WO2022250299A1 - Single metal atom catalyst of p-d orbital hybrid type for oxygen evolution reaction, and method for preparing same - Google Patents

Single metal atom catalyst of p-d orbital hybrid type for oxygen evolution reaction, and method for preparing same Download PDF

Info

Publication number
WO2022250299A1
WO2022250299A1 PCT/KR2022/005761 KR2022005761W WO2022250299A1 WO 2022250299 A1 WO2022250299 A1 WO 2022250299A1 KR 2022005761 W KR2022005761 W KR 2022005761W WO 2022250299 A1 WO2022250299 A1 WO 2022250299A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
orbital
metal
metal atom
single metal
Prior art date
Application number
PCT/KR2022/005761
Other languages
French (fr)
Korean (ko)
Inventor
김용태
김영우
정상문
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2022250299A1 publication Critical patent/WO2022250299A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a single metal atom catalyst of a p-d orbital hybrid type for an oxygen evolution reaction and a method for preparing same. More specifically, the present invention relates to a single metal atom catalyst of a p-d orbital hybrid type for an oxygen evolution reaction which increases oxygen evolution reaction efficiency compared to a loading amount of noble metals through hybridization between a p-orbital of a catalyst carrier (p-block element) and a d-orbital of a noble metal-based metal (d-block element), and can dramatically reduce the amount of noble metals to be used, and to a method for preparing same. The present invention has the advantages of overcoming a scaling limit between the adsorption of an intermediate and the desorption of a product through the hybridized single atom catalyst, and of being able to solve a secondary reaction problem that occurs unnecessarily in terms of catalytic activity.

Description

산소발생반응용 P-D 오비탈 혼성 형태의 단일금속원자촉매 및 그 제조방법P-D orbital hybrid type single metal atom catalyst for oxygen generation reaction and manufacturing method thereof
본 발명은 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 및 그 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 산소발생반응 효율이 증가하고 귀금속 촉매 사용량을 획기적으로 줄일 수 있는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 및 그 제조방법에 관한 것이다.The present invention relates to a p-d orbital hybrid single metal atom catalyst for oxygen generation reaction and a method for preparing the same. More specifically, the present invention increases the efficiency of the oxygen generation reaction and drastically reduces the amount of noble metal catalyst used through hybridization between the p-orbital of the catalyst carrier (p-block element) and the d-orbital of the noble metal-based metal (d-block element) It relates to a p-d orbital hybrid type single metal atom catalyst for oxygen generation reaction that can be reduced to , and a method for manufacturing the same.
고성능 촉매개발은 P2G 기술의 에너지변환 효율을 향상시키는 가장 확실한 방법으로 현재 가장 활발히 진행되고 있는 에너지변환 촉매연구는 금속나노입자 촉매(Nanoparticle Catalyst, NPC) 분야에 대한 연구이다.Development of a high-performance catalyst is the surest way to improve the energy conversion efficiency of P2G technology. Currently, the most active energy conversion catalyst research is in the field of metal nanoparticle catalysts (Nanoparticle Catalyst, NPC).
이는 촉매 구성원소의 조성 및 미세 전자구조 제어에 관한 것으로, 입자크기 100nm 이하인 NPC 입자 크기를 줄여 활성 표면적을 증가시키고 이를 통해 촉매의 단위 활성표면적 대비 활성을 향상시키는 프로세스가 이용된다.This relates to the composition and microelectronic structure control of catalyst elements, and a process of increasing the active surface area by reducing the particle size of NPC with a particle size of 100 nm or less and thereby improving the activity compared to the unit active surface area of the catalyst is used.
한편, 촉매의 반응 메커니즘은 촉매 입자가 반응물 및 중간체를 흡착하고 반응 생성물을 탈착하는 과정을 포함하고, 촉매의 활성을 높이기 위해서는 중간체의 흡착 세기는 강하면서도 생성물의 탈착이 원활하게 이루어져야 한다. On the other hand, the reaction mechanism of the catalyst includes a process in which catalyst particles adsorb reactants and intermediates and desorb reaction products, and in order to increase the activity of the catalyst, the adsorption strength of the intermediates must be strong and the products desorbed smoothly.
그러나, 실제 반응에서는 반응물과 생성물 등 중간체들이 서로 같은 증감 경향성을 갖는 스케일링 관계(scaling relation)의 태생적 촉매 활성 한계가 존재하여, 이를 해결하기 위해 활성 최적점에 관한 촉매 연구개발이 진행되고 있다.However, in actual reactions, there is an intrinsic catalytic activity limit of a scaling relation in which intermediates such as reactants and products have the same increase and decrease tendencies.
종래의 다원자 촉매는 여러 촉매원자가 반응대상 물질과 상호작용하여 의도치 않은 이차반응(secondary reaction)을 일으킬 수 있고, 이로 인해 촉매반응의 효율감소 및 불필요한 생성물로 인한 촉매 손상 등 부작용이 발생하고 있다.In the conventional multi-atomic catalyst, several catalytic atoms interact with the reaction target material to cause an unintended secondary reaction, which causes side effects such as reduction in the efficiency of the catalytic reaction and damage to the catalyst due to unnecessary products. .
이를 해결하기 위해 단일원자촉매(Single Atom Catalysts)가 대안으로 제기되고 있으나, 이 또한 고가금속의 표면적을 극대화시켜 촉매효율을 증대시키고 동시에 촉매 반응에서의 활성과 선택성을 개선시킴에 많은 한계가 있다.In order to solve this problem, single atom catalysts have been proposed as an alternative, but they also have many limitations in maximizing the surface area of expensive metals to increase catalytic efficiency and at the same time to improve activity and selectivity in catalytic reactions.
따라서, 다양한 산업분야에서 급증하는 저비용, 고효율의 단일원자촉매에 대한 니즈를 충족하는 기술개발이 절실한 실정으로 KR10-1736065 및 KR10-1505285 등이 그러한 일 예이나, 아직까지 전술한 바를 해결하는 개시는 찾아볼 수 없다.Therefore, there is an urgent need for technology development that meets the needs for low-cost, high-efficiency single atom catalysts that are rapidly increasing in various industrial fields, and KR10-1736065 and KR10-1505285 are examples of such, but the disclosure that solves the above is still Can't find it.
이에 본 발명자는 상기 문제점을 개선하기 위해 예의 노력을 계속하던 중 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 산소발생반응 효율이 증가하고 귀금속 촉매의 사용량을 획기적으로 줄일 수 있는 본 발명을 완성하기에 이르렀다.Accordingly, the present inventors, while making diligent efforts to improve the above problems, oxygen generation reaction through hybridization between the p-orbital of the catalyst carrier (p-block element) and the d-orbital of the noble metal (d-block element) The present invention, which can increase efficiency and drastically reduce the amount of noble metal catalyst used, has been completed.
본 발명의 목적은 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 산소발생반응 효율이 증가하고 귀금속 촉매의 사용량을 획기적으로 줄일 수 있는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매를 제공하는 것이다.An object of the present invention is to increase the oxygen generation reaction efficiency and drastically reduce the amount of precious metal catalysts used through hybridization between the p-orbital of a catalyst carrier (p-block element) and the d-orbital of a noble metal-based metal (d-block element) It is to provide a single metal atom catalyst in the form of a p-d orbital hybrid for oxygen generation reaction that can be reduced.
본 발명의 다른 목적은 혼성화된 단일원자촉매를 통해 중간체 흡착과 생성물 탈착간의 스케일링 한계를 극복하고 촉매 활성면에서 불필요하게 발생하는 이차반응 문제를 해결할 수 있는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법을 제공하는 것이다.Another object of the present invention is to overcome the scaling limit between adsorption of intermediates and desorption of products through a hybridized single atom catalyst and to solve the problem of secondary reactions unnecessarily occurring in terms of catalytic activity. It is to provide a method for preparing an atomic catalyst.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다. The above and other objects of the present invention can all be achieved by the present invention described below.
본 발명의 하나의 관점은, 금속 물질에 p-블럭원소(p-block element)가 도핑되어 형성된 촉매 담지체 및 상기 촉매 담지체의 표면에 형성된 단일금속원자층을 포함하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매에 관한 것이다.One aspect of the present invention is a p-d orbital for oxygen generation reaction comprising a catalyst support formed by doping a metal material with a p-block element and a single metal atom layer formed on the surface of the catalyst support. It relates to a hybrid type single metal atom catalyst.
구체예에서, 상기 촉매 담지체를 형성하는 금속 물질은 티타늄이며, 상기 p-블럭원소(p-block element)는 탄소, 질소 및 산소 중 어느 하나일 수 있다.In a specific embodiment, the metal material forming the catalyst carrier is titanium, and the p-block element may be any one of carbon, nitrogen, and oxygen.
구체예에서, 상기 단일금속원자층을 형성하는 물질은 귀금속계 금속일 수 있다. In embodiments, the material forming the single metal atomic layer may be a noble metal-based metal.
구체예에서, 상기 귀금속계 금속은 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나일 수 있다.In embodiments, the noble metal-based metal may be any one of gold, silver, platinum, palladium, rhodium, ruthenium, and iridium.
구체예에서, 상기 단일금속원자층의 두께는 0.1nm 내지 2nm 일 수 있다.In embodiments, the thickness of the single metal atomic layer may be 0.1 nm to 2 nm.
본 발명의 다른 하나의 관점은, 금속 물질에 p-블럭원소(p-block element)를 도핑하여 촉매 담지체를 형성하는 단계 및 상기 촉매 담지체에 귀금속계 금속을 증착시켜 0.1nm 내지 2nm 두께의 단일금속원자층을 형성하는 단계를 포함하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법에 관한 것이다Another aspect of the present invention is to form a catalyst support by doping a p-block element on a metal material, and depositing a noble metal-based metal on the catalyst support to have a thickness of 0.1 nm to 2 nm. It relates to a method for producing a single metal atom catalyst in the form of a p-d orbital hybrid for oxygen generation reaction, comprising forming a single metal atom layer.
구체예에서, 상기 촉매 담지체를 형성하는 금속 물질은 티타늄이며, 상기 p-블럭원소(p-block element)는 탄소, 질소 및 산소 중 어느 하나일 수 있다.In a specific embodiment, the metal material forming the catalyst carrier is titanium, and the p-block element may be any one of carbon, nitrogen, and oxygen.
구체예에서, 상기 단일금속원자층을 형성하는 물질은 귀금속계 금속일 수 있다.In embodiments, the material forming the single metal atomic layer may be a noble metal-based metal.
구체예에서, 상기 귀금속계 금속은 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나일 수 있다.In embodiments, the noble metal-based metal may be any one of gold, silver, platinum, palladium, rhodium, ruthenium, and iridium.
구체예에서, 상기 촉매담지체를 형성하는 단계는, 상기 금속물질이 티타늄이며, p-블록원소(p-block element)가 탄소인 경우, 상기 티타늄 금속을 히터를 통해 메탄 분위기하에서 가열하여 표면에 티타늄 카바이드(TiC)를 생성시킬 수 있다.In a specific embodiment, in the step of forming the catalyst carrier, when the metal material is titanium and the p-block element is carbon, the titanium metal is heated under a methane atmosphere through a heater to form a surface Titanium carbide (TiC) can be produced.
구체예에서, 상기 단일금속원자층을 형성하는 단계는, 상기 금속물질이 티타늄이며, p-블록원소(p-block element)가 탄소인 경우, 티타늄 카바이드가 표면에 도핑된 티타늄으로 이루어진 촉매담지체에 이리듐을 증착시켜 단일금속원자층을 형성할 수 있다.In a specific embodiment, in the step of forming the single metal atom layer, when the metal material is titanium and the p-block element is carbon, the catalyst carrier made of titanium doped with titanium carbide on its surface. A single metal atom layer may be formed by depositing iridium thereon.
구체예에서, 상기 단일금속원자층을 형성하는 단계에서 증착된 이리듐으로 이루어진 단일금속원자층의 두께는 0.1nm 내지 2nm일 수 있다.In a specific example, the thickness of the single metal atom layer made of iridium deposited in the step of forming the single metal atom layer may be 0.1 nm to 2 nm.
본 발명에 의한 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매는 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 귀금속 담지량 대비 산소발생반응효율이 증가하고, 귀금속 촉매 사용량을 획기적으로 줄일 수 있는 장점이 있다.The p-d orbital hybridized single-metal atom catalyst for oxygen generation reaction according to the present invention is a noble metal through hybridization between the p-orbital of a catalyst carrier (p-block element) and the d-orbital of a noble metal-based metal (d-block element). It has the advantage of increasing the oxygen generation reaction efficiency compared to the supported amount and drastically reducing the amount of noble metal catalyst used.
본 발명에 의한 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법은 촉매 중간체 흡착과 생성물 탈착간의 스케일링 한계를 극복하고, 촉매 활성면에서 불필요하게 발생하는 이차반응 문제를 해결할 수 있다는 다른 장점이 있다.The method for preparing a single metal atom catalyst in the form of p-d orbital hybridization for oxygen generation reaction according to the present invention overcomes the scaling limit between catalyst intermediate adsorption and product desorption and solves the problem of secondary reactions unnecessarily occurring in terms of catalyst activity. there is
도 1은 본 발명의 한 구체예에 따른 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법을 나타낸 순서도이다. 1 is a flow chart showing a method for preparing a p-d orbital hybrid single metal atom catalyst for oxygen generation reaction according to an embodiment of the present invention.
도 2는 본 발명의 한 구체예에 따른 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 LSV 분극곡선 그래프이다. 2 is a LSV polarization curve graph of a single metal atom catalyst in the form of a hybrid p-d orbital for oxygen generation reaction according to an embodiment of the present invention.
이하, 첨부한 도면들을 참조하여, 본 출원의 실시예들을 보다 상세하게 설명하고자 한다. 그러나 본 출원에 개시된 기술은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 출원의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 각 장치의 구성요소를 명확하게 표현하기 위하여 상기 구성요소의 폭이나 두께 등의 크기를 다소 확대하여 나타내었다. Hereinafter, embodiments of the present application will be described in detail with reference to the accompanying drawings. However, the technology disclosed in this application is not limited to the embodiments described herein and may be embodied in other forms. However, the embodiments introduced herein are provided so that the disclosed content can be thorough and complete and the spirit of the present application can be sufficiently conveyed to those skilled in the art. In the drawing, in order to clearly express the components of each device, the size of the components, such as width or thickness, is shown somewhat enlarged.
또한, 설명의 편의를 위하여 구성요소의 일부만을 도시하기도 하였으나, 당업자라면 구성요소의 나머지 부분에 대하여도 용이하게 파악할 수 있을 것이다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 요소가 다른 요소 위 또는 아래에 위치하는 것으로 언급되는 경우, 이는 상기 일 요소가 다른 요소 위 또는 아래에 바로 위치하거나 또는 그들 요소들 사이에 추가적인 요소가 개재될 수 있다는 의미를 모두 포함한다. 또한, 해당 분야에서 통상의 지식을 가진 자라면 본 출원의 기술적 사상을 벗어나지 않는 범위 내에서 본 출원의 사상을 다양한 다른 형태로 구현할 수 있을 것이다. 그리고, 복수의 도면들 상에서 동일 부호는 실질적으로 서로 동일한 요소를 지칭한다. In addition, although only some of the components are shown for convenience of description, those skilled in the art will be able to easily grasp the remaining components. When describing the drawings as a whole, it is described from the observer's point of view, and when an element is referred to as being located above or below another element, this means that the element is located directly above or below another element, or an additional element is interposed between them. It includes all possible meanings. In addition, those skilled in the art will be able to implement the spirit of the present application in various other forms without departing from the technical spirit of the present application. Also, like reference numerals in a plurality of drawings denote substantially the same elements.
또한, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함하는 것으로 이해되어야 하고, ‘포함하다’ 또는 ‘가지다’ 등의 용어는 기술되는 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In addition, singular expressions should be understood to include plural expressions, unless the context clearly indicates otherwise, and terms such as 'include' or 'have' refer to the described feature, number, step, operation, component, It is intended to indicate that a part or combination thereof exists, but it should be understood that the presence or addition of one or more other features, numbers, steps, operations, components, parts, or combinations thereof is not precluded.
또한, 방법 또는 제조 방법을 수행함에 있어서, 상기 방법을 이루는 각 과정들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 과정들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.In addition, in performing a method or manufacturing method, each process constituting the method may occur in a different order from the specified order unless a specific order is clearly described in context. That is, each process may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
이하, 본 발명에 대하여 더욱 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 하나의 관점인 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매는 금속 물질에 p-블럭원소(p-block element)가 도핑되어 형성된 촉매 담지체 및 상기 촉매 담지체의 표면에 형성된 단일금속원자층을 포함한다. 본 발명의 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매는 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 귀금속 담지량 대비 산소발생반응 효율이 증가하고, 귀금속 촉매의 사용량을 획기적으로 줄일 수 있다.One aspect of the present invention, a p-d orbital hybrid type single metal atom catalyst for oxygen generation reaction, is a catalyst support formed by doping a metal material with a p-block element and formed on the surface of the catalyst support. It contains a single layer of metal atoms. The p-d orbital hybrid single metal atom catalyst for oxygen generation reaction of the present invention is hybridized between the p-orbital of the catalyst carrier (p-block element) and the d-orbital of the noble metal (d-block element), Compared to this, the oxygen generation reaction efficiency is increased, and the amount of noble metal catalyst used can be drastically reduced.
구체예에서, 상기 촉매 담지체를 형성하는 금속 물질은 티타늄이며, 상기 p-블럭원소(p-block element)는 탄소, 질소 및 산소 중 어느 하나일 수 있다.In a specific embodiment, the metal material forming the catalyst carrier is titanium, and the p-block element may be any one of carbon, nitrogen, and oxygen.
상기 금속 물질은 예를들어, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, La, Zr, Hf, Nb, Ta, Mo, W, Tc, Re, Ru, Os, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Ge, In, Sn, Sb, Tl, Pb, Bi, 란탄족 및 악티늄족 원소 중 1종 이상의 금속 또는 이들의 조합을 포함할 수 있다. 바람직하게는 Ti(티타늄) 금속을 포함할 수 있다.The metal material is, for example, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, La, Zr, Hf, Nb, Ta, Mo, W, Tc, Re, Ru, Os, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Ge, In, Sn, Sb, Tl, Pb, Bi, one or more metals from the lanthanides and actinides, or combinations thereof can include Preferably, Ti (titanium) metal may be included.
상기 Ti(티타늄) 금속은 순도 99.5% 초과의 Pure Ti로 촉매 담지체를 형성하는 지지체로 사용될 수 있다. 상기 Ti(티타늄) 금속은 기판 역할을 수행하며 단일원자에 존재하지 않는 전기촉매 전도띠를 제공하여 전기화학촉매로 사용 가능할 수 있다.The Ti (titanium) metal may be used as a support for forming a catalyst support with a purity of more than 99.5% Pure Ti. The Ti (titanium) metal serves as a substrate and can be used as an electrochemical catalyst by providing an electrocatalyst conduction band that does not exist in a single atom.
상기 p-블럭원소(p-block element)는 상기 금속물질에 도핑시 사용하는 물질로 p-오비탈을 갖고 있어 단일금속원자층 형성시 귀금속계 금속의 d-오비탈과 오비탈 혼성화를 통해 촉매 중간체의 흡착세기를 독립적으로 제어하고 스케일링 한계를 벗어나게 할 수 있다.The p-block element is a material used for doping the metal material and has a p-orbital, so that when a single metal atomic layer is formed, the catalyst intermediate is adsorbed through orbital hybridization with the d-orbital of the noble metal. Intensity can be independently controlled and out of scaling limits.
상기 p-블럭원소(p-block element)는 부피가 가벼워 기체를 통한 도핑이 가능한 C(탄소), N(질소) 및 O(산소) 중 어느 하나를 포함할 수 있고, 예를들어, TiX (TiC, TiN, TiO2) 지지체를 형성할 수 있다. 더욱 바람직하게는 C를 포함하여 TiC(티타늄 카바이드) 지지체를 형성할 수 있다.The p-block element may include any one of C (carbon), N (nitrogen), and O (oxygen), which is light in volume and capable of doping through gas, and for example, TiX ( TiC, TiN, TiO 2 ) supports may be formed. More preferably, a TiC (titanium carbide) support may be formed by including C.
구체예에서, 상기 단일금속원자층을 형성하는 물질은 귀금속계 금속일 수 있다. 또한, 상기 귀금속계 금속은 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나일 수 있다. In embodiments, the material forming the single metal atomic layer may be a noble metal-based metal. In addition, the noble metal-based metal may be any one of gold, silver, platinum, palladium, rhodium, ruthenium, and iridium.
상기 귀금속계 금속은 상기 촉매 담지체에 증착시 사용하는 물질로 d-오비탈을 갖고 있어 단일금속원자층 형성시, 촉매 담지체의 p-오비탈과 오비탈 혼성화를 통해 촉매 중간체의 흡착세기를 독립적으로 제어하고 스케일링 한계를 벗어나게 할 수 있다. The noble metal-based metal is a material used for deposition on the catalyst support and has a d-orbital. When forming a single metal atom layer, the adsorption strength of the catalyst intermediate is independently controlled through orbital hybridization with the p-orbital of the catalyst support. and out of scaling limits.
상기 귀금속계 금속인 d-블럭원소(d-block element)는 예를들어, 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나일 수 있다. 상기 귀금속계 금속은 d-블럭원소(d-block element)로 d-오비탈을 갖고 있고, p-블럭원소(p-block element)와의 오비탈 혼성시 원소 조합에 따라 다양한 특성을 나타낼 수 있다. 예를들어, 특유의 전도대, 가전도대 전자구조 등을 알 수 있고, 산소발생반응 과전압 향상 등 고효율의 산소발생반응 특성을 구현하며, 귀금속 촉매의 사용량을 줄일 수 있다.The noble metal-based d-block element may be, for example, any one of gold, silver, platinum, palladium, rhodium, ruthenium, and iridium. The noble metal-based metal has a d-orbital as a d-block element, and may exhibit various characteristics depending on the combination of elements when the orbital is mixed with a p-block element. For example, it is possible to know the unique conduction band, valence conduction band, and electronic structure, realize high-efficiency oxygen generation reaction characteristics such as improvement of oxygen generation reaction overvoltage, and reduce the amount of noble metal catalyst used.
구체예에서, 상기 단일금속원자층의 두께는 0.1nm 내지 2nm 일 수 있다. 바람직하게는 0.2nm 내지 1.9nm의 두께로, 더욱 바람직하게는 0.3nm 내지 1.8nm의 두께로 증착할 수 있다. 상기 증착두께 범위일 때, 산소발생반응 과전압의 향상 등 고효율의 산소발생반응 특성을 구현할 수 있는 장점이 있다.In embodiments, the thickness of the single metal atomic layer may be 0.1 nm to 2 nm. Preferably, it may be deposited to a thickness of 0.2 nm to 1.9 nm, more preferably to a thickness of 0.3 nm to 1.8 nm. When the deposition thickness is within the range, there is an advantage in that high-efficiency oxygen generation reaction characteristics such as improvement of oxygen generation reaction overvoltage can be realized.
본 발명에 의한 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매는 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 혼성화를 통해 귀금속 담지량 대비 산소발생반응효율이 증가하고, 귀금속 촉매 사용량을 획기적으로 줄일 수 있다.The p-d orbital hybridized single-metal atom catalyst for oxygen generation reaction according to the present invention is a noble metal through hybridization between the p-orbital of a catalyst carrier (p-block element) and the d-orbital of a noble metal-based metal (d-block element). The oxygen generation reaction efficiency is increased compared to the supported amount, and the amount of noble metal catalyst used can be drastically reduced.
본 발명의 다른 하나의 관점인 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법은 금속 물질에 p-블럭원소(p-block element)를 도핑하여 촉매 담지체를 형성하는 단계(S100) 및 상기 촉매 담지체에 귀금속계 금속을 증착시켜 0.1nm 내지 2nm 두께의 단일금속원자층을 형성하는 단계(S200)를 포함한다.Another aspect of the present invention, a method for producing a single metal atom catalyst in the form of a p-d orbital hybrid for oxygen generation reaction, comprises the steps of doping a metal material with a p-block element to form a catalyst carrier (S100) and forming a single metal atomic layer having a thickness of 0.1 nm to 2 nm by depositing a noble metal-based metal on the catalyst carrier (S200).
도 1은 본 발명에 의한 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법을 나타내는 순서도이다. 1 is a flow chart showing a method for preparing a p-d orbital hybrid single metal atom catalyst for oxygen generation reaction according to the present invention.
도 1을 참조하면, 본 발명의 단일원자촉매의 제조방법은 촉매 담지체 형성단계(S100) 및 단일금속원자층 형성단계(S200)를 포함한다.Referring to FIG. 1, the method for preparing a single atom catalyst of the present invention includes a step of forming a catalyst carrier (S100) and a step of forming a single metal atom layer (S200).
촉매 담지체 형성단계(S100)는 금속 물질에 p-블럭원소(p-block element)를 도핑하여 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 촉매 담지체를 형성하기 위한 목적에서 수행된다.The catalyst support forming step (S100) is performed for the purpose of forming a catalyst support for a p-d orbital hybrid single metal atom catalyst for oxygen generation reaction by doping a metal material with a p-block element. .
구체예에서, 상기 촉매 담지체를 형성하는 금속 물질은 티타늄이며, 상기 p-블럭원소(p-block element)는 탄소, 질소 및 산소 중 어느 하나일 수 있다.In a specific embodiment, the metal material forming the catalyst carrier is titanium, and the p-block element may be any one of carbon, nitrogen, and oxygen.
상기 금속 물질은 예를들어, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, La, Zr, Hf, Nb, Ta, Mo, W, Tc, Re, Ru, Os, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Ge, In, Sn, Sb, Tl, Pb, Bi, 란탄족 및 악티늄족 원소 중 1종 이상의 금속 또는 이들의 조합을 포함할 수 있다. 바람직하게는 Ti(티타늄) 금속을 포함할 수 있다.The metal material is, for example, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, La, Zr, Hf, Nb, Ta, Mo, W, Tc, Re, Ru, Os, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Ge, In, Sn, Sb, Tl, Pb, Bi, one or more metals from the lanthanides and actinides, or combinations thereof can include Preferably, Ti (titanium) metal may be included.
상기 Ti(티타늄) 금속은 순도 99.5% 초과의 Pure Ti로 촉매 담지체를 형성하는 지지체로 사용될 수 있다. 상기 Ti(티타늄) 금속은 기판 역할을 수행하며 단일원자에 존재하지 않는 전기촉매 전도띠를 제공하여 전기화학촉매로 사용 가능할 수 있다.The Ti (titanium) metal may be used as a support for forming a catalyst support with a purity of more than 99.5% Pure Ti. The Ti (titanium) metal serves as a substrate and can be used as an electrochemical catalyst by providing an electrocatalyst conduction band that does not exist in a single atom.
상기 p-블럭원소(p-block element)는 상기 금속물질에 도핑시 사용하는 물질로 p-오비탈을 갖고 있어 단일금속원자층 형성시 귀금속계 금속의 d-오비탈과 오비탈 혼성화를 통해 촉매 중간체의 흡착세기를 독립적으로 제어하고 스케일링 한계를 벗어나게 할 수 있다.The p-block element is a material used for doping the metal material and has a p-orbital, so that when a single metal atomic layer is formed, the catalyst intermediate is adsorbed through orbital hybridization with the d-orbital of the noble metal. Intensity can be independently controlled and out of scaling limits.
상기 p-블럭원소(p-block element)는 예를들어, 부피가 가벼워 기체를 통한 도핑이 가능한 C(탄소), N(질소), O(산소)를 포함할 수 있고, 예를들어, TiX (TiC, TiN, TiO2) 지지체를 형성할 수 있다. 바람직하게는 C를 포함할 수 있고, 예를 들어, TiC(티타늄 카바이드) 지지체를 형성할 수 있다.The p-block element may include, for example, C (carbon), N (nitrogen), and O (oxygen), which are light in volume and can be doped through gas, for example, TiX (TiC, TiN, TiO 2 ) A support may be formed. It may preferably include C, and may form, for example, a TiC (titanium carbide) support.
구체예에서, 상기 촉매 담지체를 형성하는 단계는, 상기 금속물질이 티타늄이며, p-블록원소(p-block element)가 탄소인 경우, 상기 티타늄 금속을 히터를 통해 메탄 분위기하에서 가열하여 표면에 티타늄 카바이드(TiC)를 생성시킬 수 있다.In a specific embodiment, in the step of forming the catalyst carrier, when the metal material is titanium and the p-block element is carbon, the titanium metal is heated under a methane atmosphere through a heater to form a surface Titanium carbide (TiC) can be produced.
상기 티타늄 카바이드(TiC)는 1000 내지 1200℃에서, 200 내지 400초간 열처리하여 형성할 수 있다. 바람직하게는 1050 내지 1150℃에서, 250 내지 350초간 열처리하여 형성할 수 있다. 상기 조건 범위에서 열처리시, 별도의 후공정을 필요로 하지 않고 불순물을 제거하여 도핑이 표면에 고르게 잘될 수 있다.The titanium carbide (TiC) may be formed by heat treatment at 1000 to 1200° C. for 200 to 400 seconds. Preferably, it may be formed by heat treatment at 1050 to 1150 ° C. for 250 to 350 seconds. During heat treatment within the above condition range, doping may be evenly applied to the surface by removing impurities without requiring a separate post-process.
상기 촉매 담지체는 넓은 비표면적을 갖고 결정성이 높은 탄소 담지체(TiC)일 수 있다. 예를들어, 상기 촉매 담지체는 탄소 담지체로써, 그래핀(graphene), 그래핀 산화물(graphene oxide), 플러렌(fullerene), 탄소나노튜브(CNT), 탄소나노섬유(carbon nanofiber), 탄소나노벨트(carbon nanobelt), 탄소나노양파(carbon nanoonion), 탄소나노뿔(carbon nanohorn), 활성탄소 (activated carbon), 흑연 (graphite) 등을 포함할 수 있다. 그러나, 반드시 이들로 한정되지 않고 당해 기술분야에서 탄소 담지체로 사용될 수 있는 것이라면 모두 포함할 수 있다.The catalyst carrier may be a carbon carrier (TiC) having a large specific surface area and high crystallinity. For example, the catalyst support is a carbon support, graphene, graphene oxide, fullerene, carbon nanotube (CNT), carbon nanofiber, carbon nano It may include a carbon nanobelt, carbon nanoonion, carbon nanohorn, activated carbon, graphite, and the like. However, it is not necessarily limited to these, and may include all as long as it can be used as a carbon carrier in the art.
상기 촉매 담지체는 구형, 막대형, 튜브형, 뿔형 또는 판상형 등의 구조를 포함할 수 있다. 그러나, 반드시 이러한 구조로 한정되지 않고 당해 기술 분야에서 촉매 담지체로 사용할 수 있는 구조라면 모두 포함할 수 있다.The catalyst carrier may have a structure such as a spherical shape, a rod shape, a tube shape, a cone shape, or a plate shape. However, it is not necessarily limited to this structure and may include any structure that can be used as a catalyst support in the art.
상기 촉매 담지체는 다공성일 수 있다. 예를들어, 상기 촉매 담지체는 넓은 비표면적과 기공을 가지는 다공성 탄소재료일 수 있다. 예를들어, 상기 촉매 담지체는 메조다공성일 수 있다. 예를들어, 상기 촉매 담지체는 상술한 다양한 형태의 촉매 담지체의 일부 또는 전부가 다공성일 수 있다.The catalyst support may be porous. For example, the catalyst carrier may be a porous carbon material having pores and a large specific surface area. For example, the catalyst carrier may be mesoporous. For example, some or all of the catalyst supports of various types described above may be porous.
단일금속원자층 형성단계(S200)는 상기 촉매 담지체에 귀금속계 금속을 증착하여 p-오비탈과 d-오비탈간 오비탈 혼성화를 통해 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매를 형성하기 위한 목적에서 수행된다.In the single metal atom layer forming step (S200), a noble metal-based metal is deposited on the catalyst carrier to form a p-d orbital hybridized single metal atom catalyst for oxygen generation reaction through orbital hybridization between p-orbital and d-orbital. performed for a purpose
구체예에서, 상기 단일금속원자층을 형성하는 물질은 귀금속계 금속일 수 있다. 또한, 상기 귀금속계 금속은 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나일 수 있다. 상기 귀금속계 금속은 d-오비탈을 갖고 있어 단일금속원자층 형성시, 촉매 담지체의 p-오비탈과 오비탈 혼성화를 통해 촉매 중간체의 흡착세기를 독립적으로 제어하고 스케일링 한계를 벗어나게 할 수 있다. In embodiments, the material forming the single metal atomic layer may be a noble metal-based metal. In addition, the noble metal-based metal may be any one of gold, silver, platinum, palladium, rhodium, ruthenium, and iridium. Since the noble metal-based metal has a d-orbital, when forming a single metal atomic layer, the adsorption strength of the catalyst intermediate can be independently controlled through orbital hybridization with the p-orbital of the catalyst carrier and can be out of the scaling limit.
상기 귀금속계 금속인 d-블럭원소(d-block element)는 예를들어, 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나일 수 있다. 상기 귀금속계 금속은 d-블럭원소(d-block element)로 d-오비탈을 갖고 있고, p-블럭원소와의 오비탈 혼성시 원소 조합에 따라 다양한 특성을 나타낼 수 있다. 예를들어, 오비탈 혼성화로 특유의 전도대, 가전도대 전자구조 등을 알 수 있고, 또한, 산소발생반응 과전압 향상 등 고효율의 산소발생반응 특성을 구현하고 귀금속 촉매의 사용량을 줄일 수 있다.The noble metal-based d-block element may be, for example, any one of gold, silver, platinum, palladium, rhodium, ruthenium, and iridium. The noble metal-based metal has a d-orbital as a d-block element, and may exhibit various characteristics depending on the combination of elements when the orbital is mixed with a p-block element. For example, by orbital hybridization, a unique conduction band, valence conduction band, electronic structure, etc. can be found, and also, high-efficiency oxygen generation reaction characteristics such as improvement of oxygen generation reaction overvoltage can be realized, and the amount of noble metal catalyst used can be reduced.
구체예에서, 상기 단일금속원자층을 형성하는 단계는, 상기 금속물질이 티타늄이며, p-블록원소(p-block element)가 탄소인 경우, 티타늄 카바이드가 표면에 도핑된 티타늄으로 이루어진 촉매 담지체에 이리듐을 증착시켜 단일금속원자층을 형성할 수 있다.In a specific embodiment, in the step of forming the single metal atom layer, when the metal material is titanium and the p-block element is carbon, the catalyst carrier made of titanium doped with titanium carbide on its surface. A single metal atom layer may be formed by depositing iridium thereon.
상기 증착은 예를들어, 아크방전(arc discharge), 열화학기상증착법(thermal chemical vapor deposition), 플라즈마 합성법(plasma synthesis), 고온 플라즈마(high temperature plasma), 플라즈마화학기상증착법(plasma enhanced chemical vapor deposition), 레이저 증착법(laser evaporation), 레이저 어블레이션(laser ablation), 기상합성법(vapor phase growth) 또는 진공증착법(electronic-beam evaporator) 중 적어도 하나의 공정에 의해 수행할 수 있다. 바람직하게는 진공증착법(electronic-beam evaporator) 공정에 의해 수행할 수 있다.The deposition is, for example, arc discharge, thermal chemical vapor deposition, plasma synthesis, high temperature plasma, plasma enhanced chemical vapor deposition , laser evaporation, laser ablation, vapor phase growth, or electronic-beam evaporator. Preferably, it may be performed by an electronic-beam evaporator process.
상기 증착은 20 내지 30℃에서 0.1 내지 0.5Å/s로 증착할 수 있다. 바람직하게는, 23 내지 27℃에서 0.2 내지 0.4Å/s로 증착할 수 있다. 상기 온도, 속도 범위에서 증착될 때, 일정한 속도로 증착반응이 균일하게 일어나 목표로 하는 단일금속원자층이 잘 형성될 수 있다.The deposition may be performed at 0.1 to 0.5 Å/s at 20 to 30°C. Preferably, it may be deposited at 0.2 to 0.4 Å/s at 23 to 27°C. When depositing in the above temperature and speed ranges, the deposition reaction uniformly occurs at a constant speed, so that a target single metal atomic layer can be well formed.
구체예에서, 상기 단일금속원자층을 형성하는 단계에서 증착된 이리듐으로 이루어진 단일금속원자층의 두께는 0.1nm 내지 2nm일 수 있다. 상기 증착두께 범위일 때, 산소발생반응 과전압의 향상 등 고효율의 산소발생반응 특성을 구현할 수 있는 장점이 있다.In a specific example, the thickness of the single metal atom layer made of iridium deposited in the step of forming the single metal atom layer may be 0.1 nm to 2 nm. When the deposition thickness is within the range, there is an advantage in that high-efficiency oxygen generation reaction characteristics such as improvement of oxygen generation reaction overvoltage can be implemented.
본 발명의 제조방법에 의해 제조된 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매는 촉매담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 오비탈 혼성화를 통해 산소발생반응 과전압의 향상 등 고효율의 산소발생반응 특성을 구현하고 귀금속 촉매의 사용량을 획기적으로 줄일 수 있는 우수한 특징이 있다.The p-d orbital hybrid single metal atom catalyst for oxygen generation reaction prepared by the production method of the present invention has a p-orbital of the catalyst support (p-block element) and a d-orbital of a noble metal (d-block element). Through inter-orbital hybridization, it has excellent characteristics of realizing high-efficiency oxygen generation reaction characteristics such as improvement of oxygen generation reaction overvoltage and drastically reducing the amount of noble metal catalyst used.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention will be described in more detail through preferred embodiments of the present invention. However, this is presented as a preferred example of the present invention and cannot be construed as limiting the present invention by this in any sense.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Contents not described herein can be technically inferred by those skilled in the art, so descriptions thereof will be omitted.
(실시예 1)(Example 1)
Ti 금속에 p-블럭원소(p-block element) 탄소(C)를 도핑하여 촉매 담지체인 티타늄 카바이드를 제조하였다. 이때, 인덕션 히터(induction)를 사용하여 메탄(C4H4) 분위기에서 1100℃, 300초 동안 열처리하여 제조하였다.Titanium carbide, a catalyst support, was prepared by doping Ti metal with p-block element carbon (C). At this time, it was prepared by heat treatment at 1100° C. for 300 seconds in a methane (C 4 H 4 ) atmosphere using an induction heater.
그 다음, 상기 티타늄 카바이드 담지체에 E-beam을 사용하여 귀금속계 금속인 d-블럭원소(d-block element) 이리듐(Ir)을 증착하여 단일금속원자층을 형성하였다. 이때, 증착은 상온에서 0.3Å/s로 조절하여 진행하였고 그 두께는 0.5nm로 증착하였다.Next, a d-block element, iridium (Ir), which is a precious metal, was deposited on the titanium carbide carrier using an E-beam to form a single metal atom layer. At this time, the deposition was carried out at room temperature by adjusting the rate to 0.3 Å/s, and the thickness was deposited at 0.5 nm.
상기 과정을 통해 최종적으로 본 발명에 의한 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매(TiC-Ir)를 완성하였다 (0.5nm 증착된 TiC-Ir).Through the above process, a p-d orbital hybrid single metal atom catalyst (TiC-Ir) for oxygen generation reaction according to the present invention was finally completed (TiC-Ir deposited at 0.5 nm).
(실시예 2)(Example 2)
실시예 2는 단일원자촉매 형성시 Ir(이리듐)을 촉매 담지체에 1.0nm 두께로 증착한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 단일원자촉매를 완성하였다 (1nm 증착된 TiC-Ir).In Example 2, a single atom catalyst was completed in the same manner as in Example 1, except that Ir (iridium) was deposited on the catalyst carrier to a thickness of 1.0 nm when forming the single atom catalyst (1 nm deposited TiC-Ir). .
(실시예 3)(Example 3)
실시예 3은 단일원자촉매 형성시 Ir(이리듐)을 촉매 담지체에 1.5nm 두께로 증착한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 단일원자촉매를 완성하였다 (1.5nm 증착된 TiC-Ir).In Example 3, a single atom catalyst was completed in the same manner as in Example 1, except that Ir (iridium) was deposited on the catalyst carrier to a thickness of 1.5 nm when forming the single atom catalyst (1.5 nm deposited TiC-Ir ).
(실시예 4)(Example 4)
실시예 4는 실시예 1 내지 3에 대한 비교예로서, 단일원자촉매를 사용하지 않고 상용촉매인 Bulk Ir을 사용하였다 (Bulk Ir).Example 4 is a comparative example to Examples 1 to 3, and a commercial catalyst, Bulk Ir, was used without using a single atom catalyst (Bulk Ir).
이후, 상기 실시예 1 내지 3에 의한 본 발명의 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 및 비교예로서 제시한 실시예 4에 의한 기존의 상용촉매에 대해, 아래와 같이 OER 활성평가를 수행하였다. Then, for the p-d orbital hybrid type single metal atom catalyst for oxygen evolution reaction of the present invention according to Examples 1 to 3 and the existing commercial catalyst according to Example 4 presented as a comparative example, OER activity was evaluated as follows. performed.
우선, 상기 각 실시예에 의해 제작된 촉매를 이용하여 RDE 실험을 위한 3전극 셀을 구성하고 상온, 상압 조건하에서 OER 분극곡선을 측정하였다. 그 다음, 얻어진 분극곡선으로부터 일정 전류밀도(10mA/cm2)에서의 전위를 측정하였다.First, a three-electrode cell for the RDE experiment was constructed using the catalyst prepared in each of the above examples, and the OER polarization curve was measured under normal temperature and pressure conditions. Then, the potential at a constant current density (10 mA/cm 2 ) was measured from the obtained polarization curve.
전체 실험조건은 다음과 같다. 작동전극(Working electrode)은 Rotating Disk Electrode(RDE), 기준전극(Reference electrode)은 Ag/AgCl, 상대전극(Counter electrode)은 Pt Wire를 사용하였다. 이때, 전해질은 0.1 M HClO4 (pH 1), 온도는 상온 25℃ 조건에서 수행하였다. The overall experimental conditions are as follows. A Rotating Disk Electrode (RDE) was used as the working electrode, Ag/AgCl was used as the reference electrode, and Pt Wire was used as the counter electrode. At this time, the electrolyte was 0.1 M HClO4 (pH 1), the temperature was carried out at room temperature 25 ℃ conditions.
또한, OER 활성평가를 위해 다음 조건에서 실험을 수행하였다. 전해질을 아르곤으로 30분간 purging하고, OER에서의 산소 제거를 위해 작동전극을 1600rpm로 회전하였다. 이때, Scan rate는 10mV/s, Scan range는 0.05 V(vs RHE) 내지 2.00 V (vs RHE)를 유지하였고, 각 실험마다 1회부터 10회까지 반응을 반복 실시하였다.In addition, experiments were performed under the following conditions to evaluate OER activity. The electrolyte was purged with argon for 30 minutes, and the working electrode was rotated at 1600 rpm to remove oxygen in the OER. At this time, the scan rate was maintained at 10 mV / s and the scan range was 0.05 V (vs RHE) to 2.00 V (vs RHE), and the reaction was repeated from 1 to 10 times for each experiment.
이에 대한 실험 결과는 하기 표 1 및 도 2에 구체적으로 개시하였다.Experimental results for this are specifically disclosed in Table 1 and FIG. 2 below.
샘플 명sample name 과전압
(첫번째 분극곡선)
overvoltage
(first polarization curve)
과전압
(열번째 분극곡선)
overvoltage
(tenth polarization curve)
실시예1Example 1 Bulk IrBulk Ir 1.6521.652 ··
실시예2Example 2 Ir 0.5 nm on TiCIr 0.5 nm on TiC 1.604 V vs RHE1.604 V vs RHE 측정불가not measurable
실시예3Example 3 Ir 1 nm on TiCIr 1 nm on TiC 1.592 V vs RHE1.592 V vs RHE 1.571 V vs RHE1.571 V vs RHE
실시예4Example 4 Ir 2 nm on TiC Ir 2 nm on TiC 1.557 V vs RHE1.557 V vs RHE 1.534 V vs RHE1.534 V vs RHE
도 2는 본 발명의 한 구체예에 따른 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매의 LSV 분극곡선 그래프이다. 도 2를 참조하면, 종래의 상용촉매인 이리듐 벌크(Bulk Ir)와 비교하여 이리듐 0.5nm를 증착한 샘플은 전류밀도 10 mAcm-2에서 2.99% 산소발생반응 과전압 증가를 보였으나, 반응을 반복할수록 과전압이 감소해 열번째 실험에서는 10mAcm-2에서 과전압을 읽을 수 없었다. 2 is a LSV polarization curve graph of a pd orbital hybrid single metal atom catalyst for oxygen generation reaction according to an embodiment of the present invention. Referring to FIG. 2, compared to iridium bulk (Bulk Ir), a conventional commercial catalyst, the sample deposited with 0.5 nm of iridium showed a 2.99% increase in oxygen generation reaction overvoltage at a current density of 10 mAcm-2, but as the reaction was repeated, The overvoltage decreased, and in the tenth experiment, the overvoltage could not be read at 10 mAcm -2 .
또한, 이리듐 1nm를 증착한 샘플은 약 3.63%, 2nm를 증착한 샘플은 약 5.75% 과전압이 향상되었고 산소발생반응 실험을 반복함에 따라 이리듐층이 산화되어 이리듐 옥사이드가 되었다. 그 결과, 산소발생반응의 과전압이 점차 증가하였고 이리듐이 전부 산화된 후에는 과전압 값이 더이상 증가하지 않고 유지되었다. In addition, the overvoltage of the sample deposited with 1 nm of iridium was improved by about 3.63% and the sample with 2 nm of iridium was improved by about 5.75%. As the oxygen generation reaction experiment was repeated, the iridium layer was oxidized to become iridium oxide. As a result, the overpotential of the oxygen generation reaction gradually increased, and after the iridium was completely oxidized, the overpotential value did not increase any more and was maintained.
이를 통해, 본 발명과 같이 촉매 담지체(p-블럭원소)의 p-오비탈과 귀금속계 금속(d-블럭원소)의 d-오비탈간 오비탈 혼성화를 이룬 단일원자촉매에 의할 경우, 산소발생반응 과전압의 향상 등 고효율의 산소발생반응 특성을 구현하고 나아가 귀금속 촉매의 사용량을 획기적으로 줄일 수 있는 우수한 특징을 확인할 수 있었다.Through this, as in the present invention, in the case of a single atom catalyst comprising orbital hybridization between the p-orbital of the catalyst carrier (p-block element) and the d-orbital of the noble metal-type metal (d-block element), oxygen evolution reaction It was able to confirm the excellent characteristics of realizing high-efficiency oxygen generation reaction characteristics such as improvement of overvoltage and further reducing the amount of noble metal catalyst used drastically.
이상 살펴본 바와 같이, 물성평가 실험예를 통해 본 발명에 의한 단일원자촉매는 종래 발명과 대비하여 오비탈 혼성화된 p-d 오비탈 혼성 단일원자촉매를 사용함으로써, 촉매 중간체 흡착과 생성물 탈착간의 스케일링 한계를 극복하고, 촉매 활성면에서 불필요하게 발생하는 이차반응(secondary reaction) 문제를 해결할 수 있는 효과가 있음을 확인할 수 있었다.As described above, the single atom catalyst according to the present invention through the physical property evaluation experiment example uses an orbital hybridized p-d orbital hybridized single atom catalyst in contrast to the conventional invention, thereby overcoming the scaling limit between catalyst intermediate adsorption and product desorption, It was confirmed that there is an effect of solving the secondary reaction problem that occurs unnecessarily in terms of catalytic activity.
한편, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.On the other hand, although the present invention has been described with limited embodiments and drawings, the present invention is not limited to the above embodiments, and various modifications and variations from these descriptions can be made by those skilled in the art in the field to which the present invention belongs. It is possible.
그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments and should not be defined, and should be defined by not only the claims to be described later, but also those equivalent to the claims.

Claims (12)

  1. 금속 물질에 p-블럭원소(p-block element)가 도핑되어 형성된 촉매 담지체; 및a catalyst carrier formed by doping a metal material with a p-block element; and
    상기 촉매 담지체의 표면에 형성된 단일금속원자층;을 포함하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매.A single metal atom layer formed on the surface of the catalyst carrier; a p-d orbital hybrid type single metal atom catalyst for oxygen generation reaction comprising:
  2. 청구항 1에 있어서,The method of claim 1,
    상기 촉매 담지체를 형성하는 금속 물질은 티타늄이며,The metal material forming the catalyst support is titanium,
    상기 p-블럭원소(p-block element)는 탄소, 질소 및 산소 중 어느 하나인 것을 특징으로 하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매.The p-block element is any one of carbon, nitrogen and oxygen, a p-d orbital hybrid type single metal atom catalyst for oxygen generation reaction.
  3. 청구항 1에 있어서,The method of claim 1,
    상기 단일금속원자층을 형성하는 물질은 귀금속계 금속인 것을 특징으로 하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매. The material forming the single metal atom layer is a p-d orbital hybrid type single metal atom catalyst for oxygen generation reaction, characterized in that the noble metal-based metal.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 귀금속계 금속은 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나인 것을 특징으로 하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매.The noble metal-based metal is any one of gold, silver, platinum, palladium, rhodium, ruthenium and iridium.
  5. 청구항 1 내지 4 중 어느 한 항에 있어서,According to any one of claims 1 to 4,
    상기 단일금속원자층의 두께는 0.1nm 내지 2nm인 것을 특징으로 하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매.The single metal atom catalyst of the p-d orbital hybrid type for oxygen generation reaction, characterized in that the thickness of the single metal atom layer is 0.1 nm to 2 nm.
  6. 금속 물질에 p-블럭원소(p-block element)를 도핑하여 촉매 담지체를 형성하는 단계; 및Forming a catalyst carrier by doping a metal material with a p-block element; and
    상기 촉매 담지체에 귀금속계 금속을 증착시켜 0.1nm 내지 2nm 두께의 단일금속원자층을 형성하는 단계;를 포함하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법.Forming a single metal atom layer having a thickness of 0.1 nm to 2 nm by depositing a noble metal-based metal on the catalyst carrier;
  7. 청구항 6에 있어서,The method of claim 6,
    상기 촉매 담지체를 형성하는 금속 물질은 티타늄이며,The metal material forming the catalyst support is titanium,
    상기 p-블럭원소(p-block element)는 탄소, 질소 및 산소 중 어느 하나인 것을 특징으로 하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법.Wherein the p-block element is any one of carbon, nitrogen and oxygen.
  8. 청구항 6에 있어서,The method of claim 6,
    상기 단일금속원자층을 형성하는 물질은 귀금속계 금속인 것을 특징으로 하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법.A method for producing a p-d orbital hybrid type single metal atom catalyst for oxygen generation reaction, characterized in that the material forming the single metal atom layer is a noble metal-based metal.
  9. 청구항 8에 있어서,The method of claim 8,
    상기 귀금속계 금속은 금, 은, 백금, 팔라듐, 로듐, 루테늄 및 이리듐 중 어느 하나인 것을 특징으로 하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법.The noble metal-based metal is any one of gold, silver, platinum, palladium, rhodium, ruthenium and iridium.
  10. 청구항 7에 있어서,The method of claim 7,
    상기 촉매 담지체를 형성하는 단계는,Forming the catalyst support is,
    상기 금속물질이 티타늄이며, p-블록원소(p-block element)가 탄소인 경우,When the metal material is titanium and the p-block element is carbon,
    상기 티타늄 금속을 히터를 통해 메탄 분위기하에서 가열하여 표면에 티타늄 카바이드(TiC)를 생성시키는 것을 특징으로 하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법.A method for producing a p-d orbital hybrid type single metal atom catalyst for oxygen generation reaction, characterized in that the titanium metal is heated in a methane atmosphere through a heater to generate titanium carbide (TiC) on the surface.
  11. 청구항 8에 있어서,The method of claim 8,
    상기 단일금속원자층을 형성하는 단계는,The step of forming the single metal atom layer,
    상기 금속물질이 티타늄이며, p-블록원소(p-block element)가 탄소인 경우,When the metal material is titanium and the p-block element is carbon,
    티타늄 카바이드가 표면에 도핑된 티타늄으로 이루어진 촉매 담지체에 이리듐을 증착시켜 단일금속원자층을 형성하는 것을 특징으로 하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법.A method for producing a p-d orbital hybrid type single metal atom catalyst for oxygen generation reaction, characterized in that a single metal atom layer is formed by depositing iridium on a catalyst carrier made of titanium doped with titanium carbide on its surface.
  12. 청구항 11에 있어서,The method of claim 11,
    상기 단일금속원자층을 형성하는 단계에서 증착된 이리듐으로 이루어진 단일금속원자층의 두께는 0.1nm 내지 2nm인 것을 특징으로 하는 산소발생반응용 p-d 오비탈 혼성 형태의 단일금속원자촉매 제조방법.A method for producing a p-d orbital hybrid type single metal atom catalyst for oxygen generation reaction, characterized in that the thickness of the single metal atom layer made of iridium deposited in the step of forming the single metal atom layer is 0.1 nm to 2 nm.
PCT/KR2022/005761 2021-05-28 2022-04-22 Single metal atom catalyst of p-d orbital hybrid type for oxygen evolution reaction, and method for preparing same WO2022250299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210068911A KR102604417B1 (en) 2021-05-28 2021-05-28 Making Process of p-d Orbital Hybrid Type Single Atom Catalysts For Oxygen Evolution Reaction
KR10-2021-0068911 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022250299A1 true WO2022250299A1 (en) 2022-12-01

Family

ID=84228264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005761 WO2022250299A1 (en) 2021-05-28 2022-04-22 Single metal atom catalyst of p-d orbital hybrid type for oxygen evolution reaction, and method for preparing same

Country Status (2)

Country Link
KR (1) KR102604417B1 (en)
WO (1) WO2022250299A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077988A (en) * 2004-01-30 2005-08-04 아주대학교산학협력단 Formation method of titanium carbide coat on titanium-based product by hydrocarbon gas reaction and product thereof
KR20170065065A (en) * 2015-12-02 2017-06-13 한국과학기술원 Single Atomic Platinum Catalysts and Their Uses
KR20170073831A (en) * 2015-12-18 2017-06-29 한국과학기술원 Titanium carbide supported Pt single-atom catalyst for production of hydrogen peroxide, MEA including the same and Method for preparing the catalyst
KR20200126681A (en) * 2019-04-30 2020-11-09 포항공과대학교 산학협력단 A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition
US20210159512A1 (en) * 2019-11-26 2021-05-27 Korea Institute Of Science And Technology Method of manufacturing metal single-atom catalysts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101505285B1 (en) 2012-05-29 2015-03-24 현대중공업 주식회사 Manufacturing method of oxygen reduction reaction catalysts and catalysts thereof, Cathode using oxygen reduction reaction catalysts
KR101736065B1 (en) 2015-01-29 2017-05-17 한국과학기술연구원 Catalyst for oxygen reduction reaction and preparation method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077988A (en) * 2004-01-30 2005-08-04 아주대학교산학협력단 Formation method of titanium carbide coat on titanium-based product by hydrocarbon gas reaction and product thereof
KR20170065065A (en) * 2015-12-02 2017-06-13 한국과학기술원 Single Atomic Platinum Catalysts and Their Uses
KR20170073831A (en) * 2015-12-18 2017-06-29 한국과학기술원 Titanium carbide supported Pt single-atom catalyst for production of hydrogen peroxide, MEA including the same and Method for preparing the catalyst
KR20200126681A (en) * 2019-04-30 2020-11-09 포항공과대학교 산학협력단 A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition
US20210159512A1 (en) * 2019-11-26 2021-05-27 Korea Institute Of Science And Technology Method of manufacturing metal single-atom catalysts

Also Published As

Publication number Publication date
KR20220162191A (en) 2022-12-08
KR102604417B1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2020096338A1 (en) Method for preparing single-atom catalyst supported on carbon support
CN101024495B (en) Carbon nanotube, a supported catalyst comprising the same, and fuel cell using the same
US6752977B2 (en) Process for purifying single-wall carbon nanotubes and compositions thereof
US9583231B2 (en) Carbon nanotube composite electrode and method for manufacturing the same
US7572543B2 (en) Supported catalyst and fuel cell
US6485858B1 (en) Graphite nanofiber catalyst systems for use in fuel cell electrodes
WO2008138269A1 (en) A carbon nitride nanotube loaded with platinum and ruthenium nanoparticles electrode catalyst and its preparation
WO2014129597A1 (en) Carbon material for use as catalyst carrier
KR102293767B1 (en) Method of manufacturing metal single-atom catalysts
JP2007526616A (en) Fuel cell with less platinum, catalyst and method for producing the same
US20130287948A1 (en) Method for Preparing Metal-Carbon Composite of Core-Shell Structure Through Simultaneous Vaporization and Metal-Carbon Composite of Core-Shell Structure Prepared Thereby
KR20130001876A (en) Method for manufacturing catalyst for fuel cell
JP2015138780A (en) Electrode catalyst for fuel cell, method of preparing the same, and electrode for fuel cell and fuel cell that including the same
JP4879658B2 (en) Fine particle-supporting carbon particles, method for producing the same, and fuel cell electrode
JP2006012773A (en) Catalyst for fuel cell, its manufacturing method, and electrode for fuel cell and fuel cell using it
KR20130067476A (en) Electrode catalyst for fuel cell, method for preparing the same, membrane electrode assembly and fuel cell including the same
CN116154189A (en) Intermediate Kong Bo @platinum nickel core-shell framework nanowire and preparation method thereof
WO2022250299A1 (en) Single metal atom catalyst of p-d orbital hybrid type for oxygen evolution reaction, and method for preparing same
US20220336821A1 (en) Transition metal electrochemical catalyst prepared using ultrafast combustion method, and synthesis method therefor
JP2016091878A (en) Method for manufacturing electrode material, membrane-electrode assembly and fuel cell stack
JP2007042519A (en) Catalyst for fuel cell, its manufacturing method, and electrode for fuel cell and fuel cell using it
CN1424250A (en) Process for growing and purifying carbon nano tube by thermolysis with resistor furnace with single temperature zone
CN1193930C (en) Process for direct low-temperature synthesis of carbon nanotube on substrate material
WO2004092440A1 (en) Method for forming porous thin film
KR102505456B1 (en) Carbon sheet loaded with metal nanoparticles and manufacturing method thereof, oxygen reduction catalyst comprising them and manufacturing method of the catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE