WO2022252709A1 - 外延生长装置 - Google Patents

外延生长装置 Download PDF

Info

Publication number
WO2022252709A1
WO2022252709A1 PCT/CN2022/077689 CN2022077689W WO2022252709A1 WO 2022252709 A1 WO2022252709 A1 WO 2022252709A1 CN 2022077689 W CN2022077689 W CN 2022077689W WO 2022252709 A1 WO2022252709 A1 WO 2022252709A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction coil
epitaxial growth
sub
tray
heating
Prior art date
Application number
PCT/CN2022/077689
Other languages
English (en)
French (fr)
Inventor
朱亮
沈文杰
周建灿
程佳峰
张秋成
傅林坚
曹建伟
杨奎
Original Assignee
浙江求是半导体设备有限公司
浙江晶盛机电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江求是半导体设备有限公司, 浙江晶盛机电股份有限公司 filed Critical 浙江求是半导体设备有限公司
Priority to DE112022000051.1T priority Critical patent/DE112022000051T5/de
Priority to JP2022524605A priority patent/JP7417721B2/ja
Priority to KR1020227019043A priority patent/KR20220163927A/ko
Priority to US17/837,044 priority patent/US20220384192A1/en
Publication of WO2022252709A1 publication Critical patent/WO2022252709A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of semiconductor epitaxial growth, and in particular to an epitaxial growth device.
  • Epitaxial growth is an important part of the semiconductor industry chain.
  • the quality of epitaxial films directly restricts the performance of subsequent devices.
  • high-efficiency and high-quality epitaxial equipment has been obtained. More and more attention.
  • Epitaxial growth mainly refers to the growth of a layer of high-quality film on the substrate.
  • CVD chemical vapor deposition
  • Chemical vapor deposition refers to chemical gas or vapor in the substrate
  • a method of surface reaction synthesis of coatings or nanomaterials; two or more reaction media (the reaction media is usually gaseous) are introduced into a working space, and then they chemically react with each other to form a new material , deposited on the substrate surface.
  • the rotation speed of the tray and the temperature of the working space where the tray is located are one of the important factors affecting the deposition rate.
  • the uniformity of temperature distribution in the working space of the tray rotation speed directly affects the thickness uniformity and doping uniformity of the epitaxial film.
  • the present application provides an epitaxial growth device, including an induction coil and a reaction body, the induction coil is arranged around the reaction body; the reaction body includes a heating seat, a plurality of trays; the heating seat has a plurality of A workspace, the plurality of trays are located in the plurality of workspaces, and each tray corresponds to one of the workspaces; wherein, the trays are used to carry substrates, and each tray can be independently relative to The heating seat rotates.
  • a plurality of the working spaces are stacked and arranged along a first direction, and the first direction is perpendicular to the axis of the induction coil.
  • the heating seat includes a plurality of sub-heating seats, and the working space is formed between two adjacent sub-heating seats; the tray is arranged on the sub-heating seats.
  • the centerline of the tray along the direction perpendicular to the axis of the induction coil is defined as the first centerline, and the shortest distance between the first centerline of the tray and the center of the sub-heating seat corresponding to the tray The distance is 0-20mm.
  • each of the workspaces is provided with an inlet and an outlet oppositely arranged, the inlet is used to input the reaction medium into the workspace, and the outlet is used to output the reaction medium from the workspace .
  • the direction in which the reaction medium flows from the inlet to the outlet is defined as the second direction, and two adjacent trays are arranged staggered along the second direction.
  • the reaction medium flows along the axial direction of the induction coil, the second direction is the axial direction of the induction coil; the line parallel to the axis of the induction coil is a trajectory line, and two adjacent The first centerline of each said pallet intersects the same said trajectory line.
  • the centerline of the reaction body along the axial direction of the induction coil is defined as the second centerline, and the distance between the axis of the induction coil and the second centerline is 0-4mm .
  • the distance between the center of the induction coil and the center of the reaction body is 0-50 mm.
  • the reaction body further includes a carrier, and the heating seat is installed on the carrier.
  • the beneficial effects of the epitaxial growth device provided by the present application are as follows: the present application sets a plurality of trays for carrying substrates in the heating base, and each tray is equipped with an independent working space, each Each tray can be independently controlled to rotate, thereby simultaneously generating multiple epitaxial layers in a single epitaxial growth device, improving work efficiency and effectively increasing output; The speed of the tray can be controlled individually, and each tray can individually adjust the environmental parameters of the corresponding workspace, so that the environment and speed of each tray are consistent, so that the thickness of the epitaxial layer and the doping degree of the product in different workspaces uniform.
  • the epitaxial production device provided in the present application, the product quality of the same batch can be guaranteed to be consistent while increasing the output, and the products can be guaranteed to have good quality.
  • the strength of the magnetic field formed in the induction coil is different. If multiple workspaces are stacked and arranged along the axis direction of the induction coil, the magnetic fields of the multiple workspaces are different, resulting in multiple workspaces. There is a big difference in the temperature difference between the spaces, which affects the quality of the epitaxial layer; this application arranges a plurality of working spaces along the direction perpendicular to the axis of the induction coil, so that the multiple working spaces are located in the same magnetic field area, thereby reducing multiple The temperature difference between each workspace ensures temperature balance in multiple workspaces, improves product quality, and improves the quality of the epitaxial layer produced in each workspace while increasing production.
  • FIG. 1 is a schematic diagram of an epitaxial growth device provided in an embodiment of the present application.
  • FIG. 2 is a cross-sectional view of the reaction body in FIG. 1 .
  • Fig. 3 is an exploded view of a reactant provided in an embodiment of the present application.
  • FIG. 4 is a cross-sectional view of the reaction body in FIG. 3 .
  • FIG. 5 is a cross-sectional view of the reaction body in FIG. 3 .
  • Fig. 6 is a cross-sectional view of a reaction body in another embodiment of the present application.
  • Fig. 7 is a temperature curve diagram showing the change of substrate center temperature as the installation position of the tray on the sub-heating seat changes (the reaction body shown in Fig. 3 is used for simulation).
  • Fig. 8 is a graph showing the variation of the temperature difference between the substrate center temperature and the edge temperature when the tray is installed at different positions along the axial direction of the induction coil (the reaction body shown in Fig. 3 is used for simulation).
  • FIG. 9 is a variation curve of the temperature difference between the substrates on two adjacent trays when the induction coil moves along the first direction (the reaction body shown in FIG. 3 is used for simulation).
  • Fig. 10 is a schematic diagram of a tray and a substrate in an embodiment of the present application.
  • a component when a component is said to be “mounted on” another component, it may be directly mounted on another component or there may be an intervening component.
  • a component When a component is said to be “set on” another component, it may be set directly on the other component or there may be an intervening component at the same time.
  • a component When a component is said to be “fixed” to another component, it may be directly fixed to the other component or there may be an intervening component at the same time.
  • the temperature difference between each working space is relatively large, and the uniformity of temperature distribution in the working space directly affects the thickness uniformity and doping uniformity of the epitaxial film. Large temperature differences between chambers will affect the quality of the epitaxial layer.
  • the applicant found through research that the current epitaxial growth device with multiple working spaces has a large temperature difference between the multiple working spaces because the multiple working spaces and heating seats are arranged along the axis of the induction coil, while Along the axial direction of the induction coil, the strength of the magnetic field formed in the induction coil is different.
  • the heating bases are stacked along the axis direction of the induction coil, the magnetic fields where multiple heating bases are located are different, resulting in a large temperature difference between multiple heating bases, thus making There is a large difference in temperature in multiple working spaces; in addition, each working space is equipped with an induction coil, and the magnetic fields of different induction coils are different, which also leads to a large temperature difference between the heating seats in multiple working spaces.
  • the present application provides an epitaxial growth device 100.
  • the epitaxial growth device 100 includes an induction coil 300 and a reaction body 200.
  • the induction coil 300 is surrounded by the reaction body 200.
  • the reaction body 200 is used for The substrate 9 is housed and heated.
  • the reaction body 200 includes a plurality of trays 2 and a heating seat 1, the heating seat 1 has a plurality of work spaces 4, the trays 2 are located in the work spaces 4, and each tray 2 corresponds to a work space 4; wherein, the tray 2 is used for to carry the substrate 9 , and each tray 2 can independently rotate relative to the heating base 1 .
  • the heat in the working space 4 comes from the induction heat generated by the electromagnetic induction of the heating base 1 by the induction coil 300, and then the heating base 1 heats the tray 2 and the substrate 9 on the tray 2; More than one reaction medium (usually in gaseous state) is introduced into the working space 4 to undergo chemical reactions with each other to form a new material, which is deposited on the surface of the substrate 9 to form an epitaxial layer.
  • the reaction medium selected in this application is gaseous, of course, in other embodiments, the form of the reaction medium depends on the epitaxial layer to be produced.
  • a plurality of trays 2 are set in one epitaxial growth device 100 to produce epitaxial layer products, and multiple epitaxial layers can be produced simultaneously through one production process, thereby improving work efficiency and effectively increasing output.
  • each tray 2 in the present application controls the rotation independently, so that the rotation speed of each tray 2 meets the standard, and each tray 2 is equipped with an independent working space 4, so that the location of the tray 2 can be adjusted accordingly.
  • the environment of the working space 4 ensures that the temperature of multiple trays 2 is uniform, and the rotation speed can be adjusted to be consistent, so that high-quality epitaxial layers with uniform thickness and uniform doping of the product are generated on multiple trays.
  • the epitaxial growth device 100 provided by this application While increasing the output, it can also ensure that the quality of the same batch of products is consistent and the products have excellent quality.
  • multiple workspaces 4 are stacked and arranged along the first direction, wherein the first direction is perpendicular to the axis of the induction coil 300, so that the multiple workspaces 4 are located in the same magnetic field area, and the multiple workspaces 4 share a common An induction coil 300, thereby reducing the temperature difference between multiple working spaces 4, ensuring the temperature balance in multiple working spaces 4, improving product quality, and reducing the difference of the same batch of products.
  • the arrangement of multiple workspaces is not limited to the above, for example, multiple workspaces can be arranged along the axis of the induction coil, or multiple workpiece spaces can be arranged on the same horizontal plane .
  • the centerline of the reaction body 200 along the axial direction of the induction coil 300 is defined as the second centerline.
  • the second central line is arranged parallel to the axis of the induction coil 300 , and a plurality of working spaces 4 are arranged in the central area of the induction coil 300 .
  • the reason is that, along the axial direction of the induction coil 300, the magnetic field formed in the induction coil 300 is different in strength, the magnetic field at both ends of the coil is different from the magnetic field in the middle of the coil, and the magnetic field at both ends of the induction coil 300 is unstable, resulting in the magnetic field at both ends of the induction coil 300.
  • the temperature difference of the working space 4 at the end is relatively large, so a plurality of working spaces 4 can be optionally arranged in the middle area of the induction coil 300 .
  • the heating seat 1 can be an integrated structure or a split structure.
  • the heating seat 1 includes a plurality of sub-heating seats; A working space 4 is formed around it, and the tray 2 is arranged on the sub-heating seat.
  • two adjacent working spaces 4 share one sub-heating base.
  • two adjacent workspaces 4 share one sub-heating seat, the heat of the sub-heating seat shared between the two adjacent workspaces can be more fully utilized, the utilization rate of heat energy can be improved, and the production cost can be reduced.
  • the number of sub-heating seats is three, and the three sub-heating seats are marked as the first sub-heating seat 11, the second sub-heating seat 12, and the third sub-heating seat 13, so that a working space 4 is formed between the first sub-heating seat 11 and the second sub-heating seat 12, and another working space 4 is formed between the second sub-heating seat 12 and the third sub-heating seat 13, Two adjacent working spaces 4 share the sub-heating seat between them, for example, share the second sub-heating seat 12, so as to improve the utilization rate of heat energy.
  • the number of sub-heating seats is not limited to the above or shown in the figure, for example, more than three sub-heating seats may be provided.
  • the sub-heating seats at the bottom and the top have the same shape, and the centerline of the reaction body along the axis of the induction coil 300 is the second centerline, and the two sub-heating seats are axisymmetric about the second centerline, so that the reaction body 200
  • the overall distribution is approximately symmetrical up and down, so as to reduce the temperature difference among multiple working spaces 4 .
  • the shapes of the first sub-heating seat 11 and the third sub-heating seat 13 are similar, for example, the first sub-heating seat 11 and the third sub-heating seat 13 are crescent-shaped, while the second The heating seat 12 is a flat plate structure.
  • the shapes of the first sub-heating seat 11 and the third sub-heating seat 13 are not limited to the above.
  • the first sub-heating seat 11, the third sub-heating seat 13 The shapes of the second sub-heating seat 12 and the third sub-heating seat 13 are all different, wherein the second sub-heating seat 12 is in the shape of a crescent, and the third sub-heating seat 13 is in the shape of a flat plate, and the third sub-heating seat 13 is formed by the second sub-heating seat.
  • Heating seat 12 supports. It can be understood that, in other embodiments, the shape of the heating seat is not limited to the above or shown in the accompanying drawings, and may also be other shapes.
  • a bearing groove 14 is opened on the sub-heating seat for carrying the tray 2, and the carrying groove 14 is used for carrying the tray 2, specifically, in this embodiment, the sub-heating seat for carrying the tray 2
  • the second sub-heating base 12 and the third sub-heating base 13 are provided with bearing slots 14 .
  • a positioning column 15 is arranged at the axis of the carrying groove 14, and the positioning column 15 extends along the first direction, and the tray 2 is rotatably arranged on the positioning column 15, and the tray 2 and the positioning column 15 coaxial setting.
  • the sub-heating seat for carrying the tray 2 is provided with an air flotation channel 16, and the air flotation channel 16 communicates with the outside of the carrying tank 14 and the reaction body 200 respectively, and there are several spirally distributed bottoms of the tray 2.
  • Strip-shaped grooves (not shown in the figure), under vacuum conditions, a small flow of gas is introduced into the air flotation channel 16, and the gas can drive the corresponding tray 2 to achieve suspension and rotate around the positioning column 15 to realize
  • the independent control of a single tray 2 and the rotation of the substrate 9 placed on the tray 2 ensure that each substrate 9 is heated evenly during the growth of the epitaxial process and the airflow on the substrate 9 is evenly distributed to achieve uniform thickness of the epitaxial layer sex.
  • the corresponding trays 2 will have the same rotational speed, which can effectively improve the temperature uniformity and gas flow uniformity of the plurality of trays 2, thereby ensuring that the substrates 9 are The thickness of the epitaxial layer produced is uniform, and the quality of the same batch of products is consistent.
  • the way of controlling the independent rotation of the trays is not limited to the above-mentioned air flotation channel, and each tray 2 can also be equipped with an independent driving member to control the independent rotation of the trays 2 .
  • the centerline of the tray 2 along the direction perpendicular to the axis of the induction coil 300 is the first centerline, that is, the centerline of the tray 2 along the first direction is the first centerline, and the first centerline of the tray 2 is in line with the
  • the shortest distance between the centers of the sub-heating seats corresponding to the tray 2 is optionally 0-20 mm, so as to ensure that the substrate 9 on the tray 2 is located in the middle of the sub-heating seats. Within this range, adjust the relative position of the tray 2 and the sub-heating seat to improve the temperature uniformity of each area on the tray.
  • the shortest distance between the first centerline of the tray 2 and the center of the sub-heating seat corresponding to the tray is not limited to the above, and the specific distance range needs to be based on the actual volume of the epitaxial growth device 100 and the volume of the heating seat. , to adjust the relative position of the tray 2 and the sub-heating seat.
  • each workspace 4 is provided with an inlet 5 and an outlet 6 which are arranged oppositely, the inlet 5 is used to input the reaction medium to the workspace 4, and the outlet 6 is used to output the reaction medium from the workspace 4 .
  • the direction in which the reaction medium flows from the inlet 5 to the outlet 6 is the second direction, and two adjacent trays 2 are staggered along the second direction. It can be understood that there is a difference in the maximum temperature on the substrate 9 on two adjacent sub-heating seats under the same condition, and when the reaction gas flows from the inlet 5 to the outlet 6 along the second direction, the temperature of the gas gradually climbs, so that the corresponding The two adjacent trays 2 are arranged staggered along the second direction. When the gas flows, the temperature of the gas can compensate the temperature difference between the two trays 2, and reduce the temperature difference between the two adjacent trays as much as possible, thereby reducing The temperature difference between the substrates 9 .
  • Figure 7 is a temperature curve showing that the center temperature of the substrate 9 changes with the installation position of the tray 2 on the sub-heating seat. When installed in different positions, the change curve of the temperature difference between the center temperature and the edge temperature of the substrate 9.
  • the reaction medium flows along the axial direction of the induction coil 300, that is, the second direction is the axial direction of the induction coil 300; wherein the line parallel to the axis of the induction coil 300 is the trajectory line, The first centerlines of two adjacent pallets 2 intersect with the same trajectory line.
  • two adjacent trays 2 are arranged along the axis of the induction coil 300 or the same trajectory, so that two adjacent trays 2 can be arranged staggered along the optimal second direction, and by adjusting the space of the sub-heating seat
  • the third direction is perpendicular to the first direction and the second direction at the same time.
  • FIG. 9 is a variation curve of the temperature difference between the substrates 9 on two adjacent trays when the induction coil moves along the first direction. Moving and adjusting the relative position of the induction coil 300 and the reaction body 200 along the first direction can compensate the temperature difference between the substrates 9 .
  • the distance between the axis of the induction coil 300 and the second centerline of the reaction body 200 is 0mm-4mm, and fine-tuning the relative position of the induction coil 300 and the reaction body 200 within this distance range has a better temperature adjustment effect.
  • the distance between the axis of the induction coil 300 and the second centerline is not limited to the above, and the relative distance between the induction coil 300 and the reaction body 200 can be obtained specifically according to simulation.
  • the relative position of the induction coil 300 and the reaction body 200 can also be adjusted by moving along the axis of the induction coil 300 itself, so as to adjust the temperature distribution of the substrates 9 in the plurality of working spaces 4 .
  • the movement of the induction coil 300 along its own axis will affect the temperature distribution of the entire reaction body 200, thereby affecting the temperature distribution of the substrates 9 in the plurality of working spaces 4, affecting the epitaxy. layer quality.
  • the distance between the center of the induction coil 300 and the center of the reaction body 200 is 0mm-50mm.
  • the range of the relative distance between the induction coil 300 and the reaction body 200 in the axial direction is not limited to the above, and the relative position of the induction coil 300 and the reaction body 200 needs to be adjusted according to the size of the equipment volume and the simulation results. .
  • the reaction body 200 also includes a support member, which is arranged between two adjacent sub-heating seats to form the cavity wall of the working space 4, specifically, the first sub-heating seat 11 and A supporting piece 8 is arranged between the second sub-heating seats 12 , and the supporting piece 8 forms a side wall of the working space 4 .
  • the reaction body 200 further includes a carrier 3 on which the heating seat 1 is installed.
  • the carrier 3 is an axisymmetric structure. Specifically, referring to Fig. 2 and Fig. 3, the carrier 3 includes an insulating tube and two end covers 33, and the two end covers 33 are respectively covered on the two ends of the insulating tube, and the heating seat 1 is arranged in the insulating tube for heat preservation Work space 4, avoid heat loss. Wherein the two end caps 33 are also made of thermal insulation material.
  • the inlet 5 and the outlet 6 are correspondingly opened on the two ends of the cover 33, and the end cover 33 with the inlet 5 is opened with the gas supply port 7 connected with the air flotation channel 16, and the inert gas is introduced through the external pipeline. In the air supply port 7 and the air flotation channel 16.
  • the insulation cylinder includes a first insulation blanket 31 and a second insulation blanket 32, and the first insulation blanket 31 and the second insulation blanket 32 are arranged to form an insulation cylinder.
  • a first step 34 is provided on the first thermal insulation blanket 31, and a second step 35 opposite and corresponding to the first step 34 is provided on the second thermal insulation blanket 32.
  • the first step 34 and the second step 35 mutually Fitting, so that the first thermal insulation blanket 31 and the second thermal insulation blanket 32 are bonded to form a thermal insulation cylinder.
  • connection method between the first thermal insulation blanket 31 and the second thermal insulation blanket 32 is not limited to the above-mentioned,
  • the first thermal insulation blanket 31 and the second thermal insulation blanket 32 are integrally formed or connected by other connection structures such as buckle structure.
  • the same flow rate of hydrogen, argon and other inert gases are passed into the air flotation channels 16 on the second sub-heating seat 12 and the third sub-heating seat 13 respectively, and the two trays 2 are driven to rotate at the same speed by the air flow, The temperature uniformity in the two working spaces 4 is improved. Further, the same flow rate of reactive gas is started to flow into the two working spaces 4 , and the reactive gas reacts on the silicon carbide substrate 9 to form an epitaxial layer.
  • the epitaxial growth device provided in the present application is not only suitable for the epitaxial growth of silicon carbide, but also suitable for the growth of other semiconductor epitaxial layers.

Abstract

一种外延生长装置(100),包括感应线圈(300)和反应体(200),所述感应线圈(300)围设于所述反应体(200)周侧;所述反应体(200)包括加热座(1)、多个托盘(2);所述加热座(1)内具有多个工作空间(4),所述托盘(2)位于所述工作空间(4)内,且每个托盘(2)对应一所述工作空间(4);其中,所述托盘(2)用以承载衬底(9),且每个所述托盘(2)能够独立的相对于所述加热座(1)旋转。

Description

外延生长装置
相关申请
本申请要求2021年6月1日申请的,申请号为202110606879.4,发明名称为“外延生长装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体外延生长技术领域,尤其涉及一种外延生长装置。
背景技术
外延生长是半导体产业链条之中的重要一环,外延薄膜的质量直接制约着后续器件的性能,随着工业上对高质量半导体器件的需求越来越大,高效率高质量的外延设备得到了越来越多的关注。
外延生长主要是指在衬底上生长一层质量较高的薄膜,生长外延层有很多方法,但采用最多的是化学气相沉积法(CVD),化学气相沉积法是指化学气体或蒸汽在基质表面反应合成涂层或纳米材料的方法;采用两种或两种以上的反应介质(反应介质通常为气态)导入到一个工作空间内,然后他们相互之间发生化学反应,形成一种新的材料,沉积衬底表面上。托盘的转速以及托盘所在的工作空间的温度是影响沉积速率的重要因素之一,托盘的转速工作空间温度分布均匀性直接影响着外延薄膜的厚度均匀性和掺杂均匀性。
目前的外延炉大多只有一个工作空间,工作空间内设置多个托盘以提高产量,然而多个托盘共用一工作空间,工作空间内各区域的温度不均衡,以及多个托盘的转速无法独立调控,导致生产的外延层质量参差不齐。
发明内容
有鉴于此,为解决背景技术中提出的技术问题,有必要提供一种外延生长装置。
本申请提供一种外延生长装置,包括感应线圈和反应体,所述感应线圈围设于所述反应体周侧;所述反应体包括加热座、多个托盘;所述加热座内具有多个工作空间,所述多个托盘位于所述多个工作空间内,且每个托盘对应一所述工作空间;其中,所述托盘用以承载衬底,且每个所述托盘能够独立的相对于所述加热座旋转。
在其中一个实施例中,多个所述工作空间沿第一方向叠加排布,所述第一方向垂直于所述感应线圈的轴线。
在其中一个实施例中,所述加热座包括多个子加热座,相邻的两个所述子加热座之间围设形成所述工作空间;所述托盘设置于所述子加热座上。
在其中一个实施例中,将所述托盘沿垂直于所述感应线圈轴线方向的中心线定义为第一中心线,所述托盘的第一中心线与该托盘对应的子加热座的中心的最短距离为0-20mm。
在其中一个实施例中,每个所述工作空间开设有相对设置的进口和出口,所述进口用于向所述工作空间输入反应介质,所述出口用于从所述工作空间内输出反应介质。
在其中一个实施例中,将反应介质由所述进口流向所述出口的方向定义为第二方向,相邻两个所述托盘沿所述第二方向错开设置。
在其中一个实施例中,反应介质沿所述感应线圈的轴向流通,所述第二方向为所述感应线圈的轴向;与所述感应线圈的轴线平行的线为轨迹线,相 邻两个所述托盘的第一中心线与同一所述轨迹线相交。
在其中一个实施例中,将所述反应体沿所述感应线圈轴向的中心线定义为第二中心线,所述感应线圈的轴线与所述第二中心线之间的距离为0-4mm。
在其中一个实施例中,沿所述感应线圈的轴向,所述感应线圈的中心与所述反应体的中心之间的距离为0-50mm。
在其中一个实施例中,所述反应体还包括承载体,所述加热座安装于承载体上。
本申请提供的一种外延生长装置,相比于现有技术的有益效果如下:本申请通过在加热座内设置多个用于承载衬底的托盘,每个托盘配备一独立的工作空间,每个托盘均能够独立控制转动,从而在单个外延生长装置内同时生成多个外延层,提高工作效率,有效提高产量;且由于每个托盘的转速单独控制以及配备独立的工作空间,由此每个托盘的转速可单一控制,且每个托盘可单独调整对应的工作空间的环境参数,以使得每个托盘的环境以及转速一致,从而使得不同的工作空间内的外延层厚度以及生成物掺杂度均匀。通过本申请提供的外延生产装置,在提高产量的同时能够确保同一批次的产品质量一致,且确保产品具备良好的质量。
进一步地,沿感应线圈的轴线方向,感应线圈内形成的磁场强弱不同,若多个工作空间沿着感应线圈的轴线方向堆叠排布,则多个工作空间所在的磁场不同,导致多个工作空间之间的温差存在较大差异,影响外延层质量;本申请通过将多个工作空间沿垂直于感应线圈的轴线的方向排布,以使得多个工作空间位于同一磁场区域,从而减小多个工作空间之间温差,确保多个工作空间内的温度均衡,提高产品质量,在提高产量的同时提高提高各个工作空间内生产的外延层质量。
附图说明
图1本申请一个实施例中提供的外延生长装置的示意图。
图2为图1中的反应体的剖视图。
图3为本申请的一个实施例中提供的反应体的爆炸图。
图4为图3中的反应体的剖视图。
图5为图3中的反应体的剖视图。
图6为本申请的另一个实施例中的反应体的剖视图。
图7为衬底中心温度随托盘在子加热座上的安装位置改变而变化的温度曲线图(采用图3所示的反应体进行仿真模拟)。
图8为托盘沿感应线圈的轴向的不同位置安装时衬底中心温度与边缘温度差值的变化曲线图(采用图3所示的反应体进行仿真模拟)。
图9为感应线圈沿第一方向移动时,相邻的两个托盘上的衬底的温度差值的变化曲线(采用图3所示的反应体进行仿真模拟)。
图10为本申请一实施例中托盘和衬底的示意图。
主要元件符号说明
100、外延生长装置;200、反应体;300、感应线圈;1、加热座;11、第一子加热座;12、第二子加热座;13、第三子加热座;14、承载槽;15、定位柱;16、气浮通道;2、托盘;3、承载体;31、第一保温毡;32、第二保温毡;33、端盖;34、第一台阶;35、第二台阶;4、工作空间;5、进口;6、出口;7、供气口;8、支撑件;9、衬底。
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“装设于”另一个组件,它可以直接装设在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本申请所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
传统的外延生长装置大多只有单个工作空间,导致外延生长装置内的热量利用效率低,当该工作空间内只设置一个托盘用于生产时,生产效率极低;为提高产量,通常于采用的方法是安装在工作空间内安装多个托盘,然而,申请人多次测试仿真发现,一个工作空间内,其各个区域的温度存在不均衡的情况,而温度是影响沉积速率的重要因素之一,故而导致多个托盘的温度不均衡;另外多个托盘随用于承载托盘的加热座转动,多个托盘无法独立控制其转速,综上,导致生产出的同批次的外延层质量参差不齐,难以确保每个产品质量。
另外,目前也存在具有多个工作空间的外延生长装置,然而其各个工作 空间之间的温度差异较大,工作空间温度分布均匀性直接影响着外延薄膜的厚度均匀性和掺杂均匀性,多个腔室之间温度差异较大将影响外延层的质量。申请人通过研究发现,目前具有多个工作空间的外延生长装置,其多个工作空间之间温度差异较大的原因在于,多个工作空间以及加热座沿感应线圈的轴线方向延伸排布,而沿感应线圈的轴向,感应线圈内形成的磁场强弱不同,若加热座沿着感应线圈的轴线方向堆叠,则多个加热座所在的磁场不同,导致多个加热座温差较大,从而使得多个工作空间内的温度存在较大差异;另外,每个工作空间单独配备一感应线圈,不同的感应线圈其磁场存在差异,同样导致多个工作空间的加热座之间存在较大的温差。
[根据细则91更正 10.05.2022] 
参阅图1-图6和图10,本申请提供一种外延生长装置100,外延生长装置100包括感应线圈300和反应体200,感应线圈300围设于反应体200周侧,反应体200用于容置衬底9并对衬底9进行加热。其中,反应体200包括多个托盘2以及加热座1,加热座1内具有多个工作空间4,托盘2位于工作空间4内,且每个托盘2对应一工作空间4;其中,托盘2用以承载衬底9,且每个托盘2能够独立的相对于加热座1旋转。可以理解的是,工作空间4内的热量来源于加热座1受感应线圈300的电磁感应而产生的感应热,进而加热座1加热托盘2以及托盘2上的衬底9;将两种或两种以上的反应介质(通常为气态)导入到通入工作空间4内相互之间发生化学反应,形成一种新的材料,并沉积于衬底9表面上形成外延层。本申请选用的反应介质为气态,当然在其他实施例中,反应介质的形态根据所需生产的外延层而定。
本申请通过在一个外延生长装置100内设置多个托盘2以生产外延层产品,经一次生产流程可同时生成多个外延层,提高工作效率,有效提高产量。更重要的是,本申请中的每个托盘2独立控制转动,以使得每个托盘2的转 速均符合标准,且每个托盘2配备一独立的工作空间4,从而可对应的调控托盘2所在的工作空间4的环境,确保多个托盘2温度均匀,转速可调节至一致,从而使得多个托盘上生成厚度均匀以及生成物掺杂均匀的高质量外延层,本申请提供的外延生长装置100在提高产量的同时,还能够确保同一批次的产品质量一致且产品具有优良的质量。
[根据细则91更正 10.05.2022] 
作为可选的,多个工作空间4沿第一方向叠加排布,其中,第一方向垂直于感应线圈300的轴线,以使得多个工作空间4位于同一磁场区域,并且多个工作空间4共用一感应线圈300,从而降低多个工作空间4之间温差,确保多个工作空间4内的温度均衡,提高产品质量,降低同批次产品的差异。当然,在其他实施例中,多个工作空间排布的方式不局限于以上所述,例如多个工作空间可以沿感应线圈的轴线方向排布,也可以多个工件空间排布于同一水平面上。
更优的是,参阅图2,定义反应体200沿感应线圈300轴向的中心线为第二中心线。第二中心线与感应线圈300的轴线平行设置,且多个工作空间4设置于感应线圈300的中部区域。原因在于,沿感应线圈300的轴线方向,感应线圈300内形成的磁场强弱不同,线圈两端的磁场与线圈中部的磁场存在差异,且感应线圈300两端的磁场不稳定,导致位于感应线圈300两端的工作空间4温度差异较大,从而可选将多个工作空间4设置于感应线圈300的中部区域。
在本申请中,加热座1可以是一体式的结构,也可以是分体式的结构,例如,参阅图1-图6,加热座1包括多个子加热座;相邻的两个子加热座之间围设形成工作空间4,托盘2设置于子加热座上。换言之,相邻两个工作空间4共用一子加热座。本申请中相邻的两个工作空间4共用一子加热座中,能够 更充分的利用相邻两个工作空间之间共用的子加热座的热量,提高热能利用率,降低生产成本。
[根据细则91更正 10.05.2022] 
具体参阅图1-图6,在本实施例中,子加热座设置的数量为三个,将三个子加热座标示为第一子加热座11、第二子加热座12、第三子加热座13,从而第一子加热座11与第二子加热座12之间围设成一个工作空间4,第二子加热座12与第三子加热座13之间围设形成另一个工作空间4,两个相邻的工作空间4共用两者之间的子加热座,例如共用第二子加热座12,提高热能利用率。当然在其他实施例中,子加热座设置的数量不局限于以上所述或图中所示,例如还可以设置三个以上的子加热座。
沿第一方向,位于底部以及顶部的子加热座的形状相同,反应体沿感应线圈300轴向的中心线为第二中心线,该两个子加热座关于第二中心线轴对称,使得反应体200整体上下近似对称分布,以减小多个工作空间4之间的温度差异。具体的,参阅图3、图4,第一子加热座11与第三子加热座13的形状相似,例如第一子加热座11与第三子加热座13均为月牙形状,而第二子加热座12为平板结构,当然在其他的实施例中,第一子加热座11与第三子加热座13的形状不局限于以上所述,例如图6中,第一子加热座11、第二子加热座12、第三子加热座13的形状均不相同,其中第二子加热座12为月牙形状,第三子加热座13为平板形状,且第三子加热座13由第二子加热座12支撑。可以理解的是,在其他实施例中,加热座的形状不局限于以上所述或附图中所示,也可以是其他的形状。
进一步地,参阅图3-图5,用于承载托盘2的子加热座上开设有承载槽14,承载槽14用于承载托盘2,具体的,在本实施例中,用于承载托盘2的第二子加热座12和第三子加热座13上开设有承载槽14。
进一步地,参阅图4、图5,承载槽14的轴心处设置定位柱15,定位柱15沿第一方向延伸,托盘2可转动的设置于定位柱15上,且托盘2与定位柱15同轴设置。
请继续参阅图4、图5,用于承载托盘2的子加热座上开设有气浮通道16,气浮通道16分别与承载槽14和反应体200的外部连通,托盘2底部螺旋分布有若干条状凹槽(图中未示出),在真空的工况下,向气浮通道16内通入小流量的气体,气体能够驱动对应的托盘2实现悬浮并绕着定位柱15旋转,实现单个托盘2的独立控制,并带动放置在托盘2上的衬底9的旋转,确保每个衬底9在外延工艺生长中受热均匀以及衬底9上的气流分布均匀,实现外延层厚度的均匀性。具体地,多条气浮通道16内通入的惰性气体流量相同,则对应的托盘2的转速相同,有效提高多个托盘2的温度均匀性以及气流均匀性,进而确保多个衬底9上生成的外延层厚度均匀,且同批次产品质量一致。当然在其他实施例中,控制托盘独立转动的方式不局限与以上所述的气浮通道,也可以为每个托盘2配备独立的驱动件,以控制托盘2独立转动。
[根据细则91更正 10.05.2022] 
作为可选的,托盘2沿垂直于感应线圈300轴线方向的中心线为第一中心线,即托盘2沿第一方向的的中心线为第一中心线,托盘2的第一中心线与该托盘2对应的子加热座的中心的最短距离可选的为0-20mm,确保托盘2上的衬底9位于子加热座中部。在该范围内调整托盘2与子加热座的相对位置,以提高托盘上各区域的温度的均匀性。当然在其他实施例中,托盘2的第一中心线与该托盘对应的子加热座的中心的最短距离不局限于以上,具体的距离范围需根据外延生长装置100的实际体积以及加热座的体积,调节托盘2与子加热座的相对位置。
参阅图2、图3、图5,每个工作空间4开设有相对设置的进口5和出口 6,进口5用于向工作空间4输入反应介质,出口6用于从工作空间4内输出反应介质。
[根据细则91更正 10.05.2022] 
进一步地,反应介质由进口5流向出口6的方向为第二方向,相邻两个托盘2沿第二方向错开设置。可以理解的是,同一条件下相邻两个子加热座上的衬底9上的最高温度存在差异,而反应气体沿第二方向从进口5到出口6流动时,气体温度逐渐爬升,从而将相邻两个托盘2沿着第二方向错开排布,气体流动时可以气体的温度可以补偿两个托盘2之间的温度差异,尽可能的减小相邻两个托盘的温度差异,进而减小衬底9之间的温度差异。因此相邻两个托盘2沿第二方向错开设置时,温度调节最优。其中可以是直接调节托盘在子加热座上的位置以调节托盘的空间位置,也可以调节相邻子加热座的空间位置进而达到调节托盘的空间位置。具体调节效果如图7、8所示,图7为衬底9的中心温度随托盘2在子加热座上的安装位置改变而变化的温度曲线图,图8为托盘2沿感应线圈300的轴向的不同位置安装时,衬底9中心温度与边缘温度差值的变化曲线图。
参阅图1-图8,在本实施例中,反应介质沿感应线圈300的轴向流通,即第二方向为感应线圈300的轴向;其中与感应线圈300的轴线平行的线为轨迹线,相邻两个托盘2的第一中心线与同一轨迹线相交。换言之,相邻两个托盘2沿着感应线圈300轴线或同一条轨迹线排布,以使得相邻两个托盘2能够沿最优的第二方向错开排布,并且通过调节子加热座的空间位置来调节托盘2的位置时,避免相邻两个子加热座沿第三方向的偏移,从而在均衡温度的同时,避免增大反应体的体积。其中,第三方向同时垂直于第一方向和第二方向。
另外,实际应用时,多个子加热座上的衬底9的温度存在差异,调整感 应线圈300与反应体200的相对位置,通过调节感应线圈300在第一方向上的位移作为修正量,以补偿多个子加热座之间温度差异,使得子加热座上的托盘2以及衬底9的温度分布更加均衡,缩小衬底9间的温差。
作为可选的,参阅图9,图9为感应线圈沿第一方向移动时,相邻的两个托盘上的衬底9的温度差值的变化曲线。沿第一方向移动调整感应线圈300与反应体200的相对位置,能够补偿衬底9之间的温度差。
可选的,感应线圈300的轴线与反应体200的第二中心线之间的距离为0mm-4mm,在该距离范围内微调感应线圈300与反应体200的相对位置,温度调节效果较优。当然在其他实施例中,感应线圈300的轴线与第二中心线之间的距离不局限以上所述,具体可根据仿真获取感应线圈300于反应体200的相对间距。
作为可选的,还可以通过沿感应线圈300自身的轴线方向移动调节感应线圈300与反应体200的相对位置,用以调节多个工作空间4内的衬底9的温度分布。当感应线圈300的结构和电参数不变时,感应线圈300沿其自身轴向移动会影响整个反应体200的温度分布,进而影响多个工作空间4内的衬底9的温度分布,影响外延层的质量。
更优的,沿感应线圈的轴线方向,感应线圈300的中心与反应体200的中心之间的距离为0mm-50mm。当然在其他实施例中,感应线圈300与反应体200的在轴线方向的相对距离范围不局限于以上所述,具体需根据设备体积的大小以及仿真结果调节感应线圈300与反应体200的相对位置。
参阅图3、图4、图6,反应体200还包括支撑件,支撑件设置于两相邻的子加热座之间,形成工作空间4的腔壁,具体的,第一子加热座11与第二子加热座12之间设置有支撑件8,支撑件8形成工作空间4的侧壁。
参阅图1、图2,反应体200还包括承载体3,加热座1安装于承载体3上。
[根据细则91更正 10.05.2022] 
进一步地,承载体3为轴对称的结构。具体的,参阅图2、图3,承载体3包括保温筒以及两端盖33,两端盖33分别盖设于保温筒的两端,加热座1设置于保温筒内,用于保温多个工作空间4,避免热量流失。其中两个端盖33同样采用保温材质制成。对应的,进口5与出口6分别对应的开设于两端盖33上,开设有进口5的端盖33上开设有与气浮通道16连通的供气口7,惰性气体由外部管路通入供气口7以及气浮通道16内。
具体的,在本实施例中,保温筒包括第一保温毡31和第二保温毡32,第一保温毡31和第二保温毡32围设成保温筒。可选的,第一保温毡31上设置第一台阶34,第二保温毡32上设置与第一台阶34相对且对应的第二台阶35,装配时,第一台阶34与第二台阶35相互嵌合,以使得第一保温毡31与第二保温毡32贴合形成保温筒,当然在其他实施例中,第一保温毡31与第二保温毡32连接的方式不局限于以上所述,例如第一保温毡31与第二保温毡32一体制成或卡扣结构等其他连接结构实现连接。
综上所述,参阅图3-图5,具体阐述本申请的具体实施工作过程:
[根据细则91更正 10.05.2022] 
以碳化硅外延生长为例,将碳化硅衬底9分别置于多个工作空间4内的托盘2上,调整托盘2沿反应介质流动的方向错位设置;由于沿第一方向位于上方的工作空间通常温度偏高,进一步,工作空间4内处于低压环境下,根据仿真数据对感应线圈300安装位置进行调整,即调整感应线圈300与反应体200之间的相对位置,一般沿第一方向下移感应线圈300,使得感应线圈300的中心热流下移,以均衡第一方向上的加热座的温度;通电使感应线圈300给子加热座迅速升温,直至使两个工作空间4达到外延生长所需工艺温度, 将相同流量的氢气、氩气等惰性气体分别通入第二子加热座12和第三子加热座13上的气浮通道16内,通过气流带动两个托盘2以相同转速旋转,提高两个工作空间4内的温度均匀性。进一步地,开始向两个工作空间4内通入相同流量的反应气体,反应气体于碳化硅衬底9上反应生成外延层。
当然在其他实施例中,本申请提供的外延生长装置不仅适用于碳化硅外延生长,还适用于其他半导体外延层的生长。
以上实施方式的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施方式中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围内。

Claims (10)

  1. 一种外延生长装置,其特征在于,包括感应线圈和反应体,所述感应线圈围设于所述反应体周侧;
    所述反应体包括加热座、多个托盘;所述加热座内具有多个工作空间,所述多个托盘位于所述多个工作空间内,且每个托盘对应一个所述工作空间;
    其中,所述多个托盘用以承载衬底,且每个所述托盘能够独立的相对于所述加热座旋转。
  2. 根据权利要求1所述的外延生长装置,其中,所述多个工作空间沿第一方向叠加排布,所述第一方向垂直于所述感应线圈的轴线。
  3. 根据权利要求1或2所述的外延生长装置,其中,所述加热座包括多个子加热座,相邻的两个所述子加热座之间围设形成所述多个工作空间;所述托盘设置于所述子加热座上。
  4. 根据权利要求3所述的外延生长装置,其中,将所述托盘沿垂直于所述感应线圈轴线方向的中心线定义为第一中心线,所述托盘的第一中心线与该托盘对应的子加热座的中心的最短距离为0-20mm。
  5. 根据权利要求1所述的外延生长装置,其中,每个所述工作空间开设有相对设置的进口和出口,所述进口用于向所述工作空间输入反应介质,所述出口用于从所述工作空间内输出反应介质。
  6. 根据权利要求5所述的外延生长装置,其中,将反应介质由所述进口流向所述出口的方向定义为第二方向,相邻两个所述托盘沿所述第二方向错开设置。
  7. 根据权利要求6所述的外延生长装置,其中,反应介质沿所述感应线圈的轴向流通,所述第二方向为所述感应线圈的轴向;与所述感应线圈的轴 线平行的线为轨迹线,相邻两个所述托盘的第一中心线与同一所述轨迹线相交。
  8. 根据权利要求1或2所述的外延生长装置,其中,将所述反应体沿所述感应线圈轴向的中心线定义为第二中心线,所述感应线圈的轴线与所述第二中心线之间的距离为0-4mm。
  9. 根据权利要求1所述的外延生长装置,其中,沿所述感应线圈的轴向,所述感应线圈的中心与所述反应体的中心之间的距离为0-50mm。
  10. 根据权利要求1所述的外延生长装置,其中,所述反应体还包括承载体,所述加热座安装于承载体上。
PCT/CN2022/077689 2021-06-01 2022-02-24 外延生长装置 WO2022252709A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022000051.1T DE112022000051T5 (de) 2021-06-01 2022-02-24 Epitaxiewachstumsvorrichtung
JP2022524605A JP7417721B2 (ja) 2021-06-01 2022-02-24 エピタキシャル成長装置
KR1020227019043A KR20220163927A (ko) 2021-06-01 2022-02-24 에피택셜 성장 장치
US17/837,044 US20220384192A1 (en) 2021-06-01 2022-06-10 Epitaxial growth device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110606879.4 2021-06-01
CN202110606879.4A CN114250451B (zh) 2021-06-01 2021-06-01 外延生长装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/837,044 Continuation US20220384192A1 (en) 2021-06-01 2022-06-10 Epitaxial growth device

Publications (1)

Publication Number Publication Date
WO2022252709A1 true WO2022252709A1 (zh) 2022-12-08

Family

ID=80789639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077689 WO2022252709A1 (zh) 2021-06-01 2022-02-24 外延生长装置

Country Status (3)

Country Link
CN (1) CN114250451B (zh)
TW (1) TW202248475A (zh)
WO (1) WO2022252709A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330884A (ja) * 1996-06-07 1997-12-22 Sony Corp エピタキシャル成長装置
JP2004055896A (ja) * 2002-07-22 2004-02-19 Kobe Steel Ltd 加熱装置
CN101103453A (zh) * 2005-04-14 2008-01-09 Lpe公司 用于外延反应器的基座以及操作基座的工具
KR20100089468A (ko) * 2009-02-04 2010-08-12 전표만 반도체 기판의 열처리 장치 및 그 방법
CN104046959A (zh) * 2013-06-08 2014-09-17 唐治 一种用于碳化硅外延生长的化学气相沉积装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103422073A (zh) * 2012-05-24 2013-12-04 北京北方微电子基地设备工艺研究中心有限责任公司 用于感应加热的托盘及等离子体加工设备
CN104233233A (zh) * 2013-06-24 2014-12-24 北京北方微电子基地设备工艺研究中心有限责任公司 反应腔室及外延生长设备
JP2015143168A (ja) * 2014-01-31 2015-08-06 住友電気工業株式会社 炭化珪素エピタキシャル基板および炭化珪素エピタキシャル基板の製造方法
CN110331439A (zh) * 2019-07-22 2019-10-15 杭州弘晟智能科技有限公司 一种用于碳化硅外延的加热装置
CN111088526B (zh) * 2019-12-27 2021-05-11 季华实验室 一种多片装载的碳化硅外延生长设备
CN112111785A (zh) * 2020-09-18 2020-12-22 北京北方华创微电子装备有限公司 半导体设备及其工艺腔室
CN112259479A (zh) * 2020-10-23 2021-01-22 北京北方华创微电子装备有限公司 工艺腔室及半导体工艺设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330884A (ja) * 1996-06-07 1997-12-22 Sony Corp エピタキシャル成長装置
JP2004055896A (ja) * 2002-07-22 2004-02-19 Kobe Steel Ltd 加熱装置
CN101103453A (zh) * 2005-04-14 2008-01-09 Lpe公司 用于外延反应器的基座以及操作基座的工具
KR20100089468A (ko) * 2009-02-04 2010-08-12 전표만 반도체 기판의 열처리 장치 및 그 방법
CN104046959A (zh) * 2013-06-08 2014-09-17 唐治 一种用于碳化硅外延生长的化学气相沉积装置

Also Published As

Publication number Publication date
TW202248475A (zh) 2022-12-16
CN114250451B (zh) 2023-03-07
CN114250451A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
TW202105556A (zh) 基板處理裝置
US20080092812A1 (en) Methods and Apparatuses for Depositing Uniform Layers
US10793949B2 (en) Substrate processing apparatus and substrate processing method using the same
EP2101345B1 (en) Film deposition apparatus and film deposition method
KR20120023854A (ko) 성막 장치 및 성막 방법
US20100282166A1 (en) Heat treatment apparatus and method of heat treatment
KR100765866B1 (ko) 박막 기상 성장 방법 및 이 방법에 이용되는 박막 기상성장 장치
JP7417721B2 (ja) エピタキシャル成長装置
WO2022252709A1 (zh) 外延生长装置
KR20140058647A (ko) 선형 증착 챔버에서 가스를 분배하고 플라즈마를 적용하기 위한 장치 및 방법
JP2013538455A (ja) 基板加熱装置
KR101625478B1 (ko) 수직 적층식 히터를 구비한 박막 증착 장치 및 이를 이용한 박막 증착 방법
JPH04233723A (ja) 可変分配率ガス流反応室
CN110578132A (zh) 化学气相沉积方法和装置
JP7417722B2 (ja) エピタキシャル成長装置の加熱体
WO2023093455A1 (zh) 一种进气分配机构及具有其的 cvd 反应设备
WO2022252708A1 (zh) 外延生长装置的加热体
CN113652741B (zh) 外延生长装置
KR20040091651A (ko) 반도체층의 증착방법과 장치
JP2020161544A (ja) 成膜装置および成膜方法
KR101430747B1 (ko) 플라즈마를 이용한 기판 처리 장치
WO2023093351A1 (zh) 成膜装置
JP2008159944A (ja) 成膜装置および成膜方法
CN116970929A (zh) 供气装置、化学气相沉积设备及方法
JP2020161543A (ja) 成膜装置および成膜方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022524605

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814757

Country of ref document: EP

Kind code of ref document: A1