WO2022250074A1 - Photosynthetic organism transformant and use thereof - Google Patents

Photosynthetic organism transformant and use thereof Download PDF

Info

Publication number
WO2022250074A1
WO2022250074A1 PCT/JP2022/021364 JP2022021364W WO2022250074A1 WO 2022250074 A1 WO2022250074 A1 WO 2022250074A1 JP 2022021364 W JP2022021364 W JP 2022021364W WO 2022250074 A1 WO2022250074 A1 WO 2022250074A1
Authority
WO
WIPO (PCT)
Prior art keywords
proton pump
transformant
rhodopsin
cell
photosynthetic organism
Prior art date
Application number
PCT/JP2022/021364
Other languages
French (fr)
Japanese (ja)
Inventor
雄気 須藤
慧一 小島
Original Assignee
国立大学法人 岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 岡山大学 filed Critical 国立大学法人 岡山大学
Priority to JP2023523500A priority Critical patent/JPWO2022250074A1/ja
Publication of WO2022250074A1 publication Critical patent/WO2022250074A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to transformants of photosynthetic organisms and uses thereof.
  • Biomass resources derived from photosynthetic organisms such as plants and algae are attracting attention as renewable resources, especially as renewable energy sources to replace fossil fuels.
  • starch obtained from plants such as sugar cane and corn.
  • Bioethanol which is obtained by alcohol fermentation
  • biodiesel which is obtained by converting oils and fats obtained from plants such as corn and rapeseed
  • biofuels are used as main raw materials for biofuels.
  • many of the plants that have traditionally been used as raw materials for biofuels, such as corn and sugarcane are also mainly consumed as food. From the point of view, it is not necessarily preferable to use food crops as raw materials for biofuels.
  • algae which are a type of photosynthetic organism, produce various useful substances such as triacylglycerol and starch, which are expected to be used as biofuels. Unlike this, it is not mainly used as food, so it is expected to be a powerful source of biomass.
  • Chlamydomonas a type of algae, is known to accumulate oils and fats (triacylglycerols) that are raw materials for biofuels when cultured under nitrogen-deficient or phosphorus-deficient conditions.
  • oils and fats triacylglycerols
  • algae as seen in algae such as spirulina, chlorella, and euglena, it has become clear that some algae produce physiologically active substances that exert various physiological functions, and algae can be used as biomass resources. The use is increasing in importance not only in the energy field but also in the health food field and the cosmetic field.
  • Patent Document 1 and Non-Patent Document 1 disclose a transformant of Chlamydomonas, a kind of green algae.
  • the transformant contains a gene in which the promoter region of the DGTT4 gene, which is a triacylglycerol synthase, is added with the promoter of the SQD2 gene, another gene whose expression is known to increase under phosphorus-deficient conditions.
  • Non-Patent Document 2 discloses a Chlamydomonas transformant lacking ADP-glucose pyrophosphorylase, which is an enzyme involved in starch biosynthesis, which is also a Chlamydomonas transformant. It is disclosed that the transformant produces a high amount of triacylglycerol per unit cell under nitrogen-deficient conditions.
  • the above-described transformants are intended to increase biomass production efficiency per unit cell by increasing biomass production efficiency. It does not raise the upper limit of the number of viable cells per volume, ie the saturation cell density.
  • the time and space that can be used for biomass production is limited, and in order to increase the efficiency of biomass production by photosynthetic organisms, it is necessary not only to increase the amount of biomass produced per unit cell, but also to It is extremely important to develop a technology that can cultivate or culture as many photosynthetic organisms as possible in a limited space as quickly as possible.
  • Non-Patent Document 3 by adjusting the composition of trace metal ions in the medium for culturing Chlamydomonas, the rate of increase in the number of Chlamydomonas cells and the increase in the number of Chlamydomonas cells reached a steady state. It has been reported that the number of cells per cell, ie the saturated cell density, is increased.
  • substances, particularly metal ions, to the medium raises concerns about the impact on waste disposal, environmental problems, etc., and also leads to an increase in cost.
  • rhodopsin One of the photoreceptive membrane proteins involved in proton transport through the cell membrane is rhodopsin, which is distributed in vertebrates such as humans and microorganisms such as bacteria. Among them, rhodopsins that are activated by receiving light and serve to unidirectionally transport protons from the inside to the outside of the cell or from the outside to the inside of the cell are called proton pump rhodopsins.
  • a proton pump rhodopsin that transports protons from the inside to the outside of the cell is called outward proton pump rhodopsin, and a proton pump rhodopsin that transports protons from the outside to the inside of the cell is called inward proton pump rhodopsin.
  • AR3 which is a membrane protein derived from highly halophilic archaea
  • RmXeR Rubricoccus marinus xenorhodopsin
  • RmXeR a membrane protein derived from marine eubacteria
  • the present applicant and the present inventors based on the idea that intracellular pH control by proton transport mediated by proton pump rhodopsin, may be able to control the life function of cells, cancer expressing proton pump rhodopsin
  • proton pump prodopsin affects the growth of photosynthetic organisms such as plants and algae.
  • many of the proton-pump rhodopsins are membrane proteins that are activated by receiving green light and function to transport protons unidirectionally from the inside to the outside of the cell or from the outside to the inside of the cell.
  • many photosynthetic organisms such as plants and algae are green in appearance, so they mainly emit light other than green, more specifically, blue (wavelength 400-500 nm) and red (wavelength 400-500 nm). 600 nm to 700 nm) and uses it for biological activities.
  • Patent Documents 2 to 4 many attempts have been made to selectively irradiate photosynthetic organisms with blue or red light to promote their growth.
  • almost no attempts have been made to promote or control the growth of photosynthetic organisms using green light (wavelength 500 nm to 600 nm).
  • the present invention has been made in order to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a new method for controlling the growth of photosynthetic organisms and its use.
  • RmXeR Rubricoccus marinus xenorhodopsin
  • the present inventors expressed archilodopsin 3 (AR3), a type of outward proton pump rhodopsin that transports protons from the inside of the cell to the outside of the cell, in the chloroplasts of Chlamydomonas, contrary to RmXeR. and irradiated with light that drives AR3, the growth of Chlamydomonas expressing AR3 was remarkably suppressed, contrary to the case of expressing RmXeR. Even more surprisingly, in any Chlamydomonas expressing RmXeR or AR3, the number of cells per unit volume in the stationary growth phase when its growth reached a steady state, that is, the saturated cell density, increased proton pump rhodopsin.
  • AR3 archilodopsin 3
  • the present invention is based on the findings newly found by the present inventors as described above, and provides a transformant of a photosynthetic organism that expresses a light-driven proton pump rhodopsin.
  • the above problem is solved by providing.
  • the growth of a transformant of a photosynthetic organism expressing proton pump rhodopsin can be controlled by irradiating the transformant with light that drives proton pump rhodopsin.
  • the proton pump rhodopsin expressed by the transformant is an inward proton pump rhodopsin that transports protons from the outside to the inside of the cell.
  • the transformant when a transformant of a photosynthetic organism expressing inward proton pump rhodopsin is irradiated with light that drives the inward proton pump rhodopsin to drive the inward proton pump rhodopsin, the transformant It can promote body growth, that is, increase the growth rate. In addition, the upper limit of the number of viable cells per unit volume, that is, the saturation cell density can be increased.
  • the proton pump rhodopsin is an outward proton pump rhodopsin that transports protons from intracellular to extracellular.
  • the transformant it is possible to suppress the growth of the body, that is, to slow down the growth rate.
  • the upper limit of the number of viable cells per unit volume, that is, the saturation cell density can be increased.
  • the transformant contains an outward proton pump rhodopsin that transports protons from the inside to the outside of the cell and an inward proton pump rhodopsin that transports protons from the outside to the inside of the cell.
  • a transformant expressing both.
  • the growth of the transformant can be freely promoted or suppressed by appropriately selecting the wavelength of light to be irradiated.
  • the growth of the photosynthetic organism can be controlled by transforming the photosynthetic organism so that it can express the proton pump rhodopsin and irradiating it with light that drives the proton pump rhodopsin. That is, in another aspect of the present invention, there is provided a method for controlling the growth of photosynthetic organisms, comprising: (1) obtaining a transformant of a photosynthetic organism that expresses proton pump prodopsin; (2) driving the proton pump rhodopsin by irradiating the transformant with light;
  • the above problem is solved by providing a method characterized by comprising:
  • the transformant or the method for controlling the growth of photosynthetic organisms according to the present invention the growth of photosynthetic organisms that produce useful biomass can be promoted or suppressed, and high-density culture of photosynthetic organisms is possible. Therefore, it can be expected to improve the efficiency of biomass production using photosynthetic organisms. That is, in still another aspect of the present invention, there is provided a method for producing biomass, (A) culturing or cultivating a photosynthetic organism using the method described above for controlling the growth of the photosynthetic organism; and (B) recovering biomass from the photosynthetic organism; A method for producing biomass is also provided.
  • the growth of photosynthetic organisms can be promoted or suppressed by light, and high-density culture of photosynthetic organisms is possible. Moreover, according to the biomass production method of the present invention, biomass derived from photosynthetic organisms can be efficiently produced.
  • FIG. 2 is a schematic diagram of a chloroplast genome modification method for proton pump rhodopsin gene transfer in Chlamydomonas cells used in Examples.
  • FIG. 2 shows the expression of each rhodopsin in Chlamydomonas cells.
  • FIG. 2 is a diagram showing the number of Chlamydomonas cells dependent on visible light and the time-dependent change thereof.
  • FIG. 2 shows the results of examining the effect of visible light irradiation on the morphology of Chlamydomonas cells. Note that the scale bar in FIG. 4A indicates 12.5 ⁇ m.
  • FIG. 2 is a diagram showing the results of examining the effect of visible light irradiation on the dry weight of Chlamydomonas.
  • FIG. 2 is a schematic diagram of a chloroplast genome modification method for proton pump rhodopsin gene transfer in Chlamydomonas cells used in Examples.
  • FIG. 2 shows the expression of each rhod
  • FIG. 2 is a diagram showing the results of examining the effect of visible light irradiation on the ability of chlamydomonas to form oil droplets (lipid droplets). Note that the scale bar in FIG. 6A indicates 12.5 ⁇ m.
  • FIG. 2 shows the amino acid sequence of RmXeR derived from the marine eubacterium Rubricoccus marinus and the base sequence optimized for the codon usage of the chloroplast genome of Chlamydomonas that encodes the RmXeR.
  • FIG. 2 shows the amino acid sequence of AR3 derived from the archaebacterium Halorubrum sodomense and the base sequence optimized for the codon usage of the chloroplast genome of Chlamydomonas that encodes the AR3.
  • FIG. 1 shows the amino acid sequence of RmXeR derived from the marine eubacterium Rubricoccus marinus and the base sequence optimized for the codon usage of the chloroplast genome of Chlamydomonas that encodes the RmXeR
  • FIG. 4 shows amino acid sequences of AR3 mutants having a maximum absorption wavelength around 500 nm. Underlined amino acids in the amino acid sequence indicate amino acids mutated from wild-type AR3 having the amino acid sequence shown in FIG. 8 and SEQ ID NO: 2 in the sequence listing.
  • a transformant according to the present invention is a transformant of a photosynthetic organism and a transformant that expresses a light-driven proton pump rhodopsin.
  • the proton pump rhodopsin expressed by the transformant of the present invention will be described.
  • proton-pump rhodopsin is a membrane protein present in the cell membrane, driven by receiving light, and unidirectionally pumps protons from the inside to the outside of the cell or from the outside to the inside of the cell. It is a membrane protein that serves to transport.
  • proton pump rhodopsins the proton pump rhodopsin that transports protons from the inside to the outside of the cell is called outward proton pump rhodopsin, and conversely, the proton pump rhodopsin that transports protons from the outside to the inside of the cell. is called inward proton pump rhodopsin.
  • the term “proton pump rhodopsin” means both “outward proton pump rhodopsin” and “inward proton pump rhodopsin” unless otherwise specified.
  • photosynthetic organisms preferably, in a state in which inward proton pump rhodopsin is expressed in the chloroplast of the photosynthetic organism, are irradiated with light that drives the inward proton pump rhodopsin.
  • the growth of the photosynthetic organism can be promoted, that is, the growth rate can be increased, and the upper limit of the number of viable cells per unit volume, that is, the saturated cell density can be increased.
  • inward proton-pump rhodopsin that can be used in the present invention, it is considered to be less absorbed and/or utilized by photosynthetic organisms at wavelengths of 450 nm to 650 nm, preferably wavelengths of 470 nm to 620 nm, more preferably wavelengths of 470 nm to 620 nm. It is preferably an inward proton-pump rhodopsin having an absorption maximum wavelength in the wavelength range of 490 nm to 590 nm.
  • Rubricoccus marinus xenorhodopsin derived from the marine eubacterium Rubricoccus marinus
  • RmXeR Rubricoccus marinus xenorhodopsin
  • Rubricoccus marinus xenorhodopsin refers to a protein having the amino acid sequence represented by SEQ ID NO: 1 and FIG. A protein having an amino acid sequence substantially identical to the amino acid sequence described herein.
  • the protein having an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 1 and FIG. 7 of the sequence listing is the amino acid sequence represented by SEQ ID NO: 1 and FIG.
  • retinal is a chromophore and the maximum absorption wavelength is visible light.
  • a protein that exists in the region (approximately 400 to 600 nm), is driven by receiving such visible light, and exhibits the property of transporting protons from the outside to the inside of the cell.
  • a protein that has Here, the plural number is, for example, a number within 10% of the total number of amino acids constituting the amino acid sequence, more preferably a number within 5%, still more preferably a number within 3%, and even more preferably 1%.
  • Substitutions, deletions, insertions and/or additions of the above amino acid sequences may be mutations that originally existed in the nucleic acid encoding the protein, or new mutations by modifying the nucleic acid by methods known in the art. may be introduced into
  • outward proton-pump rhodopsin that can be used in the present invention, It is preferably an outward proton-pump rhodopsin having an absorption maximum wavelength in the wavelength range of 490 nm to 590 nm.
  • an outward proton-pump rhodopsin for example, archidopsin 3 (AR3) of the archaebacterium Halorubrum sodomense can be suitably used.
  • archilodopsin 3 refers to a protein having the amino acid sequence represented by SEQ ID NO: 2 and FIG. A protein having an amino acid sequence substantially identical to the amino acid sequence described herein.
  • the protein having an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 2 and FIG. 8 of the sequence listing is the amino acid sequence represented by SEQ ID NO: 2 and FIG.
  • a protein having an amino acid sequence with relatively few points of difference similar to the protein having the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing and FIG. (approximately 400 to 600 nm), is driven by receiving visible light in such a wavelength range, and exhibits the property of transporting protons from the inside of the cell to the outside of the cell.
  • the plural number is, for example, a number within 10% of the total number of amino acids constituting the amino acid sequence, more preferably a number within 5%, still more preferably a number within 3%, still more preferably 1 It is a number within %.
  • Substitutions, deletions, insertions and/or additions of the above amino acid sequences may be mutations that originally existed in the nucleic acid encoding the protein, or new mutations by modifying the nucleic acid by methods known in the art. may be introduced into
  • the mutant AR3 As a protein having an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 2 and FIG. 8 in the sequence listing, for example, Yuki Sudo et al., Journal of Biological Chemistry 2013, 288(28), 20624-20632 and having the amino acid sequence represented by SEQ ID NO: 5 in the sequence listing and FIG. 9 (“the mutant AR3” in the same document).
  • the AR3 mutant is an outward proton-pump-rhodopsin with a maximum absorption wavelength around 500 nm, and is said to be driven by light with a shorter wavelength than wild-type AR3 and RmXeR, which have a maximum absorption wavelength around 550 nm. It has characteristics.
  • photosynthetic organism means an organism that performs photosynthesis, that is, an organism that performs photosynthesis that converts light energy into biologically usable energy, and mainly performs oxygenic photosynthesis.
  • photosynthetic organisms that perform oxygenic photosynthesis are specifically terrestrial plants and algae. Contains plants.
  • algae is a general term for photosynthetic organisms that perform oxygenic photosynthesis, excluding land plants, and most of them are aquatic photosynthetic organisms.
  • Algae include eukaryotic algae having a nucleus and chloroplasts and prokaryotic algae having no nucleus and chloroplasts.
  • prokaryotic algae include, for example, cyanobacteria. It is believed that chloroplasts originated from blue-green algae (cyanobacteria) that were taken up by eukaryotes, and that eukaryotic photosynthetic organisms including eukaryotic algae were born. As described above, eukaryotic algae and prokaryotic algae have common properties although they are classified differently.
  • the photosynthetic organism used in the present invention may basically be any photosynthetic organism as described above, and the type is not particularly limited. - From the viewpoint of easiness of culturing, microalgae are particularly preferably used.
  • microalgae refers to small algae having a size of several ⁇ m to several tens of ⁇ m among the algae described above, and mainly refers to unicellular algae. Many microalgae grow quickly and are easy to culture. In addition, since many plants produce biomass at a higher efficiency than higher plants, they are particularly suitable for biomass production.
  • microalgae belonging to green algae include Chlamydomonas such as Chlamydomonas reinhardtii, Desmodesmus Scenedesmus and Scenedesmus, so-called squid moth, Volvox, Microalgae belonging to the genera Tetraselmis, Chlorococcum, Dunalliella, Neochloris, and Trebouxiophyceae include, but are not limited to.
  • microalgae belonging to the Treboxia algae include the genus Botryococcus such as Botryococcus braunii, the genus Chlorella, the genus Coccomyxa, the genus Pseudococcomyxa ), and microalgae belonging to the genus Trebouxia.
  • Botryococcus such as Botryococcus braunii
  • the genus Chlorella the genus Coccomyxa
  • the genus Pseudococcomyxa the genus Trebouxia.
  • examples of microalgae belonging to Heterochontophytes include microalgae belonging to diatoms and eutectic algae.
  • Specific examples of microalgae belonging to diatoms include the genus Cyclotella, the genus Cylindrotheca, the genus Fistulifera, the genus Mayamaea, the genus Phaeodactylum, the genus Skeletonema, and Examples include, but are not limited to, microalgae belonging to the genus Thalassiosira and the like.
  • specific examples of microalgae belonging to eutectic algae include, but are not limited to, microalgae belonging to the genus Nannochloropsis.
  • microalgae belonging to dinoflagellates include the genus Amphidinium, microalgae belonging to the genus Symbiodinium, and specific examples of microalgae belonging to red algae include the genus Cyanidioschizon. (Cyanidioschyzon), microalgae belonging to the genus Phorphyridium, and microalgae belonging to the euglenid algae include microalgae belonging to the genus Euglena such as Euglena gracilis. It is not limited to these.
  • microalgae classified as blue-green algae include the genus Anabaena, the genus Arthrospira, the genus Gloeobacter, the genus Microcystis, the genus Nostoc, Microalgae include, but are not limited to, Prochlorococcus, Synechocystis, Spirulina, Synechococcus, Thermosynechococcus, and the like.
  • the transformant of the present invention is a transformant obtained by transforming a photosynthetic organism as described above, and expresses a light-driven proton pump rhodopsin, that is, encodes a light-driven proton pump rhodopsin.
  • a transformant containing the gene refers to a change in the original traits of a host caused by the expression in the host of a gene that the host normally does not express, and the term “transformant” means a transformed host.
  • photosynthetic organisms such as land plants and algae are used as hosts for transformants of the present invention.
  • proton pump rhodopsin which is mainly distributed in vertebrates and bacteria, is a foreign gene that is not originally expressed.
  • a nucleic acid construct capable of expressing proton pump rhodopsin in a photosynthetic organism is specifically a nucleic acid construct comprising a sequence (DNA sequence or RNA sequence) encoding all or part of proton pump rhodopsin, For example, it may be an expression vector containing a DNA or RNA sequence encoding all or part of the proton pump prodopsin.
  • a nucleic acid construct used for transformation may contain, in addition to a sequence encoding proton pump rhodopsin, various sequences necessary for expressing proton pump rhodopsin in a host into which the nucleic acid construct is introduced.
  • sequences include, for example, promoter sequences, terminator sequences, sequences encoding selectable marker genes, and the like.
  • a gene fragment in which a promoter sequence and a terminator sequence are ligated to the 5' end side and 3' end side of the sequence, respectively is called an expression cassette.
  • the nucleic acid construct can be an expression vector containing one or more expression cassettes.
  • sequence encoding the target protein proton pump rhodopsin to be expressed in the host and the sequence encoding the selectable marker gene are combined into one It may be contained in an expression vector as a bicistronic expression cassette placed between a promoter sequence and a terminator sequence. Alternatively, it may be contained in an expression vector as two monocistronic expression cassettes arranged between separate promoter and terminator sequences.
  • a promoter sequence is usually present in a coding region, that is, an untranslated region (5'UTR) at the 5' end of a sequence encoding a target protein to be expressed in a host, and initiates transcription initiation reaction of the sequence encoding the target protein.
  • the promoter sequence may be any promoter sequence as long as it functions in the host into which the nucleic acid construct is introduced.
  • the host is a eukaryotic photosynthetic organism having a nucleus and a chloroplast, it is preferable to introduce the target gene into the chloroplast genome of the host from the viewpoint of ease of obtaining a stable transformant.
  • the promoter sequence possessed by the nucleic acid construct is preferably a promoter sequence that functions in the chloroplast of the host.
  • a promoter sequence that functions in the chloroplast a promoter sequence present in the 5' untranslated region of the chloroplast gene can be used, but it does not necessarily have to be derived from the chloroplast gene. It does not have to be derived from photosynthetic organisms.
  • Promoter sequences of chloroplast genes that can be used in nucleic acid constructs include, for example, photosystem I reaction center protein genes (psaA, psaB), photosystem II reaction center protein gene (psbA), 16S ribosomal RNA gene (16S rDNA) , the ribulose 1,5-bisphosphate carboxylase gene (rbcL), and the chloroplast ATP synthase gene (atpA).
  • psaA, psaB photosystem I reaction center protein genes
  • psbA photosystem II reaction center protein gene
  • 16S ribosomal RNA gene (16S rDNA)
  • rbcL ribulose 1,5-bisphosphate carboxylase gene
  • atpA chloroplast ATP synthase gene
  • a terminator sequence is usually present in a coding region, that is, an untranslated region (3'UTR) at the 3' end of a gene sequence encoding a target protein to be expressed in a host, and terminates transcription of the target protein-encoding sequence.
  • the terminator sequence may basically be anything as long as it is capable of terminating transcription initiated with the participation of the above-mentioned promoter sequence.
  • the host is a eukaryotic photosynthetic organism having a nucleus and a chloroplast, it is preferable to introduce the target gene into the chloroplast genome of the host from the viewpoint of ease of obtaining a stable transformant.
  • the terminator sequence possessed by the nucleic acid construct is preferably a terminator sequence that functions in the chloroplast of the host.
  • the terminator sequence that functions in the chloroplast the terminator sequence of the chloroplast gene can be used, but it does not necessarily have to be derived from the chloroplast gene or from photosynthetic organisms.
  • Terminator sequences of chloroplast genes that can be used in nucleic acid constructs include, but are not limited to, the sequence of the 3′ untranslated region of the ribulose 1,5-bisphosphate carboxylase gene (rbcL).
  • rbcL ribulose 1,5-bisphosphate carboxylase gene
  • the nucleic acid construct may contain a selectable marker gene.
  • Any selectable marker gene can be used as long as it can distinguish individuals in which the selectable marker gene is expressed (i.e., transformed) from non-transformed individuals (i.e., non-transformants).
  • genes encoding fluorescent proteins such as green fluorescent protein (GFP) and red fluorescent protein (RFP)
  • genes encoding luciferases such as luciferase, genes resistant to selected drugs, and the like are preferably used. be done.
  • a resistance gene to a selection drug is used as a selection marker gene
  • a transformant transformed by introducing a nucleic acid construct containing the selection marker gene shows resistance to the selection drug.
  • non-transformants By culturing a population containing both transformants and non-transformants in a medium or the like containing the selection drug, non-transformants can be killed and transformed transformants can be efficiently selected. can.
  • the resistance gene to the selection drug used as the selection marker gene for example, the aminoglycoside adenyltransferase gene (aadA) (Z. Svab and P. Maliga, Proc. Natl. Acad. Sci. USA 1993, 90, 913-917.), spectinomycin and streptomycin resistance genes, aminoglycoside phosphotransferase gene (aphA-6) (JM Bateman and S.
  • kanamycin-resistant genes such as the neomycin phosphotransferase gene (nptII) (H. Carrer et al., Molecular and General Genetics 1993, 241, 49-56.) can be used.
  • nptII neomycin phosphotransferase gene
  • a person skilled in the art can select an appropriate selectable marker gene according to the type of photosynthetic organism, organelle, etc. into which the nucleic acid construct is to be introduced.
  • the selection marker gene may be removed from the transformant after transformation.
  • a method for removing the selectable marker gene from the transformant after transformation is described, for example, in Anil Day et. al. (Plant Biotechnology Journal 2011, 9, 540-553.) and JP-A-2015-171358, but are not limited thereto.
  • the sequence encoding proton pump prodopsin is integrated into the genome of the host photosynthetic organism by homologous recombination. Therefore, in a preferred embodiment, the nucleic acid construct comprises a sequence to be integrated into the genome of the host by homologous recombination, that is, a sequence encoding the target protein proton pump rhodopsin, or the 5′ end of the expression cassette containing the sequence. It has a pair of homologous recombination sequences flanking the sequence or expression cassette on the 3' end side.
  • a pair of homologous recombination sequences is a pair of base sequences having homology with a base sequence of a predetermined region of the host genome, specifically, a base sequence present upstream of the predetermined region of the host genome
  • a pair of homologous recombination sequences can be a combination of a sequence having homology and a sequence having homology to a base sequence existing downstream of the same region.
  • the pair of homologous recombination sequences is a pair of sequences capable of homologous recombination with a part of the chloroplast genome, i.e., a base sequence of a predetermined region of the chloroplast genome of the host and It is preferably a pair of nucleotide sequences having homology.
  • a sequence having homology with a nucleotide sequence existing upstream of a predetermined region of the chloroplast genome of the host and a sequence existing downstream of the same region can be used as a pair of homologous recombination sequences.
  • the length of each pair of homologous recombination sequences is preferably 500 bp or more, and usually about 1 kb to 3 kb is used.
  • nucleic acid constructs described above can be introduced by an appropriate method, regardless of physical, chemical or biological methods, depending on the host to be transformed.
  • Methods for introducing nucleic acid constructs include, for example, the particle gun method, the Agrobacterium method, and the protoplast method, but are not limited to these methods, and those skilled in the art can use appropriate introduction methods.
  • viral vectors such as alfalfa mosaic virus (AIMV), tobacco mosaic virus (TMV), plumpox virus (PPV), potato X virus (PVX), cucumber mosaic virus (CMV), zucchini yellow mosaic virus (ZYMV)
  • a cell membrane permeable peptide may be used.
  • nucleic acid constructs For introduction of nucleic acid constructs into photosynthetic organisms using cell membrane penetrating peptides, see, for example, Keiji Numata et al. (Scientific Reports 8, Article number: 10966 (2016)).
  • the Agrobacterium method and the particle gun method are generally used from the viewpoint of the efficiency of introduction of nucleic acid constructs and the efficiency of transformants.
  • the particle gun method also called the particle gun method, is a method of introducing a nucleic acid construct by directly shooting microparticles (tungsten particles or gold particles) coated with the nucleic acid construct and having a particle size of about 0.1 to 2.0 ⁇ m into the host. (JE Boynton et al., Science 1988, 240, 1534-1538.). Since the particle gun method can directly introduce nucleic acid constructs into intracellular organelles such as chloroplasts and mitochondria, it is particularly suitable for gene introduction into chloroplast genomes.
  • the Agrobacterium method involves infecting plant cells with bacteria of the genus Agrobacterium, which are soil bacteria that infect plants, such as A. tumefaciens and A. rhizogenes. It is a transformation method that utilizes the property of introducing its own DNA into plant cells when it transforms.
  • the target gene can be introduced into the host by introducing the target gene to be introduced into the transformant into Agrobacterium and infecting the host with the resulting Agrobacterium.
  • the protoplast method is a method in which cells are treated with a cell wall-degrading enzyme solution (for example, a mixture of cellulase and pectinase), etc., the cell walls are removed to form protoplasts, and then the target gene is introduced into the protoplasts.
  • Electroporation, microinjection, polyethylene glycol, glass beads, and the like are known methods for introducing a target gene into protoplasts.
  • Electroporation is a method of introducing a target gene into protoplasts by applying an electric pulse to the protoplasts to instantaneously create holes in the cell membrane.
  • the microinjection method is a method of directly introducing a target gene into a protoplast using a micro glass tube or the like.
  • the polyethylene glycol method is a method of introducing a target gene into protoplasts by allowing polyethylene glycol to act on the protoplasts.
  • the glass bead method is a method in which glass beads with a diameter of about 0.5 mm and a nucleic acid construct are added to a suspension of protoplasts, and the mixture is stirred and mixed with a vortex mixer or the like to introduce a target gene into protoplasts.
  • transformants expressing proton pump prodopsin are selected according to the type of selection marker gene contained in the introduced nucleic acid construct. It may be selected by an appropriate method. On the other hand, when the introduced nucleic acid construct does not contain a selection marker gene, transformants may be selected by directly confirming the introduction of the target gene by, for example, the PCR method.
  • the nucleic acid construct When preparing a transformant of a multicellular photosynthetic organism such as a multicellular plant or algae, the nucleic acid construct is introduced into one or more cells that constitute the multicellular photosynthetic organism. Then, the cell may be differentiated to regenerate the whole photosynthetic organism. More specifically, for example, after introducing a nucleic acid construct into cells constituting plants or algae by an appropriate method, dedifferentiation (callus transformation), and the obtained callus is cultured in a medium containing a predetermined amount of a predetermined plant hormone (auxin or cytokinin) to differentiate and form plants or algae. Transformed multicellular plants or algae can also be obtained by introducing the nucleic acid construct into cells previously callusized and allowing the resulting callus to differentiate.
  • a predetermined plant hormone auxin or cytokinin
  • the method for preparing a transformant of a multicellular photosynthetic organism is not limited to the above, and a person skilled in the art can obtain a transformant of a multicellular photosynthetic organism using an appropriate method.
  • Other methods include, for example, the in planta method of transforming part of the plant tissue.
  • a transformant of a photosynthetic organism that expresses proton pump rhodopsin can be obtained by introducing a nucleic acid construct into a photosynthetic organism, appropriately selecting a transformant, and dedifferentiating/differentiating if necessary.
  • specific transformation methods are not limited to those described above, and those skilled in the art can prepare transformants by appropriate methods.
  • the transformation method of photosynthetic organisms is also described, for example, in "The Chemical Society of Japan, Experimental Chemistry Course 29 Basic Technology of Biotechnology 5th Edition, Maruzen Co., Ltd., published on July 25, 2006". .
  • controlling the growth of photosynthetic organisms means promoting or suppressing the growth of photosynthetic organisms, and increasing the upper limit of the number of viable cells per unit volume, i.e., increasing the saturated cell density. Or it is a concept that means including reducing.
  • the term “growth” of a photosynthetic organism means that the number of cells of the photosynthetic organism increases. , respectively, mean that the rate of increase in cell number is decreased.
  • the promotion or inhibition of growth can be observed as an increase or decrease in cell growth rate during the logarithmic growth phase.
  • an increase or decrease in the upper limit of the number of viable cells per unit volume is observed as an increase or decrease in the number of cells per unit volume in the stationary growth phase when cell growth reaches a steady state, that is, the saturated cell density.
  • the transformant Body growth can be promoted or inhibited and the upper limit of the number of viable cells per unit volume can be increased. That is, the method for controlling the growth of photosynthetic organisms according to the present invention includes: (1) obtaining a transformant of a photosynthetic organism that expresses proton pump prodopsin; (2) driving the proton pump rhodopsin by irradiating the transformant with light; including. Each step will be described in more detail below.
  • Step (1) Step of obtaining a transformant of a photosynthetic organism This is a step of obtaining a transformant of a photosynthetic organism expressing proton pump prodopsin by transforming the photosynthetic organism.
  • the transformant and its preparation method are as described above.
  • a nucleic acid construct containing a sequence encoding proton pump prodopsin is introduced into a photosynthetic organism, and then a transformed individual (individual expressing proton pump prodopsin).
  • a transformant expressing proton pump rhodopsin can be obtained by selecting .
  • the step (1) comprises introducing a nucleic acid construct containing a sequence encoding a proton pump rhodopsin into a photosynthetic organism, and selecting a transformant expressing the proton pump rhodopsin.
  • a transformant expressing the proton pump rhodopsin can include Needless to say, when transformants of photosynthetic organisms expressing proton pump rhodopsin are commercially available, the commercially available transformants may be used.
  • any method can be used to introduce the nucleic acid construct encoding the proton pump prodopsin into the photosynthetic organism.
  • protoplast method, particle gun method, Agrobacterium method, viral vector method, etc. can be used to introduce nucleic acid constructs into photosynthetic organisms.
  • the method for selecting transformants expressing proton pump rhodopsin is not particularly limited, and transformants expressing proton pump rhodopsin may be selected using an appropriate method.
  • Transformants can be easily selected by transforming using a nucleic acid construct containing a gene. For example, when a nucleic acid construct containing a fluorescent protein is used as a selection marker gene, a transformant transformed by introducing the nucleic acid construct emits a predetermined fluorescence. Transformants can be selected.
  • a nucleic acid construct containing a sequence encoding a resistance gene to a selection drug is used as a selection marker gene
  • a transformant transformed by introducing the nucleic acid construct has a resistance gene to a predetermined selection drug.
  • non-transformed individuals do not express the resistance gene.
  • only transformed individuals can be selectively obtained.
  • Any selection marker gene may be used as long as the transformant can be selected.
  • the nucleic acid construct is introduced into one or more cells of the multicellular photosynthetic organism, and then the cell callus and redifferentiation to regenerate photosynthetic organisms. That is, the step (1) includes a step of introducing a nucleic acid construct containing a sequence encoding proton pump rhodopsin into a photosynthetic organism, a step of obtaining callus from the photosynthetic organism into which the nucleic acid construct has been introduced, and a step of differentiating the obtained callus. to obtain transformants.
  • a callus is a dedifferentiated plant or algae cell, and is typically formed by culturing a portion of a plant or algae cell in the presence of a given plant hormone. By adjusting the concentration and type of plant hormones brought into contact with the callus, the callus once formed can be redifferentiated into individual plants or algae, thus obtaining transformed individual plants or algae. be able to. Needless to say, after obtaining callus, a nucleic acid construct containing a proton pump prodopsin-encoding sequence may be introduced, and the callus introduced with the nucleic acid construct may be redifferentiated.
  • Step (2) Driving proton pump rhodopsin A step of irradiating the transformant of the photosynthetic organism obtained in step (1) with light to drive the proton pump rhodopsin expressed in the transformant. .
  • proton pump rhodopsin is expressed in photosynthetic organisms, preferably in the cell membrane of photosynthetic organisms, more preferably in a state in which proton pump rhodopsin is expressed in chloroplasts of photosynthetic organisms
  • proton When pumprhodopsin is driven the growth of photosynthetic organisms is promoted or inhibited.
  • the upper limit of the number of cells that can be grown per unit volume, that is, the saturated cell density can be increased.
  • the wavelength of the light irradiated to the transformant to drive the proton pump rhodopsin is not particularly limited as long as it contains light of a wavelength capable of activating the proton pump rhodopsin and driving the proton pump rhodopsin. Instead, it may be appropriately selected according to the absorption wavelength of the proton pump rhodopsin, the growth environment of the photosynthetic organism to be used, and the like.
  • proton pump rhodopsin binds retinal as a chromophore, and typically has a maximum absorption wavelength in the wavelength range of about 400 nm to 600 nm. It is activated through isomerization, resulting in proton transport across the cell membrane.
  • the wavelength of light irradiated to the transformant preferably includes light with a wavelength of about 400 nm to 600 nm.
  • Light having such wavelengths includes green light having a wavelength of approximately 500 nm to 600 nm.
  • the method of controlling the growth of photosynthetic organisms according to the present invention mainly uses green light, which has not been widely used for the growth control of photosynthetic organisms up to now.
  • light of various wavelengths may be used in combination.
  • green light may be combined with blue light (wavelength 400 to 500 nm) or red light (wavelength 600 nm to 700 nm).
  • the light source for the emitted light is not particularly limited.
  • artificial light sources such as LED lamps, fluorescent lamps, high-pressure sodium lamps, and metal halide lamps may be used, or natural light such as sunlight may be used.
  • natural light such as sunlight may be used.
  • it may be a combination thereof.
  • the emitted light may be flashing light, continuous light, or a combination thereof.
  • a method for producing biomass (A) culturing or cultivating a photosynthetic organism using the method described above for controlling the growth of the photosynthetic organism; and (B) recovering biomass from the photosynthetic organism; A method for producing biomass is provided.
  • the transformant according to the present invention and the method for controlling the growth of photosynthetic organisms according to the present invention the growth of photosynthetic organisms can be promoted or suppressed, and the number of viable cells per unit volume Since the upper limit, that is, the saturated cell density can be increased, various biomass derived from photosynthetic organisms can be efficiently produced.
  • biomass means materials derived from photosynthetic organisms, and includes photosynthetic organisms themselves and processed products of photosynthetic organisms.
  • the treated products of photosynthetic organisms include useful substances obtained from photosynthetic organisms and residues of photosynthetic organisms remaining after collecting the useful substances.
  • useful substances obtained from photosynthetic organisms include, but are not limited to, fats and oils, fatty acids, hydrocarbons, and starches. Chlamydomonas, a type of green algae, is known to produce starch and triacylglycerol, which are raw materials for biofuels.
  • the method of collecting biomass there are no particular restrictions on the method of collecting biomass, and an appropriate method can be used according to the type of photosynthetic organisms and the type of biomass to be collected.
  • the biomass is a substance soluble in an organic solvent such as fat or hydrocarbon
  • the photosynthetic organisms are dried and crushed, and then recovered by extraction with an organic solvent. be able to.
  • the collected material may be further purified by operations such as chromatography and distillation.
  • a vector for Chlamydomonas chloroplast transformation a gene encoding AR3 having a sequence optimized for the codon usage of the chloroplast genome of Chlamydomonas (Genbank accession number: WP_092921078) or RmXeR A gene encoding a gene (Genbank accession number: WP_094549673) is inserted, and a gene encoding an HA (hemagglutinin) tag sequence for detecting the expression of AR3 or RmXeR is inserted at the 5' end or 3' end. is added.
  • HA hemagglutinin
  • psaA and rbcL indicate the promoter sequence of the psaA gene and the terminator sequence of the rbcL gene, respectively, which are located before and after the sequence encoding the proton pump rhodopsin gene (AR3 gene or RmXeR gene).
  • the gene sequence of the chloroplast protein psbA (the gene encoding the D1 protein that is the reaction center of photosystem II and 5
  • the rrn5 (ribosome synthesis gene) gene sequence and the rrnL (ribosome synthesis gene) gene sequence are arranged on the 3′ end side, and these are the present It corresponds to a pair of homologous recombination sequences as referred to in the specification.
  • coli gene encoding aminoglycoside adenyltransferase (AAD) that confers resistance to spectinomycin and streptomycin and ATPaseCF1 gene (atpA) are encoded as selectable marker genes for selection/selection of transformants.
  • AAD aminoglycoside adenyltransferase
  • the chloroplast genome of the Fud7 strain which is a cell strain of Chlamydomonas reinhardtii used for transformation
  • the sequences arranged at the 5′ end side and the 3′ end side of the expression cassette of the above transforming plasmid are By homologous recombination occurring via these sequences, the proton pump rhodopsin gene is incorporated into the chloroplast genome of the host Chlamydomonas reinhardtii.
  • the promoter sequence of the psaA gene which encodes the reaction center protein of photosystem I, is used as the promoter sequence that functions in the chloroplast.
  • the plasmid is integrated into the chloroplast genome by homologous recombination, and AR3 or RmXeR encoded by the plasmid is expressed in the chloroplast.
  • the vector pSXY246A for the Chlamydomonas chloroplast transformant used in this experiment was given by Dr. Yuichiro Takahashi of Okayama University, and was prepared by Yuichiro Takahashi et al., Plant Cell Physiol 37. (2): 161-168 (1996), or Michelet Laure et al. , Plant Biotechnology Journal, 9(5): 565-574 (2011).
  • Chlamydomonas reinhardtii which is a unicellular eukaryotic photosynthetic organism and a kind of green algae, is widely used in the field of life sciences including the field of botany as the simplest model of photosynthetic organisms.
  • the AR3 plasmid or RmXeR plasmid prepared in Experiment 1 was added to carrier particles (tungsten particles with a particle size of 1.0 to 1.3 ⁇ m). ) and injected into Chlamydomonas using a particle gene introduction device (product name: IDERA, model: GIE-III, Tanaka Co., Ltd.) to introduce the gene into the chloroplast.
  • a particle gene introduction device product name: IDERA, model: GIE-III, Tanaka Co., Ltd.
  • the cells after gene introduction were applied to a TAP plate containing spectinomycin (final concentration: 150 ⁇ g mL ⁇ 1 ) according to a conventional method, and placed in an incubator for plant culture (product name “Mini plant incubator 3 in 1 LED lighting growing shelf equipped type”). , Nihon Ika Kikai Seisakusho Co., Ltd.) under the conditions of a temperature of 25 ° C., an irradiation light wavelength of 660 nm, and a photon amount of 85 ⁇ mol photons m ⁇ 2 sec ⁇ 1 for 19 days.
  • Chlamydomonas cells were recovered by centrifugation, and a thylakoid membrane fraction was obtained using sucrose density gradient centrifugation.
  • the obtained thylakoid membrane fraction was appropriately diluted so that the amount of chlorophyll was 1 ⁇ g (hereinafter referred to as “1 ⁇ g Chl”), and electrophoresis was performed using a 5% acrylamide gel as a concentration gel and a 12% acrylamide gel as a separation gel. Applied to a gel for electrophoresis.
  • chemiluminescence was detected using ECL prime (GE Healthcare Japan Co., Ltd.). Chemiluminescence was detected using a commercially available image analyzer (product name: "ImageQuant LAS 4000mini", GE Healthcare Japan Co., Ltd.).
  • the cells were suspended at 10 6 cells/mL and cultured in an incubator (product name: tabletop artificial weather device ⁇ 3in1LED lighting type>, model number: LH-80LED-DT, Nihon Ika Kikai Seisakusho Co., Ltd.).
  • the conditions for light irradiation during culture are as follows: irradiation light wavelength 660 nm (red LED), photon amount 20 ⁇ mol photons m ⁇ 2 sec ⁇ 1 , irradiation light wavelength 520 nm (green LED), photon amount 10 ⁇ mol photons m.
  • RmXeR-expressing cells (“RmXeR” in FIG. 3) expressing in chloroplasts RmXeR, which is an inward proton pump rhodopsin that is thought to transport protons from the outside to the inside of cells and thus promote intracellular acidification.
  • the number of cells per unit volume was 10.9 ⁇ 0.836 ⁇ 10 6 cells/mL, which was approximately 1.3 times that of the control (FIG. 3).
  • AR3 which is an outward proton-pump rhodopsin, or RmXeR, which is an inward proton-pump rhodopsin
  • RmXeR which is an inward proton-pump rhodopsin
  • the number of rhodopsin non-expressing cells (“control” in FIG. 3) was 8.32 ⁇ 0.978 ⁇ 10 6 cells/mL.
  • AR3-expressing cells expressing in chloroplasts AR3, which is an outward proton pump rhodopsin that is thought to transport protons from the inside to the outside of the cells and thereby promote intracellular alkalinization (“AR3” in FIG. 3).
  • the number of cells per unit volume that is, the cell density was 16.1 ⁇ 0.881 ⁇ 10 6 cells/mL, approximately 1.9 times higher than the control (FIG. 3).
  • RmXeR-expressing cells (“RmXeR” in FIG.
  • Chlamydomonas cells by expressing AR3, which is an outward proton-pump rhodopsin, or RmXeR, which is an inward proton-pump rhodopsin, and growing them in an environment irradiated with light that drives the proton pump rhodopsin, cell proliferation of Chlamydomonas It was shown that the number of cells per unit volume in stationary phase, ie the upper limit of saturation cell density, is increased.
  • the cell area is measured by taking a photograph of the cell using a cell analyzer (product name "Countess II FL automatic cell counter", Thermo Fisher Scientific K.K.) and analyzing the obtained image by software (ImageJ). I asked for it.
  • Experiment 6 Measurement of Dry Weight of Chlamydomonas Cells Simultaneously with Experiment 4, the effect of visible light irradiation on the dry weight of the Chlamydomonas transformants was evaluated. Specific procedures are as follows. That is, in Experiment 4, after 168 hours from the start of culture, 5 mL of the culture medium was collected, centrifuged, and then the supernatant was removed. Then, 1 mL of sterilized water was added, and after sufficiently suspending with a vortex mixer (product name “TUBE MIXER TRIO”, manufactured by AS ONE Co., Ltd.), centrifugation was performed and the supernatant was removed.
  • a vortex mixer product name “TUBE MIXER TRIO”, manufactured by AS ONE Co., Ltd.
  • the washing operation using sterilized water was performed three times in total to remove the medium components. Then, the cells were transferred to an incubator heated to 80° C. and allowed to stand for 4 hours to dry. After that, the dry mass was measured using an analytical electronic balance (product name “HR-100AZ”, manufactured by A&D Co., Ltd.).
  • Experiment 7 Evaluation of oil droplet (lipid droplet) forming ability of Chlamydomonas cells Simultaneously with Experiment 4, the Chlamydomonas transformant obtained in Experiment 2 was evaluated for oil droplet (lipid droplet) forming ability under visible light irradiation. Oil droplet forming ability was assessed based on Nile Red staining of the oil droplets formed. Specifically, in Experiment 4, after 168 hours from the start of the culture, 1 mL of the culture medium was collected, and Nile Red (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to the collected culture medium at a final concentration of 1.5 mL. Added to 0 ⁇ g/mL.
  • this culture solution was dropped onto a slide glass, and a cover glass was placed thereon.
  • Cells were observed using an inverted research microscope (model: IX71, manufactured by Olympus Corporation) equipped with a mercury lamp U-LH100HGAPO (manufactured by Olympus Corporation).
  • the fluorescence emitted by Nile Red was observed by irradiating excitation light with a wavelength of 480 ⁇ 10 nm and detecting fluorescence in a wavelength region of 550 ⁇ 10 nm.
  • the above observations were made at room temperature (about 15 to 25 ° C). Fluorescence images were acquired and analyzed using a CCD camera (ORCA-AG, Hamamatsu Photonics Co., Ltd.) and Meta Vue software (Version 7.5.6.0, Molecular Devices, USA).
  • SEQ ID NO: 1 Amino acid sequence of RmXeR from the marine eubacterium Rubricoccus marinus
  • SEQ ID NO: 2 Amino acid sequence of AR3 from the archaebacterium Halorubrum sodomense
  • SEQ ID NO: 3 Chlamydomonas chloroplast encoding RmXeR from the marine eubacterium Rubricoccus marinus
  • SEQ ID NO: 4 Nucleotide sequence optimized for the codon usage of the chloroplast genome of Chlamydomonas, encoding AR3 derived from the archaebacteria Halorubrum sodomense
  • SEQ ID NO: 5 Around a wavelength of 500 nm Amino acid sequences of AR3 mutants with absorption maximum wavelengths
  • the growth of photosynthetic organisms is promoted or suppressed by means of light, which is easily controllable, and the number of photosynthetic organisms capable of growing per unit volume is increased.
  • the upper limit of the number of cells ie, the saturation cell density, can be increased, enabling high-density cultivation of photosynthetic organisms.
  • Such transformants of photosynthetic organisms and methods of controlling the growth of photosynthetic organisms contribute to the efficiency of various biomass production, and are particularly useful in a wide range of industrial fields toward the construction of a sustainable society. application is expected.

Abstract

The present invention addresses the problem of providing a novel method that can control the growth of a photosynthetic organism and providing a use of said method. This problem is solved by providing a photosynthetic organism transformant that expresses a proton pump rhodopsin, and providing a method for controlling the growth of a photosynthetic organism, the method comprising (1) a step of obtaining a transformant that expresses a proton pump rhodopsin and (2) a step of driving the proton pump rhodopsin by exposing the transformant to light.

Description

光合成生物の形質転換体及びその用途Transformant of photosynthetic organism and use thereof
 本発明は、光合成生物の形質転換体及びその用途に関する。 The present invention relates to transformants of photosynthetic organisms and uses thereof.
 植物や藻類をはじめとする光合成生物に由来するバイオマス資源は再生可能な資源、特に、化石燃料に代わる再生可能なエネルギー源として注目を集めており、例えば、サトウキビやトウモロコシなどの植物から得られるでん粉をアルコール発酵して得られるバイオエタノール、トウモロコシやナタネなどの植物から得られる油脂を変換して得られるバイオディーゼルなどは、バイオ燃料の主たる原料として利用されている。しかしながら、トウモロコシやサトウキビのように、従来、バイオ燃料の原料として利用されてきた植物の多くは、主に食用としても消費される作物であるところ、近年重要性を増しつつある食糧危機の問題の観点からすれば、食用の作物をバイオ燃料の原料とすることは必ずしも好ましいとは言えない。 Biomass resources derived from photosynthetic organisms such as plants and algae are attracting attention as renewable resources, especially as renewable energy sources to replace fossil fuels. For example, starch obtained from plants such as sugar cane and corn. Bioethanol, which is obtained by alcohol fermentation, and biodiesel, which is obtained by converting oils and fats obtained from plants such as corn and rapeseed, are used as main raw materials for biofuels. However, many of the plants that have traditionally been used as raw materials for biofuels, such as corn and sugarcane, are also mainly consumed as food. From the point of view, it is not necessarily preferable to use food crops as raw materials for biofuels.
 これに対して、植物と同じく、光合成生物の一種である藻類は、バイオ燃料への利用が期待されるトリアシルグリセロールやでん粉などの様々な有用物質を産生し、且つ、サトウキビやトウモロコシなどとは異なり、主に食用として用いられないことから、有力なバイオマスの供給源として期待されている。例えば、藻類の一種であるクラミドモナスは、窒素欠乏条件やリン欠乏条件で培養すると、バイオ燃料の原料となる油脂(トリアシルグリセロール)を蓄積することが知られている。他方、スピルリナ、クロレラ、ユーグレナなどの藻類に見られるように、いくつかの藻類は、種々の生理機能を発揮する生理活性物質を産生することが明らかとなってきており、藻類のバイオマス資源としての利用は、エネルギー分野に限らず、健康食品分野や化粧品分野においても重要性を増してきている。 On the other hand, like plants, algae, which are a type of photosynthetic organism, produce various useful substances such as triacylglycerol and starch, which are expected to be used as biofuels. Unlike this, it is not mainly used as food, so it is expected to be a powerful source of biomass. For example, Chlamydomonas, a type of algae, is known to accumulate oils and fats (triacylglycerols) that are raw materials for biofuels when cultured under nitrogen-deficient or phosphorus-deficient conditions. On the other hand, as seen in algae such as spirulina, chlorella, and euglena, it has become clear that some algae produce physiologically active substances that exert various physiological functions, and algae can be used as biomass resources. The use is increasing in importance not only in the energy field but also in the health food field and the cosmetic field.
 しかしながら、多くの藻類は、単位細胞当たりに蓄積できる油脂、でん粉、生理活性物質などのバイオマスの蓄積量が高くなく、また、増殖速度が遅いため、バイオマスの産生効率が高いとは言えない。そこで、藻類におけるバイオマスの産生効率を高めるための様々な試みが為されており、特に、藻類の品種改良が頻繁に行われている。例えば、特許文献1及び非特許文献1には、緑藻の一種であるクラミドモナスの形質転換体が開示されている。当該形質転換体は、トリアシルグリセロール合成酵素であるDGTT4の遺伝子のプロモーター部位に、リン欠乏条件下で発現が上昇することが知られる他の遺伝子であるSQD2遺伝子のプロモーターが付加された遺伝子を含む形質転換体であり、リン欠乏条件下において、通常のクラミドモナスよりも多くのトリアシルグリセロールを蓄積することが報告されている。一方、非特許文献2には、同じく、クラミドモナスの形質転換体であって、でん粉の生合成に関わる酵素であるADP-グルコースピロホスホリラーゼを欠損させたクラミドモナスの形質転換体が開示されており、当該形質転換体は、窒素欠乏条件において、単位細胞当たりのトリアシルグリセロールの産生量が高いことが開示されている。 However, many algae do not accumulate a large amount of biomass such as oils, starches, and bioactive substances per unit cell, and their growth rate is slow, so the biomass production efficiency cannot be said to be high. Therefore, various attempts have been made to increase the efficiency of biomass production in algae, and in particular, breeding of algae is frequently carried out. For example, Patent Document 1 and Non-Patent Document 1 disclose a transformant of Chlamydomonas, a kind of green algae. The transformant contains a gene in which the promoter region of the DGTT4 gene, which is a triacylglycerol synthase, is added with the promoter of the SQD2 gene, another gene whose expression is known to increase under phosphorus-deficient conditions. It is a transformant and has been reported to accumulate more triacylglycerols than ordinary Chlamydomonas under phosphorus-deficient conditions. On the other hand, Non-Patent Document 2 discloses a Chlamydomonas transformant lacking ADP-glucose pyrophosphorylase, which is an enzyme involved in starch biosynthesis, which is also a Chlamydomonas transformant. It is disclosed that the transformant produces a high amount of triacylglycerol per unit cell under nitrogen-deficient conditions.
 以上のような形質転換体は、単位細胞当たりのバイオマスの産生量を高めて、バイオマスの産生効率を高めようとするものであるが、バイオマスの産生効率が大きく依存する細胞の生長速度や、単位体積当たりに生育可能な細胞の数の上限、すなわち、飽和細胞密度を高めるものではない。バイオマスの生産に用いることができる時間及び空間は有限であり、光合成生物によるバイオマスの産生効率を高めるためには、単位細胞当たりのバイオマスの産生量を高めるだけでなく、限られた時間の中で可能な限り速く、且つ、限られた空間の中で可能な限り多くの光合成生物を栽培又は培養できる技術の開発が極めて重要である。 The above-described transformants are intended to increase biomass production efficiency per unit cell by increasing biomass production efficiency. It does not raise the upper limit of the number of viable cells per volume, ie the saturation cell density. The time and space that can be used for biomass production is limited, and in order to increase the efficiency of biomass production by photosynthetic organisms, it is necessary not only to increase the amount of biomass produced per unit cell, but also to It is extremely important to develop a technology that can cultivate or culture as many photosynthetic organisms as possible in a limited space as quickly as possible.
 このような課題に対して、細胞の生長速度を増加させ、また、単位体積当たりに生育可能な細胞の数の上限、すなわち、飽和細胞密度を増加させようとする試みも種々為されている。例えば、非特許文献3には、クラミドモナスを培養する培地の微量金属イオンの組成を調整することによって、クラミドモナスの細胞数の増加速度及び細胞数の増加が定常状態に達した増殖定常期における単位体積当たりの細胞の数、すなわち飽和細胞密度が高まることが報告されている。しかしながら、培地への物質添加、特に金属イオンの添加は、廃棄物処理・環境問題等への影響が懸念されるとともに、コストの増大にもつながってしまうという課題がある。 In response to such problems, various attempts have been made to increase the growth rate of cells and increase the upper limit of the number of viable cells per unit volume, that is, the saturation cell density. For example, in Non-Patent Document 3, by adjusting the composition of trace metal ions in the medium for culturing Chlamydomonas, the rate of increase in the number of Chlamydomonas cells and the increase in the number of Chlamydomonas cells reached a steady state. It has been reported that the number of cells per cell, ie the saturated cell density, is increased. However, the addition of substances, particularly metal ions, to the medium raises concerns about the impact on waste disposal, environmental problems, etc., and also leads to an increase in cost.
 ところで、光合成生物に限らず、生物を構成する最小単位は細胞であり、細胞は細胞膜により内外が隔てられている。細胞内外の物質やイオンの濃度は、膜に埋まったタンパク質(膜タンパク質)によって厳密に制御されており、イオンの濃度のバランスが崩れると、細胞の恒常性(分裂、発生、成長など)が大きく変化する。多種多様なイオンのうち、特に、プロトン(水素イオン:H)は、地球上で最も多く存在するイオンであり、細胞内外や細胞小器官内のpHを決定づけ、ほぼ全ての生物における生命機能の維持・発現に重要な役割を果たしている。 By the way, not only photosynthetic organisms, but also the smallest unit constituting organisms is cells, and the inside and outside of cells are separated by cell membranes. The concentrations of substances and ions inside and outside the cell are strictly controlled by proteins embedded in the membrane (membrane proteins), and if the ion concentration balance is disrupted, the homeostasis of the cell (division, development, growth, etc.) will be greatly affected. Change. Among a wide variety of ions, protons (hydrogen ions: H + ) in particular are the most abundant ions on earth, determine the pH inside and outside cells and inside organelles, and play a vital role in almost all living organisms. It plays an important role in maintenance and expression.
 細胞膜を介したプロトン輸送に関与する光受容性の膜タンパク質の一つがロドプシンであり、ヒト等の脊椎動物や細菌などの微生物に分布している。中でも、光を受容して活性化し、細胞の内側から外側へ、又は細胞の外側から内側へ一方向的にプロトンを輸送する働きをするロドプシンは、プロトンポンプロドプシンと呼ばれ、更に詳細には、細胞内から細胞外へプロトンを輸送する働きをするプロトンポンプロドプシンは外向きプロトンポンプロドプシン、細胞外から細胞内へプロトンを輸送する働きをするプロトンポンプロドプシンは内向きプロトンポンプロドプシンと呼ばれる。例えば、高度好塩古細菌由来の膜タンパク質であるアーキロドプシン3(AR3)、及び、海洋真正細菌由来の膜タンパク質であるルブリコッカスマリナスゼノロドプシン(RmXeR)は、レチナールを発色団とし、波長550nm付近に吸収極大を有する緑色の光を受けると、それぞれ細胞内から細胞外へ(AR3を用いた場合)又は細胞外から細胞内へ(RmXeRを用いた場合)プロトンを輸送するプロトンポンプとして機能する(非特許文献4、5)。 One of the photoreceptive membrane proteins involved in proton transport through the cell membrane is rhodopsin, which is distributed in vertebrates such as humans and microorganisms such as bacteria. Among them, rhodopsins that are activated by receiving light and serve to unidirectionally transport protons from the inside to the outside of the cell or from the outside to the inside of the cell are called proton pump rhodopsins. A proton pump rhodopsin that transports protons from the inside to the outside of the cell is called outward proton pump rhodopsin, and a proton pump rhodopsin that transports protons from the outside to the inside of the cell is called inward proton pump rhodopsin. For example, Archidopsin 3 (AR3), which is a membrane protein derived from highly halophilic archaea, and Rubricoccus marinus xenorhodopsin (RmXeR), which is a membrane protein derived from marine eubacteria, use retinal as a chromophore and have a wavelength of around 550 nm. When receiving green light with an absorption maximum at , it functions as a proton pump that transports protons from the inside to the outside of the cell (when using AR3) or from the outside to the inside of the cell (when using RmXeR), respectively ( Non-Patent Documents 4, 5).
 本出願人及び本発明者らは、プロトンポンプロドプシンを介するプロトン輸送による細胞内pH制御により、細胞の生命機能を制御できるとのではないかという着想に基づき、プロトンポンプロドプシンを発現させたがん細胞において、光を照射してプロトンポンプロドプシンを駆動すると、当該がん細胞の細胞死が惹起又は抑制されることを見出し、特願2020-196718号においてこの知見を開示した。しかしながら、プロトンポンプロドプシンが植物や藻類などの光合成生物の生育に如何なる影響を及ぼすかについては一切知られていない。 The present applicant and the present inventors, based on the idea that intracellular pH control by proton transport mediated by proton pump rhodopsin, may be able to control the life function of cells, cancer expressing proton pump rhodopsin We have found that the cell death of cancer cells is induced or suppressed by irradiating light to drive proton pump rhodopsin in cells, and disclosed this finding in Japanese Patent Application No. 2020-196718. However, nothing is known about how proton pump prodopsin affects the growth of photosynthetic organisms such as plants and algae.
 また、上述したとおり、プロトンポンプロドプシンの多くは緑色の光を受容して活性化し、細胞の内側から外側へ、又は細胞の外側から内側へ一方向的にプロトンを輸送する働きをする膜タンパク質であるが、植物や藻類などの光合成生物の多くは、その外観が緑色であることから分かるとおり、主に、緑色以外の光、より具体的には、青色(波長400~500nm)や赤色(波長600nm~700nm)の光を吸収して生体活動に用いている。このような知見に基づいて、例えば、特許文献2乃至4に見られるとおり、青色や赤色の光を選択的に光合成生物に照射して、その生長を促進しようとする試みは数多く為されているが、本発明者らが知る限りにおいて、緑色(波長500nm~600nm)の光を利用して、光合成生物の生長を促進、又は生育を制御しようとする試みはほとんど為されていない。 In addition, as mentioned above, many of the proton-pump rhodopsins are membrane proteins that are activated by receiving green light and function to transport protons unidirectionally from the inside to the outside of the cell or from the outside to the inside of the cell. However, many photosynthetic organisms such as plants and algae are green in appearance, so they mainly emit light other than green, more specifically, blue (wavelength 400-500 nm) and red (wavelength 400-500 nm). 600 nm to 700 nm) and uses it for biological activities. Based on such findings, for example, as seen in Patent Documents 2 to 4, many attempts have been made to selectively irradiate photosynthetic organisms with blue or red light to promote their growth. However, as far as the present inventors know, almost no attempts have been made to promote or control the growth of photosynthetic organisms using green light (wavelength 500 nm to 600 nm).
特開2014-68638号公報JP 2014-68638 A 特開2001-86860号公報JP-A-2001-86860 特開2020-18210号公報Japanese Patent Application Laid-Open No. 2020-18210 特開2015-128448号公報JP 2015-128448 A
 本発明は、上記従来技術の諸課題を解決するために為されたものであり、光合成生物の生育を制御するための新たな方法とその用途を提供することを課題とする。 The present invention has been made in order to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a new method for controlling the growth of photosynthetic organisms and its use.
 本発明者らは、上記課題を解決しようと鋭意研究努力を重ねる過程において、細胞外から細胞内へプロトンを輸送する働きをする内向きプロトンポンプロドプシンの一種であるルブリコッカスマリナスゼノロドプシン(RmXeR)を、光合成生物のモデルとして斯界で広く用いられているクラミドモナスの葉緑体に発現させ、RmXeRを駆動する光を照射したところ、驚くべきことに、RmXeRを発現させたクラミドモナスの生長が顕著に促進されることを見出した。そこで、本発明者らは、RmXeRとは反対に、細胞内から細胞外へプロトンを輸送する働きをする外向きプロトンポンプロドプシンの一種であるアーキロドプシン3(AR3)をクラミドモナスの葉緑体に発現させ、AR3を駆動する光を照射したところ、RmXeRを発現させた場合とは反対に、AR3を発現させたクラミドモナスの生長が顕著に抑制されることを見出した。さらに驚くべきことに、RmXeR又はAR3を発現させた、いずれのクラミドモナスにおいても、その増殖が定常状態に達した増殖定常期における単位体積当たりの細胞の数、すなわち飽和細胞密度が、プロトンポンプロドプシンを発現していない通常のクラミドモナスを同じ条件で培養した場合と比較して遥かに高まっていた。これらの結果は、光合成生物にプロトンポンプロドプシンを発現させ、プロトンポンプロドプシンを駆動する光を照射して、細胞内pH環境、より好適には葉緑体内のpH環境を操作することにより、光合成生物の生育を制御できることを物語っており、今までに例を見ない画期的な知見である。 In the process of earnestly researching to solve the above problems, the present inventors discovered Rubricoccus marinus xenorhodopsin (RmXeR), which is a type of inward proton-pumping rhodopsin that functions to transport protons from the outside to the inside of cells. was expressed in the chloroplast of Chlamydomonas, which is widely used in the field as a model of photosynthetic organisms, and was irradiated with light that drives RmXeR. found to be Therefore, the present inventors expressed archilodopsin 3 (AR3), a type of outward proton pump rhodopsin that transports protons from the inside of the cell to the outside of the cell, in the chloroplasts of Chlamydomonas, contrary to RmXeR. and irradiated with light that drives AR3, the growth of Chlamydomonas expressing AR3 was remarkably suppressed, contrary to the case of expressing RmXeR. Even more surprisingly, in any Chlamydomonas expressing RmXeR or AR3, the number of cells per unit volume in the stationary growth phase when its growth reached a steady state, that is, the saturated cell density, increased proton pump rhodopsin. The level was much higher than that of normal Chlamydomonas not expressing Chlamydomonas cultured under the same conditions. These results suggest that by expressing a proton pump rhodopsin in a photosynthetic organism and irradiating light that drives the proton pump rhodopsin to manipulate the intracellular pH environment, more preferably the pH environment within the chloroplast, the photosynthetic organism This is an epoch-making finding that has never been seen before.
 すなわち、本発明は、以上のような本発明者らが新たに見出した知見に基づくものであり、光合成生物の形質転換体であって、光によって駆動するプロトンポンプロドプシンを発現する形質転換体を提供することにより上記課題を解決するものである。プロトンポンプロドプシンを発現する光合成生物の形質転換体に、プロトンポンプロドプシンを駆動する光を照射することによって、その生育を制御することができる。 That is, the present invention is based on the findings newly found by the present inventors as described above, and provides a transformant of a photosynthetic organism that expresses a light-driven proton pump rhodopsin. The above problem is solved by providing. The growth of a transformant of a photosynthetic organism expressing proton pump rhodopsin can be controlled by irradiating the transformant with light that drives proton pump rhodopsin.
 好適な一態様において、形質転換体が発現する前記プロトンポンプロドプシンは、細胞外から細胞内へプロトンを輸送する内向きプロトンポンプロドプシンである。後述する実験例に示すとおり、内向きプロトンポンプロドプシンを発現する光合成生物の形質転換体に前記内向きプロトンポンプロドプシンを駆動する光を照射して、内向きプロトンポンプロドプシンを駆動すると、当該形質転換体の生長を促進、すなわち、生長速度を速めることができる。また、単位体積当たりに生育可能な細胞の数の上限、すなわち飽和細胞密度を高めることができる。 In a preferred embodiment, the proton pump rhodopsin expressed by the transformant is an inward proton pump rhodopsin that transports protons from the outside to the inside of the cell. As shown in the experimental examples described later, when a transformant of a photosynthetic organism expressing inward proton pump rhodopsin is irradiated with light that drives the inward proton pump rhodopsin to drive the inward proton pump rhodopsin, the transformant It can promote body growth, that is, increase the growth rate. In addition, the upper limit of the number of viable cells per unit volume, that is, the saturation cell density can be increased.
 一方、本発明の他の好適な一態様において、前記プロトンポンプロドプシンは、細胞内から細胞外へプロトンを輸送する外向きプロトンポンプロドプシンである。後述する実験例に示すとおり、外向きプロトンポンプロドプシンを発現する光合成生物の形質転換体に前記外向きプロトンポンプロドプシンを駆動する光を照射して、外向きプロトンポンプロドプシンを駆動すると、当該形質転換体の生長を抑制、すなわち、生長速度を遅くすることができる。また、単位体積当たりに生育可能な細胞の数の上限、すなわち飽和細胞密度を高めることができる。 On the other hand, in another preferred embodiment of the present invention, the proton pump rhodopsin is an outward proton pump rhodopsin that transports protons from intracellular to extracellular. As shown in the experimental examples described later, when a transformant of a photosynthetic organism expressing outward proton pump rhodopsin is irradiated with light that drives the outward proton pump rhodopsin to drive the outward proton pump rhodopsin, the transformant It is possible to suppress the growth of the body, that is, to slow down the growth rate. In addition, the upper limit of the number of viable cells per unit volume, that is, the saturation cell density can be increased.
 また、好適な更に他の一態様において、前記形質転換体は、細胞内から細胞外へプロトンを輸送する外向きプロトンポンプロドプシンと、細胞外から細胞内へプロトンを輸送する内向きプロトンポンプロドプシンの双方を発現する形質転換体である。形質転換体に内向きプロトンポンプロドプシン及び外向きプロトンポンプロドプシンの双方を発現させた場合には、照射する光の波長を適宜選択することによって、形質転換体の生長の促進又は抑制を自在に行い得るという利点が得られる。すなわち、内向きプロトンポンプロドプシンを駆動する波長の光を照射すれば形質転換体の生長を促進することができるし、一方、外向きプロトンポンプロドプシンを駆動する波長の光を照射すれば形質転換体の生長を抑制することができる。 In still another preferred embodiment, the transformant contains an outward proton pump rhodopsin that transports protons from the inside to the outside of the cell and an inward proton pump rhodopsin that transports protons from the outside to the inside of the cell. A transformant expressing both. When both the inward proton pump rhodopsin and the outward proton pump rhodopsin are expressed in the transformant, the growth of the transformant can be freely promoted or suppressed by appropriately selecting the wavelength of light to be irradiated. You get the advantage of getting That is, irradiation with light of a wavelength that drives inward proton-pump rhodopsin promotes the growth of the transformant, while irradiation of light with a wavelength that drives outward proton-pump rhodopsin promotes the growth of the transformant. growth can be suppressed.
 以上のとおり、光合成生物を、プロトンポンプロドプシンを発現可能に形質転換し、該プロトンポンプロドプシンを駆動する光を照射することによって、光合成生物の生育を制御することができる。すなわち、本発明は他の一側面において、光合成生物の生育を制御する方法であって、
(1)光合成生物の形質転換体であって、プロトンポンプロドプシンを発現する形質転換体を得る工程、及び、
(2)前記形質転換体に光を照射することにより、前記プロトンポンプロドプシンを駆動する工程、
を含むことを特徴とする方法を提供することにより、上記課題を解決するものである。
As described above, the growth of the photosynthetic organism can be controlled by transforming the photosynthetic organism so that it can express the proton pump rhodopsin and irradiating it with light that drives the proton pump rhodopsin. That is, in another aspect of the present invention, there is provided a method for controlling the growth of photosynthetic organisms, comprising:
(1) obtaining a transformant of a photosynthetic organism that expresses proton pump prodopsin;
(2) driving the proton pump rhodopsin by irradiating the transformant with light;
The above problem is solved by providing a method characterized by comprising:
 また、本発明に係る形質転換体又は光合成生物の生育を制御する方法によれば、有用なバイオマスを産生する光合成生物の生長を促進又は抑制することができるとともに、光合成生物の高密度培養が可能となるので、光合成生物を利用したバイオマスの製造の効率化が期待できる。すなわち、本発明は、更に他の一側面において、バイオマスの製造方法であって、
(A)光合成生物の生育を制御する上記方法を用いて光合成生物を培養又は栽培する工程、及び
(B)前記光合成生物からバイオマスを回収する工程、
を含む、バイオマスの製造方法をも提供するものである。
In addition, according to the transformant or the method for controlling the growth of photosynthetic organisms according to the present invention, the growth of photosynthetic organisms that produce useful biomass can be promoted or suppressed, and high-density culture of photosynthetic organisms is possible. Therefore, it can be expected to improve the efficiency of biomass production using photosynthetic organisms. That is, in still another aspect of the present invention, there is provided a method for producing biomass,
(A) culturing or cultivating a photosynthetic organism using the method described above for controlling the growth of the photosynthetic organism; and (B) recovering biomass from the photosynthetic organism;
A method for producing biomass is also provided.
 本発明の形質転換体又は光合成生物の生育を制御する方法によれば、光合成生物の生長を光により促進又は抑制することができるとともに、光合成生物の高密度培養が可能となる。また、本発明のバイオマスの製造方法によれば、光合成生物に由来するバイオマスを効率的に製造することができる。 According to the transformant or the method of controlling the growth of photosynthetic organisms of the present invention, the growth of photosynthetic organisms can be promoted or suppressed by light, and high-density culture of photosynthetic organisms is possible. Moreover, according to the biomass production method of the present invention, biomass derived from photosynthetic organisms can be efficiently produced.
実施例で用いたクラミドモナスの細胞における、プロトンポンプロドプシン遺伝子導入のための葉緑体ゲノム改変方法の模式図である。FIG. 2 is a schematic diagram of a chloroplast genome modification method for proton pump rhodopsin gene transfer in Chlamydomonas cells used in Examples. クラミドモナス細胞における各ロドプシンの発現を示す図である。FIG. 2 shows the expression of each rhodopsin in Chlamydomonas cells. 可視光依存的なクラミドモナス細胞の細胞数とその経時変化を示す図である。FIG. 2 is a diagram showing the number of Chlamydomonas cells dependent on visible light and the time-dependent change thereof. 可視光照射によるクラミドモナス細胞の形態への影響を調べた結果を示す図である。なお、図4Aにおいて、スケールバーは12.5μmを示す。FIG. 2 shows the results of examining the effect of visible light irradiation on the morphology of Chlamydomonas cells. Note that the scale bar in FIG. 4A indicates 12.5 μm. 可視光照射によるクラミドモナスの乾燥重量への影響を調べた結果を示す図である。FIG. 2 is a diagram showing the results of examining the effect of visible light irradiation on the dry weight of Chlamydomonas. 可視光照射によるクラミドモナスの油滴(脂肪滴)形成能への影響を調べた結果を示す図である。なお、図6Aにおいて、スケールバーは12.5μmを示す。FIG. 2 is a diagram showing the results of examining the effect of visible light irradiation on the ability of chlamydomonas to form oil droplets (lipid droplets). Note that the scale bar in FIG. 6A indicates 12.5 μm. 海洋真正細菌Rubricoccus marinus由来のRmXeRのアミノ酸配列と、当該RmXeRをコードするクラミドモナスの葉緑体ゲノムのコドン使用頻度に最適化した塩基配列を示す図である。FIG. 2 shows the amino acid sequence of RmXeR derived from the marine eubacterium Rubricoccus marinus and the base sequence optimized for the codon usage of the chloroplast genome of Chlamydomonas that encodes the RmXeR. 古細菌Halorubrum sоdоmense由来のAR3のアミノ酸配列と、当該AR3をコードするクラミドモナスの葉緑体ゲノムのコドン使用頻度に最適化した塩基配列を示す図である。FIG. 2 shows the amino acid sequence of AR3 derived from the archaebacterium Halorubrum sodomense and the base sequence optimized for the codon usage of the chloroplast genome of Chlamydomonas that encodes the AR3. 波長500nm付近に吸収極大波長を有するAR3の変異体のアミノ酸配列を示す図である。なお、アミノ酸配列中の下線は、図8及び配列表の配列番号2に示されるアミノ酸配列を有する野生型のAR3から変異したアミノ酸を示している。FIG. 4 shows amino acid sequences of AR3 mutants having a maximum absorption wavelength around 500 nm. Underlined amino acids in the amino acid sequence indicate amino acids mutated from wild-type AR3 having the amino acid sequence shown in FIG. 8 and SEQ ID NO: 2 in the sequence listing.
 以下、本発明について、より詳細に説明する。 The present invention will be described in more detail below.
 本発明に係る形質転換体は、光合成生物の形質転換体であって、光によって駆動するプロトンポンプロドプシンを発現する形質転換体である。まず、本発明に係る形質転換体が発現するプロトンポンプロドプシンについて説明する。 A transformant according to the present invention is a transformant of a photosynthetic organism and a transformant that expresses a light-driven proton pump rhodopsin. First, the proton pump rhodopsin expressed by the transformant of the present invention will be described.
 本明細書において、「プロトンポンプロドプシン」とは、細胞膜に存在する膜タンパク質であり、光を受容することによって駆動され、細胞内から細胞外へ又は細胞外から細胞内へ、一方向にプロトンを輸送する働きをする膜タンパク質である。プロトンポンプロドプシンのうち、細胞内から細胞外へプロトンを輸送する働きをするプロトンポンプロドプシンを外向きプロトンポンプロドプシンといい、反対に、細胞外から細胞内へプロトンを輸送する働きをするプロトンポンプロドプシンを内向きプロトンポンプロドプシンという。本明細書において、「プロトンポンプロドプシン」という場合には、特に断らない限り、「外向きプロトンポンプロドプシン」及び「内向きプロトンポンプロドプシン」の双方を意味する。 As used herein, "proton-pump rhodopsin" is a membrane protein present in the cell membrane, driven by receiving light, and unidirectionally pumps protons from the inside to the outside of the cell or from the outside to the inside of the cell. It is a membrane protein that serves to transport. Among the proton pump rhodopsins, the proton pump rhodopsin that transports protons from the inside to the outside of the cell is called outward proton pump rhodopsin, and conversely, the proton pump rhodopsin that transports protons from the outside to the inside of the cell. is called inward proton pump rhodopsin. In the present specification, the term "proton pump rhodopsin" means both "outward proton pump rhodopsin" and "inward proton pump rhodopsin" unless otherwise specified.
 後述する実験例に示すとおり、光合成生物、好ましくは、光合成生物の葉緑体に内向きプロトンポンプロドプシンを発現させた状態で、当該光合成生物に、その内向きプロトンポンプロドプシンを駆動する光を照射することにより、当該光合成生物の生長を促進、すなわち、生長速度を速めることができ、また、単位体積当たりに生育可能な細胞の数の上限、すなわち、飽和細胞密度を高めることができる。本発明に用いることができる内向きプロトンポンプロドプシンの種類に特段の制限はないが、光合成生物による吸収及び/又は利用が少ないと考えられる波長450nm乃至650nm、好ましくは波長470nm乃至620nm、より好ましくは波長490nm乃至590nmの波長領域に吸収極大波長を有する内向きプロトンポンプロドプシンであることが好ましい。このような内向きプロトンポンプロドプシンとしては、例えば、海洋真正細菌Rubricoccus marinus由来のルブリコッカスマリナスゼノロドプシン(RmXeR)を好適に用いることができる。 As shown in the experimental examples described later, photosynthetic organisms, preferably, in a state in which inward proton pump rhodopsin is expressed in the chloroplast of the photosynthetic organism, are irradiated with light that drives the inward proton pump rhodopsin. By doing so, the growth of the photosynthetic organism can be promoted, that is, the growth rate can be increased, and the upper limit of the number of viable cells per unit volume, that is, the saturated cell density can be increased. Although there is no particular limitation on the type of inward proton-pump rhodopsin that can be used in the present invention, it is considered to be less absorbed and/or utilized by photosynthetic organisms at wavelengths of 450 nm to 650 nm, preferably wavelengths of 470 nm to 620 nm, more preferably wavelengths of 470 nm to 620 nm. It is preferably an inward proton-pump rhodopsin having an absorption maximum wavelength in the wavelength range of 490 nm to 590 nm. As such an inward proton pump rhodopsin, for example, Rubricoccus marinus xenorhodopsin (RmXeR) derived from the marine eubacterium Rubricoccus marinus can be suitably used.
 なお、本明細書において、ルブリコッカスマリナスゼノロドプシン(RmXeR)とは、配列表の配列番号1及び図7で表されるアミノ酸配列を有するタンパク質、および、配列表の配列番号1及び図7で表されるアミノ酸配列と実質的に同一なアミノ酸配列を有するタンパク質のことである。ここで、配列表の配列番号1及び図7で表されるアミノ酸配列と実質的に同一なアミノ酸配列を有するタンパク質とは、配列表の配列番号1及び図7で表されるアミノ酸配列と配列上の相違する点が比較的少ないアミノ酸配列を有するタンパク質であり、配列表の配列番号1及び図7で表されるアミノ酸配列を有するタンパク質と同様に、レチナールを発色団とし、吸収極大波長が可視光領域(おおよそ400~600nm)にあり、このような可視光を受容して駆動され、細胞外から細胞内にプロトンを輸送する性質を示すタンパク質を意味する。例えば、配列表の配列番号1及び図7のアミノ酸配列を構成する全アミノ酸のうち、1個もしくは複数個のアミノ酸が置換、欠失、挿入、及び/又は付加された変異が生じたアミノ酸配列を有するタンパク質をいう。ここで、複数個とはアミノ酸配列を構成する全アミノ酸の数の例えば10%以内の数であり、より好ましくは5%以内の数、さらに好ましくは3%以内の数、よりさらに好ましくは1%以内の数である。上記アミノ酸配列の置換、欠失、挿入および/または付加は、タンパク質をコードする核酸に元々存在した変異であってもよく、また、該核酸を当該技術分野で公知の手法によって改変することによって新たに導入したものであってもよい。 As used herein, Rubricoccus marinus xenorhodopsin (RmXeR) refers to a protein having the amino acid sequence represented by SEQ ID NO: 1 and FIG. A protein having an amino acid sequence substantially identical to the amino acid sequence described herein. Here, the protein having an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 1 and FIG. 7 of the sequence listing is the amino acid sequence represented by SEQ ID NO: 1 and FIG. Similar to the protein having the amino acid sequence represented by SEQ ID NO: 1 and FIG. 7 in the sequence listing, retinal is a chromophore and the maximum absorption wavelength is visible light. It means a protein that exists in the region (approximately 400 to 600 nm), is driven by receiving such visible light, and exhibits the property of transporting protons from the outside to the inside of the cell. For example, an amino acid sequence mutated by substitution, deletion, insertion, and/or addition of one or more amino acids among all amino acids constituting the amino acid sequences of SEQ ID NO: 1 in the sequence listing and FIG. A protein that has Here, the plural number is, for example, a number within 10% of the total number of amino acids constituting the amino acid sequence, more preferably a number within 5%, still more preferably a number within 3%, and even more preferably 1%. The number is within Substitutions, deletions, insertions and/or additions of the above amino acid sequences may be mutations that originally existed in the nucleic acid encoding the protein, or new mutations by modifying the nucleic acid by methods known in the art. may be introduced into
 他方、後述する実験例に示すとおり、光合成生物、より好ましくは光合成生物の葉緑体に外向きプロトンポンプロドプシンを発現させた状態で、当該光合成生物に、その外向きプロトンポンプロドプシンを駆動する光を照射することにより、当該光合成生物の生長を抑制、すなわち、生長速度を遅くすることができ、また、単位体積当たりに生育可能な細胞の数の上限、すなわち、飽和細胞密度を高めることができる。本発明に用いることができる外向きプロトンポンプロドプシンの種類に特段の制限はないが、光合成生物による吸収及び/又は利用が少ないと考えられる波長450nm乃至650nm、好ましくは波長470nm乃至620nm、より好ましくは波長490nm乃至590nmの波長領域に吸収極大波長を有する外向きプロトンポンプロドプシンであることが好ましい。このような外向きプロトンポンプロドプシンとしては、例えば、古細菌Halorubrum sоdоmenseの持つアーキロドプシン3(AR3)を好適に用いることができる。 On the other hand, as shown in the experimental examples described later, in a state in which the outward proton pump rhodopsin is expressed in the photosynthetic organism, more preferably in the chloroplast of the photosynthetic organism, light that drives the outward proton pump rhodopsin is applied to the photosynthetic organism. By irradiating with, the growth of the photosynthetic organism can be suppressed, i.e., the growth rate can be slowed down, and the upper limit of the number of viable cells per unit volume, i.e., the saturated cell density can be increased. . Although there is no particular limitation on the type of outward proton-pump rhodopsin that can be used in the present invention, It is preferably an outward proton-pump rhodopsin having an absorption maximum wavelength in the wavelength range of 490 nm to 590 nm. As such an outward proton-pump rhodopsin, for example, archidopsin 3 (AR3) of the archaebacterium Halorubrum sodomense can be suitably used.
 なお、本明細書において、「アーキロドプシン3(AR3)」とは、配列表の配列番号2及び図8で表されるアミノ酸配列を有するタンパク質、および、配列表の配列番号2及び図8で表されるアミノ酸配列と実質的に同一なアミノ酸配列を有するタンパク質を意味する。ここで、配列表の配列番号2及び図8で表されるアミノ酸配列と実質的に同一なアミノ酸配列を有するタンパク質とは、配列表の配列番号2及び図8で表されるアミノ酸配列と配列上相違する点が比較的少ないアミノ酸配列を有するタンパク質であり、配列表の配列番号2及び図8で表されるアミノ酸配列を有するタンパク質と同様に、レチナールを発色団とし、吸収極大波長が可視光領域(約400~600nm)にあり、このような波長域の可視光を受容して駆動され、細胞内から細胞外にプロトンを輸送する性質を示すタンパク質を意味する。例えば、配列表の配列番号2及び図8で表されるアミノ酸配列を構成する全アミノ酸のうち、1個もしくは複数個のアミノ酸が置換、欠失、挿入、及び/又は付加された変異が生じたアミノ酸配列を有するタンパク質をいう。ここで、複数個とはアミノ酸配列を構成する全アミノ酸の数の例えば10%以内の数であり、より好ましくは5%以内の数、さらに好ましくは3%以内の数、よりさらに好ましくは、1%以内の数である。上記アミノ酸配列の置換、欠失、挿入および/または付加は、タンパク質をコードする核酸に元々存在した変異であってもよく、また、該核酸を当該技術分野で公知の手法によって改変することによって新たに導入したものであってもよい。 As used herein, "archilodopsin 3 (AR3)" refers to a protein having the amino acid sequence represented by SEQ ID NO: 2 and FIG. A protein having an amino acid sequence substantially identical to the amino acid sequence described herein. Here, the protein having an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 2 and FIG. 8 of the sequence listing is the amino acid sequence represented by SEQ ID NO: 2 and FIG. A protein having an amino acid sequence with relatively few points of difference, similar to the protein having the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing and FIG. (approximately 400 to 600 nm), is driven by receiving visible light in such a wavelength range, and exhibits the property of transporting protons from the inside of the cell to the outside of the cell. For example, among all the amino acids constituting the amino acid sequences represented by SEQ ID NO: 2 and FIG. A protein having an amino acid sequence. Here, the plural number is, for example, a number within 10% of the total number of amino acids constituting the amino acid sequence, more preferably a number within 5%, still more preferably a number within 3%, still more preferably 1 It is a number within %. Substitutions, deletions, insertions and/or additions of the above amino acid sequences may be mutations that originally existed in the nucleic acid encoding the protein, or new mutations by modifying the nucleic acid by methods known in the art. may be introduced into
 なお、配列表の配列番号2及び図8で表されるアミノ酸配列と実質的に同一なアミノ酸配列を有するタンパク質としては、例えば、Yuki Sudo et al., Journal of Biolоgical Chemistry 2013, 288(28),20624-20632に記載されている、配列表の配列番号5及び図9で表されるアミノ酸配列を有するAR3変異体(同文献において、「the mutant AR3」)が例示される。当該AR3変異体は、波長500nm付近に吸収極大波長を有する外向きプロトンポンプロドプシンであり、波長550nm付近に吸収極大波長を有する野生型のAR3やRmXeRよりも短波長側の光によって駆動されるという特徴を有するものである。 As a protein having an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 2 and FIG. 8 in the sequence listing, for example, Yuki Sudo et al., Journal of Biological Chemistry 2013, 288(28), 20624-20632 and having the amino acid sequence represented by SEQ ID NO: 5 in the sequence listing and FIG. 9 (“the mutant AR3” in the same document). The AR3 mutant is an outward proton-pump-rhodopsin with a maximum absorption wavelength around 500 nm, and is said to be driven by light with a shorter wavelength than wild-type AR3 and RmXeR, which have a maximum absorption wavelength around 550 nm. It has characteristics.
 一方、本明細書において「光合成生物」とは光合成を行う生物、すなわち、光のエネルギーを生物学的に利用できるエネルギーに変換する光合成を行う生物を意味し、主として、酸素発生型の光合成を行う光合成生物を指す。酸素発生型の光合成を行う光合成生物とは、具体的には陸上植物と藻類であり、陸上植物には、コケ植物門の植物、シダ植物門の植物、裸子植物門の植物、被子植物門の植物が含まれる。一方、藻類とは、酸素発生型の光合成を行う光合成生物のうち、陸上植物を除いたものの総称であり、そのほとんどが水生の光合成生物である。藻類には、核と葉緑体を有する真核藻類と核と葉緑体を持たない原核藻類が含まれ、真核藻類としては、例えば、緑藻、紅藻、不等毛藻、ユーグレナ藻、渦鞭毛藻、灰色藻、クリプト藻、ハプト藻、クロララクニオン藻等が挙げられる。他方、原核藻類としては、例えば、藍藻(シアノバクテリア)が挙げられる。なお、真核生物に取り込まれた藍藻(シアノバクテリア)が葉緑体の起源となり、真核藻類を含む真核光合成生物が誕生したと考えられている。このように真核藻類と原核藻類は、分類上異なるものの共通する性質を有している。 On the other hand, as used herein, the term “photosynthetic organism” means an organism that performs photosynthesis, that is, an organism that performs photosynthesis that converts light energy into biologically usable energy, and mainly performs oxygenic photosynthesis. Refers to photosynthetic organisms. Photosynthetic organisms that perform oxygenic photosynthesis are specifically terrestrial plants and algae. Contains plants. On the other hand, algae is a general term for photosynthetic organisms that perform oxygenic photosynthesis, excluding land plants, and most of them are aquatic photosynthetic organisms. Algae include eukaryotic algae having a nucleus and chloroplasts and prokaryotic algae having no nucleus and chloroplasts. Dinoflagellates, gray algae, cryptophytes, haptophytes, chlorarachnion algae, and the like. On the other hand, prokaryotic algae include, for example, cyanobacteria. It is believed that chloroplasts originated from blue-green algae (cyanobacteria) that were taken up by eukaryotes, and that eukaryotic photosynthetic organisms including eukaryotic algae were born. As described above, eukaryotic algae and prokaryotic algae have common properties although they are classified differently.
 本発明に用いられる光合成生物は、以上説明したような光合成生物であれば基本的にどのようなものであっても良く、その種類に特段の制限はないが、形質転換のし易さや、栽培・培養のし易さという観点からは、微細藻類が特に好適に用いられる。ここで「微細藻類」とは、上記藻類のうち、大きさが数μm~数十μm程度の小さな藻類であり、主として単細胞性のものを指す。微細藻類の中には生長速度が速く、培養が容易なものが多い。また、高等植物よりも高い効率でバイオマスを生産するものが多いため、バイオマスの生産に特に好適に用いられる。 The photosynthetic organism used in the present invention may basically be any photosynthetic organism as described above, and the type is not particularly limited. - From the viewpoint of easiness of culturing, microalgae are particularly preferably used. Here, the term “microalgae” refers to small algae having a size of several μm to several tens of μm among the algae described above, and mainly refers to unicellular algae. Many microalgae grow quickly and are easy to culture. In addition, since many plants produce biomass at a higher efficiency than higher plants, they are particularly suitable for biomass production.
 緑藻に属する微細藻類の具体例としては、例えば、コナミドリムシ(Chlamydomonas reinhardtii)等のクラミドモナス属(Chlamydomonas)、デスモデスムス属(Desmodesmus Scenedesmus)及びセネデスムス属(Scenedesmus)を含む所謂イカダモ、ボルボックス属(Volvox)、テトラセルミス属(Tetraselmis)、クロロコックム属(Chlorococcum)、ドラニエラ属(Dunalliella)、ネオクロリス属(Neochloris)、及び、トレボキシア藻網(Trebouxiophyceae)に属する微細藻類が含まれるが、これらに限定されない。トレボキシア藻網に属する微細藻類の具体例としては、ボツリオコッカス・ブラウニー(Botryococcus braunii)等のボトリオコッカス属(Botryococcus)、クロレラ属(Chlorella)、コッコミクサ属(Coccomyxa)、シュードコッコミクサ属(Pseudococcomyxa)、トレボキシア属(Trebouxia)に属する微細藻類が含まれるが、これらに限定されない。 Specific examples of microalgae belonging to green algae include Chlamydomonas such as Chlamydomonas reinhardtii, Desmodesmus Scenedesmus and Scenedesmus, so-called squid moth, Volvox, Microalgae belonging to the genera Tetraselmis, Chlorococcum, Dunalliella, Neochloris, and Trebouxiophyceae include, but are not limited to. Specific examples of microalgae belonging to the Treboxia algae include the genus Botryococcus such as Botryococcus braunii, the genus Chlorella, the genus Coccomyxa, the genus Pseudococcomyxa ), and microalgae belonging to the genus Trebouxia.
 一方、不等毛藻に属する微細藻類としては、珪藻や真正眼点藻に属する微細藻類が挙げられる。珪藻に属する微細藻類の具体例としては、シクロテラ属(Cyclotella)、シリンドロテカ属(Cylindrotheca)、フィストゥリフェラ属(Fistulifera)、マヤマエア属(Mayamaea)、フェオダクチラム属(Phaeodactylum)、スケレトネマ属(Skeletonema)、及びタラシオシラ属(Thalassiosira)などに属する微細藻類を挙げることができるが、これらに限定されない。他方、真正眼点藻に属する微細藻類の具体例としては、ナンノクロロプシス属(Nannochloropsis)に属する微細藻類を挙げることができるが、これに限定されない。 On the other hand, examples of microalgae belonging to Heterochontophytes include microalgae belonging to diatoms and eutectic algae. Specific examples of microalgae belonging to diatoms include the genus Cyclotella, the genus Cylindrotheca, the genus Fistulifera, the genus Mayamaea, the genus Phaeodactylum, the genus Skeletonema, and Examples include, but are not limited to, microalgae belonging to the genus Thalassiosira and the like. On the other hand, specific examples of microalgae belonging to eutectic algae include, but are not limited to, microalgae belonging to the genus Nannochloropsis.
 また、渦鞭毛藻に属する微細藻類の具体例としては、アンフィジニウム属(Amphidinium)、シンビオジニウム属(Symbiodinium)に属する微細藻類、紅藻に属する微細藻類の具体例としては、シアニディオシゾン属(Cyanidioschyzon)、ポルフィリジウム属(Phorphyridium)に属する微細藻類、ユーグレナ藻に属する微細藻類の具体例としては、ユーグレナ・グラシリス(Euglena gracilis)などのユーグレナ属(Euglena)に属する微細藻類が挙げられるが、これらに限定されない。 Further, specific examples of microalgae belonging to dinoflagellates include the genus Amphidinium, microalgae belonging to the genus Symbiodinium, and specific examples of microalgae belonging to red algae include the genus Cyanidioschizon. (Cyanidioschyzon), microalgae belonging to the genus Phorphyridium, and microalgae belonging to the euglenid algae include microalgae belonging to the genus Euglena such as Euglena gracilis. It is not limited to these.
 藍藻(シアノバクテリア)に分類される微細藻類の具体例としては、アナベナ属(Anabaena)、アルスロスピラ属(Arthrospira)、グロエオバクター属(Gloeobacter)、ミクロシスティス属(Microcystis)、ノストック属(Nostoc)、プロクロロコッカス属(Prochlorococcus)、シネコシスティス属(Synechocystis)、スピルリナ属(Spirulina)、シネココッカス属(Synechococcus)、サーモシネココッカス属(Thermosynechococcus)などの微細藻類が挙げられるが、これらに限定されない。 Specific examples of microalgae classified as blue-green algae (cyanobacteria) include the genus Anabaena, the genus Arthrospira, the genus Gloeobacter, the genus Microcystis, the genus Nostoc, Microalgae include, but are not limited to, Prochlorococcus, Synechocystis, Spirulina, Synechococcus, Thermosynechococcus, and the like.
 本発明の形質転換体は、以上のような光合成生物を形質転換して得られる形質転換体であり、光により駆動するプロトンポンプロドプシンを発現する、すなわち、光により駆動するプロトンポンプロドプシンをコードする遺伝子を含む形質転換体である。ちなみに、形質転換とは、宿主が本来発現しない遺伝子を宿主内で発現させることにより宿主の本来の形質が変化することを言い、形質転換体とは形質転換した宿主を意味する。上述したとおり、本発明に係る形質転換体の宿主としては、例えば、陸上植物や藻類などの光合成生物が用いられる。これらの宿主にとって、主に、脊椎動物や細菌類に分布するプロトンポンプロドプシンは、本来発現しない外来の遺伝子である。 The transformant of the present invention is a transformant obtained by transforming a photosynthetic organism as described above, and expresses a light-driven proton pump rhodopsin, that is, encodes a light-driven proton pump rhodopsin. A transformant containing the gene. Incidentally, the term "transformation" refers to a change in the original traits of a host caused by the expression in the host of a gene that the host normally does not express, and the term "transformant" means a transformed host. As described above, photosynthetic organisms such as land plants and algae are used as hosts for transformants of the present invention. For these hosts, proton pump rhodopsin, which is mainly distributed in vertebrates and bacteria, is a foreign gene that is not originally expressed.
 プロトンポンプロドプシンを発現する光合成生物の形質転換体を得る方法に特段の制限はなく、当業者であれば適宜の方法を用いることができるが、例えば、プロトンポンプロドプシンを光合成生物内で発現させることができる核酸構築物を光合成生物に導入すれば良い。プロトンポンプロドプシンを光合成生物内で発現させることができる核酸構築物とは、具体的には、プロトンポンプロドプシンの全部又はその一部をコードする配列(DNA配列又はRNA配列)を含む核酸構築物であり、例えば、プロトンポンプロドプシンの全部又はその一部をコードするDNA配列やRNA配列を含む発現ベクターであり得る。このような核酸構築物を光合成生物に導入することにより、その光合成生物においてプロトンポンプロドプシンを発現させることができる。 There is no particular limitation on the method for obtaining a transformant of a photosynthetic organism that expresses proton pump rhodopsin, and a person skilled in the art can use an appropriate method. can be introduced into a photosynthetic organism. A nucleic acid construct capable of expressing proton pump rhodopsin in a photosynthetic organism is specifically a nucleic acid construct comprising a sequence (DNA sequence or RNA sequence) encoding all or part of proton pump rhodopsin, For example, it may be an expression vector containing a DNA or RNA sequence encoding all or part of the proton pump prodopsin. By introducing such a nucleic acid construct into a photosynthetic organism, proton pump rhodopsin can be expressed in the photosynthetic organism.
 形質転換に用いられる核酸構築物は、プロトンポンプロドプシンをコードする配列に加えて、当該核酸構築物を導入する宿主においてプロトンポンプロドプシンを発現させるために必要な種々の配列を含み得る。このような配列としては、例えば、プロモーター配列、ターミネーター配列、選択マーカー遺伝子をコードする配列などが含まれる。なお、宿主において発現させたい目的タンパク質をコードする遺伝子配列に加え、その配列の5’末端側と3’末端側に、それぞれプロモーター配列とターミネーター配列が連結された遺伝子断片は発現カセットと呼ばれる。前記核酸構築物は1又は2以上の発現カセットを含んだ発現ベクターであり得、例えば、宿主において発現させたい目的タンパク質であるプロトンポンプロドプシンをコードする配列と選択マーカー遺伝子をコードする配列は、一つのプロモーター配列とターミネーター配列の間に配置されたバイシストロニックな発現カセットとして発現ベクターに含まれていても良い。また、それぞれ別々のプロモーター配列及びターミネーター配列の間に配置されたモノシストロニックな二つの発現カセットとして発現ベクターに含まれていても良い。 A nucleic acid construct used for transformation may contain, in addition to a sequence encoding proton pump rhodopsin, various sequences necessary for expressing proton pump rhodopsin in a host into which the nucleic acid construct is introduced. Such sequences include, for example, promoter sequences, terminator sequences, sequences encoding selectable marker genes, and the like. In addition to the gene sequence encoding the target protein to be expressed in the host, a gene fragment in which a promoter sequence and a terminator sequence are ligated to the 5' end side and 3' end side of the sequence, respectively, is called an expression cassette. The nucleic acid construct can be an expression vector containing one or more expression cassettes. For example, the sequence encoding the target protein proton pump rhodopsin to be expressed in the host and the sequence encoding the selectable marker gene are combined into one It may be contained in an expression vector as a bicistronic expression cassette placed between a promoter sequence and a terminator sequence. Alternatively, it may be contained in an expression vector as two monocistronic expression cassettes arranged between separate promoter and terminator sequences.
 プロモーター配列は、通常、コード領域、すなわち宿主において発現させたい目的タンパク質をコードする配列の5’末端側の非翻訳領域(5’UTR)に存在し、当該目的タンパク質をコードする配列の転写開始反応に関与する配列である。プロモーター配列は、核酸構築物を導入する宿主で機能するプロモーター配列である限りにおいてどのようなプロモーター配列であっても良い。一方、宿主が、核と葉緑体を有する真核光合成生物である場合、安定な形質転換体の得やすさという観点からは、宿主の葉緑体ゲノムに目的遺伝子を導入することが好ましく、このような場合には、核酸構築物が有するプロモーター配列は、宿主の葉緑体で機能するプロモーター配列であることが好ましい。葉緑体で機能するプロモーター配列としては、葉緑体遺伝子の5’非翻訳領域に存在するプロモーター配列を用いることができるが、必ずしも葉緑体遺伝子由来のものでなくても良いし、また、光合成生物由来のものでなくても良い。核酸構築物に用いられ得る葉緑体遺伝子のプロモーター配列としては、例えば、光化学系I反応中心蛋白質遺伝子(psaA、psaB)、光化学系II反応中心蛋白質遺伝子(psbA)、16S リボソームRNA遺伝子(16S rDNA)、リブロース1,5-ビスリン酸カルボキシラーゼ遺伝子(rbcL)、及び、葉緑体ATP合成酵素遺伝子(atpA)のプロモーター配列が挙げられるが、これらに限定されない。当業者であれば、核酸構築物を導入する光合成生物、オルガネラの種類に応じて、適宜のプロモーター配列を選択できる。 A promoter sequence is usually present in a coding region, that is, an untranslated region (5'UTR) at the 5' end of a sequence encoding a target protein to be expressed in a host, and initiates transcription initiation reaction of the sequence encoding the target protein. is a sequence that participates in The promoter sequence may be any promoter sequence as long as it functions in the host into which the nucleic acid construct is introduced. On the other hand, when the host is a eukaryotic photosynthetic organism having a nucleus and a chloroplast, it is preferable to introduce the target gene into the chloroplast genome of the host from the viewpoint of ease of obtaining a stable transformant. In such cases, the promoter sequence possessed by the nucleic acid construct is preferably a promoter sequence that functions in the chloroplast of the host. As the promoter sequence that functions in the chloroplast, a promoter sequence present in the 5' untranslated region of the chloroplast gene can be used, but it does not necessarily have to be derived from the chloroplast gene. It does not have to be derived from photosynthetic organisms. Promoter sequences of chloroplast genes that can be used in nucleic acid constructs include, for example, photosystem I reaction center protein genes (psaA, psaB), photosystem II reaction center protein gene (psbA), 16S ribosomal RNA gene (16S rDNA) , the ribulose 1,5-bisphosphate carboxylase gene (rbcL), and the chloroplast ATP synthase gene (atpA). A person skilled in the art can select an appropriate promoter sequence according to the type of photosynthetic organism or organelle into which the nucleic acid construct is to be introduced.
 ターミネーター配列は、通常、コード領域、すなわち宿主において発現させたい目的タンパク質をコードする遺伝子配列の3’末端側の非翻訳領域(3’UTR)に存在し、当該目的タンパク質をコードする配列の転写終結反応に関与する配列である。ターミネーター配列は、上述したプロモーター配列が関与して開始される転写を終結することができるものであれば、基本的にどのようなものであっても良い。一方、宿主が、核と葉緑体を有する真核光合成生物である場合、安定な形質転換体の得やすさという観点からは、宿主の葉緑体ゲノムに目的遺伝子を導入することが好ましく、このような場合には、プロモーター配列同様、核酸構築物が有するターミネーター配列は、宿主の葉緑体で機能するターミネーター配列であることが好ましい。葉緑体で機能するターミネーター配列としては、葉緑体遺伝子のターミネーター配列を用いることができるが、必ずしも葉緑体遺伝子由来のものでなくても良いし、光合成生物由来のものでなくても良い。核酸構築物に用いられ得る葉緑体遺伝子のターミネーター配列としては、例えば、リブロース1,5-ビスリン酸カルボキシラーゼ遺伝子(rbcL)の3’非翻訳領域の配列を用いることができるが、これに限定されない。当業者であれば、核酸構築物を導入する光合成生物、オルガネラの種類に応じて、適宜のターミネーター配列を選択できる。 A terminator sequence is usually present in a coding region, that is, an untranslated region (3'UTR) at the 3' end of a gene sequence encoding a target protein to be expressed in a host, and terminates transcription of the target protein-encoding sequence. A sequence that participates in a reaction. The terminator sequence may basically be anything as long as it is capable of terminating transcription initiated with the participation of the above-mentioned promoter sequence. On the other hand, when the host is a eukaryotic photosynthetic organism having a nucleus and a chloroplast, it is preferable to introduce the target gene into the chloroplast genome of the host from the viewpoint of ease of obtaining a stable transformant. In such a case, the terminator sequence possessed by the nucleic acid construct, like the promoter sequence, is preferably a terminator sequence that functions in the chloroplast of the host. As the terminator sequence that functions in the chloroplast, the terminator sequence of the chloroplast gene can be used, but it does not necessarily have to be derived from the chloroplast gene or from photosynthetic organisms. . Terminator sequences of chloroplast genes that can be used in nucleic acid constructs include, but are not limited to, the sequence of the 3′ untranslated region of the ribulose 1,5-bisphosphate carboxylase gene (rbcL). A person skilled in the art can select an appropriate terminator sequence according to the type of photosynthetic organism or organelle into which the nucleic acid construct is to be introduced.
 また、核酸構築物は、選択マーカー遺伝子を含んでいても良い。選択マーカー遺伝子は、当該選択マーカー遺伝子が発現する個体(すなわち、形質転換)を形質転換されていない個体(すなわち、非形質転換体)から識別することができるものである限りにおいて、どのようなものであっても良く、緑色蛍光蛋白質(GFP)や赤色蛍光蛋白質(RFP)などの蛍光蛋白質をコードする遺伝子、ルシフェラーゼなどの発光酵素をコードする遺伝子、及び、選択薬物に対する耐性遺伝子などが好適に用いられる。例えば、選択薬物に対する耐性遺伝子を選択マーカー遺伝子として用いる場合には、当該選択マーカー遺伝子を含む核酸構築物を導入することにより形質転換された形質転換体は、当該選択薬物に対して耐性を示すので、形質転換体と非形質転換体の双方を含む集団を当該選択薬物を含む培地等で培養することによって、非形質転換体を死滅させ、形質転換された形質転換体を効率的に選別することができる。なお、選択マーカー遺伝子として用いられる選択薬物に対する耐性遺伝子に特段の制限はないが、敢えて例示するのであれば、例えば、アミノグリコシドアデニルトランスフェラーゼ遺伝子(aadA)(Z. Svab and P. Maliga, Proc. Natl. Acad. Sci. USA 1993, 90, 913-917.)などのスペクチノマイシン及びストレプトマイシン耐性遺伝子、アミノグリコシドホスホトランスフェラーゼ遺伝子(aphA-6)(J.M. Bateman and S.Purton, Molecular and General Genetics 2000, 263, 404-410.)やネオマイシンホスホトランスフェラーゼ遺伝子(nptII)(H. Carrer et. al., Molecular and General Genetics 1993, 241, 49-56.)などのカナマイシン耐性遺伝子を用いることができる。当業者であれば、前記核酸構築物を導入する光合成生物、オルガネラの種類などに応じて、適宜の選択マーカー遺伝子を選択できる。 In addition, the nucleic acid construct may contain a selectable marker gene. Any selectable marker gene can be used as long as it can distinguish individuals in which the selectable marker gene is expressed (i.e., transformed) from non-transformed individuals (i.e., non-transformants). , genes encoding fluorescent proteins such as green fluorescent protein (GFP) and red fluorescent protein (RFP), genes encoding luciferases such as luciferase, genes resistant to selected drugs, and the like are preferably used. be done. For example, when a resistance gene to a selection drug is used as a selection marker gene, a transformant transformed by introducing a nucleic acid construct containing the selection marker gene shows resistance to the selection drug. By culturing a population containing both transformants and non-transformants in a medium or the like containing the selection drug, non-transformants can be killed and transformed transformants can be efficiently selected. can. There is no particular limitation on the resistance gene to the selection drug used as the selection marker gene, but if I dare to exemplify it, for example, the aminoglycoside adenyltransferase gene (aadA) (Z. Svab and P. Maliga, Proc. Natl. Acad. Sci. USA 1993, 90, 913-917.), spectinomycin and streptomycin resistance genes, aminoglycoside phosphotransferase gene (aphA-6) (JM Bateman and S. Purton, Molecular and General Genetics 2000, 263, 404-410.) and kanamycin-resistant genes such as the neomycin phosphotransferase gene (nptII) (H. Carrer et al., Molecular and General Genetics 1993, 241, 49-56.) can be used. A person skilled in the art can select an appropriate selectable marker gene according to the type of photosynthetic organism, organelle, etc. into which the nucleic acid construct is to be introduced.
 なお、選択マーカー遺伝子は形質転換後に形質転換体から取り除いても良い。形質転換後に選択マーカー遺伝子を形質転換体から取り除く方法は、例えば、Anil Day et. al.(Plant Biotechnology Journal 2011, 9, 540-553.)や特開2015-171358号公報に記載されているが、これらに限定されない。 The selection marker gene may be removed from the transformant after transformation. A method for removing the selectable marker gene from the transformant after transformation is described, for example, in Anil Day et. al. (Plant Biotechnology Journal 2011, 9, 540-553.) and JP-A-2015-171358, but are not limited thereto.
 また、安定的にプロトンポンプロドプシンを発現する形質転換体を得るという観点からは、プロトンポンプロドプシンをコードする配列は相同組換えにより宿主である光合成生物のゲノムに組み込まれることが好ましい。したがって、好適な一態様において、上記核酸構築物は、相同組換えにより宿主のゲノムに組み込まれる配列、すなわち目的タンパク質であるプロトンポンプロドプシンをコードする配列又は当該配列を含む発現カセットの5’末端側と3’末端側に、当該配列又は発現カセットを挟み込む一対の相同組換え配列を有している。一対の相同組換え配列は、宿主のゲノムの所定の領域の塩基配列と相同性を有する一対の塩基配列であり、具体的には、宿主のゲノムの所定の領域の上流に存在する塩基配列と相同性を有する配列と、同じ領域の下流に存在する塩基配列と相同性を有する配列の組み合わせを一対の相同組換え配列とすることができる。一対の相同組換え配列と、宿主のゲノムのうち当該一対の相同組換え配列と相同性を有する配列とが交叉することで、当該一対の相同組換え配列の間に存在する目的タンパク質をコードする配列、本発明においては、プロトンポンプロドプシンをコードする配列又は当該配列を含む発現カセットが宿主のゲノムに組み込まれる。 In addition, from the viewpoint of obtaining a transformant that stably expresses proton pump prodopsin, it is preferable that the sequence encoding proton pump prodopsin is integrated into the genome of the host photosynthetic organism by homologous recombination. Therefore, in a preferred embodiment, the nucleic acid construct comprises a sequence to be integrated into the genome of the host by homologous recombination, that is, a sequence encoding the target protein proton pump rhodopsin, or the 5′ end of the expression cassette containing the sequence. It has a pair of homologous recombination sequences flanking the sequence or expression cassette on the 3' end side. A pair of homologous recombination sequences is a pair of base sequences having homology with a base sequence of a predetermined region of the host genome, specifically, a base sequence present upstream of the predetermined region of the host genome A pair of homologous recombination sequences can be a combination of a sequence having homology and a sequence having homology to a base sequence existing downstream of the same region. By crossing a pair of homologous recombination sequences and a sequence having homology to the pair of homologous recombination sequences in the genome of the host, the target protein present between the pair of homologous recombination sequences is encoded. A sequence, in the present invention, a sequence encoding proton pump rhodopsin or an expression cassette comprising said sequence is integrated into the genome of the host.
 なお、宿主である光合成生物が核と葉緑体を有する真核光合成生物である場合には、宿主が有する葉緑体ゲノムは核ゲノムと比較して相同組換え効率が高いため、葉緑体ゲノムを標的とすれば、より効率的に相同組換えにより目的遺伝子を導入することができる。したがって、好適な一態様において、前記一対の相同組換え配列は、葉緑体ゲノムの一部と相同組換え可能な一対の配列、すなわち、宿主の葉緑体ゲノムの所定の領域の塩基配列と相同性を有する一対の塩基配列であることが好ましく、具体的には、宿主の葉緑体ゲノムの所定の領域の上流に存在する塩基配列と相同性を有する配列と、同じ領域の下流に存在する塩基配列と相同性を有する配列の組み合わせを一対の相同組換え配列として用いることができる。なお、相同組換えを効率的に起こすという観点からは、一対の相同組換え配列の長さは、それぞれ500bp以上であることが好ましく、通常1kb~3kb程度のものが用いられる。 In addition, when the host photosynthetic organism is a eukaryotic photosynthetic organism having a nucleus and chloroplast, the chloroplast genome possessed by the host has a higher homologous recombination efficiency than the nuclear genome. By targeting the genome, the target gene can be introduced more efficiently by homologous recombination. Therefore, in a preferred embodiment, the pair of homologous recombination sequences is a pair of sequences capable of homologous recombination with a part of the chloroplast genome, i.e., a base sequence of a predetermined region of the chloroplast genome of the host and It is preferably a pair of nucleotide sequences having homology. Specifically, a sequence having homology with a nucleotide sequence existing upstream of a predetermined region of the chloroplast genome of the host and a sequence existing downstream of the same region A combination of a sequence having homology with the base sequence that is used can be used as a pair of homologous recombination sequences. From the viewpoint of efficiently causing homologous recombination, the length of each pair of homologous recombination sequences is preferably 500 bp or more, and usually about 1 kb to 3 kb is used.
 以上説明した核酸構築物は、形質転換の対象となる宿主に応じて、物理的方法、化学的方法、生物的方法を問わず適宜の方法により導入することができる。核酸構築物の導入方法としては、例えば、パーティクルガン法、アグロバクテリウム法、プロトプラスト法が挙げられるが、これらに限られることなく、当業者であれば適宜の導入方法を用いることができる。例えば、アルファルファモザイクウイルス(AIMV)、タバコモザイクウイルス(TMV)、プラムポックスウイルス(PPV)、ジャガイモXウイルス(PVX)、キュウリモザイクウイルス(CMV)、ズッキーニイエローモザイクウイルス(ZYMV)などのウイルスベクターを用いても良いし、細胞膜透過性ペプチドを用いても良い。細胞膜透過性ペプチドを用いた光合成生物への核酸構築物の導入については、例えば、Keiji Numata et al.(Scientific Reports 8、Article number:10966(2018))に記載されている。なお、核酸構築物の導入効率や形質転換体効率の観点から、アグロバクテリウム法やパーティクルガン法が一般的に用いられている。 The nucleic acid constructs described above can be introduced by an appropriate method, regardless of physical, chemical or biological methods, depending on the host to be transformed. Methods for introducing nucleic acid constructs include, for example, the particle gun method, the Agrobacterium method, and the protoplast method, but are not limited to these methods, and those skilled in the art can use appropriate introduction methods. For example, using viral vectors such as alfalfa mosaic virus (AIMV), tobacco mosaic virus (TMV), plumpox virus (PPV), potato X virus (PVX), cucumber mosaic virus (CMV), zucchini yellow mosaic virus (ZYMV) Alternatively, a cell membrane permeable peptide may be used. For introduction of nucleic acid constructs into photosynthetic organisms using cell membrane penetrating peptides, see, for example, Keiji Numata et al. (Scientific Reports 8, Article number: 10966 (2018)). The Agrobacterium method and the particle gun method are generally used from the viewpoint of the efficiency of introduction of nucleic acid constructs and the efficiency of transformants.
 パーティクルガン法とは、粒子銃法ともいわれ、核酸構築物でコーティングした粒径0.1~2.0μm程度のマイクロパーティクル(タングステン粒子や金粒子)を宿主に直接撃ち込むことにより核酸構築物を導入する方法である(J.E.Boynton et. al., Science 1988, 240, 1534-1538.)。パーティクルガン法は、葉緑体やミトコンドリアなどの細胞内オルガネラに直接的に核酸構築物を導入できるため、葉緑体ゲノムへの遺伝子導入に特に好適に用いられる。 The particle gun method, also called the particle gun method, is a method of introducing a nucleic acid construct by directly shooting microparticles (tungsten particles or gold particles) coated with the nucleic acid construct and having a particle size of about 0.1 to 2.0 μm into the host. (JE Boynton et al., Science 1988, 240, 1534-1538.). Since the particle gun method can directly introduce nucleic acid constructs into intracellular organelles such as chloroplasts and mitochondria, it is particularly suitable for gene introduction into chloroplast genomes.
 一方、アグロバクテリウム法とは、植物に感染する土壌細菌であるAgrobacterium属の細菌、例えば、アグロバクテリウム・ツメファシエンス(A. tumefaciens)やアグロバクテリウム・リゾゲネス(A.rhizogenes)が植物細胞に感染する際に、自身が持つDNAを植物細胞に導入する性質を利用した形質転換法である。形質転換体に導入したい目的遺伝子をアグロバクテリウムに導入し、得られたアグロバクテリウムを宿主に感染させることによって、宿主に目的遺伝子を導入することができる。 On the other hand, the Agrobacterium method involves infecting plant cells with bacteria of the genus Agrobacterium, which are soil bacteria that infect plants, such as A. tumefaciens and A. rhizogenes. It is a transformation method that utilizes the property of introducing its own DNA into plant cells when it transforms. The target gene can be introduced into the host by introducing the target gene to be introduced into the transformant into Agrobacterium and infecting the host with the resulting Agrobacterium.
 プロトプラスト法とは、細胞壁分解酵素液(例えば、セルラーゼとペクチナーゼの混合物)等によって細胞を処理し、細胞壁を除去することでプロトプラスト化した後に、当該プロトプラストに対して目的遺伝子を導入する方法である。プロトプラストに目的遺伝子を導入する方法としては、エレクトロポレーション法、マイクロインジェクション法、ポリエチレングリコール法又はガラスビーズ法等が知られている。エレクトロポレーション法とは、プロトプラストに電気パルスをかけ、瞬間的に細胞膜に穴をあけることで、目的遺伝子をプロトプラスト内に導入する方法である。一方、マイクロインジェクション法は、微小ガラス管等を用いて目的遺伝子をプロトプラスト内に直接導入する方法である。また、ポリエチレングリコール法は、プロトプラストにポリエチレングリコールを作用させてプロトプラストに目的遺伝子を導入する方法である。そして、ガラスビーズ法とは、プロトプラストの懸濁液に直径0.5mm程度のガラスビーズと核酸構築物とを加え、ボルテックスミキサー等で攪拌・混合することにより目的遺伝子をプロトプラストに導入する方法である。 The protoplast method is a method in which cells are treated with a cell wall-degrading enzyme solution (for example, a mixture of cellulase and pectinase), etc., the cell walls are removed to form protoplasts, and then the target gene is introduced into the protoplasts. Electroporation, microinjection, polyethylene glycol, glass beads, and the like are known methods for introducing a target gene into protoplasts. Electroporation is a method of introducing a target gene into protoplasts by applying an electric pulse to the protoplasts to instantaneously create holes in the cell membrane. On the other hand, the microinjection method is a method of directly introducing a target gene into a protoplast using a micro glass tube or the like. The polyethylene glycol method is a method of introducing a target gene into protoplasts by allowing polyethylene glycol to act on the protoplasts. The glass bead method is a method in which glass beads with a diameter of about 0.5 mm and a nucleic acid construct are added to a suspension of protoplasts, and the mixture is stirred and mixed with a vortex mixer or the like to introduce a target gene into protoplasts.
 以上に例示されたような適宜の導入方法を用いて、核酸構築物を導入した後には、プロトンポンプロドプシンを発現する形質転換体を、導入した核酸構築物に含まれる選択マーカー遺伝子の種類に応じて、適宜の手法により選択すれば良い。一方、導入した核酸構築物に選択マーカー遺伝子が含まれていない場合には、例えば、PCR法等によって目的遺伝子の導入を直接確認することにより形質転換体を選択しても良い。 After introducing the nucleic acid construct using an appropriate introduction method as exemplified above, transformants expressing proton pump prodopsin are selected according to the type of selection marker gene contained in the introduced nucleic acid construct. It may be selected by an appropriate method. On the other hand, when the introduced nucleic acid construct does not contain a selection marker gene, transformants may be selected by directly confirming the introduction of the target gene by, for example, the PCR method.
 なお、多細胞性の光合成生物、例えば、多細胞性の植物又は藻類の形質転換体を調製する場合には、核酸構築物を当該多細胞性の光合成生物を構成する1又は複数の細胞に導入した上で、当該細胞を分化させ、光合成生物全体を再生すれば良い。より具体的には、例えば、適宜の手法により核酸構築物を植物又は藻類を構成する細胞に導入した後に、所定の植物ホルモン(オーキシンやサイトカイニン)を所定量含む培地で培養することにより脱分化(カルス化)し、得られたカルスを所定の植物ホルモン(オーキシンやサイトカイニン)を所定量含む培地で培養して分化させ、植物又は藻類を形成させればよい。また、前もってカルス化した細胞に核酸構築物を導入して、得られたカルスを分化させることによっても、形質転換体された多細胞性の植物又は藻類を得ることができる。しかしながら、多細胞性の光合成生物の形質転換体を調製する方法は以上に限られず、当業者であれば適宜の方法を用いて多細胞性の光合成生物の形質転換体を得ることができる。その他の方法としては、例えば、植物組織の一部を形質転換するin planta法が含まれる。 When preparing a transformant of a multicellular photosynthetic organism such as a multicellular plant or algae, the nucleic acid construct is introduced into one or more cells that constitute the multicellular photosynthetic organism. Then, the cell may be differentiated to regenerate the whole photosynthetic organism. More specifically, for example, after introducing a nucleic acid construct into cells constituting plants or algae by an appropriate method, dedifferentiation (callus transformation), and the obtained callus is cultured in a medium containing a predetermined amount of a predetermined plant hormone (auxin or cytokinin) to differentiate and form plants or algae. Transformed multicellular plants or algae can also be obtained by introducing the nucleic acid construct into cells previously callusized and allowing the resulting callus to differentiate. However, the method for preparing a transformant of a multicellular photosynthetic organism is not limited to the above, and a person skilled in the art can obtain a transformant of a multicellular photosynthetic organism using an appropriate method. Other methods include, for example, the in planta method of transforming part of the plant tissue.
 以上のように、光合成生物に核酸構築物を導入し、形質転換体を適宜選択し、必要であれば脱分化・分化させることによって、プロトンポンプロドプシンを発現する光合成生物の形質転換体を得ることができるが、形質転換の具体的方法は、上述したものに限られず、当業者であれば適宜の方法で形質転換体を作製し得る。なお、光合成生物の形質転換方法は、例えば、「日本化学会編、実験化学講座29 バイオテクノロジーの基本技術 第5版、丸善株式会社、平成18年7月25日発行」にも記載されている。 As described above, a transformant of a photosynthetic organism that expresses proton pump rhodopsin can be obtained by introducing a nucleic acid construct into a photosynthetic organism, appropriately selecting a transformant, and dedifferentiating/differentiating if necessary. However, specific transformation methods are not limited to those described above, and those skilled in the art can prepare transformants by appropriate methods. The transformation method of photosynthetic organisms is also described, for example, in "The Chemical Society of Japan, Experimental Chemistry Course 29 Basic Technology of Biotechnology 5th Edition, Maruzen Co., Ltd., published on July 25, 2006". .
 以下、本発明の光合成生物の生育を制御する方法について説明する。 The method for controlling the growth of photosynthetic organisms of the present invention will be described below.
 本明細書において、光合成生物の「生育を制御する」とは、光合成生物の生長を促進又は抑制すること、及び、単位体積当たりに生育可能な細胞の数の上限、すなわち、飽和細胞密度を増加又は減少させることを含んで意味する概念である。なお、本明細書において、光合成生物の「生長」とは、光合成生物の細胞数が増加することを意味し、生長の促進とは、細胞数の増加速度が上昇すること、生長の抑制とは、細胞数の増加速度が減少することをそれぞれ意味する。なお、光合成生物が微細藻類である場合には、生長の促進又は抑制は、対数増殖期における細胞増殖速度の増加又は減少として観察され得る。また、単位体積当たりに生育可能な細胞の数の上限の増加又は減少は、細胞増殖が定常状態に達した増殖定常期における単位体積当たりの細胞の数、すなわち飽和細胞密度の増加又は減少として観察され得る。 As used herein, "controlling the growth" of photosynthetic organisms means promoting or suppressing the growth of photosynthetic organisms, and increasing the upper limit of the number of viable cells per unit volume, i.e., increasing the saturated cell density. Or it is a concept that means including reducing. As used herein, the term “growth” of a photosynthetic organism means that the number of cells of the photosynthetic organism increases. , respectively, mean that the rate of increase in cell number is decreased. In addition, when the photosynthetic organism is microalgae, the promotion or inhibition of growth can be observed as an increase or decrease in cell growth rate during the logarithmic growth phase. In addition, an increase or decrease in the upper limit of the number of viable cells per unit volume is observed as an increase or decrease in the number of cells per unit volume in the stationary growth phase when cell growth reaches a steady state, that is, the saturated cell density. can be
 上述したとおり、本発明者らが見出した知見によれば、プロトンポンプロドプシンを発現可能に形質転換された光合成生物の形質転換体に、光を照射してプロトンポンプロドプシンを駆動すると、当該形質転換体の生長が促進又は抑制されるとともに、単位体積当たりに生育可能な細胞の数の上限を増加させることができる。すなわち、本発明に係る光合成生物の生育を制御する方法は、
(1)光合成生物の形質転換体であって、プロトンポンプロドプシンを発現する形質転換体を得る工程、及び、
(2)前記形質転換体に光を照射することにより、前記プロトンポンプロドプシンを駆動する工程、
を含む。以下、各工程について、更に詳細に説明する。
As described above, according to the findings of the present inventors, when a transformant of a photosynthetic organism that has been transformed to be able to express proton pump rhodopsin is irradiated with light to drive proton pump rhodopsin, the transformant Body growth can be promoted or inhibited and the upper limit of the number of viable cells per unit volume can be increased. That is, the method for controlling the growth of photosynthetic organisms according to the present invention includes:
(1) obtaining a transformant of a photosynthetic organism that expresses proton pump prodopsin;
(2) driving the proton pump rhodopsin by irradiating the transformant with light;
including. Each step will be described in more detail below.
工程(1)光合成生物の形質転換体を得る工程
 光合成生物を形質転換体することにより、プロトンポンプロドプシンを発現する光合成生物の形質転換体を得る工程である。形質転換体及びその作製方法については既に述べたとおりであり、光合成生物にプロトンポンプロドプシンをコードする配列を含む核酸構築物を導入し、その後、形質転換された個体(プロトンポンプロドプシンを発現する個体)を選択することにより、プロトンポンプロドプシンを発現する形質転換体を得ることができる。すなわち、好適な一態様において、上記工程(1)は、光合成生物にプロトンポンプロドプシンをコードする配列を含む核酸構築物を導入する工程、及び、前記プロトンポンプロドプシンを発現する形質転換体を選択する工程を含み得る。なお、プロトンポンプロドプシンを発現する光合成生物の形質転換体が市販されている場合には、市販されているものを用いても良いことは言うまでもない。
Step (1) Step of obtaining a transformant of a photosynthetic organism This is a step of obtaining a transformant of a photosynthetic organism expressing proton pump prodopsin by transforming the photosynthetic organism. The transformant and its preparation method are as described above. A nucleic acid construct containing a sequence encoding proton pump prodopsin is introduced into a photosynthetic organism, and then a transformed individual (individual expressing proton pump prodopsin). A transformant expressing proton pump rhodopsin can be obtained by selecting . That is, in a preferred embodiment, the step (1) comprises introducing a nucleic acid construct containing a sequence encoding a proton pump rhodopsin into a photosynthetic organism, and selecting a transformant expressing the proton pump rhodopsin. can include Needless to say, when transformants of photosynthetic organisms expressing proton pump rhodopsin are commercially available, the commercially available transformants may be used.
 なお、プロトンポンプロドプシンを発現する形質転換体が得られる限りにおいて、光合成生物にプロトンポンプロドプシンをコードする核酸構築物を導入する方法は基本的にどのようなものであっても良く、既に述べたとおり、例えば、プロトプラスト法、パーティクルガン法、アグロバクテリウム法、ウイルスベクター法などを用いて核酸構築物を光合成生物に導入することができる。 As long as a transformant that expresses the proton pump prodopsin can be obtained, basically any method can be used to introduce the nucleic acid construct encoding the proton pump prodopsin into the photosynthetic organism. For example, protoplast method, particle gun method, Agrobacterium method, viral vector method, etc. can be used to introduce nucleic acid constructs into photosynthetic organisms.
 一方、プロトンポンプロドプシンを発現する形質転換体を選択する方法に特段の制限はなく、適宜の方法を用いてプロトンポンプロドプシンを発現する形質転換体を選択すれば良いが、典型的には選択マーカー遺伝子を含む核酸構築物を用いて形質転換を行うことにより、容易に形質転換体を選択することができる。例えば、選択マーカー遺伝子として蛍光蛋白質を含む核酸構築物を用いる場合には、当該核酸構築物を導入することにより形質転換された形質転換体は所定の蛍光を発するため、蛍光を発する個体を選別することにより形質転換体を選択することができる。一方、選択マーカー遺伝子として、選択薬物に対する耐性遺伝子をコードする配列を含む核酸構築物を用いる場合には、当該核酸構築物を導入することにより形質転換された形質転換体は、所定の選択薬物に対する耐性遺伝子を発現する一方で、形質転換されていない個体は当該耐性遺伝子を発現しないため、形質転換された個体と形質転換されていない個体の双方を含む集団を選択薬物を含む培地等で処理することにより、形質転換された個体のみを選択的に取得することができる。なお、形質転換体を選択できる限りにおいて、どのような選択マーカー遺伝子を用いても良い。また、必ずしも選択マーカー遺伝子を用いる必要はなく、例えば、PCR法等によって目的遺伝子の導入を直接確認することにより、形質転換体を選択しても良い。 On the other hand, the method for selecting transformants expressing proton pump rhodopsin is not particularly limited, and transformants expressing proton pump rhodopsin may be selected using an appropriate method. Transformants can be easily selected by transforming using a nucleic acid construct containing a gene. For example, when a nucleic acid construct containing a fluorescent protein is used as a selection marker gene, a transformant transformed by introducing the nucleic acid construct emits a predetermined fluorescence. Transformants can be selected. On the other hand, when a nucleic acid construct containing a sequence encoding a resistance gene to a selection drug is used as a selection marker gene, a transformant transformed by introducing the nucleic acid construct has a resistance gene to a predetermined selection drug. on the other hand, non-transformed individuals do not express the resistance gene. , only transformed individuals can be selectively obtained. Any selection marker gene may be used as long as the transformant can be selected. In addition, it is not always necessary to use a selectable marker gene, and transformants may be selected by directly confirming introduction of the target gene by PCR, for example.
 なお、光合成生物が多細胞性の光合成生物、例えば、多細胞性の植物や藻類である場合には、核酸構築物を多細胞性の光合成生物の1又は複数の細胞に導入した上で、当該細胞をカルス化、再分化させ、光合成生物を再生すれば良い。すなわち、上記工程(1)は、プロトンポンプロドプシンをコードする配列を含む核酸構築物を光合成生物に導入する工程、核酸構築物を導入した光合成生物からカルスを得る工程、及び、得られたカルスを分化させて形質転換体を得る工程を含み得る。なお、カルスとは脱分化した状態にある植物又は藻類の細胞であり、典型的には、植物又は藻類の細胞の一部を所定の植物ホルモンの存在下で培養することにより形成される。カルスに接触させる植物ホルモンの濃度や種類を調節することにより、一度形成したカルスは植物又は藻類の個体へと再分化させることができ、このようにして形質転換された植物又は藻類の個体を得ることができる。ちなみに、カルスを得た後に、プロトンポンプロドプシンをコードする配列を含む核酸構築物を導入し、核酸構築物を導入したカルスを再分化させても良いことは言うまでもない。 In addition, when the photosynthetic organism is a multicellular photosynthetic organism, for example, a multicellular plant or algae, the nucleic acid construct is introduced into one or more cells of the multicellular photosynthetic organism, and then the cell callus and redifferentiation to regenerate photosynthetic organisms. That is, the step (1) includes a step of introducing a nucleic acid construct containing a sequence encoding proton pump rhodopsin into a photosynthetic organism, a step of obtaining callus from the photosynthetic organism into which the nucleic acid construct has been introduced, and a step of differentiating the obtained callus. to obtain transformants. A callus is a dedifferentiated plant or algae cell, and is typically formed by culturing a portion of a plant or algae cell in the presence of a given plant hormone. By adjusting the concentration and type of plant hormones brought into contact with the callus, the callus once formed can be redifferentiated into individual plants or algae, thus obtaining transformed individual plants or algae. be able to. Needless to say, after obtaining callus, a nucleic acid construct containing a proton pump prodopsin-encoding sequence may be introduced, and the callus introduced with the nucleic acid construct may be redifferentiated.
工程(2)プロトンポンプロドプシンを駆動する工程
 工程(1)において得られた光合成生物の形質転換体に光を照射することにより、当該形質転換体に発現させたプロトンポンプロドプシンを駆動する工程である。後述する実験例に示すとおり、光合成生物にプロトンポンプロドプシンを発現させた状態、好ましくは、光合成生物の細胞膜、更に好ましくは、光合成生物の葉緑体にプロトンポンプロドプシンを発現させた状態において、プロトンポンプロドプシンが駆動されると、光合成生物の生長が促進又は抑制される。また、プロトンポンプロドプシンを駆動する光が照射される環境下で栽培又は培養することにより、単位体積当たりに生育可能な細胞数の上限、すなわち、飽和細胞密度を高めることができる。
Step (2) Driving proton pump rhodopsin A step of irradiating the transformant of the photosynthetic organism obtained in step (1) with light to drive the proton pump rhodopsin expressed in the transformant. . As shown in the experimental examples described later, in a state in which proton pump rhodopsin is expressed in photosynthetic organisms, preferably in the cell membrane of photosynthetic organisms, more preferably in a state in which proton pump rhodopsin is expressed in chloroplasts of photosynthetic organisms, proton When pumprhodopsin is driven, the growth of photosynthetic organisms is promoted or inhibited. In addition, by cultivating or culturing in an environment irradiated with light that drives proton pump rhodopsin, the upper limit of the number of cells that can be grown per unit volume, that is, the saturated cell density can be increased.
 プロトンポンプロドプシンを駆動するために形質転換体に照射される光の波長は、プロトンポンプロドプシンを活性化して、プロトンポンプロドプシンを駆動することができる波長の光を含んでいる限りにおいて、特段の制限はなく、プロトンポンプロドプシンの吸収波長や、用いる光合成生物の生育環境等に応じて適宜選択すれば良い。なお、プロトンポンプロドプシンは、発色団としてレチナールを結合しており、典型的には波長約400nm~600nmの領域に吸収極大波長を有し、当該領域の波長を有する光を受容すると、レチナールの光異性化を介して活性化され、細胞膜内外のプロトン輸送が起こる。したがって、用いられるプロトンポンプロドプシンの種類にもよるが、形質転換体に照射する光の波長は約400nm~600nmの波長の光を含んでいることが好ましい。このような波長を含む光には、波長500nm乃至600nm程度の緑色の光が含まれる。このように本発明に係る光合成生物の生育を制御する方法は、現在までに光合成生物の生育制御に、あまり活用されてこなかった緑色の光を主として用いるものである。なお、様々な波長の光を組み合わせて用いても良いことは勿論であり、例えば、緑色の光とともに、青色の光(波長400~500nm)や赤色の光(波長600nm~700nm)を組み合わせて用いても良い。 The wavelength of the light irradiated to the transformant to drive the proton pump rhodopsin is not particularly limited as long as it contains light of a wavelength capable of activating the proton pump rhodopsin and driving the proton pump rhodopsin. Instead, it may be appropriately selected according to the absorption wavelength of the proton pump rhodopsin, the growth environment of the photosynthetic organism to be used, and the like. In addition, proton pump rhodopsin binds retinal as a chromophore, and typically has a maximum absorption wavelength in the wavelength range of about 400 nm to 600 nm. It is activated through isomerization, resulting in proton transport across the cell membrane. Therefore, although it depends on the type of proton-pump-rhodopsin used, the wavelength of light irradiated to the transformant preferably includes light with a wavelength of about 400 nm to 600 nm. Light having such wavelengths includes green light having a wavelength of approximately 500 nm to 600 nm. Thus, the method of controlling the growth of photosynthetic organisms according to the present invention mainly uses green light, which has not been widely used for the growth control of photosynthetic organisms up to now. Of course, light of various wavelengths may be used in combination. For example, green light may be combined with blue light (wavelength 400 to 500 nm) or red light (wavelength 600 nm to 700 nm). can be
 照射される光の光源は特に限定されず、例えば、LEDランプ、蛍光ランプ、高圧ナトリウムランプ、メタルハライドランプ等の人工光源を用いても良いし、太陽光などの自然光を用いても良い。また、それらの組み合わせであっても良い。なお、照射される光は、点滅光、連続光、或いはそれらの組み合わせであってもよい。 The light source for the emitted light is not particularly limited. For example, artificial light sources such as LED lamps, fluorescent lamps, high-pressure sodium lamps, and metal halide lamps may be used, or natural light such as sunlight may be used. Moreover, it may be a combination thereof. Note that the emitted light may be flashing light, continuous light, or a combination thereof.
 一方、本発明は、更に他の一側面において、バイオマスの製造方法であって、
(A)光合成生物の生育を制御する上記方法を用いて光合成生物を培養又は栽培する工程、及び
(B)前記光合成生物からバイオマスを回収する工程、
を含む、バイオマスの製造方法を提供するものである。本発明に係る形質転換体、本発明に係る光合成生物の生育を制御する方法によれば、光合成生物の生長を促進又は抑制することができ、また、単位体積当たりに生育可能な細胞の数の上限、すなわち飽和細胞密度を高めることができるので、光合成生物に由来する様々なバイオマスを効率的に製造することができる。
On the other hand, in still another aspect of the present invention, there is provided a method for producing biomass,
(A) culturing or cultivating a photosynthetic organism using the method described above for controlling the growth of the photosynthetic organism; and (B) recovering biomass from the photosynthetic organism;
A method for producing biomass is provided. According to the transformant according to the present invention and the method for controlling the growth of photosynthetic organisms according to the present invention, the growth of photosynthetic organisms can be promoted or suppressed, and the number of viable cells per unit volume Since the upper limit, that is, the saturated cell density can be increased, various biomass derived from photosynthetic organisms can be efficiently produced.
 なお、本明細書において「バイオマス」とは、光合成生物に由来する材料を意味し、光合成生物そのもの、及び、光合成生物の処理物が含まれる。光合成生物の処理物には、光合成生物から得られる有用物質、及び、前記有用物質を採取した後に残る光合成生物の残滓が含まれる。光合成生物から得られる有用物質としては、例えば、油脂、脂肪酸、炭化水素、でん粉などが挙げられるが、これらに限定されない。なお、緑藻の一種であるクラミドモナスは、バイオ燃料の原料となるでん粉やトリアシルグリセロールを産生することが知られている。 In this specification, "biomass" means materials derived from photosynthetic organisms, and includes photosynthetic organisms themselves and processed products of photosynthetic organisms. The treated products of photosynthetic organisms include useful substances obtained from photosynthetic organisms and residues of photosynthetic organisms remaining after collecting the useful substances. Examples of useful substances obtained from photosynthetic organisms include, but are not limited to, fats and oils, fatty acids, hydrocarbons, and starches. Chlamydomonas, a type of green algae, is known to produce starch and triacylglycerol, which are raw materials for biofuels.
 バイオマスを回収する方法に特段の制限はなく、光合成生物の種類、回収するバイオマスの種類に応じて、適宜の手法を用いれば良い。敢えて例示するのであれば、例えば、バイオマスが油脂や炭化水素などの有機溶媒に可溶な物質である場合には、光合成生物を乾燥、破砕した後、有機溶媒を用いて抽出することにより回収することができる。回収物は、クロマトグラフィーや蒸留などの操作により更に精製しても良い。 There are no particular restrictions on the method of collecting biomass, and an appropriate method can be used according to the type of photosynthetic organisms and the type of biomass to be collected. To give an example, for example, when the biomass is a substance soluble in an organic solvent such as fat or hydrocarbon, the photosynthetic organisms are dried and crushed, and then recovered by extraction with an organic solvent. be able to. The collected material may be further purified by operations such as chromatography and distillation.
 本明細書において引用されたすべての文献の開示内容は、全体として明細書に参照により組み込まれる。また、本明細書全体において、単数形の「a」、「an」、および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数のものを含むものとする。 The disclosure contents of all documents cited in this specification are incorporated by reference into the specification as a whole. Also, throughout this specification, where the singular forms of the words “a,” “an,” and “the” are included, the singular as well as the plural unless the context clearly indicates otherwise. shall include things.
 以下、実施例を示してさらに本発明の説明を行うが、実施例は、あくまでも本発明の実施形態の例示にすぎず、本発明の範囲を何ら限定するものではない。 The present invention will be further described below with reference to examples, but the examples are merely illustrations of embodiments of the present invention and do not limit the scope of the present invention.
実験1.クラミドモナス細胞発現用プラスミドの作製
 緑藻の一種であるクラミドモナス(Chlamydomonas reinhardtii)(以下、単に「クラミドモナス」という。)に発現させる形質転換用プラスミドを作製した。具体的な構成は図1に示すとおりである。クラミドモナス葉緑体形質転換用ベクターであるpSXY246Aの制限酵素SbfI部位には、クラミドモナスの葉緑体ゲノムのコドン使用頻度に最適化した配列を有するAR3をコードする遺伝子(Genbank accession number:WP_092921078)又はRmXeRをコードする遺伝子(Genbank accession number:WP_094549673)が挿入されており、その5’末端又は3’末端側には、AR3又はRmXeRの発現を検出するためのHA(ヘマグルチニン)タグ配列をコードする遺伝子が付加されている。図1において「psaA」と「rbcL」は、それぞれpsaA遺伝子のプロモーター配列、rbcL遺伝子のターミネーター配列を示し、プロトンポンプロドプシン遺伝子(AR3遺伝子又はRmXeR遺伝子)をコードする配列の前後に配置されている。また、相同組み換え用に、プロトンポンプロドプシン遺伝子をコードする配列の5’末端側には葉緑体タンパク質であるpsbAの遺伝子配列(光化学系IIの反応中心であるD1タンパク質をコードする遺伝子であり5つのエキソン:E1~E5を含む)を、他方、3’末端側には、rrn5(リボソーム合成遺伝子)の遺伝子配列、及び、rrnL(リボソーム合成遺伝子)の遺伝子配列が配置されており、これらが本明細書でいうところの一対の相同組換え配列に相当する。また、形質転換体を選抜/選択するための選択マーカー遺伝子として、スペクチノマイシンとストレプトマイシンへの耐性を与えるアミノグリコシドアデニル転移酵素(AAD)をコードする大腸菌遺伝子(aadA)とATPaseCF1遺伝子(atpA)をコードする配列が組み込まれている。なお、形質転換に用いたクラミドモナス(Chlamydomonas reinhardtii)の細胞株であるFud7株の葉緑体ゲノムには、上記形質転換用プラスミドの発現カセットの5’末端側と3’末端側に配置された配列と相同性を有する配列が含まれており、これらの配列を介して相同組み換えが起こることで、プロトンポンプロドプシン遺伝子が宿主であるクラミドモナス(Chlamydomonas reinhardtii)の葉緑体ゲノムに取り込まれる。上述したとおり、プロモーター配列としては、葉緑体で機能するプロモーター配列として、光化学系Iの反応中心蛋白質をコードするpsaA遺伝子のプロモーター配列が使用されている。すなわち、上記プラスミドは相同組み換えにより葉緑体ゲノムに取り込まれ、また上記プラスミドにコードされるAR3又はRmXeRは葉緑体内で発現されるようになっている。
 なお、本実験に用いたクラミドモナス葉緑体形質転換体用ベクターであるpSXY246Aは国立大学法人岡山大学高橋裕一郎博士より譲渡を受けたものであり、その調製はYuichiro Takahashi et al., Plant Cell Physiol 37(2):161-168(1996)、又はMichelet Laure et al.,Plant Biotechnolgy Journal, 9(5):565-574(2011)に準じて行うことができる。
Experiment 1. Preparation of Plasmid for Chlamydomonas Cell Expression A transforming plasmid for expression in Chlamydomonas reinhardtii (hereinafter simply referred to as "Chlamydomonas"), a kind of green alga, was prepared. A specific configuration is as shown in FIG. At the restriction enzyme SbfI site of pSXY246A, a vector for Chlamydomonas chloroplast transformation, a gene encoding AR3 having a sequence optimized for the codon usage of the chloroplast genome of Chlamydomonas (Genbank accession number: WP_092921078) or RmXeR A gene encoding a gene (Genbank accession number: WP_094549673) is inserted, and a gene encoding an HA (hemagglutinin) tag sequence for detecting the expression of AR3 or RmXeR is inserted at the 5' end or 3' end. is added. In FIG. 1, "psaA" and "rbcL" indicate the promoter sequence of the psaA gene and the terminator sequence of the rbcL gene, respectively, which are located before and after the sequence encoding the proton pump rhodopsin gene (AR3 gene or RmXeR gene). For homologous recombination, the gene sequence of the chloroplast protein psbA (the gene encoding the D1 protein that is the reaction center of photosystem II and 5 On the other hand, the rrn5 (ribosome synthesis gene) gene sequence and the rrnL (ribosome synthesis gene) gene sequence are arranged on the 3′ end side, and these are the present It corresponds to a pair of homologous recombination sequences as referred to in the specification. In addition, E. coli gene (aadA) encoding aminoglycoside adenyltransferase (AAD) that confers resistance to spectinomycin and streptomycin and ATPaseCF1 gene (atpA) are encoded as selectable marker genes for selection/selection of transformants. It contains an array that In the chloroplast genome of the Fud7 strain, which is a cell strain of Chlamydomonas reinhardtii used for transformation, the sequences arranged at the 5′ end side and the 3′ end side of the expression cassette of the above transforming plasmid are By homologous recombination occurring via these sequences, the proton pump rhodopsin gene is incorporated into the chloroplast genome of the host Chlamydomonas reinhardtii. As described above, the promoter sequence of the psaA gene, which encodes the reaction center protein of photosystem I, is used as the promoter sequence that functions in the chloroplast. That is, the plasmid is integrated into the chloroplast genome by homologous recombination, and AR3 or RmXeR encoded by the plasmid is expressed in the chloroplast.
The vector pSXY246A for the Chlamydomonas chloroplast transformant used in this experiment was given by Dr. Yuichiro Takahashi of Okayama University, and was prepared by Yuichiro Takahashi et al., Plant Cell Physiol 37. (2): 161-168 (1996), or Michelet Laure et al. , Plant Biotechnology Journal, 9(5): 565-574 (2011).
実験2.クラミドモナス細胞の葉緑体のゲノム組換え
 常法に従って、クラミドモナス(Chlamydomonas reinhardtii)の細胞株であるFud7株の葉緑体ゲノムの組換えを行った。具体的な手順は以下のとおりである。なお、単細胞性の真核光合成生物であり、緑藻の一種であるクラミドモナス(Chlamydomonas reinhardtii)は、光合成生物の最もシンプルなモデルとして、植物学分野をはじめとした生命科学分野で広く用いられている。
Experiment 2. Chloroplast genome recombination of Chlamydomonas cells Fud7 strain, a cell strain of Chlamydomonas reinhardtii, was recombined with the chloroplast genome according to the standard method. The specific procedure is as follows. Chlamydomonas reinhardtii, which is a unicellular eukaryotic photosynthetic organism and a kind of green algae, is widely used in the field of life sciences including the field of botany as the simplest model of photosynthetic organisms.
 まず、以下の表1に示す組成を有するTAP培地に懸濁したクラミドモナスFud7に対して、上記実験1で調製したAR3プラスミド又はRmXeRプラスミドをキャリアパーティクル(粒径1.0~1.3μmのタングステン粒子)に結合させ、パーティクル遺伝子導入装置(製品名:IDERA、型式:GIE-III、株式会社タナカ)を用いてクラミドモナスへと打ち込み、葉緑体に遺伝子を導入した。遺伝子導入後の細胞は、常法に従って、スぺクチノマイシン(終濃度:150 μg mL-1)を含むTAPプレートに塗布し、植物培養用インキュベーター(製品名「ミニプラントインキュベーター 3in1 LED照明育成棚装備タイプ」、株式会社日本医化器械製作所)内で温度25оC、照射光波長660nm、光量子量85μmоl photons m-2sec-1の条件で、19日間培養した。 First, for Chlamydomonas Fud7 suspended in TAP medium having the composition shown in Table 1 below, the AR3 plasmid or RmXeR plasmid prepared in Experiment 1 was added to carrier particles (tungsten particles with a particle size of 1.0 to 1.3 μm). ) and injected into Chlamydomonas using a particle gene introduction device (product name: IDERA, model: GIE-III, Tanaka Co., Ltd.) to introduce the gene into the chloroplast. The cells after gene introduction were applied to a TAP plate containing spectinomycin (final concentration: 150 μg mL −1 ) according to a conventional method, and placed in an incubator for plant culture (product name “Mini plant incubator 3 in 1 LED lighting growing shelf equipped type”). , Nihon Ika Kikai Seisakusho Co., Ltd.) under the conditions of a temperature of 25 ° C., an irradiation light wavelength of 660 nm, and a photon amount of 85 μmol photons m −2 sec −1 for 19 days.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実験3.クラミドモナス細胞におけるAR3又はRmXeRの発現の確認
 クラミドモナス細胞におけるAR3又はRmXeRの発現は、AR3のN末端又はRmXeRのC末端に付加したHAタグ配列に対するウェスタンブロッティング法により確認した。具体的には、上記実験2で作製したクラミドモナス細胞のコロニーをTAP培地へと移し、植物培養用インキュベーター内で温度25оC、照射光波長660nm、光量子量20~30μmоl photons m-2sec-1、100rpmの条件で振盪培養した。その後、遠心分離にてクラミドモナス細胞を回収し、ショ糖密度勾配遠心法を用いてチラコイド膜画分を取得した。得られたチラコイド膜画分をクロロフィル量が1μg(以下、「1μg Chl」と表記する。)となるように適宜希釈し、5%アクリルアミドゲルを濃縮ゲル、12%アクリルアミドゲルを分離ゲルとした電気泳動用のゲルにアプライした。電気泳動後、転写膜であるImmunobilon(R)-FL PVDF膜(Merck KGaA、Germany)へ転写し、抗HAタグ抗体(Anti-HA-tag mAb monoclonal、アイソタイプ:Mouse IgG2bκ、株式会社医学生物学研究所)を一次抗体として3時間免疫抗体反応を行った。次に、PBS-Tween(Tween濃度:0.1%)で6,000倍希釈したHRP標識anti-mouse IgG(GEヘルスケア・ジャパン株式会社)を二次抗体として1時間免疫抗体反応を行った後、ECL prime(GEヘルスケア・ジャパン株式会社)を用いて化学発光を検出した。化学発光の検出は市販のイメージアナライザー(製品名「ImageQuant LAS 4000mini」、GEヘルスケア・ジャパン株式会社)を用いて行った。
Experiment 3. Confirmation of Expression of AR3 or RmXeR in Chlamydomonas Cells Expression of AR3 or RmXeR in Chlamydomonas cells was confirmed by Western blotting for the HA tag sequence added to the N-terminus of AR3 or the C-terminus of RmXeR. Specifically, the colonies of Chlamydomonas cells prepared in Experiment 2 above were transferred to TAP medium and placed in a plant culture incubator at a temperature of 25 ° C, an irradiation light wavelength of 660 nm, and a photon amount of 20 to 30 µmol photons m -2 sec -1. , shaking culture at 100 rpm. After that, Chlamydomonas cells were recovered by centrifugation, and a thylakoid membrane fraction was obtained using sucrose density gradient centrifugation. The obtained thylakoid membrane fraction was appropriately diluted so that the amount of chlorophyll was 1 μg (hereinafter referred to as “1 μg Chl”), and electrophoresis was performed using a 5% acrylamide gel as a concentration gel and a 12% acrylamide gel as a separation gel. Applied to a gel for electrophoresis. After electrophoresis, transfer to Immunobilon (R)-FL PVDF membrane (Merck KGaA, Germany), which is a transfer membrane, anti-HA tag antibody (Anti-HA-tag mAb monoclonal, isotype: Mouse IgG2bκ, Medical Biological Research Co., Ltd. place) was used as the primary antibody, and an immunization antibody reaction was performed for 3 hours. Next, HRP-labeled anti-mouse IgG (GE Healthcare Japan Co., Ltd.) diluted 6,000-fold with PBS-Tween (Tween concentration: 0.1%) was used as a secondary antibody, and an immunization antibody reaction was performed for 1 hour. After that, chemiluminescence was detected using ECL prime (GE Healthcare Japan Co., Ltd.). Chemiluminescence was detected using a commercially available image analyzer (product name: "ImageQuant LAS 4000mini", GE Healthcare Japan Co., Ltd.).
 得られた結果を図2に示す。図2に示すとおり、非形質転換体(図2において「コントロール」)と比べて、AR3遺伝子導入細胞(図2において「AR3」)又はRmXeR遺伝子導入細胞(図2において「RmXeR」)では、両ロドプシンの推定質量である28.8kDa(AR3)又は26.1kDa(RmXeR)付近に、強いシグナルが観察された(図2)。また、葉緑体チラコイド膜分画においても同様の位置に強いシグナル強度を有するバンドが観察された(図2)。これらの結果から、両ロドプシンが、主として、クラミドモナス細胞の葉緑体チラコイド膜に発現していることが確認された。 The results obtained are shown in Figure 2. As shown in FIG. 2, compared with the non-transformant (“control” in FIG. 2), both AR3 gene-introduced cells (“AR3” in FIG. 2) or RmXeR gene-introduced cells (“RmXeR” in FIG. 2) A strong signal was observed around the putative mass of rhodopsin, 28.8 kDa (AR3) or 26.1 kDa (RmXeR) (Fig. 2). Also, in the chloroplast thylakoid membrane fraction, a band with strong signal intensity was observed at the same position (Fig. 2). These results confirmed that both rhodopsins were mainly expressed in the chloroplast thylakoid membrane of Chlamydomonas cells.
実験4.クラミドモナス細胞の増殖挙動の観察
 実験2で得られたクラミドモナスの形質転換体の可視光照射下における増殖挙動を観察した。具体的な手順は以下に示すとおりである。まず、AR3又はRmXeRを発現する形質転換体、及び、コントロールとしてAR3又はRmXeRを発現していないクラミドモナス(ロドプシン非発現細胞)を以下の表5に示す組成を有するHSM培地5mL中に0.50×10cells/mLで懸濁し、インキュベーター(製品名:卓上型人工気象器<3in1LED照明搭載タイプ>、型番:LH-80LED-DT、株式会社日本医化器械製作所)内で培養した。なお、培養中の光照射の条件は次の通りである:照射光波長660nm(赤色LED)、光量子量20μmоl photons m-2sec-1、照射光波長520nm(緑色LED)、光量子量10μmоl photons m-2sec-1、照射光波長450nm(青色LED)、光量子量20μmоl photons m-2sec-1。所定の培養時間が経過した後、細胞数をセルアナライザー(製品名「Countess II FL 自動セルカウンター」、Thermo Fisher Scientific K.K.)により測定した。
Experiment 4. Observation of Growth Behavior of Chlamydomonas Cells The growth behavior of the Chlamydomonas transformant obtained in Experiment 2 under visible light irradiation was observed. Specific procedures are as follows. First, a transformant expressing AR3 or RmXeR and, as a control, Chlamydomonas (rhodopsin-non-expressing cells) not expressing AR3 or RmXeR were 0.50× in 5 mL of HSM medium having the composition shown in Table 5 below. The cells were suspended at 10 6 cells/mL and cultured in an incubator (product name: tabletop artificial weather device <3in1LED lighting type>, model number: LH-80LED-DT, Nihon Ika Kikai Seisakusho Co., Ltd.). The conditions for light irradiation during culture are as follows: irradiation light wavelength 660 nm (red LED), photon amount 20 μmol photons m −2 sec −1 , irradiation light wavelength 520 nm (green LED), photon amount 10 μmol photons m. −2 sec −1 , irradiation light wavelength 450 nm (blue LED), photon quantity 20 μmol photons m −2 sec −1 . After a predetermined culture time had passed, the number of cells was measured using a cell analyzer (product name “Countess II FL automatic cell counter”, Thermo Fisher Scientific K.K.).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 得られた結果を図3に示す。細胞が増殖する72時間後(後期対数増殖期)において、ロドプシン非発現細胞(図3において、「コントロール」)では、単位体積当たりの細胞数が8.40±0.341×10cells/mLであったのに対し、細胞内から細胞外へプロトンを輸送し、もって細胞内のアルカリ化を促進すると考えられる外向きプロトンポンプロドプシンであるAR3を葉緑体に発現するAR3発現細胞(図3において「AR3」)では、単位体積当たりの細胞数が6.52±0.427×10cells/mLであり、コントロールと比較しておよそ0.78倍になった(図3)。一方で、細胞外から細胞内にプロトンを輸送し、もって細胞内の酸性化を促進すると考えられる内向きプロトンポンプロドプシンであるRmXeRを葉緑体に発現するRmXeR発現細胞(図3において「RmXeR」)では、単位体積当たりの細胞数が10.9±0.836×10cells/mLであり、コントロールと比較しておよそ1.3倍になった(図3)。このように、クラミドモナス細胞において、外向きプロトンポンプロドプシンであるAR3又は内向きプロトンポンプロドプシンであるRmXeRを発現させ、プロトンポンプロドプシンを駆動する光を照射することで、対数増殖期におけるクラミドモナス細胞の生長をそれぞれ促進又は抑制できることが示された。 The results obtained are shown in FIG. After 72 hours of cell proliferation (late logarithmic growth phase), the number of cells per unit volume was 8.40±0.341×10 6 cells/mL in the rhodopsin non-expressing cells (“control” in FIG. 3). On the other hand, AR3-expressing cells express in the chloroplast AR3, an outward proton-pump rhodopsin that is thought to transport protons from the inside to the outside of the cell, thereby promoting intracellular alkalinization (Fig. 3 In "AR3"), the number of cells per unit volume was 6.52±0.427×10 6 cells/mL, which was approximately 0.78 times that of the control (FIG. 3). On the other hand, RmXeR-expressing cells (“RmXeR” in FIG. 3) expressing in chloroplasts RmXeR, which is an inward proton pump rhodopsin that is thought to transport protons from the outside to the inside of cells and thus promote intracellular acidification. ), the number of cells per unit volume was 10.9±0.836×10 6 cells/mL, which was approximately 1.3 times that of the control (FIG. 3). Thus, by expressing AR3, which is an outward proton-pump rhodopsin, or RmXeR, which is an inward proton-pump rhodopsin, in Chlamydomonas cells and irradiating light that drives the proton pump rhodopsin, the growth of Chlamydomonas cells in the logarithmic growth phase was achieved. can be promoted or suppressed, respectively.
 一方、細胞の増殖が定常期に達する168時間後において、ロドプシン非発現細胞(図3において「コントロール」)では、細胞数が8.32±0.978×10cells/mLであったのに対し、細胞内から細胞外にプロトンを輸送し、もって細胞内のアルカリ化を促進すると考えられる外向きプロトンポンプロドプシンであるAR3を葉緑体に発現するAR3発現細胞(図3において「AR3」)では、単位体積当たりの細胞の数、すなわち、細胞密度が16.1±0.881×10cells/mLと、コントロールと比較しておよそ1.9倍になった(図3)。一方で、細胞外から細胞内にプロトンを輸送し、もって細胞内の酸性化を促進すると考えられる内向きプロトンポンプロドプシンであるRmXeRを葉緑体に発現するRmXeR発現細胞(図3において「RmXeR」)では、単位体積当たりの細胞の数、すなわち、細胞密度が16.5±1.24×10cells/mLと、コントロールと比較しておよそ2.0倍になった(図3)。このように、クラミドモナス細胞において、外向きプロトンポンプロドプシンであるAR3又は内向きプロトンポンプロドプシンであるRmXeRを発現させ、プロトンポンプロドプシンを駆動する光を照射した環境で生育させることで、クラミドモナスの細胞増殖定常期における単位体積当たりの細胞の数、すなわち飽和細胞密度の上限が高まることが示された。 On the other hand, 168 hours after the cell proliferation reached the stationary phase, the number of rhodopsin non-expressing cells (“control” in FIG. 3) was 8.32±0.978×10 6 cells/mL. On the other hand, AR3-expressing cells expressing in chloroplasts AR3, which is an outward proton pump rhodopsin that is thought to transport protons from the inside to the outside of the cells and thereby promote intracellular alkalinization (“AR3” in FIG. 3). In , the number of cells per unit volume, that is, the cell density was 16.1±0.881×10 6 cells/mL, approximately 1.9 times higher than the control (FIG. 3). On the other hand, RmXeR-expressing cells (“RmXeR” in FIG. 3) expressing in chloroplasts RmXeR, which is an inward proton pump rhodopsin that is thought to transport protons from the outside to the inside of cells and thus promote intracellular acidification. ), the number of cells per unit volume, that is, the cell density was 16.5±1.24×10 6 cells/mL, approximately 2.0 times higher than the control (FIG. 3). Thus, in Chlamydomonas cells, by expressing AR3, which is an outward proton-pump rhodopsin, or RmXeR, which is an inward proton-pump rhodopsin, and growing them in an environment irradiated with light that drives the proton pump rhodopsin, cell proliferation of Chlamydomonas It was shown that the number of cells per unit volume in stationary phase, ie the upper limit of saturation cell density, is increased.
実験5.クラミドモナス細胞の形態の観察
 実験4と同時に、可視光照射によるクラミドモナス細胞の形態への影響を観察した。細胞の形態変化は、正立顕微鏡(型式:CX41N-31、オリンパス株式会社)を用いて観察、より具体的には、細胞を正立顕微鏡のステージにセットし、顕微鏡用CCDカメラ(FULL HD  HDMI Camera TrueChrome II Plus高精度モニターセット、バイオツールズ株式会社)を用いて細胞の外観の写真を撮影した。なお、以上の観察は、室温(おおむね15~25оC)で行った。一方、細胞面積は、セルアナライザー(製品名「Countess II FL 自動セルカウンター」、Thermo Fisher Scientific K.K.)を用いて細胞の写真を撮影し、得られた画像をソフトウェア(ImageJ)によって解析することにより求めた。
Experiment 5. Simultaneously with observation experiment 4 on the morphology of Chlamydomonas cells , the effect of visible light irradiation on the morphology of Chlamydomonas cells was observed. Morphological changes of cells are observed using an upright microscope (model: CX41N-31, Olympus Corporation). More specifically, cells are set on the stage of an upright microscope, and a microscope CCD camera (FULL HD HDMI Photographs of cell appearance were taken using a Camera TrueChrome II Plus high-precision monitor set, Biotools Inc.). The above observations were made at room temperature (approximately 15 to 25 ° C). On the other hand, the cell area is measured by taking a photograph of the cell using a cell analyzer (product name "Countess II FL automatic cell counter", Thermo Fisher Scientific K.K.) and analyzing the obtained image by software (ImageJ). I asked for it.
 結果を図4に示す。図4に示すとおり、培養開始から24時間後及び72時間後の対数増殖期、及び168時間後の増殖定常期における細胞面積及び細胞形態は、プロトンポンプロドプシンを発現するAR3発現細胞又はRmXeR発現細胞と、プロトンポンプロドプシンを発現していないコントロールとで変化が見られなかった。この結果は、プロトンポンプロドプシンを発現する形質転換体においては、正常な細胞機能が損なわれることなく、その生長が促進又は抑制されることを示している。 The results are shown in Figure 4. As shown in FIG. 4, the cell area and cell morphology in the logarithmic growth phase 24 hours and 72 hours after the start of culture, and in the stationary growth phase 168 hours after the start of the culture, were observed in AR3-expressing cells or RmXeR-expressing cells expressing proton pump rhodopsin. and a control that did not express proton pump rhodopsin. This result indicates that the growth of transformants expressing proton pump rhodopsin is promoted or suppressed without impairing normal cell functions.
実験6.クラミドモナス細胞の乾燥重量の測定
 実験4と同時に、可視光照射によるクラミドモナスの形質転換体の乾燥重量への影響を評価した。具体的な手順は以下に示すとおりである。すなわち、実験4において、培養開始から168時間が経過した後、5 mLの培養液を回収し、回収した培養液を遠心分離した後、上清を取り除いた。そして、1 mLの滅菌水を加え、ボルテックスミキサー(製品名『TUBE MIXER TRIO』、アズワン(AS ONE)株式会社製)で十分に懸濁した後、遠心分離を行い、上清を取り除いた。以上のとおりの、滅菌水を用いた洗浄作業を計3回行い、培地成分を取り除いた。そして、80℃に加熱したインキュベーターへ細胞を移し、4時間静置し乾燥させた。その後、分析用電子天びん(製品名『HR-100AZ』、株式会社エー・アンド・デイ製)を用いて、乾燥質量を測定した。
Experiment 6. Measurement of Dry Weight of Chlamydomonas Cells Simultaneously with Experiment 4, the effect of visible light irradiation on the dry weight of the Chlamydomonas transformants was evaluated. Specific procedures are as follows. That is, in Experiment 4, after 168 hours from the start of culture, 5 mL of the culture medium was collected, centrifuged, and then the supernatant was removed. Then, 1 mL of sterilized water was added, and after sufficiently suspending with a vortex mixer (product name “TUBE MIXER TRIO”, manufactured by AS ONE Co., Ltd.), centrifugation was performed and the supernatant was removed. As described above, the washing operation using sterilized water was performed three times in total to remove the medium components. Then, the cells were transferred to an incubator heated to 80° C. and allowed to stand for 4 hours to dry. After that, the dry mass was measured using an analytical electronic balance (product name “HR-100AZ”, manufactured by A&D Co., Ltd.).
 結果を図5に示す。図5に示すとおり、培養開始から168時間後の増殖定常期における乾燥重量は、プロトンポンプロドプシンを発現するAR3発現細胞及びRmXeR発現細胞では、プロトンポンプロドプシンを発現していないコントロールと比べて、それぞれ2.0倍および1.3倍上昇した。この結果は、プロトンポンプロドプシンを発現する形質転換体においては、正常な炭素固定能が損なわれることなく、培養液中の細胞数が増加するにしたがって、培養液中の細胞の合計質量も増加したことを示している。 The results are shown in Figure 5. As shown in FIG. 5, the dry weight in the stationary growth phase 168 hours after the start of culture was higher in the AR3-expressing cells and RmXeR-expressing cells, which express proton pump rhodopsin, compared to the control that did not express proton pump rhodopsin. increased 2.0-fold and 1.3-fold. The results showed that in transformants expressing proton pump rhodopsin, the total mass of cells in the culture increased as the number of cells in the culture increased, without loss of normal carbon fixation capacity. It is shown that.
実験7.クラミドモナス細胞の油滴(脂肪滴)形成能の評価
 実験4と同時に、実験2で得られたクラミドモナスの形質転換体の可視光照射下における油滴(脂肪滴)形成能を評価した。油滴形成能は、形成された油滴のナイルレッド染色に基づいて評価した。具体的には、実験4において、培養開始から168時間が経過した後、1mLの培養液を回収し、回収した培養液にナイルレッド(富士フイルム和光純薬株式会社製)を終濃度が1.0 μg/mLとなるように添加した。そして、この培養液をスライドガラスへと滴下し、その上にカバーガラスを載置した。細胞の観察は、水銀ランプU-LH100HGAPO(オリンパス株式会社製)を備え付けた倒立型リサーチ顕微鏡(型式:IX71、オリンパス株式会社製)を用いて行った。ナイルレッドが発する蛍光の観察は、波長480±10nmの励起光を照射し、波長550±10nmの領域の蛍光を検出することで行った。なお、以上の観察は、室温(約15~25оC)で行った。蛍光画像は、CCDカメラ(ORCA-AG、浜松ホトニクス株式会社製)とMeta Vueソフトウェア(Version7.5.6.0、Molecular Devices社製、米国)を用いて取得・解析を行った。
Experiment 7. Evaluation of oil droplet (lipid droplet) forming ability of Chlamydomonas cells Simultaneously with Experiment 4, the Chlamydomonas transformant obtained in Experiment 2 was evaluated for oil droplet (lipid droplet) forming ability under visible light irradiation. Oil droplet forming ability was assessed based on Nile Red staining of the oil droplets formed. Specifically, in Experiment 4, after 168 hours from the start of the culture, 1 mL of the culture medium was collected, and Nile Red (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added to the collected culture medium at a final concentration of 1.5 mL. Added to 0 μg/mL. Then, this culture solution was dropped onto a slide glass, and a cover glass was placed thereon. Cells were observed using an inverted research microscope (model: IX71, manufactured by Olympus Corporation) equipped with a mercury lamp U-LH100HGAPO (manufactured by Olympus Corporation). The fluorescence emitted by Nile Red was observed by irradiating excitation light with a wavelength of 480±10 nm and detecting fluorescence in a wavelength region of 550±10 nm. The above observations were made at room temperature (about 15 to 25 ° C). Fluorescence images were acquired and analyzed using a CCD camera (ORCA-AG, Hamamatsu Photonics Co., Ltd.) and Meta Vue software (Version 7.5.6.0, Molecular Devices, USA).
 結果を図6に示す。図6(A)に示すとおり、培養開始から168時間後の増殖定常期において、プロトンポンプロドプシンを発現するAR3発現細胞又はRmXeR発現細胞では、プロトンポンプロドプシンを発現していないコントロールと同様に、油滴形成を示すナイルレッド染色に由来する蛍光シグナルが観察できた。また、油滴形成量の指標として、各細胞におけるナイルレッド染色に由来する蛍光シグナルの蛍光強度を比較したところ、図6(B)に示すとおり、AR3発現細胞ではコントロールと比べて、蛍光強度が1.7倍上昇した。一方、RmXeR発現細胞ではコントロールと比べて、蛍光強度の変化が見られなかった。この結果は、プロトンポンプロドプシンを発現する形質転換体においては、正常な油滴形成能が損なわれていないこと、及び、外向きプロトンポンプロドプシンであるAR3を発現させた形質転換体(AR3発現細胞)では、むしろ、油滴形成能が上昇したことを示している。 The results are shown in Figure 6. As shown in FIG. 6(A), in the stationary phase of growth 168 hours after the start of culture, the AR3-expressing cells or RmXeR-expressing cells expressing proton pump rhodopsin showed oil growth in the same way as the control not expressing proton pump rhodopsin. A fluorescent signal from Nile Red staining indicating droplet formation could be observed. In addition, as an indicator of the amount of oil droplets formed, the fluorescence intensity of the fluorescence signal derived from Nile Red staining in each cell was compared. As shown in FIG. increased by 1.7 times. On the other hand, no change in fluorescence intensity was observed in RmXeR-expressing cells compared to the control. This result shows that the normal oil droplet formation ability is not impaired in transformants expressing proton pump rhodopsin, and that transformants expressing AR3, which is an outward proton pump rhodopsin (AR3-expressing cells ) rather shows that the oil droplet forming ability is increased.
[配列表の説明]
配列番号1:海洋真正細菌Rubricoccus marinus由来のRmXeRのアミノ酸配列
配列番号2:古細菌Halorubrum sоdоmense由来のAR3のアミノ酸配列
配列番号3:海洋真正細菌Rubricoccus marinus由来のRmXeRをコードする、クラミドモナスの葉緑体ゲノムのコドン使用頻度に最適化した塩基配列
配列番号4:古細菌Halorubrum sоdоmense由来のAR3をコードする、クラミドモナスの葉緑体ゲノムのコドン使用頻度に最適化した塩基配列
配列番号5:波長500nm付近に吸収極大波長を有するAR3の変異体のアミノ酸配列
[Description of Sequence Listing]
SEQ ID NO: 1: Amino acid sequence of RmXeR from the marine eubacterium Rubricoccus marinus SEQ ID NO: 2: Amino acid sequence of AR3 from the archaebacterium Halorubrum sodomense SEQ ID NO: 3: Chlamydomonas chloroplast encoding RmXeR from the marine eubacterium Rubricoccus marinus Nucleotide sequence optimized for the codon usage of the genome SEQ ID NO: 4: Nucleotide sequence optimized for the codon usage of the chloroplast genome of Chlamydomonas, encoding AR3 derived from the archaebacteria Halorubrum sodomense SEQ ID NO: 5: Around a wavelength of 500 nm Amino acid sequences of AR3 mutants with absorption maximum wavelengths
 本発明の形質転換体又は光合成生物の生育を制御する方法によれば、光という容易にコントロール可能な手段により、光合成生物の生長を促進又は抑制するとともに、単位体積当たりに生育可能な光合成生物の細胞の数の上限、すなわち、飽和細胞密度を増加させることができ、光合成生物の高密度培養が可能となる。このような光合成生物の形質転換体及び光合成生物の生育の制御する方法は、様々なバイオマスの生産の効率化などに資するものであり、特に持続可能な社会の構築へ向けて、幅広い産業分野での応用が期待される。 According to the transformant or the method for controlling the growth of photosynthetic organisms of the present invention, the growth of photosynthetic organisms is promoted or suppressed by means of light, which is easily controllable, and the number of photosynthetic organisms capable of growing per unit volume is increased. The upper limit of the number of cells, ie, the saturation cell density, can be increased, enabling high-density cultivation of photosynthetic organisms. Such transformants of photosynthetic organisms and methods of controlling the growth of photosynthetic organisms contribute to the efficiency of various biomass production, and are particularly useful in a wide range of industrial fields toward the construction of a sustainable society. application is expected.

Claims (11)

  1.  光合成生物の形質転換体であって、光によって駆動するプロトンポンプロドプシンを発現する形質転換体。 A transformant of a photosynthetic organism that expresses a proton pump rhodopsin driven by light.
  2.  前記プロトンポンプロドプシンが、細胞外から細胞内へプロトンを輸送する内向きプロトンポンプロドプシンであることを特徴とする請求項1に記載の形質転換体。  The transformant according to claim 1, wherein the proton pump rhodopsin is an inward proton pump rhodopsin that transports protons from the outside to the inside of the cell.
  3.  前記プロトンポンプロドプシンが、細胞内から細胞外へプロトンを輸送する外向きプロトンポンプロドプシンであることを特徴とする請求項1に記載の形質転換体。  The transformant according to claim 1, wherein the proton pump rhodopsin is an outward proton pump rhodopsin that transports protons from inside the cell to outside the cell.
  4.  前記プロトンポンプロドプシンが、細胞外から細胞内へプロトンを輸送する内向きプロトンポンプロドプシン、及び、細胞内から細胞外へプロトンを輸送する外向きプロトンポンプロドプシンの双方であることを特徴とする請求項1に記載の形質転換体。 3. The proton pump rhodopsin is both an inward proton pump rhodopsin that transports protons from the outside to the inside of the cell and an outward proton pump rhodopsin that transports the protons from the inside to the outside of the cell. 1. The transformant according to 1.
  5.  前記内向きプロトンポンプロドプシンが、ルブリコッカスマリナスゼノロドプシン(RmXeR)であることを特徴とする請求項2又は4に記載の形質転換体。  The transformant according to claim 2 or 4, wherein the inward proton pump rhodopsin is Rubricoccus marinus xenorhodopsin (RmXeR).
  6.  前記外向きプロトンポンプロドプシンが、アーキロドプシン3(AR3)であることを特徴とする請求項3又は4に記載の形質転換体。  The transformant according to claim 3 or 4, wherein the outward proton pump rhodopsin is archilodopsin 3 (AR3).
  7.  前記光合成生物が微細藻類であることを特徴とする請求項1乃至6のいずれか一項に記載の形質転換体。 The transformant according to any one of claims 1 to 6, wherein the photosynthetic organism is microalgae.
  8.  前記微細藻類が緑藻、紅藻、不等毛藻、ユーグレナ藻、渦鞭毛藻、灰色藻、クリプト藻、ハプト藻、クロララクニオン藻、及び藍藻のいずれかに属する微細藻類であることを特徴とする請求項7に記載の形質転換体。 The microalgae are microalgae belonging to any one of green algae, red algae, heterochelous algae, euglenoid algae, dinoflagellates, gray algae, cryptophytes, haptophytes, chlorarachniophytes, and cyanobacteria. The transformant according to claim 7.
  9.  前記微細藻類が緑藻に属する微細藻類であることを特徴とする請求項8に記載の形質転換体。 The transformant according to claim 8, wherein the microalgae are microalgae belonging to green algae.
  10.  光合成生物の生育を制御する方法であって、
    (1)前記光合成生物の形質転換体であって、請求項1乃至9のいずれか一項に記載の形質転換体を得る工程、及び、
    (2)前記形質転換体に光を照射することにより、前記プロトンポンプロドプシンを駆動する工程、
    を含むことを特徴とする方法。
    A method for controlling the growth of a photosynthetic organism, comprising:
    (1) obtaining a transformant of the photosynthetic organism according to any one of claims 1 to 9;
    (2) driving the proton pump rhodopsin by irradiating the transformant with light;
    A method comprising:
  11.  バイオマスの製造方法であって、
    (A)請求項10に記載の方法を用いて光合成生物を培養又は栽培する工程、及び、
    (B)前記光合成生物からバイオマスを回収する工程、
    を含む、バイオマスの製造方法。

     
    A biomass production method comprising:
    (A) culturing or cultivating a photosynthetic organism using the method of claim 10; and
    (B) recovering biomass from the photosynthetic organism;
    A method of producing biomass, comprising:

PCT/JP2022/021364 2021-05-28 2022-05-25 Photosynthetic organism transformant and use thereof WO2022250074A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023523500A JPWO2022250074A1 (en) 2021-05-28 2022-05-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-089800 2021-05-28
JP2021089800 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022250074A1 true WO2022250074A1 (en) 2022-12-01

Family

ID=84230116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021364 WO2022250074A1 (en) 2021-05-28 2022-05-25 Photosynthetic organism transformant and use thereof

Country Status (2)

Country Link
JP (1) JPWO2022250074A1 (en)
WO (1) WO2022250074A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516029A (en) * 2007-11-10 2011-05-26 ジュール アンリミテッド インコーポレイテッド Highly photosynthetic organism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516029A (en) * 2007-11-10 2011-05-26 ジュール アンリミテッド インコーポレイテッド Highly photosynthetic organism

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KANDORI, HIDEKI: "Mechanism of Rhodopsin Function", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, NIPPON SEIKAGAKKAI, TOKYO, JP, vol. 91, no. 4, 1 January 2019 (2019-01-01), JP , pages 472 - 481, XP009541352, ISSN: 0037-1017 *
NAGASE, YURIE; INOUE, SAKI; KURODA, HIROSHI; KOJIMA, KEIICHI; YOSHIZAWA, SUSUMU; TAKAHASHI, YUICHIRO; SUDO, YUKI: "3Pos044: Expression of proton pump rhodopsins in the chloroplast of the alga Chlamydomonas reinhardtii for optical control of proton gradient", SEIBUTSU BUTSURI, BIOPHYSICAL SOCIETY OF JAPAN, TOKYO, JP, vol. 58, no. Suppl. 1-2, 1 January 2018 (2018-01-01), JP , pages S412, XP009541369, ISSN: 0582-4052 *
NAGASE, YURIE; KOJIMA, KEIICHI; INOUE, SAKI; KURODA, HIROSHI; TOKUTSU, RYUTARO; MASUDA, SHINJI; MINAGAWA, JUN; TAKAHASHI, YUICHIRO: "1Pos234: Optical control of non-photochemical quenching (NPQ) in the alga Chlamydomonas reinhardtii by light-driven proton pump rhodopsins", SEIBUTSU BUTSURI, BIOPHYSICAL SOCIETY OF JAPAN, TOKYO, JP, vol. 59, no. Suppl. 1-2, 1 January 2019 (2019-01-01), JP , pages S293, XP009541368, ISSN: 0582-4052 *

Also Published As

Publication number Publication date
JPWO2022250074A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
Specht et al. Micro-algae come of age as a platform for recombinant protein production
Kirst et al. Assembly of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii requires expression of the TLA2-CpFTSY gene
Run et al. Stable nuclear transformation of the industrial alga Chlorella pyrenoidosa
TWI591178B (en) Algae with increased productivity of photosynthate and use thereof
JP2023500781A (en) Engineered microbes for the production of cannabinoids
US20140295448A1 (en) SUPPRESSION OF TLA2-CpFTSY GENE EXPRESSION FOR IMPROVED SOLAR ENERGY CONVERSION EFFICIENCY AND PHOTOSYNTHETIC PRODUCTIVITY IN ALGAE
D'Adamo et al. Prospects for viruses infecting eukaryotic microalgae in biotechnology
Shankar et al. Review of the structures and functions of algal photoreceptors to optimize bioproduct production with novel bioreactor designs for strain improvement
Yang et al. Transformation development in duckweeds
WO2022250074A1 (en) Photosynthetic organism transformant and use thereof
Specht et al. Host organisms: algae
US20160186196A1 (en) Method and composition for generating programmed cell death resistant algal cells
Johanningmeier et al. Perspective for the use of genetic transformants in order to enhance the synthesis of the desired metabolites: engineering chloroplasts of microalgae for the production of bioactive compounds
Cui et al. Plastid Engineering of a Marine Alga, Nannochloropsis gaditana, for Co‐Expression of Two Recombinant Peptides
Xie et al. Biosynthesis of protein-based drugs using eukaryotic microalgae
CN112961868A (en) Biomass productivity regulator
Ramessur et al. Agrobacterium-mediated gene delivery and transient expression in the red macroalga Chondrus crispus
Xiong et al. Inducible high level expression of a variant ΔD19A, D58A-ferredoxin-hydrogenase fusion increases photohydrogen production efficiency in the green alga Chlamydomonas reinhardtii
ES2351258T3 (en) BIOSYNTHESIS OF ASTAXANTINE IN EUCHARIOTS.
WO2017129777A1 (en) Increased triacylglycerol production in microalgae
Els Development of microalgae as a biopharming platform
Braun Galleani Exploring the potential for recombinant protein production in microalgae
Karthikeyan et al. Algal Biorefineries and the Circular Bioeconomy: Industrial Applications and Future Prospects
Szaub Genetic engineering of green microalgae for the production of biofules and high value products
Specht Improving the genetic tractability of the green alga Chlamydomonas reinhardtii

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811344

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523500

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE