WO2022253172A1 - 补偿超快激光光路回转误差的方法及其装置和机床 - Google Patents

补偿超快激光光路回转误差的方法及其装置和机床 Download PDF

Info

Publication number
WO2022253172A1
WO2022253172A1 PCT/CN2022/095936 CN2022095936W WO2022253172A1 WO 2022253172 A1 WO2022253172 A1 WO 2022253172A1 CN 2022095936 W CN2022095936 W CN 2022095936W WO 2022253172 A1 WO2022253172 A1 WO 2022253172A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
turntable
laser light
reflector
real
Prior art date
Application number
PCT/CN2022/095936
Other languages
English (en)
French (fr)
Inventor
孙思叡
Original Assignee
上海名古屋精密工具股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海名古屋精密工具股份有限公司 filed Critical 上海名古屋精密工具股份有限公司
Priority to JP2023541493A priority Critical patent/JP2024502156A/ja
Publication of WO2022253172A1 publication Critical patent/WO2022253172A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves

Definitions

  • the invention relates to a method for adjusting the laser light path, in particular to a method for compensating the deviation of the laser light from a preset direction, as well as a device and a machine tool using the method.
  • Ultrafast lasers are high-precision instruments, and the generator is transmitted to the field mirror (or laser focusing mirror) through a hard optical path or an optical fiber connected to the laser head.
  • the hard optical path requires precise adjustment and usually cannot be moved frequently.
  • the optical fiber can only move gently in a small range of space and is easily damaged due to pulling and twisting. Therefore, it is difficult to meet multi-axis (such as: three-axis, four-axis, Five-axis and six-axis, etc.) precision machining requires efficiency and precision.
  • a swing head structure is applied to multi-axis machining, which is suitable for XA+YZB multi-axis laser machining.
  • This is feasible for ordinary pulsed lasers, but ultrafast lasers are limited by technical conditions, and their optical fibers do not have sufficient movable characteristics (the allowable bending radius is too large, and the maximum total length of the optical fiber is too short), so it cannot be installed on the swing head , which makes it difficult to integrate ultrafast lasers on a five-axis machining center for processing.
  • some light beams pass through the center of the turntable and are emitted by a mirror placed in the center of the turntable.
  • the light beam is adjusted to be coaxial with the rotary axis of the turntable, so no matter how the optical path on the turntable rotates with the turntable, the light beam always shoots to the same point on the central reflector of the turntable in the same direction In this way, the angle between the light beam emitted from the turntable and the rotation center axis of the turntable is always constant.
  • the adjustment is not correct, or the beam is no longer coaxial with the center of the turntable due to factors such as stress, vibration, elastic deformation, and temperature, the rotation of the turntable will cause the laser beam reflected by the mirror in the center of the turntable to rotate. Angle deflection and position offset occur, which will lead to the change of the spatial position of the final spot and lead to poor precision, which cannot meet the needs of precision machining.
  • An object of the present invention is to provide a method to eliminate the rotation error of the ultrafast laser optical path, so as to meet the requirement of precision machining.
  • Another object of the present invention is to provide a method to eliminate the problem that the distance and angle between the laser light path injected into the vibrating mirror and the rotary axis of the turntable cannot be maintained when the turntable is at different angles due to the rotation error of the ultrafast laser optical path. To meet the needs of precision machining.
  • Another object of the present invention is to provide a method to automatically adjust the optical path of the laser, so that the laser can remain coaxial with the rotary axis of the turntable, avoiding frequent readjustment of the optical path.
  • Another object of the present invention is to provide a method that can be applied to multi-axis processing equipment (such as: five-axis machine tools) to compensate the laser optical path and eliminate factors such as turntable rotation, stress, vibration, elastic deformation, temperature and rotation error.
  • multi-axis processing equipment such as: five-axis machine tools
  • the impact on laser pointing and spot position after focusing keeps the relative position between the laser light path of the incident galvanometer and the rotary axis of the turntable after compensation, which is conducive to the implementation of various specifications of parts/workpieces (such as: long-axis workpieces) Laser precision machining.
  • the fifth object of the present invention is to provide a device for machining with laser, which compensates the laser optical path, so that the relative position of the laser optical path of the incident galvanometer after compensation and the rotary axis of the turntable can be maintained, which is beneficial to the rotation of the turntable.
  • the implementation of machining in this way not only improves the machining accuracy, but also effectively controls the machining cost.
  • the commonly understood laser is the light radiated by atoms due to excitation.
  • the electrons in the atoms absorb energy and jump from a low energy level to a high energy level, and then fall back from a high energy level to a low energy level.
  • the released energy is released in the form of photons .
  • the form of laser can be divided into continuous laser and pulsed laser. According to the pulse width characteristics of the laser, it is divided into thermal laser and cold laser.
  • Laser emitters such as but not limited to nanosecond, femtosecond or picosecond lasers that generate laser light such as infrared, infrared, blue, green, violet or extreme violet.
  • Ultrafast laser refers to a pulsed laser with an output laser pulse width of less than tens of nanoseconds, that is, a picosecond level or less than a picosecond level.
  • the core components involved in ultrafast lasers include oscillators, stretchers, amplifiers, and compressors.
  • the so-called workpiece is usually the material or semi-finished product used to manufacture parts or components, and is the processing object in the machining process. That is, after machining the workpiece, a product that meets the processing or design requirements is obtained.
  • Precision machining refers to the processing technology with extremely high machining accuracy and surface quality. For example: in tool processing, the size, straightness, profile, surface roughness, radius of blade tip arc, and machining accuracy are all higher than the micron level.
  • Shaft workpieces ie having a length at least 3 times the diameter.
  • Machining equipment is a processing equipment with multiple axes of motion. That is, in the right-handed rectangular coordinate system, the X, Y and Z axes move along the straight line, and the A, B and C axes rotate around the X, Y and Z axes respectively.
  • Machining equipment such as: CNC machine tools
  • various control software which receives and sends various instructions in the form of codes to automatically process the workpiece.
  • the laser light emitted by the ultrafast laser is first injected into a section of the cavity, and then emitted from the cavity, and then enters the laser projection relay part.
  • the laser projection relay part changes the optical path of the laser and then emits the laser, and finally is received by the light output part. Used to process workpieces.
  • the laser propagates in the cavity, and propagates along a straight line at the exit end of the cavity.
  • the laser emitted from the light-emitting part is focused within the range of the rotary axis, that is, the focused spot of the laser beam falls in a cylindrical space with a radius of 100mm centered on the rotary axis. .
  • the intersection angle between the laser optical path and a rotary axis (such as the rotary axis of the turntable) is required to be kept at 0° ⁇ 5°, the best is 0° ⁇ 2°, such as: 0° (that is, parallel or coaxial), 1° and 2°. Due to factors such as stress, vibration, elastic deformation, temperature and rotation error, the laser optical path is no longer coaxial with the axis of the turntable when the turntable rotates, resulting in a rotation error.
  • the laser optical path of the incident galvanometer and the rotary axis of the turntable have a set distance and a set angle. Due to factors such as stress, vibration, elastic deformation, temperature and rotation error, the laser optical path of the incident galvanometer and the rotary axis of the turntable have a set distance. The actual distance and actual included angle deviate from the set distance and set included angle, which will affect the laser accuracy when the turntable rotates. Therefore, it is necessary to compensate the laser light path incident on the galvanometer. After compensation, the laser optical path of the incident galvanometer has a second distance and a second included angle with the rotary axis of the turntable.
  • the difference is less than or equal to 1 ⁇ m, and the second included angle is equal to the set distance. If the difference is less than or equal to 0.05mrad at a fixed angle, it is considered (after compensation) that the relative position of the laser light path incident on the galvanometer and the rotary axis of the turntable is maintained.
  • the laser projection relay part reflects the laser at least once to change the direction of the laser beam.
  • the light output component includes at least one of a field lens and a galvanometer, a focusing lens, a beam expander and a reflector, which can be obtained commercially or taken from an existing laser.
  • the axis of rotation is the A axis, the B axis or the C axis, so that the laser light emitted from the light emitting part is distributed around the direction of the (turntable) axis of rotation, so that the laser light path can be rotated and positioned to a specified angle for machining.
  • the turntable and the laser projection relay part, sensor and light emitting part arranged on the turntable move synchronously along the linear axis, so that the laser light distributed around the direction of the rotary axis moves synchronously along the linear axis according to the instruction and Carry out machining of workpieces.
  • the sensor is used to perceive the incident information of the laser, that is, when the laser touches the sensing element, the incident angle information of the laser and the position information of the laser on the sensing element.
  • the information of the two-dimensional coordinate system where the laser spot on the sensor element is located is used as the position information.
  • the laser beam has set position information on the sensor. Due to factors such as stress, vibration, elastic deformation, temperature and rotation error, the actual position of the laser beam on the sensor deviates from the set position.
  • the sensor perceives the incident laser light, it can obtain position information, know the actual position, and provide a basis for whether there is a deviation from the set position and whether to compensate.
  • the set position information should be understood as information that is set after debugging and can meet the requirements of precision machining.
  • the distance between the focused spot of the laser beam and the rotary axis of the turntable is always maintained, that is, the turntable rotates at any angle, and the distance deviation between the focused spot and the rotary axis of the turntable is ⁇ 1 ⁇ m.
  • the laser beam enters the galvanometer and the distance deviation between the focused spot and the rotary axis of the turntable is ⁇ 1 ⁇ m, it is considered that the rotary error of the laser optical path is eliminated.
  • the sensor when the turntable rotates, receives the laser information emitted from the turntable, senses the incident information of the laser, and transmits the real-time incident information to the controller, and the controller compares the real-time incident information with the set position information. Compare to get the offset value.
  • the reflective mechanism is driven to adjust the laser optical path in real time to compensate, so that the relative position of the laser optical path incident on the galvanometer and the rotary axis of the turntable after compensation can be maintained.
  • the laser emitted by the laser emitter propagates along a straight line from one end of the cavity to the other end, without deflection.
  • a lumen with a straight-through space can be used, such as but not limited to a straight tubular, conical, and frustum-shaped hole or cavity.
  • the sensor is usually installed at the end where the laser light emerges from the turntable, and rotates around the axis of rotation of the turntable together with the turntable to receive laser information, especially behind the reflector at the end where the laser emits from the turntable, to receive the laser information refracted by the reflector.
  • the reflective mechanism is used to receive the laser light emitted from the ultrafast laser and the instructions of the controller to adjust the reflector to compensate the optical path of the laser.
  • a method for compensating the rotation error of the ultra-fast laser optical path When the turntable rotates, a sensor is installed at the end where the laser light exits from the turntable to receive the laser information and transmit the real-time incident information to the controller.
  • the controller compares the real-time incident information with the setting Comparing the position information to get the offset value, when the offset value exceeds the set threshold, the reflection mechanism is driven;
  • the reflection mechanism receives the laser light emitted from the ultrafast laser, and compensates the laser light path after receiving instructions from the controller, so that the relative position between the laser light path incident on the galvanometer and the rotary axis of the turntable can be maintained after compensation.
  • Another method for compensating the rotation error of the ultra-fast laser optical path When the turntable rotates, a sensor is installed at the end where the laser light exits from the turntable to receive the laser information and transmit the real-time incident information to the controller. The controller compares the real-time incident information with the set Compared with the fixed position information, the offset value is obtained. When the offset value exceeds the set threshold, the reflection mechanism is driven;
  • the reflection mechanism receives the laser light emitted from the turntable, and after obtaining the instructions from the controller, adjusts the angle of the reflector to compensate for the laser light path (deviation that occurs) caused by the turntable rotation.
  • the method of the present invention is applied to processing equipment with multiple axes of motion (such as: three-axis machine tools, four-axis machine tools and five-axis machine tools, etc.), eliminating factors such as turntable rotation, stress, vibration, elastic deformation, temperature and rotation errors, etc.
  • multiple axes of motion such as: three-axis machine tools, four-axis machine tools and five-axis machine tools, etc.
  • factors such as turntable rotation, stress, vibration, elastic deformation, temperature and rotation errors, etc.
  • the present invention also provides a device, comprising:
  • a hollow turntable comprising a cavity for accommodating the propagation of laser light
  • Ultrafast laser the laser emitted by it passes through the cavity through the hollow turntable
  • the laser projection relay part is set on the turntable and rotates around the rotation axis of the turntable together with the turntable, receives the laser from the exit end of the cavity, changes the direction of the laser light path, and then emits the laser;
  • the light output part is arranged on the turntable and rotates around the rotary axis of the turntable together with the turntable, receives the laser emitted by the laser projection relay part, and focuses on the range of the rotary axis;
  • the sensor is installed on the turntable and rotates around the axis of rotation of the turntable together with the turntable, which receives the laser from the exit end of the cavity and obtains the real-time incident information of the laser;
  • a controller which receives the real-time incident information sent by the sensor, and compares it with the preset position information to obtain the position offset value
  • Reflecting mechanism which receives the laser light emitted from the ultrafast laser, and compensates the reflected laser light path after obtaining the instruction of the controller, and keeps the distance from the focused spot to the rotary axis of the turntable at all times, that is, at any angle of the turntable The deviation of this distance is ⁇ 1 ⁇ m.
  • the reflecting mechanism includes at least one reflecting mirror.
  • two mirrors are required.
  • each reflector is configured on a separate frame, so that each reflector has at least 2 adjustable degrees of freedom, that is, at least 2 reflectors provide more than 4 degrees of freedom to implement the laser compensation scheme .
  • a specific embodiment of a reflection mechanism including a first reflector and a second reflector, the first reflector reflects the laser to the second reflector after receiving the laser, and the second reflector directs the laser toward the cavity after receiving the laser reflection.
  • the reflection mechanism includes a first reflector and a second reflector, the first reflector reflects the laser light to the second reflector after receiving the laser light emitted from the cavity, and the second reflector reflects the laser light to the second reflector after receiving the laser light , using the reflected laser as the incident laser of the galvanometer.
  • Another embodiment of the reflection mechanism includes a first reflector and a second reflector, the angle of incidence (Angle Of Incidence, AOI) of the first reflector is 22.5°, and the AOI of the second reflector is 22.5°.
  • AOI Angle Of Incidence
  • several reflectors can also be arranged therebetween to adjust the optical path of the laser light reflected by the second reflector.
  • the laser projection relay part includes at least one reflecting mirror, which is a double-sided polished mirror. It can be used to receive the laser light reflected from the second reflector, or directly receive the laser light from the exit end of the cavity, after changing the direction of the laser light path, it can be used as the incident laser light of the vibrating mirror.
  • a sensor is installed behind the reflector, and the reflector is used to refract (transmit) the light beam to observe and detect the laser spot, and obtain real-time incident information of the laser.
  • a specific embodiment of a laser projection relay component including a third reflector and a fourth reflector, which are double-sided polished mirrors, and the third reflector is reflected to the fourth reflector after being subjected to laser light, and the fourth reflector is subjected to laser light. After that, reflect the laser light towards the galvanometer.
  • the laser projection relay component includes a third reflector, the third reflector has an AOI of 45° and is a double-sided polished mirror. After receiving the laser light, the third reflecting mirror reflects the laser light towards the vibrating mirror.
  • the turntable such as but not limited to the inner rotor turntable, the outer rotor turntable, the mechanical transmission turntable and the direct drive turntable etc.
  • the cavity installed in the turntable has a self-contained outer wall, or the inner wall of the hollow structure in the rotor is used as the outer wall of the cavity, then the cavity is the hollow structure in the turntable at this time, thereby reducing the space occupied by the device.
  • the laser projection relay part, the light output part and the hollow turntable rotate synchronously.
  • the light emitting part is connected with the laser projection relay part, driven by the hollow turntable, and rotates around the rotary axis.
  • Various devices provided by the present invention are installed on the machining equipment, such as: three linear motion axes, one rotary motion axis for fixing the workpiece and one laser beam rotary axis are combined to form a five-axis laser machining scheme in space. It can realize the machining of the workpiece in a multi-axis manner, and manufacture products with complex and diverse structures.
  • the machine tool has at least three linear axes, wherein the device of the present invention is installed on one of the linear axes (for example: arranged on the plane determined by the X axis and the Z axis, and moves linearly along the Z axis), and the rotation is installed on the other linear axis
  • the positioning mechanism drives the positioning of the workpiece to be processed (for example: setting the workpiece on the plane determined by the X-axis and Y-axis), eliminates factors such as stress, vibration, elastic deformation, temperature rise and rotation error, and adjusts the laser pointing and spot after focusing
  • the influence of the position so that when the turntable is at any angle, the space distance between the focused laser spot and the center of the rotary axis on the turntable surface remains unchanged, which improves the precision of laser processing and facilitates laser processing of various specifications of parts.
  • the turntable of the device of the present invention is installed on a linear axis, and the device moves along a straight line, so that the focused spot of the laser emitted by the light-emitting part moves linearly, and when the light-emitting part rotates around the axis of rotation, the laser spot Distributed on the rotary surface, it is suitable for processing various workpieces.
  • the method provided by the invention senses the laser spot position and pointing information in real time through the sensor, and adjusts the reflection mechanism through the controller to compensate the offset caused by the laser optical path, and eliminate the rotation, stress, vibration, elastic deformation, temperature rise and rotation of the turntable Factors such as errors affect the laser pointing and spot position after focusing, so that at any angle of the turntable, the spatial distance between the focused laser spot and the center of the rotary axis on the turntable remains unchanged, which improves the laser processing accuracy.
  • the method provided by the invention makes the flying optical path system including mirror surface rotation practical, expands the application integration range of ultrafast lasers, and at the same time greatly reduces the adjustment requirements for maintaining the relative position of the laser optical path and the rotary axis of the turntable.
  • the laser head of the ultrafast laser is installed vertically and directed downward, which facilitates the integration of the ultrafast laser on machining equipment and implements precise laser processing.
  • the photosensitive surface of the sensor faces the incoming direction of the laser beam, and is arranged behind the third reflector or the fourth reflector, and the transmitted light refracted by the reflector is used to observe and detect the laser spot instead of facing the light path.
  • a beam splitter dividing a beam of light into two strong and weak beams, the strong one is used for processing, and the weak one is used for observation
  • system redundancy and complexity which is conducive to the integration of ultrafast lasers on machining equipment and implementation Laser precision machining.
  • FIG. 1 is a schematic diagram of an embodiment of an existing device for laser machining
  • Fig. 2 is the schematic diagram of an embodiment of the laser optical path of an existing device for laser machining
  • Fig. 3 is the schematic diagram of another embodiment of the laser optical path of the existing device for laser machining
  • Fig. 4 is the schematic diagram of an embodiment of the device for implementing the method of the present invention.
  • Fig. 5 is the schematic diagram of another embodiment of the device for implementing the method of the present invention.
  • Fig. 6 is a schematic diagram of another embodiment of the apparatus for implementing the method of the present invention.
  • the laser light emitted by the laser transmitter is first injected into a section of cavity, and then emitted from the cavity, and then enters the laser projection relay part, which changes the propagation path of the laser After that, the laser is emitted, and finally it is received by the light-emitting component and emitted for processing the workpiece.
  • the laser beam propagates in the cavity, either along a straight line or along a folded line. The laser propagates along a straight line at the exit end of the cavity.
  • the rotation axis is the A-axis, B-axis or C-axis, so that the laser emitted by the light-emitting part is distributed around the rotation axis, and the laser is focused on the range of the rotation axis.
  • the cavity is arranged on the Y axis
  • the rotation axis is the B axis
  • the light emitting component rotates around the B axis.
  • FIG. 1 is a schematic diagram of an embodiment of a conventional laser machining device. As shown in FIG. 1 , the device includes a laser emitter 100 , a cavity 200 , a laser projection relay component 700 , a light output component 300 and a turntable 400 .
  • the laser emitter 100 is disposed at one end of the cavity 200 , and the laser 110 emitted from the laser emitter 100 enters the cavity 200 .
  • the cavity 200 is in the shape of a straight tube, and the laser 110 emitted from the laser emitter 100 propagates along a straight line after being incident on the cavity 200 without deflection, and is coaxial or parallel to the rotation axis of the turntable 400, and reaches the other end shoot.
  • the laser projection relay part 700 the laser light emitted from the cavity 200 is redirected and received by the light emitting part 300, and the emitted laser light 320 is focused within the range of the rotary axis 410 for processing the workpiece.
  • the laser projection relay part 700 includes a first reflection mechanism 710 and a second reflection mechanism 720.
  • the first reflection mechanism 710 receives the laser light that enters the laser projection relay part, and directs the laser light toward the second reflection mechanism 720. direction reflection, the second reflection mechanism 720 receives the laser light 730 reflected from the first reflection mechanism 710, reflects the laser light 730 again, and emits the laser light out of the projection relay component.
  • the laser projection relay part 700 is driven by the turntable 400, rotates around the rotary shaft 410, and receives the laser from the exit end of the cavity, changes the direction of the optical path of the laser, and then emits the laser.
  • the light emitting component 300 rotates 410 around the rotation axis, and emits a laser beam 310 for machining.
  • the turntable 400 turns around the Y axis, and the axis around which it turns is the B axis (not shown).
  • the lumen 200 has an axis (colinear with the laser 110 in the figure, not shown), which is coaxial with the B-axis.
  • the light emitting component 300 rotates around the B-axis, so that the emitted laser light is distributed around the B-axis direction, so that the laser can be machined in a rotating manner.
  • the cavity 200 is set in the turntable 400, that is, a section of the turntable 400 is located in a straight tube-shaped hollow cavity, and the axis of the cavity is coaxial with the B-axis and also coaxial with the rotational symmetry axis of the turntable.
  • the cavity 200 disposed therein does not shift, so that the laser light 110 passing through the cavity 200 always propagates along a straight line without deflection, and is always received by the light output component 300 .
  • the light-emitting component 300 continues to rotate around the B-axis, the distribution of laser light around the B-axis rotation direction is formed. There is no need to pull the optical fiber, which shortens the distance between the laser focus and the B-axis rotation axis, improves the accuracy of positioning errors, and realizes High-precision machining of workpieces.
  • FIG. 2 is the schematic diagram of an embodiment of the laser optical path of the existing device for laser machining, schematically showing that as the turntable rotates, the relay component and the light output component are at the position of the same rotation angle, and the laser light emitted by the light output component 300 is generated.
  • Fig. 3 is the schematic view of another embodiment of the laser optical path of the existing device for laser machining, which schematically shows that when the relay component and the light output component rotate at an angle of 180°, the laser optical path 110 of the incident cavity and the rotary axis of the turntable The intersection angle of 410 is still maintained at 0°-5°, and the laser light emitted by the light output component 300 cannot land on the same position.
  • this embodiment provides a method for compensating the rotation error of the ultrafast laser optical path, that is, when the turntable rotates, the sensor rotates around the axis of rotation of the turntable together with the turntable, and a sensor is installed at the end where the laser beam exits from the turntable to receive laser information and send
  • the real-time incident information is sent to the controller, and the controller compares the real-time incident information with the set position information to obtain an offset value, and drives the reflection mechanism when the offset value exceeds the set threshold.
  • the reflection mechanism receives the laser light emitted from the ultrafast laser, and compensates the laser light path after receiving the instruction from the controller, so that the relative position of the laser light path incident on the galvanometer and the rotary axis of the turntable can be maintained after compensation.
  • Fig. 4 is a schematic diagram of an embodiment of a device for implementing the method of the present invention.
  • the inner wall of the hollow structure in the rotor is used as the outer wall of the cavity
  • the cavity 200 is the cavity of the hollow structure in the turntable.
  • the ultrafast laser 120 is placed on the bracket 600 , the emitted laser light 121 is reflected by the reflection mechanism 800 and redirected, and then injected into the cavity 200 .
  • the laser 121 propagates along a straight line.
  • the laser light is redirected by the laser projection relay component 700 and then received by the vibrating mirror 320 of the light output component.
  • the light emitting component rotates around the rotary axis and focuses on the range of the rotary axis.
  • the laser projection relay part includes at least one reflector-type double-sided polished lens.
  • the laser projection relay component is provided with a third reflector 721 and a fourth reflector 731 .
  • the third reflecting mirror 721 reflects the laser light to the fourth reflecting mirror 731
  • the fourth reflecting mirror 731 reflects the laser light toward the vibrating mirror.
  • the AOIs of the third mirror and the fourth mirror are both 22.5°.
  • the sensor 900 is located behind the third reflector 721, and uses the light passing through the reflector to detect the laser spot from the exit end of the cavity to obtain real-time position information of the laser.
  • the controller (not shown) receives the real-time position information sent by the sensor 900, and compares it with the preset position information to obtain a position offset value. When the position deviation value exceeds the threshold value, it indicates that the relative position between the laser light path and the rotary axis of the turntable cannot be maintained, and an instruction is sent to the reflection mechanism.
  • two sensing elements are used to obtain the incident angle information of the laser light and the position information of the laser light on the sensing element respectively, so as to obtain more incident information of the laser light.
  • the reflection mechanism 800 adjusts the received laser light from the ultrafast laser, and adjusts the optical path of the emitted laser light, so that the relative position between the incident laser light path 740 of the galvanometer and the rotary axis of the turntable can be maintained and compensated in real time. Changes in the laser light path.
  • the reflection mechanism 800 includes a first reflection mirror 810 and a second reflection mirror 820, and each reflection mirror is configured on a separate frame, so that each reflection mirror has at least two adjustable degrees of freedom, That is, more than 4 degrees of freedom are provided through at least 2 mirrors to implement the laser compensation scheme.
  • the first reflector 810 receives the laser light, it reflects the laser light to the second reflector 820, and after the second reflector receives the laser light, it reflects the laser light toward the cavity, so that the laser light path 740 incident on the galvanometer and the rotation axis of the turntable The relative position is maintained.
  • the AOI of the first mirror 810 and the second mirror 820 are both 22.5°.
  • Fig. 5 is a schematic diagram of an embodiment of a device for implementing the method of the present invention.
  • the sensor 900 is located behind the third reflector 721, receives the laser information, and transmits the real-time position information to the controller, and the controller compares the real-time position information with the preset position information to obtain the position offset value , when the offset value exceeds the set threshold, the first mirror 810 and the second mirror 820 are driven.
  • the first reflector 810 and the second reflector 820 are arranged at the exit of the cavity, and after obtaining the instructions of the controller, adjust the received laser light emitted from the cavity from the ultrafast laser, and adjust the optical path of the emitted laser,
  • the received laser light path is compensated so that the relative position of the incident laser light path 740 of the galvanometer and the rotary axis of the turntable is maintained, and the change of the laser light path is compensated in real time.
  • Fig. 6 is a schematic diagram of an embodiment of a device for implementing the method of the present invention.
  • the sensor 900 is located behind the third mirror 721, receives the laser information, and transmits the real-time position information to the controller, and the controller compares the real-time position information with the preset position information to obtain the position offset value , when the offset value exceeds the set threshold, the first mirror 810 and the second mirror 820 are driven.
  • the second reflector 820 receives the laser light emitted from the cavity and reflected by the third reflector 721, adjusts the optical path of the laser light from the ultrafast laser, and compensates the received laser light path, so that the laser light path of the incident galvanometer and the return of the turntable The relative position of the rotating shaft is maintained, and the change of the laser light path is compensated in real time.
  • machining equipment for example: a spatial five-axis laser machining solution is formed by combining three linear motion axes, one rotary motion axis for fixing the workpiece and one laser beam rotary axis,
  • the workpiece can be machined in a multi-axis manner, and products with complex and diverse structures can be manufactured.
  • the machine tool has at least three linear axes, wherein the device of the present invention is installed on one of the linear axes (for example: arranged on the plane determined by the X axis and the Z axis, and moves linearly along the Z axis), and the rotation is installed on the other linear axis Positioning mechanism, which drives the positioning of the workpiece to be processed (for example: setting the workpiece on the plane determined by the X-axis and Y-axis), and eliminates factors such as stress, vibration, elastic deformation or temperature that cause the relative position of the beam and the rotary axis of the turntable to be unable to maintain In this case, improving the precision of laser processing is conducive to the implementation of laser processing on various specifications of parts.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

一种补偿超快激光光路回转误差的方法,传感器(900)接收从转台(400)中出射的激光,并感知激光光束的实时入射信息,并将实时入射信息传送至控制器,控制器将此实时入射信息与设定位置信息进行比较,得到偏移值,当偏移值超出设定阈值时,则驱动反射机构(800),实时调整激光光路进行补偿,使补偿后入射振镜的激光光路与转台回转轴心线的相对位置得以保持。还包括应用补偿超快激光光路回转误差方法的装置和加工设备,能够消除转台转动、应力、振动、弹性形变或温度等因素导致光束与转台回转轴相对位置无法保持的情形,提高了激光加工精度。

Description

补偿超快激光光路回转误差的方法及其装置和机床 技术领域
本发明涉及一种调整激光光路的方法,尤其涉及一种对激光偏离预设方向进行补偿的方法,以及采用此方法的装置和机床。
背景技术
超快激光器是高精密仪器,发生器通过硬光路或连接激光头的光纤传输至场镜(或激光聚焦镜)。硬光路需要精密调节且通常不可频繁移动,光纤也只能在较小范围的空间内轻缓运动,并容易因牵拉扭折受损,因而难以满足多轴(如:三轴、四轴、五轴和六轴等)精密加工对效率和精度的需求。
为了提高超快激光的机加工效率,一种摇摆头结构被应用到多轴机加工中,适用于XA+YZB的多轴激光加工。这对于通常脉冲激光器是可行的,但超快激光器受技术条件制约,其光纤不具有足够的可运动特性(其可允许弯折半径过大,光纤最大总长过短),无法安装于摆头上,这使得在五轴加工中心上集成超快激光器进行加工难以实现,为了解决这一问题,提出了一些光束穿过转台中心后借由置于转台中心反射镜射出的飞行光路方案(如:CN202020298469.9和CN202020298514.0),在该系列方案中光束经过调整后与转台转轴同轴,因此无论转台上的光路部分如何随转台旋转,光束始终都以相同方向射向转台中心反射镜上同一点并借此实现从转台上射出的光束于转台回转中心轴线的夹角始终不变。但当未能正确调整,或由于应力、振动、弹性形变和温度等因素导致光束不再与转台中心保持同轴时,转台的旋转会导致激光经转台中心反射镜反射出的光束随着旋转发生发生角度偏转和位置偏移,进而导致最终光斑空间位置的变化并导致精度不良,无法满足精密加工的需求。
现实生产中,前述应力、振动和弹性形变等因素无法避免,因而现有方案虽然解决了超快激光器应用于五轴加工中心上,但是仍不可避免地需要经常性地重调光路,花费大量的时间,不利于成本控制。
发明内容
本发明的一个目的在于提供一种方法,以消除超快激光光路回转误差,以满足精密加工的需要。
本发明的另一个目的在于提供一种方法,以消除超快激光光路回转误差导致转台在不同角度下时,射入振镜的激光光路与转台回转轴心线的距离和角度无法保持的问题,以满足精密加工的需要。
本发明的再一个目的在于提供一种方法,自动调节激光的光路,使得激光能与转 台回转轴保持同轴,避免经常性地光路重调。
本发明的又一个目的在于提供一种方法,应用于多轴加工设备(如:五轴机床)上,对激光光路进行补偿,消除转台转动、应力、振动、弹性形变、温度及回转误差等因素对聚焦后激光指向和光斑位置的影响,使补偿后的入射振镜的激光光路与转台回转轴心线的相对位置得以保持,利于对各种规格零件/工件(如:长轴类工件)实施激光精密加工。
本发明的第五目的在于提供一种以激光实施机加工的装置,对激光光路进行补偿,使补偿后的入射振镜的激光光路与转台回转轴心线的相对位置得以保持,利于以转台回转方式实施机加工,既提高加工精度,有效控制加工成本。
通常理解的激光,系原子因受激而辐射的光,原子中的电子吸收能量后从低能级跃迁到高能级,再从高能级回落到低能级的时候,所释放的能量以光子的形式放出。激光的形态可分为连续激光和脉冲激光。依据激光的脉冲宽度特性分为热激光和冷激光。
激光发射器如:但不限于纳秒、飞秒或皮秒激光器,产生的激光如:红外、红外、蓝光、绿光、紫光或极紫光。
超快激光是指输出激光的脉冲宽度数十纳秒以下,即皮秒级别或小于皮秒级别的脉冲激光。超快激光器涉及的核心部件包括振荡器、展宽器、放大器和压缩器等。
在机加工中,所称的工件通常是用于制造零件或部件的材料或半成品,是机械加工过程中的加工对象。即对工件实施机加工后,得到符合加工或设计要求的产品。
精密加工,指加工精度和表面质量达到极高程度的加工技术。比如:刀具加工中,尺寸、直线度、轮廓度、表面粗糙度、刃尖圆弧半径、加工精度均高于达到微米级。
轴类工件,即具有长度是直径至少3倍。
机加工设备(或机加工中心),系具有多个运动轴的加工设备。即在右手直角坐标系中,沿直线方向移动的X、Y和Z轴,以及分别绕X、Y和Z轴的回转的A轴、B轴和C轴。
机加工设备,如:数控机床,通常加载了各项控制软件,以代码形式接收和发出各项指令对工件实施自动化加工。
超快激光器射出的激光先射入一段腔道,再自腔道射出后,再进入激光投射中继部件,激光投射中继部件改变激光的光路后再射出激光,最后由出光部件接收后射出,用于对工件实施加工。激光在腔道内传播,在腔道的出口端沿着直线传播,自出光部件射出的激光聚焦于该回转轴范围内,即激光束聚焦光斑落在以回转轴为中心半径100mm的圆柱形空间内。
为了满足精密加工的要求,激光光路与一条回转轴(如:转台的回转轴)的交角要求保持在0°~5°,最佳的为0°~2°,如:0°(即平行或共轴)、1°和2°。由于应力、振动、弹性形变、温度及回转误差等因素,转台转动时激光光路与转台轴线不再同轴,由此产生回转误差。
入射振镜的激光光路与转台回转轴心线具有设定距离和设定夹角,由于应力、振动、弹性形变、温度及回转误差等因素致使入射振镜的激光光路与转台回转轴心线的实际距离和实际夹角偏离设定距离和设定夹角,当转台回转时将影响激光精度。因此,需要对入射振镜的激光光路进行补偿。经补偿后入射振镜的激光光路与转台回转轴心线具有第二距离和第二夹角,当第二距离和设定距离相比,差值相比≤1μm,以及第二夹角和设定夹角相比,差值≤0.05mrad,则认为(补偿后)入射振镜的激光光路与转台回转轴心线的相对位置得以保持。
激光投射中继部件至少对激光进行1次反射以改变激光光束方向。
出光部件至少包括场镜及振镜、聚焦镜、扩束镜和反射镜之一,其可通过市售获得,或者取自现有激光器中。
本发明的方法实施时,回转轴为A轴、B轴或C轴,使出光部件射出的激光绕(转台)回转轴方向分布,实现激光光路以回转运动及定位至指定角度实施机加工。
本发明的方法实施时,转台及设置于转台上的激光投射中继部件、传感器和出光部件沿直线轴同步移动,以使绕所述的回转轴方向分布的激光根据指令沿直线轴同步移动并实施工件的机加工。
传感器用于感知激光的入射信息,即包括激光碰触传感元件时,激光的入射角信息,以及激光在传感元件上的位置信息。通常,以传感元件上的激光光斑所处二维坐标系的信息作为位置信息。激光光束在传感器上具有设定位置信息,由于应力、振动、弹性形变、温度及回转误差等因素致使激光光速在传感器上的实际位置与设定位置相比发生偏差。当传感器感知入射的激光后,就能取得位置信息,知悉实际位置,并为与设定位置是否发生偏差,以及补偿与否提供依据。在传感器中,通常至少具有一个传感元件,但为了获得更多的激光入射信息,则采用两个或更多的传感元件是更优的选择。
设定位置信息应当理解为是经调试而设定的,能够满足精密加工要求的信息。比如:激光光束的聚焦光斑与转台回转轴线的距离始终得以保持,即转台转动任意角度,聚焦光斑至转台回转轴线的距离偏差≤1μm。当(补偿后)激光光束入射振镜而取得聚焦光斑至转台回转轴线的距离偏差≤1μm时,则认为激光光路的回转误差被消除。
本发明的方法,在转台转动时,传感器接收从转台中出射的激光信息,并感知激光的入射信息,并将实时入射信息传送至控制器,控制器将此实时入射信息与设定位置信息进行比较,得到偏移值,当偏移值超出设定阈值时,则驱动反射机构,实时调整激光光路进行补偿,使补偿后入射振镜的激光光路与转台回转轴心线的相对位置得以保持。
为了实施本发明的方法,优先选择激光发射器射出的激光从腔道一端入射至另一端出射均沿直线方向传播,不发生偏转。可采用具有直通空间的腔道,如:但不限于直管状、圆锥状和圆台状孔体或腔体等。
传感器通常设置于激光从转台中出射的一端,随转台一同绕转台回转轴线转动, 接收激光信息,尤其是设置于激光从转台中出射的一端的反射镜之后,接收由反射镜折射的激光信息。
反射机构用于接收来自超快激光器射出的激光,以及控制器的指令,调整反射镜对激光光路进行补偿。
一种补偿超快激光光路回转误差的方法,在转台转动时,激光从转台出射的一端设置传感器,接收激光信息,并将实时入射信息传送至控制器,控制器将此实时入射信息与设定位置信息进行比较,得到偏移值,当偏移值超出设定阈值时,则驱动反射机构;
反射机构接收来自超快激光器射出的激光,并在获得控制器的指令后,对激光光路进行补偿,使补偿后入射振镜的激光光路与转台回转轴心线的相对位置得以保持。
另一种补偿超快激光光路回转误差的方法,在转台转动时,激光从转台出射的一端设置传感器,接收激光信息,并将实时入射信息传送至控制器,控制器将此实时入射信息与设定位置信息进行比较,得到偏移值,当偏移值超出设定阈值时,则驱动反射机构;
反射机构接收来自从转台出射的激光,并在获得控制器的指令后,调整反射镜角度对转台回转造成的激光光路(出现的偏差)进行补偿。
本发明的方法应用于具有多个运动轴的加工设备(如:三轴机床、四轴机床和五轴机床等),消除转台转动、应力、振动、弹性形变、温度及回转误差等因素对聚焦后激光指向和光斑位置的影响,以使在转台转动任意角度时,聚焦后的激光光斑距离转台面上回转轴中心处的空间距离得以保持。
为实施上述方法,利于将本发明的方法应用于机加工设备,本发明还提供一种装置,包括:
中空转台,其包括腔道,其腔道用于容纳激光的传播;
超快激光器,其射出的激光经腔道通过中空转台;
激光投射中继部件,设置于转台上并随转台一同绕转台回转轴线转动,接收来自腔道出射端的激光,使激光的光路方向发生改变后,再射出激光;
出光部件,设置于转台上并随转台一同绕转台回转轴线转动,接收由激光投射中继部件射出的激光,并聚焦于回转轴范围内;
传感器,设置于转台上并随转台一同绕转台回转轴线转动,其接收来自腔道出射端的激光,获得激光的实时入射信息;
控制器,其接收传感器发出的实时入射信息,并与预设位置信息进行比较,得到位置偏移值;
反射机构,其接收来自超快激光器射出的激光,并在获得控制器的指令后,对反射后的激光光路进行补偿,并使聚焦光斑至转台回转轴线的距离始终得以保持,即转台任意角度下该距离的偏差≤1μm。
本发明的装置,反射机构至少包括1件反射镜。但为了取得更优的激光光路补偿方案,则需要2件反射镜。进一步,各个反射镜被配置于单独的镜架上,以使各件反射镜均至少具有2个可调节的自由度,即通过至少2件反射镜提供4个以上自由度,以实施激光补偿方案。
一种反射机构的具体实施方式,包括第一反射镜和第二反射镜,第一反射镜受到激光后,将激光反射至第二反射镜,第二反射镜受到激光后,将激光朝向腔道反射。
另一种反射机构的具体实施方式,包括第一反射镜和第二反射镜,第一反射镜受到从腔道出射的激光后,将激光反射至第二反射镜,第二反射镜受到激光后,将反射的激光作为振镜的入射激光。
另一种反射机构的具体实施方式,包括第一反射镜和第二反射镜,第一反射镜的入射角(Angle Of Incidence,AOI)为22.5°,第二反射镜的AOI为22.5°。
为了便于反射的激光作为振镜的入射激光,其间还可设置若干反射镜,调整经第二反射镜反射的激光光路。
本发明的装置,激光投射中继部件至少包括1件反射镜,系双面抛光镜片。其可用于接受从第二反射镜反射的激光,或者直接接受来自腔道出射端的激光,使激光的光路方向发生改变后,作为振镜的入射激光。
在反射镜之后设置传感器,利用反射镜折射(透过)光束来观察检测激光光斑,获取激光的实时入射信息。
一种激光投射中继部件的具体实施方式,包括第三反射镜和第四反射镜,系双面抛光镜片,第三反射镜受到激光后,反射至第四反射镜,第四反射镜受到激光后,将激光朝向振镜反射。
另一种激光投射中继部件的具体实施方式,包括第三反射镜,第三反射镜的AOI为45°,系双面抛光镜片。第三反射镜受到激光后,将激光朝向振镜反射。
本发明提供的装置,转台如:但不限于内转子转台、外转子转台、机械传动转台和直驱转台等,其内中空,以设置腔道。设置于转台内的腔道,其具有自成外壁,或者利用转子内中空构造的内壁作为腔道的外壁,则此时腔道即为转台内的中空构造,以此减少装置所占的空间。
本发明提供的装置,激光投射中继部件、出光部件与中空转台同步转动。具体的,出光部件与激光投射中继部件相连,受中空转台驱动,绕回转轴转动。
本发明提供的各种装置安装于机加工设备上,比如:以三个直线运动轴、一个用于固定工件的回转运动轴和一个激光束回转轴相组合形成空间五轴激光机加工方案,就能实现以多轴方式对工件进行机加工,制造复杂和多样构造的产品。比如:机床具有至少三个直线轴,其中一个直线轴上安装本发明的装置(比如:设置在X轴和Z轴确定的平面上,并沿Z轴直线移动),另一个直线轴上安装转动定位机构,驱动被加工工件回转的定位(比如:将工件设置于X轴和Y轴确定的平面上),消除应力、振动、弹性形变、温升及回转误差等因素对聚焦后激光指向和光斑位置的影响,以使在转台 任意角度时,聚焦后的激光光斑距离转台面上回转轴中心处的空间距离不变,提高激光加工的精密度,利于对各种规格零件实施激光加工。
另一种机加工设备,将本发明装置的转台安装于直线轴上,装置沿直线移动,则使得出光部件射出的激光的聚焦光斑呈线性移动,当出光部件绕回转轴转动,则使得激光光斑分布于回转面上,适应各种工件加工。
本发明技术方案实现的有益效果:
本发明提供的方法,通过传感器实时感知激光光斑位置及指向信息,并经控制器对反射机构进行调节,补偿激光光路产生的偏移,消除转台转动、应力、振动、弹性形变、温升及回转误差等因素对聚焦后激光指向和光斑位置的影响,以使在转台任意角度时,聚焦后的激光光斑距离转台面上回转轴中心处的空间距离不变,提高了激光加工精度。
本发明提供的方法,使包含镜面旋转的飞行光路系统实用化,扩展了超快激光器的应用集成范围,同时大大降低了保持激光光路与转台回转轴线相对位置的调节要求。
本发明提供的方法,将超快激光器的激光头竖直安装,并朝向下方,利于超快激光器集成于机加工设备上,实施激光的精密加工。
本发明提供的装置,将传感器感光面朝向激光光束的来射方向,并设置于第三反射镜或第四反射镜后方,利用反射镜折射的透过光来观察检测激光光斑,而不是向光路添加分束镜(将一束光分成强弱两束,强的用于加工,弱的用于观测),从而减少了系统冗余和复杂性,利于超快激光器集成于机加工设备上,实施激光的精密加工。
附图说明
图1为现有用于激光实施机加工的装置一实施例的示意图;
图2为现有用于激光实施机加工的装置激光光路一实施例的示意图;
图3为现有用于激光实施机加工的装置激光光路另一实施例的示意图;
图4为用于实施本发明方法的装置一实施例的示意图;
图5为用于实施本发明方法的装置另一实施例的示意图;
图6为用于实施本发明方法的装置另一实施例的示意图。
具体实施方式
以下结合附图详细描述本发明的技术方案。本发明实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
本实施例提供的激光实施机加工的方法,激光发射器射出的激光先射入一段腔道,再自腔道射出后,再进入激光投射中继部件,激光投射中继部件改变激光的传播 路径后再射出激光,最后由出光部件接收后射出,用于对工件实施加工。激光在腔道内传播,或沿直线传播,或沿折线传播。激光在腔道的出口端沿着直线传播,在右手直角坐标系中,回转轴为A轴、B轴或C轴,使出光部件射出的激光绕回转轴方向分布,激光聚焦于该回转轴范围内,即以与回转轴为中心半径100mm的回转(圆)面内,尤其是聚焦于回转轴线上。实现激光以回转的方式实施机加工。本实施例中,腔道设置于Y轴上,回转轴为B轴,出光部件绕B轴转动。
图1为现有实施激光机加工的装置一实施例的示意图。如图1所示,设备包括激光发射器100,腔道200、激光投射中继部件700、出光部件300和转台400。
激光发射器100设置于腔道200的一端,自激光发射器100射出的激光110进入腔道200。本实施例中,腔道200呈直管状,自激光发射器100射出的激光110从腔道200入射后沿直线方向传播,不发生偏转,与转台400的回转轴共轴或平行,至另一端出射。受激光投射中继部件700的作用,自腔道200出射的激光发生变向后,被出光部件300接收,射出的激光320聚焦于回转轴410范围内用于对工件实施加工。本实施例中,激光投射中继部件700包括第一反射机构710和第二反射机构720,第一反射机构710接收射入激光投射中继部件的激光,并将激光朝向第二反射机构720的方向反射,第二反射机构720接收到反射自第一反射机构710的激光730后,将激光730再次反射,并将激光射出投射中继部件。
激光投射中继部件700受转台400驱动,绕回转轴410转动,并接收来自腔道出射端的激光,使激光的光路方向发生改变后,再射出激光。出光部件300绕回转轴旋转410,射出实施机加工的激光束310。
在右手直角坐标系中,转台400绕Y轴回转,回转所绕的轴为B轴(未示出)。腔道200具有一条轴线(与图中激光110共线,未示出),该轴线与B轴共轴。出光部件300绕B轴回转,使得射出的激光绕B轴方向分布,实现激光以回转的方式实施机加工。腔道200设置于转台400内,即为转台400内一段位于直管型中空腔体,腔体的轴线与B轴共轴,还与转台的转动对称轴共轴。
随着中空转台400旋转,设置于其内的腔道200并不发生位移,而使得从腔道200穿行的激光110始终沿直线方向传播,不发生偏转,并始终为出光部件300所接收。随着出光部件300绕B轴不断回转,而形成绕B轴回转方向分布激光,无需对光纤实施牵拉,缩短了激光焦点离开B轴的回转轴线的距离,提高了定位误差的精度,实现了工件的高精度机加工。
此种装置装备多轴系的机加工设备后,当入射腔道的激光光路110与转台的回转轴410的交角保持在0°~5°,那么随着转台转动,中继部件和出光部件也绕回转轴410回转,用于机加工的激光740从出光部件300出射,一同绕转台回转轴线410转动。在现实生产中,由于不可避免发生应力、振动和弹性形变等因素致使出光部件发出的激光740发生偏移,影响激光加工精度。图2为现有用于激光实施机加工的装置激光光路一实施例的示意图,示意性地表明随着转台转动,中继部件和出光部件在同一转动角度的位置处,出光部件300发出的激光发生偏移。图3为现有用于激光实施机加 工的装置激光光路另一实施例的示意图,其示意性地表明,当中继部件和出光部件转动角度180°,入射腔道的激光光路110与转台的回转轴410的交角仍保持在0°~5°,出光部件300发出的激光无法落于同一位置处。因而仍需要经常性地重调光路,对入射振镜的激光光路与转台回转轴心线的实际距离和实际夹角偏离设定距离和设定夹角的情况进行调整,花费大量的时间,不利于成本控制。
为此,本实施例提供一种补偿超快激光光路回转误差的方法,即转台转动时,,传感器随转台一同绕转台回转轴线转动,激光从转台出射的一端设置传感器,接收激光信息,并将实时入射信息传送至控制器,控制器将此实时入射信息与设定位置信息进行比较,得到偏移值,当偏移值超出设定阈值时,则驱动反射机构。
反射机构接收来自超快激光器射出的激光,并在获得控制器的指令后,对激光光路进行补偿,使得补偿后入射振镜的激光光路与转台回转轴心线的相对位置得以保持。
图4为用于实施本发明方法的装置一实施例的示意图。如图4所示,利用转子内中空构造的内壁作为腔道的外壁,腔道200即为转台内的中空构造腔体。将超快激光器120安置于支架600,射出激光121由反射机构800反射后变向,再射入腔道200内,在腔道200的出口端,激光121沿直线传播。激光受激光投射中继部件700作用而变向后由出光部件的振镜320接收。出光部件绕回转轴旋转,聚焦于回转轴范围内。
激光投射中继部件至少包括1件反射镜系双面抛光镜片。本实施例中,激光投射中继部件设置第三反射镜721和第四反射镜731。具体的,第三反射镜721受到激光后,将激光反射至第四反射镜731,第四反射镜731受到激光后,将激光朝向振镜反射。优先选择的,第三反射镜与第四反射镜的AOI均为22.5°。
传感器900位于第三反射镜721之后,利用从反射镜透过的光来检测来自腔道出射端的激光光斑,获得激光的实时位置信息。控制器(未示出)接收传感器900发出的实时位置信息,并与预设位置信息进行比较,得到位置偏移值。当位置偏移值超出阈值时,则表明发生了激光光路与转台回转轴的相对位置无法保持的情形,则向反射机构发出指令。本实施例中,采用两个的传感元件,分别获得激光的入射角信息,以及激光在传感元件上的位置信息,以获得更多的激光入射信息。
反射机构800获得控制器的指令后,对受到的来自超快激光器的激光进行调节,调节发射激光的光路,使入射振镜的激光光路740与转台回转轴心线的相对位置得以保持,实时补偿激光光路的变化。本实施例中,反射机构800包括第一反射镜810和第二反射镜820,各个反射镜均被配置于单独的镜架上,以使各个反射镜均至少具有2个可调节的自由度,即通过至少2件反射镜提供4个以上自由度,以实施激光补偿方案。具体的,第一反射镜810受到激光后,将激光反射至第二反射镜820,第二反射镜受到激光后,将激光朝向腔道反射,使得入射振镜的激光光路740与转台回转轴的相对位置得以保持。优先选择的,第一反射镜810与第二反射镜820的AOI均为22.5°。
图5为用于实施本发明方法的装置一实施例的示意图。如图5所示,传感器900位于第三反射镜721之后,接收激光信息,并将实时位置信息传送至控制器,控制器将此实时位置信息与预设位置信息进行比较,得到位置偏移值,当偏移值超出设定阈 值时,则驱动第一反射镜810和第二反射镜820。第一反射镜810和第二反射镜820设置于腔道出口处,并在获得控制器的指令后,对受到的来自超快激光器的从腔道出射的激光进行调节,调节发射激光的光路,对受到的激光光路进行补偿,达到入射振镜的激光光路740与转台回转轴的相对位置得以保持,实时补偿激光光路的变化。
图6为用于实施本发明方法的装置一实施例的示意图。如图6所示,传感器900位于第三反射镜721之后,接收激光信息,并将实时位置信息传送至控制器,控制器将此实时位置信息与预设位置信息进行比较,得到位置偏移值,当偏移值超出设定阈值时,则驱动第一反射镜810和第二反射镜820。第二反射镜820接受自腔道出射后又经第三反射镜721反射的激光,调节来自超快激光器的激光的光路,对受到的激光光路进行补偿,达到入射振镜的激光光路与转台回转轴的相对位置得以保持,实时补偿激光光路的变化。
上述各项实施例提供的装置安装于机加工设备上,比如:以三个直线运动轴、一个用于固定工件的回转运动轴和一个激光束回转轴相组合形成空间五轴激光机加工方案,就能实现以多轴方式对工件进行机加工,制造复杂和多样构造的产品。比如:机床具有至少三个直线轴,其中一个直线轴上安装本发明的装置(比如:设置在X轴和Z轴确定的平面上,并沿Z轴直线移动),另一个直线轴上安装转动定位机构,驱动被加工工件回转的定位(比如:将工件设置于X轴和Y轴确定的平面上),消除应力、振动、弹性形变或温度等因素导致光束与转台回转轴相对位置无法保持的情形,提高激光加工的精密度,利于对各种规格零件实施激光加工。

Claims (16)

  1. 一种补偿超快激光光路回转误差的方法,其特征在于转台转动时,传感器随转台一同绕转台回转轴线转动,并接收从转台中出射的激光,并感知激光光束的实时入射信息,并将实时入射信息传送至控制器,控制器将此实时入射信息与设定位置信息进行比较,得到偏移值,当偏移值超出设定阈值时,则驱动反射机构,实时调整激光光路进行补偿,使补偿后入射振镜的激光光路与转台回转轴心线的相对位置得以保持。
  2. 根据权利要求1所述的方法,其特征在于所述的传感器设置于激光从转台中出射的一端的反射镜之后,接收由反射镜折射的激光信息。
  3. 根据权利要求1所述的方法,其特征在于在激光从转台出射的一端设置传感器,接收激光信息,并将实时入射信息传送至控制器,控制器将此实时入射信息与设定位置信息进行比较,得到偏移值,当偏移值超出设定阈值时,则驱动反射机构;
    反射机构反射来自超快激光器射出的激光,并在获得控制器的指令后,对激光光路进行补偿,使补偿后入射振镜的激光光路与转台回转轴心线的相对位置得以保持。
  4. 根据权利要求1所述的方法,其特征在于在激光从转台出射的一端设置传感器,接收激光信息,并将实时入射信息传送至控制器,控制器将此实时入射信息与设定位置信息进行比较,得到偏移值,当偏移值超出设定阈值时,则驱动反射机构;
    反射机构反射来自从转台出射的激光,并在获得控制器的指令后,调整反射镜角度对转台回转造成的激光光路偏差进行补偿。
  5. 根据权利要求1所述的方法应用于具有多个运动轴的加工设备,消除激光光路的回转误差,提高激光加工的精密度。
  6. 一种机加工设备,其特征在于采用权利要求1所述的方法加工工件。
  7. 一种装置,用于实施权利要求1所述的方法,其特征在于包括:
    中空转台,其包括腔道,其腔道用于容纳激光的光路;
    超快激光器,其射出的激光经所述的腔道通过所述的中空转台;
    激光投射中继部件,设置于转台上并随转台一同绕转台回转轴线转动,接收来自腔道出射端的激光,使激光的光路方向发生改变后,再射出激光;
    出光部件,设置于转台上并随转台一同绕转台回转轴线转动,接收由激光投射中继部件射出的激光,并聚焦于回转轴范围内;
    传感器,设置于转台上并随转台一同绕转台回转轴线转动,其接收来自腔道出射端的激光,获得激光的实时入射信息;
    控制器,其接收传感器发出的实时入射信息,并与预设位置信息进行比较,得到位置偏移值;
    反射机构,其接收来自超快激光器射出的激光,并在获得控制器的指令后,对反射后的激光光路进行补偿,并使聚焦光斑至转台回转轴线的距离始终得以保持,即转 台任意角度下该距离的偏差≤1μm。
  8. 根据权利要求7所述的装置,其特征在于所述反射机构至少包括2件反射镜各件反射镜均至少具有2个可调节的自由度。
  9. 根据权利要求7所述的装置,其特征在于所述的反射机构包括第一反射镜和第二反射镜,第一反射镜受到激光后,将激光反射至第二反射镜,第二反射镜受到激光后,将激光朝向腔道反射。
  10. 根据权利要求7所述的装置,其特征在于所述的反射机构包括第一反射镜和第二反射镜,第一反射镜受到从腔道出射的激光后,将激光反射至第二反射镜,第二反射镜受到激光后,将反射的激光作为振镜的入射激光。
  11. 根据权利要求7所述的装置,其特征在于所述的反射机构包括第一反射镜和第二反射镜,第一反射镜的AOI为22.5°,第二反射镜的AOI为22.5°。
  12. 根据权利要求7所述的装置,其特征在于所述的激光投射中继部件至少包括1件反射镜,系双面抛光镜片,接受从反射机构反射的激光,或者直接接受来自腔道出射端的激光,使激光的光路方向发生改变后,作为振镜的入射激光。
  13. 根据权利要求7所述的装置,其特征在于所述的激光投射中继部件包括第三反射镜和第四反射镜,第三反射镜向第四反射镜反射激光,第四反射镜受到激光后,将激光朝向振镜反射。
  14. 根据权利要求7所述的装置,其特征在于激光投射中继部件中的反射镜之后设置传感器,感知经反射镜折射的激光并获得激光实时的入射信息。
  15. 根据权利要求7所述的装置,其特征在于所述的激光投射中继部件包括第三反射镜和第四反射镜,第三反射镜的AOI为45°,第四反射镜的AOI为45°,系双面抛光镜片。
  16. 一种机加工设备,其特征在于包括权利要求7所述的装置。
PCT/CN2022/095936 2021-06-02 2022-05-30 补偿超快激光光路回转误差的方法及其装置和机床 WO2022253172A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023541493A JP2024502156A (ja) 2021-06-02 2022-05-30 超短パルスレーザー回転方向誤差を補償する方法及びその装置並びに工作機械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110617304.2 2021-06-02
CN202110617304.2A CN115431103A (zh) 2021-06-02 2021-06-02 补偿超快激光光路回转误差的方法及其装置和机床

Publications (1)

Publication Number Publication Date
WO2022253172A1 true WO2022253172A1 (zh) 2022-12-08

Family

ID=84271464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095936 WO2022253172A1 (zh) 2021-06-02 2022-05-30 补偿超快激光光路回转误差的方法及其装置和机床

Country Status (3)

Country Link
JP (1) JP2024502156A (zh)
CN (1) CN115431103A (zh)
WO (1) WO2022253172A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117583761A (zh) * 2024-01-19 2024-02-23 深圳市智鼎自动化技术有限公司 一种多通道激光振镜运动控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07210877A (ja) * 1994-01-24 1995-08-11 Matsushita Electric Ind Co Ltd 光軸調整装置および光軸調整方法
CN105149772A (zh) * 2015-10-12 2015-12-16 维嘉数控科技(苏州)有限公司 激光装置、控制系统及稳定激光光路能量和指向的方法
CN106670652A (zh) * 2016-12-29 2017-05-17 苏州逸美德科技有限公司 一种激光同轴加工装置及方法
CN109483047A (zh) * 2018-11-15 2019-03-19 中国科学院西安光学精密机械研究所 一种激光光束终端指向检测与校正方法及激光加工装置
CN109926731A (zh) * 2017-12-18 2019-06-25 夏浥 一种用于金刚石刀具飞秒激光制备的方法及装置
CN111055030A (zh) * 2019-12-20 2020-04-24 武汉华工激光工程有限责任公司 一种光束指向稳定性监测与反馈装置及方法
CN212144994U (zh) * 2020-03-11 2020-12-15 上海名古屋精密工具股份有限公司 以激光实施机加工的装置及其机床

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491383A (en) * 1982-09-20 1985-01-01 Centro Ricerche Fiat S.P.A. Device for modifying and uniforming the distribution of the intensity of a power laser beam
CN101085492A (zh) * 2006-06-07 2007-12-12 中国科学院沈阳自动化研究所 一种激光光路传输结构
CN106166643B (zh) * 2016-06-21 2017-08-25 宁波大学 一种提高飞秒激光加工精度的方法
CN106563880B (zh) * 2016-10-21 2019-01-29 华中科技大学 一种多光源、多功能、多轴激光加工头及装备
CN208391288U (zh) * 2018-06-29 2019-01-18 华中科技大学 一种大型复杂曲面动态聚焦激光加工系统
CN110666346A (zh) * 2019-11-11 2020-01-10 常州英诺激光科技有限公司 一种曲面切割装置
CN111408836B (zh) * 2020-04-23 2021-05-18 中国科学院西安光学精密机械研究所 双摆头激光加工光束指向的高精度调节方法及激光加工系统
CN217493611U (zh) * 2021-06-02 2022-09-27 上海名古屋精密工具股份有限公司 补偿超快激光光路回转误差的装置和机床

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07210877A (ja) * 1994-01-24 1995-08-11 Matsushita Electric Ind Co Ltd 光軸調整装置および光軸調整方法
CN105149772A (zh) * 2015-10-12 2015-12-16 维嘉数控科技(苏州)有限公司 激光装置、控制系统及稳定激光光路能量和指向的方法
CN106670652A (zh) * 2016-12-29 2017-05-17 苏州逸美德科技有限公司 一种激光同轴加工装置及方法
CN109926731A (zh) * 2017-12-18 2019-06-25 夏浥 一种用于金刚石刀具飞秒激光制备的方法及装置
CN109483047A (zh) * 2018-11-15 2019-03-19 中国科学院西安光学精密机械研究所 一种激光光束终端指向检测与校正方法及激光加工装置
CN111055030A (zh) * 2019-12-20 2020-04-24 武汉华工激光工程有限责任公司 一种光束指向稳定性监测与反馈装置及方法
CN212144994U (zh) * 2020-03-11 2020-12-15 上海名古屋精密工具股份有限公司 以激光实施机加工的装置及其机床

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117583761A (zh) * 2024-01-19 2024-02-23 深圳市智鼎自动化技术有限公司 一种多通道激光振镜运动控制系统
CN117583761B (zh) * 2024-01-19 2024-03-19 深圳市智鼎自动化技术有限公司 一种多通道激光振镜运动控制系统

Also Published As

Publication number Publication date
CN115431103A (zh) 2022-12-06
JP2024502156A (ja) 2024-01-17

Similar Documents

Publication Publication Date Title
US7842901B2 (en) Device for drilling and for removing material using a laser beam
CN106563880B (zh) 一种多光源、多功能、多轴激光加工头及装备
CN101041204B (zh) 激光焊接装置及其方法
US6875951B2 (en) Laser machining device
US11471978B2 (en) Laser oscillator, laser machining device in which same is used, and laser oscillation method
CN111168230B (zh) 一种激光切割机调焦装置及其调焦方法
CN206764133U (zh) 一种激光加工头及其构成的激光精密制造装备
JP2018020374A (ja) 所定の加工経路に沿ったレーザビームの移動軸の高ダイナミック制御による金属材料のレーザ加工方法並びに該方法の実施のための機械およびコンピュータプログラム
US7248940B2 (en) Method and device for the robot-controlled cutting of workpieces to be assembled by means of laser radiation
CN217370913U (zh) 激光指向改变时校正路径偏离的装置和机床
WO2022253172A1 (zh) 补偿超快激光光路回转误差的方法及其装置和机床
US7795560B2 (en) Apparatus for processing work-piece
US7495191B2 (en) Laser treatment apparatus
WO2023116183A1 (zh) 激光指向改变时校正路径偏离的方法及其装置和机床
JPH10314973A (ja) 複合レーザビームによるレーザ加工装置および加工法
CN217493611U (zh) 补偿超快激光光路回转误差的装置和机床
KR100660112B1 (ko) 레이저빔의 광폭이 제어되는 레이저와 비전의 동축가공장치
CN116038104A (zh) 激光加工装置
TWI792876B (zh) 雷射鑽孔裝置
CN212144994U (zh) 以激光实施机加工的装置及其机床
CN114160960A (zh) 一种激光加工方法及其装置
RU2283738C1 (ru) Установка для лазерной обработки
Hafez et al. Fast-steering two-axis tilt mirror for laser pointing and scanning
CN113385828A (zh) 激光实施机加工的方法及其装置和机床
JP7535687B2 (ja) レーザ装置及びそれを用いたレーザ加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815217

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541493

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815217

Country of ref document: EP

Kind code of ref document: A1