WO2022252283A1 - 钢索网石笼结构体堰塞坝溃决排险防洪系统、应用 - Google Patents

钢索网石笼结构体堰塞坝溃决排险防洪系统、应用 Download PDF

Info

Publication number
WO2022252283A1
WO2022252283A1 PCT/CN2021/099925 CN2021099925W WO2022252283A1 WO 2022252283 A1 WO2022252283 A1 WO 2022252283A1 CN 2021099925 W CN2021099925 W CN 2021099925W WO 2022252283 A1 WO2022252283 A1 WO 2022252283A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel cable
dam
cable net
gabion structure
flood
Prior art date
Application number
PCT/CN2021/099925
Other languages
English (en)
French (fr)
Inventor
赵万玉
陈剑刚
陈晓清
陈华勇
Original Assignee
中国科学院、水利部成都山地灾害与环境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院、水利部成都山地灾害与环境研究所 filed Critical 中国科学院、水利部成都山地灾害与环境研究所
Publication of WO2022252283A1 publication Critical patent/WO2022252283A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours

Definitions

  • the invention relates to a technology for prevention and control of secondary geological disasters, in particular to a technology for prevention and emergency response to barrier dam collapse, and belongs to the technical fields of emergency prevention and control of natural disasters and emergency flood prevention.
  • Barrier lake is a common secondary geological disaster that occurs in mountainous areas.
  • a barrier lake is a natural lake formed mainly by landslides, collapses, etc. caused by earthquakes, heavy rainfall and other factors to block the river channel. The blockage of the channel by the barrier lake not only causes the upstream backwater to be submerged, but also the flood caused by the collapse often exceeds the downstream protection capacity. , causing great harm to the downstream.
  • the emergency response measures for many barrier dams are mainly implemented after the formation of the barrier dam.
  • the main idea is how to quickly reduce the water level in front of the dam and reduce the risk of barrier dam failure.
  • This type of technical concept is reactive, which can easily lead to an increase in the downstream risk of the barrier dam and a passive situation in which the overall danger is underestimated. If the manual intervention measures in the barrier dam failure risk elimination plan can be advanced in the time course, the passivity in the dangerous situation can be better alleviated.
  • the Chinese invention patent with application publication number CN 101701454 A discloses an artificial structure for debris flow and dam erosion prevention.
  • the product includes four cylinders of the same length, one end of the four cylinders is concentrated and fixed at one point, and the other end forms four vertices of a regular tetrahedron in space.
  • the artificial structures are placed individually or in series in the debris flow channel or the overflow section of the barrier dam, which can prevent the rapid downcutting of the debris flow channel, reduce the risk of dam failure caused by the rapid downcutting of the overflow outlet of the dam body of the barrier lake, and meet the requirements of debris flow Anti-scouring and discharge of debris flow in valleys, anti-scouring and safe discharge of flood at the overflow of barrier dams.
  • the product has a simple structure, high universality in processing technology requirements, and a good flow control effect after being put into use, there are still some defects in the application practice.
  • the main reasons are: 1.
  • the product needs to be prefabricated with reinforced concrete or concrete structures. Then move to the site to complete the assembly. In disaster relief, the time cost is still not low, and it is difficult to meet the timeliness requirements of emergency rescue.
  • the requirements for on-site assembly and use limit the wide application of products in the collapse site, and there is a "paradox" that the more urgent the site is, the more difficult it is to assemble the product and put it into use.
  • the product processing materials cannot effectively meet the general principle of local materials for emergency supplies, and the on-site scheduling and allocation of various processing materials further increases the time cost. If the number of prepared prefabricated parts is insufficient, the processing time of concrete structural parts cannot meet the requirements of the emergency scene, and it cannot be replenished in time. 3.
  • the method of using the product is to place it in series at the overflow section of the barrier dam. Due to the interaction between downcut erosion and trace erosion during the collapse process, the artificial structure will enter the discharge process prematurely, hindering the initial discharge efficiency, and it is difficult to improve initial discharge efficiency.
  • the object of the present invention is to provide a kind of barrier dam burst risk elimination and flood control measure aiming at the deficiencies of the prior art.
  • This measure can be applied in the early stage of barrier dam failure risk reduction, and can control the incision erosion and trace-back erosion of barrier dam after the failure occurs, and can meet the requirements of risk reduction measures such as pre-arrangement, local materials, and rapid replenishment.
  • the present invention firstly provides a steel cable net gabion structure barrier dam failure and flood prevention system, the technical scheme is as follows:
  • a cable net gabion structure barrier dam break risk discharge flood control system is characterized in that: the steel cable net gabion structure is used to adjust the downstream flood peak flow before/during the barrier dam failure, and the steel cable net gabion
  • the structure is a segmented strip structure, which is filled with stones in a cylindrical steel cable net, and the two ends of the gabion are bundled and sectioned to form; before/during the failure of the dam, the steel cable net gabion structure is placed on For the dam crests on both sides of the discharge trough of the barrier dam, the placement direction is that the steel cable mesh gabion structure is axially along the direction of the river/ditch.
  • the above-mentioned steel cable net gabion structure barrier dam failure risk prevention and flood prevention system is a risk prevention and flood prevention system that places the steel cable net gabion structure at a specific position on the barrier dam to form a comprehensive prevention and control effect.
  • the steel cable net gabion structure is placed on the top of the dam on both sides of the discharge groove of the barrier dam along the direction of the river/ditch. When the flow of water is small, the water flows through the structure without adding additional pressure on the flow path. Blocking effect, so it will not increase the resistance to flood discharge.
  • the impact force of the water flow makes the slopes on both sides of the discharge trough unstable, and the stacked steel cable net gabion structure automatically enters the discharge trough and participates in the control of the downcut erosion and traceability of the dam Erosion reduces the burst peak flow of the barrier dam, prolongs the burst duration and discharge process, reduces the risk of barrier dam collapse, and realizes safe and controllable discharge of the barrier dam.
  • the steel cable net gabion structure is placed on the dam top surface on both sides of the discharge channel of the barrier dam, it can be used not only in the early stage of the formation of the barrier lake but before entering the collapse warning stage, but also in the early stage of the collapse stage when the flow of the flood has not yet entered.
  • the entire risk relief and flood control system is not only a risk relief system, but also an early emergency rescue system.
  • the steel cable mesh gabion structure should be placed on the front side of the dam body, that is, on both sides of the discharge channel of the barrier dam, the dam top surface is close to the upstream side of the river channel/ditch.
  • the steel cable net gabion structure is placed in the front area, which can effectively prevent the continuous collapse of both sides of the discharge trough caused by the longitudinal erosion of the discharge flow at the initial stage of the barrier lake collapse, resulting in the premature participation of the steel cable net gabion structure in the discharge process Thus hindering the drainage efficiency in the initial stage of the collapse.
  • the progress of the structure in controlling the initial collapse can be delayed, thereby improving the overall ability to control the collapse process and reducing the possibility of flood out of control.
  • arranging the steel cable mesh gabion structure in the front 1/2 area can improve the control ability.
  • the breakdown process is mainly from downstream to upstream. When the breakdown occurs to 1/2 part, the breakdown flow rate is too large. At this time, even if the structure enters the discharge process, the control ability that the structure can exert is low. According to the analysis of the flow change during the flood process in the early stage of the collapse, the better location is about the first 2/3 of the area.
  • the steel cable net gabion structure should be placed scatteredly on both sides of the centerline of the discharge channel of the dam, that is, it should not be placed densely.
  • the dense placement of steel cable net gabion structures will increase the resistance during the normal discharge process, which not only reduces the function of the discharge tank, but also makes it easier to be impacted into the discharge tank, resulting in premature intervention in the collapse process before the burst peak flow arrives. , affecting the overall function of the risk relief and flood control system.
  • the steel cable net gabion structure can be placed symmetrically on both sides of the center line of the dam discharge groove, and the steel cable net gabion structure on the same side is arranged in a dislocation.
  • the steel cable net gabion structure is a long strip structure, which can prevent the soil from being in a layered and flaky start-up mode, thereby delaying the development of traceability erosion.
  • the segmented structure enables the elongated structure to bend with the impact of the water flow, effectively buffering the impact force of the flood.
  • the segmented structure can also play a certain degree of limiting effect on the filled stones, avoiding the reduction of the overall protection effect after being gathered at one end of the cylindrical steel cable net under strong impact.
  • the processing of the steel cable net gabion structure is to process the outer cylindrical steel cable net first.
  • a piece of rectangular steel cable net is curled and sewed to form the opposite sides. section.
  • the outer layer of the steel cable mesh gabion structure can be wrapped with a layer of outer steel cable mesh to increase the anti-scouring effect.
  • the present invention simultaneously provides the application scheme of the above-mentioned steel cable mesh gabion structure dam failure and flood prevention system, specifically as follows:
  • the application of the cable net gabion structure barrier dam failure and flood prevention system is characterized in that: the survey obtains the basic data of the barrier dam and the channel/river where it is located, and calculates the barrier based on the basic data of the barrier dam and the channel/river where it is located Dam burst flood peak discharge Q max and downstream urban protection standard value, if the barrier dam burst flood peak discharge Q max ⁇ downstream urban protection standard value, it is necessary to deploy a steel cable net gabion structure barrier dam burst risk discharge flood control system; the dam The dam break peak discharge Q max is a monitored value and/or a predicted value.
  • the further optimization of the application scheme in the present invention is The design scheme of the steel cable net gabion structure is added, and the main structural parameters of the steel cable net gabion structure are determined through the scientific calculation process to ensure the effectiveness of the application scheme.
  • the on-site investigation includes various surveying and mapping, measurement, simulation experiment tests on the site of the torrent and debris flow channel where the project is located, as well as the acquisition of historical disaster records, and the acquisition of empirical data with reference functions, etc.) , and calculate the maximum flow velocity V of the dam failure flood.
  • L the length of the steel cable mesh gabion structure
  • k the stability coefficient of the steel cable mesh gabion structure, with a value of 0.68 to 0.80
  • d the average diameter of the steel cable mesh gabion structure, in m.
  • the shape of the steel cable gabion structure is determined. Since the cylindrical steel cable net of the steel cable gabion structure is formed by crimping and sewing the opposite sides of the rectangular steel cable net, the rectangular net can be determined on the basis of L and d according to the discharge standard determined by the processing equipment process conditions. The length X and width Y of the steel cable mesh.
  • n—steel cable mesh gabion structure calculates the number of nodes
  • N the design section number of steel cable mesh gabion structure.
  • D the size of large rocks in the accumulation body of the barrier dam, in m, determined in step S1.
  • D1 is the particle size range of the stones filled with the steel cable mesh gabion structure.
  • the present invention's steel cable net gabion structure barrier dam failure drainage and flood prevention system is a technical solution that can effectively improve the efficiency of the overall measures for barrier lake breach and drainage .
  • the present invention By placing steel cable mesh gabion structures on both sides of the dam discharge channel of the barrier dam, and further considering the characteristics of the breakdown discharge process and the shape change characteristics of the discharge channel, the placement of the structure is selected, and manual intervention is eliminated.
  • the technical concept of regulating flood peak flow has changed from the usual "early intervention" to "delayed intervention".
  • the existing relatively mature artificial intervention measures for flood peak flow are mostly concentrated in various "rescue" means in the early stage of the collapse, and there are gaps in measures in the middle and late stages of the collapse.
  • the invention can effectively make up for the deficiencies of the prior art, improve the efficiency of the entire barrier dam failure and risk elimination scheme, effectively alleviate the disaster level in the middle and late stages, and reduce the passivity of various prevention and control measures and the overall situation in emergency response.
  • the cable net gabion structure barrier dam failure and flood prevention system is a dynamic regulation and control scheme. Through the pre-placement of the steel cable net gabion structure at a specific position on the dam crest, the system can prevent and control the flood before and after the collapse disaster.
  • the discharge flood plays different dynamic control functions, and the entire control function is realized by the conversion of flood kinetic energy, without external force, economical, energy-saving, and low-risk.
  • the movement with the water of the steel cable net gabion structure can control the strong retrospective erosion and downcut erosion in the later stage of the failure of the barrier dam, reduce the peak flow of the failure of the barrier dam, and reduce the impact on the dam after the failure of the dam.
  • the product of the present invention has simple structure, low cost, local materials, convenient processing, can be prefabricated and quickly replenished, can be put into use quickly, and can meet the time requirements and economic cost requirements for emergency treatment of dam failures.
  • the steel cable net gabion structure is filled with iron pocket stones. Even if it is not recycled later, the impact on the environment is extremely low, which is obviously better than reinforced concrete products.
  • Figure 1 is a schematic diagram of the structure of the steel cable mesh gabion structure.
  • Figure 2 is a schematic diagram of the placement of the steel cable net gabion structure (the arrow shows the direction of the channel, and the dotted line in the middle shows the centerline of the discharge chute).
  • the method of the present invention is used to implement a flood control scheme for a certain barrier lake area.
  • the planar shape of the barrier dam is long strip, the length along the river is 800m, the maximum width across the river is 600m, the height of the dam is 82m, the blocked channel area is about 3 ⁇ 10 5 m 2 , and the storage capacity is 3.0 ⁇ 10 8 m 3 .
  • the maximum water storage capacity is 22000 ⁇ 10 4 m 3 . It is proposed to use the steel cable net gabion structure barrier dam failure risk removal and flood control system of the present invention to prevent/reduce the disaster impact on the downstream area after the natural failure of the upstream barrier dam.
  • Equation 6 B is the width of the water surface in front of the barrier dam, b m is the width of the dam body breach, and H0 is the height of the water level in front of the dam, all of which are determined by field investigation.
  • P the urban protection standard
  • Q max ⁇ Q standard which seriously threatens the safety of life and property of downstream urban residents, and manual excavation of drainage channels is required for flood discharge and risk removal.
  • the system of the present invention is used to construct the steel cable net gabion structure barrier dam breakage and flood control system to deal with the expected danger when manually excavating the discharge trough.
  • the value of the maximum flow velocity V of the dam failure flood controls the discharge velocity V control .
  • H is the water depth corresponding to the flow section, which is determined by field investigation.
  • the remaining parameters have the same meaning as formula 6.
  • the steel cable net gabion structure barrier dam break risk discharge flood control system is to use the steel cable net gabion structure 1 to adjust the downstream flood peak flow before/after the barrier dam 2 breaks.
  • the steel cable net gabion structure 1 is a segmented strip structure, filled with block stones 12 in a cylindrical steel cable net 11, and bound at both ends to form sections 13.
  • FIG. 1 is a structural schematic diagram of a steel cable mesh gabion structure 1 .
  • the effective volume specification of the rectangular steel cable mesh piece formed by crimping and suturing opposite sides is 30.0m in length and 2.08m in average diameter.
  • D1 2.0m of the large rock size of the dam accumulation body into Equation 5
  • D1 1.0m is calculated.
  • the particle size range of the filling block is determined to be 1.0m to 2.08m. Collect materials locally, screen and prepare materials.
  • the lower limit of the aperture of the rectangular steel cable mesh is determined to be 1.0m.
  • the upper limit of the pore diameter only needs to satisfy that the filler does not leak out.
  • the steel cable net gabion structure 1 is placed on the top of the dam on both sides of the discharge groove 21 of the barrier dam. direction.
  • the steel cable net gabion structure 1 is placed in the front 2/3 area of the top surface of the dam on both sides of the dam discharge groove 21 close to the upstream side of the river channel/ditch, and in the center of the dam discharge groove 21
  • the two sides of the line are symmetrically placed left and right, and the steel cable net gabion structures 1 on the same side are misplaced.
  • Fig. 2 is a schematic diagram of placement of the steel cable mesh gabion structure 1.
  • the steel cable mesh gabion structure 1 can be placed in one or more layers.
  • the method of the invention is used to implement a flood control scheme for a certain barrier lake area.
  • the overall length of the barrier body of a certain barrier lake is about 250m across the river, about 300m along the river, and about 70m high.
  • the maximum water storage capacity can reach 1100 ⁇ 10 4 m 3 .
  • the steel cable net gabion structure barrier dam break risk discharge flood control system uses the steel cable net gabion structure 1 to adjust the downstream flood peak flow before/after the barrier dam 2 breaks.
  • the sectioned strip structure and processing of the steel cable net gabion structure 1 are the same as in the first embodiment.
  • the effective volume specification of the rectangular steel cable mesh 14 formed by crimping and sewing opposite sides is 12.5m in length and 1.6m in average diameter.
  • D1 0.75m is calculated.
  • D1 the particle size range of the filling block is determined to be 0.75m ⁇ 1.6m. Collect materials locally, screen and prepare materials.
  • the lower limit value of the aperture of the rectangular steel cable mesh member 14 is determined to be 0.75m.
  • the upper limit of the pore diameter only needs to satisfy that the filler does not leak out.
  • the steel cable mesh gabion structure 1 is processed according to the same standards as in the first embodiment.
  • the steel cable net gabion structure 1 is placed on the top of the dam on both sides of the discharge groove 21 of the barrier dam. direction. In this embodiment, the placement of the steel cable mesh gabion structure 1 is the same as in the first embodiment.

Abstract

本发明公开钢索网石笼结构体堰塞坝溃决排险防洪系统、应用。钢索网石笼结构体堰塞坝溃决排险防洪系统是用钢索网石笼结构体在堰塞坝溃决前/中调节下游洪峰流量,结构体是分节式条状结构,由筒状钢索网内填装块石,两端束口,捆扎分节成形;在溃决前/中将结构体顺河道/沟道方向放置在泄流槽两侧坝顶面。系统是人工干预调节洪峰流量的"延迟干预"构思,能够有效调节溃决中后期洪水量,提升整个溃决排险方案效率。本发明还提供钢索网石笼结构体堰塞坝溃决排险防洪系统的应用,以及结构体主要参数的设计方法。结构体是铁兜块石填充构成,即使后期不回收,对环境影响程度也极低,优于现有钢筋混凝土产品。

Description

钢索网石笼结构体堰塞坝溃决排险防洪系统、应用 技术领域
本发明涉及一种地质次生灾害的防治技术,特别是涉及一种针对堰塞坝溃决的预防及应急的排险技术,属于自然灾害防治应急、溃决洪水防治应急技术领域。
背景技术
堰塞湖是发生在山区常见的次生地质灾害。堰塞湖是主要由地震、强降雨等因素使山体发生滑坡、崩塌等堵塞河道而形成的天然湖泊,堰塞湖堵塞河道不仅造成上游回水淹没,而且溃决产生的洪水往往超过下游的防护能力,给下游造成巨大危害。
从堰塞湖应急处置排险过程的诸多案例来看,在排险进程中一个突出问题在于排泄初期措施效率不足。具体而言,排泄初期溢流效率往往偏低,导致湖面水位不断上涨,不断增加堰塞湖溃决风险。初期排险效率不足又导致出发溢流后,溃决洪水产生强烈的下切侵蚀和侧蚀作用,排泄流量迅速增长,超出排险应急预案的预期规模,增加下游淹没所导的风险与灾害等级。因此,以过程的视角来看,堰塞坝溃决排险中险情发生后的初期应对措施极为重要。有效的初期排险措施,尤其是低成本经济型的初期排险甚至预防措施,能够大幅度提升整个堰塞坝溃决排险方案的效率,有效缓解后期灾情等级。
但上述科学分析结果在堰塞坝排险实践中真正应用相当有限。目前 诸多堰塞坝的应急处置措施主要是在堰塞坝形成实施,最主要的思路是如何迅速降低坝前水位、降低堰塞坝溃决风险。这类技术构思都是被动应对性,极易造成堰塞坝下游风险增加,以及对整体险情预计不足的被动局面。如果能够将堰塞坝溃决排险方案中的人工干预措施在时间进程中提前,则能较好地缓解险情中的被动性。
申请公布号为CN 101701454 A的中国发明专利公开了一种用于泥石流和堰塞坝防冲刷的人工结构体。该产品包括四个相同长度的柱体,四个柱体的一端集中固定在一点,另一端在空间上组成正四面体的四个顶点。该人工结构体是单个或串连放置在泥石流沟道内或堰塞坝溢流口段使用,能够防止泥石流沟道快速下切,降低堰塞湖坝体溢流口快速下切产生溃坝风险,满足泥石流沟谷防冲刷排泄泥石流、堰塞坝溢流口防冲刷安全排泄洪水的需求。该产品虽然结构简洁、加工工艺要求普适性高,投放后也具有较好控流效果,但应用实践中依然存在一些缺陷,主要在于:一、该产品需要用钢筋混凝土或者混凝土结构进行预制,再搬运至现场完成拼装。在险情救灾中,时间成本依然不低,难以满足应急抢险的时效要求。同时,出于施工人员安全考虑,现场拼装使用的要求限制了产品在溃决现场广泛应用,出现现场越急需越无法拼装产品投入使用的“悖论”。二、产品加工材料不能有效满足抢险物资就地取材的一般原则,各类加工材料的现场调度配置进一步提高时间成本。如果预备的预制件数量不足,混凝土结构件的加工时间无法满足抢险现场的要求,则不能及时补给。三、产品使用方法是串连放置在堰塞坝溢流口段,由于受溃决过程下切侵蚀与溯源侵蚀相互作用,人工结构体会过早的进入泄流过程,阻碍初期的泄流效率,难以提升初期的泄流效率。
发明内容
本发明的目的就是针对现有技术的不足,提供一种堰塞坝溃决排险防洪措施。该措施能够在堰塞坝溃决排险的前期适用,能够在溃决发生后控制堰塞坝的下切侵蚀和溯源侵蚀,又能满足预先布置、就地取材、迅速补给等排险措施要求。
为实现上述目的,本发明首先提供一种钢索网石笼结构体堰塞坝溃决排险防洪系统,技术方案如下:
一种钢索网石笼结构体堰塞坝溃决排险防洪系统,其特征在于:是用钢索网石笼结构体在堰塞坝溃决前/中调节下游洪峰流量,所述钢索网石笼结构体是分节式条状结构,由筒状钢索网内填装块石,两端束口,捆扎分节成形;在堰塞坝溃决前/中将钢索网石笼结构体放置在堰塞坝泄流槽两侧坝顶面,放置方向是钢索网石笼结构体轴向顺河道/沟道方向。
上述钢索网石笼结构体堰塞坝溃决排险防洪系统是一种将钢索网石笼结构体摆放在堰塞坝特定位置形成综合防治效应的排险防洪系统。钢索网石笼结构体顺河道/沟道方向摆放在堰塞坝泄流槽两侧坝顶面,当水流动量较小时,水流透过结构体行进,不会在流路上增加额外的阻拦效应,因而不会增加泄洪阻力。当水流动量增大至一定程度时,水流冲击力使泄流槽两侧坡体失稳,堆放的钢索网石笼结构体自动进入泄流槽并参与控制堰塞坝的下切侵蚀和溯源侵蚀,减小堰塞坝的溃决洪峰流量,延长溃决历时和泄流过程,降低堰塞坝的溃决风险,实现堰塞坝安全、可控排泄。由于钢索网石笼结构体在堰塞坝泄流槽两侧坝顶面的放置,既可以在堰塞湖形成早期、尚未进入溃决预警阶段时,也可以在溃决阶段早期,流洪流量未达到无法投放结构体时,因而,整个排险防洪系统 既是一种排险系统,也是一种早期应急救险系统。
根据本发明前期实验及测算,钢索网石笼结构体的放置位置应当在坝体前侧,也就是放置在堰塞坝泄流槽两侧坝顶面靠近河道/沟道上游侧区域。钢索网石笼结构体放置在前侧区域,可以有效防止堰塞湖溃决初期下泄水流的纵向冲刷导致的泄流槽两侧不断垮塌而导致钢索网石笼结构体过早参与泄流过程从而阻碍溃决初期的泄流效率。通过将钢索网石笼结构体放置在前侧区域,可以延缓结构体对溃决初期调控的进度,从而提高对溃决过程整体调控能力,降低洪水失控的可能性。根据这一治理思路,原则上将钢索网石笼结构体布置前侧1/2区域即可提高调控能力。但溃决过程主要是从下游向上游溃决,在溃决发生至1/2部分时,溃决流量过大,此时结构体即使进入泄流过程能发挥的调控能力也较低。根据前期溃决过程洪水过程流量变化分析,较好的位置是大约前2/3的区域。
钢索网石笼结构体应当在堰塞坝泄流槽中心线两侧呈分散放置,即不应密集放置。钢索网石笼结构体密集放置会增加正常泄流过程中的阻力,既降低泄流槽功能,又更容易被冲击进入泄流槽,导致尚未等到溃决洪峰流量到来,就过早介入溃决过程,影响排险防洪系统整体功能发挥。钢索网石笼结构体可以在堰塞坝泄流槽中心线两侧呈左右对称放置,同侧钢索网石笼结构体错位排布。
上述钢索网石笼结构体堰塞坝溃决排险防洪系统中,除钢索网石笼结构体的放置特定位置外,结构体的整体结构也是技术关键。钢索网石笼结构体是长条状结构,可以阻止土体呈层状、片状的启动模式,从而延缓溯源侵蚀的发展程度。分节式结构使长条状结构体能够随水流冲击 盘曲,有效缓冲洪水冲击力。分节式结构也能对填装块石发挥一定程度的限位作用,避免在强冲击作用下聚拢到筒状钢索网一端后降低整体防护效果。
钢索网石笼结构体的加工是先加工外层筒状钢索网,一般将一块矩形钢索网件对边卷曲缝合加工成形,两端束口,就地取材填装块石,再捆扎分节。束口、填装、分节的工序不需限定,以现场加工设备条件为准。加工成分节式条状结构后,钢索网石笼结构体外层还可以再包裹一层外钢索网,起到增加防冲刷作用。
本发明同时提供上述钢索网石笼结构体堰塞坝溃决排险防洪系统的应用方案,具体如下:
钢索网石笼结构体堰塞坝溃决排险防洪系统的应用,其特征在于:调查获取堰塞坝及所在沟道/河道基本数据,根据堰塞坝及所在沟道/河道基本数据测算堰塞坝溃决洪峰流量Q max、下游城镇防护标准值,若堰塞坝溃决洪峰流量Q max≥下游城镇防护标准值,需布设钢索网石笼结构体堰塞坝溃决排险防洪系统;所述堰塞坝溃决洪峰流量Q max是监测值和/或预测值。
对于上述应用,为实现采用排险防洪系统后堰塞坝溃决危害程度在可控范围内的目标,即堰塞坝溃决洪峰流量Q max<下游城镇防护标准值,本发明对应用方案的进一步优化是增加钢索网石笼结构体设计方案,通过科学计算过程确定钢索网石笼结构体主要结构参数,保证应用方案的有效性。具体解决钢索网石笼结构体加工中矩形钢索网件规格参数X、Y的确定、钢索网石笼结构体设计节数N的确定、钢索网石笼结构体填充块石料粒径范围的确定。该优化方案——
首先,通过现场调查(现场调查包括了针对工程所在山洪泥石流沟道现场的各种测绘、测量、模拟实验测试,以及历史灾害记录获取,以及有参照借鉴作用的经验数据获取等)获取基本调查数据,测算出测算堰塞坝溃决洪水最大流速V。
其次,计算确定钢索网石笼结构体的各设计参数,包括:
依式1、式2计算确定钢索石笼结构体长度L、平均直径d,
L=(0.05~0.25)*B   式1
Figure PCTCN2021099925-appb-000001
式中,L—钢索网石笼结构体长度,
B—堰塞坝坝顶宽,单位m,现场调查确定,
V—堰塞坝溃决洪水最大流速,单位m/s
k—钢索网石笼结构体稳定系数,取值0.68~0.80,
g—重力加速度常数,单位m/s 2
γ s、γ w—分别为填充块石料的容重、水的容重,单位t/m 3,现场调查确定,
d—钢索网石笼结构体平均直径,单位m。
确定L、d后即确定了钢索石笼结构体外形。由于钢索石笼结构体的筒状钢索网是由矩形钢索网件对边卷曲缝合加工成形,因而在L、d的基础上根据加工设备工艺条件确定的放料标准,就可以确定矩形钢索网件的长度X、宽度Y。
再次,依式3、式4计算确定每一钢索网石笼结构体设计节数N,
k=0.048n+0.42    式3
Figure PCTCN2021099925-appb-000002
式中,n—钢索网石笼结构体计算节数,
N—钢索网石笼结构体设计节数。
最后,依式5计算确定矩形钢索网件孔径下限值D1
D1=(0.5~0.9)*D   式5
式中,D—堰塞坝堆积体大块石尺寸,单位m,步骤S1确定。
以D1为下限、d为上限,即为钢索网石笼结构体填充块石料粒径范围。
根据以上各材料的参数选取各类材料,加工成钢索网石笼结构体,以钢索网石笼结构体轴向顺河道/沟道方向的方向放置在堰塞坝泄流槽两侧坝顶面。
与现有技术相比,本发明的有益效果是:(1)本发明钢索网石笼结构体堰塞坝溃决排险防洪系统是一种能够有效提升堰塞湖溃决排泄整体措施效率的技术方案。通过在堰塞坝泄流槽两侧坝顶面放置钢索网石笼结构体,以及进一步基于对溃决排泄进程特征及泄流槽形态变化特征的综合考虑选择结构体摆放位置,将人工干预调节洪峰流量的技术构思从惯常的“尽早干预”转变为“延迟干预”。现有相对成熟的洪峰流量人工干预措施较多集中在溃决初期各种“抢险”手段,在溃决中后期则存在措施空档。本发明能够有效弥补现有技术的不足,提升整个堰塞坝溃决排险方案的效率,有效缓解中后期灾情等级,降低应急响应中各类防治措施以及整体局面的被动性。(2)钢索网石笼结构体堰塞坝溃决排险防洪系统是一种动态调控防治方案,通过钢索网石笼结构体在坝顶特定位置的预先放置,系统能够在溃决灾害发生前后对泄流洪水发挥不同的 动态调控的功能,并且整个调控功能借助洪水动能转换实现,无需外力作用,经济节能,危险性低。尤其是在溃决过程中,钢索网石笼结构体的随水运动能够控制堰塞坝溃决后期产生强烈的溯源侵蚀和下切侵蚀,减小堰塞坝溃决洪峰流量,降低堰塞坝溃决后对下游的淹没灾害,保护下游河道两侧的居民安全和重要设施。(3)本发明产品结构简洁、成本低廉、就地取材、加工便捷,既可预制预备,又可迅速补给,投放使用迅速,能够满足堰塞坝溃决应急处置的时间要求与经济成本要求。(4)钢索网石笼结构体是铁兜块石填充构成,即使后期不回收,对环境的影响程度也极低,明显优于钢筋混凝土产品。
附图说明
图1是钢索网石笼结构体结构示意图。
图2是钢索网石笼结构体放置示意图(箭头所示为沟道方向,中部点划线示泄流槽中心线)。
附图中的数字标记分别是:
1钢索网石笼结构体 11筒状钢索网 12块石 13节 14矩形钢索网件 2堰塞坝 21堰塞坝泄流槽
具体实施方式
下面结合附图,对本发明的优选实施例作进一步的描述。
实施例一
如图1~图2所示,用本发明方法对某堰塞湖区实施溃决排险防洪方案。
某堰塞湖区,堰塞坝平面形态为长条形,顺河向长800m,横河向最大宽度600m,坝高82m,堵塞河道面积约3×10 5m 2,库容3.0×10 8m 3。最大蓄水量22000×10 4m 3。拟采用本发明钢索网石笼结构体堰塞坝溃决排险防洪系统预防/降低上游堰塞坝发生自然溃决后对下游区域的灾害影响。
现场调查获取堰塞坝及所在河道基本数据。根据河道基本数据依黄河水利委员会公式(式6)测算出堰塞坝溃决洪峰流量Q max=14887m 3/s。
Figure PCTCN2021099925-appb-000003
式6中,B为堰塞坝前水面宽度,b m为坝体溃口宽度,H 0为坝前水位高度,均由现场调查确定。
根据基本调查数据,依堰塞坝下游城镇防护标准(P=1%)确定允许的最大流速或洪峰流量,根据《城市防洪工程设计规范》(GB/T 50805-2012)和《城镇防洪技术与设计导则》计算确定下游城镇防护标准值Q =10000m 3/s。Q max≥Q ,严重威胁下游城镇居民的生命财产安全,须人工开挖泄流槽泄洪排险。
为预防溃口发生变化流量超过下游防洪标准,因此在人工开挖泄流槽时采用本发明系统构筑钢索网石笼结构体堰塞坝溃决排险防洪系统应对预计险情。利用钢索网石笼结构体参与控制堰塞坝的下切侵蚀和溯源侵蚀,延长溃决历时20%,实现控制泄流流量Q =7500m 3/s,依式7测算控制泄流流速V =6.67m/s,以降低堰塞坝的溃决风险,实现堰塞坝安全、可控排泄。堰塞坝溃决洪水最大流速V取值控制泄流流速V
Figure PCTCN2021099925-appb-000004
式7中,H为对应过流断面的水深,由现场调查确定。其余参数含义同式6。
钢索网石笼结构体堰塞坝溃决排险防洪系统是用钢索网石笼结构体1在堰塞坝2发生溃决前/后调节下游洪峰流量。钢索网石笼结构体1是分节式条状结构,由筒状钢索网11内填装块石12,两端束口,捆扎分节13成形。图1是钢索网石笼结构体1结构示意图。
依式1~式5完成计算,确定钢索网石笼结构体1加工规格。
将堰塞坝1坝顶宽B=600m代入式1,计算有钢索网石笼结构体1长度L=30.0m。将控制泄流流速V =6.67m/s、钢索网石笼结构体1稳定系数k=0.80、填充块石料的容重γ s=2.7t/m 3、水的容重γ=1.0t/m 3、g代入式2,计算有钢索网石笼结构体1平均直径d=2.08m。由此确定矩形钢索网件对边卷曲缝合加工成形的有效体积规格(即钢索石笼结构体1规格)为长30.0m、平均直径2.08m。结合现场加工设备确定的放料标准,确定矩形钢索网件的规格应为长度X=31.0m、宽度Y=2.58m。
将钢索网石笼结构体稳定系数k=0.80代入式3,计算有n=7.9,再依式4向上取整,计算有钢索网石笼结构体1设计节数N=8。
将堰塞坝堆积体大块石尺寸D=2.0m代入式5,计算有D1=1.0m。以D1为下限、d为上限确定填充块石料粒径范围为1.0m~2.08m。就地取材,筛选备料。同时确定矩形钢索网件孔径下限值为1.0m。孔径上限值只需要满足填料不漏出即可。
钢索网石笼结构体1加工标准,依据《钢丝绳通用技术条件》(GB/T20118-2017)确定钢丝绳直径和强度,由钢丝绳组成的钢索网保养、维护等按照以下国家标准执行,《钢丝绳安全使用和维护》(GB/T 29086-2012)和《起重机钢丝绳保养、维护、安装、检验和报废》(GB/T5972-2009)。
在堰塞坝2发生溃决前将钢索网石笼结构体1放置在堰塞坝泄流槽21两侧坝顶面,放置方向是钢索网石笼结构体1轴向顺河道/沟道方向。本实施例中,钢索网石笼结构体1放置在堰塞坝泄流槽21两侧坝顶面靠近河道/沟道上游侧的前2/3区域,在堰塞坝泄流槽21中心线两侧呈左右对称放置,同侧钢索网石笼结构体1错位排布。更具体地,沿河道/沟道方向前后二钢索网石笼结构体1间距5L~20L,沿河道/沟道横断面方向左右二钢索网石笼结构体1间距0.5L~1.0L。图2是钢索网石笼结构体1放置示意图。钢索网石笼结构体1可放置一层或多层。
实施例二
用本发明方法对某堰塞湖区实施溃决排险防洪方案。
某堰塞湖堰塞体总体横河向长约250m,顺河向长约300m,高约70m最大蓄水量可达1100×10 4m 3,上游河床来水量稳定在15m 3/s,库容量以130×10 4m 3/d的速度增加。如果上游堰塞坝发生自然溃决,根据式6和实际考察情况选取参数计算得到最大洪峰溃决流量Q max=3698m 3/s,远远大于下游防洪标准Q 标准=3000m 3/s,严重威胁下游城镇居民的生命财产安全。因此需要进行人工开挖泄流槽,采用本发明的方法使用钢索网石笼结构单体或组合体参与控制堰塞坝的下切侵蚀和溯源侵蚀,延长溃决历时20%,控制泄流流量Q =2084m 3/s、控制泄流流速V =5m/s(采用与实施例一相同测算方法),以降低堰塞坝的溃决风险,实现堰塞坝安全、可控排泄。堰塞坝溃决洪水最大流速V取值控制泄流流速V
钢索网石笼结构体堰塞坝溃决排险防洪系统是用钢索网石笼结构体 1在堰塞坝2发生溃决前/后调节下游洪峰流量。钢索网石笼结构体1的分节式条状结构及加工同实施例一。
依式1~式5完成计算,确定钢索网石笼结构体1加工规格。
将堰塞坝1坝顶宽B=250m代入式1,计算有钢索网石笼结构体1长度L=12.5m。将控制泄流流速V =5.0m/s、钢索网石笼结构体1稳定系数k=0.68、填充块石料的容重γ s=2.7t/m 3、水的容重γ=1.0t/m 3、g代入式2,计算有钢索网石笼结构体1平均直径d=1.6m。由此确定矩形钢索网件14对边卷曲缝合加工成形的有效体积规格(即钢索石笼结构体1规格)为长12.5m、平均直径1.6m。结合现场加工设备确定的放料标准,确定矩形钢索网件的规格应为长度X=13.5m、宽度Y=2.1m。
将钢索网石笼结构体1稳定系数k=0.68代入式3,计算有n=5.4,再依式4向上取整,计算有钢索网石笼结构体1设计节数N=6。
将堰塞坝堆积体大块石尺寸D=1.5m代入式5,计算有D1=0.75m。以D1为下限、d为上限确定填充块石料粒径范围为0.75m~1.6m。就地取材,筛选备料。同时确定矩形钢索网件14孔径下限值为0.75m。孔径上限值只需要满足填料不漏出即可。
钢索网石笼结构体1加工过程采用各标准同实施例一。
在堰塞坝2发生溃决前将钢索网石笼结构体1放置在堰塞坝泄流槽21两侧坝顶面,放置方向是钢索网石笼结构体1轴向顺河道/沟道方向。本实施例中,钢索网石笼结构体1放置同实施例一。

Claims (10)

  1. 钢索网石笼结构体堰塞坝溃决排险防洪系统,其特征在于:是用钢索网石笼结构体(1)在堰塞坝(2)溃决前/中调节下游洪峰流量,所述钢索网石笼结构体(1)是分节式条状结构,由筒状钢索网(11)内填装块石(12),两端束口,捆扎分节(13)成形;在堰塞坝(2)溃决前/中将钢索网石笼结构体(1)放置在堰塞坝泄流槽(21)两侧坝顶面,放置方向是钢索网石笼结构体(1)轴向顺河道/沟道方向。
  2. 根据权利要求1所述的排险防洪系统,其特征在于:所述钢索网石笼结构体(1)放置在堰塞坝泄流槽(21)两侧坝顶面靠近河道/沟道上游侧的前2/3区域。
  3. 根据权利要求1所述的排险防洪系统,其特征在于:所述钢索网石笼结构体(1)在堰塞坝泄流槽(21)中心线两侧呈分散放置。
  4. 根据权利要求1所述的排险防洪系统,其特征在于:所述钢索网石笼结构体(1)在堰塞坝泄流槽(21)中心线两侧呈左右对称放置,同侧钢索网石笼结构体(1)错位排布。
  5. 根据权利要求1所述的排险防洪系统,其特征在于:所述钢索网石笼结构体(1)的放置是沿河道/沟道方向前后二钢索网石笼结构体(1)间距5L~20L,沿河道/沟道横断面方向左右二钢索网石笼结构体(1)间距0.5L~1.0L,L是钢索网石笼结构体(1)长度。
  6. 根据权利要求1所述的排险防洪系统,其特征在于:所述筒状钢索网(11)是由矩形钢索网件对边卷曲缝合加工成形。
  7. 根据权利要求1所述的排险防洪系统,其特征在于:所述钢索网石笼结构体(1)外层包裹外钢索网。
  8. 权利要求1所述的钢索网石笼结构体堰塞坝溃决排险防洪系统的应 用,其特征在于:调查获取堰塞坝及所在沟道/河道基本数据,根据堰塞坝及所在沟道/河道基本数据测算堰塞坝溃决洪峰流量Q max、下游城镇防护标准值Q ,若Q max≥Q ,则需布设钢索网石笼结构体堰塞坝溃决排险防洪系统;所述堰塞坝溃决洪峰流量Q max是监测值和/或预测值。
  9. 根据权利要求8所述的应用,其特征在于:根据险情监测值和/或预测值,依如下步骤设计钢索网石笼结构体(1):
    步骤S1、获取基本调查数据
    调查获取堰塞坝及所在沟道/河道基本数据,根据堰塞坝及所在沟道/河道基本数据同时测算堰塞坝溃决洪水最大流速V;
    步骤S2、计算确定钢索网石笼结构体(1)设计参数
    步骤S21、计算确定矩形钢索网件(14)规格参数X、Y
    依式1、式2计算确定钢索石笼结构体(1)长度L、平均直径d,
    L=(0.05~0.25)*B   式1
    Figure PCTCN2021099925-appb-100001
    式中,L—钢索网石笼结构体(1)长度,单位m,
    B—堰塞坝(1)坝顶宽,单位m,步骤S1确定,
    V—堰塞坝溃决洪水最大流速,单位m/s,步骤S1确定,
    k—钢索网石笼结构体(1)稳定系数,取值0.68~0.80,
    g—重力加速度常数,单位m/s 2
    γ s、γ w—分别为填充块石料的容重、水的容重,单位t/m 3,步骤S1确定,
    d—钢索网石笼结构体(1)平均直径,单位m;
    根据钢索网石笼结构体(1)规格参数L、d,考虑加工工艺放料标准确定矩形钢索网件(14)长度X、宽度Y;
    步骤S22、依式3、式4计算确定每一钢索网石笼结构体(1)设计节数N
    k=0.048n+0.42  式3
    Figure PCTCN2021099925-appb-100002
    式中,n—钢索网石笼结构体(1)计算节数,
    N—钢索网石笼结构体(1)设计节数;
    步骤S23、确定填充块石料粒径范围
    依式5计算确定矩形钢索网件(14)孔径下限值D1
    D1=(0.5~0.9)*D   式5
    式中,D—堰塞坝堆积体大块石尺寸,单位m,步骤S1确定
    以D1为下限、d为上限,确定钢索网石笼结构体(1)填充块石料粒径范围。
  10. 根据权利要求9所述的应用,其特征在于:所述堰塞坝溃决洪水最大流速V取值控制泄流流速V
PCT/CN2021/099925 2021-06-04 2021-06-14 钢索网石笼结构体堰塞坝溃决排险防洪系统、应用 WO2022252283A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110627655.1A CN113322906B (zh) 2021-06-04 2021-06-04 钢索网石笼结构体堰塞坝溃决排险防洪方法
CN202110627655.1 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022252283A1 true WO2022252283A1 (zh) 2022-12-08

Family

ID=77421152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099925 WO2022252283A1 (zh) 2021-06-04 2021-06-14 钢索网石笼结构体堰塞坝溃决排险防洪系统、应用

Country Status (2)

Country Link
CN (1) CN113322906B (zh)
WO (1) WO2022252283A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116091281A (zh) * 2023-01-04 2023-05-09 长江勘测规划设计研究有限责任公司 一种基于溃决机理的堰塞湖溃口发展阶段划分方法
CN116341210A (zh) * 2023-02-24 2023-06-27 武汉大学 一种基于微积分思想与险情特征的堰塞坝控泄结构及其优化方法
CN116644505A (zh) * 2023-07-26 2023-08-25 长江勘测规划设计研究有限责任公司 堰塞湖引流槽快速设计方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114991094B (zh) * 2022-07-17 2023-05-23 中国科学院、水利部成都山地灾害与环境研究所 堰塞坝泄流槽工程调控系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701454A (zh) * 2009-10-14 2010-05-05 中国科学院水利部成都山地灾害与环境研究所 一种用于泥石流和堰塞坝防冲刷的人工结构体及其应用
CN110820695A (zh) * 2019-11-22 2020-02-21 中国电建集团成都勘测设计研究院有限公司 控制堰塞坝溃坝洪峰流量的结构及方法
CN111455943A (zh) * 2020-04-23 2020-07-28 水利部交通运输部国家能源局南京水利科学研究院 一种堰塞湖抗冲刷泄流槽的施工方法
CN112878277A (zh) * 2021-03-16 2021-06-01 长江勘测规划设计研究有限责任公司 堰塞湖引流槽锁链石笼串体防护结构及使用方法
CN112878276A (zh) * 2021-03-16 2021-06-01 长江勘测规划设计研究有限责任公司 堰塞湖引流槽网链护坡防护结构及方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2171875C2 (ru) * 1998-08-25 2001-08-10 Федоров Вадим Матвеевич Способ укрепления оползневого склона

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101701454A (zh) * 2009-10-14 2010-05-05 中国科学院水利部成都山地灾害与环境研究所 一种用于泥石流和堰塞坝防冲刷的人工结构体及其应用
CN110820695A (zh) * 2019-11-22 2020-02-21 中国电建集团成都勘测设计研究院有限公司 控制堰塞坝溃坝洪峰流量的结构及方法
CN111455943A (zh) * 2020-04-23 2020-07-28 水利部交通运输部国家能源局南京水利科学研究院 一种堰塞湖抗冲刷泄流槽的施工方法
CN112878277A (zh) * 2021-03-16 2021-06-01 长江勘测规划设计研究有限责任公司 堰塞湖引流槽锁链石笼串体防护结构及使用方法
CN112878276A (zh) * 2021-03-16 2021-06-01 长江勘测规划设计研究有限责任公司 堰塞湖引流槽网链护坡防护结构及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116091281A (zh) * 2023-01-04 2023-05-09 长江勘测规划设计研究有限责任公司 一种基于溃决机理的堰塞湖溃口发展阶段划分方法
CN116091281B (zh) * 2023-01-04 2023-08-15 长江勘测规划设计研究有限责任公司 一种基于溃决机理的堰塞湖溃口发展阶段划分方法
CN116341210A (zh) * 2023-02-24 2023-06-27 武汉大学 一种基于微积分思想与险情特征的堰塞坝控泄结构及其优化方法
CN116644505A (zh) * 2023-07-26 2023-08-25 长江勘测规划设计研究有限责任公司 堰塞湖引流槽快速设计方法
CN116644505B (zh) * 2023-07-26 2023-10-13 长江勘测规划设计研究有限责任公司 堰塞湖引流槽快速设计方法

Also Published As

Publication number Publication date
CN113322906B (zh) 2022-03-25
CN113322906A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2022252283A1 (zh) 钢索网石笼结构体堰塞坝溃决排险防洪系统、应用
CN106250635B (zh) 一种冰湖溃决型泥石流的防治方法及其应用
CN105256768B (zh) 箱体消能式泥石流排导槽的箱体消能段设计方法
CN113737747A (zh) 一种水库土石坝上游护坡消浪结构
CN114032837A (zh) 一种基于废旧轮胎的梯级防洪坝及其施工与运行方法
CN107100130A (zh) 一种泥石流沟内的路基防护体系及实施方法
CN108166435B (zh) 格子坝拦挡粘性泥石流闭塞临界综合判断方法
Simons et al. Hydraulic test to develop design criteria for the use of reno mattresses
CN206052635U (zh) 用于泥石流沟的防护布置结构
CN210562053U (zh) 堰塞湖应急处置的控制泄流结构
CN114991094B (zh) 堰塞坝泄流槽工程调控系统
CN218027465U (zh) 泄流槽控流网、堰塞坝泄流槽控流系统
CN206916686U (zh) 一种泥石流沟内的路基防护体系
CN106013007B (zh) 适用于直线型陡槽溢洪道的水沙分离建筑物
CN104631425B (zh) 一种加快粉煤灰排渗固结的方法
Chen et al. Protection mechanisms, countermeasures, assessments and prospects of local scour for cross-sea bridge foundation: A review
CN104452789A (zh) 一种均质粘土灰坝排渗系统
CN112900369A (zh) 一种尾矿库排渗加固结构
CN206844062U (zh) 一种水库主坝及副坝顶钢结构操作平台
KR101262093B1 (ko) 정부도로 및 중개수로를 이용한 월류 파괴 방지형 필댐
CN113430962B (zh) 一种适用于山洪易发地区的自溃式过水桥涵
CN115262490B (zh) 漫顶溃决流量调控型黏土心墙坝设计方法
Hepler et al. Overtopping Protection for Dams—A Technical Manual Overview
WO2024016399A1 (zh) 堰塞坝泄流槽工程调控系统
CN211815973U (zh) 无坝取水进水渠防淤结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE