temporary sealing plug. The gas discharge step involves removing the temporary sealing plug, and discharging gas generated inside the outer member through the liquid pouring spout. The second sealing step involves placing a sealing lid on the outer wall of the outer member so as to cover the liquid pouring spout, and welding the sealing lid onto the outer member.

Description

電池の密閉方法、電池の製造方法及び電池Battery sealing method, battery manufacturing method, and battery
 本発明の実施形態は、電池の密閉方法、電池の製造方法及び電池に関する。 Embodiments of the present invention relate to a battery sealing method, a battery manufacturing method, and a battery.
 リチウムイオン二次電池を代表とする二次電池は高価で取引されているが、電池の製造工程においては、不良な電池が一定割合で発生する。電池の完成に近い工程で発生する不良ほど、多くの材料が使用されたり多数の加工が施されたりした後であるため、製造者にとって損害が大きい。  Secondary batteries, typified by lithium-ion secondary batteries, are traded at high prices, but defective batteries occur at a certain rate in the battery manufacturing process. Defects that occur in the process closer to completion of a battery are more costly to the manufacturer because more materials have been used and more processing has been done.
 実際の電池製造工程の中で不良が多く発生する工程として、封止工程が挙げられる。封止工程では、例えば仮封止工程、ガス抜き工程及び本封止工程が行われる。仮封止工程では、注液口を通じて電池に電解液を注入して、仮の封止栓により注液口を塞ぐ。その後、所定条件で電池内部にガスを発生させる。ガス抜き工程では、仮の封止栓を外し、発生させたガスを注液口から抜き取る。本封止工程では、注液口を覆うように封止蓋を載せて、これを溶接することにより電池を恒久的に密閉する。本封止工程において発生する不良は、電池製造に必要な部材が全て組み上げられた後であるため、特に損害が大きい。 The sealing process is one of the processes in which many defects occur in the actual battery manufacturing process. In the sealing process, for example, a temporary sealing process, a degassing process, and a final sealing process are performed. In the temporary sealing step, the electrolytic solution is injected into the battery through the injection port, and the injection port is closed with a temporary sealing plug. After that, gas is generated inside the battery under predetermined conditions. In the degassing step, the temporary sealing plug is removed and the generated gas is withdrawn from the inlet. In the main sealing step, a sealing lid is placed so as to cover the liquid injection port, and the lid is welded to permanently seal the battery. Defects that occur in the main sealing process are particularly damaging because they occur after all the members necessary for manufacturing the battery have been assembled.
 従って、封止工程において発生する不良を抑制する手段が求められている。 Therefore, there is a demand for means for suppressing defects that occur in the sealing process.
日本国特開2004-296192号公報Japanese Patent Application Laid-Open No. 2004-296192 日本国特開2008-041548号公報Japanese Patent Application Laid-Open No. 2008-041548 日本国特開2009-087659号公報Japanese Patent Application Laid-Open No. 2009-087659 日本国特開2010-157415号公報Japanese Patent Application Laid-Open No. 2010-157415 日本国特開2014-170648号公報Japanese Patent Application Laid-Open No. 2014-170648 日本国特開2000-268811号公報Japanese Patent Application Laid-Open No. 2000-268811
 本発明は、高い歩留まりで電池を密閉することが可能な電池の密閉方法、この密閉方法により電池を密閉する工程を含む電池の製造方法、及び、高い歩留まりを達成可能な電池を提供することを目的とする。 The present invention aims to provide a battery sealing method capable of sealing a battery with a high yield, a battery manufacturing method including a step of sealing a battery by this sealing method, and a battery capable of achieving a high yield. aim.
 実施形態によると、電池の密閉方法が提供される。電池の密閉方法は、正極と、負極と、注液口を備える外装部材とを備える電池を密閉する方法である。注液口は、外装部材の内壁に面する第1孔と、第1孔と連通しており且つ外装部材の外壁に面する第2孔とを備える。第2孔は第1孔と比較して径が大きい。電池の密閉方法は、注液工程と、第1封止工程と、ガス発生工程と、ガス放出工程と、第2封止工程とを含む。注液工程は、外装部材内に、注液口を通じて電解液を注液する工程である。第1封止工程は、第1孔を仮の封止栓により仮封止する第1封止工程である。ガス発生工程は、外装部材を加熱することにより、及び/又は、電池を初充電に供することにより、外装部材内にガスを発生させる工程である。ガス放出工程は、仮の封止栓を取り除き、外装部材内に発生したガスを注液口から放出させる工程である。第2封止工程は、注液口を覆うようにして外装部材の外壁上に封止蓋を載せて、封止蓋を外装部材に対して溶接する工程である。 According to the embodiment, a battery sealing method is provided. A battery sealing method is a method of sealing a battery including a positive electrode, a negative electrode, and an exterior member having a liquid inlet. The liquid inlet has a first hole facing the inner wall of the exterior member, and a second hole communicating with the first hole and facing the outer wall of the exterior member. The second hole has a larger diameter than the first hole. A battery sealing method includes a liquid filling step, a first sealing step, a gas generating step, a gas releasing step, and a second sealing step. The injection step is a step of injecting the electrolytic solution into the exterior member through the injection port. A 1st sealing process is a 1st sealing process which temporarily seals a 1st hole with a temporary sealing plug. The gas generation step is a step of generating gas in the exterior member by heating the exterior member and/or subjecting the battery to initial charging. The gas releasing step is a step of removing the temporary sealing plug and releasing the gas generated in the exterior member from the inlet. The second sealing step is a step of placing a sealing lid on the outer wall of the exterior member so as to cover the liquid inlet and welding the sealing lid to the exterior member.
 他の実施形態によると、電池の製造方法が提供される。電池の製造方法は、正極、負極及びセパレータを備える電極群を外装部材に収容する工程と、実施形態に係る電池の密閉方法により、電池を密閉する工程とを含む。 According to another embodiment, a method of manufacturing a battery is provided. The battery manufacturing method includes a step of housing an electrode group including a positive electrode, a negative electrode, and a separator in an exterior member, and a step of sealing the battery by the battery sealing method according to the embodiment.
 他の実施形態によると、電池が提供される。電池は、外装部材と、電極群とを備える。外装部材は、注液口及び封止蓋を備える。電極群は、外装部材内に収容され、正極、負極及びセパレータを備える。注液口は、外装部材の内壁に面する第1孔と、第1孔と連通しており且つ外装部材の外壁に面する第2孔とを備え、第2孔は第1孔と比較して径が大きい。封止蓋は、外装部材の外壁に溶接されて注液口を封止している。 According to another embodiment, a battery is provided. A battery includes an exterior member and an electrode group. The exterior member includes a liquid inlet and a sealing lid. The electrode group is housed in the exterior member and includes a positive electrode, a negative electrode and a separator. The liquid inlet has a first hole facing the inner wall of the exterior member and a second hole communicating with the first hole and facing the outer wall of the exterior member, the second hole being compared with the first hole. diameter is large. The sealing lid is welded to the outer wall of the exterior member to seal the injection port.
実施形態に係る電池の展開斜視図。1 is an exploded perspective view of a battery according to an embodiment; FIG. 図1に示す電池を下方から見た部分展開斜視図。FIG. 2 is a partially exploded perspective view of the battery shown in FIG. 1 as seen from below; 図1に示す電池で用いられる電極群の部分展開斜視図。FIG. 2 is a partially exploded perspective view of an electrode group used in the battery shown in FIG. 1; 図1に示す電池の斜視図。FIG. 2 is a perspective view of the battery shown in FIG. 1; 図1に示す電池の上面図。FIG. 2 is a top view of the battery shown in FIG. 1; 図5のA部を拡大して示す上面図。FIG. 6 is a top view showing an enlarged portion A of FIG. 5 ; 図4のVII-VII線に沿った電池の断面図。Sectional drawing of the battery along the VII-VII line of FIG. 参考例に係る電池の注液口を示す概略断面図。FIG. 4 is a schematic cross-sectional view showing a liquid injection port of a battery according to a reference example; 図8に示す参考例に係る電池の密閉方法の一工程を概略的に示す断面図。FIG. 9 is a cross-sectional view schematically showing one step of the battery sealing method according to the reference example shown in FIG. 8 ; 図8に示す参考例に係る電池の密閉方法の一工程を概略的に示す断面図。FIG. 9 is a cross-sectional view schematically showing one step of the battery sealing method according to the reference example shown in FIG. 8 ; 図8に示す参考例に係る電池の密閉方法の一工程を概略的に示す断面図。FIG. 9 is a cross-sectional view schematically showing one step of the battery sealing method according to the reference example shown in FIG. 8 ; 図8に示す参考例に係る電池の密閉方法の一工程を概略的に示す断面図。FIG. 9 is a cross-sectional view schematically showing one step of the battery sealing method according to the reference example shown in FIG. 8 ; 実施形態に係る電池の密閉方法における注液工程の一例を概略的に示す断面図。FIG. 4 is a cross-sectional view schematically showing an example of an injection step in the battery sealing method according to the embodiment; 実施形態に係る電池の密閉方法における第1封止工程の一例を概略的に示す断面図。FIG. 4 is a cross-sectional view schematically showing an example of a first sealing step in the battery sealing method according to the embodiment. 実施形態に係る電池の密閉方法における第1封止工程の他の例を概略的に示す断面図。FIG. 4 is a cross-sectional view schematically showing another example of the first sealing step in the battery sealing method according to the embodiment; 実施形態に係る電池の密閉方法における第1封止工程の他の例を概略的に示す断面図。FIG. 4 is a cross-sectional view schematically showing another example of the first sealing step in the battery sealing method according to the embodiment; 実施形態に係る電池の密閉方法におけるガス発生工程の一例を概略的に示す断面図。FIG. 4 is a cross-sectional view schematically showing an example of a gas generation step in the battery sealing method according to the embodiment; 実施形態に係る電池の密閉方法におけるガス放出工程の一例を概略的に示す断面図。FIG. 4 is a cross-sectional view schematically showing an example of a gas release step in the battery sealing method according to the embodiment; 実施形態に係る電池の密閉方法における第2封止工程の一例を概略的に示す断面図。FIG. 4 is a cross-sectional view schematically showing an example of a second sealing step in the battery sealing method according to the embodiment; 実施形態に係る電池の密閉方法における第2封止工程の一例を概略的に示す断面図。FIG. 4 is a cross-sectional view schematically showing an example of a second sealing step in the battery sealing method according to the embodiment; 実施形態に係る電池の密閉方法における注液口の他の例を概略的に示す断面図。FIG. 4 is a cross-sectional view schematically showing another example of the liquid inlet in the battery sealing method according to the embodiment; 実施形態に係る電池の密閉方法により密閉された注液口近傍を拡大して示す概略断面図。FIG. 4 is an enlarged schematic cross-sectional view showing the vicinity of the liquid injection port sealed by the battery sealing method according to the embodiment;
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。 Embodiments will be described below with reference to the drawings. In addition, the same code|symbol shall be attached|subjected to the common structure through embodiment, and the overlapping description is abbreviate|omitted. In addition, each drawing is a schematic diagram for explaining the embodiments and promoting understanding thereof, and there are places where the shapes, dimensions, ratios, etc. are different from the actual device, but these are the following explanations and known techniques. Consideration can be taken into consideration and the design can be changed as appropriate.
 (第1実施形態)
 第1実施形態によると、電池の密閉方法が提供される。電池の密閉方法は、正極と、負極と、注液口を備える外装部材とを備える電池を密閉する方法である。電池の密閉方法は、注液工程と、第1封止工程と、ガス発生工程と、ガス放出工程と、第2封止工程とを含む。
(First embodiment)
According to a first embodiment, a battery sealing method is provided. A battery sealing method is a method of sealing a battery including a positive electrode, a negative electrode, and an exterior member having a liquid inlet. A battery sealing method includes a liquid filling step, a first sealing step, a gas generating step, a gas releasing step, and a second sealing step.
 電池の密閉方法を説明するのに先立ち、図1~図7を参照しながら、実施形態に係る電池の密閉方法により得られる電池の一例を説明する。電池は、非水電解質二次電池であり得る。電池は、密閉型の角形非水電解質電池である。電池は、外装部材1と、外装部材1内に収納された偏平型電極群2と、偏平型電極群2に含浸された非水電解液(図示しない)とを含む。外装部材1は、有底角筒型容器3と、容器3の開口部に、例えば溶接によって固定された封口板4とを有する。 Before describing the battery sealing method, an example of a battery obtained by the battery sealing method according to the embodiment will be described with reference to FIGS. The battery may be a non-aqueous electrolyte secondary battery. The battery is a sealed prismatic non-aqueous electrolyte battery. The battery includes an exterior member 1 , a flat electrode group 2 housed in the exterior member 1 , and a non-aqueous electrolyte (not shown) impregnated in the flat electrode group 2 . The exterior member 1 has a bottomed prismatic container 3 and a sealing plate 4 fixed to the opening of the container 3 by, for example, welding.
 図1は、実施形態に係る電池の展開斜視図である。図2は、図1に示す電池を下方から見た部分展開斜視図である。図3は、図1に示す電池で用いられる電極群の部分展開斜視図である。図4は、図1に示す電池の斜視図である。図5は、図1に示す電池の上面図である。 FIG. 1 is an exploded perspective view of the battery according to the embodiment. FIG. 2 is a partially exploded perspective view of the battery shown in FIG. 1 as seen from below. 3 is a partially exploded perspective view of an electrode group used in the battery shown in FIG. 1. FIG. 4 is a perspective view of the battery shown in FIG. 1. FIG. 5 is a top view of the battery shown in FIG. 1. FIG.
 図3に示すように、偏平型電極群2は、正極5と負極6がその間にセパレータ7を介して偏平形状に捲回されたものである。正極5は、例えば金属箔からなる帯状の正極集電体と、正極集電体の長辺に平行な一端部からなる正極集電タブ5aと、少なくとも正極集電タブ5aの部分を除いて正極集電体に形成された正極活物質層5bとを含む。一方、負極6は、例えば金属箔からなる帯状の負極集電体と、負極集電体の長辺に平行な一端部からなる負極集電タブ6aと、少なくとも負極集電タブ6aの部分を除いて負極集電体に形成された負極活物質層6bとを含む。 As shown in FIG. 3, the flat electrode group 2 is formed by winding a positive electrode 5 and a negative electrode 6 in a flat shape with a separator 7 interposed therebetween. The positive electrode 5 includes, for example, a strip-shaped positive electrode current collector made of metal foil, a positive electrode current collector tab 5a composed of one end parallel to the long side of the positive electrode current collector, and a positive electrode except for at least the positive electrode current collector tab 5a. and a positive electrode active material layer 5b formed on the current collector. On the other hand, the negative electrode 6 includes, for example, a strip-shaped negative electrode current collector made of metal foil, a negative electrode current collector tab 6a composed of one end portion parallel to the long side of the negative electrode current collector, and at least the negative electrode current collector tab 6a being excluded. and a negative electrode active material layer 6b formed on the negative electrode current collector.
 このような正極5、セパレータ7及び負極6は、正極集電タブ5aが電極群の捲回軸方向にセパレータ7から突出し、かつ負極集電タブ6aがこれとは反対方向にセパレータ7から突出するよう、正極5及び負極6の位置をずらして捲回されている。このような捲回により、電極群2は、図3に示すように、一方の端面から渦巻状に捲回された正極集電タブ5aが突出し、かつ他方の端面から渦巻状に捲回された負極集電タブ6aが突出している。 In such positive electrode 5, separator 7 and negative electrode 6, the positive electrode collector tab 5a protrudes from the separator 7 in the direction of the winding axis of the electrode assembly, and the negative electrode collector tab 6a protrudes from the separator 7 in the opposite direction. , the positions of the positive electrode 5 and the negative electrode 6 are shifted. By such winding, as shown in FIG. 3, in the electrode group 2, the spirally wound positive electrode current collecting tab 5a protrudes from one end face and is spirally wound from the other end face. A negative electrode current collecting tab 6a protrudes.
 図1及び図2に示すように、正極リード8は、正極端子9と電気的に接続するための接続プレート8aと、接続プレート8aに開口された貫通孔8bと、接続プレート8aから二股に分岐し、下方に延出した短冊状の集電部8cとを有する。正極リード8の集電部8cは、その間に電極群2の正極集電タブ5aを挟み、溶接によって正極集電タブ5aに電気的に接続されている。一方、負極リード10は、負極端子11と電気的に接続するための接続プレート10aと、接続プレート10aに開口された貫通孔10bと、接続プレート10aから二股に分岐し、下方に延出した短冊状の集電部10cとを有する。負極リード10の集電部10cは、その間に電極群2の負極集電タブ6aを挟み、溶接によって負極集電タブ6aに電気的に接続されている。正負極リード8,10を正負極集電タブ5a,6aに電気的に接続する方法は、特に限定されるものではないが、例えば超音波溶接又はレーザ溶接等の溶接が挙げられる。 As shown in FIGS. 1 and 2, the positive lead 8 includes a connection plate 8a for electrically connecting to the positive electrode terminal 9, a through hole 8b formed in the connection plate 8a, and a bifurcated branch from the connection plate 8a. and a strip-shaped collector portion 8c extending downward. The current collecting portion 8c of the positive lead 8 sandwiches the positive current collecting tab 5a of the electrode group 2 therebetween and is electrically connected to the positive current collecting tab 5a by welding. On the other hand, the negative electrode lead 10 includes a connection plate 10a for electrically connecting to the negative electrode terminal 11, a through hole 10b opened in the connection plate 10a, and a strip extending downward from the connection plate 10a. and a current collecting portion 10c. The current collecting portion 10c of the negative electrode lead 10 sandwiches the negative electrode current collecting tab 6a of the electrode group 2 therebetween and is electrically connected to the negative electrode current collecting tab 6a by welding. A method for electrically connecting the positive and negative leads 8 and 10 to the positive and negative current collecting tabs 5a and 6a is not particularly limited, but examples thereof include welding such as ultrasonic welding and laser welding.
 電極ガード12は、正負極集電タブ5a,6aの端面を覆う側板12aと、正負極集電タブ5a,6aの最外周を覆うようにU字状に湾曲した側板12bとを有する。電極ガード12の上端は、そこから電極群2を収納するため、開放されている。電極群2の正極集電タブ5aは、正極リード8の集電部8cが溶接された状態で電極ガード12によって被覆される。正極リード8の接続プレート8aは、電極ガード12の上方に位置している。一方、電極群2の負極集電タブ6aは、負極リード10の集電部10cが溶接された状態で電極ガード12によって被覆される。負極リード10の接続プレート10aは、電極ガード12の上方に位置している。2つの電極ガード12は、電極群2に絶縁テープ13によって固定されている。 The electrode guard 12 has a side plate 12a that covers the end faces of the positive and negative electrode current collecting tabs 5a and 6a, and a side plate 12b curved in a U shape so as to cover the outermost periphery of the positive and negative electrode current collecting tabs 5a and 6a. The top end of the electrode guard 12 is open to receive the electrode group 2 therefrom. The positive electrode current collecting tab 5a of the electrode group 2 is covered with the electrode guard 12 while the current collecting portion 8c of the positive electrode lead 8 is welded thereto. A connection plate 8 a of the positive lead 8 is positioned above the electrode guard 12 . On the other hand, the negative electrode current collecting tab 6a of the electrode group 2 is covered with the electrode guard 12 while the current collecting portion 10c of the negative electrode lead 10 is welded thereto. A connection plate 10 a of the negative lead 10 is positioned above the electrode guard 12 . Two electrode guards 12 are fixed to the electrode group 2 with an insulating tape 13 .
 図1及び図2に示すように、封口板4は、矩形板状をしている。封口板4は、正負極端子9,11を取り付けるための貫通孔4a,4bを有する。また、封口板4は、注液口20を有する。封口板4に設けられる貫通孔は、貫通孔4a、4b及び注液口20の3つのみであり得る。この場合、注液口20がガス抜き穴を兼ねるため、別途ガス抜き穴を設ける必要がない。それ故、封口板4の作製工程を減らすことができるという利点がある。なお、注液口20は、有底角筒型容器3の壁面に設けられていてもよい。 As shown in FIGS. 1 and 2, the sealing plate 4 has a rectangular plate shape. The sealing plate 4 has through holes 4 a and 4 b for attaching the positive and negative terminals 9 and 11 . Also, the sealing plate 4 has a liquid injection port 20 . The through-holes provided in the sealing plate 4 can be only three, the through- holes 4 a and 4 b and the injection port 20 . In this case, since the injection port 20 also serves as a gas vent hole, there is no need to provide a separate gas vent hole. Therefore, there is an advantage that the manufacturing process of the sealing plate 4 can be reduced. In addition, the liquid injection port 20 may be provided on the wall surface of the bottomed prismatic container 3 .
 注液口20は、そこを通して電解液が注液された後、電池内部において発生したガスの放出にも使用される。注液口20の詳細は、図6及び図7を参照しながら後述する。注液口20は、封止蓋14によって封止される。封止蓋14は、ここでは円板状の形状を有する。封止蓋14は、封口板4の表面に例えば溶接によって固定される。図5に、封止蓋14が取り付けられた封口板4の上面図を示す。封止蓋14は、例えば、アルミニウム、アルミニウム合金等の金属から形成される。また、封止蓋14の形状は、円板状に限定されるものではなく、注液口の形状に応じて適宜変更することができる。 The injection port 20 is also used to release gas generated inside the battery after the electrolyte is injected through it. The details of the injection port 20 will be described later with reference to FIGS. 6 and 7. FIG. The injection port 20 is sealed with a sealing lid 14 . The sealing lid 14 here has a disk-like shape. The sealing lid 14 is fixed to the surface of the sealing plate 4 by welding, for example. FIG. 5 shows a top view of the sealing plate 4 to which the sealing lid 14 is attached. The sealing lid 14 is made of, for example, metal such as aluminum or aluminum alloy. Further, the shape of the sealing lid 14 is not limited to a disk shape, and can be changed as appropriate according to the shape of the liquid injection port.
 図2に示すように、封口板4の裏面には絶縁板16が配置されている。絶縁板16は、一方の端部に正極リード8の接続プレート8aが収納される凹部16aと、他方の端部に負極リード10の接続プレート10aが収納される凹部16bとを有する。凹部16aと凹部16bとの間は、開口されており、封口板4の裏面が露出している。また、絶縁板16の凹部16a及び凹部16bは、それぞれ、封口板4の貫通孔4a,4bと連通する貫通孔を有する。 As shown in FIG. 2, an insulating plate 16 is arranged on the rear surface of the sealing plate 4 . The insulating plate 16 has a concave portion 16a in which the connection plate 8a of the positive electrode lead 8 is accommodated at one end and a concave portion 16b in which the connection plate 10a of the negative electrode lead 10 is accommodated at the other end. An opening is provided between the recess 16a and the recess 16b, and the rear surface of the sealing plate 4 is exposed. Further, the recesses 16a and 16b of the insulating plate 16 have through holes communicating with the through holes 4a and 4b of the sealing plate 4, respectively.
 正負極端子9,11は、それぞれ、矩形板状の頭部9a,11aと、頭部9a,11aから延出された軸部9b,11bとを有する。絶縁ガスケット17は、正負極端子9,11の軸部9b,11bが挿入される貫通孔17aを有する。正極端子9の軸部9bは、絶縁ガスケット17の貫通孔17a、封口板4の貫通孔4a、絶縁板16の貫通孔、正極リード8の接続プレート8aの貫通孔8bに挿入され、これら部材にかしめ固定されている。これにより、正極端子9は、正極リード8を経由して正極集電タブ5aと電気的に接続される。一方、負極端子11の軸部11bは、絶縁ガスケット17の貫通孔17a、封口板4の貫通孔4b、絶縁板16の貫通孔、負極リード10の接続プレート10aの貫通孔10bに挿入され、これら部材にかしめ固定されている。これにより、負極端子11は、負極リード10を経由して負極集電タブ6aと電気的に接続される。 The positive and negative terminals 9, 11 respectively have rectangular plate-shaped heads 9a, 11a and shafts 9b, 11b extending from the heads 9a, 11a. The insulating gasket 17 has through holes 17a into which the shafts 9b and 11b of the positive and negative terminals 9 and 11 are inserted. The shaft portion 9b of the positive electrode terminal 9 is inserted into the through hole 17a of the insulating gasket 17, the through hole 4a of the sealing plate 4, the through hole of the insulating plate 16, and the through hole 8b of the connection plate 8a of the positive electrode lead 8. It is crimped and fixed. Thereby, the positive electrode terminal 9 is electrically connected to the positive electrode current collecting tab 5a via the positive electrode lead 8 . On the other hand, the shaft portion 11b of the negative electrode terminal 11 is inserted into the through hole 17a of the insulating gasket 17, the through hole 4b of the sealing plate 4, the through hole of the insulating plate 16, and the through hole 10b of the connection plate 10a of the negative electrode lead 10. It is caulked and fixed to the member. Thereby, the negative electrode terminal 11 is electrically connected to the negative electrode current collecting tab 6a via the negative electrode lead 10 .
 図6は、図5のA部を拡大して示す上面図である。図7は、図4に係る電池のVII-VII線に沿った断面図である。封止蓋14は封口板4の表面上に溶接されている。封口板4は、封止蓋14と連結した溶接部50を備えている。封止蓋14及び溶接部50が注液口20を塞いでいる。図7に示すように、注液口20は、封口板4の裏面、即ち外装部材1の内壁に面する第1孔21と、封口板4の表面、即ち外装部材1の外壁に面する第2孔22とからなる。第1孔21及び第2孔22は、図7に示すように互いに連通している。つまり、注液口20は、外装部材1の壁面を厚さ方向に沿って貫通している貫通孔である。注液口20は、外装部材1のうち封口板4を貫通するように設けられていてもよく、有底角筒型容器3の壁面を貫通するように設けられていてもよい。 FIG. 6 is a top view showing an enlarged portion A of FIG. 7 is a cross-sectional view of the battery according to FIG. 4 along line VII-VII. A sealing lid 14 is welded onto the surface of the sealing plate 4 . The sealing plate 4 has a welded portion 50 connected to the sealing lid 14 . The sealing lid 14 and the welded portion 50 block the injection port 20 . As shown in FIG. 7 , the liquid injection port 20 includes a first hole 21 facing the back surface of the sealing plate 4 , that is, the inner wall of the exterior member 1 , and a first hole 21 facing the surface of the sealing plate 4 , that is, the outer wall of the exterior member 1 . 2 holes 22 . The first hole 21 and the second hole 22 communicate with each other as shown in FIG. In other words, the liquid injection port 20 is a through hole penetrating the wall surface of the exterior member 1 along the thickness direction. The liquid injection port 20 may be provided so as to penetrate the sealing plate 4 of the exterior member 1 or may be provided so as to penetrate the wall surface of the bottomed prismatic container 3 .
 第2孔22は、第1孔21と比較して孔の径が大きい。本願明細書及び請求の範囲において、第1孔21の径は、第1孔21と第2孔22との境界21aの位置における、孔の径を指す。境界21aは、第1孔21の開口端21aとも呼ぶ。また、第2孔22の径は、封口板4の表面に面する第2孔22の開口端22aにおける孔の径を指す。なお、第1孔21の径及び第2孔22の径の具体的な測定方法は後述する。 The diameter of the second hole 22 is larger than that of the first hole 21 . In the specification and claims of the present application, the diameter of the first hole 21 refers to the diameter of the hole at the position of the boundary 21 a between the first hole 21 and the second hole 22 . The boundary 21 a is also referred to as the open end 21 a of the first hole 21 . Also, the diameter of the second hole 22 refers to the diameter of the opening end 22 a of the second hole 22 facing the surface of the sealing plate 4 . A specific method for measuring the diameter of the first hole 21 and the diameter of the second hole 22 will be described later.
 図6及び図7においては、一例として第1孔21が円柱形状の中空部を規定している場合を示しているが、第1孔21の形状はこれに限られない。第1孔21の形状は、例えば、角柱形状の中空部を規定するものであってもよく、錐体形状の中空部を規定するものであってもよい。第1孔21の開口端21aの形状は、円形であってもよく、矩形又は正方形などの多角形であってもよい。また、図6及び図7においては、一例として第2孔22の形状が、第2孔22の開口端22aから第1孔21の開口端21aに向かって、連続的に縮径している(テーパー状である)場合を示している。この場合、電解液の注液後に第2孔22の内壁に付着した電解液が、第1孔21に向けて、ひいては外装部材の内部に向けて流れ易いため好ましい。第2孔22の形状は、図7に示すように半球状に縮径した形状を有していてもよく、錐体状に縮径した形状を有していてもよい。第2孔22の形状は、第1孔21と同様に円柱形状であってもよく、角柱形状であってもよい。 6 and 7 show the case where the first hole 21 defines a cylindrical hollow portion as an example, but the shape of the first hole 21 is not limited to this. The shape of the first hole 21 may define, for example, a prism-shaped hollow portion or a cone-shaped hollow portion. The shape of the opening end 21a of the first hole 21 may be circular, or polygonal such as rectangular or square. In addition, in FIGS. 6 and 7, as an example, the shape of the second hole 22 is such that the diameter continuously decreases from the open end 22a of the second hole 22 toward the open end 21a of the first hole 21 ( tapered). In this case, the electrolytic solution adhering to the inner wall of the second hole 22 after the injection of the electrolytic solution easily flows toward the first hole 21 and further toward the interior of the exterior member, which is preferable. The shape of the second hole 22 may have a hemispherical shape with a reduced diameter as shown in FIG. 7, or may have a conical shape with a reduced diameter. The shape of the second hole 22 may be cylindrical like the first hole 21, or may be prismatic.
 続いて、図8~図12を参照しながら、従来の注液口200を備える電池を封止する際に生じる課題について説明する。 Next, with reference to FIGS. 8 to 12, problems that occur when sealing a battery having a conventional liquid injection port 200 will be described.
 図8は、参考例に係る電池の注液口200周辺を概略的に示す断面図である。注液口200は、封口板4を厚さ方向に沿って貫通する貫通孔である。参考例に係る電池は、注液口の構造が異なることを除いて、図1~図7に示した電池と同様の構造を有する。 FIG. 8 is a cross-sectional view schematically showing the periphery of the liquid injection port 200 of the battery according to the reference example. The liquid injection port 200 is a through hole that penetrates the sealing plate 4 along the thickness direction. The battery according to the reference example has the same structure as the battery shown in FIGS. 1 to 7, except that the structure of the injection port is different.
 外装部材内には、注液口200を通じて電解液が注液される。例えば、封口板4の表面側且つ注液口200の近傍にノズル(図示しない)を配置し、このノズルから注液口200に向けて電解液を吐出する。吐出された電解液の大部分は外装部材内に注入される。しかしながら、少量の電解液30が、図9に示すように注液口200の内壁及び封口板4の表面に付着する場合がある。図9は、注液口200の周辺に電解液30が付着した状態を概略的に示す断面図である。 Electrolyte is injected into the exterior member through the injection port 200 . For example, a nozzle (not shown) is arranged on the surface side of the sealing plate 4 and in the vicinity of the liquid injection port 200 , and the electrolytic solution is discharged from the nozzle toward the liquid injection port 200 . Most of the discharged electrolytic solution is injected into the exterior member. However, a small amount of the electrolytic solution 30 may adhere to the inner wall of the inlet 200 and the surface of the sealing plate 4 as shown in FIG. FIG. 9 is a cross-sectional view schematically showing a state in which the electrolytic solution 30 adheres around the injection port 200. As shown in FIG.
 図10は、図9に示す注液口200に仮の封止栓40を挿入した状態を概略的に示す断面図である。仮の封止栓40は、頭部41と、頭部41から伸びる軸部42とを備える。仮の封止栓40は、例えば、任意に選択される装置によってその頭部41が把持され、位置調整された後に、軸部42が注液口200に挿入される。 FIG. 10 is a cross-sectional view schematically showing a state in which the temporary sealing plug 40 is inserted into the injection port 200 shown in FIG. The temporary sealing plug 40 has a head portion 41 and a shaft portion 42 extending from the head portion 41 . The head 41 of the temporary sealing plug 40 is gripped by, for example, an arbitrarily selected device, and after the position is adjusted, the shaft 42 is inserted into the injection port 200 .
 電解液30が付着した注液口200に仮の封止栓40を挿入すると、軸部42と注液口200との間、及び、頭部41と封口板4の表面4cとの間において、電解液30が押し拡げられる。 When the temporary sealing plug 40 is inserted into the injection port 200 to which the electrolytic solution 30 has adhered, between the shaft portion 42 and the injection port 200 and between the head portion 41 and the surface 4c of the sealing plate 4, The electrolytic solution 30 is pushed and spread.
 注液口200に仮の封止栓40が挿入されたまま、電池は、所定条件下におけるガス発生工程に供される。具体的には、例えば、外装部材を加熱することにより、及び/又は、電池を初充電に供することによって外装部材内にガスが発生する。ガスは、例えば電解液と電極材料とが反応して生じる。この間に、電解液30は、時間の経過に伴って乾燥して結晶化することがある。 With the temporary sealing plug 40 inserted into the liquid inlet 200, the battery is subjected to the gas generation process under predetermined conditions. Specifically, for example, gas is generated in the exterior member by heating the exterior member and/or subjecting the battery to initial charging. The gas is generated, for example, by the reaction between the electrolyte and the electrode material. During this time, the electrolytic solution 30 may dry and crystallize over time.
 図11は、ガス発生工程の後に仮の封止栓40を注液口200から引き抜いた状態を概略的に示す断面図である。上記のガス発生工程にて外装部材内に生じたガスは、注液口200から放出される。一方で、注液口200の周辺、例えば注液口200の内壁及び封口板4の表面4cには、電解液の結晶31が固着している。 FIG. 11 is a cross-sectional view schematically showing a state in which the temporary sealing plug 40 is pulled out from the injection port 200 after the gas generation step. The gas generated inside the exterior member in the above gas generation step is discharged from the injection port 200 . On the other hand, crystals 31 of the electrolytic solution adhere to the periphery of the liquid injection port 200 , for example, the inner wall of the liquid injection port 200 and the surface 4 c of the sealing plate 4 .
 図12は、図11に示す注液口200上に封止蓋14を乗せた後、これを封口板4に対して溶接した後の状態を概略的に示す断面図である。注液口200の周辺に電解液の結晶31が固着していると、封口板4の表面4cと封止蓋14との間に電解液の結晶31が挟まる。このままレーザを照射して溶接を試みた場合、レーザを受けて熱を帯びた封止蓋14から封口板4への熱伝導が不十分になる上、結晶から発生するガスにより封口板4と封止蓋14とを均一に溶融させることができない。この結果、例えば溶接部50の近傍にピンホール140が生じる場合がある。ピンホール140は、電池の密閉性を低下させ、ひいては電池の歩留まりを低下させる。 FIG. 12 is a cross-sectional view schematically showing a state after the sealing lid 14 is placed on the liquid inlet 200 shown in FIG. 11 and then welded to the sealing plate 4 . If the electrolyte crystals 31 adhere around the liquid injection port 200 , the electrolyte crystals 31 are caught between the surface 4 c of the sealing plate 4 and the sealing lid 14 . If a laser is radiated in this state and welding is attempted, the heat conduction from the sealing lid 14, which is heated by the laser, to the sealing plate 4 will be insufficient, and the sealing plate 4 will be sealed by the gas generated from the crystals. The stopper lid 14 cannot be uniformly melted. As a result, for example, a pinhole 140 may occur near the welded portion 50 . The pinhole 140 deteriorates the sealing performance of the battery, which in turn reduces the yield of the battery.
 以上に説明した参考例としての図8~図12に示す状況から、溶接が失敗する要因として例えば2つの要因が挙げられる。1つ目の要因は、電解液の結晶31が封口板4の表面上且つ溶接箇所に存在しているために、封止蓋14から封口板4への熱伝導が妨げられることである。2つ目の要因は、電解液の結晶31が封口板4と封止蓋14との間に存在するために、封止蓋14が浮いてしまい、封口板4と封止蓋14との密着性が妨げられることである。 From the situations shown in FIGS. 8 to 12 as reference examples described above, there are, for example, two factors that cause welding to fail. The first factor is that the crystals 31 of the electrolytic solution are present on the surface of the sealing plate 4 and at the welded portion, which hinders heat conduction from the sealing lid 14 to the sealing plate 4 . The second factor is that since the crystals 31 of the electrolytic solution are present between the sealing plate 4 and the sealing lid 14, the sealing lid 14 is lifted, and the sealing plate 4 and the sealing lid 14 do not adhere to each other. It is the prevention of sexuality.
 本実施形態に係る電池の密閉方法によると、電解液の結晶31が封口板4の表面上に固着することを抑制することができる。これにより、溶接の際に封止蓋14と封口板4との密着性を確保することができるため、ピンホール等の不良の発生を抑制することができる。結果として、電池の歩留まりを向上させることができる。 According to the method for sealing the battery according to the present embodiment, it is possible to prevent the electrolyte crystals 31 from sticking to the surface of the sealing plate 4 . As a result, the adhesion between the sealing lid 14 and the sealing plate 4 can be ensured during welding, so that the occurrence of defects such as pinholes can be suppressed. As a result, the yield of batteries can be improved.
 以下、図13~図21を参照しながら実施形態に係る電池の密閉方法を説明する。 A battery sealing method according to an embodiment will be described below with reference to FIGS. 13 to 21. FIG.
 まず、正極と、負極と、注液口を備える外装部材とを備える電池を準備する。このとき、外装部材内にはできるだけ水分を混入させないことが望ましい。注液口は、例えば図7を参照しながら説明した構造を有する。即ち、注液口20は、外装部材(封口板4)の内壁に面する第1孔21と、第1孔21と連通しており且つ外装部材の外壁に面する第2孔22とを備え、第2孔22は第1孔21と比較して径が大きい。 First, prepare a battery that includes a positive electrode, a negative electrode, and an exterior member that has an injection port. At this time, it is desirable to prevent moisture from entering the exterior member as much as possible. The injection port has the structure described with reference to FIG. 7, for example. That is, the liquid injection port 20 includes a first hole 21 facing the inner wall of the exterior member (sealing plate 4) and a second hole 22 communicating with the first hole 21 and facing the outer wall of the exterior member. , the second hole 22 has a larger diameter than the first hole 21 .
 次いで、外装部材内に、注液口20を通じて電解液を注液する。電解液を注液する際には、予め外装部材の内部を、外部と比較して減圧しておいてもよい。こうすると、注液口20が比較的小さくても、外装部材内に電解液を注入するのが容易になる。注液後の注液口20周辺には、図13に示すように電解液30が付着する可能性がある。しかしながら、実施形態に係る注液口20においては、電解液30は、主に第2孔22の内壁に付着する。それ故、電解液30は、封口板4の表面4c上には付着しないか又は付着し難い。一方、外装部材の内部から外部に向けて注液口20から電解液が滲み出した場合であっても、この電解液は、封口板4の表面4c上にまでは到達しにくい。 Next, the electrolytic solution is injected through the injection port 20 into the exterior member. When injecting the electrolytic solution, the inside of the exterior member may be previously decompressed compared to the outside. This makes it easy to inject the electrolytic solution into the exterior member even if the injection port 20 is relatively small. As shown in FIG. 13, the electrolytic solution 30 may adhere around the injection port 20 after the injection. However, in the liquid injection port 20 according to the embodiment, the electrolytic solution 30 mainly adheres to the inner wall of the second hole 22 . Therefore, the electrolytic solution 30 does not adhere to the surface 4c of the sealing plate 4, or adheres with difficulty. On the other hand, even if the electrolyte seeps out from the interior of the exterior member to the exterior through the injection port 20 , the electrolyte does not easily reach the surface 4 c of the sealing plate 4 .
 次に、第1孔21に仮の封止栓40を挿入して、電池を仮封止する。仮封止を行う工程を、本願明細書及び請求の範囲においては第1封止工程とも呼ぶ。仮の封止栓40による仮封止は、図14に示すように、例えば、仮の封止栓40の軸部42が第1孔21の開口端21aを塞ぐことによりなされる。電解液30は、主に第2孔22の内壁に付着している。それ故、仮の封止栓40が第1孔21に挿入されても、付着した電解液30は、仮の封止栓40によって押し拡げられにくい。 Next, a temporary sealing plug 40 is inserted into the first hole 21 to temporarily seal the battery. The step of performing temporary sealing is also referred to as a first sealing step in the specification and claims of the present application. Temporary sealing by the temporary sealing plug 40 is performed, for example, by closing the opening end 21a of the first hole 21 with the shaft portion 42 of the temporary sealing plug 40, as shown in FIG. The electrolytic solution 30 mainly adheres to the inner walls of the second holes 22 . Therefore, even if the temporary sealing plug 40 is inserted into the first hole 21 , the adhering electrolytic solution 30 is less likely to be spread by the temporary sealing plug 40 .
 仮の封止栓40の形状は、第1孔21を仮封止できるものであれば特に限定されないが、例えば、頭部41と、頭部41から伸びる軸部42とを備える。仮の封止栓40は、例えば、任意に選択される装置によってその頭部41が把持され、位置調整された後に、軸部42が第1孔21に挿入される。頭部41は、例えば、円柱形状又は直方体形状を有する。軸部42は、頭部41の主面に連結しており、例えば、この連結部分から先細りの形状を有する半円錐体である。頭部41の形状及び軸部42の形状は、互いに独立して決定することができる。 The shape of the temporary sealing plug 40 is not particularly limited as long as it can temporarily seal the first hole 21 . The head 41 of the temporary sealing plug 40 is gripped by, for example, an arbitrarily selected device, and the shaft portion 42 is inserted into the first hole 21 after the position is adjusted. The head 41 has, for example, a columnar shape or a cuboid shape. The shaft portion 42 is connected to the main surface of the head portion 41 and is, for example, a semi-conical body tapering from this connecting portion. The shape of the head 41 and the shape of the shank 42 can be determined independently of each other.
 仮の封止栓40の頭部41は、例えば、ポリフェニレンエーテル(PPE)、ポリエーテルエーテルケトン(PEEK)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレンテレフタレート(PBT)、ポリテトラフルオロエチレン(四フッ化エチレン)(PTFE)及びポリ塩化ビニル(PVC)からなる群より選択される少なくとも1種の樹脂である。頭部41の材質は、当該頭部41を把持した場合にも変形しないような適切な硬度を有すると共に、電解液に溶解しない材質であることが好ましい。前述した少なくとも1種の樹脂によれば、この要件を満たす。 The head 41 of the temporary sealing plug 40 is made of, for example, polyphenylene ether (PPE), polyetheretherketone (PEEK), polyethylene (PE), polypropylene (PP), polybutylene terephthalate (PBT), polytetrafluoroethylene ( It is at least one resin selected from the group consisting of tetrafluoroethylene (PTFE) and polyvinyl chloride (PVC). It is preferable that the head 41 is made of a material that has an appropriate hardness so as not to be deformed even when the head 41 is gripped and that does not dissolve in the electrolytic solution. At least one resin as described above fulfills this requirement.
 仮の封止栓40の軸部42は、例えば、エチレンプロピレンジエン三元共重合体(EPDM)及びフッ化エチレンパーフルオロアルキルビニルエーテル共重合体(FFKM)からなる群より選択される少なくとも1種の樹脂である。軸部42の材質は、当該軸部42が第1孔21に挿入された際に電池を確実に密閉することが可能であると共に、電解液に溶解しない材質であることが好ましい。前述した少なくとも1種の樹脂によれば、この要件を満たす。 The shaft portion 42 of the temporary sealing plug 40 is made of, for example, at least one selected from the group consisting of ethylene propylene diene terpolymer (EPDM) and fluoroethylene perfluoroalkyl vinyl ether copolymer (FFKM). Resin. The material of the shaft portion 42 is preferably a material that can reliably seal the battery when the shaft portion 42 is inserted into the first hole 21 and that does not dissolve in the electrolytic solution. At least one resin as described above fulfills this requirement.
 第1孔21を仮の封止栓40により仮封止した状態において、図14に示すように、仮の封止栓40の頭部41と封口板4の表面4cとの間には間隙Gが設けられることが好ましい。第1封止工程において間隙Gが設けられている場合、電解液30が封口板4の表面4c上に押し拡げられる可能性を低減することができる。間隙Gが設けられている場合、仮の封止栓40と封口板4の表面4cとの距離は、これらが最も近接している箇所において、例えば0.05mm以上であり、好ましくは0.2mm以上である。つまり、仮の封止栓40と封口板4の表面4cとの距離は、少なくとも0.05mm以上であり得る。当該距離の上限値は特に制限されないが、例えば5.0mmである。 In the state where the first hole 21 is temporarily sealed by the temporary sealing plug 40, as shown in FIG. is preferably provided. When the gap G is provided in the first sealing step, it is possible to reduce the possibility that the electrolytic solution 30 will spread over the surface 4 c of the sealing plate 4 . When the gap G is provided, the distance between the temporary sealing plug 40 and the surface 4c of the sealing plate 4 is, for example, 0.05 mm or more, preferably 0.2 mm, at the point where they are closest to each other. That's it. That is, the distance between the temporary sealing plug 40 and the surface 4c of the sealing plate 4 can be at least 0.05 mm or more. Although the upper limit of the distance is not particularly limited, it is, for example, 5.0 mm.
 図15に示すように、仮の封止栓40は軸部42のみからなっていてもよい。この場合には、仮の封止栓40が頭部41を備える場合に生じ得る前述の問題、即ち、頭部41によって電解液30が封口板4の表面4c上に押し拡げられる可能性があるという問題が生じない。 As shown in FIG. 15, the temporary sealing plug 40 may consist of the shaft portion 42 only. In this case, the above-mentioned problem that can occur when the temporary sealing plug 40 is provided with the head 41, that is, the head 41 may spread the electrolytic solution 30 over the surface 4c of the sealing plate 4. problem does not occur.
 また、仮の封止栓40は図16に示す形状を有していてもよい。図16に示す仮の封止栓40が備える頭部41は、その周縁部において封口板4に向かって伸びる突起部41aを備える。仮の封止栓40の軸部42が第1孔21を仮封止すると共に、突起部41aが封口板4の表面4cに接する。これにより、仮の封止栓40が、注液口20に対して過剰に挿入されるのを抑制することができる。その結果、注液口20の内壁に付着した電解液30が押し拡げられるのを抑制することができる。仮の封止栓40の頭部41が円柱形状を有する場合、突起部41aは、例えば円筒形状を有している。頭部41が角柱形状を有する場合、突起部41aは、例えば角筒形状を有している。突起部41aの高さは、例えば0.05mm以上であり、好ましくは0.2mm以上である。突起部41aの高さは、一例によれば5.0mm以下である。 Also, the temporary sealing plug 40 may have the shape shown in FIG. A head portion 41 provided in the temporary sealing plug 40 shown in FIG. The shaft portion 42 of the temporary sealing plug 40 temporarily seals the first hole 21 , and the protrusion 41 a contacts the surface 4 c of the sealing plate 4 . As a result, it is possible to prevent the temporary sealing plug 40 from being excessively inserted into the inlet 20 . As a result, it is possible to prevent the electrolytic solution 30 adhering to the inner wall of the inlet 20 from spreading. When the head 41 of the temporary sealing plug 40 has a columnar shape, the protrusion 41a has, for example, a cylindrical shape. When the head 41 has a prismatic shape, the protrusion 41a has, for example, a prismatic shape. The height of the protrusion 41a is, for example, 0.05 mm or more, preferably 0.2 mm or more. According to one example, the height of the protrusion 41a is 5.0 mm or less.
 続いて、電池をガス発生工程に供する。ガス発生工程では、外装部材を加熱することにより、及び/又は、電池を初充電に供することにより、外装部材内にガスを発生させる。外装部材(電池)の加熱は、例えば、30℃~100℃の温度で、60分~数日に亘って行う。電池の外装部材内には除去し切れない水分が存在する。この水分は、初充電により電気分解されるため、水素ガスなどを発生させる。初充電の代わりに、電池を充放電サイクルに供してもよい。 Then, the battery is subjected to the gas generation process. In the gas generation step, gas is generated in the exterior member by heating the exterior member and/or by subjecting the battery to initial charging. The exterior member (battery) is heated, for example, at a temperature of 30° C. to 100° C. for 60 minutes to several days. Moisture that cannot be completely removed exists in the exterior member of the battery. This moisture is electrolyzed during the initial charge, generating hydrogen gas and the like. Instead of initial charging, the battery may be subjected to charge-discharge cycles.
 その後、電池をガス放出工程に供する。ガス放出工程では、ガス発生工程において外装部材内に発生させたガスの少なくとも一部を外装部材の外部に放出させる。具体的には、第1封止工程において仮封止に利用した仮の封止栓を第1孔から取り外すことで、外装部材内のガスが、注液口20を通じて外装部材外に放出される。ガス放出工程前の時点では、外装部材の外部における大気圧と比較して外装部材内の圧力が高い状態にある。それ故、仮の封止栓を第1孔から外すことで、外装部材内に存在するガスの一部が外装部材外に放出される。なお、放出されるガスには、非水電解液が含まれる。このため、ガスを放出させる雰囲気を負圧環境にすることにより、ガスが広範囲に拡散するのを防止してもよい。 After that, the battery is subjected to the gas release process. In the gas releasing step, at least part of the gas generated inside the exterior member in the gas generating step is released to the outside of the exterior member. Specifically, by removing the temporary sealing plug used for temporary sealing in the first sealing step from the first hole, the gas inside the exterior member is released to the outside of the exterior member through the inlet 20. . Before the gas release step, the pressure inside the exterior member is higher than the atmospheric pressure outside the exterior member. Therefore, by removing the temporary sealing plug from the first hole, part of the gas present in the exterior member is released to the outside of the exterior member. Note that the released gas contains the non-aqueous electrolyte. Therefore, the gas may be prevented from diffusing over a wide area by setting the atmosphere in which the gas is released to a negative pressure environment.
 図17は、ガス発生工程後且つガス放出工程前の時点における、注液口20周辺の様子を概略的に示す断面図である。第2孔22の内壁等に付着していた電解液30は、例えば、時間の経過に伴って乾燥して結晶化して、電解液の結晶31に変化している。電解液の結晶31の少なくとも一部は、第2孔22で規定される空間内に固着しているか又は留まっている。言い換えると、封口板4の表面4c上には電解液の結晶31は付着していない可能性が高い。それ故、例えば図12を参照しながら上述した問題を解消することができる。即ち、ガス放出工程に続く第2封止工程において、注液口20を覆うように封止蓋14を乗せたとしても、電解液の結晶31が封口板4と封止蓋14との密着性を阻害しにくい効果が得られる。仮に、封口板4の表面4c上に電解液30が付着したとしても、それが溶接箇所にまで及びにくくすることができる。 FIG. 17 is a cross-sectional view schematically showing the state around the injection port 20 after the gas generation process and before the gas discharge process. The electrolyte 30 adhering to the inner walls of the second holes 22 , for example, dries and crystallizes over time to change into crystals 31 of the electrolyte. At least some of the electrolyte crystals 31 are fixed or remain in the space defined by the second holes 22 . In other words, it is highly probable that the electrolyte crystals 31 do not adhere to the surface 4 c of the sealing plate 4 . Therefore, the problems described above with reference to FIG. 12, for example, can be resolved. That is, in the second sealing step following the gas release step, even if the sealing lid 14 is placed so as to cover the injection port 20, the crystals 31 of the electrolytic solution interfere with the adhesion between the sealing plate 4 and the sealing lid 14. can be obtained. Even if the electrolytic solution 30 adheres to the surface 4c of the sealing plate 4, it is possible to make it difficult for it to reach the welding location.
 図18は、仮の封止栓40を第1孔21から取り外した状態の一例を概略的に示す断面図である。ガス放出工程の後、第2封止工程の前段階において、電解液の結晶31は、図18に示すように封口板4の表面4cの位置から、厚さ方向に当該表面から突出した結晶31aを含む場合がある。結晶31aは、例えば、第1封止工程において仮の封止栓40の軸部42の壁面に付着した電解液30が、ガス発生工程において乾燥することにより形成される。 FIG. 18 is a cross-sectional view schematically showing an example of a state in which the temporary sealing plug 40 is removed from the first hole 21. FIG. After the gas release process, in the stage before the second sealing process, the crystals 31 of the electrolytic solution protrude from the surface 4c of the sealing plate 4 in the thickness direction as shown in FIG. may include The crystal 31a is formed, for example, by drying the electrolytic solution 30 adhering to the wall surface of the shaft portion 42 of the temporary sealing plug 40 in the first sealing step in the gas generating step.
 図19に示すように、注液口20の封止のために封口板4の表面4c上に封止蓋14を設置すると、電解液の結晶31は、第2孔22で規定される空間内に押し込まれやすい。それ故、封止蓋14が、突出した結晶31aに起因して浮くことを抑制することができる。その結果、後述の第2封止工程(本封止工程)における、封口板4と封止蓋14との溶接の確実性を高めることができる。 As shown in FIG. 19, when the sealing lid 14 is placed on the surface 4c of the sealing plate 4 to seal the liquid injection port 20, the crystals 31 of the electrolytic solution are trapped in the space defined by the second hole 22. easy to be pushed into Therefore, it is possible to prevent the sealing lid 14 from floating due to the protruding crystal 31a. As a result, reliability of welding between the sealing plate 4 and the sealing lid 14 can be enhanced in the second sealing process (main sealing process) described later.
 ガス放出工程の後、電池を第2封止工程に供する。図20は、第2封止工程を経て注液口20が封止された状態の一例を概略的に示す断面図である。第2封止工程は、例えば、注液口20を覆うようにして封口板4の表面(外壁)4c上に封止蓋14を載せることと、この封止蓋14を封口板4に対して溶接することとを含む。封口板4と封止蓋14とを溶接して電池を密閉することができれば溶接方法は特に制限されないが、レーザ溶接を採用することが望ましい。レーザ溶接を採用した場合、シール材のような追加の材料が不要である上、短時間で高い強度の密閉性を、長期に渡って確保できる利点がある。 After the gas release process, the battery is subjected to the second sealing process. FIG. 20 is a cross-sectional view schematically showing an example of a state in which the injection port 20 is sealed through the second sealing process. In the second sealing step, for example, the sealing lid 14 is placed on the surface (outer wall) 4c of the sealing plate 4 so as to cover the liquid inlet 20, and the sealing lid 14 is placed against the sealing plate 4. Welding. The welding method is not particularly limited as long as the sealing plate 4 and the sealing lid 14 can be welded to hermetically seal the battery, but it is desirable to employ laser welding. The use of laser welding has the advantage of not requiring an additional material such as a sealing material and ensuring a high-strength hermeticity in a short period of time over a long period of time.
 第2封止工程における溶接箇所は、例えば図6で示したように、第2孔22の開口端22aよりも外側且つ封止蓋14の外縁よりも内側とする。具体的には、封口板4の表面4cの面内方向について、第2孔22の開口端22aよりも外側且つ封止蓋14の外縁よりも内側とする。溶接により溶接部50が形成される。溶接部50は、例えば、注液口20と同心円状に形成される。溶接部50は、封止蓋14の外縁と重複していてもよい。溶接部50は、図6及び図7等に示すように、円環状に設けられていてもよく、角型の環状に設けられていてもよい。溶接部50の形状は、注液口20及び封止蓋14の外縁の形状に合わせて適宜変更することができる。第2封止工程において、封口板4と封止蓋14とは溶接部50により連結するため、電池が密閉される。 The welding point in the second sealing step is, for example, as shown in FIG. 6, outside the open end 22a of the second hole 22 and inside the outer edge of the sealing lid . Specifically, the in-plane direction of the surface 4 c of the sealing plate 4 is outside the open end 22 a of the second hole 22 and inside the outer edge of the sealing lid 14 . A welded portion 50 is formed by welding. The welded portion 50 is formed, for example, concentrically with the inlet 20 . The weld 50 may overlap the outer edge of the sealing lid 14 . The welded portion 50 may be provided in an annular shape, as shown in FIGS. 6 and 7, or may be provided in a rectangular annular shape. The shape of the welded portion 50 can be appropriately changed according to the shapes of the outer edges of the liquid inlet 20 and the sealing lid 14 . In the second sealing step, since the sealing plate 4 and the sealing lid 14 are connected by the welding portion 50, the battery is hermetically sealed.
 実施形態に係る電池の密閉方法によって密閉される注液口20は、図7等に示す態様に限られず、図21に示す態様を有していてもよい。図21は、他の例に係る注液口とその近傍を概略的に示す断面図である。図21において、封口板4の一部は、外装部材1の内部に向けて突出した凸部を有している。そして、注液口20は、この凸部の位置で封口板4を、その厚さ方向に沿って貫通している。図21に示す注液口20は、封口板4の厚さが比較的薄い場合であっても作製することができる。それ故、注液口を作製する目的で、封口板4などの外装部材の厚さを過度に厚くする必要が無い。それ故、図21に示す態様の注液口20を備える電池においては、電池全体の重量を小さくしたり、製造コストを低下させたりすることができる。また、図21に示す注液口20によれば、第2孔22の深さを容易に大きくすることができる。第2孔22の深さを大きくすると、外装部材の内部から滲み出した電解液が、封口板4の外表面に到達しにくくなる。その結果、歩留まりをより向上できる傾向がある。 The liquid injection port 20 sealed by the battery sealing method according to the embodiment is not limited to the mode shown in FIG. 7 and the like, and may have the mode shown in FIG. FIG. 21 is a cross-sectional view schematically showing a liquid injection port and its vicinity according to another example. In FIG. 21 , part of the sealing plate 4 has a convex portion protruding toward the interior of the exterior member 1 . The liquid injection port 20 penetrates the sealing plate 4 along the thickness direction at the position of the projection. The injection port 20 shown in FIG. 21 can be manufactured even when the thickness of the sealing plate 4 is relatively thin. Therefore, there is no need to excessively increase the thickness of the exterior member such as the sealing plate 4 for the purpose of forming the injection port. Therefore, in the battery provided with the injection port 20 of the embodiment shown in FIG. 21, the weight of the entire battery can be reduced and the manufacturing cost can be reduced. Further, according to the liquid injection port 20 shown in FIG. 21, the depth of the second hole 22 can be easily increased. When the depth of the second hole 22 is increased, it becomes difficult for the electrolytic solution that seeps out from the inside of the exterior member to reach the outer surface of the sealing plate 4 . As a result, there is a tendency that the yield can be further improved.
 一方、図7を参照しながら説明した注液口20を作製する場合、ベースとなる平板の厚さが、第1孔21の深さ及び第2孔22の深さの合計値と同じか、それ以上の厚さを有していることが望まれる。それ故、図7等に示す注液口20を作製する場合には、図21に示す注液口20を作製する場合と比較して、封口板4の厚さを大きくすることが望ましい。但し、封口板4の厚さは、電池の外部からの機械的な負荷及び電池内部で発生するガス圧力に耐えることができ、且つ、正負極の端子を保持するための機械的強度を有するような厚さであれば、その厚さは特に限定されない。なお、第1孔21及び第2孔22の深さ並びに径などの寸法の詳細に関しては、図22を参照しながら後述する。 On the other hand, when manufacturing the injection port 20 described with reference to FIG. It is desirable to have a thickness greater than that. Therefore, when manufacturing the liquid injection port 20 shown in FIG. 7 and the like, it is desirable to increase the thickness of the sealing plate 4 compared to the case of manufacturing the liquid injection port 20 shown in FIG. However, the thickness of the sealing plate 4 should be such that it can withstand the mechanical load from the outside of the battery and the gas pressure generated inside the battery, and has the mechanical strength to hold the positive and negative terminals. The thickness is not particularly limited as long as the thickness is sufficient. Details of dimensions such as the depth and diameter of the first hole 21 and the second hole 22 will be described later with reference to FIG. 22 .
 <第1孔の径及び第2孔の径の測定方法>
 ここで、第1孔の径及び第2孔の径の測定方法を説明する。これら径は、例えば、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて以下のようにして測定することができる。これら径は、光学的な測長が可能な顕微鏡、又はマイクロスコープを用いて測定することもできる。
<Method for measuring the diameter of the first hole and the diameter of the second hole>
Here, a method for measuring the diameter of the first hole and the diameter of the second hole will be described. These diameters can be measured as follows using, for example, a scanning electron microscope (SEM). These diameters can also be measured using a microscope capable of optical length measurement or a microscope.
 外装部材を備える電池から、外装部材の一部を、注液口が含まれるように切り出す。その後、切り出した断片の全体を、例えばエポキシ樹脂などの樹脂を使用して固める。次に、注液口を横切るように回転刃などを用いて断片を切断して、例えば図7で示したような断面を得る。この際、断片を切断する方向は、例えば、封口板の厚さ方向に沿う方向とする。また、切断する位置は、第2孔22の開口端22aで規定される円の直径が最大の長さとなる位置で切断する。こうして得られた断面をSEMで観察して、第2孔22の径及び第1孔21の径を、SEMの測長機能を利用して測定する。第2孔の径は、第2孔22の開口端22aで規定される円の直径が最大の長さとなる位置における当該円の直径であり得る。また、第1孔の径は、この切断位置における、第1孔21の開口端21aで規定される円の直径であり得る。 A part of the exterior member is cut out from the battery including the exterior member so as to include the injection port. The entire cut piece is then hardened using a resin such as epoxy resin. Next, the piece is cut using a rotating blade or the like across the injection port to obtain a cross section such as that shown in FIG. At this time, the direction in which the pieces are cut is, for example, the direction along the thickness direction of the sealing plate. The cutting position is such that the diameter of the circle defined by the open end 22a of the second hole 22 has the maximum length. The cross section thus obtained is observed with an SEM, and the diameter of the second hole 22 and the diameter of the first hole 21 are measured using the length measurement function of the SEM. The diameter of the second hole may be the diameter of the circle defined by the open end 22a of the second hole 22 at the position where the diameter of the circle has the maximum length. Also, the diameter of the first hole may be the diameter of the circle defined by the open end 21a of the first hole 21 at this cutting position.
 次に、図22を参照しながら、注液口20が備える第1孔21及び第2孔22等の寸法について説明する。図22に示す概略断面図は、前述の測定方法に従って切断した一例に係る注液口20の周辺を示している。 Next, with reference to FIG. 22, the dimensions of the first hole 21, the second hole 22, etc. provided in the injection port 20 will be described. The schematic cross-sectional view shown in FIG. 22 shows the periphery of the injection port 20 according to an example cut according to the above-described measuring method.
 第1孔21の径21dは、特に制限されるものではないが、電解液の注液を短時間に行うことができるようにする観点から、例えば0.1mm以上50mm以下の範囲内とし、好ましくは1.0mm以上10mm以下の範囲内とする。径21dを50mm以下とすることにより、仮の封止栓を用いた第1孔21の封止をより確実なものとすることができる。つまり、第1封止工程における仮封止後の電池の密閉性を高めることができる。 Although the diameter 21d of the first hole 21 is not particularly limited, it is preferably in the range of 0.1 mm or more and 50 mm or less, for example, from the viewpoint of being able to pour the electrolytic solution in a short time. should be in the range of 1.0 mm or more and 10 mm or less. By setting the diameter 21d to 50 mm or less, the sealing of the first hole 21 using the temporary sealing plug can be made more reliable. That is, it is possible to improve the airtightness of the battery after temporary sealing in the first sealing step.
 第2孔22の径22dは、特に制限されるものではないが、例えば1.0mm以上50mm以下の範囲内にあり、好ましくは1.5mm以上15mm以下の範囲内にある。第2孔22の径22dは、第1孔21の径21dとの関係で決定されることが好ましい。具体的には、第2孔22の径22dと第1孔21の径21dとの差ΔDが、下記式1を満たすことが好ましい。 
 ΔD≧0.05[mm]・・・(1)
The diameter 22d of the second hole 22 is not particularly limited, but is, for example, within the range of 1.0 mm or more and 50 mm or less, preferably 1.5 mm or more and 15 mm or less. It is preferable that the diameter 22 d of the second hole 22 is determined in relation to the diameter 21 d of the first hole 21 . Specifically, the difference ΔD between the diameter 22d of the second hole 22 and the diameter 21d of the first hole 21 preferably satisfies Equation 1 below.
ΔD≧0.05 [mm] (1)
 ΔDは、より好ましくは0.2mm以上である。ΔDが上記式1を満たす場合、第2孔22で規定される中空部の容積が十分に大きい。それ故、この場合、第2孔22で規定される空間内に電解液30を留めることが容易となる。その結果、封止蓋14による注液口20の本封止が適切になされ易くなるため、電池の歩留まりが向上する。第2孔22で規定される空間内に電解液30を留める観点ではΔDが大きい分には問題無いが、一例によれば、ΔDの上限値は10mmである。 ΔD is more preferably 0.2 mm or more. When ΔD satisfies Formula 1 above, the volume of the hollow portion defined by the second hole 22 is sufficiently large. Therefore, in this case, it becomes easy to retain the electrolytic solution 30 within the space defined by the second holes 22 . As a result, proper sealing of the injection port 20 by the sealing lid 14 is facilitated, thereby improving the yield of the battery. From the viewpoint of keeping the electrolyte solution 30 within the space defined by the second hole 22, there is no problem if ΔD is large, but according to one example, the upper limit of ΔD is 10 mm.
 第1孔21の深さ21hは、例えば0.05mm以上10mm以下であり、好ましくは0.2mm以上3mm以下である。第1孔21の深さ21hが過度に小さいと、第1孔21の機械的強度が不足して第1封止工程における仮封止を適切に行うことができない可能性がある。第2孔22の深さ22hは、例えば0.01mm以上10mm以下であり、好ましくは0.2mm以上5mm以下である。深さ22hが過度に小さいと、第2孔22で規定される空間に電解液30を留めるのが困難となる可能性がある。 The depth 21h of the first hole 21 is, for example, 0.05 mm or more and 10 mm or less, preferably 0.2 mm or more and 3 mm or less. If the depth 21h of the first hole 21 is excessively small, the mechanical strength of the first hole 21 is insufficient, and there is a possibility that temporary sealing in the first sealing step cannot be performed appropriately. The depth 22h of the second hole 22 is, for example, 0.01 mm or more and 10 mm or less, preferably 0.2 mm or more and 5 mm or less. If the depth 22h is too small, it may become difficult to keep the electrolytic solution 30 in the space defined by the second holes 22 .
 封止蓋14の幅14wは、例えば5mm~50mmの範囲内にある。レーザ溶接により注液口20の密閉性を高めるためには、封止蓋14の厚さは、例えば0.05mm~10mmの範囲内にある。但し、封止蓋14の幅及び厚さは、第2封止工程において注液口20を封止できる寸法であれば特に制限されない。 The width 14w of the sealing lid 14 is, for example, within the range of 5 mm to 50 mm. The thickness of the sealing lid 14 is, for example, within the range of 0.05 mm to 10 mm in order to improve the sealing performance of the injection port 20 by laser welding. However, the width and thickness of the sealing lid 14 are not particularly limited as long as they are dimensions capable of sealing the injection port 20 in the second sealing step.
 実施形態に係る電池(外装部材)の寸法は、特に制限されないが、例えば図4を参照しながら一例を説明する。X軸に平行な電池の幅は、例えば1cm~30cmの範囲内にある。Y軸に平行な電池の厚さは、例えば1cm~30cmの範囲内にある。Z軸に平行な電池の高さは、例えば1cm~30cmの範囲内にある。なお、図4において、X軸及びY軸は互いに直交する方向であり、Z軸は、X軸及びY軸の双方に対して直交する方向である。 Although the dimensions of the battery (exterior member) according to the embodiment are not particularly limited, an example will be described with reference to FIG. 4, for example. The width of the cell parallel to the X-axis is, for example, in the range of 1 cm to 30 cm. The cell thickness parallel to the Y-axis is, for example, in the range of 1 cm to 30 cm. The cell height parallel to the Z-axis is, for example, in the range of 1 cm to 30 cm. In FIG. 4, the X-axis and the Y-axis are directions perpendicular to each other, and the Z-axis is a direction perpendicular to both the X-axis and the Y-axis.
 電池容量は特に制限されるものではないが、例えば3Ah~30Ahの範囲内である。 Although the battery capacity is not particularly limited, it is, for example, within the range of 3Ah to 30Ah.
 外装部材の形状は、実施形態に係る注液口を設けられるものであれば、角形に限られない。外装部材の形状は、例えば、扁平型(薄型)、円筒型、コイン型、又はボタン型等であってもよい。外装部材は、電池寸法や電池の用途に応じて適宜選択することができる。 The shape of the exterior member is not limited to a rectangular shape as long as the liquid injection port according to the embodiment can be provided. The shape of the exterior member may be, for example, a flat type (thin type), a cylindrical type, a coin type, a button type, or the like. The exterior member can be appropriately selected according to the size of the battery and the application of the battery.
 外装部材(封口板を含む)の壁の厚さは、例えば、3.0mm以下であってもよく、1.0mm以下であってもよく、0.5mm以下であってもよい。封口板4及び有底角筒型容器3の壁面の厚さは、電池の外部からの機械的な負荷及び電池内部で発生するガス圧力に耐えることができるように調整されることが望ましい。 The wall thickness of the exterior member (including the sealing plate) may be, for example, 3.0 mm or less, 1.0 mm or less, or 0.5 mm or less. The wall thicknesses of the sealing plate 4 and bottomed prismatic container 3 are desirably adjusted so that they can withstand the mechanical load from the outside of the battery and the gas pressure generated inside the battery.
 以上説明した第1実施形態によると、電池の密閉方法が提供される。電池の密閉方法は、正極と、負極と、注液口を備える外装部材とを備える電池を密閉する方法である。注液口は、外装部材の内壁に面する第1孔と、第1孔と連通しており且つ外装部材の外壁に面する第2孔とを備える。第2孔は第1孔と比較して径が大きい。電池の密閉方法は、注液工程と、第1封止工程と、ガス発生工程と、ガス放出工程と、第2封止工程とを含む。注液工程は、外装部材内に、注液口を通じて電解液を注液する工程である。第1封止工程は、第1孔を仮の封止栓により仮封止する第1封止工程である。ガス発生工程は、外装部材を加熱することにより、及び/又は、電池を初充電に供することにより、外装部材内にガスを発生させる工程である。ガス放出工程は、仮の封止栓を取り除き、外装部材内に発生したガスを注液口から放出させる工程である。第2封止工程は、注液口を覆うようにして外装部材の外壁上に封止蓋を載せて、封止蓋を外装部材に対して溶接する工程である。 According to the first embodiment described above, a battery sealing method is provided. A battery sealing method is a method of sealing a battery including a positive electrode, a negative electrode, and an exterior member having a liquid inlet. The liquid inlet has a first hole facing the inner wall of the exterior member, and a second hole communicating with the first hole and facing the outer wall of the exterior member. The second hole has a larger diameter than the first hole. A battery sealing method includes a liquid filling step, a first sealing step, a gas generating step, a gas releasing step, and a second sealing step. The injection step is a step of injecting the electrolytic solution into the exterior member through the injection port. A 1st sealing process is a 1st sealing process which temporarily seals a 1st hole with a temporary sealing plug. The gas generation step is a step of generating gas in the exterior member by heating the exterior member and/or subjecting the battery to initial charging. The gas releasing step is a step of removing the temporary sealing plug and releasing the gas generated in the exterior member from the inlet. The second sealing step is a step of placing a sealing lid on the outer wall of the exterior member so as to cover the liquid inlet and welding the sealing lid to the exterior member.
 本実施形態に係る電池の密閉方法によれば、第2孔で規定される空間内に電解液が留まることができるため、本封止工程(第2封止工程)において注液口を確実に封止できる蓋然性が高い。従って、当該方法によれば、電池を製造する際に優れた歩留まりを達成することができる。 According to the battery sealing method according to the present embodiment, the electrolyte can remain in the space defined by the second hole. There is a high probability that it can be sealed. Therefore, according to the method, an excellent yield can be achieved when manufacturing the battery.
 (第2実施形態)
 実施形態に係る電池の製造方法は、第1実施形態に係る電池の密閉方法により電池を密閉する工程を含む。従って、第2実施形態によれば、高い歩留まりで電池を製造することができる。
(Second embodiment)
The battery manufacturing method according to the embodiment includes a step of sealing the battery by the battery sealing method according to the first embodiment. Therefore, according to the second embodiment, batteries can be manufactured with a high yield.
 図1~図7に示す電池は、例えば、以下の方法により作製される。まず、電極群2を作製して外装部材に収納する。具体的には、作製した電極群2を乾燥した後、電極群2の正負極集電タブ5a,6aに正負極リード8,10を溶接する。次いで、電極群2の正負極集電タブ5a,6aに電極ガード12を取り付け、電極ガード12を電極群2に絶縁テープ13によって固定する。次いで、正負極端子9,11、封口板4、正負極リード8,10をかしめ固定によって一体化した後、外装部材1の開口部に封口板4を溶接によって固定する。こうして、電極群2が外装部材1内に収納される。また、正負極リード8及び10、電極ガード12及び絶縁テープ13も外装部材1内に収納される。 The batteries shown in FIGS. 1 to 7 are produced, for example, by the following method. First, the electrode group 2 is produced and housed in an exterior member. Specifically, after drying the produced electrode group 2 , the positive and negative electrode leads 8 and 10 are welded to the positive and negative current collecting tabs 5 a and 6 a of the electrode group 2 . Next, the electrode guard 12 is attached to the positive and negative electrode current collecting tabs 5 a and 6 a of the electrode group 2 , and the electrode guard 12 is fixed to the electrode group 2 with an insulating tape 13 . Next, after the positive and negative terminals 9 and 11, the sealing plate 4, and the positive and negative leads 8 and 10 are integrated by caulking, the sealing plate 4 is fixed to the opening of the exterior member 1 by welding. Thus, the electrode group 2 is housed inside the exterior member 1 . The positive and negative leads 8 and 10, the electrode guard 12 and the insulating tape 13 are also housed inside the exterior member 1. As shown in FIG.
 第1孔21及び第2孔22を備える注液口20は、例えば、封口板4のベースとなる金属製の平板に対してプレス及び/又は打ち抜きを施すことで形成することができる。プレス及び/又は打ち抜きに際しては、所望の寸法及び形状を有する第1孔21及び第2孔22が形成されるような金型を選択することができる。 The liquid injection port 20 having the first hole 21 and the second hole 22 can be formed, for example, by pressing and/or punching a metal flat plate serving as the base of the sealing plate 4 . For pressing and/or punching, a mold can be selected that forms the first and second holes 21 and 22 having desired dimensions and shapes.
 次いで、必要に応じて、外装部材1内に残存する水分を封口板4の注液口から除去する。その後、前述した第1実施形態に係る電池の密閉方法により電池を密閉する。具体的には、注液工程と、第1封止工程と、ガス発生工程と、ガス放出工程と、第2封止工程とを含む密閉方法により電池を密閉する。こうして、実施形態に係る電池を製造することができる。 Next, if necessary, water remaining in the exterior member 1 is removed from the liquid inlet of the sealing plate 4 . Thereafter, the battery is sealed by the battery sealing method according to the first embodiment described above. Specifically, the battery is sealed by a sealing method including a liquid injection step, a first sealing step, a gas generating step, a gas releasing step, and a second sealing step. Thus, the battery according to the embodiment can be manufactured.
 電池が備える正負極の活物質、セパレータ、非水電解液、外装部材、封口板及び電極ガードについて説明する。 The positive and negative electrode active materials, separator, non-aqueous electrolyte, exterior member, sealing plate, and electrode guard included in the battery will be explained.
 正極活物質としては、特に制限されるものではないが、例えば、酸化物又は硫化物を用いることができる。正極は、正極活物質として、1種類の化合物を単独で含んでいてもよく、或いは2種類以上の化合物を組み合わせて含んでいてもよい。酸化物及び硫化物の例には、Li又はLiイオンを挿入及び脱離させることができる化合物を挙げることができる。 Although the positive electrode active material is not particularly limited, for example, oxides or sulfides can be used. The positive electrode may contain one type of compound alone as a positive electrode active material, or may contain two or more types of compounds in combination. Examples of oxides and sulfides include Li or compounds capable of intercalating and deintercalating Li ions.
 このような化合物としては、例えば、二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLixMn24又はLixMnO2;0<x≦1)、リチウムニッケル複合酸化物(例えばLixNiO2;0<x≦1)、リチウムコバルト複合酸化物(例えばLixCoO2;0<x≦1)、リチウムニッケルコバルト複合酸化物(例えばLixNi1-yCoy2;0<x≦1、0<y<1)、リチウムマンガンコバルト複合酸化物(例えばLixMnyCo1-y2;0<x≦1、0<y<1)、スピネル構造を有するリチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiy4;0<x≦1、0<y<2)、オリビン構造を有するリチウムリン酸化物(例えばLixFePO4;0<x≦1、LixFe1-yMnyPO4;0<x≦1、0<y<1、LixCoPO4;0<x≦1)、硫酸鉄(Fe2(SO4)3)、バナジウム酸化物(例えばV25)、及び、リチウムニッケルコバルトマンガン複合酸化物(LixNi1-y-zCoyMnz2;0<x≦1、0<y<1、0<z<1、y+z<1)が含まれる。 Examples of such compounds include manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, and lithium manganese composite oxides (eg, Li x Mn 2 O 4 or Li x MnO 2 ; 0<x≦1). , lithium nickel composite oxide (eg Li x NiO 2 ; 0 < x ≤ 1), lithium cobalt composite oxide (eg Li x CoO 2 ; 0 < x ≤ 1), lithium nickel cobalt composite oxide (eg Li x Ni 1-y Co y O 2 ; 0<x≦1, 0<y<1), lithium manganese cobalt composite oxide (for example, Li x Mny Co 1-y O 2 ; 0<x≦1, 0<y< 1) Lithium-manganese-nickel composite oxides having a spinel structure (e.g., Li x Mn 2-y Ni y O 4 ; 0<x≦1, 0<y<2), lithium phosphorous oxides having an olivine structure (e.g., Li xFePO4 ; 0<x≤1, LixFe1 - yMnyPO4 ; 0<x≤1, 0 <y < 1, LixCoPO4 ; 0<x≤1), iron sulfate ( Fe2 ( SO4 ) 3 ), vanadium oxide ( e.g. , V2O5 ), and lithium-nickel-cobalt-manganese composite oxide ( LixNi1 - yzCoyMnzO2 ; 0< x≤1 , 0<y <1, 0<z<1, y+z<1).
 負極活物質としては、特に制限されるものではないが、炭素材料、シリコン、シリコン酸化物及びチタン含有酸化物からなる群より選択される少なくとも一種を用いることができる。炭素材料としては、人造黒鉛、天然黒鉛、及び、天然黒鉛を圧密化し炭素で被覆した紡錘状黒鉛などが挙げられる。 The negative electrode active material is not particularly limited, but at least one selected from the group consisting of carbon materials, silicon, silicon oxides and titanium-containing oxides can be used. Examples of carbon materials include artificial graphite, natural graphite, and spindle-shaped graphite obtained by compacting natural graphite and coating it with carbon.
 チタン含有酸化物としては、例えば、ラムスデライト構造を有するチタン酸リチウム(例えばLi2+yTi37、0≦y≦3)、スピネル構造を有するチタン酸リチウム(例えば、Li4+xTi512、0≦x≦3)、単斜晶型二酸化チタン(TiO2)、アナターゼ型二酸化チタン、ルチル型二酸化チタン、ホランダイト型チタン複合酸化物、単斜晶型ニオブチタン複合酸化物、及び直方晶型(orthorhombic)チタン含有複合酸化物が挙げられる。 Examples of titanium-containing oxides include lithium titanate having a ramsdellite structure (e.g. Li 2+y Ti 3 O 7 , 0≦y≦3), lithium titanate having a spinel structure (e.g. Li 4+x Ti 5 O 12 , 0≦x≦3), monoclinic titanium dioxide (TiO 2 ), anatase titanium dioxide, rutile titanium dioxide, hollandite titanium composite oxide, monoclinic niobium titanium composite oxide, and rectangular Orthorhombic titanium-containing composite oxides can be mentioned.
 セパレータは、特に限定されるものではなく、例えば、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物などを用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合ポリマー、エチレン-ブテン共重合ポリマー、セルロースなどをあげることができる。セパレータとして、無機固体電解質又は有機固体電解質などを使用してもよい。 The separator is not particularly limited, and may be, for example, a microporous membrane, woven fabric, non-woven fabric, or a laminate of the same or different materials among these. Materials for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, cellulose, and the like. An inorganic solid electrolyte, an organic solid electrolyte, or the like may be used as the separator.
 非水電解液は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製される。非水溶媒は、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ-ブチロラクトン(γ-BL)、スルホラン、アセトニトリル、1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2-メチルテトラヒドロフランなどを挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質は、例えば、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)などのリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L~3mol/Lとすることが望ましい。電解質の濃度が低すぎると十分なイオン導電性を得ることができない場合がある。一方、高すぎると電解液に完全に溶解できない場合がある。 A non-aqueous electrolyte is prepared by dissolving an electrolyte (eg, lithium salt) in a non-aqueous solvent. Non-aqueous solvents include, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), γ-butyrolactone (γ- BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran, and the like. Non-aqueous solvents may be used alone or in combination of two or more. The electrolyte is, for example, lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), trifluoromethanesulfonic acid Lithium salts such as lithium (LiCF 3 SO 3 ) may be mentioned. The electrolytes may be used alone or in combination of two or more. The amount of the electrolyte dissolved in the non-aqueous solvent is preferably 0.2 mol/L to 3 mol/L. If the electrolyte concentration is too low, sufficient ionic conductivity may not be obtained. On the other hand, if it is too high, it may not dissolve completely in the electrolytic solution.
 外装部材及び封口板の材料には、例えば、アルミニウム、アルミニウム合金、鉄(Fe)、ニッケル(Ni)めっきした鉄、ステンレス(SUS)などを用いることができる。正負極端子9,11をアルミニウム又はアルミニウム合金から形成する場合、正負極リード8,10には、アルミニウム又はアルミニウム合金を使用することができる。 For example, aluminum, aluminum alloy, iron (Fe), nickel (Ni) plated iron, stainless steel (SUS), etc. can be used as materials for the exterior member and the sealing plate. When the positive and negative terminals 9 and 11 are made of aluminum or an aluminum alloy, the positive and negative leads 8 and 10 can be made of aluminum or an aluminum alloy.
 電極ガードに使用される樹脂としては、電解液に侵されにくい樹脂であればいかなる樹脂でも使用可能であるが、例えば、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体、エチレン酢酸ビニルアルコール共重合体、エチレン・アクリル酸共重合体、エチレン・エチルアクリレート共重合体、エチレン・メチルアクリレート共重合体、エチレンメタクリルアクリレート共重合体、エチレン・メチルメタクリル酸共重合体、アイオノマー、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリテトラフルオロエチレンなどを用いることができ、上記樹脂は、1種類を単独で使用してもよく、また、複数の種類を混合して使用してもよい。中でも、ポリプロピレンまたはポリエチレンを用いることが好ましい。 As the resin used for the electrode guard, any resin can be used as long as it is resistant to corrosion by the electrolytic solution. Examples include polyethylene, polypropylene, ethylene vinyl acetate copolymer, ethylene vinyl acetate alcohol copolymer, Ethylene-acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene methacrylic acrylate copolymer, ethylene-methyl methacrylic acid copolymer, ionomer, polyacrylonitrile, polyvinylidene chloride, poly Tetrafluoroethylene, polychlorotrifluoroethylene, polyphenylene ether, polyethylene terephthalate, polytetrafluoroethylene, etc. can be used, and the above resins may be used singly or in combination. may be used as Among them, it is preferable to use polypropylene or polyethylene.
 第2実施形態に係る電池の製造方法は、第1実施形態に係る電池の密閉方法により電池を密閉する工程を含む。それ故、第2実施形態に係る電池の製造方法によれば、優れた歩留まりで電池を製造することができる。 The battery manufacturing method according to the second embodiment includes a step of sealing the battery by the battery sealing method according to the first embodiment. Therefore, according to the battery manufacturing method according to the second embodiment, batteries can be manufactured with excellent yield.
 (第3実施形態)
 第3実施形態によれば、電池が提供される。電池は、注液口及び封止蓋を備える外装部材と、外装部材内に収容され、正極、負極及びセパレータを備える電極群とを備える。注液口は、外装部材の内壁に面する第1孔と、第1孔と連通しており且つ外装部材の外壁に面する第2孔とを備える。第2孔は第1孔と比較して径が大きい。封止蓋は、外装部材の外壁に溶接されて注液口を封止している。
(Third Embodiment)
According to a third embodiment, a battery is provided. A battery includes an exterior member having a liquid inlet and a sealing lid, and an electrode group housed in the exterior member and having a positive electrode, a negative electrode, and a separator. The liquid inlet has a first hole facing the inner wall of the exterior member, and a second hole communicating with the first hole and facing the outer wall of the exterior member. The second hole has a larger diameter than the first hole. The sealing lid is welded to the outer wall of the exterior member to seal the injection port.
 本実施形態に係る電池は、例えば、第1実施形態に係る電池の密閉方法を経て得られるものである。一例に係る電池の構成は、第1実施形態において図1~図7を参照しながら説明した通りである。また、電池が備える各部材の材料等に関しては、例えば、第2実施形態において説明したものを使用することができる。 The battery according to this embodiment is obtained through, for example, the battery sealing method according to the first embodiment. The configuration of the battery according to one example is as described with reference to FIGS. 1 to 7 in the first embodiment. Moreover, as for the material of each member included in the battery, for example, those described in the second embodiment can be used.
 本実施形態に係る電池は、注液口が、第1孔及び第2孔を備えている。前述の通り、第2孔の径は第1孔の径と比較して大きい。それ故、第2孔で規定される空間内には、例えば、電池の製造過程において外装部材の内部から滲み出た電解液が留まることができる。従って、本封止工程(第2封止工程)において、外装部材の注液口周辺と封止蓋との密着性が高い状態で溶接を実施することができる。それ故、得られる電池について、封止蓋による注液口の密閉性は優れている。 In the battery according to this embodiment, the liquid inlet has the first hole and the second hole. As described above, the diameter of the second hole is larger than the diameter of the first hole. Therefore, in the space defined by the second hole, for example, the electrolytic solution that seeps out from the interior of the exterior member during the manufacturing process of the battery can remain. Therefore, in the main sealing step (second sealing step), welding can be performed in a state of high adhesion between the sealing lid and the periphery of the liquid inlet of the exterior member. Therefore, in the obtained battery, the sealability of the injection port by the sealing lid is excellent.
 注液口が第1孔及び第2孔を備えているため、実施形態に係る電池を複数個製造した場合であっても、密閉性が高い電池を得られる見込みが高い。つまり、第3実施形態に係る電池は高い歩留まりを達成することができる。 Since the liquid injection port has the first hole and the second hole, even if a plurality of batteries according to the embodiment are manufactured, it is highly likely that a battery with high airtightness can be obtained. That is, the battery according to the third embodiment can achieve high yield.
 本発明のいくつか実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.
 1…外装部材、2…電極群、3…容器、4…封口板、5…正極、5a…正極集電タブ、5b…正極活物質含有層、6…負極、6a…負極集電タブ、6b…負極活物質含有層、7…セパレータ、9…正極端子、11…負極端子、12…電極ガード、13…絶縁テープ、14…封止蓋、16…絶縁板、17…絶縁ガスケット、20…注液口、21…第1孔、21a…第1孔開口端、22…第2孔、22a…第2孔開口端、30…電解液、31…電解液の結晶、40…仮の封止栓、41…頭部、42…軸部、50…溶接部。 DESCRIPTION OF SYMBOLS 1... Exterior member, 2... Electrode group, 3... Container, 4... Sealing plate, 5... Positive electrode, 5a... Positive electrode collector tab, 5b... Positive electrode active material containing layer, 6... Negative electrode, 6a... Negative electrode collector tab, 6b Negative electrode active material-containing layer 7 Separator 9 Positive electrode terminal 11 Negative electrode terminal 12 Electrode guard 13 Insulating tape 14 Sealing lid 16 Insulating plate 17 Insulating gasket 20 Note Liquid port 21... First hole 21a... First hole opening end 22... Second hole 22a... Second hole opening end 30... Electrolyte solution 31... Crystals of electrolyte solution 40... Temporary sealing plug , 41... Head, 42... Shaft part, 50... Welding part.

Claims (9)

  1.  正極と、負極と、注液口を備える外装部材とを備える電池を密閉する方法であって、
     前記注液口は、前記外装部材の内壁に面する第1孔と、
     前記第1孔と連通しており且つ前記外装部材の外壁に面する第2孔とを備え、
     前記第2孔は前記第1孔と比較して径が大きく、
     前記電池の密閉方法は、
     前記外装部材内に、前記注液口を通じて電解液を注液する注液工程と、
     前記第1孔を仮の封止栓により仮封止する第1封止工程と、
     前記外装部材を加熱することにより、及び/又は、前記電池を初充電に供することにより、前記外装部材内にガスを発生させるガス発生工程と、
     前記仮の封止栓を取り除き、前記外装部材内に発生したガスを前記注液口から放出させるガス放出工程と、
     前記注液口を覆うようにして前記外装部材の外壁上に封止蓋を載せて、前記封止蓋を前記外装部材に対して溶接する第2封止工程と
    を含む電池の密閉方法。
    A method for sealing a battery comprising a positive electrode, a negative electrode, and an exterior member having an injection port, comprising:
    The injection port includes a first hole facing the inner wall of the exterior member,
    a second hole communicating with the first hole and facing an outer wall of the exterior member;
    The second hole has a larger diameter than the first hole,
    The method for sealing the battery includes:
    an injection step of injecting an electrolytic solution into the exterior member through the injection port;
    a first sealing step of temporarily sealing the first hole with a temporary sealing plug;
    a gas generation step of generating gas in the exterior member by heating the exterior member and/or subjecting the battery to initial charging;
    a gas release step of removing the temporary sealing plug and releasing the gas generated in the exterior member from the inlet;
    and a second sealing step of placing a sealing lid on the outer wall of the exterior member so as to cover the liquid inlet and welding the sealing lid to the exterior member.
  2.  前記外装部材の一部は、前記外装部材内に向けて突出した凸部を備え、
     前記注液口は、前記凸部の位置で、前記外装部材をその厚さ方向に沿って貫通している請求項1に記載の電池の密閉方法。
    A part of the exterior member has a convex portion protruding toward the inside of the exterior member,
    2. The method of sealing a battery according to claim 1, wherein the liquid injection port penetrates the exterior member along the thickness direction thereof at the position of the projection.
  3.  前記仮の封止栓は、前記第1孔に挿入される軸部と、前記軸部に連結された頭部とを備え、
     前記第1封止工程において仮封止された前記電池において、前記仮の封止栓の前記頭部と、前記外装部材の前記外壁との間には間隙が設けられている請求項1又は2に記載の電池の密閉方法。
    The temporary sealing plug includes a shaft portion inserted into the first hole and a head portion connected to the shaft portion,
    3. In the battery temporarily sealed in the first sealing step, a gap is provided between the head portion of the temporary sealing plug and the outer wall of the exterior member. The method for sealing the battery according to .
  4.  前記仮の封止栓の前記頭部と、前記外装部材の前記外壁との間の距離は、少なくとも0.05mm以上である請求項3に記載の電池の密閉方法。 The battery sealing method according to claim 3, wherein the distance between the head of the temporary sealing plug and the outer wall of the exterior member is at least 0.05 mm or more.
  5.  前記第2孔は、前記外装部材の前記外壁側から前記第1孔にかけて連続的に縮径している請求項1~4の何れか1項に記載の電池の密閉方法。 The battery sealing method according to any one of claims 1 to 4, wherein the diameter of the second hole continuously decreases from the outer wall side of the exterior member to the first hole.
  6.  前記第2孔の径と前記第1孔の径と差ΔDが、下記式1を満たす請求項1~5の何れか1項に記載の電池の密閉方法。
     ΔD≧0.05[mm]・・・(1)
    The battery sealing method according to any one of claims 1 to 5, wherein the difference ΔD between the diameter of the second hole and the diameter of the first hole satisfies Equation 1 below.
    ΔD≧0.05 [mm] (1)
  7.  前記正極、前記負極及びセパレータを備える電極群を前記外装部材に収容する工程と、
     請求項1~6の何れか1項に記載の電池の密閉方法により、電池を密閉する工程と
    を含む電池の製造方法。
    A step of housing an electrode group including the positive electrode, the negative electrode and a separator in the exterior member;
    A method for manufacturing a battery, comprising a step of sealing the battery by the battery sealing method according to any one of claims 1 to 6.
  8.  注液口及び封止蓋を備える外装部材と、
     前記外装部材内に収容され、正極、負極及びセパレータを備える電極群とを備える電池であって、
     前記注液口は、前記外装部材の内壁に面する第1孔と、
     前記第1孔と連通しており且つ前記外装部材の外壁に面する第2孔とを備え、
     前記第2孔は前記第1孔と比較して径が大きく、
     前記封止蓋は、前記外装部材の前記外壁に溶接されて前記注液口を封止している電池。
    an exterior member including a liquid inlet and a sealing lid;
    A battery that is accommodated in the exterior member and includes an electrode group including a positive electrode, a negative electrode, and a separator,
    The injection port includes a first hole facing the inner wall of the exterior member,
    a second hole communicating with the first hole and facing an outer wall of the exterior member;
    The second hole has a larger diameter than the first hole,
    The battery in which the sealing lid is welded to the outer wall of the exterior member to seal the injection port.
  9.  前記外装部材の一部は、前記外装部材内に向けて突出した凸部を備え、
     前記注液口は、前記凸部の位置で、前記外装部材をその厚さ方向に沿って貫通している請求項8に記載の電池。
     
    A part of the exterior member has a convex portion protruding toward the inside of the exterior member,
    9. The battery according to claim 8, wherein the injection port penetrates the exterior member along the thickness direction thereof at the position of the projection.
PCT/JP2021/021222 2021-06-03 2021-06-03 Battery sealing method, battery production method, and battery WO2022254663A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023525287A JPWO2022254663A1 (en) 2021-06-03 2021-06-03
PCT/JP2021/021222 WO2022254663A1 (en) 2021-06-03 2021-06-03 Battery sealing method, battery production method, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/021222 WO2022254663A1 (en) 2021-06-03 2021-06-03 Battery sealing method, battery production method, and battery

Publications (1)

Publication Number Publication Date
WO2022254663A1 true WO2022254663A1 (en) 2022-12-08

Family

ID=84324035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021222 WO2022254663A1 (en) 2021-06-03 2021-06-03 Battery sealing method, battery production method, and battery

Country Status (2)

Country Link
JP (1) JPWO2022254663A1 (en)
WO (1) WO2022254663A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323882A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Sealed battery and its manufacturing method
JP2014154282A (en) * 2013-02-06 2014-08-25 Toyota Industries Corp Power storage device
JP2015090758A (en) * 2013-11-05 2015-05-11 株式会社豊田自動織機 Manufacturing method for power storage device
CN206301868U (en) * 2016-12-29 2017-07-04 宁德时代新能源科技股份有限公司 Priming device and battery
JP2017188465A (en) * 2010-06-30 2017-10-12 株式会社Gsユアサ Secondary battery manufacturing method, secondary battery and battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323882A (en) * 2006-05-31 2007-12-13 Toyota Motor Corp Sealed battery and its manufacturing method
JP2017188465A (en) * 2010-06-30 2017-10-12 株式会社Gsユアサ Secondary battery manufacturing method, secondary battery and battery pack
JP2014154282A (en) * 2013-02-06 2014-08-25 Toyota Industries Corp Power storage device
JP2015090758A (en) * 2013-11-05 2015-05-11 株式会社豊田自動織機 Manufacturing method for power storage device
CN206301868U (en) * 2016-12-29 2017-07-04 宁德时代新能源科技股份有限公司 Priming device and battery

Also Published As

Publication number Publication date
JPWO2022254663A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
WO2016204147A1 (en) Battery and battery pack
US6866961B2 (en) Lithium secondary battery and manufacturing method thereof
US20090035652A1 (en) Non-prismatic electrochemical cell
US20150243960A1 (en) Secondary battery comprising current interrupt device
JP2007265846A (en) Cylindrical battery and its manufacturing method
JP5173095B2 (en) Sealed battery
KR100601513B1 (en) Lithium secondary battery
CN101501890B (en) Enclosed battery
JP2001313022A (en) Nonaqueous electrolyte secondary battery
JP2008243672A (en) Winding electrode for secondary battery, lithium-ion secondary battery, and secondary battery pack
JP2009054531A (en) Battery
JP5000080B2 (en) Battery with spiral electrode group
JP4984359B2 (en) Sealed battery and its sealing plate
JP2008251187A (en) Sealed battery
US9786920B2 (en) Multi-thickness current collector
KR101877601B1 (en) A Cap Assembly of Novel Structure and Cylindrical Battery Comprising the Same
WO2022254663A1 (en) Battery sealing method, battery production method, and battery
US20140373342A1 (en) Method for producing battery
JP2005222757A (en) Finishing charge/discharge gas exhaustion method of lithium-ion secondary battery
US11128003B2 (en) Secondary battery and method of recycling secondary battery
JP6184104B2 (en) Non-aqueous electrolyte battery
WO2023062837A1 (en) Battery
JP4374861B2 (en) Square lithium secondary battery
WO2023157305A1 (en) Lid assembly and battery
JP2007242520A (en) Cylindrical battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944164

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525287

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE