WO2022252705A1 - 一种业务报文的转发方法、网络设备以及无线网络 - Google Patents

一种业务报文的转发方法、网络设备以及无线网络 Download PDF

Info

Publication number
WO2022252705A1
WO2022252705A1 PCT/CN2022/077404 CN2022077404W WO2022252705A1 WO 2022252705 A1 WO2022252705 A1 WO 2022252705A1 CN 2022077404 W CN2022077404 W CN 2022077404W WO 2022252705 A1 WO2022252705 A1 WO 2022252705A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
service message
time
duration
target
Prior art date
Application number
PCT/CN2022/077404
Other languages
English (en)
French (fr)
Inventor
赵望生
黄长富
周赟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022252705A1 publication Critical patent/WO2022252705A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a service message forwarding method, network equipment and a wireless network.
  • the transmission path used to transmit service packets includes STAs, multiple APs, and gateways. Regardless of whether it is from the gateway to the STA or from the STA to the gateway, service packets need to be forwarded by multiple network devices included in the transmission path.
  • WiFi wireless fidelity
  • Each network device is pre-configured with a delay list, and the delay list includes correspondence between service types and forwarding delays.
  • each network device checks the delay list to determine the corresponding forwarding delay according to the service type of the service message, and the network device forwards the service message according to the forwarding delay.
  • each network device only considers its own forwarding delay to forward the service message, and it is very likely that the delay of transmitting the service message in the entire transmission path exceeds the target delay required by the service message.
  • the embodiment of the present invention provides a service message forwarding method, network equipment and wireless network, which can effectively avoid the situation that the time delay of the transmission path for transmitting the service message exceeds the time delay required by the service message.
  • an embodiment of the present invention provides a method for forwarding a service message, the method including: the first network device determines the target delay corresponding to the service message, and the target delay is the The time delay required for the transmission of the transmission path, the first network device is one of the plurality of network devices included in the transmission path; the first network device determines the remaining hop count, and the remaining hop count is the On the transmission path, the number of network devices that the service message has not passed through; the first network device determines the maximum scheduling duration according to the target delay and the remaining hops, and the service message is used for the Within the maximum scheduling duration, transmit between the first network device and a second network device, where the second network device is a network device adjacent to the first network device in the transmission path.
  • each network device needs to obtain the network device information according to the transmission situation of each network device in the transmission path (the target delay of transmitting service packets and the number of remaining hops, etc.).
  • the corresponding maximum scheduling time length and forward the service message within the maximum scheduling time length, effectively avoiding the situation that the service message exceeds the target delay required by the service message during the transmission process of the service message through the transmission path.
  • the transmission path is sequentially connected to the gateway, the first AP, the second AP, and the STA, then, in the downlink transmission direction of the transmission path, if the first network device is a gateway, then The second network device is the first AP. If the first network device is the first AP, then the second network device is the second AP. If the first network device is the second AP, then the second network device is a STA. It can be seen that, The first network device sends the service packet to the second network device within the maximum scheduling duration.
  • the transmission path is sequentially connected to the gateway, the first AP, the second AP, and the STA, then, the uplink transmission direction of the transmission path, and the service message is in direct uplink transmission status.
  • the first network device is a STA
  • the second network device is the second AP
  • the first network device is the second AP
  • the second network device is the first AP
  • the first network device is the first AP
  • the second The second network device is a gateway, and it can be known that the first network device sends service packets to the second network device within the maximum scheduling time.
  • the transmission path is sequentially connected to the gateway, the first AP, the second AP, and the STA, then the uplink transmission direction of the transmission path, and the service message is scheduled for uplink transmission status.
  • the first network device is the second AP, then the second network device is a STA; if the first network device is the first AP, then the second network device is the second AP; if the first network device is a gateway, then the second network device The device is the first AP, and it can be known that the first network device receives the service packet from the second network device within the maximum scheduling duration.
  • the method further includes: the first network device Acquiring the elapsed duration, the elapsed duration is the value of the current time minus the start time, the start time being the moment when the service packet starts to be transmitted via the transmission path; the first network device obtains the target duration , the target duration is a value obtained by subtracting the elapsed duration from the target delay.
  • the network devices on the transmission path can determine the maximum scheduling time according to the elapsed time.
  • the elapsed time is the current time minus the time when the service packet starts to be transmitted through the transmission path, so that each network device in the transmission path can perceive
  • the duration of the maximum scheduling duration is positively correlated with the target duration, and the duration of the maximum scheduling duration is negatively correlated with the remaining number of hops .
  • the first network device determining the maximum scheduling duration according to the target delay and the remaining hop count includes: the first network device determining the target duration divided by Use the value of the remaining hops as the maximum scheduling duration.
  • the method further includes: the first network device receiving a queue status message from the second network device, the queue status message carrying the start time, and the time when the first network device receives the queue status message is earlier than the first network device The time when the service message is received.
  • the first network device can receive the queue status message from the second network device, and the queue status message already carries the start time, so as to ensure that the first network device can successfully determine the maximum scheduling duration.
  • the method further includes: the first network device sending a scheduling instruction to the second network device, where the scheduling instruction is used to instruct the second network device to send the service packet to the first network device;
  • the service message of the network device wherein the duration of the first time period is less than or equal to the maximum scheduling time, and the starting moment of the first time period is obtained by the first network device from the queue status message From the time to the start time, the end time of the first time period is the time when the first network device receives and completes the service packet.
  • the method further includes: the first network device Send the service message to the second network device, wherein the duration of the second time period is less than or equal to the maximum scheduling time, and the starting moment of the second time period is when the service message starts to enter The time of the first network device, the end time of the second time period is the time when the first network device completes sending the service packet.
  • the method further includes: the first network device receiving the service packet from a third network device, where the third network device is a network device adjacent to the first network device in the transmission path, and the service packet carries the start time.
  • the first network device is the first network device included in the transmission path, and the first network device Before the number of hops determines the maximum scheduling duration, the method further includes: the first network device determining the start time, the start time being the time when the service packet starts to enter the first network device, or, the The start time is the time when the first network device generates the service message; the first network device sets the start time in the service message.
  • the first network device determining the target delay corresponding to the service packet includes: the first network device receiving the target delay.
  • the first network device determining the target delay corresponding to the service message includes: the first network device obtains the delay corresponding to the service message according to a preset correspondence relationship The target delay corresponding to the service type, wherein the preset correspondence includes a correspondence between the service type of the service packet and the target delay.
  • the determining the remaining hop count by the first network device includes: the first network device receiving the remaining hop count.
  • the first network device determining the remaining hop count includes: the first network device obtaining the corresponding remaining hop count according to a target connection relationship, the target connection relationship In the process of the service message being transmitted through the transmission path, the identifiers of the various network devices that are sequentially passed through.
  • the embodiment of the present invention provides a network device, including a memory and a transceiver respectively coupled to a processor, the memory stores computer program codes, and the processor invokes and executes the computer program code in the memory.
  • the program code enables the network device to execute the method for forwarding service packets as shown in any one of the first aspect.
  • an embodiment of the present invention provides a digital processing chip, the digital processing chip includes a processor and a memory, the memory and the processor are interconnected through a line, instructions are stored in the memory, and the processing The device is used to execute the forwarding method of the service message as shown in any one of the first aspect.
  • an embodiment of the present invention provides a wireless network, including a plurality of network devices connected in sequence, and the network devices are as described in the second aspect.
  • the embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a computer, it can complete the process as shown in any one of the first aspect.
  • the forwarding method of service packets is not limited to any one of the first aspect.
  • Fig. 1 is a structural example diagram of an embodiment of a wireless network to which the method for forwarding service messages provided by the present application is applied;
  • Fig. 2 is a flow chart of the steps of an embodiment of the forwarding method of the downlink service message provided by the present application;
  • Fig. 3 is a flow chart of the steps of an embodiment of the forwarding method of the uplink service message provided by the present application;
  • FIG. 4 is a flow chart of steps in another embodiment of the method for forwarding an uplink service message provided by the present application
  • Fig. 5 is an example diagram of a frame format of the data frame provided by the present application.
  • FIG. 6 is a structural example diagram of an embodiment of a network device provided by the present application.
  • FIG. 7 is a structural example diagram of another embodiment of a network device provided by the present application.
  • the wireless network can be WiFi, The fifth generation mobile communication technology (5th-Generation, 5G) system, long term evolution (long termevolution, LTE) system, global system for mobile communication (GSM) or code division multiple access (code division multiple access, CDMA) ) network, wideband code division multiple access (WCDMA) network, etc., or worldwide microwave interoperability for microwave access (WiMAX), etc.
  • 5G fifth generation mobile communication technology
  • LTE long term evolution
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • WiMAX worldwide microwave interoperability for microwave access
  • the wireless network shown in this embodiment includes a transmission path 100, and the transmission path 100 includes a plurality of network devices.
  • the transmission path 100 shown in FIG. 1 includes a gateway 101 for transmitting service packets, a first access point (access point, AP) 102, a second AP 103, and a workstation (station, STA) 104.
  • AP access point
  • STA workstation
  • This embodiment does not limit the number of APs included in the transmission path.
  • the transmission path 100 Two APs are taken as an example for illustration.
  • the gateway 101 is also called a gateway or a protocol converter.
  • the gateway 101 implements network interconnection above the network layer.
  • Each AP included in the transmission path shown in FIG. 1 refers to a wireless access point, which may also be called a wireless AP, which is an access point of a wireless network and is also a core of the wireless network.
  • the wireless network includes multiple APs as an example, and there is a cascading relationship between the multiple APs, and the coverage of the wireless network is expanded by using the multiple APs with the cascading relationship.
  • APs are mainly used in broadband homes, buildings, and campuses, and their distance coverage can range from tens of meters to hundreds of meters.
  • the AP can be a wireless router, and the wireless router mainly includes a routing switch access integrated device and a pure access point device.
  • the integrated device performs access and routing work, and the pure access point device is only responsible for the access of wireless clients.
  • the STA connected to the AP included in the transmission path shown in Figure 1 can also be called a mobile station, which refers to a device carrying a wireless network interface card (such as a wireless network card).
  • a wireless network interface card such as a wireless network card
  • IPTV internet protocol television
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • the service type can be a time-sensitive network (time sensitivity network, TSN), where the TSN can be voice, video, AR, VR, real-time battle games, or industrial objects. types of networking.
  • TSN time sensitivity network
  • the TSN can be voice, video, AR, VR, real-time battle games, or industrial objects. types of networking.
  • the method for forwarding service messages provided by this application can effectively meet the requirements for time delay of service messages.
  • the method for forwarding service packets provided by this application will be specifically described below in combination with multiple embodiments.
  • FIG. 2 is a flow chart of execution steps of an embodiment of the method for forwarding downlink service packets provided by the present application.
  • the downlink service message shown in this embodiment is transmitted along the downlink transmission direction in the transmission path, wherein the downlink transmission direction refers to that the downlink service message is sent by the gateway 100, and passes through the first AP102 and the second AP103 in turn, until Transfer to STA104.
  • two APs are sequentially connected between the gateway and the STA in the transmission path as an example for illustration. In other examples, one AP or two APs may be connected between the gateway and the STA in the transmission path.
  • the description of the process of each AP performing the forwarding method of the downlink service message shown in this embodiment please refer to the method for forwarding the downlink service message performed by the first AP or the second AP shown in this embodiment The description of the process will not be described in detail.
  • Step 201 the gateway determines the target delay corresponding to the downlink service message.
  • the gateway when the gateway determines that the downlink service message needs to be transmitted to the STA via the transmission path, the gateway can determine the target time delay Tc corresponding to the downlink service message, and the target time delay Tc is the time delay of the downlink service message. The required delay is completed for the packet to be transmitted via the transmission path. It can be seen that the downlink service message needs to be sent from the gateway within the target time delay Tc, and then forwarded by each network device included in the transmission path in sequence until it is transmitted to the STA.
  • the gateway shown in this embodiment is pre-configured with a preset corresponding relationship, and the preset corresponding relationship includes the corresponding relationship between different service types and different target delays Tc.
  • the preset corresponding relationship can be referred to in Table 1 as shown below. Show:
  • the gateway can determine the target delay Tc corresponding to the service type of the downlink service message by querying the preset corresponding relationship. For example, if the gateway determines that the service type of the downlink service message is VR, the gateway determines that the corresponding target delay Tc is 20 milliseconds according to the preset correspondence shown in Table 1. It can be seen that the transmission path needs to be within 20 milliseconds, and the The transmission of downlink service packets is completed.
  • the preset corresponding relationship includes the corresponding relationship between different service types and different target delays Tc as an example for illustration.
  • the preset corresponding relationship may also include different downlink service packets.
  • the identifier of the downlink service message may be used to identify different downlink service messages.
  • the identifier of the downlink service message can be used to identify the priority of the service message, and the target delay Tc corresponding to the downlink service message with a higher priority is smaller than the target delay Tc corresponding to the downlink service message with a lower priority.
  • Time delay Tc The priority of the downlink service message may be used to indicate the importance of data carried in the downlink service message, etc., which is not limited in this embodiment.
  • the gateway shown in this embodiment may also receive the target delay Tc from other devices, for example, connect to a data server with the gateway 101 , and the data server sends the acquired target delay Tc to the gateway 101 .
  • Step 202 the gateway acquires the remaining hop count corresponding to the gateway.
  • the gateway shown in this embodiment acquires the target connection relationship corresponding to the STA, and the target connection relationship shown in this embodiment includes identifiers of network devices of the transmission path in turn.
  • the gateway may create a query list in advance, and the query list includes correspondences between different STAs for receiving downlink service packets and different connection relationships.
  • the gateway determines that the STA that needs to receive the downlink service message is the STA104 shown in Figure 1, the gateway can query the query list to obtain the corresponding target relationship with the STA104, and the target connection relationship can be described in See Table 2:
  • Identification of network devices the address of the network device Identification of gateway 101 Address of gateway 101 Identification of the first AP102 The address of the first AP 102 Identification of the second AP103 The address of the second AP103 Logo of STA104 Address of STA104
  • the target connection relationship shown in this embodiment sequentially includes the identification of each network device on the transmission path and the address corresponding to the identification of each network device.
  • the target connection relationship acquired by the gateway includes the identifier of the gateway 101 , the identifier of the first AP 102 , the identifier of the second AP 103 , and the identifier of the STA 104 .
  • the target connection relationship indicates that the downlink service message needs to pass through the gateway 101 , the first AP 102 , the second AP 103 and the STA 104 in sequence after being transmitted along the transmission path.
  • the gateway 101 When the gateway 101 determines that it is necessary to send a downlink service message, it can obtain the identifier of the downstream network device as the identifier of the first AP102 by querying the target connection relationship shown in Table 2, and obtain the address of the first AP102 , the gateway 101 sends a downlink service packet to the address of the first AP 102 .
  • the address of each network device included in the target connection relationship may be a media access control (media access control, MAC) address.
  • the gateway When the gateway obtains the target connection relationship, it obtains the remaining hop count corresponding to the gateway.
  • the remaining hop count corresponding to the gateway refers to the number of network devices that the downlink service message sent by the gateway has not passed through on the transmission path.
  • the gateway 101 determines that the network devices that the downlink service packets have not yet passed are the first AP 102 , the second AP 103 and the STA 104 , and it can be seen that the remaining hops corresponding to the gateway are 3.
  • Step 203 the gateway acquires the maximum scheduling duration corresponding to the gateway.
  • the gateway shown in this embodiment needs to forward the downlink service message to the first AP 102 within the maximum scheduling time.
  • the specific process for the gateway to obtain the maximum scheduling time is described below:
  • the gateway obtains the elapsed time Ta1, which is the elapsed time for the downlink service packet to be transmitted via the transmission path. Specifically, the gateway can obtain the elapsed time Ta1 according to Formula 1.
  • elapsed time Ta1 current time Tn1 - start time Ts.
  • the start time Ts is acquired by the gateway, and the time when the downlink service packet starts to be transmitted through the transmission path.
  • the gateway 101 shown in this embodiment can be connected to a network, and the gateway 101 receives a downlink service message from the network and transmits the downlink service message through the transmission path.
  • the network can be a wired network.
  • the time Ts is the time when the downlink service message enters the gateway 101 from the wired network.
  • the gateway 101 When the gateway 101 acquires the start time Ts, it sets the start time Ts in the downlink service message. After the gateway 101 completes step 201 and step 202, the gateway 101 obtains the current time Tn1, and obtains the elapsed time Ta1 according to the formula 1.
  • the gateway obtains the target duration Tb1 corresponding to the gateway according to Formula 2.
  • target duration Tb1 target delay Tc - elapsed duration Ta1.
  • the gateway determines the maximum scheduling duration according to the target duration Tb1 and the number of remaining hops, wherein the duration of the maximum scheduling duration is positively correlated with the target duration, and the duration of the maximum scheduling duration is related to the remaining hops numbers are negatively correlated.
  • the gateway can obtain the maximum scheduling duration TM1 according to Formula 3.
  • Step 204 the gateway sends a downlink service message to the first AP within the maximum scheduling time.
  • the time period actually used by the gateway to successfully send the downlink service message to the first AP is the second time period corresponding to the gateway, wherein the starting moment of the second time period corresponding to the gateway is when the downlink service message begins to enter the
  • the start time of the second time period is the start time Ts
  • the end time of the second time period is the time when the gateway completes sending the downlink service message.
  • the downlink service message includes M consecutive data packets
  • the starting moment of the second time period is the moment when the gateway receives the first data packet in the M data packets
  • the gateway corresponds to
  • the ending moment of the second time period is the moment when the gateway finishes sending the last data packet among the M data packets.
  • Step 205 the first AP determines the target delay corresponding to the downlink service message.
  • step 201 For the description of the target time delay Tc, please refer to step 201 for details, and details will not be repeated.
  • the first AP shown in this embodiment pre-configures the preset corresponding relationship, and the preset corresponding relationship includes the corresponding relationship between different service types and different time delays. It can be seen that when the first AP receives the downlink service message , the target delay Tc corresponding to the service type of the downlink service message can be determined by querying the preset corresponding relationship. For the description of the preset corresponding relationship, please refer to step 201, and details will not be repeated .
  • the first AP receives the target time delay Tc from the gateway.
  • the gateway can set the target time delay Tc in the downlink service message after determining the target time delay Tc, so as to ensure that the first AP can obtain the target time delay Tc from the downlink
  • the target delay Tc is extracted from the service message.
  • the first AP may also obtain the target delay Tc from a data server connected to the first AP.
  • the data server please refer to step 201 , and details are not repeated here.
  • Step 206 the first AP obtains the remaining hop count corresponding to the first AP.
  • the remaining hop count corresponding to the first AP refers to the number of network devices that the downlink service message sent by the first AP has not passed through on the transmission path.
  • the network equipment that the downlink service message sent by the first AP102 has not yet passed is the second AP103 and STA104. It can be seen that the remaining hops corresponding to the first AP are 2, and the following The manner in which the first AP obtains the remaining hops corresponding to the first AP is optionally described:
  • the first AP obtains the target connection relationship corresponding to the downlink service message.
  • the gateway can send the target connection relationship to the first AP, or the gateway can set the target connection relationship in the downlink service message, and the first AP will start from the downlink
  • the target connection relationship is extracted from the service message.
  • the first AP obtains the target connection relationship, it can obtain the remaining hops according to the target connection relationship.
  • the process for the first AP to obtain the remaining hops according to the target connection relationship please refer to step 202. The description of the process for the gateway to obtain the remaining hops according to the target connection relationship will not be described in detail.
  • the first AP receives a downlink hop list from the gateway, where the downlink hop list is used to indicate the remaining hops corresponding to the first AP.
  • the gateway can obtain the remaining hop count corresponding to each network device in the transmission path during the downlink transmission process according to the target connection relationship, so as to generate a list of downlink hop counts, as shown in Table 3 below:
  • the list of downlink hops is used to indicate the remaining hops corresponding to each network device in the transmission path.
  • the gateway can determine that the remaining hops corresponding to the gateway are 3 according to the downlink hop list, the gateway can determine that the remaining hops corresponding to the first AP are 2 according to the downlink hop list, and the gateway can determine the first AP according to the downlink hop list.
  • the remaining hop count corresponding to the second AP is 1.
  • the gateway may directly send the downlink hop list shown in Table 3 to the first AP.
  • the gateway may send the downlink hop list shown in Table 4 to the first AP.
  • the manner in which the gateway sends the downlink hop count list refer to the description of the manner in which the gateway sends the target connection relationship shown in manner 1, and details are not repeated here.
  • the downlink hop list sent by the gateway to the first AP indicates the remaining hops corresponding to the first AP and the second AP respectively.
  • the first AP receives the downlink hop list, it can determine that the first AP corresponds to The remaining hop count is 2, and the first AP may send the downlink hop count list shown in Table 3 or Table 5 to the second AP, so as to ensure that the second AP can determine its corresponding remaining hop count.
  • the downlink hop list sent by the first AP to the second AP indicates the remaining hop count corresponding to the second AP, and when the second AP receives the downlink hop count list, it can determine the remaining hop count corresponding to the second AP.
  • the number is 1.
  • Step 207 the first AP obtains the maximum scheduling duration corresponding to the first AP.
  • the first AP shown in this embodiment needs to forward the downlink service message to the second AP 103 within the maximum scheduling duration.
  • the specific process for the first AP to obtain the maximum scheduling duration is described below:
  • the first AP obtains the elapsed time Ta2, which is the elapsed time for the downlink service packet to be transmitted via the transmission path. Specifically, the first AP can obtain the elapsed time Ta1 according to formula 1.
  • elapsed time Ta2 current time Tn2 - start time Ts.
  • start time Ts current time Tn2 - start time Ts.
  • the first AP obtains the target duration Tb2 corresponding to the first AP according to Formula 5.
  • Target duration Tb2 target delay Tc - elapsed duration Ta2.
  • the first AP determines the maximum scheduling duration according to the target duration Tb2 and the remaining number of hops.
  • the duration of the maximum scheduling duration shown in this embodiment is positively correlated with the target duration, and the duration of the maximum scheduling duration The duration is negatively correlated with the remaining hop count.
  • the first AP may obtain the maximum scheduling duration according to Formula 6.
  • Step 208 the first AP sends the downlink service message to the second AP within the maximum scheduling time.
  • the time period actually used by the first AP to successfully send the downlink service message to the second AP is the second time period corresponding to the first AP, wherein the starting moment of the second time period corresponding to the first AP is the downlink service
  • the time when the message begins to enter the first AP, and the end time of the second time period is the time when the first AP completes sending the downlink service message.
  • the downlink service message sent by the gateway to the first AP includes M consecutive data packets, and the starting moment of the second time period is that the first data packet in the M consecutive data packets begins to enter the First AP moment.
  • the ending moment of the second time period is the moment when the first AP finishes sending the last data packet among the M data packets.
  • the duration of the second time period corresponding to the first AP is less than or equal to the maximum scheduling duration.
  • Step 204 the duration of the second time period corresponding to the gateway is less than or equal to It is equal to the description of the maximum scheduling duration, and details will not be repeated.
  • Step 209 the second AP determines the target delay corresponding to the downlink service message.
  • Step 210 the second AP acquires the remaining hop count corresponding to the second AP.
  • Step 211 the second AP obtains the maximum scheduling duration corresponding to the second AP.
  • Step 212 the second AP sends a downlink service message to the STA within the maximum scheduling duration.
  • Step 213 the STA receives the downlink service message from the second AP.
  • each network device for example, a gateway or any AP
  • each network device needs to transmit service packets according to the situation of each network device in the transmission path ( The target delay and remaining hops for transmitting downlink service packets, etc.), obtain the maximum scheduling duration corresponding to the network equipment, and forward the downlink service packets within the maximum scheduling duration, effectively avoiding the transmission of downlink service packets through the transmission path.
  • the target delay required by the downlink service message is exceeded.
  • the network devices on the transmission path can determine the maximum scheduling time according to the elapsed time.
  • the elapsed time is the current time minus the time when the downlink service packet starts to be transmitted through the transmission path, so that each network device in the transmission path can perceive the upstream
  • the forwarding of downlink service packets by network devices effectively improves the scheduling efficiency of each network device.
  • the first AP can plan the unused time of the gateway into the maximum scheduling time obtained by the first AP. It can be seen that if the maximum scheduling time of the upstream network device is not fully used in the transmission path, the downlink service report has been realized. Then, the duration of the maximum scheduling time determined by the downstream network equipment will be increased, effectively ensuring that the time for the downlink service message to be transmitted through the transmission path is less than or equal to the target delay required by the downlink service message .
  • the uplink service message is transmitted along the uplink transmission direction in the transmission path, and the uplink service message is in a state of direct uplink transmission.
  • the uplink transmission direction refers to that the uplink service message is sent by the STA 104 , passes through the second AP 103 and the first AP 102 in turn, and is transmitted to the gateway 100 .
  • the state of direct upstream sending means that, according to the sequence of transmitting uplink service packets, the downstream network device directly forwards the uplink service packets to the upstream network device without scheduling by the upstream network device.
  • the STA directly forwards uplink service packets to the second AP 103 without scheduling by the second AP 103
  • the second AP 103 directly forwards uplink service packets to the first AP 102 without scheduling by the first AP 102 .
  • two APs are sequentially connected between the STA and the gateway in the transmission path as an example for illustration. In other examples, one AP or two APs may be connected between the STA and the gateway in the transmission path.
  • the description of the process of each AP performing the forwarding method of the uplink service message shown in this embodiment please refer to the method for forwarding the uplink service message performed by the first AP or the second AP shown in this embodiment The description of the process will not be described in detail.
  • step 301 the STA determines the target delay corresponding to the uplink service message.
  • the STA determines that the uplink service message needs to be transmitted to the gateway via the transmission path, then the STA can determine the target delay corresponding to the uplink service message, and the target delay is the time delay for the uplink service message via the transmission path.
  • the delay required by the transmission path transmission for the description of the STA obtaining the target delay, please refer to the description of the process of the gateway obtaining the target delay shown in step 201 shown in the first embodiment, which is not specifically described in this embodiment repeat.
  • step 302 the STA acquires the remaining hop count corresponding to the STA.
  • the remaining hop count corresponding to the STA refers to the number of network devices that the uplink service message sent by the STA has not passed through on the transmission path.
  • the STA obtains the target connection relationship corresponding to the downlink service message.
  • the target connection relationship For the description of the target connection relationship, please refer to step 202 in the first embodiment, and details are not repeated here.
  • a way for the STA to obtain the target connection relationship may be that the gateway sends the target connection relationship to the first AP, and the first AP forwards the target connection relationship to the second AP, and the second AP forwards the target connection relationship to the STA.
  • the STA obtains the remaining hop count corresponding to the STA according to the target connection relationship. For example, according to the target connection relationship, STA104 determines that the network devices through which the uplink service message has not passed are the second AP103, the first AP102, and the gateway 101. It can be known that the remaining hops corresponding to this STA are 3.
  • the STA obtains an uplink hop list, which is used to indicate the remaining hops corresponding to the STA, and the uplink hop list may be shown in Table 6 below:
  • the uplink hop count list is used to indicate the remaining hop count corresponding to each network device in the transmission path.
  • the STA can determine that the remaining hop count corresponding to the STA is 3 according to the uplink hop count list.
  • the STA may receive the uplink hop list from the gateway via the second AP and the first AP in turn, or the STA may generate the uplink hop list according to the target correspondence, which is not limited in this embodiment .
  • Step 303 the STA acquires the maximum scheduling duration corresponding to the STA.
  • the STA In order to obtain the maximum scheduling duration, the STA needs to obtain the start time Ts, wherein the start time Ts is the time when the service message starts to enter the WiFi driver of the STA.
  • the application run by the STA is used to generate an uplink service message, and the application sends the generated uplink service message to the WiFi driver of the STA, and the WiFi driver is used to encode the uplink service message to make the uplink service message
  • the message can be transmitted through the WiFi network.
  • the uplink service message includes N consecutive data packets, then the start time Ts is the moment when the first data packet among the N data packets starts to enter the WiFi driver of the STA.
  • the STA shown in this embodiment obtains the maximum scheduling duration according to the target delay, the remaining hops, and the start time Ts. Please refer to the description of the process for the gateway to obtain the maximum scheduling duration corresponding to the gateway shown in step 203 of the first embodiment. , without going into details. It can be known that the STA shown in this embodiment needs to forward the uplink service message to the second AP 103 within the maximum scheduling duration.
  • step 304 the STA sends an uplink service message to the second AP within the maximum scheduling duration.
  • the time period actually used by the STA to successfully send the uplink service message to the second AP is the second time period corresponding to the STA, wherein the start time of the second time period corresponding to the STA is the start time Ts shown above,
  • the end time of the second time period is the time when the STA completes sending the uplink service message. For example, if the uplink service message includes consecutive N data packets, then the starting moment of the second time period is the moment when the first data packet in the N data packets starts to enter the WiFi driver of the STA, and the STA The end time of the corresponding second time period is the time when the STA finishes sending the last data packet among the N data packets.
  • Step 305 the second AP determines the target delay corresponding to the uplink service message.
  • step 301 For the description of the target delay, please refer to step 301 for details, and details will not be repeated.
  • the description of the process for the second AP to obtain the target delay please refer to the STA shown in step 301 to obtain the target corresponding to the uplink service message. The description of the delay process will not be described in detail.
  • Step 306 the second AP obtains the remaining hop count corresponding to the second AP.
  • the remaining hop count corresponding to the second AP refers to the number of network devices that the uplink service message sent by the second AP has not passed through on the transmission path.
  • the network equipment that the uplink service message sent by the second AP has not yet passed is the first AP102 and the gateway 101. It can be seen that the remaining hops corresponding to the second AP are 2, and the second AP corresponds to the remaining hops.
  • the process for the second AP to obtain the remaining hop count corresponding to the second AP please refer to the description of the process for the STA to obtain the remaining hop count corresponding to the STA shown in step 302, and details will not be repeated.
  • Step 307 the second AP obtains the maximum scheduling duration corresponding to the second AP.
  • the second AP shown in this embodiment needs to forward the uplink service packets to the first AP 102 within the maximum scheduling duration, and the second AP obtains the specific process of the maximum scheduling duration corresponding to the second AP, please refer to the above step 303 The description of the process for the STA to obtain the maximum scheduling duration will not be described in detail.
  • Step 308 the second AP sends the downlink service message to the first AP within the maximum scheduling duration.
  • the time when the second AP successfully sends the uplink service message to the first AP is the second time period corresponding to the second AP, wherein the starting moment of the second time period corresponding to the second AP is the start of the uplink service message
  • the moment of entering the second AP, the end moment of the second time period is the moment when the second AP completes sending the uplink service message.
  • the uplink service message includes consecutive N data packets
  • the starting moment of the second time period is the moment when the first data packet in the N data packets starts to enter the second AP
  • the The end time of the second time period corresponding to the second AP is the time when the second AP finishes sending the last data packet among the N data packets.
  • Step 309 the first AP determines the target delay corresponding to the uplink service message.
  • the process of the first AP determining the target time delay corresponding to the uplink service message please refer to the process of the second AP determining the target time delay corresponding to the uplink service message shown in step 305, which will not be described in detail.
  • Step 310 the first AP obtains the remaining hop count corresponding to the first AP.
  • the process for the first AP to obtain the remaining hop count corresponding to an AP please refer to the process for the second AP to obtain the remaining hop count corresponding to the second AP shown in step 306 , which will not be described in detail.
  • Step 311 the first AP obtains the maximum scheduling duration corresponding to the first AP.
  • the first AP For a specific process for the first AP to obtain the maximum scheduling duration corresponding to the first AP, please refer to the process for the second AP to obtain the maximum scheduling duration corresponding to the second AP shown in step 307 , which will not be described in detail.
  • Step 312 the first AP sends a downlink service message to the gateway within the maximum scheduling time.
  • Step 313 the gateway receives the uplink service message from the first AP.
  • each network device for example, STA or any AP
  • the target delay required by the uplink service message is exceeded.
  • the network devices on the transmission path can determine the maximum scheduling time according to the elapsed time.
  • the elapsed time is the current time minus the time when the uplink service message starts to be transmitted through the transmission path, so that each network device in the transmission path can perceive the upstream
  • the forwarding of uplink service packets by network devices effectively improves the scheduling efficiency of each network device.
  • the second AP can plan the unused duration of the STA into the maximum scheduling duration acquired by the second AP. It can be seen that if the maximum scheduling duration of the upstream network device is not fully used in the transmission path, the uplink service report has been realized. Then, the duration of the maximum scheduling time determined by the downstream network equipment will be increased, effectively ensuring that the time for the completion of the transmission of the uplink service message through the transmission path is less than or equal to the target delay required by the uplink service message .
  • the uplink service message shown in this embodiment is transmitted along the uplink transmission direction in the transmission path, and the uplink service message is in a state of scheduling uplink transmission.
  • the state that the uplink service message is scheduled for uplink transmission means that, according to the order in which the uplink service message is transmitted, the downstream network device needs to be scheduled by the upstream network device before forwarding the uplink service message to the upstream network device.
  • the STA104 needs the scheduling of the second AP103 before the STA104 can forward the uplink service packet to the second AP103.
  • the second AP103 needs the scheduling of the first AP102 so that the second AP103 can forward the uplink service packet to the first AP102.
  • two APs are sequentially connected between the STA and the gateway in the transmission path as an example for illustration. In other examples, one AP or two APs may be connected between the STA and the gateway in the transmission path.
  • the description of the process of each AP performing the forwarding method of the uplink service message shown in this embodiment please refer to the method for forwarding the uplink service message performed by the first AP or the second AP shown in this embodiment The description of the process will not be described in detail.
  • this embodiment uses the scheduling of each downstream network device in the transmission path to forward the uplink service message to the upstream network device as an example for illustration, without limitation, in other examples Among them, some downstream network devices in the transmission path can forward uplink service packets under the scheduling of upstream network devices, while another part of downstream network devices can directly forward uplink service packets to upstream network devices.
  • the downstream network device that is, STA104
  • the downstream network device needs to forward the uplink service message under the scheduling of the upstream network device (that is, the second AP103). That is, the second AP 103 ) directly sends the uplink service message to the first AP 102 without the scheduling of the upstream network device (ie, the first AP 102 ).
  • the execution process can be referred to in Embodiment 2, and details are not repeated here.
  • Step 401 the second AP determines the target delay corresponding to the uplink service message.
  • the STA when the STA transmits the uplink service message via the transmission path, the STA needs to send the uplink service message to the second AP under the scheduling of the second AP.
  • the second AP In order to implement the scheduling of the STA, the second AP needs to obtain the target delay corresponding to the uplink service message.
  • the following is an exemplary description of the optional process for the second AP to obtain the target delay:
  • the second AP has received the queue status message from the STA.
  • the queue status message and the uplink service message shown in this embodiment are all messages generated by the STA, and the transmission path through which the queue status message and the uplink service message are passed same.
  • the second AP Since the second AP has received the queue status message from the STA and has not yet received the uplink service message from the STA, it can be known that the second AP receives the queue status message earlier than the second AP The time when the uplink service message is received.
  • This embodiment does not limit the way the second AP receives the queue status message.
  • the second AP can receive the queue status message from the STA by scheduling uplink.
  • the STA can directly send the queue status message to the second AP. The queue status message.
  • the queue status message shown in this embodiment carries a service type, and the second AP can determine the target delay according to the service type carried in the queue status message.
  • the process of determining the target delay for the service type please refer to the description of the process for the STA to obtain the target delay of the uplink service packet shown in step 301 of the second embodiment, and the specific process will not be repeated.
  • the second AP needs to receive multiple consecutive uplink service packets from the STA.
  • the second AP has received the first uplink service packet (queue status packet) from the STA.
  • the message obtains the service type of the uplink service message, and after the second AP determines the target time delay according to the service type of the first uplink service message, the second AP can perform subsequent uplink service messages, such as the second uplink service message
  • the service message, the third uplink service message, etc. (that is, the uplink service message) are received in the way of scheduling uplink described in this embodiment.
  • the queue status message may also directly carry the target delay corresponding to the uplink service message. It can be seen that the second AP can directly obtain the target delay from the queue status message.
  • Step 402 the second AP obtains the remaining hop count corresponding to the STA.
  • the second AP schedules the STA to transmit the uplink service message, then, the second AP needs to obtain the remaining hop count for the STA to transmit the uplink service message.
  • the remaining hop count corresponding to the STA acquired by the second AP refers to the number of network devices on the transmission path through which the uplink service message sent by the STA has not yet passed.
  • the network devices that the uplink service message sent by STA104 has not passed through are the second AP103, the first AP102 and the gateway 101. It can be known that the remaining STA corresponding to the STA determined by the second AP The number of hops is 3, and the method for the second AP to obtain the remaining hops corresponding to the STA is optionally described below:
  • the second AP acquires the target connection relationship corresponding to the uplink service message.
  • a manner for the second AP to obtain the target connection relationship may be that the gateway sends the target connection relationship to the first AP, and the first AP then forwards the target connection relationship to the second AP.
  • the second AP acquires the remaining hop count corresponding to the STA according to the target connection relationship.
  • the second AP 103 determines that the network devices through which the uplink service message has not passed are the second AP 103 , the first AP 102 and the gateway 101 , and it can be known that the remaining hops corresponding to the STA are 3.
  • the second AP receives from the uplink hop list, and the uplink hop list is used to indicate the remaining hops corresponding to the STA.
  • the uplink hop list please refer to step 302 in the second embodiment, and details will not be repeated. It can be known that the second AP can determine the remaining hop count corresponding to the STA according to the received uplink hop count list.
  • the queue status message shown in this embodiment may carry the uplink hop list, and the second AP can acquire the remaining hops corresponding to the STA from the uplink hop list.
  • Step 403 the second AP acquires the maximum scheduling duration corresponding to the second AP.
  • the second AP shown in this embodiment needs to schedule uplink service packets from the STA to the second AP within the maximum scheduling duration, that is, the second AP needs to successfully receive the uplink service from the STA within the maximum scheduling duration message.
  • the specific process for the second AP to obtain the maximum scheduling duration corresponding to the STA according to the target delay, the start time Ts, and the remaining hops corresponding to the STA please refer to the STA obtaining the maximum scheduling duration corresponding to the STA shown in step 303 of the second embodiment The description of the process will not be described in detail.
  • the queue status message shown in this embodiment already carries the start time Ts, and it can be known that the second AP can obtain the start time Ts from the received queue status message.
  • Step 404 the second AP sends a scheduling instruction to the STA.
  • Step 405 the STA sends an uplink service packet to the second AP.
  • the scheduling instruction shown in this embodiment is used to instruct the STA to send the uplink service message to the second AP, and the STA may send the uplink service message to the second AP under the instruction of the scheduling instruction.
  • the scheduling instruction may be used to indicate frequency resources, and the STA may send uplink service packets to the second AP on the frequency resources indicated by the scheduling instruction.
  • Step 406 the second AP receives the uplink service message from the STA within the maximum scheduling duration.
  • the time period actually used by the STA to send the uplink service message to the second AP is the first time period, wherein the duration of the first time period is less than or equal to the maximum scheduling time corresponding to the STA, so
  • the starting time of the first time period is the time from the second AP obtaining the queue status message to the starting time Ts.
  • the end time of the first time period is the time when the second AP completes receiving the uplink service message.
  • the second AP successfully receives the queue status message from the STA, and can obtain the start time Ts from the queue status message, and determine that the second AP successfully obtains the start time from the queue status message
  • the time Ts is the starting time, and then, the second AP obtains the maximum scheduling duration corresponding to the STA according to the target delay, the starting time Ts, and the remaining hops corresponding to the STA (for the process of obtaining the maximum scheduling duration, please refer to step 403 shown, not repeated).
  • the second AP schedules the STA to receive the uplink service message according to the maximum scheduling duration (the execution process is shown in step 404 and step 405), and determines that the time when the second AP completes receiving the uplink service message is the end time , the duration of the first time period with the start time as the timing start point and the end time as the timing end point is less than or equal to the maximum scheduling duration corresponding to the STA.
  • Step 407 the first AP determines the target delay corresponding to the uplink service message.
  • the second AP needs to send the uplink service message to the first AP under the scheduling of the first AP.
  • the first AP needs to obtain the target delay corresponding to the uplink service message.
  • the first AP schedules the second AP.
  • the AP schedules the STA and obtains the target delay, which will not be described in detail.
  • Step 408 the first AP obtains the remaining hop count corresponding to the second AP.
  • the first AP schedules the second AP to transmit the uplink service message, then, the first AP needs to obtain the remaining hop count for the second AP to transmit the uplink service message.
  • the remaining hop count corresponding to the second AP obtained by the first AP refers to the number of network devices on the transmission path that the uplink service message sent by the second AP has not yet passed.
  • the network devices that the uplink service message sent by the second AP 103 has not yet passed are the first AP 102 and the gateway 101. It can be seen that the remaining hops corresponding to the second AP determined by the first AP The number is 2.
  • the process for the first AP to obtain the remaining hop count corresponding to the second AP please refer to the description of the process for the second AP to obtain the remaining hop count corresponding to the STA shown in step 402, and details will not be repeated.
  • Step 409 the first AP obtains the maximum scheduling duration corresponding to the first AP.
  • the first AP shown in this embodiment needs to schedule uplink service packets from the second AP to the first AP within the maximum scheduling duration, that is, the first AP needs to successfully receive the packet from the second AP within the maximum scheduling duration.
  • Uplink service packets of the AP The specific process for the first AP to obtain the maximum scheduling duration corresponding to the first AP according to the target delay, the start time Ts, and the remaining hops corresponding to the first AP, please refer to Step 404 where the second AP obtains the corresponding The description of the process of the maximum scheduling time is omitted.
  • Step 410 the first AP sends a scheduling instruction to the second AP.
  • Step 411 the second AP sends an uplink service packet to the first AP.
  • the scheduling instruction shown in this embodiment is used to instruct the second AP to send the uplink service message to the first AP, and the second AP may send the uplink service message to the first AP under the instruction of the scheduling instruction.
  • the scheduling instruction may be used to indicate a frequency resource, and the second AP may send an uplink service message to the first AP on the frequency resource indicated by the scheduling instruction.
  • Step 412 the first AP receives the uplink service message from the second AP within the maximum scheduling duration.
  • the time period actually used by the second AP to send the uplink service message to the first AP is the first time period, wherein the duration of the first time period is less than or equal to the maximum corresponding to the first AP.
  • the scheduling duration, the starting time of the first time period is the time when the first AP obtains the starting time from the queue status message from the second AP.
  • the end time of the first time period is the time when the first AP completes receiving the uplink service message.
  • Step 413 the gateway determines the target delay corresponding to the uplink service message.
  • the first AP needs to send the uplink service message to the gateway under the scheduling of the gateway.
  • the gateway needs to obtain the target delay corresponding to the uplink service message.
  • the gateway is scheduling the first AP, and the process of obtaining the target delay, please refer to the second AP shown in the above step 401 as scheduling STA , the process of obtaining the target time delay will not be described in detail.
  • Step 414 the gateway obtains the remaining hop count corresponding to the first AP.
  • the gateway schedules the first AP to transmit the uplink service message, then, the gateway needs to obtain the remaining hop count for the first AP to transmit the uplink service message.
  • the remaining hop count corresponding to the first AP acquired by the gateway refers to the number of network devices on the transmission path that the uplink service message sent by the first AP has not passed through. For example, in the transmission path shown in FIG. 1, the network device through which the uplink service message sent by the first AP 102 has not yet passed is the gateway 101.
  • the gateway obtains
  • the process of the remaining hop count corresponding to the first AP is 1, and the gateway obtains
  • the process of the second AP obtains the remaining hop count corresponding to the STA shown in step 402 , and details are not repeated here.
  • Step 415 the gateway acquires the maximum scheduling duration corresponding to the gateway.
  • the gateway shown in this embodiment needs to schedule the uplink service message from the first AP to the gateway within the maximum scheduling time, that is, the gateway needs to successfully receive the uplink service message from the first AP within the maximum scheduling time .
  • the gateway For the specific process for the gateway to obtain the maximum scheduling duration corresponding to the gateway according to the target delay, the start time Ts, and the remaining hops corresponding to the first AP, please refer to the second AP obtaining the maximum scheduling duration corresponding to the second AP shown in step 404 The description of the process will not be described in detail.
  • Step 416 the gateway sends a scheduling instruction to the first AP.
  • Step 417 the first AP sends an uplink service message to the gateway.
  • the scheduling instruction shown in this embodiment is used to instruct the first AP to send the uplink service message to the gateway, and the first AP may send the uplink service message to the gateway under the instruction of the scheduling instruction.
  • the scheduling instruction may be used to indicate a frequency resource, and the first AP may send an uplink service message to the gateway on the frequency resource indicated by the scheduling instruction.
  • Step 418 the gateway receives the uplink service message from the first AP within the maximum scheduling time.
  • the time period actually used by the first AP to send the uplink service message to the gateway is the first time period, wherein the duration of the first time period is less than or equal to the maximum scheduling time corresponding to the gateway.
  • the starting moment of a time period is the moment when the gateway obtains the starting moment from the queue status message from the first AP.
  • the end time of the first time period is the time when the gateway receives and completes the uplink service message.
  • the network device in the process of forwarding the uplink service message on the transmission path, the network device needs to transmit the service message according to the situation of each network device in the transmission path (the target time delay for transmitting the uplink service message and the remaining hop number, etc.), obtain the maximum scheduling time corresponding to the network device, and forward the uplink service message within the maximum scheduling time, effectively avoiding the transmission of the uplink service message through the transmission path, exceeding the requirements of the uplink service message of the target delay.
  • the network devices on the transmission path can determine the maximum scheduling time according to the elapsed time.
  • the elapsed time is the current time minus the time when the uplink service message starts to be transmitted through the transmission path, so that each network device in the transmission path can perceive the upstream
  • the forwarding of the uplink service message by the network equipment effectively improves the scheduling efficiency of each network equipment.
  • the maximum scheduling duration of the upstream network device is not fully used, and the forwarding of the uplink service message has been realized, then the duration of the maximum scheduling duration determined by the downstream network device will be increased, effectively ensuring the uplink
  • the time for completing the transmission of the service message via the transmission path is less than or equal to the target delay required by the uplink service message.
  • This embodiment provides a data frame format. Based on the first and second embodiments, the data frame shown in this embodiment is used to implement information transmission between two adjacent network devices in the transmission path. .
  • This embodiment describes the frame format of the data frame provided by this embodiment with reference to FIG. 5 , wherein FIG. 5 is an exemplary frame structure diagram of an embodiment of the data frame provided by this application.
  • the data frame includes a destination address field 501, a source address field 502, a VLAN tag (also known as VLAN Tag) field 503, a length/type field 506, a data field 504 and a frame check sequence (FCS) field 505.
  • the length of destination address field 501 is 6 bytes (Byte)
  • the length of source address field 502 is 6Byte
  • the length of VLAN Tag field 503 is 4Byte
  • the length 2Byte of length/type field 506 the length of data field 504 It is between 46Byte and 1500Byte
  • the length of the frame check sequence field 505 is 4Byte.
  • the destination address field 501 is used to indicate the MAC address of the last network device among the multiple network devices included in the transmission path
  • the source address field 502 is used to indicate the first network address among the multiple network devices included in the transmission path.
  • MAC address of the device For example, based on what is shown in Embodiment 1, the destination address 501 is the MAC address of the STA, and the source address 502 is the MAC address of the gateway. As another example, based on what is shown in the second embodiment, the target address 501 is the MAC address of the gateway, and the source address 502 is the MAC address of the STA.
  • the VLAN Tag field 503 is used to enable network devices to distinguish different service packets.
  • the length/type field 506 is used to indicate at least one of the length of the data frame or the frame type.
  • the data field 504 is used to carry services that need to be transmitted via the transmission path.
  • the VLAN Tag field 503 shown in this embodiment is used to realize the transmission of information such as downlink service messages, remaining hops, service types of downlink service messages, and start time.
  • the VLAN Tag field 503 shown in this embodiment is used to realize the transmission of information such as the uplink service message, the remaining hop count, the service type of the uplink service message, and the start time.
  • the VLAN Tag field 503 shown in this embodiment specifically includes a tag protocol identifier (tag protocol identifier, TPID) field 511, a priority (priority, PRI) field 512, and a standard format indicator (canonical format indicator, CFI) Field 513 and VLAN ID (VID) field 514.
  • tag protocol identifier tag protocol identifier
  • PRI priority
  • CFI canonical format indicator
  • VLAN ID VLAN ID
  • the TPID field 511 is used to indicate the type of the data frame.
  • the PRI field 512 indicates the priority of the data frame.
  • the PRI field 512 can be used to indicate the service type of the service packet.
  • the value of the CFI field 513 is 0, which is a value defined by the 802.1Q standard.
  • This embodiment takes the VID field 514 carrying the start time as an example for illustration, wherein, the length of the VID field 514 is 12 bits, and the manner in which the VID field 514 carries the start time is optionally described below. It should be clearly stated that this The description of the content and manner carried in the VID field 514 in this embodiment is an optional example and is not limited.
  • This embodiment takes the VID field 514 carrying the start time as an example for illustration, wherein, the length of the VID field 514 is 12 bits, and the manner in which the VID field 514 carries the start time is optionally described below. It should be clearly stated that this The description of the content and manner carried in the VID field 514 in this embodiment is an optional example and is not limited.
  • the gateway determines the target parameter, because the length of the VID field 514 is 12 bits, that is, the 12 bits included in the VID field 514 can represent a value of 2 to the power of 12, That is 4096 values. It can be seen that the gateway can carry the start time through 4096 values of the VID field 514.
  • the specific carrying method can be: the gateway determines that the start time carried by the VID field 514 is accurate to 1 millisecond, then the gateway can divide the start time by 4095 to obtain The first remainder, the gateway carries the first remainder through the VID field 514 , it can be known that each network device in the transmission path can obtain the start time based on the first remainder carried in the VID field 514 .
  • the specific carrying method can also be: the gateway determines that the start time carried by the VID field 514 is accurate to 0.1 milliseconds, then the gateway can divide the start time by 409.5 to obtain the second remainder, and the gateway carries the second remainder through the VID field 514. For the remainder, it can be known that each network device in the transmission path can obtain the start time based on the second remainder carried in the VID field 514 .
  • the STA can set the start time in the VID field 514.
  • the specific setting method please refer to the description of the gateway setting the start time in the VID field 514. repeat.
  • this embodiment describes the format of the trigger message shown in Embodiment 3.
  • the trigger message shown in this embodiment is used to realize that in the transmission path, the downstream network device sends the start time information to the upstream network device.
  • the description of the information included in the trigger message in this embodiment is an optional example without limitation.
  • the trigger message may also transmit target latency, service type, and the like.
  • the trigger message is the buffer state report control field (BSR Control Subfield) as an example.
  • the BSR Control Subfield specifically includes a start time (start time) field, and the start time field is used to carry the start time.
  • start time the start time field is used to carry the start time.
  • the specific method of carrying it can be Refer to Embodiment 4, and details are not described in this embodiment.
  • the network device 600 specifically includes: a processing unit 601 and a transceiver unit 602 , where the processing unit 601 is connected to the transceiver unit 602 .
  • the processing unit 601 is configured to execute the processing function performed by the gateway in any one of the first to third embodiments.
  • the transceiving unit 602 is configured to perform the transceiving function performed by the gateway in any one of the first to third embodiments.
  • the processing unit 601 is configured to execute step 201 , step 202 and step 203 .
  • the transceiver unit 602 is configured to execute step 204 .
  • the transceiving unit 602 is configured to execute step 313 .
  • the processing unit 601 is configured to execute step 413 , step 414 and step 415 .
  • the transceiving unit 602 is configured to perform step 416 , step 417 and step 418 .
  • the processing unit 601 is configured to execute the processing function executed by the first AP in any one of the first to third embodiments.
  • the transceiving unit 602 is configured to perform the transceiving function performed by the first AP in any one of the embodiments from the first to the third embodiments.
  • the processing unit 601 is configured to execute step 205 , step 206 and step 207 .
  • the transceiver unit 602 is configured to execute step 208 .
  • the processing unit 601 is configured to execute step 309 , step 310 and step 311 , and the transceiver unit 602 is configured to execute step 312 .
  • the processing unit 601 is configured to execute step 407, step 408, and step 409, and the transceiver unit 602 is configured to execute step 410, step 412, and step 417.
  • the processing unit 601 is configured to execute the processing function performed by the second AP in any one of the first to third embodiments.
  • the transceiving unit 602 is configured to perform the transceiving function performed by the second AP in any one of the first to third embodiments.
  • the processing unit 601 is configured to execute step 209 , step 210 and step 211
  • the transceiver unit 602 is configured to execute step 212
  • the processing unit 601 is configured to execute step 305 , step 306 and step 307
  • the transceiver unit 602 is configured to execute step 308
  • the processing unit 601 is configured to execute step 401 , step 402 , step 403 and step 406
  • the transceiver unit 602 is configured to execute step 404 , step 406 and step 411 .
  • the processing unit 601 is configured to execute the processing function performed by the STA in any one of the first to third embodiments.
  • the transceiving unit 602 is configured to perform the transceiving function performed by the STA in any one of the first to third embodiments.
  • the transceiver unit 602 is configured to perform step 213 .
  • the processing unit 601 is configured to execute step 301 , step 302 and step 303
  • the transceiver unit 602 is configured to execute step 304 .
  • the transceiving unit 602 is configured to perform step 405 .
  • the network device shown in this embodiment can be a plurality of network devices included in the transmission path. any of the network devices.
  • the network device specifically includes: a processor 701 , a memory 702 , a bus 703 , a transceiver 704 and a network interface 706 .
  • the memory 702 may include computer storage media in the form of volatile and/or non-volatile memory, such as read-only memory and/or random access memory.
  • Memory 702 may store operating systems, application programs, other program modules, executable code, and program data.
  • the transceiver 704 can be used to input commands and information to network devices, and the transceiver 704 can be connected to the processor 701 through the bus 703 . Transceiver 704 may also be used to output or input information to network devices.
  • the network device can be connected to the communication network through the network interface 706.
  • the computer-executed instructions stored in the network device can be stored in a remote storage device, not limited to local storage.
  • the network device executes the executable code or application program stored in the memory 702
  • the network device can perform the method operations on any side of the above method embodiments.
  • the specific execution process refer to the above method embodiments. Here No longer.

Abstract

本发明实施例公开了一种业务报文的转发方法、网络设备以及无线网络,其能够有效地避免传输路径传输业务报文的时延超过该业务报文所要求的时延的情况。该方法包括:第一网络设备确定业务报文对应的目标时延,目标时延为业务报文经由传输路径传输所要求的时延,第一网络设备为传输路径所包括的多个网络设备中的一个;第一网络设备确定剩余跳数,剩余跳数为传输路径上,业务报文尚未经过的网络设备的数量;第一网络设备根据目标时延和剩余跳数确定最大调度时长,业务报文用于在最大调度时长内,在第一网络设备和第二网络设备之间传输,第二网络设备为传输路径中与第一网络设备相邻的网络设备。

Description

一种业务报文的转发方法、网络设备以及无线网络
本申请要求于2021年5月31日提交中国国家知识产权局、申请号为202110602893.7、申请名称为“一种业务报文的转发方法、网络设备以及无线网络”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种业务报文的转发方法、网络设备以及无线网络。
背景技术
无线保真(wireless fidelity,WiFi)级联时,用于传输业务报文的传输路径,包括STA、多个AP以及网关。不管是从网关到STA,还是从STA到网关,业务报文都需要被传输路径所包括的多个网络设备转发。
每个网络设备预先配置时延列表,该时延列表包括业务类型和转发时延的对应关系。业务报文转发的过程中,每个网络设备根据业务报文的业务类型,查询时延列表确定对应的转发时延,网络设备根据该转发时延进行业务报文的转发。
但是,每个网络设备仅考虑自身的转发时延对业务报文进行转发,极容易出现整个传输路径传输业务报文的时延超过了该业务报文所要求的目标时延的情况。
发明内容
本发明实施例提供了一种业务报文的转发方法、网络设备以及无线网络,其能够有效地避免传输路径传输业务报文的时延超过该业务报文所要求的时延的情况。
第一方面,本发明实施例提供了一种业务报文的转发方法,所述方法包括:第一网络设备确定业务报文对应的目标时延,所述目标时延为所述业务报文经由传输路径传输所要求的时延,所述第一网络设备为所述传输路径所包括的多个网络设备中的一个;所述第一网络设备确定剩余跳数,所述剩余跳数为所述传输路径上,所述业务报文尚未经过的网络设备的数量;所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长,所述业务报文用于在所述最大调度时长内,在所述第一网络设备和第二网络设备之间传输,所述第二网络设备为所述传输路径中与所述第一网络设备相邻的网络设备。
可见,传输路径转发业务报文的过程中,每个网络设备需要根据传输路径中每个网络设备传输业务报文的情况(传输业务报文的目标时延以及剩余跳数等),获取网络设备对应的最大调度时长,并在最大调度时长内转发该业务报文,有效地避免了业务报文经由传输路径进行传输的过程中,超过业务报文所要求的目标时延的情况。
基于第一方面,一种可选地实现方式中,例如,传输路径依次连接网关、第一AP、第二AP以及STA,那么,传输路径的下行传输方向,若第一网络设备为网关,那么第二网络设备为第一AP,若第一网络设备为第一AP,那么,第二网络设备为第二AP,若第一网络设备为第二AP,那么第二网络设备为STA,可知,第一网络设备在所述最大调度时长内,向第二网络设备发送业务报文。
基于第一方面,一种可选地实现方式中,例如,传输路径依次连接网关、第一AP、第二AP以及STA,那么,传输路径的上行传输方向,且该业务报文处于直接上行发送的状态。 若第一网络设备为STA,那么第二网络设备为第二AP,若第一网络设备为第二AP,那么第二网络设备为第一AP,若第一网络设备为第一AP,那么第二网络设备为网关,可知,第一网络设备在所述最大调度时长内,向第二网络设备发送业务报文。
基于第一方面,一种可选地实现方式中,例如,传输路径依次连接网关、第一AP、第二AP以及STA,那么,传输路径的上行传输方向,且该业务报文处于调度上行发送的状态。若第一网络设备为第二AP,那么第二网络设备为STA,若第一网络设备为第一AP,那么第二网络设备为第二AP,若第一网络设备为网关,那么第二网络设备为第一AP,可知,第一网络设备在所述最大调度时长内,接收来自第二网络设备的业务报文。
基于第一方面,一种可选地实现方式中,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长之前,所述方法还包括:所述第一网络设备获取已用时长,所述已用时长为当前时刻减去开始时刻的值,所述开始时刻为所述业务报文开始经由所述传输路径进行传输的时刻;所述第一网络设备获取目标时长,所述目标时长为所述目标时延减去所述已用时长的值。
可见,传输路径上的网络设备,能够根据已用时长确定该最大调度时长,该已用时长为当前时刻减去业务报文经由传输路径开始传输的时刻,能够使得传输路径中的各网络设备感知上游网络设备的转发业务报文的情况,有效地提高了各网络设备的调度效率,例如,网络设备确定最大调度时长为20毫秒,而网络设备在5毫秒内成功将业务报文传输至下游网络设备,那么,网络设备可以在尚未使用完成的时长(即20毫秒-5毫秒=15毫秒)内调度其他网络设备,有效地提高了网络设备调度资源的利用效率。
基于第一方面,一种可选地实现方式中,所述最大调度时长的持续时长与所述目标时长呈正相关关系,且所述最大调度时长的持续时长与所述剩余跳数呈负相关关系。
基于第一方面,一种可选地实现方式中,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长包括:所述第一网络设备确定所述目标时长除以所述剩余跳数的值为所述最大调度时长。
基于第一方面,一种可选地实现方式中,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长之前,所述方法还包括:所述第一网络设备接收来自所述第二网络设备的队列状态报文,所述队列状态报文携带所述开始时刻,且所述第一网络设备接收所述队列状态报文的时刻早于所述第一网络设备接收所述业务报文的时刻。
可见,第一网络设备能够接收来自第二网络设备的队列状态报文,所述队列状态报文已携带该开始时刻,以保证第一网络设备能够成功地确定最大调度时长。
基于第一方面,一种可选地实现方式中,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长之后,所述方法还包括:所述第一网络设备向所述第二网络设备发送调度指令,所述调度指令用于指示所述第二网络设备向所述第一网络设备发送所述业务报文;所述第一网络设备接收来自所述第二网络设备的所述业务报文,其中,第一时间段的持续时长小于或等于所述最大调度时长,所述第一时间段的起始时刻为所述第一网络设备从队列状态报文获取到所述开始时刻的时刻,所述第一时间段的结束时刻为所述第一网络设备接收完成所述业务报文的时刻。
基于第一方面,一种可选地实现方式中,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长之后,所述方法还包括:所述第一网络设备向所述第二网络设备发送所述业务报文,其中,第二时间段的持续时长小于或等于所述最大调度时长,所述第二时间段的起始时刻为所述业务报文开始进入所述第一网络设备的时刻,所述第二时间段的结束时刻为所述第一网络设备发送完成所述业务报文的时刻。
基于第一方面,一种可选地实现方式中,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长之前,所述方法还包括:所述第一网络设备接收来自第三网络设备的所述业务报文,所述第三网络设备为所述传输路径中与所述第一网络设备相邻的网络设备,所述业务报文携带所述开始时刻。
基于第一方面,一种可选地实现方式中,所述第一网络设备为所述传输路径所包括的第一个网络设备,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长之前,所述方法还包括:所述第一网络设备确定所述开始时刻,所述开始时刻为所述业务报文开始进入所述第一网络设备的时刻,或,所述开始时刻为所述第一网络设备产生所述业务报文的时刻;所述第一网络设备将所述开始时刻设置在所述业务报文中。
基于第一方面,一种可选地实现方式中,所述第一网络设备确定业务报文对应的目标时延包括:所述第一网络设备接收所述目标时延。
基于第一方面,一种可选地实现方式中,所述第一网络设备确定业务报文对应的目标时延包括:所述第一网络设备根据预设对应关系获取与所述业务报文的业务类型对应的所述目标时延,其中,所述预设对应关系包括所述业务报文的业务类型和所述目标时延的对应关系。
基于第一方面,一种可选地实现方式中,所述第一网络设备确定剩余跳数包括:所述第一网络设备接收所述剩余跳数。
基于第一方面,一种可选地实现方式中,所述第一网络设备确定剩余跳数包括:所述第一网络设备根据目标连接关系获取对应的所述剩余跳数,所述目标连接关系为所述业务报文经由所述传输路径传输的过程中,依次经由的各个网络设备的标识。
第二方面,本发明实施例提供了一种网络设备,包括分别与处理器耦合的存储器和收发器,所述存储器中存储了计算机程序代码,所述处理器调用并执行所述存储器中的计算机程序代码,使得所述网络设备执行如第一方面任一项所示的业务报文的转发方法。
本方面所示的有益效果的说明,请参见第一方面所示,具体不做赘述。
第三方面,本发明实施例提供了一种数字处理芯片,所述数字处理芯片包括处理器和存储器,所述存储器和所述处理器通过线路互联,所述存储器中存储有指令,所述处理器用于执行如第一方面任一项所示的业务报文的转发方法。
本方面所示的有益效果的说明,请参见第一方面所示,具体不做赘述。
第四方面,本发明实施例提供了一种无线网络,包括依次连接的多个网络设备,所述网络设备如第二方面所述。
第五方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被计算机执行时能够完成如第一方面任一项所示的业 务报文的转发方法。
附图说明
图1为本申请所提供的业务报文的转发方法所应用的无线网络的一种实施例结构示例图;
图2为本申请所提供的下行业务报文的转发方法的一种实施例步骤流程图;
图3为本申请所提供的上行业务报文的转发方法的一种实施例步骤流程图;
图4为本申请所提供的上行业务报文的转发方法的另一种实施例步骤流程图;
图5为本申请所提供的数据帧的一种帧格式示例图;
图6为本申请所提供的网络设备的一种实施例结构示例图;
图7为本申请所提供的网络设备的另一种实施例结构示例图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下结合图1所示对本申请所提供的业务报文的转发方法所应用的无线网络的结构进行说明,本实施例对无线网络的具体网络类型不做限定,例如,该无线网络可为WiFi、第五代移动通信技术(5th-Generation,5G)系统,长期演进(long termevolution,LTE)系统、全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络、宽带码分多址(widebandcode division multiple access,WCDMA)网络等,还可以是全球微波互联接入(worldwideinteroperability for microwave access,WiMAX)等。
本实施例所示的无线网络包括传输路径100,该传输路径100包括多个网络设备。例如图1所示的传输路径100包括用于传输业务报文的网关101、第一接入点(access point,AP)102、第二AP103以及工作站(station,STA)104。需明确的是,在无线网络传输不同的业务报文的情况下,可通过不同的传输路径进行传输,本实施例对传输路径所包括的AP的数量不做限定,本实施例以传输路径100包括两个AP为例进行示例性说明。
其中,网关101又称网间连接器、协议转换器。网关101在网络层以上实现网络互连。图1所示的传输路径所包括的各AP是指无线接入点,也可以称为无线AP,它是一个无线网络的接入点,也是无线网络的核心。
本实施例所示以无线网络包括多个AP为例,多个AP之间存在级联关系,通过存在级联关系的多个AP以扩大无线网络的覆盖范围。AP主要用于宽带家庭、大楼内部以及园区内部,其距离覆盖可以为几十米至上百米。其中,AP可以为无线路由器,无线路由器主要包括路由交换接入一体设备和纯接入点设备,通常,一体设备执行接入和路由工作,纯接入点设备只负责无线客户端的接入。
图1所示的传输路径所包括的连接到AP的STA也可以称为移动站点,是指携带有无线 网络接口卡(比如无线网卡)的设备。例如,智能手机、便携式笔记本、平板电脑、网络电视(internet protocol television,IPTV)的无线机顶盒、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
经由传输路径100可传输多种业务类型,例如,该业务类型可为时间敏感网络(time sensitivity network,TSN),其中,该TSN可为语音、视频、AR、VR、实时对战游戏、或工业物联网等类型。
随着通信的发展,各种业务类型对时延的要求也不断增高,本申请所提供的业务报文的转发方法,能够有效地满足业务报文对时延的要求。以下结合多个实施例,对本申请所提供的业务报文的转发方法进行具体说明。
实施例一
基于图1所示的传输路径的结构的说明,以下结合图2所示对本实施例所提供的下行业务报文的转发方法的执行过程进行说明。其中,图2为本申请所提供的下行业务报文的转发方法的一种实施例执行步骤流程图。
本实施例所示的下行业务报文在传输路径中,沿下行传输方向进行传输,其中,下行传输方向是指,下行业务报文由网关100发出,依次经由第一AP102、第二AP103,直至传输至STA104。
本实施例以传输路径中,网关和STA之间依次连接了两个AP为例进行示例性说明,在其他示例中,传输路径中,网关和STA之间还可连接一个AP,或连接两个以上的AP,对每个AP执行本实施例所示的下行业务报文的转发方法的过程的说明,请参见本实施例所示的第一AP或第二AP执行下行业务报文的转发方法的过程的说明,具体不做赘述。
步骤201、网关确定下行业务报文对应的目标时延。
本实施例中,在网关确定需要经由该传输路径将该下行业务报文传输至STA的情况下,网关可确定该下行业务报文对应的目标时延Tc,该目标时延Tc为该下行业务报文经由该传输路径传输完成所要求的时延。可知,该下行业务报文需要在该目标时延Tc内,从该网关发出,依次经由传输路径所包括的各个网络设备的转发,直至传输至STA。
以下对本实施例所示的网关获取该目标时延Tc的可选方式进行说明:
本实施例所示的网关预先配置预设对应关系,该预设对应关系包括不同的业务类型和不同目标时延Tc的对应关系,例如,该预设对应关系可参见如下所示的表1所示:
表1
Figure PCTCN2022077404-appb-000001
Figure PCTCN2022077404-appb-000002
可知,网关在确定需要发送该下行业务报文,网关可通过查询该预设对应关系的方式,以确定与该下行业务报文的业务类型对应的目标时延Tc。例如,若网关确定该下行业务报文的业务类型为VR,网关根据表1所示的预设对应关系确定对应的目标时延Tc为20毫秒,可知,传输路径需要在20毫秒内,将该下行业务报文传输完成。
本实施例以预设对应关系包括不同的业务类型和不同的目标时延Tc的对应关系为例进行示例性说明,在其他示例中,该预设对应关系还可包括不同的下行业务报文的标识和不同的目标时延Tc的对应关系。其中,该下行业务报文的标识可用于标识不同的下行业务报文。又如,该下行业务报文的标识可用于标识业务报文的优先级,具有较高优先级的下行业务报文对应的目标时延Tc小于具有较低优先级的下行业务报文对应的目标时延Tc。下行业务报文的优先级可用于指示下行业务报文所携带的数据的重要性等,具体在本实施例中不做限定。
本实施例所示的网关也可从其他设备接收该目标时延Tc,例如,与网关101连接数据服务器,该数据服务器将已获取的目标时延Tc发送给网关101。
步骤202、网关获取网关对应的剩余跳数。
本实施例所示的网关获取与STA对应的目标连接关系,本实施例所示的目标连接关系依次包括该传输路径的各网络设备的标识。本实施例中,网关可预先创建查询列表,该查询列表包括用于接收下行业务报文的不同的STA与不同的连接关系的对应关系。在网关确定需要接收下行业务报文的STA为图1所示的STA104的情况下,网关可通过查询该查询列表的方式,以获取与该STA104对应的目标对应关系,该目标连接关系的说明可参见表2所示:
表2
网络设备的标识 网络设备的地址
网关101的标识 网关101的地址
第一AP102的标识 第一AP102的地址
第二AP103的标识 第二AP103的地址
STA104的标识 STA104的地址
可知,本实施例所示的目标连接关系依次包括该传输路径的各网络设备的标识以及与各网络设备的标识对应的地址。在图1所示的示例中,网关所获取到的目标连接关系包括网关101的标识、第一AP102的标识、第二AP103的标识以及STA104的标识。该目标连接关系说明,该下行业务报文沿传输路径传输完成,需要依次经由网关101、第一AP102、第二AP103以及STA104。
网关101在确定需要发送下行业务报文的情况下,可通过查询如表2所示的目标连接关系的方式,获取下游网络设备的标识为第一AP102的标识,且获取该第一AP102的地址,网关101向该第一AP102的地址发送下行业务报文。其中,目标连接关系所包括的各网络 设备的地址可为媒介接入控制(media access control,MAC)地址。
网关在获取到该目标连接关系的情况下,获取网关对应的剩余跳数。其中,网关对应的剩余跳数是指,在所述传输路径上,由所述网关发出的所述下行业务报文尚未经过的网络设备的数量。例如,网关101根据目标连接关系,确定下行业务报文尚未经过的网络设备为第一AP102、第二AP103以及STA104,可知,该网关对应的剩余跳数为3。
步骤203、网关获取网关对应的最大调度时长。
本实施例所示的网关需要在最大调度时长内,将下行业务报文转发至第一AP102,以下对网关获取该最大调度时长的具体过程进行说明:
首先,网关获取已用时长Ta1,该已用时长Ta1为该下行业务报文经由该传输路径进行传输已经过的时长,具体地,网关可根据公式1获取该已用时长Ta1。
公式1:已用时长Ta1=当前时刻Tn1-开始时刻Ts。其中,开始时刻Ts为网关所获取到的,该下行业务报文开始经由传输路径进行传输的时刻。具体地,本实施例所示网关101可与网络连接,网关101接收来自该网络的下行业务报文,并经由该传输路径传输该下行业务报文,例如,该网络可为有线网络,该开始时刻Ts为下行业务报文从有线网络开始进入网关101的时刻。
网关101在获取到该开始时刻Ts的情况下,将该开始时刻Ts设置在下行业务报文中。网关101在执行步骤201和步骤202完成后,网关101获取当前时刻Tn1,并根据该公式1获取该已用时长Ta1。
其次,网关根据公式2获取网关对应的目标时长Tb1。
公式2:目标时长Tb1=目标时延Tc-已用时长Ta1。
再次,网关根据目标时长Tb1和剩余跳数确定该最大调度时长,其中,所述最大调度时长的持续时长与所述目标时长呈正相关关系,且所述最大调度时长的持续时长与所述剩余跳数呈负相关关系。
可选地,网关可根据公式3获取该最大调度时长TM1。
公式3:最大调度时长TM1=目标时长Tb1/剩余跳数N1,可知,网关确定所述目标时长Tb1除以所述剩余跳数N1的值为所述最大调度时长TM1。
步骤204、网关在最大调度时长内,向第一AP发送下行业务报文。
网关向第一AP成功发送该下行业务报文实际使用的时间段为网关对应的第二时间段,其中,所述网关对应的第二时间段的起始时刻为下行业务报文开始进入所述网关的时刻,可知,对于网关而言,该第二时间段的起始时刻为开始时刻Ts,所述第二时间段的结束时刻为所述网关发送完成所述下行业务报文的时刻。例如,所述下行业务报文包括连续的M个数据包,该第二时间段的起始时刻为所述网关接收到M个数据包中的第一个数据包的时刻,所述网关对应的第二时间段的结束时刻为所述网关发送完成M个数据包中的最后一个数据包的时刻。
本实施例中,所述网关对应的第二时间段的持续时长小于或等于所述最大调度时长。例如,若网关确定该最大调度时长为6毫秒,而网关向第一AP成功发送该下行业务报文实际使用的第二时间段为4毫秒,可知,网关可利用最大调度时长尚未使用的剩余时长(即 6毫秒-4毫秒=2毫秒)去调度其他下行业务报文,提高了网关调度下行业务报文的效率。
步骤205、第一AP确定下行业务报文对应的目标时延。
对该目标时延Tc的说明,请详见步骤201所示,具体不做赘述,以下对第一AP获取该目标时延Tc的几种可选方式进行说明:
方式1
本实施例所示的第一AP预先配置预设对应关系,该预设对应关系包括不同的业务类型和不同的时延的对应关系,可知,第一AP接收到该下行业务报文的情况下,可通过查询该预设对应关系的方式,以确定与该下行业务报文的业务类型对应的目标时延Tc,对该预设对应关系的说明,请参见步骤201所示,具体不做赘述。
方式2
第一AP从网关接收该目标时延Tc,例如,网关可在在确定出目标时延Tc的情况下,在下行业务报文中设置该目标时延Tc,以保证第一AP能够从该下行业务报文中提取出该目标时延Tc。在其他示例中,第一AP也可从与第一AP连接的数据服务器获取该目标时延Tc,对该数据服务器的具体说明,请参见步骤201所示,具体不做赘述。
步骤206、第一AP获取第一AP对应的剩余跳数。
该第一AP对应的剩余跳数是指,在传输路径上,由第一AP发出的下行业务报文尚未经过的网络设备的数量。例如,在图1所示的传输路径中,由第一AP102发出的下行业务报文尚未经过的网络设备为第二AP103以及STA104,可知,该第一AP对应的剩余跳数为2,以下对第一AP获取第一AP对应的剩余跳数的方式进行可选地说明:
方式1
第一AP获取与下行业务报文对应的目标连接关系,对该目标连接关系的说明,请详见步骤202所示,具体不做赘述。可知,网关在获取到该目标连接关系的情况下,网关可向第一AP发送给目标连接关系,或,网关可将该目标连接关系设置在下行业务报文中,由第一AP从该下行业务报文中提取出该目标连接关系。第一AP获取到该目标连接关系的情况下,即可根据该目标连接关系获取剩余跳数,其中,第一AP根据目标连接关系获取剩余跳数的过程的说明,请参见步骤202所示的网关根据该目标连接关系获取剩余跳数的过程的说明,具体不做赘述。
方式2
第一AP接收来自网关的下行跳数列表,所述下行跳数列表用于指示第一AP对应的剩余跳数。在本方式中,网关能够根据该目标连接关系,获取传输路径中,在下行传输的过程中,每个网络设备对应的剩余跳数,以生成下行跳数列表,如下述的表3所示:
表3
网络设备 剩余跳数
网关 3
第一AP 2
第二AP 1
STA 0
可知,该下行跳数列表用于指示,传输路径中每个网络设备对应的剩余跳数。例如,网关能够根据该下行跳数列表确定网关对应的剩余跳数为3,网关能够根据该下行跳数列表确定第一AP对应的剩余跳数为2,网关能够根据该下行跳数列表确定第二AP对应的剩余跳数为1。
可选地,网关可直接将如表3所示的下行跳数列表发送给第一AP。还可选地,网关可将如表4所示的下行跳数列表发送给第一AP。网关发送该下行跳数列表的方式,可参见方式1所示的网关发送目标连接关系的方式的说明,具体不做赘述。
表4
网络设备 剩余跳数
第一AP 2
第二AP 1
STA 0
可知,网关发送给第一AP的下行跳数列表,指示了第一AP以及第二AP分别对应的剩余跳数,第一AP接收到该下行跳数列表的情况下,可确定第一AP对应的剩余跳数为2,第一AP可向第二AP发送如表3或表5所示的下行跳数列表,以保证第二AP能够确定其对应的剩余跳数。
表5
网络设备 剩余跳数
第二AP 1
可知,第一AP发送给第二AP的下行跳数列表,指示了第二AP对应的剩余跳数,第二AP接收到该下行跳数列表的情况下,可确定第二AP对应的剩余跳数为1。
步骤207、第一AP获取第一AP对应的最大调度时长。
本实施例所示的第一AP需要在该最大调度时长内,将下行业务报文转发至第二AP103,以下对第一AP获取该最大调度时长的具体过程进行说明:
首先,第一AP获取已用时长Ta2,该已用时长Ta2为该下行业务报文经由该传输路径进行传输已经过的时长,具体地,第一AP可根据公式1获取该已用时长Ta1。
公式4:已用时长Ta2=当前时刻Tn2-开始时刻Ts。对开始时刻Ts的说明,请参见步骤203所示,具体不做赘述。
其次,第一AP根据公式5获取第一AP对应的目标时长Tb2。
公式5:目标时长Tb2=目标时延Tc-已用时长Ta2。
再次,第一AP根据目标时长Tb2和剩余跳数确定该最大调度时长,本实施例所示的所述最大调度时长的持续时长与所述目标时长呈正相关关系,且所述最大调度时长的持续时长与所述剩余跳数呈负相关关系。
可选地,第一AP可根据公式6获取该最大调度时长。
公式6:最大调度时长TM2=目标时长Tb2/剩余跳数N2,可知,第一AP确定所述目标时长Tb2除以所述剩余跳数N2的值为所述最大调度时长TM2。
步骤208、第一AP在最大调度时长内,向第二AP发送下行业务报文。
第一AP向第二AP成功发送该下行业务报文实际使用的时间段为第一AP对应的第二时间段,其中,所述第一AP对应的第二时间段的起始时刻为下行业务报文开始进入所述第一AP开始的时刻,所述第二时间段的结束时刻为所述第一AP发送完成所述下行业务报文的时刻。例如,网关向第一AP发送的该下行业务报文包括M个连续的数据包,则该第二时间段的起始时刻为M个连续的数据包中的第一个数据包开始进入所述第一AP的时刻。所述第二时间段的结束时刻为所述第一AP发送完成M个数据包中的最后一个数据包的时刻。
本实施例中,所述第一AP对应的第二时间段的持续时长小于或等于所述最大调度时长,具体说明,请参见步骤204所示的网关对应的第二时间段的持续时长小于或等于最大调度时长的说明,具体不做赘述。
步骤209、第二AP确定下行业务报文对应的目标时延。
具体过程的说明,请参见步骤205所示的第一AP确定目标时延Tc的过程的说明,具体不做赘述。
步骤210、第二AP获取第二AP对应的剩余跳数。
具体过程的说明,请参见步骤206所示的第一AP获取第一AP对应的剩余跳数的过程的说明,具体不做赘述。
步骤211、第二AP获取第二AP对应的最大调度时长。
具体过程的说明,请参见步骤207所示的第一AP获取第一AP对应的最大调度时长的过程的说明,具体不做赘述。
步骤212、第二AP在最大调度时长内,向STA发送下行业务报文。
具体过程的说明,请参见步骤208所示的第一AP在最大调度时长内,向第二AP发送下行业务报文的过程的说明,具体不做赘述。
步骤213、STA接收来自第二AP的下行业务报文。
采用本实施例所示的方法,传输路径转发下行业务报文的过程中,每个网络设备(例如,网关或任一AP),需要根据传输路径中每个网络设备传输业务报文的情况(传输下行业务报文的目标时延以及剩余跳数等),获取网络设备对应的最大调度时长,并在最大调度时长内转发该下行业务报文,有效地避免了下行业务报文经由传输路径进行传输的过程中,超过下行业务报文所要求的目标时延的情况。
传输路径上的网络设备,能够根据已用时长确定该最大调度时长,该已用时长为当前时刻减去下行业务报文经由传输路径开始传输的时刻,能够使得传输路径中的各网络设备感知上游网络设备的转发下行业务报文的情况,有效地提高了各网络设备的调度效率,例如,网关确定最大调度时长为20毫秒,而网关在5毫秒内成功将下行业务报文传输至第一AP,那么,网关可以在尚未使用完成的时长(即20毫秒-5毫秒=15毫秒)内调度其他AP,有效地提高了网络设备调度资源的利用效率。而且,第一AP能够将网关尚未使用完成的时长,规划进第一AP获取的最大调度时长内,可见,若传输路径中,上游网络设备的最大调度时长未全部使用完成,已实现下行业务报文的转发,那么,会提高下游网络设备所确定的最大调度时长的持续时间,有效地保证了下行业务报文经由传输路径传输完成的时间小于或等于该下行业务报文所要求的目标时延。
实施例二
基于图1所示的传输路径的结构的说明,以下结合图3所示对本实施例所提供的上行业务报文的转发方法的执行过程进行说明。本实施例所示以上行业务报文在传输路径中,沿上行传输方向进行传输,且该上行业务报文处于直接上行发送的状态。其中,上行传输方向是指,上行业务报文由STA104发出,依次经由第二AP103、第一AP102,直至传输至网关100。直接上行发送的状态是指,按照传输上行业务报文的顺序,下游网络设备无需上游网络设备的调度,直接向上游网络设备转发上行业务报文。例如图1所示,STA无需第二AP103的调度,直接向第二AP103转发上行业务报文,又如,第二AP103无需第一AP102的调度,直接向第一AP102转发上行业务报文。
本实施例以传输路径中,STA和网关之间依次连接了两个AP为例进行示例性说明,在其他示例中,传输路径中,STA和网关之间还可连接一个AP,或连接两个以上的AP,对每个AP执行本实施例所示的上行业务报文的转发方法的过程的说明,请参见本实施例所示的第一AP或第二AP执行上行业务报文的转发方法的过程的说明,具体不做赘述。
步骤301、STA确定上行业务报文对应的目标时延。
本实施例中,STA确定需要经由该传输路径将该上行业务报文传输至网关,那么,STA可确定该上行业务报文对应的目标时延,该目标时延为该上行业务报文经由该传输路径传输所要求的时延,对STA获取该目标时延的说明,可参见实施例一所示的步骤201所示的网关获取目标时延的过程的说明,具体在本实施例中不做赘述。
步骤302、STA获取STA对应的剩余跳数。
STA对应的剩余跳数是指,在传输路径上,由STA发出的上行业务报文尚未经过的网络设备的数量。以下对STA获取STA对应的剩余跳数的可选方式进行说明:
方式1
STA获取与下行业务报文对应的目标连接关系,对该目标连接关系的说明,请详见实施例一的步骤202所示,具体不做赘述。STA获取该目标连接关系的方式可为,网关将目标连接关系发送给第一AP,第一AP再将该目标连接关系转发给第二AP,第二AP再将该目标连接关系转发给STA。STA根据该目标连接关系获取STA对应的剩余跳数。例如,STA104根据目标连接关系,确定上行业务报文尚未经过的网络设备为第二AP103、第一AP102以及网关101,可知,该STA对应的剩余跳数为3。
方式2
STA获取上行跳数列表,该上行跳数列表用于指示STA对应的剩余跳数,该上行跳数列表可如下述的表6所示:
表6
网络设备 剩余跳数
STA 3
第二AP 2
第一AP 1
网关 0
可知,该上行跳数列表用于指示,传输路径中每个网络设备对应的剩余跳数。例如,STA能够根据该上行行跳数列表确定STA对应的剩余跳数为3。本示例中,STA可依次经由第二AP以及第一AP接收来自网关的该上行跳数列表,或,STA可根据目标对应关系生成该上行跳数列表等,具体在本实施例中不做限定。
步骤303、STA获取STA对应的最大调度时长。
为获取该最大调度时长,STA需要获取开始时刻Ts,其中,该开始时刻Ts为所述业务报文开始进入所述STA的WiFi驱动的时刻。具体地,STA所运行的应用用于产生上行业务报文,应用将所产生的上行业务报文发送给STA的WiFi驱动,该WiFi驱动用于对该上行业务报文进行编码以使该上行业务报文能够通过WiFi网络进行传输。例如,所述上行业务报文包括连续的N个数据包,则该开始时刻Ts为N个数据包中的第一个数据包开始进入STA的WiFi驱动的时刻。
本实施例所示的STA根据目标时延、剩余跳数以及开始时刻Ts,获取最大调度时长的过程,请参见实施例一的步骤203所示的网关获取网关对应的最大调度时长的过程的说明,具体不做赘述。可知,本实施例所示的STA需要在最大调度时长内,将上行业务报文转发至第二AP103。
步骤304、STA在最大调度时长内,向第二AP发送上行业务报文。
STA向第二AP成功发送该上行业务报文实际使用的时间段为STA对应的第二时间段,其中,所述STA对应的第二时间段的起始时刻为上述所示的开始时刻Ts,所述第二时间段的结束时刻为所述STA发送完成所述上行业务报文的时刻。例如,所述上行业务报文包括连续的N个数据包,则该第二时间段的起始时刻为N个数据包中的第一个数据包开始进入STA的WiFi驱动的时刻,所述STA对应的第二时间段的结束时刻为所述STA发送完成N个数据包中的最后一个数据包的时刻。
步骤305、第二AP确定上行业务报文对应的目标时延。
对该目标时延的说明,请详见步骤301所示,具体不做赘述,第二AP获取该目标时延的过程的说明,可参见步骤301所示的STA获取上行业务报文对应的目标时延的过程的说明,具体不做赘述。
步骤306、第二AP获取第二AP对应的剩余跳数。
该第二AP对应的剩余跳数是指,在传输路径上,由第二AP发出的上行业务报文尚未经过的网络设备的数量。例如,在图1所示的传输路径中,由第二AP发出的上行业务报文尚未经过的网络设备为第一AP102以及网关101,可知,该第二AP对应的剩余跳数为2,第二AP获取该第二AP对应的剩余跳数的过程的说明,请参见步骤302所示的STA获取STA对应的剩余跳数的过程的说明,具体不做赘述。
步骤307、第二AP获取第二AP对应的最大调度时长。
本实施例所示的第二AP需要在最大调度时长内,将上行业务报文转发至第一AP102,第二AP获取第二AP对应的最大调度时长的具体过程,请参见上述步骤303所示的STA获取最大调度时长的过程的说明,具体不做赘述。
步骤308、第二AP在最大调度时长内,向第一AP发送下行业务报文。
第二AP向第一AP成功发送该上行业务报文的时间为第二AP对应的第二时间段,其中,所述第二AP对应的第二时间段的起始时刻为上行业务报文开始进入第二AP的时刻,所述第二时间段的结束时刻为所述第二AP发送完成所述上行业务报文的时刻。例如,所述上行业务报文包括连续的N个数据包,则该第二时间段的起始时刻为N个数据包中的第一个数据包开始进入所述第二AP的时刻,所述第二AP对应的第二时间段的结束时刻为所述第二AP发送完成N个数据包中的最后一个数据包的时刻。
步骤309、第一AP确定上行业务报文对应的目标时延。
第一AP确定上行业务报文对应的目标时延的具体过程,请参见步骤305所示的第二AP确定上行业务报文对应的目标时延的过程,具体不做赘述。
步骤310、第一AP获取第一AP对应的剩余跳数。
第一AP获取一AP对应的剩余跳数的具体过程,请参见步骤306所示的第二AP获取第二AP对应的剩余跳数的过程,具体不做赘述。
步骤311、第一AP获取第一AP对应的最大调度时长。
第一AP获取第一AP对应的最大调度时长的具体过程,请参见步骤307所示的第二AP获取第二AP对应的最大调度时长的过程,具体不做赘述。
步骤312、第一AP在最大调度时长内,向网关发送下行业务报文。
第一AP在最大调度时长内,向网关发送下行业务报文的具体过程,请参见步骤308所示的第二AP在最大调度时长内,向第一AP发送下行业务报文的过程,具体不做赘述。
步骤313、网关接收来自第一AP的上行业务报文。
采用本实施例所示的方法,传输路径转发上行业务报文的过程中,每个网络设备(例如,STA或任一AP),需要根据传输路径中每个网络设备传输业务报文的情况(传输上行业务报文的目标时延以及剩余跳数等),获取网络设备对应的最大调度时长,并在最大调度时长内转发该上行业务报文,有效地避免了上行业务报文经由传输路径进行传输的过程中,超过上行业务报文所要求的目标时延的情况。
传输路径上的网络设备,能够根据已用时长确定该最大调度时长,该已用时长为当前时刻减去上行业务报文经由传输路径开始传输的时刻,能够使得传输路径中的各网络设备感知上游网络设备的转发上行业务报文的情况,有效地提高了各网络设备的调度效率,例如,STA确定最大调度时长为20毫秒,而STA在5毫秒内成功将上行业务报文传输至第二AP,那么,STA可以在尚未使用完成的时长(即20毫秒-5毫秒=15毫秒)内与其他AP交互,有效地提高了网络设备调度资源的利用效率。而且,第二AP能够将STA尚未使用完成的时长,规划进第二AP获取的最大调度时长内,可见,若传输路径中,上游网络设备的最大调度时长未全部使用完成,已实现上行业务报文的转发,那么,会提高下游网络设备所确定的最大调度时长的持续时间,有效地保证了上行业务报文经由传输路径传输完成的时间小于或等于该上行业务报文所要求的目标时延。
实施例三
基于图1所示的传输路径的结构的说明,以下结合图4所示对本实施例所提供的上行业务报文的转发方法的执行过程进行说明。本实施例所示的上行业务报文在传输路径中,沿上行传输方向进行传输,且该上行业务报文处于调度上行发送的状态。其中,上行传输方向的说明,请参见实施例二所示,具体不做赘述。上行业务报文处于调度上行发送的状态是指,按照传输上行业务报文的顺序,下游网络设备需要上游网络设备的调度,才能向上游网络设备转发上行业务报文。例如,STA104需要第二AP103的调度,STA104才能向第二AP103转发上行业务报文,又如,第二AP103需要第一AP102的调度,第二AP103才能向第一AP102转发上行业务报文。
本实施例以传输路径中,STA和网关之间依次连接了两个AP为例进行示例性说明,在其他示例中,传输路径中,STA和网关之间还可连接一个AP,或连接两个以上的AP,对每个AP执行本实施例所示的上行业务报文的转发方法的过程的说明,请参见本实施例所示的第一AP或第二AP执行上行业务报文的转发方法的过程的说明,具体不做赘述。
需明确地是,本实施例以传输路径中的每个下游网络设备均需要上游网络设备的调度,才能向上游网络设备转发上行业务报文为例进行示例性说明,不做限定,在其他示例中,传输路径中的一部分下游网络设备,可在上游网络设备的调度下进行上行业务报文的转发,而另一部分下游网络设备,可直接向上游网络设备转发上行业务报文。继续参加图1所示,下游网络设备(即STA104)需要在上游网络设备(即第二AP103)的调度下,转发上行业务报文,执行流程可参见实施例三所示,而下游网络设备(即第二AP103)无需上游网络设备(即第一AP102)的调度,直接向第一AP102发送该上行业务报文,执行流程可参见实施例二所示,具体不做赘述。
步骤401、第二AP确定上行业务报文对应的目标时延。
本实施例中,STA经由传输路径传输上行业务报文的过程中,该STA需要在第二AP调度下,向第二AP发送上行业务报文。第二AP为实现对STA的调度,则需要获取上行业务报文对应的目标时延,以下对第二AP获取目标时延的可选过程进行示例性说明:
第二AP已从STA接收到队列状态报文,本实施例所示的队列状态报文和上行业务报文均为STA产生的报文,队列状态报文和上行业务报文所经由的传输路径相同。
因第二AP已接收到来自STA的队列状态报文,且尚未接收到来自STA的上行业务报文,可知,所述第二AP接收所述队列状态报文的时刻早于所述第二AP接收所述上行业务报文的时刻。
本实施例对第二AP接收该队列状态报文的方式不做限定,例如,第二AP可通过调度上行的方式接收来自STA的队列状态报文,又如,STA可直接向第二AP发送该队列状态报文。
本实施例所示的队列状态报文携带业务类型,第二AP能够根据队列状态报文所携带的业务类型确定目标时延,其中,本实施例所示的第二AP根据队列状态报文携带业务类型确定目标时延的过程的说明,请参见实施例二的步骤301所示的STA获取上行业务报文的目标时延的过程的说明,具体过程不做赘述。
例如,第二AP需要从STA接收连续的多个上行业务报文,第二AP已接收来自STA的 第一个上行业务报文(即队列状态报文),第二AP根据第一个上行业务报文获取该上行业务报文的业务类型,第二AP根据第一个上行业务报文的业务类型确定该目标时延后,第二AP即可对后续上行业务报文,如第二个上行业务报文、第三个上行业务报文等(即上行业务报文)进行本实施例所述的调度上行的方式进行接收。
可选地,该队列状态报文也可直接携带该上行业务报文对应的目标时延,可见,第二AP能够从队列状态报文中直接获取该目标时延。
步骤402、第二AP获取STA对应的剩余跳数。
本实施例中,由第二AP调度STA传输上行业务报文,那么,需要第二AP获取STA传输上行业务报文的剩余跳数。其中,第二AP所获取到的STA对应的剩余跳数是指,在传输路径上,由STA发出的上行业务报文尚未经过的网络设备的数量。例如,在图1所示的传输路径中,由STA104发出的上行业务报文尚未经过的网络设备为第二AP103、第一AP102以及网关101,可知,第二AP所确定的该STA对应的剩余跳数为3,以下对第二AP获取STA对应的剩余跳数的方式进行可选地说明:
方式1
第二AP获取与上行业务报文对应的目标连接关系,对该目标连接关系的说明,请详见实施例二的步骤302所示,具体不做赘述。第二AP获取该目标连接关系的方式可为,网关将目标连接关系发送给第一AP,第一AP再将该目标连接关系转发给第二AP。第二AP根据该目标连接关系获取STA对应的剩余跳数。例如,第二AP103根据目标连接关系,确定上行业务报文尚未经过的网络设备为第二AP103、第一AP102以及网关101,可知,该STA对应的剩余跳数为3。
方式2
第二AP接收来自上行跳数列表,该上行跳数列表用于指示STA对应的剩余跳数,对该上行跳数列表的说明,请参见实施例二的步骤302所示,具体不做赘述。可知,第二AP能够根据已接收的上行跳数列表,确定STA对应的剩余跳数。本实施例所示的所述队列状态报文可携带该上行跳数列表,第二AP能够从该上行跳数列表中获取STA对应的剩余跳数。
步骤403、第二AP获取第二AP对应的最大调度时长。
本实施例所示的第二AP需要在最大调度时长内,将上行业务报文由STA调度至第二AP,即,第二AP需要在该最大调度时长内,成功接收到来自STA的上行业务报文。第二AP根据目标时延、开始时刻Ts以及STA对应的剩余跳数,获取STA对应的最大调度时长的具体过程,请参见实施例二的步骤303所示的STA获取STA对应的最大调度时长的过程的说明,具体不做赘述。本实施例所示的队列状态报文已携带所述开始时刻Ts,可知,第二AP能够从已接收的队列状态报文,获取该开始时刻Ts。
步骤404、第二AP向STA发送调度指令。
步骤405、STA向第二AP发送上行业务报文。
本实施例所示的该调度指令用于指示所述STA向第二AP发送该上行业务报文,STA可在调度指示的指示下,向第二AP发送上行业务报文。例如,该调度指令可用于指示频率资源,STA可在调度指令所指示的频率资源上,向第二AP发送上行业务报文。
步骤406、第二AP在最大调度时长内,接收来自STA的上行业务报文。
STA在第二AP的调度下,向第二AP发送该上行业务报文实际使用的时间段为第一时间段,其中,第一时间段的持续时长小于或等于STA对应的最大调度时长,所述第一时间段的起始时刻为所述第二AP从所述队列状态报文获取到开始时刻Ts的时刻。所述第一时间段的结束时刻为所述第二AP接收完成所述上行业务报文的时刻。
可见,第二AP成功接收到来自STA的队列状态报文,即可从该队列状态报文中获取开始时刻Ts,且确定所述第二AP从所述队列状态报文成功获取到该开始时刻Ts的时刻为该起始时刻,随后,第二AP根据该目标时延、开始时刻Ts以及STA对应的剩余跳数,获取STA对应的最大调度时长(获取最大调度时长的过程请参见步骤403所示,不做赘述)。第二AP根据该最大调度时长对STA进行调度以接收上行业务报文(执行过程如步骤404和步骤405所示),确定所述第二AP接收完成所述上行业务报文的时刻为结束时刻,以起始时刻为计时起点且以结束时刻为计时终点的第一时间段的持续时长小于或等于STA对应的最大调度时长。
步骤407、第一AP确定上行业务报文对应的目标时延。
本实施例中,第二AP经由传输路径传输上行业务报文的过程中,该第二AP需要在第一AP调度下,向第一AP发送该上行业务报文。第一AP为实现对第二AP的调度,则需要获取上行业务报文对应的目标时延,第一AP为调度第二AP,获取目标时延的过程,请参见上述步骤401所示的第二AP为调度STA,获取目标时延的过程,具体不做赘述。
步骤408、第一AP获取第二AP对应的剩余跳数。
本实施例中,由第一AP调度第二AP传输上行业务报文,那么,需要第一AP获取第二AP传输上行业务报文的剩余跳数。其中,第一AP所获取到的第二AP对应的剩余跳数是指,在传输路径上,由第二AP发出的上行业务报文尚未经过的网络设备的数量。例如,在图1所示的传输路径中,由第二AP103发出的上行业务报文尚未经过的网络设备为第一AP102以及网关101,可知,第一AP所确定的第二AP对应的剩余跳数为2,第一AP获取第二AP对应的剩余跳数的过程的说明,请参见步骤402所示的第二AP获取STA对应的剩余跳数的过程的说明,具体不做赘述。
步骤409、第一AP获取第一AP对应的最大调度时长。
本实施例所示的第一AP需要在最大调度时长内,将上行业务报文由第二AP调度至第一AP,即,第一AP需要在该最大调度时长内,成功接收到来自第二AP的上行业务报文。第一AP根据目标时延、开始时刻Ts以及第一AP对应的剩余跳数,获取第一AP对应的最大调度时长的具体过程,请参见步骤404所示的第二AP获取第二AP对应的最大调度时长的过程的说明,具体不做赘述。
步骤410、第一AP向第二AP发送调度指令。
步骤411、第二AP向第一AP发送上行业务报文。
本实施例所示的该调度指令用于指示所述第二AP向第一AP发送该上行业务报文,第二AP可在调度指示的指示下,向第一AP发送上行业务报文。例如,该调度指令可用于指示频率资源,第二AP即可在调度指令所指示的频率资源上,向第一AP发送上行业务报文。
步骤412、第一AP在最大调度时长内,接收来自第二AP的上行业务报文。
第二AP在第一AP的调度下,向第一AP发送该上行业务报文实际使用的时间段为第一时间段,其中,第一时间段的持续时长小于或等于第一AP对应的最大调度时长,所述第一时间段的起始时刻为所述第一AP从来自第二AP的队列状态报文获取到所述开始时刻的时刻。对所述第一AP从第二AP所接收到的队列状态报文的说明,请参见步骤401所示的对第二AP从STA所接收到的队列状态报文的说明,具体不做赘述。所述第一时间段的结束时刻为所述第一AP接收完成所述上行业务报文的时刻。
步骤413、网关确定上行业务报文对应的目标时延。
本实施例中,第一AP经由传输路径传输上行业务报文的过程中,该第一AP需要在网关调度下,向网关发送该上行业务报文。网关为实现第一AP的调度,则需要获取上行业务报文对应的目标时延,网关为调度第一AP,获取目标时延的过程,请参见上述步骤401所示的第二AP为调度STA,获取目标时延的过程,具体不做赘述。
步骤414、网关获取第一AP对应的剩余跳数。
本实施例中,由网关调度第一AP传输上行业务报文,那么,需要网关获取第一AP传输上行业务报文的剩余跳数。其中,网关所获取到的第一AP对应的剩余跳数是指,在传输路径上,由第一AP发出的上行业务报文尚未经过的网络设备的数量。例如,在图1所示的传输路径中,由第一AP102发出的上行业务报文尚未经过的网络设备为网关101,可知,网关所确定的第一AP对应的剩余跳数为1,网关获取第一AP对应的剩余跳数的过程的说明,请参见步骤402所示的第二AP获取STA对应的剩余跳数的过程的说明,具体不做赘述。
步骤415、网关获取网关对应的最大调度时长。
本实施例所示的网关需要在最大调度时长内,将上行业务报文由第一AP调度至网关,即,网关需要在该最大调度时长内,成功接收到来自第一AP的上行业务报文。网关根据目标时延、开始时刻Ts以及第一AP对应的剩余跳数,获取网关对应的最大调度时长的具体过程,请参见步骤404所示的第二AP获取第二AP对应的最大调度时长的过程的说明,具体不做赘述。
步骤416、网关向第一AP发送调度指令。
步骤417、第一AP向网关发送上行业务报文。
本实施例所示的该调度指令用于指示所述第一AP向网关发送该上行业务报文,第一AP可在调度指示的指示下,向网关发送上行业务报文。例如,该调度指令可用于指示频率资源,第一AP即可在调度指令所指示的频率资源上,向网关发送上行业务报文。
步骤418、网关在最大调度时长内,接收来自第一AP的上行业务报文。
第一AP在网关的调度下,向网关发送该上行业务报文实际使用的时间段为第一时间段,其中,第一时间段的持续时长小于或等于网关对应的最大调度时长,所述第一时间段的起始时刻为所述网关从来自第一AP的队列状态报文获取到所述开始时刻的时刻。对所述网关从第一AP所接收到的队列状态报文的说明,请参见步骤401所示的对第二AP从STA所接收到的队列状态报文的说明,具体不做赘述。所述第一时间段的结束时刻为所述网关接收完成所述上行业务报文的时刻。
采用本实施例所示的方法,传输路径转发上行业务报文的过程中,网络设备需要根据传输路径中每个网络设备传输业务报文的情况(传输上行业务报文的目标时延以及剩余跳数等),获取网络设备对应的最大调度时长,并在最大调度时长内转发该上行业务报文,有效地避免了上行业务报文经由传输路径进行传输的过程中,超过上行业务报文所要求的目标时延的情况。
传输路径上的网络设备,能够根据已用时长确定该最大调度时长,该已用时长为当前时刻减去上行业务报文经由传输路径开始传输的时刻,能够使得传输路径中的各网络设备感知上游网络设备的转发上行业务报文的情况,有效地提高了各网络设备的调度效率。而且,若传输路径中,上游网络设备的最大调度时长未全部使用完成,已实现上行业务报文的转发,那么,会提高下游网络设备所确定的最大调度时长的持续时间,有效地保证了上行业务报文经由传输路径传输完成的时间小于或等于该上行业务报文所要求的目标时延。
实施例四
本实施例提供了一种数据帧的格式,基于实施例一和实施例二所示,本实施例所示的数据帧用于实现传输路径中,相邻的两个网络设备之间的信息传输。本实施例结合图5所示对本实施例所提供的数据帧的帧格式进行说明,其中,图5为本申请所提供的数据帧的一种实施例帧结构示例图。
该数据帧包括目的地址字段501、源地址字段502、VLAN标签(又称VLAN Tag)字段503、长度/类型字段506、数据字段504以及帧校验序列(FCS)字段505。可选地,目的地址字段501的长度为6字节(Byte),源地址字段502的长度为6Byte,VLAN Tag字段503的长度为4Byte,长度/类型字段506的长度2Byte,数据字段504的长度为46Byte至1500Byte之间,帧校验序列字段505的长度为4Byte。
其中,目的地址字段501用于指示传输路径所包括的多个网络设备中的最后一个网络设备的MAC地址,源地址字段502用于指示传输路径所包括的多个网络设备中的第一个网络设备的MAC地址。例如,基于实施例一所示,该目的地址501为STA的MAC地址,该源地址502为网关的MAC地址。又如,基于实施例二所示,该目标地址501为网关的MAC地址,该源地址502为STA的MAC地址。VLAN Tag字段503用于使得网络设备能够分辨不同的业务报文。长度/类型字段506用于指示数据帧的长度或帧类型中的至少一项。数据字段504用于承载需要经由传输路径进行传输的业务。
例如,基于实施例一所示,本实施例所示的VLAN Tag字段503用于实现下行业务报文、剩余跳数、下行业务报文的业务类型、开始时刻等信息的传输。又如,基于实施例二所示,本实施例所示的VLAN Tag字段503用于实现上行业务报文、剩余跳数、上行业务报文的业务类型、开始时刻等信息的传输。
具体地,本实施例所示的VLAN Tag字段503具体包括标签协议标识符(tag protocol identifier,TPID)字段511,优先级(priority,PRI)字段512,标准格式指示位(canonical format indicator,CFI)字段513以及VLAN ID(VID)字段514。其中,TPID字段511用于表示数据帧的类型。PRI字段512表示数据帧的优先级,本实施例所示可通过该PRI 字段512表示业务报文的业务类型。CFI字段513取值为0,为802.1Q标准定义的取值。
本实施例以VID字段514携带开始时刻为例进行示例性说明,其中,VID字段514的长度为12比特,以下对VID字段514携带开始时刻的方式进行可选地说明,需明确地是,本实施例对VID字段514所携带的内容以及携带的方式的说明为可选地示例,不做限定。
本实施例以VID字段514携带开始时刻为例进行示例性说明,其中,VID字段514的长度为12比特,以下对VID字段514携带开始时刻的方式进行可选地说明,需明确地是,本实施例对VID字段514所携带的内容以及携带的方式的说明为可选地示例,不做限定。
具体地,以实施例一所示为例,网关确定目标参数,因VID字段514的长度为12比特,也就是VID字段514所包括的12个比特,能够表示出2的12次方的值,即4096个值。可知,网关能够通过VID字段514的4096个值携带开始时刻,具体携带的方式可为:网关确定VID字段514所携带的开始时刻精确到1毫秒,那么,网关可将开始时刻除以4095以得到第一余数,网关通过该VID字段514携带该第一余数,可知,传输路径中各网络设备能够基于VID字段514所携带的第一余数获取该开始时刻。具体携带的方式还可为:网关确定VID字段514所携带的开始时刻精确到0.1毫秒,那么,网关可将开始时刻除以409.5以得到第二余数,网关通过该VID字段514携带该第二余数,可知,传输路径中各网络设备能够基于VID字段514所携带的第二余数获取该开始时刻。
若本实施例所示的VID字段514应用至实施例二,则可由STA在该VID字段514中设置开始时刻,具体设置方式请参见网关在该VID字段514中设置开始时刻的说明,具体不做赘述。
实施例五
基于实施例三所示,本实施例对实施例三所示的触发消息的格式进行说明,本实施例所示的触发消息用于实现传输路径中,下游网络设备向上游网络设备发送开始时刻的目的,本实施例对该触发消息所包括的信息的说明为可选地示例,不做限定,例如,该触发消息还可传输目标时延、业务类型等。
本实施例以触发消息为缓冲区状态报告控制字段(BSR Control Subfield)为例,该BSR Control Subfield具体包括开始时刻(start time)字段,该start time字段用于携带开始时刻,携带的具体方式可参见实施例四所示,具体在本实施例中不做赘述。
实施例六
本实施例结合图6所示对执行上述业务报文的转发方法的网络设备的结构进行说明:
网络设备600具体包括:处理单元601和收发单元602,其中,处理单元601与收发单元602连接。
若本实施例所示的网络设备600为网关,则处理单元601用于执行实施例一至实施例三中,任一实施例中由网关执行的处理功能。收发单元602用于执行实施例一至实施例三中,任一实施例中由网关执行的收发功能。
例如,在实施例一中,所述处理单元601用于执行步骤201、步骤202以及步骤203。 所述收发单元602用于执行步骤204。又如,在实施例二中,所述收发单元602用于执行步骤313。又如,在实施例三中,所述处理单元601用于执行步骤413、步骤414以及步骤415。所述收发单元602用于执行步骤416、步骤417以及步骤418。
若本实施例所示的网络设备600为第一AP,则处理单元601用于执行实施例一至实施例三中,任一实施例中由第一AP执行的处理功能。收发单元602用于执行实施例一至实施例三中,任一实施例中由第一AP执行的收发功能。
例如,在实施例一中,所述处理单元601用于执行步骤205、步骤206以及步骤207。所述收发单元602用于执行步骤208。又如,在实施例二中,所述处理单元601用于执行步骤309、步骤310以及步骤311,所述收发单元602用于执行步骤312。又如,在实施例三中,所述处理单元601用于执行步骤407、步骤408以及步骤409,所述收发单元602用于执行步骤410、步骤412、步骤417。
若本实施例所示的网络设备600为第二AP,则处理单元601用于执行实施例一至实施例三中,任一实施例中由第二AP执行的处理功能。收发单元602用于执行实施例一至实施例三中,任一实施例中由第二AP执行的收发功能。
例如,在实施例一中,所述处理单元601用于执行步骤209、步骤210以及步骤211,所述收发单元602用于执行步骤212。又如,在实施例二中,处理单元601用于执行步骤305、步骤306以及步骤307,所述收发单元602用于执行步骤308。在实施例三中,处理单元601用于执行步骤401、步骤402、步骤403以及步骤406。所述收发单元602用于执行步骤404、步骤406以及步骤411。
若本实施例所示的网络设备600为STA,则处理单元601用于执行实施例一至实施例三中,任一实施例中由STA执行的处理功能。收发单元602用于执行实施例一至实施例三中,任一实施例中由STA执行的收发功能。
例如,在实施例一中,所述收发单元602用于执行步骤213。又如,在实施例二中,所述处理单元601用于执行步骤301、步骤302以及步骤303,所述收发单元602用于执行步骤304。又如,在实施例三中,所述收发单元602用于执行步骤405。
实施例七
本实施例结合图7所示,从实体硬件角度,对执行上述业务报文的转发方法的网络设备的结构进行说明:可知,本实施例所示的网络设备可为传输路径所包括的多个网络设备中的任一个。
网络设备具体包括:处理器701、存储器702、总线703、收发器704以及网络接口706。
具体的,存储器702可以包括以易失性和/或非易失性存储器形式的计算机存储媒体,如只读存储器和/或随机存取存储器。存储器702可以存储操作系统、应用程序、其他程序模块、可执行代码和程序数据。
收发器704可以用于向网络设备输入命令和信息,该收发器704可以通过总线703连接至处理器701。收发器704还可以用于网络设备输出或输入信息。
网络设备可以通过网络接口706连接到通信网络中,在联网环境下,网络设备中存储 的计算机执行指令可以存储在远程存储设备中,而不限于在本地存储。
当网络设备中的处理器701执行存储器702中存储的可执行代码或应用程序时,网络设备可以执行以上方法实施例中的任一侧的方法操作,具体执行过程参见上述方法实施例,在此不再赘述。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (17)

  1. 一种业务报文的转发方法,其特征在于,所述方法包括:
    第一网络设备确定业务报文对应的目标时延,所述目标时延为所述业务报文经由传输路径传输所要求的时延,所述第一网络设备为所述传输路径所包括的多个网络设备中的一个;
    所述第一网络设备确定剩余跳数,所述剩余跳数为所述传输路径上,所述业务报文尚未经过的网络设备的数量;
    所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长,所述业务报文用于在所述最大调度时长内,在所述第一网络设备和第二网络设备之间传输,所述第二网络设备为所述传输路径中与所述第一网络设备相邻的网络设备。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长之前,所述方法还包括:
    所述第一网络设备获取已用时长,所述已用时长为当前时刻减去开始时刻的值,所述开始时刻为所述业务报文开始经由所述传输路径进行传输的时刻;
    所述第一网络设备获取目标时长,所述目标时长为所述目标时延减去所述已用时长的值。
  3. 根据权利要求2所述的方法,其特征在于,所述最大调度时长的持续时长与所述目标时长呈正相关关系,且所述最大调度时长的持续时长与所述剩余跳数呈负相关关系。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长包括:
    所述第一网络设备确定所述目标时长除以所述剩余跳数的值为所述最大调度时长。
  5. 根据权利要求2至4任一项所述的方法,其特征在于,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长之前,所述方法还包括:
    所述第一网络设备接收来自所述第二网络设备的队列状态报文,所述队列状态报文携带所述开始时刻,且所述第一网络设备接收所述队列状态报文的时刻早于所述第一网络设备接收所述业务报文的时刻。
  6. 根据权利要求5所述的方法,其特征在于,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长之后,所述方法还包括:
    所述第一网络设备向所述第二网络设备发送调度指令,所述调度指令用于指示所述第二网络设备向所述第一网络设备发送所述业务报文;
    所述第一网络设备接收来自所述第二网络设备的所述业务报文,其中,第一时间段的持续时长小于或等于所述最大调度时长,所述第一时间段的起始时刻为所述第一网络设备从所述队列状态报文获取到所述开始时刻的时刻,所述第一时间段的结束时刻为所述第一网络设备接收完成所述业务报文的时刻。
  7. 根据权利要求2至4任一项所述的方法,其特征在于,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长之后,所述方法还包括:
    所述第一网络设备向所述第二网络设备发送所述业务报文,其中,第二时间段的持续 时长小于或等于所述最大调度时长,所述第二时间段的起始时刻为所述业务报文开始进入所述第一网络设备的时刻,所述第二时间段的结束时刻为所述第一网络设备发送完成所述业务报文的时刻。
  8. 根据权利要求7所述的方法,其特征在于,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长之前,所述方法还包括:
    所述第一网络设备接收来自第三网络设备的所述业务报文,所述第三网络设备为所述传输路径中与所述第一网络设备相邻的网络设备,所述业务报文携带所述开始时刻。
  9. 根据权利要求2至4任一项所述的方法,其特征在于,所述第一网络设备为所述传输路径所包括的第一个网络设备,所述第一网络设备根据所述目标时延和所述剩余跳数确定最大调度时长之前,所述方法还包括:
    所述第一网络设备确定所述开始时刻,所述开始时刻为所述业务报文开始进入所述第一网络设备的时刻,或,所述开始时刻为所述第一网络设备产生所述业务报文的时刻;
    所述第一网络设备将所述开始时刻设置在所述业务报文中。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述第一网络设备确定业务报文对应的目标时延包括:
    所述第一网络设备接收所述目标时延。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述第一网络设备确定业务报文对应的目标时延包括:
    所述第一网络设备根据预设对应关系获取与所述业务报文的业务类型对应的所述目标时延,其中,所述预设对应关系包括所述业务报文的业务类型和所述目标时延的对应关系。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述第一网络设备确定剩余跳数包括:
    所述第一网络设备接收所述剩余跳数。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,所述第一网络设备确定剩余跳数包括:
    所述第一网络设备根据目标连接关系获取对应的所述剩余跳数,所述目标连接关系为所述业务报文经由所述传输路径传输的过程中,依次经由的各个网络设备的标识。
  14. 一种网络设备,其特征在于,包括分别与处理器耦合的存储器和收发器,所述存储器中存储了计算机程序代码,所述处理器调用并执行所述存储器中的计算机程序代码,使得所述网络设备执行如权利要求1至13中任一项所示的业务报文的转发方法。
  15. 一种数字处理芯片,其特征在于,所述数字处理芯片包括处理器和存储器,所述存储器和所述处理器通过线路互联,所述存储器中存储有指令,所述处理器用于执行如权利要求1至13中任一项所示的业务报文的转发方法。
  16. 一种无线网络,其特征在于,包括依次连接的多个网络设备,所述网络设备如权利要求14所述。
  17. 一种计算机可读存储介质,其特征在于,
    所述计算机可读存储介质存储有计算机程序,所述计算机程序被计算机执行时能够完 成权利要求1至13中任一项所示的业务报文的转发方法。
PCT/CN2022/077404 2021-05-31 2022-02-23 一种业务报文的转发方法、网络设备以及无线网络 WO2022252705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110602893.7 2021-05-31
CN202110602893.7A CN115484655A (zh) 2021-05-31 2021-05-31 一种业务报文的转发方法、网络设备以及无线网络

Publications (1)

Publication Number Publication Date
WO2022252705A1 true WO2022252705A1 (zh) 2022-12-08

Family

ID=84322561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077404 WO2022252705A1 (zh) 2021-05-31 2022-02-23 一种业务报文的转发方法、网络设备以及无线网络

Country Status (2)

Country Link
CN (1) CN115484655A (zh)
WO (1) WO2022252705A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984020A (zh) * 2006-06-08 2007-06-20 华为技术有限公司 一种传输数据的方法及装置
CN104104605A (zh) * 2013-04-02 2014-10-15 富士通株式会社 下行路由获取及维护方法和装置
CN108270674A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 一种报文转发的方法、装置
CN108540402A (zh) * 2017-03-02 2018-09-14 华为技术有限公司 一种优化队列时延的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984020A (zh) * 2006-06-08 2007-06-20 华为技术有限公司 一种传输数据的方法及装置
CN104104605A (zh) * 2013-04-02 2014-10-15 富士通株式会社 下行路由获取及维护方法和装置
CN108270674A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 一种报文转发的方法、装置
CN108540402A (zh) * 2017-03-02 2018-09-14 华为技术有限公司 一种优化队列时延的方法和设备

Also Published As

Publication number Publication date
CN115484655A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
US20210219287A1 (en) Fast wireless local area network communication method and apparatus using multiple transfer rate partitioning and cooperative transmission
EP2988452A1 (en) Topology discovery in a hybrid network
US8879458B2 (en) Transmission in a network with active and sleeping clients
WO2019057154A1 (zh) 数据传输方法、终端设备和网络设备
US7843956B2 (en) Wireless system, wireless communication apparatus and communication method
WO2013107398A1 (zh) 对节点进行分组的方法、节点和接入点
JPWO2015133648A1 (ja) 無線通信装置および無線通信方法
US20140071971A1 (en) Wireless base station, wireless terminal, and packet transmission method
WO2016044981A1 (zh) 一种上行业务数据传输的方法、装置
JP2010283828A (ja) トラフィックフローを区別する方法及び装置
JP2016213760A (ja) 無線通信用集積回路
WO2018176431A1 (zh) 全双工传输方法及装置
WO2016123975A1 (zh) 数据传输方法及装置
WO2022079803A1 (ja) 無線装置及び通信方法
US10530596B2 (en) Method for setting packet transmission mode and device
US20150381518A1 (en) Data transmission reservation method and apparatus, data reception method and apparatus, and data transmission and reception system in receiver-initiated asynchronous medium access control protocol
WO2022252705A1 (zh) 一种业务报文的转发方法、网络设备以及无线网络
WO2015088018A1 (ja) マルチホップ無線装置及びマルチホップ無線システム
WO2022143733A1 (zh) 一种通信方法、装置及计算机可读存储介质
Cho et al. Modifying the IEEE 802.11 MAC protocol for multi-hop reservation in MIMC tactical ad hoc networks
US11363498B2 (en) Mesh network flow control method
WO2018045521A1 (zh) 无线网络中传输信令的方法和装置
WO2017114033A1 (zh) 一种传输机会确定方法及接入点
JP2007318497A (ja) 無線アクセス制御装置及び方法、無線装置、および、ネットワーク
US9479351B2 (en) Method and apparatus for providing voice service in communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22814753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE