KR20200126681A - A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition - Google Patents

A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition Download PDF

Info

Publication number
KR20200126681A
KR20200126681A KR1020190050623A KR20190050623A KR20200126681A KR 20200126681 A KR20200126681 A KR 20200126681A KR 1020190050623 A KR1020190050623 A KR 1020190050623A KR 20190050623 A KR20190050623 A KR 20190050623A KR 20200126681 A KR20200126681 A KR 20200126681A
Authority
KR
South Korea
Prior art keywords
single atom
atomic layer
layer deposition
present
catalyst
Prior art date
Application number
KR1020190050623A
Other languages
Korean (ko)
Other versions
KR102285948B1 (en
Inventor
김용태
김정환
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020190050623A priority Critical patent/KR102285948B1/en
Publication of KR20200126681A publication Critical patent/KR20200126681A/en
Application granted granted Critical
Publication of KR102285948B1 publication Critical patent/KR102285948B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

According to an embodiment of the present invention, a method for manufacturing an electrochemical catalyst comprises: (a) a thermochemical preparation step for manufacturing a Ti-based (C, N, O-doped titanium) support; and (b) a step of depositing a noble metal single atom on the surface of the support by using equipment for an atomic layer deposition technique and performing a process of 50 or fewer cycles for the product of the step (a). In this case, it has been confirmed that a single atom catalyst using the atomic layer deposition method according to the present invention can be used for a carbon dioxide reduction reaction, a chlorine evolution reaction, and an oxygen evolution reaction, and exhibits excellent performance while minimizing the amount of precious metal used.

Description

원자층 증착법을 통한 M/TiX 기반 단일원자촉매 제조 방법{A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition}A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition}

본 발명은 기존 촉매의 성능 한계를 극복하고, 귀금속 사용량을 획기적으로 감소시킬 수 있는 단일원자 촉매의 제조 방법에 관한 것으로, 보다 상세하게는 원자층 증착법(Atomic Layer Deposition, ALD)을 통하여 TiX(X = N, C, O) 담지체 위에 Au, Ru, Ir을 단일 원자로 증착하여 각각 이산화탄소 환원 반응, 염소 발생 반응, 산소 발생 반응에 사용할 수 있는 단일원자 촉매의 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a single atom catalyst capable of overcoming the performance limitations of existing catalysts and drastically reducing the amount of noble metal used, and more specifically, TiX(X) through Atomic Layer Deposition (ALD). = N, C, O) It relates to a method of preparing a single atom catalyst that can be used for carbon dioxide reduction reaction, chlorine generation reaction, and oxygen generation reaction, respectively, by depositing Au, Ru, and Ir as a single atom on a support.

단일 원자 촉매 (Single-atom catalysts, SACs)는 고가의 귀금속의 이용을 극대화할 수 있고 앙상블(ensemble) 사이트가 없어 독특한 선택성(selectivity)을 나타낼 수 있기 때문에 활발히 연구되고 있다. 예컨대, FeOx에 고정된 단일 원자 Pt는 CO의 선택적 산화(Preferential Oxidation)에 대해 높은 활성을 나타내었고, 니트로아렌 수소첨가(Nitroarene Hydrogenation)에 대하여 높은 화학적 선택성(Chemoselectivity)을 나타내었다(H S Weiet al, Nat Commun, 2014, 5; B T Qiao et al, Nat Chem, 2011, 3, 634-641). θ-Al2O3 상의 단일 백금 Pt 원자는 CO 산화에 대하여 높은 활성을 나타내고, TiN과 TiC에 담지된 단일 원자 Pt는 전기화학촉매 산화환원 반응에서 H2O2의 생성에 대해 높은 선택성을 나타낸다. 그러나 단일 원자 촉매(SACs)는 다양한 이종 반응에 대한 적용가능성을 보여주었지만 여전히 해결해야 할 문제가 있다. SACs는 대개 1wt % 미만의 매우 낮은 부하량으로 사용되었으며, 단일 원자 구조의 본질적으로 불안정한 특성으로 인해 안정성이 빈약한 경우가 많다.Single-atom catalysts (SACs) are being actively studied because they can maximize the use of expensive precious metals and exhibit unique selectivity due to no ensemble site. For example, a single atom Pt immobilized on FeOx exhibited high activity against the selective oxidation of CO, and high chemical selectivity against nitroarene hydrogenation (HS Wei et al, Nat Commun, 2014, 5; BT Qiao et al, Nat Chem, 2011, 3, 634-641). The single platinum Pt atom on θ-Al 2 O 3 exhibits high activity against CO oxidation, and the single atom Pt supported on TiN and TiC exhibits high selectivity for the generation of H 2 O 2 in the electrochemical catalytic redox reaction. . However, although single atom catalysts (SACs) have shown applicability to a variety of heterogeneous reactions, there are still problems to be solved. SACs are usually used at very low loadings of less than 1 wt %, and their stability is often poor due to the inherently unstable nature of the single atom structure.

한편, 현재 사용되는 전기화학 촉매의 대부분은 고가의 귀금속을 기반으로 하고 있으며, 아직까지 수전해, 이산화탄소 환원 등 신재생에너지 및 환경 분야에서 요구되는 충분한 수준의 성능에 도달하지 못하고 있다. 단일원자촉매는 이러한 기존 촉매의 성능 한계를 극복함과 동시에, 귀금속 사용량을 획기적으로 감소시킬 수 있는 가능성이 있으나, 상술한 안정성의 빈약으로 인하여 전기화학 촉매로서 단일원자 촉매를 사용하는 것은 매우 어려웠다.Meanwhile, most of the electrochemical catalysts currently used are based on expensive precious metals, and have not yet reached a sufficient level of performance required in renewable energy and environmental fields such as water electrolysis and carbon dioxide reduction. The single atom catalyst has the potential to overcome the performance limitations of the existing catalysts and dramatically reduce the amount of noble metal used, but it has been very difficult to use a single atom catalyst as an electrochemical catalyst due to the poor stability described above.

상술한 문제를 해결하기 위하여, 본발명의 발명자들은 단일원자 구조의 안정성을 획기적으로 향상시키면서 기존 전기화학 촉매의 성능 한계를 극복하고, 귀금속 사용량을 획기적으로 감소시킬 수 있는 전기화학 촉매를 개발하였다. 보다 구체적으로, 원자층 증착법(Atomic Layer Deposition, ALD)을 통하여 TiX(X = N, C, O) 담지체 위에 Au, Ru, Ir을 단일 원자로 증착한 단일원자 촉매를 생성하였다.In order to solve the above problems, the inventors of the present invention have developed an electrochemical catalyst capable of dramatically improving the stability of a single atom structure, overcoming the performance limitations of the existing electrochemical catalyst, and dramatically reducing the amount of noble metal used. More specifically, a single atom catalyst was produced by depositing Au, Ru, and Ir as a single atom on a TiX (X = N, C, O) carrier through Atomic Layer Deposition (ALD).

원자층 증착법을 이용한 단일원자 촉매는 이산화탄소 환원 반응, 염소 발생 반응, 산소 발생 반응에 사용할 수 있으며, 귀금속 사용량을 최소화하면서도 우수한 성능을 나타냄을 확인할 수 있다.The single atom catalyst using the atomic layer deposition method can be used for a carbon dioxide reduction reaction, a chlorine generation reaction, and an oxygen generation reaction, and it can be seen that it exhibits excellent performance while minimizing the amount of precious metal used.

본 발명의 일 실시예에 따르면, 본 발명은 다음 단계를 포함하는 전기화학 촉매의 제조방법을 제공한다:According to an embodiment of the present invention, the present invention provides a method for preparing an electrochemical catalyst comprising the following steps:

(a) Ti 기반의 (C, N, O-doped titanium) 담지체(support)를 제작하기 위한 열화학적 준비 단계; 및(a) a thermochemical preparation step for fabricating a Ti-based (C, N, O-doped titanium) support; And

(b) 상기 단계 (a)의 결과물을 원자층 증착기법을 위한 장비를 사용, 50 사이클 이하의 과정을 진행하여 담지체 표면 상에 귀금속 단일원자를 증착시키는 단계.(b) depositing a noble metal single atom on the surface of the carrier by performing a process of 50 cycles or less using equipment for the atomic layer deposition technique for the result of step (a).

본 발명의 방법으로 제작된 Au/TiC 단일원자촉매는 벌크(Bulk) Au 촉매와 비교하여 귀금속 사용량이 95% 이상 감소했으며 이산화탄소 환원 반응 효율 역시 증가하였다. Ru/TiO2 촉매 역시 벌크(Bulk) Ru에 비해 높은 활성이 나타나 약 96% 이상의 염소 발생 효율을 보였다. 한편, Ir/TiN 단일원자촉매는 산소 발생 반응 효율이 벌크(Bulk) Ir의 90% 수준까지 도달하면서도 귀금속 사용량이 99% 감소하여 경제적 가치가 있음을 보였다.Compared to the bulk Au catalyst, the Au/TiC single atom catalyst produced by the method of the present invention has reduced the amount of precious metal by more than 95% and the carbon dioxide reduction reaction efficiency is also increased. The Ru/TiO 2 catalyst also exhibited high activity compared to bulk Ru, showing about 96% or more of chlorine generation efficiency. On the other hand, the Ir/TiN single-atomic catalyst showed that the oxygen generation reaction efficiency reached the level of 90% of the bulk Ir, while the amount of precious metal used was reduced by 99%, showing economic value.

따라서, 본 발명에 따른 원자층 증착법을 이용한 단일원자 촉매는 이산화탄소 환원 반응, 염소 발생 반응, 산소 발생 반응에 사용할 수 있으며, 귀금속 사용량을 최소화하면서도 우수한 성능을 나타냄을 확인할 수 있었다.Accordingly, it was confirmed that the single atom catalyst using the atomic layer deposition method according to the present invention can be used for a carbon dioxide reduction reaction, a chlorine generation reaction, and an oxygen generation reaction, and exhibits excellent performance while minimizing the amount of precious metal used.

도 1은 본 발명의 일 실시예에 따라 제작된 전기화학 촉매의 구조를 나타내는 도면이다. 1 is a view showing the structure of an electrochemical catalyst manufactured according to an embodiment of the present invention.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for describing the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

이하, 본 발명에 따른 전기화학 단일원자 백금 촉매의 제조방법에 대하여 상세히 설명한다.Hereinafter, a method for preparing an electrochemical single atom platinum catalyst according to the present invention will be described in detail.

실시예Example

단계 (a) : TiX(X = C, N, O) 담지체의 제작Step (a): Preparation of TiX (X = C, N, O) carrier

본 발명에서 제작한 단일원자촉매의 담지체로 사용될 TiX(X = C, N, O)의 제작에 대해 설명한다. 각 담지체의 제작에는 Ti 필렛(pellet)(5mm)를 사용하였다.Fabrication of TiX (X = C, N, O) to be used as a support for the single atom catalyst prepared in the present invention will be described. A Ti fillet (5mm) was used to fabricate each carrier.

Pure Ti (Purity>99.5%) pellet과 각 기체를 반응시키기 위해 본 발명에서는 전기 퍼니스를 이용하였다. 준비된 Ti pellet을 퍼니스에 넣고 각 기체별로 600 - 800℃의 범위에서 분당 500ml의 유량으로 반응을 진행시켰다. 이 반응을 1시간동안 진행시켜 완성된 TiX pellet에 대해 주사전자현미경(Scanning Electron Microscopy, SEM) 및 X선 반사측정(X-Ray Reflctivity)을 이용하여 alloy 형성 여부를 확인하였다. In the present invention, an electric furnace was used to react the Pure Ti (Purity>99.5%) pellet with each gas. The prepared Ti pellet was put into a furnace and the reaction was carried out at a flow rate of 500 ml per minute in the range of 600-800°C for each gas. The reaction was carried out for 1 hour, and the TiX pellet was confirmed whether or not the alloy was formed by using a scanning electron microscope (SEM) and X-ray reflection measurement (X-Ray Reflctivity).

원자층 증착기법은 기본적으로 self-saturation으로 인해 증착 대상이 되는 담지체 표면에 고르게 증착되게 된다. 이러한 특성으로 인해 single atom 단위로 분산시키기 위해서는 표면 site마다의 흡착 선호도를 변화시킬 필요가 있다. 따라서 앞의 가스 반응 이후 이러한 site를 형성하기 위한 탈산 과정을 거친다.The atomic layer deposition technique basically deposits evenly on the surface of the carrier to be deposited due to self-saturation. Due to this characteristic, it is necessary to change the adsorption preference for each surface site in order to disperse in single atom units. Therefore, after the gas reaction above, it undergoes a deoxidation process to form these sites.

일련의 과정을 거쳐 완성된 담지체를 다음 단계 (b)의 원자층 증착에 사용한다.The carrier completed through a series of processes is used for atomic layer deposition in the next step (b).

단계 (b): 단일원자 백금 촉매의 제조Step (b): Preparation of single atom platinum catalyst

이어, 상기 단계 (a)를 통해 얻은 담지체를 원자층 증착기법을 사용하여, 담지체 표면 상에 귀금속 단일원자를 증착시킨다.Subsequently, the support obtained through step (a) is deposited on the surface of the support by using an atomic layer deposition technique.

본 발명에 따르면, 상기 단계 (b)를 진행하기 위해서는 각 귀금속에 해당하는 전구체 물질을 사용하여야 하며, 각 전구체의 증발이 일어날 수 있는 작동 온도를 선택하여야 한다. Au 전구체로는 Me2Au(S2CNEt2)를 사용하며 220℃ 이상의 온도 조건에서 원자층 증착기법을 실시하여야 한다. 적정 온도 조건에 미치지 못할 경우 전구체의 증발이 일어나지 않으며 따라서 담지체 표면에 금속 원자가 증착되지 않는다. Ru 전구체로는 Ru(EtCp)2를 사용하며 증착 온도 조건은 230℃ 이상이다. Ir 전구체로는 Ir(acac)3를 사용하며 증착 온도 조건은 300℃ 이상이다.According to the present invention, in order to proceed with step (b), a precursor material corresponding to each noble metal must be used, and an operating temperature at which evaporation of each precursor can occur must be selected. As the Au precursor, Me 2 Au (S 2 CNEt 2 ) is used, and the atomic layer deposition technique should be performed at a temperature of 220°C or higher. If it does not meet the appropriate temperature conditions, evaporation of the precursor does not occur, and thus metal atoms are not deposited on the surface of the carrier. As the Ru precursor, Ru(EtCp) 2 is used and the deposition temperature condition is 230°C or higher. Ir(acac) 3 is used as the Ir precursor, and the deposition temperature condition is 300℃ or higher.

상기 단계 (b)에서는 선택된 전구체가 증착 대상이 되는 담지체에 증착된다. 단계 (a)에서 준비된 담지체는 산화 후 탈산 과정을 거쳐 분산된 위치에 수산화기 등의 작용기가 형성되어 있는데, 전구체가 이 위치에 우선적으로 흡착되게 된다. 이렇게 전구체의 흡착이 이루어진 후, Ar gas 퍼지(purge) 과정을 통해 흡착되지 않은 잔여물을 제거한다. 퍼지 과정은 30초 이상 진행한다. 충분한 퍼지를 거친 후, 흡착된 전구체를 산화시켜 금속 원자와 분리하기 위한 반응 가스(reactor gas)를 투입하여 반응시킨다. 반응 가스(Reactor gas)로는 O2 또는 O3 를 이용한다. 이 과정 이후에도 다시 동일한 퍼지 과정을 거쳐 반응되지 않은 잔여물을 제거한다. 이러한 일련의 과정을 거쳐 단일 원자(single atom) 증착을 위한 1 사이클(cycle)이 되며, 여러 사이클을 반복하여 증착률을 높이게 된다. 이 때, 처음 몇 사이클 동안에는 충분한 활성 에너지(activation energy)가 갖추어지지 않아 반응이 거의 없는 인큐베이션 사이클(incubation cycle)이 존재하며, 증착이 이루어지더라도 실질적인 사이클 당 증착률이 낮기 때문에, 50 사이클 미만으로 공정을 반복하여 촉매로써 활성을 가질 수 있는 충분한 증착률을 확보한다. 이렇게 증착된 물질은 기존의 귀금속 벌크 물질을 사용하는 촉매에 비해 최소 90% 이상의 귀금속 사용량 감소를 달성하였다. In the step (b), the selected precursor is deposited on a carrier to be deposited. The carrier prepared in step (a) has a functional group such as a hydroxyl group formed at the dispersed position through a deoxidation process after oxidation, and the precursor is preferentially adsorbed at this position. After the precursor is adsorbed, the unadsorbed residue is removed through an Ar gas purge process. The purge process proceeds for more than 30 seconds. After sufficient purge, the adsorbed precursor is oxidized and reacted by introducing a reactant gas for separating from the metal atom. O 2 or O 3 is used as the reactor gas. After this process, the unreacted residue is removed through the same purging process again. Through this series of processes, it becomes one cycle for deposition of a single atom, and the deposition rate is increased by repeating several cycles. At this time, during the first few cycles, there is an incubation cycle in which there is little reaction because sufficient activation energy is not provided. By repeating the process, a sufficient deposition rate to be active as a catalyst is secured. The deposited material achieved a reduction of at least 90% of the use of precious metals compared to the conventional catalysts using noble metal bulk materials.

한편, 단계 (b)에서는 환원제를 추가적으로 사용할 수 있다. 이때 환원제로는 공지된 다양한 환원제를 사용할 수 있으며, 예컨대, 수소 10 vol% (질소 90 vol%), NaBH4, 포름산(formic acid), 에틸렌글리콜(ethyleneglycol), 올레일아민(oleyl amine), 올레산(oleic acid), 테트라에틸렌글리콜(tetraethylene glycol) 등의 환원제를 사용함으로써 반응 효율을 향상시킬 수 있다.Meanwhile, in step (b), a reducing agent may be additionally used. At this time, various known reducing agents may be used as the reducing agent, for example, 10 vol% of hydrogen (90 vol% of nitrogen), NaBH4, formic acid, ethyleneglycol, oleyl amine, oleic acid ( The reaction efficiency can be improved by using a reducing agent such as oleic acid) or tetraethylene glycol.

도 1은 본 발명의 일 실시예에 따른 전기화학 촉매의 구조를 도식적으로 나타낸 도면이다.1 is a diagram schematically showing the structure of an electrochemical catalyst according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 실시예에 따른 전기화학 촉매는 단일원자 물질(M)으로서, 예를 들어, 귀금속 물질인 Ir, Ru, Au 등을 포함할 수 있다. 또한, 상기 전기화학 촉매는 지지체 물질(supporter)로서 TiX (TiC, TiN, TiS, TiB2, TiO2) 등을 포함할 수 있다.Referring to FIG. 1, the electrochemical catalyst according to an embodiment of the present invention is a single atomic material (M), and may include, for example, noble metal materials such as Ir, Ru, and Au. In addition, the electrochemical catalyst may include TiX (TiC, TiN, TiS, TiB 2 , TiO 2 ) or the like as a support material.

이 경우, 이러한 원자층 증착기법을 이용한 단일원자촉매 제작을 위해서는 기존의 단원자층 형성에 사용되는 원자층 증착기법의 퍼지 및 펄스 시간(Purge & Pulse time)을 조정할 필요가 있다. 본 발명에서는 일반적인 원자층 증착기법과 비교하여 퍼지 및 펄스 시간(Purge & Pulse time)을 줄이고, 기존 수십 내지는 수백 사이클을 시행하는 방법 대신 최대 50 사이클 미만 수준으로 횟수를 감소시켜 원자 Layer 대신 산개된 단일 원자를 얻을 수 있게 된다. 이 단일원자촉매의 활성을 극대화할 수 있는 담지체와의 상호작용을 평가/분석하는 것으로 최적화된 구조의 고성능 M/TiX 촉매를 제작한다.In this case, in order to fabricate a single atomic catalyst using such an atomic layer deposition technique, it is necessary to adjust the purge and pulse time of the atomic layer deposition technique used for forming a single atomic layer. In the present invention, the purge and pulse time is reduced compared to the general atomic layer deposition technique, and the number of times is reduced to less than a maximum of 50 cycles instead of performing the existing tens to hundreds of cycles. You can get an atom. A high-performance M/TiX catalyst with an optimized structure is produced by evaluating/analyzing the interaction with the carrier that can maximize the activity of this single atom catalyst.

이상 첨부된 도면을 참조하여 본 발명의 실시예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형실시될 수 있다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Although the embodiments of the present invention have been described in more detail with reference to the accompanying drawings, the present invention is not necessarily limited to these embodiments, and various modifications may be made without departing from the spirit of the present invention. . Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but to explain the technical idea, and the scope of the technical idea of the present invention is not limited by these embodiments. Therefore, it should be understood that the embodiments described above are illustrative and non-limiting in all respects. The scope of protection of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be interpreted as being included in the scope of the present invention.

Claims (1)

다음 단계를 포함하는 전기화학 촉매의 제조방법:
(a) Ti 기반의 (C, N, O-doped titanium) 담지체(support)를 제작하기 위한 열화학적 준비 단계; 및
(b) 상기 단계 (a)의 결과물을 원자층 증착기법을 위한 장비를 사용, 50 사이클 이하의 과정을 진행하여 담지체 표면 상에 귀금속 단일원자를 증착시키는 단계.
Method for producing an electrochemical catalyst comprising the following steps:
(a) a thermochemical preparation step for fabricating a Ti-based (C, N, O-doped titanium) support; And
(b) depositing a noble metal single atom on the surface of the carrier by performing a process of 50 cycles or less using equipment for the atomic layer deposition technique for the result of step (a).
KR1020190050623A 2019-04-30 2019-04-30 A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition KR102285948B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190050623A KR102285948B1 (en) 2019-04-30 2019-04-30 A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190050623A KR102285948B1 (en) 2019-04-30 2019-04-30 A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition

Publications (2)

Publication Number Publication Date
KR20200126681A true KR20200126681A (en) 2020-11-09
KR102285948B1 KR102285948B1 (en) 2021-08-03

Family

ID=73429607

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190050623A KR102285948B1 (en) 2019-04-30 2019-04-30 A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition

Country Status (1)

Country Link
KR (1) KR102285948B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250299A1 (en) * 2021-05-28 2022-12-01 포항공과대학교 산학협력단 Single metal atom catalyst of p-d orbital hybrid type for oxygen evolution reaction, and method for preparing same
KR20220166049A (en) 2021-06-09 2022-12-16 성균관대학교산학협력단 Method for manufacturing single atom catalysts and single atom catalysts manufactured thereby
KR20230003781A (en) * 2021-06-30 2023-01-06 포항공과대학교 산학협력단 Single Atom Catalysts For Deposition Control and Making Process Thereof
EP4170063A1 (en) * 2021-10-19 2023-04-26 Technische Universität Berlin Method for producing active and stable titanium-based mixed oxide catalysts with optimized precious metal distribution by means of surface-conformal atomic layer deposition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077988A (en) * 2004-01-30 2005-08-04 아주대학교산학협력단 Formation method of titanium carbide coat on titanium-based product by hydrocarbon gas reaction and product thereof
CN106861683A (en) * 2015-12-10 2017-06-20 中国科学院大连化学物理研究所 A kind of Ru bases catalyst and its in CO2Application in methanation
KR20180024424A (en) * 2016-08-30 2018-03-08 부산대학교 산학협력단 An Electrolyzer Cell for generating carbon monoxide
CN108993487A (en) * 2018-07-19 2018-12-14 天津大学 It is catalyzed nitrogen under a kind of room temperature and hydrogen generates the method for preparing catalyst of ammonia

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077988A (en) * 2004-01-30 2005-08-04 아주대학교산학협력단 Formation method of titanium carbide coat on titanium-based product by hydrocarbon gas reaction and product thereof
CN106861683A (en) * 2015-12-10 2017-06-20 中国科学院大连化学物理研究所 A kind of Ru bases catalyst and its in CO2Application in methanation
KR20180024424A (en) * 2016-08-30 2018-03-08 부산대학교 산학협력단 An Electrolyzer Cell for generating carbon monoxide
CN108993487A (en) * 2018-07-19 2018-12-14 天津大学 It is catalyzed nitrogen under a kind of room temperature and hydrogen generates the method for preparing catalyst of ammonia

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEM. MATER.2017.29.11.4654-4666 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250299A1 (en) * 2021-05-28 2022-12-01 포항공과대학교 산학협력단 Single metal atom catalyst of p-d orbital hybrid type for oxygen evolution reaction, and method for preparing same
KR20220162191A (en) * 2021-05-28 2022-12-08 포항공과대학교 산학협력단 p-d Orbital Hybrid Type Single Atom Catalysts For Oxygen Evolution Reaction and Making Process Thereof
KR20220166049A (en) 2021-06-09 2022-12-16 성균관대학교산학협력단 Method for manufacturing single atom catalysts and single atom catalysts manufactured thereby
KR20230003781A (en) * 2021-06-30 2023-01-06 포항공과대학교 산학협력단 Single Atom Catalysts For Deposition Control and Making Process Thereof
EP4170063A1 (en) * 2021-10-19 2023-04-26 Technische Universität Berlin Method for producing active and stable titanium-based mixed oxide catalysts with optimized precious metal distribution by means of surface-conformal atomic layer deposition

Also Published As

Publication number Publication date
KR102285948B1 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
KR102285948B1 (en) A Method For Manufacturing Single Atom Catalysts Based On M/TiX Using Atomic Layer Deposition
Ye et al. Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity
Gao et al. Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy
Laursen et al. Climbing the volcano of electrocatalytic activity while avoiding catalyst corrosion: Ni3P, a hydrogen evolution electrocatalyst stable in both acid and alkali
Wang et al. Single-atom catalysts for photocatalytic reactions
Wang et al. Core–shell-structured low-platinum electrocatalysts for fuel cell applications
Mallick et al. On atomic layer deposition: Current progress and future challenges
Zhao et al. Cu-based single-atom catalysts boost electroreduction of CO2 to CH3OH: first-principles predictions
Yue et al. Triple-phase electrocatalysis for the enhanced CO2 reduction to HCOOH on a hydrophobic surface
Chen et al. Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide
US20130068613A1 (en) Amorphous transition metal sulphide films or solids as efficient electrocatalysts for hydrogen production from water or aqueous solutions
Han et al. Hollow cobalt sulfide nanocapsules for electrocatalytic selective transfer hydrogenation of cinnamaldehyde with water
Hargreaves et al. Minimizing energy demand and environmental impact for sustainable NH3 and H2O2 production—A perspective on contributions from thermal, electro-, and photo-catalysis
CN112481663A (en) Preparation method of copper nanoflower applied to efficient carbon dioxide reduction reaction to generate ethylene
Ji et al. Overestimation of photoelectrochemical hydrogen evolution reactivity induced by noble metal impurities dissolved from counter/reference electrodes
EP2800179B1 (en) Method of preparing alloy catalyst for fuel cells and alloy catalyst for fuel cells prepared by the same
Noh et al. Molybdenum sulfide within a metal–organic framework for photocatalytic hydrogen evolution from water
Zhang et al. Pd-Co alloy supported on TiO2 with oxygen vacancies for efficient N2 and O2 electrocatalytic reduction
KR101680049B1 (en) Dry reforming catalyst, manufacturing method thereof and dry reforming method using the catalyst
Hwang et al. Pd–Sn Alloy Electrocatalysts for Interconversion Between Carbon Dioxide and Formate/Formic Acid
Luo et al. Role of Ni in PtNi bimetallic electrocatalysts for hydrogen and value-added chemicals coproduction via glycerol electrooxidation
Du et al. Selectively reducing nitrate into NH3 in neutral media by PdCu single-atom alloy electrocatalysis
Cai et al. Hierarchical Ag-Cu interfaces promote CC coupling in tandem CO2 electroreduction
Young et al. Metal oxynitrides for the electrocatalytic reduction of nitrogen to ammonia
Le et al. Decoration of AgOx hole collector to boost photocatalytic water oxidation activity of BiVO4 photoanode

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant