WO2022249967A1 - Particle group, composition, molded article, and particle group production method - Google Patents

Particle group, composition, molded article, and particle group production method Download PDF

Info

Publication number
WO2022249967A1
WO2022249967A1 PCT/JP2022/020796 JP2022020796W WO2022249967A1 WO 2022249967 A1 WO2022249967 A1 WO 2022249967A1 JP 2022020796 W JP2022020796 W JP 2022020796W WO 2022249967 A1 WO2022249967 A1 WO 2022249967A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle group
particle
composition
requirement
crystal
Prior art date
Application number
PCT/JP2022/020796
Other languages
French (fr)
Japanese (ja)
Inventor
眞一 佐々木
拓也 松永
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280036804.XA priority Critical patent/CN117460700A/en
Publication of WO2022249967A1 publication Critical patent/WO2022249967A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides

Definitions

  • the present invention relates to a particle group, a composition, a molded body, and a method for producing a particle group.
  • Patent Document 1 discloses tungsten zirconium phosphate as a filler exhibiting a negative thermal expansion coefficient.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a particle group capable of exhibiting excellent controllability of the coefficient of thermal expansion, a composition using the same, a molded article, and a production method.
  • the present inventors arrived at the present invention as a result of various studies. That is, the present invention provides the following inventions.
  • One aspect of the present invention is a group of particles, each particle containing a plurality of crystals, satisfying requirement 1 below and at least one of requirement 2 and requirement 3 below.
  • is 10 ppm/°C or more at at least one temperature T1 between -200°C and 1200°C.
  • A is (lattice constant of the a-axis (short axis) of the crystal)/(lattice constant of the c-axis (long axis) of the crystal), and each lattice constant is obtained from X-ray diffraction measurement of the particle group.
  • Requirement 2 S BET /S PSD is 4.0 to 20.0.
  • SBET is the specific surface area of the particle group obtained by the BET method.
  • S PSD is the specific surface area of the virtual particle group, and the virtual particle group has the same particle size distribution as the volume-based particle size distribution of the particle group obtained by the laser diffraction scattering method and the same true density of the particle group It has a true density and the shape of each virtual particle is a perfect sphere.
  • Requirement 3 The porosity defined by the following formula is 2.0 to 20.0%.
  • Porosity (%) (1-apparent density of particle group / true density of particle group) x 100
  • the particle group can satisfy all of the above requirements 1 to 3.
  • the particle diameter D50 at which the cumulative frequency is 50% in the volume-based cumulative particle size distribution curve of the particle group obtained by a laser diffraction scattering method can be 1 to 100 ⁇ m.
  • the crystal can be a metal oxide.
  • the metal oxide can be a metal oxide containing a metal having d electrons.
  • the metal oxide can be a metal oxide containing titanium.
  • a composition according to one aspect of the present invention contains any of the above particle groups.
  • the above composition can have a powder form.
  • the above composition can further contain a matrix material.
  • the above composition can further contain an uncured curable resin.
  • a molded article according to one aspect of the present invention is a molded article of the composition having the above particle group or powder form.
  • a method according to one aspect of the present invention is any one of the above-described methods for producing a particle group, comprising a step 1 of calcining a raw material to obtain an intermediate, a step 2 of pulverizing the intermediate to obtain a precursor, and step 3 of firing the precursor, and the firing temperature in steps 1 and 3 is 1000 to 1300°C.
  • the method can include, between steps 2 and 3, a step of granulating the precursor by a spray drying method to obtain a granular precursor.
  • the present invention it is possible to provide a particle group capable of exhibiting excellent controllability of the coefficient of thermal expansion, and various compositions and moldings using the same. Moreover, according to the present invention, it is possible to provide a method for producing a particle group capable of exhibiting excellent controllability of the coefficient of thermal expansion.
  • FIG. 1 is a schematic diagram of a cross-section of a particle according to one embodiment of the invention.
  • Particle group P includes a plurality of particles. Each particle contains multiple crystals, and each particle can be an aggregate of multiple crystals. Each particle may be a secondary particle whose primary particle is one crystal, or may be a secondary particle whose primary particle is an aggregate of a plurality of crystals.
  • the particle group P satisfies Requirement 1 below and further satisfies at least one of Requirement 2 and Requirement 3 below.
  • Particle group P preferably satisfies all of requirements 1 to 3 below.
  • is 10 ppm/°C or more at at least one temperature T1 between -200°C and 1200°C.
  • A is (lattice constant of the a-axis (minor axis) of the crystal)/(lattice constant of the c-axis (long axis) of the crystal), and each lattice constant is obtained from the X-ray diffraction measurement of the particle group P.
  • S BET /S PSD is 4.0 to 20.0.
  • SBET is the specific surface area of the particle group P obtained by the BET method.
  • S PSD is the specific surface area of the virtual particle group V;
  • the virtual particle group V has the same particle size distribution as the volume-based particle size distribution of the particle group P obtained by the laser diffraction scattering method and the same true density as the particle group, and the shape of each virtual particle is a true sphere.
  • Requirement 1 (Requirement 1) Requirement 1 will be explained in detail.
  • the lattice constant in the definition of A is specified by powder X-ray diffraction measurement of the particle group P. Analysis methods include the Rietveld method and analysis by fitting using the method of least squares.
  • the axis corresponding to the smallest lattice constant is the a-axis
  • the axis corresponding to the largest lattice constant is the c-axis in the structure of the crystal in the particle group P specified by powder X-ray diffraction measurement.
  • A(T) is a parameter that indicates the degree of anisotropy in the length of the crystal axis, and is a function of temperature T (unit: °C).
  • T unit: °C.
  • the crystals in the particle group P according to the present embodiment must satisfy
  • is defined within the range in which the crystal exists in a solid state. Therefore, the maximum temperature of T in formula (1) is up to a temperature 50° C. lower than the melting point of the crystal (particle). That is, when the limitation of "at least one temperature T1 between -200°C and 1200°C" is given, the temperature range of T in the formula (1) is -200°C to 1150°C.
  • is preferably 20 ppm/°C or higher, more preferably 30 ppm/°C or higher, at at least one temperature T1 between -200°C and 1200°C.
  • is preferably 1000 ppm/°C or less, more preferably 500 ppm/°C or less.
  • of 10 ppm/°C or more at at least one temperature T1 means that the anisotropy of the crystal structure changes significantly with temperature changes.
  • At least one temperature T1, dA(T)/dT may be positive or negative, but is preferably negative.
  • the axis corresponding to the smallest lattice constant is the a-axis
  • the axis corresponding to the largest lattice constant is the c-axis.
  • the a-axis and c-axis are defined as above in any of the triclinic, monoclinic, cubic, tetragonal, hexagonal, and rhombohedral crystal systems.
  • S BET /S PSD indicates the degree of complexity of the shape of each particle in the particle group P, and takes a value of 1 or more.
  • SBET is the specific surface area of the particle group P obtained by the BET method. In this specification, the specific surface area is a value obtained by dividing the surface area of a sample by the mass of the sample.
  • a method for measuring the BET specific surface area is shown below.
  • the particle group P is dried in a nitrogen atmosphere at 200° C. for 30 minutes.
  • the BET flow method is used to measure the specific surface area.
  • a mixed gas of nitrogen gas and helium gas is used as the adsorption gas.
  • the ratio of nitrogen gas in the mixed gas is set to 30% by volume, and the ratio of helium gas in the mixed gas is set to 70% by volume.
  • a BET specific surface area measuring device Macsorb HM-1201 manufactured by Mountec
  • S PSD is the specific surface area of the virtual particle group V;
  • the virtual particle group V has the same particle size distribution as the volume-based particle size distribution of the particle group P obtained by the laser diffraction scattering method and the same true density as the particle group, and the shape of each virtual particle is a true sphere.
  • the method for measuring the volume-based cumulative particle size distribution curve of the particle group P by the laser diffraction scattering method is shown below.
  • ultrasonic treatment As a pretreatment, 99 parts by weight of water is added to 1 part by weight of the particle group P to dilute it, and ultrasonic treatment is performed using an ultrasonic cleaner.
  • the ultrasonic treatment time is 10 minutes.
  • the ultrasonic cleaner NS200-6U manufactured by Nippon Seiki Seisakusho can be used.
  • the frequency of ultrasonic waves can be about 28 kHz.
  • the volume-based particle size distribution of the particle group P is measured by the laser diffraction scattering method.
  • the laser diffraction scattering method For example, Malvern Instruments Ltd. A laser diffraction particle size distribution measuring device Mastersizer 2000 manufactured by Fujikura Co., Ltd. can be used.
  • the refractive index of Ti 2 O 3 can be measured as 2.40.
  • S BET /S PSD needs to be 4.0 or more and 20.0 or less.
  • S BET /S PSD is preferably 4.3 or more, more preferably 4.5 or more.
  • S BET /S PSD may be 5.0 or greater, 6.0 or greater, 7.0 or greater, 8.0 or greater, 9.0 or greater, or 10.0 or greater.
  • S BET /S PSD is preferably 16.0 or less, more preferably 15.0 or less.
  • S BET /S PSD may be 14.0 or less, 13.0 or less, or 12.0 or less.
  • Requirement 3 stipulates that the porosity defined by the following formula is 2.0 to 20.0%.
  • Porosity (%) (1-apparent density of particle group P / true density of particle group P) x 100
  • the apparent density of the particle group P is the value obtained by dividing the mass of the particle group P by the sum of the volume of the solid that constitutes the particle group P and the volume of closed pores in the solid that constitutes the particle group P.
  • the apparent density of the particle group P means the density for which the total volume of the volume occupied by the solid and the volume of the closed pores is used as the volume for density calculation.
  • the apparent density decreases as the volume of closed pores increases, and becomes equal to the true density when closed pores do not exist.
  • the true density of the particle group P is the mass of the particle group P divided by the volume of the solid that constitutes the particle group P.
  • the true density of the particle group P means the density in which only the volume occupied by the solid portion is used as the volume for density calculation.
  • True density is a value specific to a substance, regardless of the shape of the particles.
  • the closed pores in the particle group P are spaces that exist inside the solids that make up the particle group P.
  • This space is a space that is normally not filled with other materials in the composition to which the particle group P is added, which will be described later, and the molded article, and can contribute to a decrease in the coefficient of thermal expansion.
  • a closed pore may be a space formed within a crystal or a space formed between crystals. For example, if the particle is a polycrystalline particle with a large number of crystals randomly arranged within the particle, the particle may have closed pores between the crystals.
  • FIG. 1 is a schematic cross-sectional view of an example of particles of particle group P according to the present embodiment.
  • the particles 4 are agglomerates having a plurality of crystals 2 and the particles 4 have closed pores 6 arranged between the crystals 2 .
  • the porosity defined by the above formula means the ratio of the total volume of closed pores existing in the particle group P to the apparent volume of the particle group P.
  • the apparent volume of the particle group P is the sum of the volume of the solid that forms the particle group P and the volume of closed pores in the solid that forms the particle group P.
  • the porosity should be 2.0% or more and 20% or less.
  • This porosity is preferably 2.3% or more, more preferably 2.5% or more.
  • the porosity is 2.7% or more, 2.8 or more, 2.9 or more, 3.0% or more, 3.2 or more, 3.5% or more, 3.7 or more, or 4.0 or more good too.
  • the porosity is preferably 16% or less, more preferably 14% or less.
  • Porosity is 13.0% or less, 12.0% or less, 11.0% or less, 10.0% or less, 9.0% or less, 8.0% or less, 7.0% or less, 6.0% or less, or 5.0% or less.
  • the cumulative frequency is calculated from the smaller diameter, and the particle diameter at which the cumulative frequency is 50% is defined as D50.
  • D50 is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, even more preferably 5 ⁇ m or more, and 7 ⁇ m or more. is highly preferred. From the viewpoint of ensuring that the liquid composition to which the particle group P is added can easily penetrate narrow gaps, D50 is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 60 ⁇ m or less. . D50 may be 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, 25 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less.
  • the crystal is preferably an oxide.
  • the crystal is a metal oxide.
  • the metal oxide may contain multiple metals.
  • the metal oxide is not particularly limited, but is preferably a metal oxide containing a metal having d electrons, more preferably a metal oxide containing a metal having only 3d electrons out of d electrons. .
  • the metal oxide containing a metal having d electrons is not particularly limited, but includes, for example, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, and Mo. A metal oxide is mentioned.
  • metal oxides containing metals having only 3d electrons among d electrons include metal oxides containing Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. Among them, metal oxides containing titanium are preferable from the viewpoint of resources.
  • TiO x part of Ti atoms may be substituted with other elements.
  • the metal oxide containing titanium may be an oxide containing titanium and metal atoms other than titanium, such as LaTiO3 .
  • the crystal structure of the crystal preferably has a perovskite structure or a corundum structure, and more preferably has a corundum structure.
  • the crystal system is not particularly limited, it is preferably a rhombohedral crystal system.
  • the space group is preferably assigned to R-3c.
  • a method for producing a particle group P according to the present embodiment includes a step 1 of calcining a raw material to obtain an intermediate, a step 2 of pulverizing the intermediate to obtain a precursor, and a step 3 of calcining the precursor.
  • the sintering temperature in steps 1 and 3 is 1000° C. or higher and 1300° C. or lower.
  • Raw materials refer to those that can be converted into the above crystals through subsequent steps.
  • the type of raw material is not particularly limited, and may be a single substance or a mixture.
  • the crystal of the particle group P to be produced is a metal oxide containing titanium
  • the raw material can be a mixture of metal titanium and titanium oxide.
  • Firing of the raw material is preferably performed in an electric furnace.
  • the structure of the electric furnace include box type, crucible type, tubular type, continuous type, furnace bottom lifting type, rotary kiln, truck type, and the like.
  • a box type electric furnace for example, there is FD-40 ⁇ 40 ⁇ 60-1Z4-18TMP (manufactured by Nemus Co., Ltd.).
  • tubular electric furnaces include PCR (manufactured by Motoyama Co., Ltd.) and DSPSH28 (manufactured by Motoyama Co., Ltd.).
  • step 1 all of the raw material may be converted into the above crystals, or only part of the raw material may be converted into the above crystals. In other words, the obtained intermediate may or may not contain unreacted raw materials as long as it contains the crystals of the particle group P described above.
  • the method of pulverizing the intermediate obtained in step 1 is not particularly limited, and examples thereof include a method of putting the pulverized product in a mortar and pulverizing it with a pestle, and a method of pulverizing it with a ball mill or bead mill.
  • the pulverization may be dry pulverization or wet pulverization.
  • the average particle size of the resulting precursor particle group can be adjusted by appropriately changing the pulverization conditions, for example, the strength of the applied force and the pulverization time.
  • a step of granulating the pulverized precursor by a spray drying method to obtain a granular precursor may be further included.
  • Step 3 Firing of the precursor can be performed in the same manner as the firing in step 1.
  • the firing temperature in steps 1 and 3 is 1000°C or higher and 1300°C or lower.
  • the firing temperature may be, for example, 1025° C. or higher, 1040° C. or higher, or 1050° C. or higher.
  • the firing temperature may be, for example, 1275° C. or lower, 1260° C. or lower, or 1250° C. or lower from the viewpoint of preventing an increase in the crystal grain size and each particle size of the particle group. .
  • the firing temperature in step 1 and the firing temperature in step 3 may be the same or different.
  • One embodiment of the present invention is a powder composition containing the above-described particle group P and other powder.
  • a powder composition can be suitably used as a filler for controlling the coefficient of thermal expansion of the solid composition described below.
  • the content of the particle group P in the powder composition is not limited, and the function of controlling the amount of thermal expansion can be exhibited according to the content. From the viewpoint of efficiently controlling the amount of thermal expansion, the content of the particle group P may be 75% by mass or more, 85% by mass or more, or 95% by mass or more. .
  • powders other than Particle Group P in the powder composition include calcium carbonate, talc, mica, silica, clay, wollastonite, potassium titanate, xonotlite, gypsum fiber, aluminum borate, aramid fiber, carbon Fiber, glass fiber, glass flake, polyoxybenzoyl whisker, glass balloon, carbon black, graphite, alumina, aluminum nitride, boron nitride, beryllium oxide, ferrite, iron oxide, barium titanate, lead zirconate titanate, zeolite, iron powder, aluminum powder, barium sulfate, zinc borate, red phosphorus, magnesium oxide, hydrotalcite, antimony oxide, aluminum hydroxide, magnesium hydroxide, zinc carbonate, TiO 2 and TiO.
  • the D50 of the powder composition can be set in the same manner as the D50 of the particles described above.
  • the method for producing the powder composition is not particularly limited, for example, the particle group P is mixed with another powder, and if necessary, the particle size distribution is adjusted by crushing, sieving, pulverizing, etc. Just do it.
  • the solid composition according to this embodiment includes a matrix material and the particle group P described above.
  • matrix material examples include, but are not limited to, resins, alkali metal silicates, ceramics, and metals.
  • the matrix material should be able to hold the above particle group P in a solid state at room temperature (20° C.).
  • resins are thermoplastic resins and cured products of heat- or active energy ray-curable resins.
  • thermoplastic resins include polyolefins (polyethylene, polypropylene, etc.), ABS resins, polyamides (nylon 6, nylon 6,6, etc.), polyamideimides, polyesters (polyethylene terephthalate, polyethylene naphthalate), liquid crystal polymers, polyphenylene ethers, polyacetals. , polycarbonate, polyphenylene sulfide, polyimide, polyetherimide, polyethersulfone, polyketone, polystyrene, and polyetheretherketone.
  • thermosetting resins include epoxy resins, oxetane resins, unsaturated polyester resins, alkyd resins, phenolic resins (novolac resins, resol resins, etc.), acrylic resins, urethane resins, silicone resins, polyimide resins, and melamine resins.
  • active energy ray-curable resins include UV-curable resins and electron beam-curable resins, such as urethane acrylate resins, epoxy acrylate resins, acrylic acrylate resins, polyester acrylate resins, and phenol methacrylate resins.
  • resins are adhesives such as silicone-based, urethane-based, rubber-based, and acrylic-based adhesives.
  • the matrix material may contain one type of the above resins, or may contain two or more types.
  • the matrix material is preferably epoxy resin, polyethersulfone, liquid crystal polymer, polyimide, polyamideimide, or silicone.
  • Alkali metal silicates include lithium silicate, sodium silicate, and potassium silicate.
  • the first material may contain one type of alkali metal silicate, or may contain two or more types. These materials are preferred because of their high heat resistance.
  • Ceramics are not particularly limited, but oxide ceramics such as alumina, silica (including silicon oxide and silica glass), titania, zirconia, magnesia, ceria, yttria, zinc oxide, iron oxide; silicon nitride, nitride Nitride ceramics such as titanium and boron nitride; silicon carbide, calcium carbonate, aluminum sulfate, barium sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, Ceramics such as mica, amesite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, and silica sand.
  • the first material may contain one type of ceramics, or may contain two or more types. Ceramics are preferable because they can have high heat resistance.
  • a sintered body can be made by spark plasma sintering or the
  • Metals are not particularly limited, but may be single metals such as aluminum, tantalum, niobium, titanium, molybdenum, iron, nickel, cobalt, chromium, copper, silver, gold, platinum, lead, tin, tungsten, stainless steel (SUS ), and mixtures thereof.
  • the first material may contain one or more metals. Such metals are preferable because they can increase heat resistance.
  • the solid composition may contain components other than the matrix material and the particle group P described above.
  • This component includes, for example, a catalyst.
  • catalysts include, but are not limited to, acidic compounds, alkaline compounds, organometallic compounds, and the like.
  • Acidic compounds that can be used include acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phosphoric acid, formic acid, acetic acid, and oxalic acid.
  • As the alkaline compound ammonium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, etc. can be used.
  • Organometallic compounds include those containing aluminum, zirconium, tin, titanium, or zinc.
  • other powder than the particle group P exemplified in the first composition may be included.
  • the content of the particle group P in the solid composition is not particularly limited, and the function of controlling thermal expansion can be exhibited according to the content.
  • the content of the particle group P in the solid composition may be, for example, 1% by weight or more, may be 3% by weight or more, may be 5% by weight or more, or may be 10% by weight or more. may be 20% by weight or more, 40% by weight or more, or 70% by weight or more.
  • the content of the particle group P can be, for example, 99% by weight or less.
  • the content of the particle group P in the solid composition may be 95% by weight or less, or may be 90% by weight or less.
  • the content of the matrix material in the solid composition can be, for example, 1% by weight or more.
  • the content of the matrix material in the solid composition may be 5% by weight or more, or 10% by weight or more.
  • the content of matrix material in the solid composition can be, for example, 99% by weight or less.
  • the content of the matrix material in the solid composition may be 97% by weight or less, 95% by weight or less, 90% by weight or less, or 80% by weight or less. It may be 60% by weight or less, or 30% by weight or less.
  • the solid composition according to the present embodiment contains the above-described particle group P, the linear thermal expansion coefficient of the solid composition can be made lower than when the particle group P is not added. Therefore, with this solid composition, it is possible to obtain a member that undergoes very little dimensional change when the temperature changes. Therefore, it can be suitably used for optical members and members for semiconductor manufacturing equipment, which are particularly sensitive to dimensional changes due to temperature.
  • the liquid composition according to this embodiment includes the particle group P and a liquid material.
  • the Eikai composition of this embodiment is a composition having fluidity at 25°C.
  • This liquid composition can be the source of the solid composition described above. "It has fluidity at 25 ° C.” means that after the composition is supplied to a predetermined container and the liquid surface is leveled, the container is tilted at 45 degrees, and the liquid surface moves or deforms after 1 hour. Say things.
  • the liquid material is liquid, and may be one in which the particle group P can be dispersed.
  • the liquid material can be the source of the matrix material.
  • the liquid material when the matrix material is an alkali metal silicate, can contain the alkali metal silicate and a solvent capable of dissolving or dispersing the alkali metal silicate.
  • the matrix material when the matrix material is a thermoplastic resin, the liquid material can contain a thermoplastic resin and a solvent capable of dissolving or dispersing the thermoplastic resin.
  • the matrix material is a cured product of heat- or active energy ray-curable resin, the liquid material is the heat- or active energy ray-curable resin before curing.
  • thermosetting resin before curing has fluidity at room temperature, and when heated, it cures due to a cross-linking reaction.
  • the thermosetting resin before curing may contain one type of resin, or may contain two or more types.
  • the active energy ray-curable resin before curing has fluidity at room temperature, and when irradiated with light (UV, etc.) or an active energy ray such as an electron beam, a cross-linking reaction occurs and cures.
  • the active energy ray-curable resin before curing contains a curable monomer and/or a curable oligomer, and if necessary, can further contain a solvent and/or a photoinitiator.
  • curable monomers and curable oligomers are photocurable monomers and photocurable oligomers.
  • Examples of photocurable monomers are monofunctional or multifunctional acrylate monomers.
  • Examples of photocurable oligomers are urethane acrylates, epoxy acrylates, acrylic acrylates, polyester acrylates, phenol methacrylates.
  • solvents examples include organic solvents such as alcohol solvents, ether solvents, ketone solvents, glycol solvents, hydrocarbon solvents, aprotic polar solvents, and water.
  • organic solvents such as alcohol solvents, ether solvents, ketone solvents, glycol solvents, hydrocarbon solvents, aprotic polar solvents, and water.
  • the solvent in the case of the alkali metal silicate is, for example, water.
  • the liquid composition of the present embodiment may contain components other than the liquid material and the particle group P described above.
  • powders other than the particle group P exemplified in the first composition can be included.
  • the content of the particle group P in the liquid composition of the present embodiment is not particularly limited, and can be set as appropriate from the viewpoint of controlling the coefficient of thermal expansion in the cured solid composition. Specifically, it can be the same as the content of the particle group P in the second composition (solid composition).
  • the method for producing the liquid composition is not particularly limited.
  • the liquid composition can be obtained by stirring and mixing the particle group P or the powder composition and the liquid material.
  • the stirring method include stirring and mixing using a mixer.
  • Mixing methods used in the mixing step include, for example, a ball mill method, a rotation/revolution mixer, an impeller swirling method, a blade swirling method, a swirling thin film method, a rotor/stator mixer method, a colloid mill method, a high-pressure homogenizer method, and an ultrasonic dispersion method. law.
  • a plurality of mixing methods may be performed in order or may be performed simultaneously. By homogenizing the composition and applying shear during the mixing process, the fluidity and deformability of the composition can be enhanced.
  • Method for producing solid composition After shaping the liquid composition into a desired shape, the liquid material in the liquid composition is converted into a matrix material, thereby forming a solid composition in which the particle group P or the powder composition and the matrix material are combined. can manufacture things.
  • the liquid material contains an alkali metal silicate and a solvent capable of dissolving or dispersing the alkali metal silicate, and a thermoplastic resin and a solvent capable of dissolving or dispersing the thermoplastic resin
  • a solid composition containing the above-mentioned particle groups and the matrix material can get things.
  • the method of removing the solvent a method of evaporating the solvent by natural drying, vacuum drying, heating, etc. can be applied. From the viewpoint of suppressing the generation of coarse air bubbles, when removing the solvent, it is preferable to remove the solvent while maintaining the temperature of the mixture below the boiling point of the solvent.
  • the liquid material is a heat- or actinic-energy-ray-curable resin before curing
  • the liquid composition is formed into a desired shape, and the liquid composition is cured by heat or actinic-energy rays (UV, etc.). Do it.
  • Examples of methods for shaping the liquid composition into a predetermined shape are pouring it into a mold and coating it on the substrate surface to form a film.
  • the matrix material is ceramics or metal
  • the following can be done.
  • a mixture of the raw material powder of the matrix material and the above-described particle group P or the like is prepared, and the mixture is heat-treated to sinter the raw material powder of the matrix material, thereby obtaining the matrix material as a sintered body and the above-described particle group.
  • a solid composition containing P and the like is obtained. If necessary, the pores of the solid composition can be adjusted by heat treatment such as annealing.
  • a sintering method methods such as ordinary heating, hot pressing, and discharge plasma sintering can be used.
  • a pulsed electric current is passed through the mixture while pressurizing the mixture of the raw material powder of the matrix material and the above-described particle group P and the like.
  • electric discharge is generated between the raw powders of the matrix material, and the raw powders of the matrix material can be heated and sintered.
  • the plasma sintering process is preferably carried out under an inert atmosphere such as argon, nitrogen, or vacuum in order to prevent the obtained compound from deteriorating due to contact with air.
  • the applied pressure in the plasma sintering process is preferably in the range of over 0 MPa and 100 MPa or less.
  • the applied pressure in the plasma sintering step is preferably 10 MPa or higher, more preferably 30 MPa or higher.
  • the heating temperature in the plasma sintering process is preferably sufficiently lower than the melting point of the target matrix material.
  • the size and distribution of pores can be adjusted by heat-treating the obtained solid composition.
  • the molded body according to this embodiment is a molded body of the particle group P or the powder composition.
  • the molded body in this embodiment may be a sintered body obtained by sintering the particle group P or the powder composition.
  • a molded body is usually obtained by sintering the particle group P or the powder composition. In this case, it is preferable to perform sintering in a temperature range in which the crystal structure in the particle group P is maintained.
  • Various known sintering methods can be applied to obtain a sintered body.
  • a method for obtaining a sintered body a method such as ordinary heating, hot pressing, or discharge plasma sintering can be employed.
  • the molded body according to the present embodiment is not limited to a sintered body, and may be, for example, a green compact obtained by pressure-molding the particle group P or the powder composition.
  • the molded body of the particle group P or the powder composition according to the present embodiment it is possible to provide a member with little thermal expansion, and it is possible to extremely reduce the dimensional change of the member when the temperature changes. Therefore, it can be suitably used for various members used in devices that are particularly sensitive to dimensional changes due to temperature. Therefore, it can be suitably used for optical members and members for semiconductor manufacturing equipment, which are particularly sensitive to dimensional changes due to temperature.
  • the solid composition and molded article according to the above embodiment are excellent in electrical insulation, they can be used as electronic device members, mechanical members, containers, optical members, and adhesives.
  • Examples of electronic device members are sealing members, conductive adhesives, circuit boards, prepregs, and insulating sheets.
  • sealing members are sealing members for semiconductor elements, underfill members, and inter-chip fill for 3D-LSI.
  • semiconductor elements are power semiconductors such as power transistors and power ICs; and light emitting elements such as LED elements. According to the sealing member using the above-mentioned solid composition and molded article, it is possible to suppress cracking due to the difference in coefficient of thermal expansion.
  • conductive adhesives are anisotropic conductive films and anisotropic conductive pastes.
  • the linear thermal expansion of the adhesive member can be reduced, making it possible to eliminate the problems of cracking and warping at the parts where dissimilar materials come into contact. sexuality can be enhanced.
  • a circuit board includes a metal layer and an electrical insulating layer provided on the metal layer.
  • the thermal linear expansion coefficient can be lowered while maintaining the electrical insulation properties, and the difference from the thermal linear expansion coefficient of the metal layer can be reduced. problem can be eliminated.
  • Specific examples of circuit boards include printed circuit boards, multilayer printed wiring boards, build-up boards, capacitor-embedded boards, and the like.
  • a prepreg is a semi-cured product of an impregnated base material containing a reinforcing base material and a matrix material impregnated in the reinforcing base material.
  • An example of an insulating sheet is a resin sheet such as polyvinyl chloride. By including the particles in the insulating sheet, it is possible to improve the dimensional accuracy while maintaining electrical insulation.
  • a mechanical member is a member that constitutes various mechanical devices.
  • mechanical equipment are machine tools such as cutting equipment, process equipment, and semiconductor manufacturing equipment.
  • mechanical members are fixed mechanisms, moving mechanisms, tools, and the like. According to the heat dissipating member using the above-mentioned solid composition and molded article, it is possible to suppress dimensional deviation due to thermal expansion, and to improve accuracy such as machining accuracy and processing accuracy. It is also suitable for use in joints between members made of different materials.
  • the mechanical member may be a rotating member.
  • a rotating member refers to a member, such as a gear, that exerts a mechanical action on another member while rotating. In rotating members, when the dimensions change due to thermal expansion, problems such as poor meshing and wear occur, so the above solid composition and molded article are suitable for application.
  • the mechanical member may be a substrate.
  • the substrate if the dimensions change due to thermal expansion, problems such as misalignment will occur, so it is suitable for applying the above solid composition and molded article.
  • a container is a member for containing gas, liquid, solid, or the like.
  • an example of a container is a mold for making a molded body.
  • problems such as the inability to maintain the dimensional accuracy of the molded body arise.
  • optical members are optical fibers, optical waveguides, lenses, reflectors, prisms, optical filters, diffraction gratings, fiber gratings and wavelength conversion members.
  • lenses are optical pickup lenses and camera lenses.
  • optical waveguides are arrayed waveguides and planar optical circuits.
  • Optical members have the problem that their characteristics fluctuate when the lattice spacing, refractive index, optical path length, etc. change with changes in temperature. According to the optical member or the fixing member or supporting base material of the optical member using the solid composition and the molded article, it is possible to reduce such temperature-dependent fluctuations in the characteristics of the optical member.
  • adhesives include thermosetting resins such as epoxy and silicone resins as matrix materials and the particles described above.
  • the adhesive may be liquid or solid before curing.
  • a cured product of this adhesive can have a low coefficient of linear thermal expansion, so cracking can be suppressed.
  • it is suitable for application to heat-resistant adhesive members to which heat load is applied.
  • Crystal structure analysis of particle group For analysis of the crystal structure, powder X-ray diffraction measurement of the particle group was performed using a powder X-ray diffraction measurement device SmartLab (manufactured by Rigaku Co., Ltd.) under the following conditions while changing the temperature. An X-ray diffraction pattern was obtained. Based on the powder X-ray diffraction pattern obtained for the compound constituting the crystal, PDXL2 (manufactured by Rigaku Co., Ltd.) software was used to refine the lattice constant by the least squares method, and two lattice constants, that is, a The axial length and c-axis length were obtained.
  • Measuring device Powder X-ray diffraction measuring device SmartLab (manufactured by Rigaku Corporation)
  • X-ray generator CuK ⁇ ray source voltage 45 kV, current 200 mA
  • Slit Slit width 2mm
  • Scan step 0.02deg Scan range: 5-80deg
  • Scan speed 10deg/min
  • X-ray detector One-dimensional semiconductor detector Measurement atmosphere: Ar 100 mL/min Sample table: made of dedicated glass substrate SiO2
  • BET Specific Surface Area (S BET ) of Particle Group The BET specific surface area of particles was measured by the following method. Pretreatment: The particle group was dried at 200° C. for 30 minutes in a nitrogen atmosphere. Measurement: Measured by the BET flow method. Measurement conditions: A mixed gas of nitrogen gas and helium gas was used. The ratio of nitrogen gas in the mixed gas was set to 30% by volume, and the ratio of helium gas in the mixed gas was set to 70% by volume. Measuring device: BET specific surface area measuring device Macsorb HM-1201 (manufactured by Mountec Co., Ltd.)
  • the particle size distribution of the particle group was measured by the following method. Pretreatment: 99 parts by weight of water was added to 1 part by weight of the particle group for dilution, and ultrasonic treatment was performed using an ultrasonic cleaner. The ultrasonic treatment time was 10 minutes, and NS200-6U manufactured by Nippon Seiki Seisakusho Co., Ltd. was used as an ultrasonic cleaner. The ultrasonic frequency was about 28 kHz. Measurement: The volume-based particle size distribution of the particles was measured by a laser diffraction scattering method. Measurement conditions: Ti 2 O 3 had a refractive index of 2.40.
  • Measuring device laser diffraction particle size distribution measuring device Mastersizer 2000 (manufactured by Malvern Instruments Ltd.) The S PSD was calculated based on the particle size distribution of the resulting particle group and the assumption that each particle had a spherical shape. Also, the D50 of the particle group was determined.
  • Epoxy resin manufactured by Sumitomo Chemical Co., Ltd., ELM-100
  • curing agent manufactured by Tokyo Chemical Co., Ltd., Bis (4-aminophenyl) sulfone
  • curing accelerator manufactured by Tokyo Chemical Co., Ltd., Piperidinium Trifluoroborate
  • a mixture was obtained by mixing 5.0 g of the particle groups of Examples and Comparative Examples with 1.3 g of the uncured epoxy resin composition. The resulting mixture was placed in a mold and cured at 180°C for 5 minutes while applying pressure, then cooled to room temperature, removed from the mold, and cured at 220°C for 2 hours to obtain an epoxy resin composite material.
  • the thermal linear expansion coefficient of the obtained epoxy resin composite material was measured using the following equipment. Measuring device: Thermo plus EVO2 TMA series Thermo plus 8311 The measurement conditions were temperature range: -10°C to 160°C, temperature change rate: 10°C/min, sampling interval: 2.7 seconds. Reference solid: silica
  • a typical size of the measurement sample of the solid composition was 15 mm ⁇ 4 mm ⁇ 4 mm.
  • a sample length L (T) at a temperature T was measured with the longest side of the measurement sample of the solid composition as the sample length L.
  • Example 1-2 and Comparative Examples 1-2 Particle groups of Examples 1 and 2 and Comparative Examples 1 and 2 were obtained by the following method.
  • ⁇ Step 1> In a plastic 1 L poly bottle (outer diameter 97.4 mm), 1000 g of 2 mm ⁇ zirconia ball, 166.7 g of TiO 2 (manufactured by Ishihara Sangyo Co., Ltd., CR-EL), and 33.3 g of Ti (Kojundo Co., Ltd. Kagaku Kenkyusho Co., Ltd., ⁇ 38 ⁇ m) was added, a 1 L plastic bottle was placed on a ball mill stand, and ball mill mixing was performed for 4 hours at a rotation speed of 60 rpm to prepare a raw material mixed powder 1.
  • a plastic 1 L poly bottle 1000 g of 2 mm ⁇ zirconia ball, 166.7 g of TiO 2 (manufactured by Ishihara Sangyo Co., Ltd., CR-EL), and 33.3 g of Ti (Kojundo Co., Ltd. Kagaku Kenkyusho Co., Ltd., ⁇ 38 ⁇ m) was added,
  • the raw material mixed powder 1 is filled in a firing container (SSA-T Saya 90 square manufactured by Nikkato Co., Ltd.), placed in an electric furnace (PCR manufactured by Motoyama Co., Ltd.), and the atmosphere in the electric furnace is replaced with Ar. , the raw material mixed powder was calcined.
  • the firing program was set to raise the temperature from 0° C. to 1100° C. in 11 hours, hold the temperature at 1100° C. for 1 hour, and lower the temperature from 1100° C. to 0° C. in 11 hours.
  • Ar gas was flowed at 5 L/min during the firing program. After firing, an intermediate powder 1 was obtained.
  • Step 2> The intermediate powder 1 was pulverized using a batch-type ready mill (RM B-08, manufactured by Imex Co., Ltd.). Using a vessel of 800 cm 3 , pulverization was carried out under the conditions of 1348 rpm and a peripheral speed of 5 m/s. Using ZrO 2 beads with a particle size of 0.5 mm, 113 g of ethanol, 675 g of ZrO 2 and 80 g of intermediate powder 1 were mixed and ground for 60 minutes. After grinding, powder A1 was obtained.
  • a batch-type ready mill RM B-08, manufactured by Imex Co., Ltd.
  • slurry B1 50 g of powder A1, 200 g of pure water, 10 g of a 10 wt% aqueous solution of polyvinyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., PVA-3500) and polyethylene glycol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., PEG-400) were mixed. , to obtain slurry B1.
  • polyvinyl alcohol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., PVA-3500
  • polyethylene glycol manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., PEG-400
  • Slurry B1 was spray-dried using a small spray dryer (manufactured by Yamato Scientific Co., Ltd.). Spray-drying was carried out under the conditions of a pressure of 1.0 MPa, an outlet temperature of 85° C., and an aspirator display value of 40, and the liquid feed pump output was appropriately adjusted so that the outlet temperature was kept constant. Precursor powder 1 was obtained after spray drying.
  • Precursor powder 1 is filled in a firing container (manufactured by AS ONE Co., Ltd., firing boat No. 5), placed in a tubular furnace (manufactured by Motoyama Co., Ltd., DSPSH28), the atmosphere in the tubular furnace is replaced with Ar, and the precursor is The body powder was calcined.
  • the firing program was set to raise the temperature from 0° C. to 1150° C. in 11.5 hours, hold the temperature at 1150° C. for 1 hour, and lower the temperature from 1150° C. to 0° C. in 11.5 hours.
  • Ar gas was flowed at 100 mL/min during the firing program. After firing, a particle group of Example 1 was obtained.
  • Example 2 ⁇ Step 1> Raw material mixed powder 1 was prepared by the method described in Example 1.
  • the raw material mixed powder 1 is filled in a firing container (SSA-T Saya 150 square, manufactured by Nikkato Co., Ltd.), placed in an electric furnace (FD-40 ⁇ 40 ⁇ 60-1Z4-18TMP, manufactured by Nemus Co., Ltd.), and The atmosphere in the furnace was replaced with Ar, and the raw material mixed powder was fired.
  • the firing program was set to raise the temperature from 0° C. to 1150° C. in 11.5 hours, hold the temperature at 1150° C. for 1 hour, and lower the temperature from 1150° C. to 0° C. in 11.5 hours.
  • Ar gas was flowed at 2 L/min during the firing program. After firing, an intermediate powder 2 was obtained.
  • Step 2 Intermediate powder 2 was pulverized using a batch-type ready mill (RM B-08, manufactured by Imex Co., Ltd.). Using a vessel of 800 cm 3 , pulverization was carried out under the conditions of 1348 rpm and a peripheral speed of 5 m/s. Using ZrO 2 beads with a particle size of 0.5 mm, 113 g of ethanol, 675 g of ZrO 2 and 80 g of intermediate powder 2 were mixed and ground for 60 minutes. After grinding, powder A2 was obtained.
  • a batch-type ready mill RM B-08, manufactured by Imex Co., Ltd.
  • Slurry B2 was spray-dried by the method described in Example 1 to obtain precursor powder 2.
  • Precursor powder 2 is filled in a firing container (manufactured by AS ONE Co., Ltd., firing boat No. 5), placed in a tubular furnace (manufactured by Motoyama Co., Ltd., DSPSH28), the atmosphere in the tubular furnace is replaced with Ar, and the precursor is The body powder was calcined.
  • the firing program was set to raise the temperature from 0° C. to 1220° C. in 12.2 hours, hold the temperature at 1220° C. for 5 hours, and lower the temperature from 1220° C. to 0° C. in 12.2 hours.
  • Ar gas was flowed at 100 mL/min during the firing program. After firing, a particle group of Example 2 was obtained.
  • a raw material mixed powder was obtained by the method described in Example 1. 1000 g of the raw material mixed powder is filled in a firing container (manufactured by Nikkato Co., Ltd., SSA-T Saya 150 square), and placed in an electric furnace (manufactured by Nemus Co., Ltd., FD-40 ⁇ 40 ⁇ 60-1Z4-18TMP). The atmosphere in the electric furnace was replaced with Ar, and the raw material mixed powder was fired. The firing program was set to raise the temperature from 0° C. to 1500° C. in 15 hours, hold the temperature at 1500° C. for 3 hours, and lower the temperature from 1500° C. to 0° C. in 15 hours. Ar gas was flowed at 2 L/min during the firing program. Powder C was obtained after firing.
  • Table 1 summarizes the measurement results obtained in Examples 1 and 2 and Comparative Examples 1 and 2.
  • the dimensional change rate in the solid composition could be reduced.
  • the particle group according to the example was a particle group having excellent thermal expansion control properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

According to the present invention, a particle group contains a group of particles containing crystal, and meets requirement 1 and at least one of requirements 2 and 3. Requirement 1: |dA(T)/dT| is 10 ppm/°C or more at at least one temperature T1 in the range of -200 to 1200°C, where A represents (lattice constant of a-axis (minor axis) of crystal)/(lattice constant of c-axis (major axis) of crystal), and each of the lattice constants is obtained by X-ray diffraction measurement of the particle group. Requirement 2: SBET/SPSD is 4.0-20.0, where SBET represents the specific surface area of the particle group as determined by BET method. SPSD represents the specific surface area of a virtual particle group, the virtual particle group has the same volume-based particle size distribution as that of the particle group obtained by a laser diffraction scattering method, and the same true density as that of the particle group, and each virtual particle has a true sphere shape. Requirement 3: a porosity is 2.0-20.0%, where the porosity (%) = (1 - apparent density of particle group/true density of particle group) × 100

Description

粒子群、組成物、成形体、及び、粒子群の製造方法Particle group, composition, compact, and method for producing particle group
 本発明は、粒子群、組成物、成形体、及び、粒子群の製造方法に関する。 The present invention relates to a particle group, a composition, a molded body, and a method for producing a particle group.
 従来より、固体材料の熱線膨張係数を低減させるために、固体材料に熱線膨張係数の値が小さいフィラーを添加することが知られている。 It is conventionally known to add a filler with a small coefficient of thermal expansion to a solid material in order to reduce the coefficient of linear thermal expansion of the solid material.
 例えば、特許文献1には、負の熱線膨張係数を示すフィラーとしてのリン酸タングステンジルコニウムが開示されている。 For example, Patent Document 1 discloses tungsten zirconium phosphate as a filler exhibiting a negative thermal expansion coefficient.
特開2018-2577号公報JP 2018-2577 A
 しかしながら、従来の材料においては、必ずしも充分に熱線膨張係数を下げられているわけではない。 However, conventional materials do not necessarily have a sufficiently low coefficient of linear thermal expansion.
 本発明は上記事情に鑑みてなされたものであり、優れた熱線膨張係数の制御特性を発揮し得る粒子群、並びにこれを用いた組成物、成形体、及び、製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a particle group capable of exhibiting excellent controllability of the coefficient of thermal expansion, a composition using the same, a molded article, and a production method. and
 本発明者らは、種々検討した結果、本発明に至った。すなわち本発明は、下記の発明を提供するものである。 The present inventors arrived at the present invention as a result of various studies. That is, the present invention provides the following inventions.
