WO2022253130A1 - 一种脉冲数随速度自调节的开关磁阻电机转子定位方法 - Google Patents

一种脉冲数随速度自调节的开关磁阻电机转子定位方法 Download PDF

Info

Publication number
WO2022253130A1
WO2022253130A1 PCT/CN2022/095554 CN2022095554W WO2022253130A1 WO 2022253130 A1 WO2022253130 A1 WO 2022253130A1 CN 2022095554 W CN2022095554 W CN 2022095554W WO 2022253130 A1 WO2022253130 A1 WO 2022253130A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
motor
speed
voltage
current
Prior art date
Application number
PCT/CN2022/095554
Other languages
English (en)
French (fr)
Inventor
蔡辉
Original Assignee
长沙理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙理工大学 filed Critical 长沙理工大学
Publication of WO2022253130A1 publication Critical patent/WO2022253130A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/086Commutation
    • H02P25/089Sensorless control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/098Arrangements for reducing torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency

Definitions

  • the present application relates to the technical field of motors, in particular to a rotor positioning method of a switched reluctance motor in which the number of pulses is self-adjusting with the speed.
  • the high-frequency injection method is often used for rotor position estimation of electric motors.
  • high-frequency pulse voltage is injected into the idle phase of the motor, and the accurate position of the motor is obtained according to the current response, but the traditional fixed-number pulse injection at different speeds will cause practical engineering problems, causing inaccurate motor rotor position angles, especially when the motor is running At high speeds, the number of pulse injections gradually decreases, and even one pulse cannot be injected. Therefore, it is necessary to design a new rotor position estimation method for the above problems.
  • the purpose of this application is to solve the above problems and provide a rotor positioning method for switched reluctance motors in which the number of pulses is self-adjusting according to the speed, so as to realize the adaptive adjustment of injected pulses in different speed ranges and realize the estimation of the rotor position within the full speed range.
  • a current threshold is set to determine the commutation time, and the threshold can be adaptively adjusted according to the bus voltage.
  • the number of injected pulses is selected and determined according to the preset curve or table data according to the change of the motor speed, and the preset curve or Table data is determined according to actual needs.
  • the current peak value of the single pulse current is difficult to capture in the actual system.
  • the current pulse is used to charge the capacitor and detect the voltage of the capacitor, and then obtain the actual position of the rotor according to the mapping relationship between the voltage and the rotor position, so as to overcome the limitation of the sampling frequency of the chip. limit problem.
  • the relationship between the capacitor voltage and the rotor position is linearly fitted or stored in a preset table, and the corresponding rotor position is subsequently queried by acquiring the voltage detection.
  • the invention combines low-speed high-frequency pulse injection and medium-speed injection pulse number changing method with speed and single or less pulse injection mode during high-speed operation to realize rotor position estimation within the full speed range.
  • the motor speed range can be divided into three intervals, and different control strategies are applied according to different intervals, which is more targeted and improves the identification accuracy of the motor rotor position in each speed interval;
  • Setting two thresholds can determine the commutation time of the motor, and the threshold can be adjusted with the speed change to make the commutation position more accurate;
  • the threshold setting fully considers the fluctuation of the bus voltage and is closer to the real operating condition of the motor.
  • the shortcoming of less pulses in the commutation period improves the accuracy of rotor position identification.
  • Fig. 1 is a division diagram of the rotating speed range of the switched reluctance motor in the method for positioning the rotor of the switched reluctance motor whose pulse number is self-adjusting with the speed disclosed in the embodiment of the present application;
  • Fig. 2 is a relationship diagram between the rotor position in the low speed range and the current peak value of the pulse injection in the method for positioning the rotor of the switched reluctance motor with self-adjustment of the number of pulses according to the speed disclosed in the embodiment of the present application;
  • Fig. 3 is the current waveform diagram during operation in the middle speed range in the method for positioning the rotor of the switched reluctance motor with self-adjustment of the number of pulses according to the speed disclosed in the embodiment of the present application;
  • Fig. 4 is a current waveform diagram during operation in a high-speed interval in the rotor positioning method of the switched reluctance motor whose pulse number is self-adjusting according to the speed disclosed in the embodiment of the present application;
  • Fig. 5 is a logic block diagram of the rotor positioning method of the switched reluctance motor whose pulse number is self-adjusting according to the speed disclosed in the embodiment of the present application;
  • Fig. 6 is a current distribution diagram during single-pulse excitation of the rotor positioning method of the switched reluctance motor with self-adjusting pulse number according to the speed disclosed in the embodiment of the present application.
  • the rotor positioning method of the switched reluctance motor whose pulse number is self-adjusting according to the speed disclosed in the embodiment of the present invention divides the speed range of the switched reluctance motor into three areas, and the division principle is based on the following characteristics:
  • V ph is the DC bus voltage
  • i is the instantaneous phase current
  • R is the winding resistance
  • is the connecting coil flux
  • Linc is the incremental inductance
  • K v is the current-dependent back EMF coefficient
  • is the rotor angular velocity.
  • Flux linkage has a nonlinear mapping relationship with rotor position and current.
  • the voltage expression can be further simplified as:
  • the motor working conditions are divided into three sections: low-speed section, medium-speed section, and high-speed section.
  • the speed section corresponds to the high-frequency injection area, the pulse number and rotational speed proportional area, and the single pulse injection area.
  • one phase is used for driving excitation, and the other two idle phases are used to determine the rotor position of the switched reluctance motor.
  • the position, the high-frequency current is injected into the idle phase, and the current peak value of the pulse injection is different according to the position, and the current peak value is related to the rotor position.
  • ⁇ k is the angle of the inductor intersection point
  • is the angle difference between the two position update points, which is constant at 7.5°
  • ⁇ t k is the time between the two update points of the rotor
  • t k is the moment of the kth output update point
  • t 1 is the output of any time between two position points
  • the response current magnitude time in the table is the time when the current logic changes
  • the interval is divided by the rotor in Figure 3
  • the rotor position is the corresponding rotor position when the current logic changes
  • the threshold in the low-speed section, switching from one sector to another depends on the triggering of the threshold, but the initial selection of the threshold should also consider the DC bus voltage.
  • the threshold is determined by changing the duty cycle based on the voltage ratio. remain constant under operating conditions.
  • There is a linear relationship between the voltage duty cycle and the bus voltage Specifically, it is necessary to measure the voltage duty cycle that can maintain a constant threshold value under different voltages and record the relevant values. Find the voltage duty cycle by measuring and fitting multiple discrete points The polynomial relationship between the voltage and the voltage, when the voltage change is detected, the required voltage duty cycle is calculated by the fitting formula.
  • the fitting formula can be expressed as:
  • m( ⁇ ) and n( ⁇ ) are coefficients that vary with different positions.
  • the duty ratio can be adjusted according to this relationship.
  • the selection of the estimated position needs to be considered: 1 Selecting the threshold current change of the reference position has a small relative error to the position estimation, which can ensure the estimation accuracy; 2 The threshold current of the reference position should not be too small, otherwise the small detection accuracy problem will cause a difference with the actual value. 3 In the case of ensuring the measurement accuracy, the threshold current of the reference position should not be too large as much as possible to avoid the negative torque problem caused by the pulse current.
  • pulses are injected into the non-conducting phase, and when the calculated peak value of the pulse current reaches a preset threshold, the position is updated to complete the position estimation.
  • the number of injected pulses is limited by the motor speed.
  • the number of injected pulses is selected according to the preset curve or table data according to the change of the motor speed.
  • the preset curve or table data is determined according to the control
  • the specific power of the device chip and the motor is determined, with 1000rpm speed corresponding to 10 pulses as the standard, and the pulses also increase as the speed increases.
  • the pulse injection method is difficult to realize during high-speed operation, and the controllability of the phase current is poor due to the high back electromotive force.
  • torque control mode single-pulse mode operation is achievable, maintaining excitation throughout the conduction interval. Due to the large current, the tail of the phase current generally extends to the region where (dL/d ⁇ ) ⁇ 0 at high speed. The current freewheeling interval may occupy most of the negative torque region, which results in this idle phase with little or no time for rotor position estimation with pulse injection. Therefore, at high speed, it is necessary to fully consider that the injection interval can be used for pulse injection. At this time, a single pulse is selected to be injected. Take the injection of a single pulse shown in Figure 5 as an example.
  • the current response and capacitance at a certain position of the rotor so the position of the rotor can be judged by the magnitude of the current peak value.
  • the measurement accuracy of the current peak value directly affects the estimation of the rotor position. It is difficult to capture the single pulse current in the actual system. Especially at high speeds, the chip may not sample fast enough to capture the peak of the current pulse.
  • the method uses a capacitor voltage detection method to map the real-time position of the rotor, which overcomes the problem of limited chip sampling frequency under high-speed working conditions.
  • the power converter is connected to the bus voltage and the switched reluctance motor. Under the same voltage duty cycle, the current response corresponding to different rotor positions is different.
  • the controller chip samples the final output voltage value of the capacitor side, and the capacitor charging voltage is passed through the real-time rotor corresponding to the predetermined characteristic voltage and the rotor position query.
  • position when the output measurement is completed, the stored power is released through the discharge capacitor to reset. Reset ensures that initial conditions are zero at the beginning of each pulse integration for ease of calculation.
  • the voltage across the capacitor varies proportionally to the peak value of the current pulse.
  • the rotor position is estimated according to the magnitude of the capacitor terminal voltage.
  • the relationship between the integrator and the rotor position can be linearly fitted or stored in a preset table, and then the corresponding rotor position can be calculated or queried through the obtained capacitor voltage.
  • the corresponding special rotor position point ⁇ point is used to calculate the real-time position ⁇ of the rotor through the special position point.
  • the ⁇ pi(k-1) of the commutation period is obtained from this commutation period ⁇ pi(k) , where, In the formula, ⁇ t is the time elapsed for two consecutive capacitor voltage samples to be the same, and tp is the time elapsed from the special position point ⁇ pi ;
  • a predefined two-dimensional table of preset pulse injection positions according to the magnitude of the capacitor voltage, measured some time after the current pulse decays to 0, at which time the rotor injects ⁇ from the previous pulse The pi position moves to a new position ⁇ r , and the position where the capacitor voltage is captured is ⁇ r , so this time difference also needs to be considered and compensated, and the estimated rotor position when measuring the capacitor voltage output amplitude ( ⁇ r ) becomes:
  • ⁇ r ⁇ pi + ⁇ (t r -t pi )
  • is the actual rotational speed
  • t pi is timed when the pulse is injected
  • t r is the time to read the integrated pulse amplitude.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种开关磁阻电机转子位置的全速域估计方法,通过定义开关磁阻电机的瞬时电压与绕组内的磁通关系式,并根据电机转速划分为低速、中速与高速,在低速工况下根据电流响应值与电流阈值的比较选择扇区触发以确定电机转子位置,中速工况下根据注入脉冲数随电机转速变化按预设数据表查询确定电机转子位置;高速工况下考虑到可注入脉冲数少,设计电容充电回路,使注入脉冲电压形成的响应电流对电容充电,检测电容侧电压大小,再依据点电容电压值查询电压-转子位置预设数据表确定转子位置。本发明能实现电机转子全域位置估计,解决了传统固定数目脉冲注入会引起实际工程问题和电机转子位置角度不准确问题。

Description

一种脉冲数随速度自调节的开关磁阻电机转子定位方法 技术领域
本申请涉及电机技术领域,尤其涉及一种脉冲数随速度自调节的开关磁阻电机转子定位方法。
背景技术
高频注入法常用于电机转子位置估算。通常,电机空闲相注入高频脉冲电压,根据电流响应来获取电机准确位置,但不同转速下采用传统固定数目脉冲注入会引起实际工程问题,引起电机转子位置角度不准确问题,尤其是当电机运行至高速时,脉冲注入数目逐渐减小,甚至一个脉冲都无法注进,因此有必要针对上述问题,设计一种新的转子位置估算法。
发明内容
本申请的目的在于针对上述问题,提供一种脉冲数随速度自调节的开关磁阻电机转子定位方法,实现在不同转速范围下的注入脉冲自适应调节,实现全速范围内的转子位置估算。
可选地,所述开关磁阻电机转子定位方法,当电机运行至所述低速区时,设定电流阈值来确定换相时刻,阈值并随母线电压可自适应调节。
可选地,所述开关磁阻电机转子定位方法,当电机运行至所述中速区时,选择注入脉冲数随电机转速变化按预设曲线或表格数据进行选择确定,所述预设曲线或表格数据根据实际需求确定。
可选地,所述单脉冲电流在实际系统中电流峰值难以捕捉,采用电流脉冲对电容充电并检测电容测电压,再根据电压与转子位置的映射关系进而获取转子实际位置,克服芯片采样频率受限问题。
可选地,所述电容电压与转子位置的关系通过线性拟合或者存储在一个预设表中,后续通过获取所述电压检测查询对应的转子位置。
本发明的有益效果为:
本发明将低速高频脉冲注入和中速注入脉冲数随速度变化方法以及高速运行时单或者少些脉冲注入方式结合起来,实现全速范围内的转子位置估算。针对发明内容1的效果,电机转速范围可以划分为三个区间,根据不同区间应用不同的控制策略,具有更针对性,提升各个速度区间下的电机转子位置辨识精度;针对发明内容2的效果,设定两个阈值可以确定电机换相时刻,并阈值随速度变化调整,使换相位置更加准确;针对发明内容3的效果,阈值设置充分考虑母线电压波动,更加接近电机真实运行工况,通过对母线电压变化对阈值进行补偿,使换相位置及转子位置计算估算更加精准;针对发明内容4的效果,电机在中速区间运行时,注入脉冲数随转速调整变化,克服较高转速下一个换相周期内脉冲少的缺点,提转子位置辨识精度。针对发明内容5的效果,单个脉冲电流响应难以捕捉,通过检测电容电压来表征对应位置电流响应情况,提高了特殊位置点的特征辨识度,解决了高速下脉冲电流响应检测难题,使转子位置在高速下的辨识更准确。
采用此方法实现了电机从低速、中速、高速全速域无位置传感器技术,此方法是替代位置传感器的低成本替代方案。
附图说明
图1为本申请实施例所公开的脉冲数随速度自调节的开关磁阻电机转子定位方法中开关磁阻电机的转速范围划分图;
图2为本申请实施例所公开的脉冲数随速度自调节的开关磁阻电机转子定位方法中低速区间内的转子位置与脉冲注入的电流峰值的关系图;
图3为本申请实施例所公开的脉冲数随速度自调节的开关磁阻电机转子定位方法中中速区间内的运行时电流波形图;
图4为本申请实施例所公开的脉冲数随速度自调节的开关磁阻电机转子定位方法中高速区间内运行时的电流波形图;
图5为本申请实施例公开的脉冲数随速度自调节的开关磁阻电机转子定位方法的逻辑框图;
图6为本申请实施例公开的脉冲数随速度自调节的开关磁阻电机转子定位方法单脉冲励磁时的电流分布图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
结合附图1,本发明实施例所公开的脉冲数随速度自调节的开关磁阻电机转子定位方法将开关磁阻电机的转速范围划为三个区域,划分原则基于以下特性:
由法拉第定律可知,电流流过定子绕组时,单相绕组两端的瞬时电压与绕组内的磁通有关,公式如下:
Figure PCTCN2022095554-appb-000001
式中,V ph是直流总线电压,i是瞬时相电流,R是绕组电阻,λ是连接线圈磁通,L inc是增量电感,K v是电流依赖性反电动势系数,ω是转子角速度。磁链与转子位置和电流具有非线性映射关系。
电压表达式可进一步简化为:
Figure PCTCN2022095554-appb-000002
随着电机转速增加,可施加在电机绕组两端的有效电压逐渐降低,电机绕组内的电流变化率下降,电流响应时间变慢,受随转速增加后电流响应变慢及注入间隔变小双重因素叠加,传统电压脉冲注入法固定的脉冲注入不适宜高速工况,因此综合考虑电机转速及控制器实际开关频率,将电机工况划分为低速段、中速段、高速段三个区间,这三个速段区间分别对应为高频注入区、脉冲数与转速成比例区、单脉冲注入区。
结合附图2,针对脉冲数随速度自调节的开关磁阻电机转子定位方法在低速段区域的转子位置定位,采用一相用于驱动励磁,另外两相空闲相用于确定开关磁阻电机转子位置,高频电流注入到空闲相,根据位置的不同,脉冲注入的电流峰值也不同,电流峰值与转子位置相关。先定义两个电流阈值,包括一个低阈值和一个高阈值,当电流响应峰值小于低阈值,则选择区间并触发相位驱动励磁,当电流响应峰值大于高阈值,则选择对应的区间并触发位置估算算法。所述区间分割如图3所示,两个特征点经过的时间很短,一般认为位置更新点之间转速恒定,则任意时刻电机转子估计置θ est可以表示为:
Figure PCTCN2022095554-appb-000003
其中θ k为电感交点角度,Δθ为两个位置更新点的角度差恒定7.5°,Δt k为转子转过两个更新点之间的时间,t k为第k个输出更新点时刻,t 1为两个位置点之间输出任意时刻,表中响应电流大小时刻为电流逻辑发生变化时刻,所述区间为图3中转子划分,所述转子位置为电流逻辑发生变化时对应的转子位置,所述初试导通相为逻辑发生时刻应励磁的相,。
Figure PCTCN2022095554-appb-000004
结合附图2,在低速段区间,从一个扇区切换到另一个扇区依赖于阈值的触发,但阈值最初选择还要考虑直流母线电压。对于电池供电系统,电池电压变化比较频繁且范围较大,对于基于阈值选区的电机转子位置估计产生较大影响,为保持阈值水平不变,通过基于电压等比改变占空比以确定阈值在不同工况运行下均保持恒定。电压占空比与母线电压之间存在线性关系,具体要测定不同电压下能够保持阈值恒定的电压占空比并记录相关的值,通过对多个离散点的测量并拟合寻找电压占空比与电压之间的多项 式关系,当检测电压变化后通过拟合公式计算出所需要的电压占空比。
该拟合公式可以表示为:
I th=m(θ)U dc+n(θ)
式中m(θ)和n(θ)是随不同位置变化的系数。可根据此关系式进行占空比调节。对估算位置的选择需考虑:①选取参考位置的阈值电流变化对位置估算的相对误差较小,可保证估算精度;②参考位置阈值电流不宜过小,否则细小的检测精度问题会造成与实际值之间的较大相对误差;③在保证测量精度情况下,参考位置阈值电流尽量不宜过大,避免脉冲电流带来的负转矩问题。综上所述,向非导通相注入脉冲,当计算的脉冲电流峰值到达预设的阈值时,对位置进行更新,完成位置估算。
结合附图4,电机运行至中速区时,注入脉冲数受电机转速限制,此时选择注入脉冲数随电机转速变化按预设曲线或表格数据进行选择确定,预设曲线或表格数据根据控制器芯片及电机具体功率确定,以1000rpm转速对应10个脉冲为标准,转速增加脉冲也增加。
结合附图5,在高速运行时,脉冲注入法难以实现,由于反电动势较高,相电流可控性差。在转矩控制模式下,单脉冲模式运行时是可实现的,在整个导通区间保持励磁。由于大电流在高速状态下相电流的尾部一般会延伸到(dL/dθ)<0的区域。电流续流区间可能会占据大部分负转矩区,这导致这一空闲相很少或者没有时间用脉冲注入进行转子位置估计。因此,高速时,要充分考虑可利用注入区间进行脉冲注入,此时选择注入单个脉冲,以图5所示的注入单个脉冲为例。
结合附图6,转子某一位置下电流响应与电容,因此可以通过电流峰值的大小来判断转子的位置,电流峰值测量精度直接影响转子位置估算,单脉冲电流在实际系统中比较难以捕捉。尤其是在高速下,芯片可能无法足够快地采样以捕获当前脉冲的峰值。本方法采用电容电压检测法来映射转子实时位置,克服了高速工况下芯片采样频率受限的问题。功率变换器连接母线电压和开关磁阻电机,相同电压占空比下不同转子位置对应的电流响应不同,利用这一特点先获取充电电压与转子位置的映射关系,通过预设曲线或表格来表征,当判断高速工况时,通过固定电压脉冲下电流对电容进行充电,控制器芯片采样到最终电容侧输出电压值,电容充电电压通过与预先确定的表征电压与转子位置关系查询对应的实时转子位置,当输出测量完成后,通过放电电容器将存储电量放掉,进行复位。重置确保在每个脉冲集成开始时的初始条件为零,便于计算。电容两侧电压与电流脉冲峰值成比例地变化。随着转子位置的变化,根据电容端电压幅值来估计转子位置。可以将积分器与转子位置的关系通过线性拟合或者存储在一个预设表中,后续通过获取的电容电压计算或者查询对应的转子位置。
对应的特殊转子位置点θ point,通过特殊位置点计算转子实时位置θ,所述θ的计算公式为:θ=θ pi(k)+w pret p,其中w pre为预测转速,通过上个换相周期的θ pi(k-1)与这个换相周期θ pi(k)求得,其中,
Figure PCTCN2022095554-appb-000005
式中Δt为连续两次电容电压采样相同所经历的时间,t p为从特殊位置点θ pi开始经历的时间;
图7中,根据电容电压的幅值,预设脉冲注入位置的预定义二维表格,电容电压是在当前脉冲衰减到0之后的某个时间测量的,此时转子会从之前的脉冲注入θ pi位置移动到新的位置θ r,电容电压被捕获的位置为θ r,因此这段时间差也需要考虑和补偿,在测量电容电压输出振幅(θ r)时估计的转子位置变为:
θ r=θ pi+ω(t r-t pi)
其中ω为实际转速,t pi在脉冲注入时计时,t r为读取积分脉冲幅值的时间。一旦通过查表或者拟合计算确定了给定脉冲的位置θ pi,就可以通过考虑脉冲注入期间的位移位置(ω(t r-t pi))找到θ r。确定θ r后,可以得到转子在任何时刻的位置:θ=θ r+ωt单个或者多个脉冲依次注入电机空闲相,在一个电周期循环中,每一个空闲相产生θ r。注入相位估计转子位置θ,直到从下一个空闲相更新θ r,然后假定ω。
本发明未尽事宜为公知技术。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (6)

  1. 一种脉冲数随速度自调节的开关磁阻电机转子定位方法,其特征在于,将开关磁阻电机的瞬时电压与绕组内的磁通的关系定义为式(1),所述式(1)如下:
    Figure PCTCN2022095554-appb-100001
    其中,V ph是直流总线电压,i是瞬时相电流,R是绕组电阻,λ是连接线圈磁通,L inc是增量电感,K v是电流依赖性反电动势系数,ω是转子角速度;根据式(1),结合开关磁阻电机的转速将开关磁阻电机工况划分为低速、中速、高速三个区间;
    其中,低速区间的电机转子位置的估计包括:将一相用于驱动励磁,另外两相空闲相用于确定开关磁阻电机转子位置,并高频电流注入到空闲相,根据电流响应值与电流阈值的比较,选择扇区触发,以确定电机转子位置;
    中速区间的电机转子位置的估计包括:根据注入脉冲数随电机转速变化按预设数据表查询,确定电机转子位置;
    高速区间的电机转子位置的估计包括:设置预设数据表表征充电电压与转子位置的映射关系,并根据电机转速与设定阈值比较,通过固定电压脉冲下电流响应对电容进行充电,采集最终电容侧输出电压幅值,再查询所述预设数据表,根据电容充电电压值查询对应的实时电机转子位置。
  2. 根据权利要求1所述的开关磁阻电机转子定位方法,其特征在于,所述低速区间的电机转子位置的估算方法中,所述电流阈值包括低阈值和高阈值,当所述电流响应峰值小于所述低阈值时,选择扇区触发相位驱动励磁,以确定电机转子位置;当所述电流响应峰值大于高阈值时,选择扇区触发位置估算算法,以确 定电机转子位置,电流阈值也随电机转速进行调整,具体可根据实际转速与某特殊位置点电流阈值之间的关系确定。
  3. 根据权利要求2所述的开关磁阻电机转子定位方法,其特征在于,所述选择扇区是基于阈值触发实现,所述阈值通过电压等比改变占空比以保持恒定,所述电压等比改变占空比为测量离散电压值并拟合确定,拟合关系式如下:
    I th=m(θ)U dc+n(θ)
    其中m(θ)和n(θ)为系数。其中系数具体获取方式为选取一相,使转子旋转至阈值电流I th对应的转子角度,固定电机转子,注入固定占空比电压脉冲,改变母线电压,获取不同母线电压下的电流峰值离散数据,将数据代入到公式中求取系数值。
  4. 根据权利要求1所述的开关磁阻电机转子定位方法,其特征在于,此时选择注入脉冲数随电机转速变化按预设曲线或表格数据进行选择确定,这里的预设曲线或表格数据根据实际需求确定,转速较高时,注入脉冲增加,提高一个换相周期内的脉冲数量,以增加转子位置辨识度。
  5. 根据权利要求1所述的开关磁阻电机转子定位方法,其特征在于,所述高速区间的电机转子位置的估算方法中,通过采集电容电压方法以获取电流响应的特征,克服高速下可注入电压脉冲非常少以及电流响应峰值难以捕捉的问题。
  6. 根据权利要求5所述的开关磁阻电机转子定位方法,其特征在于,所述高速区间的电机转子位置的估算方法中,检测电容电压,根据预设曲线或表格所描述电压与角度的映射关系,确定特殊位置点对应的角度,进而测算转子旋转速度及不同时刻转子位置。
PCT/CN2022/095554 2021-06-03 2022-05-27 一种脉冲数随速度自调节的开关磁阻电机转子定位方法 WO2022253130A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110617061.2 2021-06-03
CN202110617061.2A CN115347836A (zh) 2021-06-03 2021-06-03 一种脉冲数随速度自调节的开关磁阻电机转子定位方法

Publications (1)

Publication Number Publication Date
WO2022253130A1 true WO2022253130A1 (zh) 2022-12-08

Family

ID=83946925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095554 WO2022253130A1 (zh) 2021-06-03 2022-05-27 一种脉冲数随速度自调节的开关磁阻电机转子定位方法

Country Status (2)

Country Link
CN (1) CN115347836A (zh)
WO (1) WO2022253130A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060125427A1 (en) * 2002-11-28 2006-06-15 Taro Kishibe Method and apparatus for estimating rotor position and for sensorless control of a switched reluctance motor
CN101436843A (zh) * 2008-12-22 2009-05-20 哈尔滨工业大学 一种无位置传感器开关磁阻电机中转子位置的检测方法
CN107979311A (zh) * 2017-12-20 2018-05-01 南通大学 横向磁通开关磁阻电机无位置传感器转子位置的测定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060125427A1 (en) * 2002-11-28 2006-06-15 Taro Kishibe Method and apparatus for estimating rotor position and for sensorless control of a switched reluctance motor
CN101436843A (zh) * 2008-12-22 2009-05-20 哈尔滨工业大学 一种无位置传感器开关磁阻电机中转子位置的检测方法
CN107979311A (zh) * 2017-12-20 2018-05-01 南通大学 横向磁通开关磁阻电机无位置传感器转子位置的测定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONG DANDAN, XU BO; WU CHENGLI: "Sensorless Control Research Over Entire Speed Range of SRM", MICROMOTORS, vol. 49, no. 1, 31 January 2016 (2016-01-31), pages 69 - 74, XP093009941, ISSN: 1001-6848, DOI: 10.15934/j.cnki.micromotors.2016.01.016 *

Also Published As

Publication number Publication date
CN115347836A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
US10523143B2 (en) Sensorless BDLC control
EP0532350B1 (en) Lock detector for switched reluctance machine rotor position estimator
US9479096B2 (en) Phase current regulation in BLDC motors
CN106059409A (zh) 一种无位置传感器无刷直流电机转子换相误差校正方法及控制系统
US6989668B2 (en) Rotor position detection of a switched reluctance drive
CN107425781B (zh) 一种基于线性磁链模型和线性回归分析的srm位置预估方法
US20200127587A1 (en) Sensorless motor control
CN112953343B (zh) 一种开关磁阻电机的新型无位置传感器初始定位方法
US9966887B2 (en) BLDC zero crossing with BEMF, gating, and tri-state detect circuitry
KR20000028798A (ko) 스위치형 자기 저항 모터용 정류 방법 및 장치
CN106712594A (zh) 一种电动机控制系统的电机驱动器
CN110247606B (zh) 一种脉冲注入无位置传感器开关磁阻电机控制方法
WO2022253130A1 (zh) 一种脉冲数随速度自调节的开关磁阻电机转子定位方法
CN107979311B (zh) 横向磁通开关磁阻电机无位置传感器转子位置的测定方法
Panda et al. Sensorless control of switched reluctance motor drive with self-measured flux-linkage characteristics
CN115395835B (zh) 一种无刷直流电机换相精确检测方法
CN112271977B (zh) 一种基于相电流斜率差法的开关磁阻电机无位置传感器控制方法
CN111262498B (zh) 一种基于虚拟磁链和单相电流检测的开关磁阻电机无位置传感器控制方法
CN113364385B (zh) 一种无位置传感器的无刷电机初始位置检测方法
CN113037178B (zh) 一种基于脉冲响应的混合励磁双凸极电机无位置控制方法
CN110829907B (zh) 基于中性点的电励磁双凸极电机无位置传感器换相方法
CN111555670B (zh) 一种永磁无刷直流电机转子位置和速度估算方法
Shen et al. Sensorless Brushless DC Motor Commutation Method Based on Angular Acceleration
CN115589184A (zh) 一种提高开关磁阻电机转子位置估计精度的控制方法
CN111313771A (zh) 低速重载下无霍尔传感器的方波控制位置检测方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17918324

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815176

Country of ref document: EP

Kind code of ref document: A1