WO2022253790A2 - Procédé et module de commande d'une vanne de régulation de la pression interne d'un circuit de fluide dans un dispositif électrochimique - Google Patents
Procédé et module de commande d'une vanne de régulation de la pression interne d'un circuit de fluide dans un dispositif électrochimique Download PDFInfo
- Publication number
- WO2022253790A2 WO2022253790A2 PCT/EP2022/064675 EP2022064675W WO2022253790A2 WO 2022253790 A2 WO2022253790 A2 WO 2022253790A2 EP 2022064675 W EP2022064675 W EP 2022064675W WO 2022253790 A2 WO2022253790 A2 WO 2022253790A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- efficiency
- internal pressure
- int
- pressure
- electrochemical device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000012530 fluid Substances 0.000 title claims abstract description 35
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 33
- 230000001276 controlling effect Effects 0.000 title claims abstract description 17
- 230000006835 compression Effects 0.000 claims abstract description 64
- 238000007906 compression Methods 0.000 claims abstract description 64
- 239000000446 fuel Substances 0.000 claims description 80
- 238000012360 testing method Methods 0.000 claims description 54
- 238000004364 calculation method Methods 0.000 claims description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 8
- 230000033228 biological regulation Effects 0.000 claims description 7
- 238000013500 data storage Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 17
- 238000013459 approach Methods 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000006479 redox reaction Methods 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 5
- 239000007800 oxidant agent Substances 0.000 description 5
- 238000012669 compression test Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04104—Regulation of differential pressures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04395—Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
- H01M8/04455—Concentration; Density of cathode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04604—Power, energy, capacity or load
- H01M8/04619—Power, energy, capacity or load of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04604—Power, energy, capacity or load
- H01M8/04626—Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04776—Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04949—Electric variables other electric variables, e.g. resistance or impedance
- H01M8/04953—Electric variables other electric variables, e.g. resistance or impedance of auxiliary devices, e.g. batteries, capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to the field of electrochemical devices (fuel cell, electrolyser, etc.), in particular mounted on board an aircraft, and is aimed in particular at regulating the internal pressure in such an electrochemical device.
- electrochemical devices fuel cell, electrolyser, etc.
- a fuel cell makes it possible to produce electrical energy from an oxidation-reduction reaction between a fuel, hydrogen, and an oxidant, the oxygen present in the air.
- a fuel cell 200 comprises a stack of a plurality of cells 210, in which the oxidation-reduction reaction takes place, which are held between two end plates 220 making it possible to collect the electrical energy produced.
- the fuel cell 200 also comprises a cathode circuit 300 and an anode circuit 310 making it possible to supply the cells 210 with air and hydrogen respectively and to evacuate the products of the oxidation-reduction reaction, namely water and traces of hydrogen and air.
- the air from the cathode circuit 300 is conventionally taken from inside or outside the aircraft, namely from an external environment whose the physico-chemical properties are variable according to the altitude.
- the air pressure called external pressure P ext
- the air pressure decreases with altitude and reaches, by way of example, of the order of 9000 Pa at a high altitude of the aircraft of 17000 m.
- the same goes for the temperature and the concentration of oxygen in the air in particular.
- Such variations modify the operating conditions of the fuel cell 200 and can reduce its performance, which is undesirable.
- a compressor 400 upstream of the cathode circuit 300 and an internal pressure regulation valve 600 downstream of the cathode circuit 300.
- the compressor 400 makes it possible to compress the air taken from the external environment in order to inject it into the cathode circuit 300 according to a mass flow rate Q opt and an internal pressure P opt imposed making it possible to optimize the performance of the fuel cell 200
- the regulating valve 600 comprises for its part a variable flow section in order to maintain the internal pressure P op t imposed in the fuel cell 200 in order to optimize its efficiency.
- An embodiment according to the same principle is known from patent application FR3074363A1.
- the variation of the external pressure P ext during the flight of the aircraft requires sizing the compressor 400 with a wide range of compression ratios to maintain optimum performance for the fuel cell 200.
- Such sizing of the compressor 400 undesirably increases its mass, size and cost.
- optimizing the efficiency of the fuel cell 200 requires a high electrical consumption of the compressor 400, in particular at high altitude.
- the compressor 400 being conventionally powered electrically by the fuel cell 200, it follows that the electrical production gain of the fuel cell 200 intended for powering the aircraft is at least partially lost by the electrical consumption of the compressor 400 .
- one solution would be to reduce the value of the internal pressure P opt imposed in the cathode circuit 300. This would, however, reduce the performance of the fuel cell 200 in an unacceptable way.
- the invention thus aims to eliminate at least some of these drawbacks by proposing a method and a control module for the valve for regulating the internal pressure in a fuel cell, and more generally in any electrochemical device, in particular mounted on board a an aircraft.
- the invention relates to a method for controlling a valve for regulating the internal pressure of a fluid circuit in an electrochemical device, said fluid circuit being supplied by a compressor configured to take the fluid at an external pressure and compress it to the internal pressure according to a compression ratio belonging to a predetermined compression range, said method comprising a step of controlling the control valve to reach a set internal pressure.
- the invention advantageously makes it possible to promote the overall efficiency obtained thanks to an electrochemical device, that is to say, the efficiency of an electrical production system formed by the whole of the electrochemical device as well as the associated elements allowing its operation.
- the associated elements designate in particular the compressor supplying the fluid circuit of the electrochemical device, the cooling circuit of the electrochemical device, etc.
- Such an overall efficiency is thus based on the electrical production of the electrochemical device, but also on the electrical consumption of its associated elements.
- This makes it possible to account for the electrical power actually generated by the electrochemical device, corresponding to the electrical power it generates minus that which it consumes to operate, directly or indirectly.
- Such a global approach is opposed to the prior art aiming to promote the performance of the electrochemical device alone, without taking into account its associated elements.
- the invention advantageously proposes to regulate in a simple and practical manner a single parameter, namely the internal pressure of the fluid circuit, by controlling the regulating valve mounted downstream.
- the setpoint internal pressure determined is advantageously based on the physico-chemical data of the environment in which the electrochemical device is located, in particular the external pressure, and on the performance data of the electrochemical device and its associated elements, in particular the compressor.
- Such a test approach thus consists, from a hypothetical compression rate acceptable for the compressor, in verifying that the performance of the corresponding electrochemical device is also acceptable.
- Such a test approach makes it possible to determine, from a simple measurement of the external pressure and the performance data of the electrochemical device and its associated elements, an internal pressure value for which both the electrochemical device and its elements associated are in good operating condition.
- the setpoint internal pressure chosen at the end of the determination step ensures good performance of the electrochemical device while limiting the electrical consumption of the compressor. When the external pressure is changed, a new set internal pressure can be conveniently determined.
- Such an optimization approach considers the efficiency of the electrochemical device as a function of the internal pressure and the efficiency of the compressor as a function of two variables, namely the internal pressure and the external pressure. From the measurement of the external pressure, the overall efficiency is rewritten as a function of the internal pressure and maximized over the range of allowable internal pressures.
- Such an approach advantageously makes it possible to determine the optimal operating point of the energy production system, which differs from that of the electrochemical device, in particular when the external pressure is high, such as at high altitude on board an aircraft.
- the efficiency of the electrochemical device is proportional to the internal pressure and the efficiency of the compressor is, at a fixed external pressure, inversely proportional to the internal pressure.
- the determined setpoint internal pressure is thus chosen high enough to promote the performance of the electrochemical device, and low enough to limit the energy consumption of the compressor.
- the electrochemical device is cooled by a cooling circuit having a predetermined efficiency as a function of the internal pressure, the overall efficiency being a function of the efficiency of the cooling circuit.
- the determined setpoint internal pressure advantageously makes it possible to promote the operation of the energy production system as a whole, by considering the energy consumption of the compressor and of the cooling circuit.
- the efficiency of the electrochemical device is a function of the oxygen level in the fluid circuit
- the control method comprising a step of measuring the oxygen level in the fluid circuit, the step of determination being implemented from the measured oxygen level.
- the setpoint internal pressure is advantageously determined from several physico-chemical conditions of the environment in which the electrochemical device is mounted, namely the external pressure and the level of oxygen present.
- the electrochemical device is in the form of a fuel cell and, preferably, the fluid circuit is in the form of a cathode circuit of the fuel cell, preferably in which circulates air.
- the operating conditions of a fuel cell are advantageously based in particular on the physico-chemical conditions of the external environment in which it is mounted, such as the external air pressure and its oxygen level.
- the electrochemical device comprises a second fluid circuit of second internal pressure controlled by a second regulating valve, the control method comprising a step of controlling the second regulating valve to reach a second internal pressure setpoint P10* verifying:
- the first fluid circuit and the first regulating valve designate here the fluid circuit and the regulating valve described previously, in distinction with the second fluid circuit and the second regulating valve.
- the method according to the invention thus makes it possible to control the internal pressure both in the oxidant circuit and the fuel circuit of an electrochemical device. This makes it possible to ensure a substantially homogeneous pressure in the electrochemical device and thus to guarantee its correct operation and increase its service life.
- the second fluid circuit is in the form of a fuel cell anode circuit, preferably in which hydrogen circulates.
- the method according to the invention thus makes it possible to control the internal pressure both in the oxidizer circuit and the fuel circuit of the fuel cell.
- the electrochemical device is mounted on board an aircraft to at least partially supply it with electrical energy, said method being implemented during the flight of the aircraft.
- the method according to the invention is particularly advantageous for an electrochemical device mounted on board an aircraft because the physico-chemical conditions therein vary significantly depending on the altitude. The method according to the invention thus makes it possible to adapt the setpoint internal pressure during the flight to promote the overall efficiency whatever the altitude of the aircraft.
- The is a schematic representation of a fuel cell mounted on board an aircraft according to one embodiment of the invention.
- The is a schematic representation of a method for controlling a fuel cell control valve of the according to one embodiment of the invention.
- The is a schematic representation of a step for determining a setpoint internal pressure of the process of the according to one embodiment of the invention.
- the and the are schematic representations of a calculation phase during the implementation of the step of determining the .
- The is a schematic representation of the step of determining an internal set point pressure of the process of the according to an alternative embodiment of the invention.
- the and the are schematic representations of the calculation phase during the implementation of the step of determining the .
- The is a schematic representation of a fuel cell mounted on board an aircraft according to another embodiment of the invention.
- The is a schematic representation of the process for controlling the fuel cell control valve of the according to another embodiment of the invention.
- The is a schematic representation of a fuel cell mounted on board an aircraft according to another embodiment of the invention.
- The is a schematic representation of the process for controlling the fuel cell control valve of the according to another embodiment of the invention.
- The is a schematic representation of a fuel cell mounted on board an aircraft according to another embodiment of the invention.
- The is a schematic representation of the process for controlling the fuel cell control valve of the according to another embodiment of the invention.
- the invention relates to a method for controlling a valve for regulating the internal pressure of a fluid circuit in an electrochemical device.
- the invention aims, in a medium of variable physico-chemical properties, to promote the performance of the electrochemical device on a global scale.
- the invention is described below in the context of a fuel cell mounted on board an aircraft in order to regulate the internal air pressure in a fluid circuit in the form of a cathode circuit.
- the electrochemical device could be in a form other than a fuel cell, such as an electrolyser or a catalytic reactor, and/or be mounted in an environment different from that of an aircraft.
- the fluid circuit could also take another form, such as an anode circuit, and/or allow the circulation of any fluid.
- a fuel cell makes it possible to produce electrical energy from an oxidation-reduction reaction between a fuel, hydrogen, and an oxidizer, the oxygen present in the air.
- a fuel cell 2 comprises a stack of a plurality of cells 21, in which the oxidation-reduction reaction takes place, which are held between two end plates 22 making it possible to collect the electrical energy produced.
- the fuel cell 2 also comprises a cathode circuit 3 and an anode circuit 10 making it possible to supply the cells 21 respectively with air and hydrogen and to evacuate the products of the oxidation-reduction reaction, namely water and traces of hydrogen and air.
- the air from the cathode circuit 3 is conventionally taken from inside or outside the aircraft, at know in an external environment whose physico-chemical properties are variable according to the altitude.
- the air pressure called external pressure P ext
- the air pressure decreases with altitude and reaches, by way of example, of the order of 9000 Pa at a high altitude of the aircraft of 17000 m.
- the same goes for the temperature and the concentration of oxygen in the air in particular.
- a compressor 4 and a control valve 6 are mounted respectively upstream and downstream of the cathode circuit 3.
- the compressor 4 and the control valve 6 together make it possible to control the internal pressure P int and the mass flow rate Q of the air in the cathode circuit 3, so as to control the operating conditions of the fuel cell 2.
- the compressor 4 makes it possible to compress according to a compression ratio A the air taken from the external environment at the external pressure P ext .
- the compression ratio A belongs to a compression range B which is specific to the compressor 4.
- the compression ratio A of the compressor 4 is controlled by a control device 5 according to the mass flow rate Q of air desired in the cathode circuit 3 .
- control valve 6 comprises for its part a variable passage section controlled by a valve actuator 7 according to the internal pressure P int desired in the cathode circuit 3.
- the control valve 6 is thus pressure-controlled while the compressor 4 is flow-controlled, to control the operating conditions of the fuel cell 2 and consequently its performance.
- the determination step E2 is implemented, according to a first embodiment, by comparing the efficiency R2 of the fuel cell 2 for several test values of internal pressure P int associated with an efficiency R4 from Compressor 4 acceptable. According to a second embodiment, the determination step E2 is implemented by maximizing the overall efficiency R1 over a range of internal pressures P int acceptable for the compressor 4.
- the control method according to the invention thus makes it possible to regulate the internal pressure P int in the cathode circuit 3 so as to promote the overall performance of an electrical production system 1.
- an electrical production system 1 includes the fuel cell 2 as well as the associated elements which allow its operation, such as the compressor 4 which supplies the fuel cell 2 with oxidant.
- the setpoint internal pressure P int * determined thus makes it possible to favor the energy produced available for the aircraft, corresponding to the energy produced at the output of the fuel cell 2 from which is subtracted the energy consumed by its associated elements, such as than the energy used to compress the outside air.
- one or more of the performance data R1, R2, R4 could be in the form of another energy performance quantification variable than those mentioned.
- the efficiency data R1, R2, R4 are also presented in the form of theoretical models and/or obtained experimentally which depend on one or more parameters.
- the efficiency R4 of the compressor 4 thus varies inversely proportional to the internal pressure P int , the external pressure P ext being fixed.
- the efficiency R2 of the fuel cell 2 varies as a function of the internal pressure P int , more precisely proportionally. It goes without saying that additional parameters could be taken into account in the model of the efficiency R2 of the fuel cell 2 and/or of the compressor 4, such as the level of oxygen in the cathode circuit 3 for the efficiency R2 of the fuel cell 2, as will be described later.
- the overall efficiency R1 designates the efficiency of the electrical production system 1 previously defined as the assembly of the fuel cell 2 and the associated elements allowing its operation. It is considered in this example that the electrical production system 1 is formed solely by the fuel cell 2 and the compressor 4.
- the overall efficiency R1 thus varies according to the efficiency R2 of the fuel cell 2 and the efficiency R4 of the compressor 4 , in practice proportionally.
- the overall efficiency R1 corresponds to the quotient of the electrical power produced by the fuel cell 2 over the electrical power consumed by the compressor 4.
- the associated elements retained are those whose energy consumption is a function of the operating conditions of the fuel cell 2, and in particular, of the internal pressure P int of the cathode circuit 3. Also preferably, the associated elements retained are those whose energy consumption is remarkable compared to the energy production of the fuel cell 2.
- the control method begins with a step E1 of measuring the external pressure P ext of the outside air.
- the measuring step E1 is implemented by a measuring member 8 connected to the valve actuator 7 of the regulating valve 6, preferably in the form of a pressure sensor.
- the external pressure P ext could be measured indirectly, for example from an altimetry sensor of the aircraft.
- the measurement of the external pressure P ext is transmitted to the valve actuator 7.
- the internal set point pressure P int * determined during the determination step E2 corresponds to the internal test pressure P T for which the test efficiency R T respects the minimum efficiency threshold S1.
- the calculation phase E2-1 is implemented from a predetermined test compression ratio A T which belongs to the compression range B of the compressor 4.
- S4 denotes a minimum efficiency threshold of the compressor 4, preferably lower than the maximum efficiency of the compressor 4 by at most 50%.
- the test compression ratio A T is also chosen to be lower than the median of the compression range B.
- the test efficiency R T obtained is lower than the minimum efficiency S1 of the fuel cell 2 so that a new calculation phase E2-2 is implemented with a new test compression ratio A T incremented by an increment ⁇ (see ).
- the test efficiency R T obtained during the calculation phase E2-2 is greater than the minimum efficiency threshold S1.
- No new calculation phase E2-1, E2-2 is then implemented and the internal set point pressure P int * corresponds to the last internal test pressure P T calculated, in this example during the calculation phase E2- 2.
- the number of calculation phases E2-1, E2-2 is arbitrary and depends in particular on the test compression ratio A T chosen, on the increment ⁇ and on the minimum efficiency threshold S1.
- the minimum efficiency threshold S1 of the fuel cell 2 is chosen to be lower than the maximum efficiency of the fuel cell 2 by at most 50%.
- the setpoint internal pressure P int * is transmitted to the valve actuator 7 so as to implement the control step E3 of the control valve 6.
- the determination step E2 is implemented by the valve actuator 7 but it goes without saying that it could be implemented in any calculating unit, connected to the storage unit of the predetermined data and to the valve actuator 7.
- the control step E3 is itself implemented by regulating the flow section of the regulation valve 6 so as to obtain the internal set point pressure P int * in the cathode circuit 3
- Such a setpoint internal pressure P int * makes it possible both to promote the electrical production of the fuel cell 2 and to limit the electrical consumption of the compressor 4.
- such a control method is implemented several times during of the flight of the aircraft, preferably at each change in altitude having an impact on the external pressure P ext measured.
- the setpoint internal pressure P int * is incrementally determined, which meets the minimum efficiency objectives S1 while reducing the consumption of the compressor 4.
- the set internal pressure P int * corresponds to the admissible internal pressure for which the overall efficiency R1 is maximum.
- the external pressure P ext measured also allows to rewrite the efficiency R4 of compressor 4 as a function of the internal pressure P int only.
- the efficiency R4 of the compressor 4 and the efficiency R2 of the fuel cell 2 are both presented as a function of the internal pressure Pint .
- the overall efficiency R1 can also be expressed as a function of the internal pressure P int only.
- the range of allowable internal pressures PP A determined makes it possible to define the interval over which the overall efficiency R1 can be maximized.
- the maximization phase E2-B is implemented from the overall efficiency R1 and makes it possible to determine the set internal pressure P int * from among the range of admissible internal pressures PP A for which the overall efficiency R1 is maximum.
- the anode circuit 10 of the fuel cell 2 is also pressure-controlled. More specifically, as illustrated in the , a control valve 11 of the internal pressure P10 of the anode circuit 10 is mounted downstream of the anode circuit 10, hereinafter referred to as "second control valve 11".
- the regulating valve 6 of the cathode circuit 3 is for its part referred to here as “first regulating valve 6” for the purposes of clarity.
- the second regulating valve 11 comprises a variable passage section controlled by the valve actuator 7, in this example identical to that of the first regulating valve 6, so as to obtain a second internal set point pressure P10* in the anode circuit 10.
- the setpoint internal pressure P int * of the first regulating valve 6 is referred to here as “first setpoint internal pressure P int *” for clarity.
- control method further comprises a step E4 of controlling the second regulating valve 11 to reach the second internal setpoint pressure P10*, which verifies:
- the energy cost of the cooling circuit 9 of the fuel cell 2 is taken into account to determine the set internal pressure P int * of the valve of regulation 6. More specifically, the control method is implemented on the basis of a predetermined datum of the efficiency R9 of the cooling circuit 9 as a function of the internal pressure P int of the cathode circuit 3.
- the overall efficiency R1 is presented as to it in the form of a function of the efficiency R2 of the fuel cell 2, of the efficiency R4 of the compressor 4 and of the efficiency R9 of the cooling circuit 9.
- the electrical production system 1 is formed by the fuel cell fuel 2, the compressor 4 and the cooling circuit 9.
- the predetermined efficiency R2 of the fuel cell 2 also depends on the level of oxygen O in the air of the cathode circuit 3.
- the control method further comprises a step E0 of measuring the level of oxygen O in the cathode circuit 3, in this example by means of a dedicated measuring device 12 in the form of a gas sensor.
- the measurement step E0 is implemented in parallel with the step E1 of measurement of the external pressure P ex and makes it possible to rewrite the datum of the efficiency R2 of the fuel cell 2 as a function of the internal pressure P int only.
- the parameter of the oxygen level advantageously makes it possible to determine more reliably and precisely the internal set point pressure P int *.
- the regulation of the internal pressure P int proposed in the invention corresponds to an unprecedented global approach which takes into account the electrical production of the fuel cell 2, or more generally of an electrochemical device, but also the electrical consumption of its associated elements, in particular the compressor 4 but also the cooling circuit 9 by way of example.
- the setpoint internal pressure P int * determined advantageously favors the overall efficiency of the electricity production system, based on the electricity production at the output of the fuel cell 2 minus the electricity consumption of its associated elements, such as the compressor 4.
- such a global approach differs from the prior art where the regulation of the internal pressure P int only took into account the performance of the fuel cell 2.
- Such a global approach also makes it possible in particular to reduce the dimensioning of the compressor 4 and consequently its mass and its size on board the aircraft.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Reciprocating Pumps (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
Description
- est mis en œuvre à partir de données prédéterminées :
- du rendement du dispositif électrochimique en fonction de la pression interne,
- du rendement du compresseur en fonction du taux de compression,
- du rendement global en fonction du rendement du dispositif électrochimique et du rendement du compresseur, et
- comprend :
- une étape de mesure de la pression externe, et
- une étape de détermination de la pression interne de consigne à partir de la pression externe mesurée et de la plage de compression, de manière à favoriser le rendement global.
- une phase de calcul d’un rendement test du dispositif électrochimique à partir d’une pression interne test, ladite pression interne test étant calculée à partir de la pression externe mesurée et d’un taux de compression test prédéterminé appartenant à la plage de compression de manière à favoriser le rendement du compresseur, et
- tant que le rendement test du dispositif électrochimique est inférieur à un seuil de rendement minimal prédéterminé, une nouvelle phase de calcul du rendement test à partir d’un nouveau taux de compression test incrémenté appartenant à la plage de compression du compresseur,
- la pression interne de consigne correspondant à la pression interne test pour laquelle le rendement test respecte le seuil de rendement minimal.
- une phase de calcul d’une plage de pressions internes admissibles à partir de la pression externe mesurée et de la plage de compression, et
- le rendement global étant redéfini grâce à la pression externe mesurée comme une fonction de la pression interne, une phase de maximisation du rendement global sur la plage de pressions internes admissibles,
- la pression interne de consigne correspondant à la pression interne admissible pour laquelle le rendement global est maximal.
- un organe de mesure de la pression externe,
- un organe de stockage de données prédéterminées :
- du rendement du dispositif électrochimique en fonction de la pression interne,
- du rendement du compresseur en fonction du taux de compression,
- du rendement global en fonction du rendement du dispositif électrochimique et du rendement du compresseur,
- un organe de calcul configuré pour déterminer une pression interne de consigne à partir de la pression externe mesurée et de la plage de compression, de manière à favoriser le rendement global, et
- un actionneur de vanne de la vanne de régulation pour atteindre la pression interne de consigne.
- du rendement R2 de la pile à combustible 2 en fonction de la pression interne Pint du circuit de cathode 3,
- du rendement R4 du compresseur 4 en fonction du taux de compression A, et
- du rendement global R1 en fonction du rendement R2 de la pile à combustible 2 et du rendement R4 du compresseur 4.
- une étape de mesure E1 de la pression externe Pext de l’air extérieur,
- une étape de détermination E2 d’une pression interne de consigne Pint* à partir de la pression externe Pext mesurée et de la plage de compression B du compresseur 4, de manière à favoriser le rendement global R1, et
- une étape de commande E3 de la vanne de régulation 6 pour atteindre la pression interne de consigne Pint*.
- du quotient de la puissance produite sur la puissance consommée par le système considéré ; et/ou
- de l’écart à un rendement maximum prédéterminé du système considéré ; et/ou
- d’une puissance électrique produite/consommée du système considéré.
- une phase de calcul E2-1 d’un rendement test RT de la pile à combustible 2 à partir d’une pression interne test PT, ladite pression interne test PT étant calculée à partir de la pression externe Pext mesurée et d’un taux de compression test AT prédéterminé appartenant à la plage de compression B de manière à favoriser le rendement R4 du compresseur 4, et
- tant que le rendement test RT du dispositif électrochimique 2 est inférieur à un seuil de rendement minimal S1 prédéterminé, une nouvelle phase de calcul E2-2 du rendement test RT à partir d’un nouveau taux de compression test AT incrémenté appartenant à la plage de compression B.
- une phase de calcul E2-A d’une plage de pressions internes admissibles PPA à partir de la pression externe Pext mesurée et de la plage de compression B, et
- la pression externe mesurée Pext permettant de définir le rendement global R1 comme une fonction de la pression interne Pint, une phase de maximisation E2-B du rendement global R1 sur la plage de pressions internes admissibles PPA.
Claims (10)
- Procédé de commande d’une vanne de régulation (6) de la pression interne (Pint) d’un circuit de fluide (3) dans un dispositif électrochimique (2), ledit circuit de fluide (3) étant alimenté par un compresseur (4) configuré pour prélever le fluide à une pression externe (Pext) et le comprimer à la pression interne (Pint) selon un taux de compression (A) appartenant à une plage de compression (B) prédéterminée, ladite vanne de régulation (6) étant montée en aval du circuit de fluide (3), ledit procédé comportant une étape de commande (E3) de la vanne de régulation (6) pour atteindre une pression interne de consigne (Pint*) et étant caractérisé par le fait qu ’il :
- est mis en œuvre à partir de données prédéterminées :
- du rendement (R2) du dispositif électrochimique (2) en fonction de la pression interne (Pint),
- du rendement (R4) du compresseur (4) en fonction du taux de compression (A),
- du rendement global (R1) en fonction du rendement (R2) du dispositif électrochimique (2) et du rendement (R4) du compresseur (4), et
- comprend :
- une étape de mesure (E1) de la pression externe (Pext), et
- une étape de détermination (E2) de la pression interne de consigne (Pint*) à partir de la pression externe (Pext) mesurée et de la plage de compression (B), de manière à favoriser le rendement global (R1).
- est mis en œuvre à partir de données prédéterminées :
- Procédé selon la revendication 1, dans lequel l’étape de détermination (E2) de la pression interne de consigne (Pint*) comprend :
- une phase de calcul (E2-1) d’un rendement test (RT) du dispositif électrochimique (2) à partir d’une pression interne test (PT), ladite pression interne test (PT) étant calculée à partir de la pression externe (Pext) mesurée et d’un taux de compression test (AT) prédéterminé appartenant à la plage de compression (B) de manière à favoriser le rendement (R4) du compresseur (4), et
- tant que le rendement test (RT) du dispositif électrochimique (2) est inférieur à un seuil de rendement minimal (S1) prédéterminé, une nouvelle phase de calcul (E2-2) du rendement test (RT) à partir d’un nouveau taux de compression test (AT) incrémenté appartenant à la plage de compression (B) du compresseur (4),
- la pression interne de consigne (Pint*) correspondant à la pression interne test (PT) pour laquelle le rendement test (RT) respecte le seuil de rendement minimal (S1).
- Procédé selon la revendication 1, dans lequel l’étape de détermination (E2) de la pression interne de consigne (Pint*) comprend :
- une phase de calcul (E2-A) d’une plage de pressions internes admissibles (PPA) à partir de la pression externe (Pext) mesurée et de la plage de compression (B), et
- le rendement global (R1) étant redéfini grâce à la pression externe (Pext) mesurée comme une fonction de la pression interne (Pint), une phase de maximisation (E2-B) du rendement global (R1) sur la plage de pressions internes admissibles (PPA),
- la pression interne de consigne (Pint*) correspondant à la pression interne admissible (PA) pour laquelle le rendement global (R1) est maximal.
- Procédé selon l’une des revendications 1 à 3, dans lequel le rendement (R2) du dispositif électrochimique (2) est proportionnel à la pression interne (Pint) et le rendement (R4) du compresseur (4) est, à pression externe (Pext) fixée, inversement proportionnel à la pression interne (Pint).
- Procédé selon l’une des revendications 1 à 4, dans lequel le dispositif électrochimique (2) est refroidi par un circuit de refroidissement (9) possédant un rendement (R9) prédéterminé en fonction de la pression interne (Pint), le rendement global (R1) étant fonction du rendement (R9) du circuit de refroidissement (9).
- Procédé selon l’une des revendications 1 à 5, dans lequel le rendement (R2) du dispositif électrochimique (2) est fonction du taux d’oxygène (O) dans le circuit de fluide (3), le procédé de commande comprenant une étape de mesure (E0) du taux d’oxygène (O) dans le circuit de fluide (3), l’étape de détermination (E2) étant mise en œuvre à partir du taux d’oxygène (O) mesuré.
- Procédé selon l’une des revendications 1 à 6, dans lequel le dispositif électrochimique (2) se présente sous la forme d’une pile à combustible et, de préférence, le circuit de fluide (3) se présente sous la forme d’un circuit de cathode de la pile à combustible, préférentiellement dans lequel circule de l’air.
- Procédé selon l’une des revendications 1 à 7, dans lequel le dispositif électrochimique (2) comprend un deuxième circuit de fluide (10) de deuxième pression interne (P10) contrôlée par une deuxième vanne de régulation (11), le procédé de commande comprenant une étape de commande (E4) de la deuxième vanne de régulation (11) pour atteindre une deuxième pression interne de consigne (P10*) vérifiant : | P10* - Pint* | < S2, où (S2) désigne un seuil de variation de pression maximal prédéterminé.
- Procédé selon l’une des revendications 1 à 8, dans lequel le dispositif électrochimique (2) est monté à bord d’un aéronef pour en assurer au moins en partie son alimentation en énergie électrique, ledit procédé étant mis en œuvre durant le vol de l’aéronef.
- Module de commande d’une vanne de régulation (6) de la pression interne (Pint) d’un circuit de fluide (3) dans un dispositif électrochimique (2) pour la mise en œuvre du procédé selon l’une des revendications 1 à 9, ledit circuit de fluide (3) étant alimenté par un compresseur (4) configuré pour prélever le fluide à une pression externe (Pext) et le comprimer à la pression interne (Pint) selon un taux de compression (A) appartenant à une plage de compression (B) prédéterminée, ledit module de commande comportant :
- un organe de mesure (8) de la pression externe (Pext),
- un organe de stockage de données prédéterminées :
- du rendement (R2) du dispositif électrochimique (2) en fonction de la pression interne (Pint),
- du rendement (R4) du compresseur (4) en fonction du taux de compression (A),
- du rendement global (R1) en fonction du rendement (R2) du dispositif électrochimique (2) et du rendement (R4) du compresseur (4),
- un organe de calcul configuré pour déterminer une pression interne de consigne (Pint*) à partir de la pression externe (Pext) mesurée et de la plage de compression (B), de manière à favoriser le rendement global (R1), et
- un actionneur de vanne (7) de la vanne de régulation (6) pour atteindre la pression interne de consigne (Pint*).
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22726478.5A EP4331029A2 (fr) | 2021-06-02 | 2022-05-31 | Procédé et module de commande d'une vanne de régulation de la pression interne d'un circuit de fluide dans un dispositif électrochimique |
KR1020237040410A KR20240016961A (ko) | 2021-06-02 | 2022-05-31 | 전기화학 장치 내의 유체 회로의 내부 압력을 조절하기 위한 밸브를 제어하기 위한 방법 및 모듈 |
JP2023572775A JP2024523136A (ja) | 2021-06-02 | 2022-05-31 | 電気化学デバイスでの流体回路の内圧を調整するための弁を制御するための方法およびモジュール |
US18/565,055 US20240282986A1 (en) | 2021-06-02 | 2022-05-31 | Method and module for controlling a valve for regulating the internal pressure of a fluid circuit in an electrochemical device |
CN202280037130.5A CN117378068A (zh) | 2021-06-02 | 2022-05-31 | 对用于调节电化学装置中流体回路的内部压力的阀进行控制的方法和模块 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2105796 | 2021-06-02 | ||
FR2105796A FR3123764B1 (fr) | 2021-06-02 | 2021-06-02 | Procédé et module de commande d’une vanne de régulation de la pression interne d’un circuit de fluide dans un dispositif électrochimique |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2022253790A2 true WO2022253790A2 (fr) | 2022-12-08 |
WO2022253790A3 WO2022253790A3 (fr) | 2023-03-09 |
Family
ID=77411810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2022/064675 WO2022253790A2 (fr) | 2021-06-02 | 2022-05-31 | Procédé et module de commande d'une vanne de régulation de la pression interne d'un circuit de fluide dans un dispositif électrochimique |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240282986A1 (fr) |
EP (1) | EP4331029A2 (fr) |
JP (1) | JP2024523136A (fr) |
KR (1) | KR20240016961A (fr) |
CN (1) | CN117378068A (fr) |
FR (1) | FR3123764B1 (fr) |
WO (1) | WO2022253790A2 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080088043A1 (en) | 2005-05-27 | 2008-04-17 | Yamazaki Daisuke | Fuell cell system and operation method of fuel cells |
WO2011089502A1 (fr) | 2010-01-19 | 2011-07-28 | Toyota Jidosha Kabushiki Kaisha | Système de piles à combustibles et son procédé de commande |
FR3074363A1 (fr) | 2017-11-28 | 2019-05-31 | Safran Power Units | Pile a combustible comprenant un dispositif de regulation de pression et procede de regulation de pression |
US20190267645A1 (en) | 2018-02-23 | 2019-08-29 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and control method of fuel cell system |
-
2021
- 2021-06-02 FR FR2105796A patent/FR3123764B1/fr active Active
-
2022
- 2022-05-31 CN CN202280037130.5A patent/CN117378068A/zh active Pending
- 2022-05-31 US US18/565,055 patent/US20240282986A1/en active Pending
- 2022-05-31 JP JP2023572775A patent/JP2024523136A/ja active Pending
- 2022-05-31 WO PCT/EP2022/064675 patent/WO2022253790A2/fr active Application Filing
- 2022-05-31 EP EP22726478.5A patent/EP4331029A2/fr active Pending
- 2022-05-31 KR KR1020237040410A patent/KR20240016961A/ko unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080088043A1 (en) | 2005-05-27 | 2008-04-17 | Yamazaki Daisuke | Fuell cell system and operation method of fuel cells |
WO2011089502A1 (fr) | 2010-01-19 | 2011-07-28 | Toyota Jidosha Kabushiki Kaisha | Système de piles à combustibles et son procédé de commande |
FR3074363A1 (fr) | 2017-11-28 | 2019-05-31 | Safran Power Units | Pile a combustible comprenant un dispositif de regulation de pression et procede de regulation de pression |
US20190267645A1 (en) | 2018-02-23 | 2019-08-29 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and control method of fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
EP4331029A2 (fr) | 2024-03-06 |
CN117378068A (zh) | 2024-01-09 |
FR3123764A1 (fr) | 2022-12-09 |
KR20240016961A (ko) | 2024-02-06 |
US20240282986A1 (en) | 2024-08-22 |
WO2022253790A3 (fr) | 2023-03-09 |
FR3123764B1 (fr) | 2023-04-28 |
JP2024523136A (ja) | 2024-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kurnia et al. | Advances in proton exchange membrane fuel cell with dead-end anode operation: A review | |
EP1776730B1 (fr) | Controle de l'humidification de la membrane polymere d'une pile a combustible | |
EP1758185B1 (fr) | Séparateur pour cellule électrochimique polyélectrolytique et cellule électrochimique polyélectrolytique | |
KR100699371B1 (ko) | 직접 메탄올형 연료 전지 시스템 및 그 제어 방법 | |
EP2872356A2 (fr) | Motorisation de vehicule automobile incluant une pile a combustible et un systeme de stockage d'energie | |
US8748051B2 (en) | Adaptive loading of a fuel cell | |
WO2022253790A2 (fr) | Procédé et module de commande d'une vanne de régulation de la pression interne d'un circuit de fluide dans un dispositif électrochimique | |
US7695837B2 (en) | Fuel cell system | |
KR101759141B1 (ko) | 연료 전지 시스템의 수소 농도 제어 장치 및 방법 | |
EP3252859B1 (fr) | Dispositif destiné à générer de l'électricité à partir d'une pile à combustible planaire refroidie par flux d'air | |
US8968954B2 (en) | Fuel cell system and method of controlling reaction condition of fuel in fuel cell | |
CN114725433A (zh) | 一种质子交换膜氢燃料电池动力系统的给料控制方法 | |
EP3340353A1 (fr) | Systeme electrochimique a pile a combustible comportant un dispositif de regulation de pression a detendeur | |
CN116344868B (zh) | 一种电堆水含量的调控方法及其应用 | |
KR101670727B1 (ko) | 농도 센서를 사용하지 않는 전압진폭 제어 기반의 피드백 제어 방식에 의한 액체형 연료전지의 연료농도 제어 방법 및 제어 장치, 이를 이용한 액체형 연료전지 장치 | |
EP1846972A1 (fr) | Systeme pile a combustible et procede de commande associe | |
CN115621508A (zh) | 一种燃料电池系统阴极气体的压力和流量控制方法 | |
EP3331079B1 (fr) | Systeme electrochimique de pile a combustible comportant un dispositif de regulation de pression | |
EP3581782B1 (fr) | Procédé de commande et dispositif de commande de moteur-fusée | |
CN109873184B (zh) | 一种液体燃料电池电堆启动控制方法 | |
WO2023242385A1 (fr) | Procédé de production d'hydrogène avec réglage de la puissance d'un compresseur | |
Liu et al. | Experimental Research on Voltage Uniformity of a PEMFC Stack under Dynamic Step Loading | |
FR3147054A1 (fr) | Procédé de contrôle d’un ensemble de sources électriques interconnectées | |
FR2897985A1 (fr) | Systeme et procede de commande d'un module de puissance a pile a combustible. | |
WO2020035594A1 (fr) | Dispositif de production d'electricite pour sous-marin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22726478 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280037130.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023572775 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18565055 Country of ref document: US Ref document number: 2022726478 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022726478 Country of ref document: EP Effective date: 20231128 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |