WO2022253360A1 - 一种共伴生资源协同开采智能实验装置 - Google Patents

一种共伴生资源协同开采智能实验装置 Download PDF

Info

Publication number
WO2022253360A1
WO2022253360A1 PCT/CN2022/108574 CN2022108574W WO2022253360A1 WO 2022253360 A1 WO2022253360 A1 WO 2022253360A1 CN 2022108574 W CN2022108574 W CN 2022108574W WO 2022253360 A1 WO2022253360 A1 WO 2022253360A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
chamber
pressure
oil
signal
Prior art date
Application number
PCT/CN2022/108574
Other languages
English (en)
French (fr)
Inventor
张通
于祥
马衍坤
李燕芳
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Publication of WO2022253360A1 publication Critical patent/WO2022253360A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/22Methods of underground mining; Layouts therefor for ores, e.g. mining placers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/24Methods of underground mining; Layouts therefor for oil-bearing deposits
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N2001/002Devices for supplying or distributing samples to an analysing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the field of collaborative green exploitation of co-occurring resources, in particular to an intelligent experimental device for co-existing resources collaborative mining.
  • the invention provides an intelligent experimental device for collaborative mining of co-existing resources, which includes a signal transmission mechanism, a pressure maintaining mechanism, a feeding mechanism and a reaction mechanism.
  • the pressure holding mechanism and the feeding mechanism send signals to make the three cavities of uranium, coal seam, and oil and gas reach the experimental pre-value, and the data signal is transmitted to the centralized controller by the reaction system, thereby realizing the intelligently controlled collaborative mining of co-associated resources.
  • An intelligent experimental device for collaborative mining of co-existing resources comprising:
  • Signal transmission mechanism including centralized controller, signal device, signal receiver, power supply, power line, signal transmitter, signal sensing valve;
  • Pressure maintaining mechanism including confining pressure oil chamber, axial pressure oil chamber, confining pressure pump, axial pressure pump, confining pressure liquid tank, axial pressure liquid tank, integrated pressure dividing pipe, hydraulic transmission pipe;
  • Feeding mechanism including monitoring analyzer, temperature controller, solution delivery pipe, percolation pump, mixing delivery pipe, comprehensive liquid separator, aggregate chamber, liquid chamber, oil chamber, air chamber, mixing chamber, analysis purifier;
  • the annunciator is placed in the centralized controller, the signal receiver is placed in the axial pressure pump, confining pressure pump, temperature controller, percolation pump and integrated liquid distributor, and the signal transmitter is placed in the Inside the temperature-hydraulic sensor, nuclear magnet and monitoring analyzer, the signal sensing valve is placed at the bottom of the confining pressure oil chamber, axial pressure oil chamber, aggregate chamber, liquid chamber, oil chamber, air chamber and mixing chamber;
  • the confining pressure oil chamber and the axial pressure oil chamber are directly connected to the confining pressure pump and the axial pressure pump through the hydraulic transmission pipe respectively, and the two ends of the confining pressure liquid separation tank are respectively connected to the confining pressure pump and the comprehensive pressure dividing pipe connected, the two ends of the axial pressure liquid separation tank are respectively connected with the axial pressure pump and the comprehensive pressure dividing pipe;
  • One end of the monitoring analyzer is connected to the temperature controller, one end of the percolation pump is connected to the temperature controller, and the other end is connected to the mixing chamber through the mixing delivery pipe, and the front end of the integrated liquid separator passes through
  • the mixing conveying pipe is connected to the mixing chamber, and its rear end is respectively connected to the aggregate chamber, liquid chamber, oil chamber and air chamber through the mixing conveying pipe, and the analysis purifier is connected to the outlet end of the oil-gas chamber;
  • the uranium cavity, the coal seam cavity and the oil-gas cavity are connected in series through the solution delivery pipe, one end of which is directly connected to the integrated pressure divider, and the other end is directly connected to the monitoring analyzer, And the nuclear magnet is wrapped on the outside of the cavity, the shear gasket is arranged inside the cavity, the signal transmitter is installed on the nuclear magnet, and the temperature and hydraulic pressure sensor is installed in the uranium mine cavity , the front, middle and rear positions of the coal seam cavity and the oil and gas cavity, and the signal transmitter is externally connected.
  • the integrated pressure dividing pipe is a pressure dividing device, its front side is directly connected to the confining pressure liquid separation box and the axial pressure liquid separation box, and its rear side is directly connected to the uranium ore cavity, coal seam cavity and Oil and gas cavity connection.
  • the nuclear magnet is wrapped on the outside of the uranium ore cavity, the shear gasket is arranged inside the cavity, the temperature and hydraulic pressure sensors are installed at the front, middle and rear of the cavity, and are externally connected There is the signal transmitter.
  • the front end of the monitoring analyzer is connected to the uranium mine cavity, the coal seam cavity and the oil gas cavity, and the rear end is directly connected to the temperature controller.
  • the front end of the comprehensive liquid separator is connected to the mixing chamber through the mixing conveying pipe, and the rear end is respectively connected to the aggregate chamber, liquid chamber, oil chamber and air chamber through conveying pipelines.
  • the device of the present invention includes a signal transmission mechanism, a pressure maintaining mechanism, a feeding mechanism and a reaction mechanism.
  • the signal transmission mechanism controls the entire mesoscopic experimental device through the transmission signal, and sends signals to the pressure maintaining mechanism and the feeding mechanism successively according to the experimental setting, Make the three cavities of uranium, coal seam, and oil and gas reach the experimental pre-value, and the reaction system transmits the data signal to the centralized controller, and then realizes the intelligently controlled collaborative mining of co-associated resources;
  • the axial pressure and confining pressure can be evenly distributed to the uranium mine cavity, coal seam cavity and oil and gas cavity according to the preset value through the integrated pressure divider.
  • the gasket inside the cavity is a shear gasket, which can separate the internal rock mass Carry out shearing under true triaxial conditions;
  • the integrated liquid separator can test the uniform distribution of the mixture, and distribute the mixture to the corresponding mixing cavity.
  • Figure 1 is a system diagram of the intelligent experimental device for collaborative mining of co-existing resources.
  • 1-centralized controller 2-confined pressure oil chamber; 3-axial pressure oil chamber; 4-signaler; 5-confined pressure pump; 6-axial pressure pump; 7-confined pressure liquid tank; 8- Axial pressure liquid distribution box; 9-comprehensive pressure dividing pipe; 10-uranium cavity; 11-coal seam cavity; 12-oil gas cavity; 13-signal transmitter; 14-temperature and hydraulic pressure sensor; 15-signal; 16 -signal receiver; 17-nuclear magnet; 18-monitoring analyzer; 19-temperature controller; 20-solution delivery tube; 21-percolation pump; 22-mixing delivery tube; Liquid device; 25-aggregate chamber; 26-liquid chamber; 27-oil chamber; 28-air chamber; 29-mixing chamber; 30-shear gasket; 31-analysis purifier; 32-hydraulic transmission pipe.
  • an intelligent experimental device for collaborative mining of co-occurring resources includes a signal transmission mechanism, a pressure holding mechanism, a feeding mechanism, and a reaction mechanism. Signals are sent to the pressure-holding mechanism and the feeding mechanism successively, so that the three cavities of uranium, coal seam, and oil and gas reach the experimental pre-value, and the data signal is transmitted to the centralized controller by the reaction system, thereby realizing the intelligent control of co-existing resource collaboration mining.
  • the signal device 4 is placed in the centralized controller 1, and the signal receiver 16 is placed in the axial pressure pump 6, the confining pressure pump 5, the temperature controller 19, the seepage pump 21 and the integrated liquid separation device.
  • the signal transmitter 13 is placed inside the temperature and hydraulic sensor 14, the nuclear magnet 17 and the monitoring analyzer 18, and the signal sensing valve 23 is placed in the confining pressure oil chamber 2 and the axial pressure oil chamber 3.
  • the aggregate chamber 25 the liquid chamber 26, the oil chamber 27, the air chamber 28 and the bottom of the mixing chamber 29;
  • the confining pressure oil chamber 2 and the axial pressure oil chamber 3 are respectively directly connected to the confining pressure pump 5 and the axial pressure pump 6 through the hydraulic transmission pipe 32, and the confining pressure liquid separation tank 7 is two The ends are respectively connected with the confining pressure pump 5 and the comprehensive pressure dividing pipe 9, and the two ends of the axial pressure liquid distribution tank 8 are respectively connected with the axial pressure pump 6 and the comprehensive pressure dividing pipe 9;
  • one end of the monitoring analyzer 18 is connected to the temperature controller 19
  • one end of the percolation pump 21 is connected to the temperature controller 19
  • the other end is connected to the mixing chamber through the mixing delivery pipe 22.
  • the front end of the integrated liquid separator 24 is connected to the mixing chamber 29 through the mixing delivery pipe 22, and its rear end is connected to the aggregate chamber 25, the liquid chamber 26, and the oil chamber 27 respectively through the mixing delivery pipe 22.
  • the analysis purifier 31 is connected to the outlet end of the oil and gas cavity 12;
  • the uranium ore cavity 10 the coal seam cavity 11 and the oil gas cavity 12 are connected in series through the solution delivery pipe 20, one end of which is directly connected with the comprehensive pressure dividing pipe 9, and the other end It is directly connected with the monitoring analyzer 18, and the nuclear magnet 17 is wrapped outside the cavity, the shear gasket 30 is arranged inside the cavity, and the signal transmitter is installed on the nuclear magnet 17 13.
  • the temperature-hydraulic sensor 14 is installed at the front, middle and rear of the uranium cavity 10, the coal seam cavity 11 and the oil-gas cavity 12, and the signal transmitter 13 is externally connected.
  • each component According to the corresponding spatial position and connection mode of each component, assemble each component in an orderly manner
  • the centralized controller 1 sends a signal to the pressure maintaining mechanism, the confining pressure pump 5 and the axial pressure pump 6 receive the signal and start, and the signal sensing valve 23 under the confining pressure oil chamber 2 and the axial pressure oil chamber 3 receives the signal and starts to start
  • the confining pressure oil and axial pressure oil are injected into the integrated pressure dividing pipe 9 through the confining pressure liquid distribution tank 7 and the axial pressure liquid distribution tank 8;
  • the integrated pressure divider 9 injects confining pressure oil and axial pressure oil into the uranium ore cavity 10, coal seam cavity 11 and oil gas cavity 12 according to the preset value, and waits until the internal confining pressure and axial pressure of the cavity reach the preset value After the value is set, the temperature and hydraulic pressure sensor 14 sends it to the centralized controller 1 through the signal transmitter 13, and starts to keep the confining pressure and axial pressure constant;
  • the centralized controller 1 sends a signal to the feeding mechanism, and the signal sensing valve 23 and the signal receiver 16 receive the signal.
  • the aggregate chamber 25, the liquid chamber 26, the oil chamber 27 and the air chamber 28 are activated to start feeding materials. Inject into the mixing chamber 29 through the integrated liquid separator 24;
  • the mixture in the mixing chamber 29 is injected into the inside of the uranium ore cavity 10 through the mixing delivery pipe 22, the temperature controller 19, and the monitoring analyzer 18. If it is necessary to apply temperature, The temperature can be preset to the temperature controller 19, and the monitoring analyzer 18 can analyze the mixture;
  • the monitoring analyzer 18 can send a feedback signal to the centralized controller, and then the centralized signal device 1 sends a signal to the feeding mechanism to re-allocate, and repeat steps f and g;
  • the mixture first passes through the uranium ore cavity 10, and then flows into the coal seam cavity 11 and the oil and gas cavity 12 through the series pipeline connected by the solution delivery pipe 20.
  • the coal seam cavity 11 and the oil and gas cavity 12 are also equipped with a monitoring analyzer 18;
  • the signal transmitter 13 on the monitoring analyzer 18 will send a signal to the centralized controller 1, and then the centralized controller 1 will send a signal to the percolation pump 21 to supplement the mixture from the mixing chamber 29.
  • the percolation pump 21 For the mixture, repeat steps f and g;
  • the mixed material finally flows into the analysis purifier 31, and the analysis purifier 31 analyzes the content of its components, which is purified and environmentally friendly;

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种共伴生资源协同开采智能实验装置被公开。该装置可实现共伴生资源开采智能原位模拟,监测分析多场耦合演化特征,其包括信号传导机构、保压机构、给料机构和反应机构,信号传导机构包括集中控制器(1)、信号器(4)、信号接收器(16)、电源、电源线、信号发射器(13)、信号感知阀(23),保压机构包括围压油腔(2)、轴压油腔(3)、围压泵(5)、轴压泵(6)、围压分液箱(7)、轴压分液箱(8)、综合分压管(9)、液压传输管(32),给料机构包括监测分析仪(18)、温控仪(19)、溶液传送管(20)、渗流泵(21)、混料输送管(22)、综合分液器(24)、骨料腔(25)、液腔(26)、油腔(27)、气腔(28)、混合腔(29)、分析净化器(31),反应机构包括铀矿腔体(10)、煤层腔体(11)、油气腔体(12)、核磁体(17)、温液压感知器(14)、剪切垫片(30)。

Description

一种共伴生资源协同开采智能实验装置 技术领域
本发明涉及共伴生资源协同绿色开采领域,尤其涉及一种共伴生资源协同开采智能实验装置。
背景技术
以中国鄂尔多斯盆地为代表,分布于全球的煤、油气共伴生资源叠置覆存盆地多达31处,共伴生资源分布呈现“点多、面广、垂直叠置”的特点。2019年中国化石能源消耗占比高达85.7%,其中煤、石油、天然气消费占比分别为57.7%,19.3%和8.7%,同时石油、天然气对外依存度分别高达72.5%和43%,中国能源结构整体表现为“富煤贫油少气”,今后较长时间内煤炭仍将是主导能源,铀、油气为重要战略资源。以煤、铀、油气为代表的共生叠置资源开发存在着安全高效生产和生态环境保护方面的困难,因此开展煤油气协调开采的扰动岩层应力场-裂隙场-渗流场多场耦合演化特征研究尤为重要,然而现阶段共伴生资源开发原位实验装置存在大量技术空白。基于此,迫切需要一种共伴生资源协同开采智能实验装置,为共伴生资源安全、高效、绿色开发基础理论的提出和关键科学技术的研发提供支持。
技术问题
本发明提供一种共伴生资源协同开采智能实验装置,其包括信号传导机构、保压机构、给料机构和反应机构,信号传导机构通过传导信号控制整个细观实验装置,按照实验设定先后向保压机构和给料机构发送信号,使铀、煤层、油气三个腔体达到实验预值,并由反应系统将数据信号传送给集中控制器,进而实现智能化控制的共伴生资源协同开采。
技术解决方案
一种共伴生资源协同开采智能实验装置,包括:
信号传导机构,包括集中控制器、信号器、信号接收器、电源、电源线、信号发射器、信号感知阀;
保压机构,包括围压油腔、轴压油腔、围压泵、轴压泵、围压分液箱、轴压分液箱、综合分压管、液压传输管;
给料机构,包括监测分析仪、温控仪、溶液传送管、渗流泵、混料输送管、综合分液器、骨料腔、液腔、油腔、气腔、混合腔、分析净化器;
反应机构,包括铀矿腔体、煤层腔体、油气腔体、核磁体、温液压感知器、剪切垫片;
所述信号器置于集中控制器内,所述信号接收器置于所述轴压泵、围压泵、温控仪、渗流泵和综合分液器内部,所述信号发射器置于所述温液压感知器、核磁体和监测分析仪内部,所述信号感知阀置于所述围压油腔、轴压油腔、骨料腔、液腔、油腔、气腔和混合腔底部;
所述围压油腔、轴压油腔分别与所述围压泵、轴压泵通过所述液压传输管直接连接,所述围压分液箱两端分别与围压泵、综合分压管连接,所述轴压分液箱两端分别与轴压泵、综合分压管连接;
所述监测分析仪其一端与所述温控仪连接,所述渗流泵一端与温控仪连接,另一端通过所述混料输送管与所述混合腔连接,所述综合分液器前端通过所述混料输送管与混合腔连接,其后端通过混料输送管分别与所述骨料腔、液腔、油腔和气腔连接,所述分析净化器连接于油气腔体的出口端;
所述铀矿腔体、煤层腔体与油气腔体三者之间通过所述溶液传送管串联连接,其一端与所述综合分压管直接连接,另一端与所述监测分析仪直接连接,并在其腔体外侧包裹有所述核磁体,腔体内部设置有所述剪切垫片,所述核磁体上安装有所述信号发射器,所述温液压感知器安装于铀矿腔体、煤层腔体和油气腔体的前、中、后三个位置,并外接有所述信号发射器。
优选地,所述综合分压管为分压装置,其前侧与所述围压分液箱和轴压分液箱直接连接,其后侧直接与所述铀矿腔体、煤层腔体和油气腔体连接。
优选地,所述铀矿腔体外侧包裹有所述核磁体,腔体内部设置有所述剪切垫片,腔体前、中、后三个位置安装有所述温液压感知器,并外接有所述信号发射器。
优选地,所述监测分析仪其前端与所述铀矿腔体、煤层腔体和油气腔体连接,后端与所述温控仪直接连接。
优选地,所述综合分液器前端通过所述混料输送管与混合腔连接,后端通过输送管路分别与所述骨料腔、液腔、油腔和气腔连接。
有益效果
本发明的工作原理及有益效果如下:
本发明所述装置包括信号传导机构、保压机构、给料机构和反应机构,信号传导机构通过传导信号控制整个细观实验装置,按照实验设定先后向保压机构和给料机构发送信号,使铀、煤层、油气三个腔体达到实验预值,并由反应系统将数据信号传送给集中控制器,进而实现智能化控制的共伴生资源协同开采;
通过综合分压管可以将轴压和围压按照预设值均匀的分配到铀矿腔体、煤层腔体和油气腔体内,腔体内部的垫片为剪切垫片,可以将内部岩体进行真三轴条件下的剪切;
通过监测分析仪,可以监测温度、压力和成分,并通过安设的信号发射器将反馈信号发送给集中控制器;综合分液器可以实验混合料的均匀分配,将混合料分配到相应的混合腔内。
附图说明
图1为共伴生资源协同开采智能实验装置机构系统图。
图中:1-集中控制器;2-围压油腔;3-轴压油腔;4-信号器;5-围压泵;6-轴压泵;7-围压分液箱;8-轴压分液箱;9-综合分压管;10-铀矿腔体;11-煤层腔体;12-油气腔体;13-信号发射器;14-温液压感知器;15-信号;16-信号接收器;17-核磁体;18-监测分析仪;19-温控仪;20-溶液传送管;21-渗流泵;22-混料输送管;23-信号感知阀;24-综合分液器;25-骨料腔;26-液腔;27-油腔;28-气腔;29-混合腔;30-剪切垫片;31-分析净化器;32-液压传输管。
本发明的最佳实施方式
如图1所示,一种共伴生资源协同开采智能实验装置,包括信号传导机构、保压机构、给料机构和反应机构,信号传导机构通过传导信号控制整个细观实验装置,按照实验设定先后向保压机构和给料机构发送信号,使铀、煤层、油气三个腔体达到实验预值,并由反应系统将数据信号传送给集中控制器,进而实现智能化控制的共伴生资源协同开采。
信号传导机构中,所述信号器4置于集中控制器1内,所述信号接收器16置于所述轴压泵6、围压泵5、温控仪19、渗流泵21和综合分液器24内部,所述信号发射器13置于所述温液压感知器14、核磁体17和监测分析仪18内部,所述信号感知阀23置于所述围压油腔2、轴压油腔3、骨料腔25、液腔26、油腔27、气腔28和混合腔29底部;
保压机构中,所述围压油腔2、轴压油腔3分别与所述围压泵5、轴压泵6通过所述液压传输管32直接连接,所述围压分液箱7两端分别与围压泵5、综合分压管9连接,所述轴压分液箱8两端分别与轴压泵6、综合分压管9连接;
给料机构中,所述监测分析仪18其一端与所述温控仪19连接,所述渗流泵21一端与温控仪19连接,另一端通过所述混料输送管22与所述混合腔29连接,所述综合分液器24前端通过所述混料输送管22与混合腔29连接,其后端通过混料输送管22分别与所述骨料腔25、液腔26、油腔27和气腔28连接,所述分析净化器31连接于油气腔体12的出口端;
反应机构中,所述铀矿腔体10、煤层腔体11与油气腔体12三者之间通过所述溶液传送管20串联连接,其一端与所述综合分压管9直接连接,另一端与所述监测分析仪18直接连接,并在其腔体外侧包裹有所述核磁体17,腔体内部设置有所述剪切垫片30,所述核磁体17上安装有所述信号发射器13,所述温液压感知器14安装于铀矿腔体10、煤层腔体11和油气腔体12的前、中、后三个位置,并外接有所述信号发射器13。
如图1所示,应用上述实验装置,其包括如下实验步骤:
a、根据实验要求,将铀矿岩样、煤矿岩样、油气岩样分别安装进铀矿腔体10、煤层腔体11和油气腔体12内;
b、根据各零部件所对应的空间位置和连接方式,对各零部件进行有顺序的组装;
c、检查各部件的连接及工作情况,在确保各零部件正常工作的情况下,根据实验方案在集中控制器1中输入实验参数值;
d、由集中控制器1向保压机构发送信号,围压泵5和轴压泵6接收信号并启动,围压油腔2和轴压油腔3下的信号感知阀23接收信号启动,开始将围压油和轴压油通过围压分液箱7和轴压分液箱8注入综合分压管9内;
e、综合分压管9按照预设值将围压油和轴压油注入到铀矿腔体10、煤层腔体11和油气腔体12内部,待腔体内部围压和轴压达到预设值后,由温液压感知器14通过信号发射器13发送给集中控制器1,开始保持围压和轴压不变;
f、随后集中控制器1向给料机构发送信号,信号感知阀23和信号接收器16收到信号,此时骨料腔25、液腔26、油腔27和气腔28启动,开始供给物料,经综合分液器24注入混合腔29;
g、渗流泵21在接收到信号启动后,将混合腔29中的混合料经混料输送管22、温控仪19、监测分析仪18注入到铀矿腔体10内部,若需要施加温度,可对温控仪19预设温度,监测分析仪18对混合料进行分析;
h、若混合料成分不符合实验要求,监测分析仪18可向集中控制器发1送反馈信号,再由集中信号器1向给料机构发送信号重新调配,重复步骤f、g;
i、混合料先通过铀矿腔体10、随后经溶液传送管20连接的串联管路流入煤层腔体11和油气腔体12,煤层腔体11和油气腔体12也外设由监测分析仪18;
j、若某一级混合料成分不符合,则会有监测分析仪18上的信号发射器13发送信号给集中控制器1,随后集中控制器1向渗流泵21发送信号,从混合腔29补充混合料,重复步骤f、g;
k、混合料最终流入分析净化器31,由分析净化器31分析其各成分含量,净化环保;
l、实验结束,将铀矿岩体、煤层岩体、油气岩体取出,关闭各装置,并进行清理。

Claims (3)

  1. 一种共伴生资源协同开采智能实验装置,其特征在于,包括:
    信号传导机构,包括集中控制器、信号器、信号接收器、电源、电源线、信号发射器、信号感知阀;
    保压机构,包括围压油腔、轴压油腔、围压泵、轴压泵、围压分液箱、轴压分液箱、综合分压管、液压传输管;
    给料机构,包括监测分析仪、温控仪、溶液传送管、渗流泵、混料输送管、综合分液器、骨料腔、液腔、油腔、气腔、混合腔、分析净化器;
    反应机构,包括铀矿腔体、煤层腔体、油气腔体、核磁体、温液压感知器、剪切垫片;
    所述信号器置于集中控制器内,所述信号接收器置于所述轴压泵、围压泵、温控仪、渗流泵和综合分液器内部,所述信号发射器置于所述温液压感知器、核磁体和监测分析仪内部,所述信号感知阀置于所述围压油腔、轴压油腔、骨料腔、液腔、油腔、气腔和混合腔底部;
    所述围压油腔、轴压油腔分别与所述围压泵、轴压泵通过所述液压传输管直接连接,所述围压分液箱两端分别与围压泵、综合分压管连接,所述轴压分液箱两端分别与轴压泵、综合分压管连接;
    所述监测分析仪其一端与所述温控仪连接,所述渗流泵一端与温控仪连接,另一端通过所述混料输送管与所述混合腔连接,所述综合分液器前端通过所述混料输送管与混合腔连接,其后端通过混料输送管分别与所述骨料腔、液腔、油腔和气腔连接,所述分析净化器连接于油气腔体的出口端;
    所述铀矿腔体、煤层腔体与油气腔体三者之间通过所述溶液传送管串联连接,其一端与所述综合分压管直接连接,另一端与所述监测分析仪直接连接,并在其腔体外侧包裹有所述核磁体,腔体内部设置有所述剪切垫片,所述核磁体上安装有所述信号发射器,所述温液压感知器安装于铀矿腔体、煤层腔体和油气腔体的侧壁上,每个所述腔体的前、中、后三个位置各布置有一个温液压感知器,并外接有所述信号发射器。
  2. 根据权利要求1所述的共伴生资源协同开采智能实验装置,其特征在于:所述综合分压管为分压装置,其前侧与所述围压分液箱和轴压分液箱直接连接,其后侧直接与所述铀矿腔体、煤层腔体和油气腔体连接。
  3. 根据权利要求1所述的共伴生资源协同开采智能实验装置,其特征在于:所述监测分析仪的前端与所述铀矿腔体、煤层腔体和油气腔体连接,后端与所述温控仪直接连接。
PCT/CN2022/108574 2021-06-03 2022-07-28 一种共伴生资源协同开采智能实验装置 WO2022253360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110618111.9 2021-06-03
CN202110618111.9A CN113323663B (zh) 2021-06-03 2021-06-03 一种共伴生资源协同开采智能实验装置

Publications (1)

Publication Number Publication Date
WO2022253360A1 true WO2022253360A1 (zh) 2022-12-08

Family

ID=77419460

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/093832 WO2022252997A1 (zh) 2021-06-03 2022-05-19 一种共伴生资源协同开采智能实验装置
PCT/CN2022/108574 WO2022253360A1 (zh) 2021-06-03 2022-07-28 一种共伴生资源协同开采智能实验装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093832 WO2022252997A1 (zh) 2021-06-03 2022-05-19 一种共伴生资源协同开采智能实验装置

Country Status (3)

Country Link
US (1) US11953512B2 (zh)
CN (1) CN113323663B (zh)
WO (2) WO2022252997A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577481A (zh) * 2023-04-28 2023-08-11 安徽理工大学 一种采煤沉陷四水转化物理监测装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113323663B (zh) * 2021-06-03 2022-05-31 安徽理工大学 一种共伴生资源协同开采智能实验装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153857A (zh) * 2016-06-16 2016-11-23 中国矿业大学(北京) 一种多资源协调开采模拟实验台及应用方法
CN106321025A (zh) * 2016-10-28 2017-01-11 中国矿业大学(北京) 一种煤与油气绿色协调开采系统及应用方法
CN107462508A (zh) * 2017-08-16 2017-12-12 西南石油大学 一种多场耦合渗流多功能实验装置及测试方法
CN110043261A (zh) * 2019-05-21 2019-07-23 安徽理工大学 一种煤铀协调开采透视化物理模拟装置及应用方法
CN110738915A (zh) * 2019-10-30 2020-01-31 安徽理工大学 一种煤铀共采多场耦合实验台及应用方法
US20200263511A1 (en) * 2018-04-28 2020-08-20 China University Of Mining And Technology Simulation test method for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
CN113323663A (zh) * 2021-06-03 2021-08-31 安徽理工大学 一种共伴生资源协同开采智能实验装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912147A (zh) * 2012-11-15 2013-02-06 昆明冶金研究院 锌氧压浸出渣浮选硫磺后尾渣中回收铅锌、银、铁的工艺
CN103920705B (zh) * 2014-04-24 2015-06-24 华北电力大学 一种全方位联合技术修复铀污染土壤的装置和方法
CN106337685B (zh) * 2016-10-21 2019-04-05 中国矿业大学(北京) 一种煤炭与其伴生油页岩联合开采方法
CN110018057B (zh) * 2019-04-17 2022-11-11 山东科技大学 一种微震-剪切-渗流耦合测试装置及试验方法
CN110208490A (zh) * 2019-06-14 2019-09-06 太原理工大学 一种受载岩石样品氡气析出的测定装置及检测方法
CN110160885B (zh) * 2019-06-28 2022-06-10 辽宁工程技术大学 多场耦合作用下测量低渗透煤岩渗透率的实验装置及方法
CN110659782A (zh) * 2019-10-09 2020-01-07 深圳信息职业技术学院 一种提高能源利用率的能源互联网协同系统控制方法
CN211740920U (zh) * 2020-04-03 2020-10-23 四川大学 深部高应力高渗环境模拟实验系统
CN116348419A (zh) * 2020-07-13 2023-06-27 陶氏环球技术有限责任公司 尾矿处理方法
CN112727406A (zh) * 2021-01-20 2021-04-30 安徽理工大学 一种叠置资源精准开采原位物理模拟实验系统及应用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153857A (zh) * 2016-06-16 2016-11-23 中国矿业大学(北京) 一种多资源协调开采模拟实验台及应用方法
CN106321025A (zh) * 2016-10-28 2017-01-11 中国矿业大学(北京) 一种煤与油气绿色协调开采系统及应用方法
CN107462508A (zh) * 2017-08-16 2017-12-12 西南石油大学 一种多场耦合渗流多功能实验装置及测试方法
US20200263511A1 (en) * 2018-04-28 2020-08-20 China University Of Mining And Technology Simulation test method for gas extraction from tectonically-deformed coal seam in-situ by depressurizing horizontal well cavity
CN110043261A (zh) * 2019-05-21 2019-07-23 安徽理工大学 一种煤铀协调开采透视化物理模拟装置及应用方法
CN110738915A (zh) * 2019-10-30 2020-01-31 安徽理工大学 一种煤铀共采多场耦合实验台及应用方法
CN113323663A (zh) * 2021-06-03 2021-08-31 安徽理工大学 一种共伴生资源协同开采智能实验装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116577481A (zh) * 2023-04-28 2023-08-11 安徽理工大学 一种采煤沉陷四水转化物理监测装置
CN116577481B (zh) * 2023-04-28 2024-04-09 安徽理工大学 一种采煤沉陷四水转化物理监测装置

Also Published As

Publication number Publication date
CN113323663A (zh) 2021-08-31
WO2022252997A1 (zh) 2022-12-08
US11953512B2 (en) 2024-04-09
CN113323663B (zh) 2022-05-31
US20230393165A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
WO2022253360A1 (zh) 一种共伴生资源协同开采智能实验装置
CN103926394B (zh) 三维可视化动水注浆模型试验系统试验方法
CN103721619B (zh) 一种压裂液连续混配装置
CN102913273A (zh) 一种煤矿自主式动态封孔瓦斯抽采智能系统
CN201470161U (zh) 矿井水净化处理自动加药装置
CN101270650A (zh) 海上油田撬装式注聚系统
CN102423655A (zh) 一种压裂液大流量配液系统及配液方法
CN202398329U (zh) 一种压裂液大流量撬装式配液装置
CN104354224A (zh) 一种矿用无机发泡材料制备输送装置及其使用方法
CN102230394A (zh) 提高煤层瓦斯抽采浓度的二次封孔系统
CN102278926A (zh) 一种井下自动装药机
CN111360060B (zh) 土壤/地下水集成式注射系统及其单源、双源及混合微纳米气泡液注射方法
CN203685150U (zh) 一种用于微生物驱油的注剂及空气现场注入装置
CN206174941U (zh) 一种二氧化碳致裂器
CN204891787U (zh) 水力压裂用的压裂液大流量连续配液系统
CN201367915Y (zh) 一种利用文丘里引射器掺混煤矿瓦斯气的装置
CN102787832A (zh) 智能调剖注入系统
CN111704228B (zh) 一种地下水污染原位药剂配制与注入装置及方法
CN201620865U (zh) 可控制产气量油气分离缓冲罐
CN204373966U (zh) 一种采样器用流量控制模块
CN211058861U (zh) 一种煤矿采空区远距离浆料充填扰动系统
CN202613048U (zh) 天然气管路输气系统
CN101812989A (zh) 泡沫发生装置和泡沫发生方法
CN202767941U (zh) 随机配注液固气三相流水泥浆的固井水泥车
CN202466685U (zh) 一种管网流量自动控制的管网模拟系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815399

Country of ref document: EP

Kind code of ref document: A1