 本発明の一側面は、粒子群であって、各粒子は複数の結晶を含有し、以下の要件1を満たし、以下の要件2及び要件3の少なくとも一方を満たす。
 要件1:-200℃~1200℃における少なくとも一つの温度T1で|dA(T)/dT|が10ppm/℃以上である。
 Aは(前記結晶のa軸(短軸)の格子定数)/(前記結晶のc軸(長軸)の格子定数)であり、各前記格子定数は前記粒子群のX線回折測定から得られる。
 要件2:SBET/SPSDが4.0~20.0である。
 SBETは、BET法により得られる前記粒子群の比表面積である。
 SPSDは、仮想粒子群の比表面積であり、前記仮想粒子群は、レーザー回折散乱法により得られる前記粒子群の体積基準の粒子径分布と同じ粒子径分布及び前記粒子群の真密度と同じ真密度を有し、かつ、各仮想粒子の形状が真球である。
 要件3:下式で定義される空隙率が2.0~20.0%である。
 空隙率(%)=(1-粒子群の見掛密度/粒子群の真密度)×100
One aspect of the present invention is a group of particles, each particle containing a plurality of crystals, satisfying requirement 1 below and at least one of requirement 2 and requirement 3 below.
Requirement 1: |dA(T)/dT| is 10 ppm/°C or more at at least one temperature T1 between -200°C and 1200°C.
A is (lattice constant of the a-axis (short axis) of the crystal)/(lattice constant of the c-axis (long axis) of the crystal), and each lattice constant is obtained from X-ray diffraction measurement of the particle group. .
Requirement 2: S BET /S PSD is 4.0 to 20.0.
SBET is the specific surface area of the particle group obtained by the BET method.
S PSD is the specific surface area of the virtual particle group, and the virtual particle group has the same particle size distribution as the volume-based particle size distribution of the particle group obtained by the laser diffraction scattering method and the same true density of the particle group It has a true density and the shape of each virtual particle is a perfect sphere.
Requirement 3: The porosity defined by the following formula is 2.0 to 20.0%.
Porosity (%) = (1-apparent density of particle group / true density of particle group) x 100
 前記粒子群は、前記要件1~3の全てを満たすことができる。 The particle group can satisfy all of the above requirements 1 to 3.
 前記粒子群において、レーザー回折散乱法により得られる前記粒子群の体積基準の累積の粒子径分布曲線における、累積頻度が50%となる粒子径D50が1~100μmであることができる。 In the particle group, the particle diameter D50 at which the cumulative frequency is 50% in the volume-based cumulative particle size distribution curve of the particle group obtained by a laser diffraction scattering method can be 1 to 100 μm.
 前記結晶は、金属酸化物であることができる。 The crystal can be a metal oxide.
 前記金属酸化物は、d電子を有する金属を含有する金属酸化物であることができる。 The metal oxide can be a metal oxide containing a metal having d electrons.
 前記金属酸化物は、チタンを含有する金属酸化物であることができる。 The metal oxide can be a metal oxide containing titanium.
 前記チタンを含有する金属酸化物は、TiO(x=1.30~1.66)であることができる。 The titanium-containing metal oxide may be TiO x (x=1.30-1.66).
 本発明の一側面に係る組成物は、上記のいずれかの粒子群を含む。 A composition according to one aspect of the present invention contains any of the above particle groups.
 上記の組成物は、粉体の形態を有することができる。 The above composition can have a powder form.
 上記の組成物は、さらに、マトリクス材料を含むことができる。 The above composition can further contain a matrix material.
 上記の組成物は、さらに、未硬化の硬化性樹脂、を含むことができる。 The above composition can further contain an uncured curable resin.
 本発明の一側面にかかる成形体は、上記の粒子群又は粉体の形態を有する組成物の成形体である。 A molded article according to one aspect of the present invention is a molded article of the composition having the above particle group or powder form.
 本発明の一側面に係る方法は、上記のいずれかの粒子群の製造方法であって、原料を焼成して中間体を得る工程1、前記中間体を粉砕して前駆体を得る工程2、及び前記前駆体を焼成する工程3を含み、前記工程1及び工程3での焼成温度は1000~1300℃である。 A method according to one aspect of the present invention is any one of the above-described methods for producing a particle group, comprising a step 1 of calcining a raw material to obtain an intermediate, a step 2 of pulverizing the intermediate to obtain a precursor, and step 3 of firing the precursor, and the firing temperature in steps 1 and 3 is 1000 to 1300°C.
 前記方法は、工程2及び工程3の間に、前駆体を噴霧乾燥法により顆粒化して顆粒状の前駆体を得る工程を含むことができる。 The method can include, between steps 2 and 3, a step of granulating the precursor by a spray drying method to obtain a granular precursor.
 本発明によれば、優れた熱線膨張係数の制御特性を発揮し得る粒子群、並びにこれを用いた各種の組成物及び成形体を提供することができる。また、本発明によれば、優れた熱線膨張係数の制御特性を発揮し得る粒子群の製造方法を提供することができる。 According to the present invention, it is possible to provide a particle group capable of exhibiting excellent controllability of the coefficient of thermal expansion, and various compositions and moldings using the same. Moreover, according to the present invention, it is possible to provide a method for producing a particle group capable of exhibiting excellent controllability of the coefficient of thermal expansion.
本発明の1実施形態に係る粒子の断面の模式図である。1 is a schematic diagram of a cross-section of a particle according to one embodiment of the invention; FIG.
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 A preferred embodiment of the present invention will be described in detail below. However, the present invention is not limited to the following embodiments.
<粒子群P>
 粒子群Pは複数の粒子を含む。各粒子は複数の結晶を含み、各粒子は複数の結晶の凝集体であることができる。各粒子は、1つの結晶を一次粒子とする二次粒子であってもよく、複数の結晶の集合体を一次粒子とする二次粒子であってもよい。
<Particle group P>
Particle group P includes a plurality of particles. Each particle contains multiple crystals, and each particle can be an aggregate of multiple crystals. Each particle may be a secondary particle whose primary particle is one crystal, or may be a secondary particle whose primary particle is an aggregate of a plurality of crystals.
 粒子群Pは、以下の要件1を満たし、さらに、以下の要件2及び要件3の少なくとも一方を満たす。粒子群Pは、下記の要件1~3の全てを満たすことが好適である。
 要件1:-200℃~1200℃における少なくとも一つの温度T1で|dA(T)/dT|が10ppm/℃以上である。
 Aは(前記結晶のa軸(短軸)の格子定数)/(前記結晶のc軸(長軸)の格子定数)であり、各格子定数は粒子群PのX線回折測定から得られる。
The particle group P satisfies Requirement 1 below and further satisfies at least one of Requirement 2 and Requirement 3 below. Particle group P preferably satisfies all of requirements 1 to 3 below.
Requirement 1: |dA(T)/dT| is 10 ppm/°C or more at at least one temperature T1 between -200°C and 1200°C.
A is (lattice constant of the a-axis (minor axis) of the crystal)/(lattice constant of the c-axis (long axis) of the crystal), and each lattice constant is obtained from the X-ray diffraction measurement of the particle group P.
 要件2:SBET/SPSDが4.0~20.0である。
 SBETは、BET法により得られる前記粒子群Pの比表面積である。
 SPSDは、仮想粒子群Vの比表面積である。仮想粒子群Vは、レーザー回折散乱法により得られる粒子群Pの体積基準の粒子径分布と同じ粒子径分布及び前記粒子群の真密度と同じ真密度を有し、かつ、各仮想粒子の形状が真球である。
Requirement 2: S BET /S PSD is 4.0 to 20.0.
SBET is the specific surface area of the particle group P obtained by the BET method.
S PSD is the specific surface area of the virtual particle group V; The virtual particle group V has the same particle size distribution as the volume-based particle size distribution of the particle group P obtained by the laser diffraction scattering method and the same true density as the particle group, and the shape of each virtual particle is a true sphere.
 要件3:下式で定義される空隙率が2.0~20.0%である。
 空隙率(%)=(1-粒子群Pの見掛密度/粒子群Pの真密度)×100
Requirement 3: The porosity defined by the following formula is 2.0 to 20.0%.
Porosity (%) = (1-apparent density of particle group P / true density of particle group P) x 100
(要件1)
 要件1について詳しく説明する。
 Aの定義における格子定数は、粒子群Pの粉末X線回折測定により特定される。解析法としてはRietveld法や、最小二乗法によるフィッティングによる解析がある。
(Requirement 1)
Requirement 1 will be explained in detail.
The lattice constant in the definition of A is specified by powder X-ray diffraction measurement of the particle group P. Analysis methods include the Rietveld method and analysis by fitting using the method of least squares.
 本明細書においては、粉末X線回折測定により特定された、粒子群P中の結晶の構造において、最も小さい格子定数に対応する軸をa軸、最も大きい格子定数に対応する軸をc軸とする。結晶格子のa軸の長さとc軸の長さを、それぞれ、a軸長、c軸長とする。 In the present specification, the axis corresponding to the smallest lattice constant is the a-axis, and the axis corresponding to the largest lattice constant is the c-axis in the structure of the crystal in the particle group P specified by powder X-ray diffraction measurement. do. Let the a-axis length and the c-axis length of the crystal lattice be the a-axis length and the c-axis length, respectively.
 A(T)は、結晶軸の長さの異方性の大きさを示すパラメータであり、温度T(単位は℃)の関数である。A(T)の値が大きいほど、a軸長がc軸長に対して大きく、Aの値が小さいほど、a軸長はc軸長に対して小さい。 A(T) is a parameter that indicates the degree of anisotropy in the length of the crystal axis, and is a function of temperature T (unit: °C). The larger the value of A(T), the larger the a-axis length relative to the c-axis length, and the smaller the value of A, the smaller the a-axis length relative to the c-axis length.
 ここで、|dA(T)/dT|は、dA(T)/dTの絶対値を表し、dA(T)/dTは、A(T)のT(温度)による微分を表す。
 ここで、本明細書においては、|dA(T)/dT|は、以下の(1)式により定義される。
|dA(T)/dT|=|A(T+50)-A(T)|/50  …(1)
where |dA(T)/dT| represents the absolute value of dA(T)/dT, and dA(T)/dT represents the derivative of A(T) with respect to T (temperature).
Here, |dA(T)/dT| is defined by the following equation (1) in this specification.
|dA(T)/dT|=|A(T+50)−A(T)|/50 (1)
 上述のように、本実施形態にかかる粒子群P中の結晶は、-200℃~1200℃における少なくとも一つの温度T1で|dA(T)/dT|が10ppm/℃以上を満たすことが必要である。ただし、|dA(T)/dT|は、結晶が固体状態で存在する範囲内で定義される。したがって、(1)式におけるTの最高温度は、結晶(粒子)の融点よりも50℃低い温度までである。すなわち、「-200℃~1200℃における少なくとも一つの温度T1」の限定が付された場合、(1)式におけるTの温度範囲は-200~1150℃となる。 As described above, the crystals in the particle group P according to the present embodiment must satisfy |dA(T)/dT| be. However, |dA(T)/dT| is defined within the range in which the crystal exists in a solid state. Therefore, the maximum temperature of T in formula (1) is up to a temperature 50° C. lower than the melting point of the crystal (particle). That is, when the limitation of "at least one temperature T1 between -200°C and 1200°C" is given, the temperature range of T in the formula (1) is -200°C to 1150°C.
 -200℃~1200℃における少なくとも一つの温度T1で|dA(T)/dT|が20ppm/℃以上であることが好ましく、30ppm/℃以上であることがより好ましい。|dA(T)/dT|の上限は、1000ppm/℃以下であることが好ましく、500ppm/℃以下であることがより好ましい。 |dA(T)/dT| is preferably 20 ppm/°C or higher, more preferably 30 ppm/°C or higher, at at least one temperature T1 between -200°C and 1200°C. The upper limit of |dA(T)/dT| is preferably 1000 ppm/°C or less, more preferably 500 ppm/°C or less.
 少なくとも一つの温度T1で|dA(T)/dT|の値が10ppm/℃以上であることは、温度変化に伴う結晶構造の異方性の変化が大きいことを意味する。 A value of |dA(T)/dT| of 10 ppm/°C or more at at least one temperature T1 means that the anisotropy of the crystal structure changes significantly with temperature changes.
 少なくとも一つの温度T1において、dA(T)/dTは正でも負でもよいが、負であることが好適である。 At least one temperature T1, dA(T)/dT may be positive or negative, but is preferably negative.
 結晶の種類によっては、或る温度範囲で構造相転移により結晶構造が変化する物が有る。本明細書においては、或る温度における結晶構造において、最も小さい格子定数に対応する軸をa軸、最も大きい格子定数に対応する軸をc軸とする。三斜晶系、単斜晶系、直方晶系、正方晶系、六方晶系、菱面体晶系いずれの晶系においても、a軸、c軸については上記の定義とする。 Depending on the type of crystal, there are those whose crystal structure changes due to structural phase transition within a certain temperature range. In this specification, in the crystal structure at a certain temperature, the axis corresponding to the smallest lattice constant is the a-axis, and the axis corresponding to the largest lattice constant is the c-axis. The a-axis and c-axis are defined as above in any of the triclinic, monoclinic, cubic, tetragonal, hexagonal, and rhombohedral crystal systems.
 結晶が要件1を満たすと、粒子群Pを含む組成物、及び、成形体において、熱線膨張係数を低くし易い。 When the crystal satisfies Requirement 1, it is easy to lower the coefficient of linear thermal expansion in the composition containing the particle group P and the compact.
 (要件2)
 次に、要件2について説明する。
 SBET/SPSDは粒子群Pの各粒子の形状の複雑さの度合いを示し、1以上の値をとる。
 SBETは、BET法により得られる粒子群Pの比表面積である。なお、本明細書において、比表面積とは、サンプルの表面積をサンプルの質量で除した値である。
(Requirement 2)
Next, Requirement 2 will be described.
S BET /S PSD indicates the degree of complexity of the shape of each particle in the particle group P, and takes a value of 1 or more.
SBET is the specific surface area of the particle group P obtained by the BET method. In this specification, the specific surface area is a value obtained by dividing the surface area of a sample by the mass of the sample.
 BET比表面積の測定方法を以下に示す。
 前処理として窒素雰囲気中で200℃、30分間粒子群Pを乾燥する。比表面積の測定にはBET流動法を用いる。吸着ガスとしては、窒素ガス及びヘリウムガスの混合ガスを用いる。混合ガス中の窒素ガスの割合は30体積%とし、混合ガス中のヘリウムガスの割合は70体積%とする。測定装置としては、例えばBET比表面積測定装置 Macsorb HM-1201(マウンテック社製)を用いることができる。
A method for measuring the BET specific surface area is shown below.
As a pretreatment, the particle group P is dried in a nitrogen atmosphere at 200° C. for 30 minutes. The BET flow method is used to measure the specific surface area. A mixed gas of nitrogen gas and helium gas is used as the adsorption gas. The ratio of nitrogen gas in the mixed gas is set to 30% by volume, and the ratio of helium gas in the mixed gas is set to 70% by volume. As a measuring device, for example, a BET specific surface area measuring device Macsorb HM-1201 (manufactured by Mountec) can be used.
 SPSDは、仮想粒子群Vの比表面積である。仮想粒子群Vは、レーザー回折散乱法により得られる粒子群Pの体積基準の粒子径分布と同じ粒子径分布及び前記粒子群の真密度と同じ真密度を有し、かつ、各仮想粒子の形状が真球である。 S PSD is the specific surface area of the virtual particle group V; The virtual particle group V has the same particle size distribution as the volume-based particle size distribution of the particle group P obtained by the laser diffraction scattering method and the same true density as the particle group, and the shape of each virtual particle is a true sphere.
 レーザー回折散乱法による体積基準の累積の粒子群Pの粒子径分布曲線の測定方法を以下に示す。 The method for measuring the volume-based cumulative particle size distribution curve of the particle group P by the laser diffraction scattering method is shown below.
 前処理として、粒子群Pの1重量部に対して水を99重量部加えて希釈し、超音波洗浄機により超音波処理を行う。超音波処理時間は10分間とする。超音波洗浄機としては、日本精機製作所製のNS200-6Uを用いることができる。超音波の周波数としては、28kHz程度とすることができる。 As a pretreatment, 99 parts by weight of water is added to 1 part by weight of the particle group P to dilute it, and ultrasonic treatment is performed using an ultrasonic cleaner. The ultrasonic treatment time is 10 minutes. As the ultrasonic cleaner, NS200-6U manufactured by Nippon Seiki Seisakusho can be used. The frequency of ultrasonic waves can be about 28 kHz.
 体積基準の粒子群Pの粒子径分布はレーザー回折散乱法により測定する。例えば、Malvern Instruments Ltd.製レーザー回折式粒度分布測定装置Mastersizer2000を用いることができる。 The volume-based particle size distribution of the particle group P is measured by the laser diffraction scattering method. For example, Malvern Instruments Ltd. A laser diffraction particle size distribution measuring device Mastersizer 2000 manufactured by Fujikura Co., Ltd. can be used.
 結晶がTiである場合、Tiの屈折率を2.40として測定することができる。 When the crystal is Ti 2 O 3 , the refractive index of Ti 2 O 3 can be measured as 2.40.
 SBET/SPSDが1に近いほど、粒子群Pの粒子の形状が真球に近いことを示し、SBET/SPSDが大きいほど、粒子群Pの粒子の形状が複雑であることを示すものと考えられる。 The closer S BET /S PSD to 1, the closer the shape of the particles in the particle group P is to a true sphere, and the greater the S BET /S PSD , the more complex the shape of the particles in the particle group P. It is considered to be a thing.
 上述のように、本実施形態に係る粒子群Pにおいて、SBET/SPSDは、4.0以上かつ20.0以下である必要がある。SBET/SPSDは、4.3以上であることが好ましく、4.5以上であることがより好ましい。SBET/SPSDは、5.0以上、6.0以上、7.0以上、8.0以上、9.0以上、又は、10.0以上であってもよい。SBET/SPSDは、16.0以下であることが好ましく、15.0以下であることがより好ましい。SBET/SPSDは14.0以下、13.0以下、又は、12.0以下であってよい。 As described above, in the particle group P according to this embodiment, S BET /S PSD needs to be 4.0 or more and 20.0 or less. S BET /S PSD is preferably 4.3 or more, more preferably 4.5 or more. S BET /S PSD may be 5.0 or greater, 6.0 or greater, 7.0 or greater, 8.0 or greater, 9.0 or greater, or 10.0 or greater. S BET /S PSD is preferably 16.0 or less, more preferably 15.0 or less. S BET /S PSD may be 14.0 or less, 13.0 or less, or 12.0 or less.
 粒子群Pが要件2を満たすと、粒子群Pを含む組成物、及び、成形体において、熱線膨張係数を低くし易い。 When the particle group P satisfies Requirement 2, it is easy to lower the coefficient of linear thermal expansion in the composition and molded body containing the particle group P.
 (要件3)
 次に、要件3について説明する。
 要件3は、下式で定義される空隙率が2.0~20.0%であることを規定する。
 空隙率(%)=(1-粒子群Pの見掛密度/粒子群Pの真密度)×100
(Requirement 3)
Next, Requirement 3 will be described.
Requirement 3 stipulates that the porosity defined by the following formula is 2.0 to 20.0%.
Porosity (%) = (1-apparent density of particle group P / true density of particle group P) x 100
 粒子群Pの見掛密度とは、粒子群Pの質量を、粒子群Pを構成する固体の体積及び粒子群Pを構成する固体内の閉気孔の体積の合計で除した値である。言い換えると、粒子群Pの見掛密度とは、固体が占める体積と閉気孔の体積とを合計した体積を密度算定用の体積とする密度を意味する。見掛密度は閉気孔の体積が大きいほど小さい値となり、閉気孔が存在しない場合は真密度に等しくなる。 The apparent density of the particle group P is the value obtained by dividing the mass of the particle group P by the sum of the volume of the solid that constitutes the particle group P and the volume of closed pores in the solid that constitutes the particle group P. In other words, the apparent density of the particle group P means the density for which the total volume of the volume occupied by the solid and the volume of the closed pores is used as the volume for density calculation. The apparent density decreases as the volume of closed pores increases, and becomes equal to the true density when closed pores do not exist.
 粒子群Pの真密度とは、粒子群Pの質量を、粒子群Pを構成する固体の体積で除したものである。いいかえると、粒子群Pの真密度とは固体部分が占める体積だけを密度算定用の体積とする密度を意味する。真密度は粒子の形状に依らず、物質に固有の値である。 The true density of the particle group P is the mass of the particle group P divided by the volume of the solid that constitutes the particle group P. In other words, the true density of the particle group P means the density in which only the volume occupied by the solid portion is used as the volume for density calculation. True density is a value specific to a substance, regardless of the shape of the particles.
 粒子群Pにおける閉気孔は、粒子群Pを構成する固体の内部に存在する空間である。この空間は、後述する粒子群Pを添加した組成物、及び、成形体等において、通常他の材料によって充填されない空間であり、熱膨張率の低下に寄与することができる。閉気孔は結晶内に形成される空間でもよく、結晶間に形成される空間でもよい。例えば、粒子が、粒子内に多数の結晶がランダムに配置された多結晶粒子である場合、粒子は、結晶間に閉気孔を有することができる。 The closed pores in the particle group P are spaces that exist inside the solids that make up the particle group P. This space is a space that is normally not filled with other materials in the composition to which the particle group P is added, which will be described later, and the molded article, and can contribute to a decrease in the coefficient of thermal expansion. A closed pore may be a space formed within a crystal or a space formed between crystals. For example, if the particle is a polycrystalline particle with a large number of crystals randomly arranged within the particle, the particle may have closed pores between the crystals.
 図1は、本実施形態にかかる粒子群Pの粒子の一例の模式断面図である。粒子4は複数の結晶2を有する凝集体であり、粒子4は、結晶2間に配置された閉気孔6を有している。 FIG. 1 is a schematic cross-sectional view of an example of particles of particle group P according to the present embodiment. The particles 4 are agglomerates having a plurality of crystals 2 and the particles 4 have closed pores 6 arranged between the crystals 2 .
 上記の式で定義される空隙率は、粒子群P内に存在する閉気孔の合計体積の、粒子群Pの見掛体積に対する割合を意味する。なお、粒子群Pの見掛体積とは、粒子群Pを構成する固体の体積及び粒子群Pを構成する固体内の閉気孔の体積の合計である。 The porosity defined by the above formula means the ratio of the total volume of closed pores existing in the particle group P to the apparent volume of the particle group P. The apparent volume of the particle group P is the sum of the volume of the solid that forms the particle group P and the volume of closed pores in the solid that forms the particle group P.
 上述のように、本実施形態に係る粒子において、上記の空隙率は、2.0%以上かつ20%以下である必要がある。この空隙率は、2.3%以上であることが好ましく、2.5%以上であることがより好ましい。空隙率は、2.7%以上、2.8以上、2.9以上、3.0%以上、3.2以上、3.5%以上、3.7以上、又は4.0以上であってもよい。空隙率は、16%以下であることが好ましく、14%以下であることがより好ましい。空隙率は、13.0%以下、12.0%以下、11.0%以下、10.0%以下、9.0%以下、8.0%以下、7.0%以下、6.0%以下、又は、5.0%以下であってもよい。 As described above, in the particles according to the present embodiment, the porosity should be 2.0% or more and 20% or less. This porosity is preferably 2.3% or more, more preferably 2.5% or more. The porosity is 2.7% or more, 2.8 or more, 2.9 or more, 3.0% or more, 3.2 or more, 3.5% or more, 3.7 or more, or 4.0 or more good too. The porosity is preferably 16% or less, more preferably 14% or less. Porosity is 13.0% or less, 12.0% or less, 11.0% or less, 10.0% or less, 9.0% or less, 8.0% or less, 7.0% or less, 6.0% or less, or 5.0% or less.
 粒子が要件3を満たすと、粒子群Pを含む組成物等、及び、成形体において、熱線膨張係数を低くし易い。 When the particles satisfy Requirement 3, it is easy to lower the coefficient of linear thermal expansion in the composition, etc. containing the particle group P and in the molded body.
 本明細書では、粒子群Pの体積基準の累積の粒子径分布曲線において、累積頻度を径の小さい方から計算して、累積頻度が50%となる粒子の径をD50とする。 In this specification, in the volume-based cumulative particle size distribution curve of the particle group P, the cumulative frequency is calculated from the smaller diameter, and the particle diameter at which the cumulative frequency is 50% is defined as D50.
 粒子群Pを添加した液体組成物の流動性を担保する観点から、D50は1μm以上であることが好ましく、3μm以上であることがより好ましく、5μm以上であることがさらに好ましく、7μm以上であることが極めて好ましい。粒子群Pを添加した液体組成物の狭い隙間への侵入容易性を担保する観点から、D50は100μm以下であることが好ましく、80μm以下であることがより好ましく、60μm以下であることがさらに好ましい。D50は、50μm以下、40μm以下、30μm以下、25μm以下、20μm以下、又は、15μm以下であってもよい。 From the viewpoint of ensuring the fluidity of the liquid composition to which the particle group P is added, D50 is preferably 1 μm or more, more preferably 3 μm or more, even more preferably 5 μm or more, and 7 μm or more. is highly preferred. From the viewpoint of ensuring that the liquid composition to which the particle group P is added can easily penetrate narrow gaps, D50 is preferably 100 μm or less, more preferably 80 μm or less, and even more preferably 60 μm or less. . D50 may be 50 μm or less, 40 μm or less, 30 μm or less, 25 μm or less, 20 μm or less, or 15 μm or less.
 結晶は、酸化物であることが好ましい。特に、結晶は金属酸化物であることがより好ましい。金属酸化物は、複数の金属を含有してもよい。 The crystal is preferably an oxide. In particular, it is more preferable that the crystal is a metal oxide. The metal oxide may contain multiple metals.
 金属酸化物としては、特に限定はされないが、d電子を有する金属を含有する金属酸化物であることが好ましく、より好ましくはd電子のうち3d電子のみを有する金属を含有する金属酸化物が好ましい。 The metal oxide is not particularly limited, but is preferably a metal oxide containing a metal having d electrons, more preferably a metal oxide containing a metal having only 3d electrons out of d electrons. .
 d電子を有する金属を含有する金属酸化物としては、特に限定はされないが、例えば、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Moを含有する金属酸化物が挙げられる。 The metal oxide containing a metal having d electrons is not particularly limited, but includes, for example, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, and Mo. A metal oxide is mentioned.
 d電子のうち3d電子のみを有する金属を含有する金属酸化物としては、例えばSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cuを含有する金属酸化物が挙げられる。中でも、資源性の観点から、チタンを含有する金属酸化物が好ましい。 Examples of metal oxides containing metals having only 3d electrons among d electrons include metal oxides containing Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. Among them, metal oxides containing titanium are preferable from the viewpoint of resources.
 より具体的には、チタンを含有する金属酸化物は、組成式としてTiO(x=1.30~1.66)で表されることが好ましく、TiO(x=1.40~1.60)という組成式で表されることが更に好ましい。TiOにおいて、Ti原子の一部が他の元素で置換されていてもよい。 More specifically, the metal oxide containing titanium is preferably represented by TiO x (x=1.30 to 1.66) as a composition formula, and TiO x (x=1.40 to 1.66). 60) is more preferable. In TiO x , part of Ti atoms may be substituted with other elements.
 なお、チタンを含有する金属酸化物は、TiO以外に、LaTiOのようなチタン及びチタン以外の金属原子を含む酸化物であってもよい。 In addition to TiOx , the metal oxide containing titanium may be an oxide containing titanium and metal atoms other than titanium, such as LaTiO3 .
 上記結晶の結晶構造としては、ペロブスカイト構造またはコランダム構造を有することが好ましく、コランダム構造を有することがより好ましい。 The crystal structure of the crystal preferably has a perovskite structure or a corundum structure, and more preferably has a corundum structure.
 結晶系としては特に限定はされないが、菱面体晶系であることが好ましい。空間群としては、R-3cに帰属されることが好ましい。 Although the crystal system is not particularly limited, it is preferably a rhombohedral crystal system. The space group is preferably assigned to R-3c.
<粒子群Pの製造方法>
 続いて、上記の粒子群Pの製造方法の一例について説明する。
 本実施形態に係る粒子群Pの製造方法は、原料を焼成して中間体を得る工程1、前記中間体を粉砕して前駆体を得る工程2、及び前記前駆体を焼成する工程3を含み、前記工程1及び工程3での焼成温度は1000℃以上1300℃以下である。
<Method for producing particle group P>
Next, an example of a method for producing the particle group P will be described.
A method for producing a particle group P according to the present embodiment includes a step 1 of calcining a raw material to obtain an intermediate, a step 2 of pulverizing the intermediate to obtain a precursor, and a step 3 of calcining the precursor. , the sintering temperature in steps 1 and 3 is 1000° C. or higher and 1300° C. or lower.
 工程1
 原料とは、後の工程を経ることで上記の結晶に転化できるものを指す。原料の種類は特に限定されず、単一の物質でも混合物でもよい。例えば、製造する粒子群Pの結晶がチタンを含有する金属酸化物である場合、原料は金属チタンとチタン酸化物の混合物であることができる。
Process 1
Raw materials refer to those that can be converted into the above crystals through subsequent steps. The type of raw material is not particularly limited, and may be a single substance or a mixture. For example, when the crystal of the particle group P to be produced is a metal oxide containing titanium, the raw material can be a mixture of metal titanium and titanium oxide.
 原料の焼成は、電気炉で行われることが好ましい。電気炉の構造の例は、箱型、るつぼ型、管状型、連続型、炉底昇降型、ロータリーキルン、台車型等がある。箱型電気炉としては、例えばFD-40×40×60-1Z4-18TMP(ネムス株式会社製)がある。管状型電気炉としては、例えばPCR(株式会社モトヤマ製)及びDSPSH28(株式会社モトヤマ製)がある。
 工程1では、原料を全て上記の結晶に転化してもよいし、原料の一部のみが上記の結晶に転化していてもよい。言い換えると、得られる中間体は、上記の粒子群Pにおける結晶を含んでいればよく、未反応の原料を含んでいても含んでいなくてもよい。
Firing of the raw material is preferably performed in an electric furnace. Examples of the structure of the electric furnace include box type, crucible type, tubular type, continuous type, furnace bottom lifting type, rotary kiln, truck type, and the like. As a box type electric furnace, for example, there is FD-40×40×60-1Z4-18TMP (manufactured by Nemus Co., Ltd.). Examples of tubular electric furnaces include PCR (manufactured by Motoyama Co., Ltd.) and DSPSH28 (manufactured by Motoyama Co., Ltd.).
In step 1, all of the raw material may be converted into the above crystals, or only part of the raw material may be converted into the above crystals. In other words, the obtained intermediate may or may not contain unreacted raw materials as long as it contains the crystals of the particle group P described above.
 工程2
 工程1で得られた中間体の粉砕方法は、特に限定されず、例えば、粉砕物を乳鉢に入れ乳棒を用いて粉砕する方法及びボールミルやビーズミルを用いて粉砕する方法が挙げられる。粉砕は、乾式粉砕でも湿式粉砕でもよい。粉砕の条件、例えば、加える力の強さ及び粉砕を行う時間、を適宜変更することにより、得られる前駆体の粒子群の平均粒子径を調整することができる。
Process 2
The method of pulverizing the intermediate obtained in step 1 is not particularly limited, and examples thereof include a method of putting the pulverized product in a mortar and pulverizing it with a pestle, and a method of pulverizing it with a ball mill or bead mill. The pulverization may be dry pulverization or wet pulverization. The average particle size of the resulting precursor particle group can be adjusted by appropriately changing the pulverization conditions, for example, the strength of the applied force and the pulverization time.
 前記工程2及び工程3の間に、粉砕後の前駆体を噴霧乾燥法により顆粒化して顆粒状の前駆体を得る工程をさらに含んでもよい。 Between the steps 2 and 3, a step of granulating the pulverized precursor by a spray drying method to obtain a granular precursor may be further included.
 工程3
 前駆体の焼成は工程1における焼成と同様の方法で行うことができる。
Step 3
Firing of the precursor can be performed in the same manner as the firing in step 1.
 上述のとおり、工程1及び工程3での焼成温度は1000℃以上1300℃以下である。焼成温度は、粒子群Pにおける結晶性を高める観点から、例えば、1025℃以上であってもよく、1040℃以上であってもよく、1050℃以上であってもよい。焼成温度は、結晶粒径及び粒子群の各粒子径の増大を防止する観点から、例えば、1275℃以下であってもよく、1260℃以下であってもよく、1250℃以下であってもよい。工程1における焼成温度と工程3における焼成温度は同一であっても、異なっていてもよい。 As described above, the firing temperature in steps 1 and 3 is 1000°C or higher and 1300°C or lower. From the viewpoint of increasing the crystallinity of the particle group P, the firing temperature may be, for example, 1025° C. or higher, 1040° C. or higher, or 1050° C. or higher. The firing temperature may be, for example, 1275° C. or lower, 1260° C. or lower, or 1250° C. or lower from the viewpoint of preventing an increase in the crystal grain size and each particle size of the particle group. . The firing temperature in step 1 and the firing temperature in step 3 may be the same or different.
 焼成温度が上記範囲であると、粒子群のSBET/SPSD及び上記の空隙率を制御し易い傾向にある。その結果、優れた熱線膨張制御特性を発揮し得る粒子群を作製し易い。 When the firing temperature is within the above range, it tends to be easy to control the S BET /S PSD of the particle group and the above porosity. As a result, it is easy to produce a particle group capable of exhibiting excellent thermal linear expansion control properties.
 <粒子群Pを含む組成物>
 <第1の組成物(フィラー用の粉体組成物)>
 本発明の一実施形態は、上記の粒子群P及び他の粉体を含有する粉体組成物である。このような粉体組成物は、後述する固体組成物の熱膨張率を制御するためのフィラーとして好適に利用することができる。粉体組成物における粒子群Pの含有量に限定はなく、含有量に応じて熱膨張量を制御する機能を発揮することができる。熱膨張量を効率よく制御する観点から、上記の粒子群Pの含有量は75質量%以上であっても良く、85%質量%以上であっても良く、95質量%以上であってもよい。
<Composition containing particle group P>
<First composition (powder composition for filler)>
One embodiment of the present invention is a powder composition containing the above-described particle group P and other powder. Such a powder composition can be suitably used as a filler for controlling the coefficient of thermal expansion of the solid composition described below. The content of the particle group P in the powder composition is not limited, and the function of controlling the amount of thermal expansion can be exhibited according to the content. From the viewpoint of efficiently controlling the amount of thermal expansion, the content of the particle group P may be 75% by mass or more, 85% by mass or more, or 95% by mass or more. .
 粉体組成物における、粒子群P以外の他の粉体の例は、炭酸カルシウム、タルク、マイカ、シリカ、クレー、ウォラストナイト、チタン酸カリウム、ゾノトライト、石膏繊維、アルミボレート、アラミド繊維、炭素繊維、ガラス繊維、ガラスフレーク、ポリオキシベンゾイルウイスカー、ガラスバルーン、カーボンブラック、黒鉛、アルミナ、窒化アルミ、窒化ホウ素、酸化ベリリウム、フェライト、酸化鉄、チタン酸バリウム、チタン酸ジルコン酸鉛、ゼオライト、鉄粉、アルミ粉、硫酸バリウム、ホウ酸亜鉛、赤燐、酸化マグネシウム、ハイドロタルサイト、酸化アンチモン、水酸化アルミ、水酸化マグネシウム、炭酸亜鉛、TiO、TiOである。 Examples of powders other than Particle Group P in the powder composition include calcium carbonate, talc, mica, silica, clay, wollastonite, potassium titanate, xonotlite, gypsum fiber, aluminum borate, aramid fiber, carbon Fiber, glass fiber, glass flake, polyoxybenzoyl whisker, glass balloon, carbon black, graphite, alumina, aluminum nitride, boron nitride, beryllium oxide, ferrite, iron oxide, barium titanate, lead zirconate titanate, zeolite, iron powder, aluminum powder, barium sulfate, zinc borate, red phosphorus, magnesium oxide, hydrotalcite, antimony oxide, aluminum hydroxide, magnesium hydroxide, zinc carbonate, TiO 2 and TiO.
 粉体組成物のD50は、上記の粒子のD50と同様に設定することができる。 The D50 of the powder composition can be set in the same manner as the D50 of the particles described above.
 粉体組成物の製造方法は特に限定はされないが、例えば、上記粒子群Pと、他の粉体とを混合し、必要に応じて、解砕、ふるい分け、粉砕等により粒子径分布を調整すればよい。 Although the method for producing the powder composition is not particularly limited, for example, the particle group P is mixed with another powder, and if necessary, the particle size distribution is adjusted by crushing, sieving, pulverizing, etc. Just do it.
<第2の組成物(固体組成物)>
 本実施形態に係る固体組成物は、マトリクス材料と、上記の粒子群Pを含む。
<Second composition (solid composition)>
The solid composition according to this embodiment includes a matrix material and the particle group P described above.
[マトリクス材料]
 マトリクス材料としては、特に限定はされないが、樹脂、アルカリ金属珪酸塩、セラミックス、金属などを挙げることができる。マトリクス材料は、常温(20℃)で固体の状態で上記の粒子群Pを保持することができればよい。
[Matrix material]
Examples of the matrix material include, but are not limited to, resins, alkali metal silicates, ceramics, and metals. The matrix material should be able to hold the above particle group P in a solid state at room temperature (20° C.).
 樹脂の例は、熱可塑性樹脂、及び、熱又は活性エネルギー線硬化型樹脂の硬化物である。 Examples of resins are thermoplastic resins and cured products of heat- or active energy ray-curable resins.
 熱可塑性樹脂の例は、ポリオレフィン(ポリエチレン、ポリプロピレンなど)、ABS樹脂、ポリアミド(ナイロン6、ナイロン6,6など)、ポリアミドイミド、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート)、液晶ポリマー、ポリフェニレンエーテル、ポリアセタール、ポリカーボネート、ポリフェニレンサルファイド、ポリイミド、ポリエーテルイミド、ポリエーテサルフォン、ポリケトン、ポリスチレン、及びポリエーテルエーテルケトンである。 Examples of thermoplastic resins include polyolefins (polyethylene, polypropylene, etc.), ABS resins, polyamides (nylon 6, nylon 6,6, etc.), polyamideimides, polyesters (polyethylene terephthalate, polyethylene naphthalate), liquid crystal polymers, polyphenylene ethers, polyacetals. , polycarbonate, polyphenylene sulfide, polyimide, polyetherimide, polyethersulfone, polyketone, polystyrene, and polyetheretherketone.
 熱硬化型樹脂の例は、エポキシ樹脂、オキセタン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、フェノール樹脂(ノボラック樹脂、レゾール樹脂など)、アクリル樹脂、ウレタン樹脂、シリコーン樹脂、ポリイミド樹脂、及びメラミン樹脂等である。
 活性エネルギー線硬化型樹脂の例は、紫外線硬化型樹脂、電子線硬化型樹脂であり、例えば、ウレタンアクリレート樹脂、エポキシアクリレート樹脂、アクリルアクリレート樹脂、ポリエステルアクリレート樹脂、フェノールメタクリレート樹脂であることができる。樹脂の他の例は、シリコーン系、ウレタン系、ゴム系、アクリル系などの粘着剤である。
Examples of thermosetting resins include epoxy resins, oxetane resins, unsaturated polyester resins, alkyd resins, phenolic resins (novolac resins, resol resins, etc.), acrylic resins, urethane resins, silicone resins, polyimide resins, and melamine resins. be.
Examples of active energy ray-curable resins include UV-curable resins and electron beam-curable resins, such as urethane acrylate resins, epoxy acrylate resins, acrylic acrylate resins, polyester acrylate resins, and phenol methacrylate resins. Other examples of resins are adhesives such as silicone-based, urethane-based, rubber-based, and acrylic-based adhesives.
 マトリクス材料は、上記樹脂を1種含んでいてもよく、2種以上含んでいてもよい。 The matrix material may contain one type of the above resins, or may contain two or more types.
 耐熱性を高くできる観点から、マトリクス材料は、エポキシ樹脂、ポリエーテルサルフォン、液晶ポリマー、ポリイミド、ポリアミドイミド、シリコーンであることが好ましい。 From the viewpoint of increasing heat resistance, the matrix material is preferably epoxy resin, polyethersulfone, liquid crystal polymer, polyimide, polyamideimide, or silicone.
 アルカリ金属珪酸塩としては、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウムが挙げられる。第一の材料は、アルカリ金属珪酸塩を1種含んでいてもよく、2種以上含んでいてもよい。これらの材料は耐熱性が高いので好ましい。 Alkali metal silicates include lithium silicate, sodium silicate, and potassium silicate. The first material may contain one type of alkali metal silicate, or may contain two or more types. These materials are preferred because of their high heat resistance.
 セラミックスとしては、特に限定はされないが、アルミナ、シリカ(珪素酸化物、シリカガラスを含む)、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物系セラミックス;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、硫酸バリウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックスが挙げられる。第一の材料は、セラミックスを1種含んでいてもよく、2種以上含んでいてもよい。
 セラミックスは、耐熱性を高くできるので好ましい。放電プラズマ焼結などによって焼結体を作ることができる。
Ceramics are not particularly limited, but oxide ceramics such as alumina, silica (including silicon oxide and silica glass), titania, zirconia, magnesia, ceria, yttria, zinc oxide, iron oxide; silicon nitride, nitride Nitride ceramics such as titanium and boron nitride; silicon carbide, calcium carbonate, aluminum sulfate, barium sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, Ceramics such as mica, amesite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, and silica sand. The first material may contain one type of ceramics, or may contain two or more types.
Ceramics are preferable because they can have high heat resistance. A sintered body can be made by spark plasma sintering or the like.
 金属としては特に限定はされないが、アルミニウム、タンタル、ニオブ、チタン、モリブデン、鉄、ニッケル、コバルト、クロム、銅、銀、金、プラチナ、鉛、錫、タングステン、等の金属単体、ステンレス鋼(SUS)等の合金、及びこれらの混合物を挙げることができる。第一の材料は、金属を1種含んでいてもよく2種以上含んでいてもよい。このような金属は、耐熱性を高くできるので好ましい。 Metals are not particularly limited, but may be single metals such as aluminum, tantalum, niobium, titanium, molybdenum, iron, nickel, cobalt, chromium, copper, silver, gold, platinum, lead, tin, tungsten, stainless steel (SUS ), and mixtures thereof. The first material may contain one or more metals. Such metals are preferable because they can increase heat resistance.
 [その他の成分]
 固体組成物は、マトリクス材料及び上記粒子群P以外のその他の成分を含んでいてもよい。この成分としては、例えば、触媒が挙げられる。触媒としては、特に限定はされないが、酸性化合物、アルカリ性化合物、有機金属化合物などが挙げられる。酸性化合物としては、塩酸、硫酸、硝酸、燐酸、燐酸、蟻酸、酢酸、蓚酸等の酸を用いることができる。アルカリ性化合物としては、水酸化アンモニウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等を用いることができる。有機金属化合物としては、アルミニウム、ジルコニウム、スズ、チタン又は亜鉛を含むもの等が挙げられる。また、第1の組成物(粉体組成物)で例示した、粒子群P以外の他の粉体を含んでもよい。
[Other ingredients]
The solid composition may contain components other than the matrix material and the particle group P described above. This component includes, for example, a catalyst. Examples of catalysts include, but are not limited to, acidic compounds, alkaline compounds, organometallic compounds, and the like. Acidic compounds that can be used include acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phosphoric acid, formic acid, acetic acid, and oxalic acid. As the alkaline compound, ammonium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, etc. can be used. Organometallic compounds include those containing aluminum, zirconium, tin, titanium, or zinc. Moreover, other powder than the particle group P exemplified in the first composition (powder composition) may be included.
 固体組成物中の上記粒子群Pの含有量は特に限定されず、含有量に応じて熱膨張を制御する機能を発揮できる。固体組成物中の上記粒子群Pの含有量は、例えば、1重量%以上とすることができ、3重量%以上であってもよく、5重量%以上であってもよく、10重量%以上であってもよく、20重量%以上であってもよく、40重量%以上であってもよく、70重量%以上であってもよい。上記粒子群Pの含有量が高くなると、熱線膨張係数の低減効果が発揮され易い。固体組成物中の上記粒子群Pの含有量は、例えば、99重量%以下とすることができる。固体組成物中の上記粒子群Pの含有量は、95重量%以下であってもよく、90重量%以下であってもよい。 The content of the particle group P in the solid composition is not particularly limited, and the function of controlling thermal expansion can be exhibited according to the content. The content of the particle group P in the solid composition may be, for example, 1% by weight or more, may be 3% by weight or more, may be 5% by weight or more, or may be 10% by weight or more. may be 20% by weight or more, 40% by weight or more, or 70% by weight or more. When the content of the particle group P is high, the effect of reducing the thermal expansion coefficient is likely to be exhibited. The content of the particle group P in the solid composition can be, for example, 99% by weight or less. The content of the particle group P in the solid composition may be 95% by weight or less, or may be 90% by weight or less.
 固体組成物中のマトリクス材料の含有量は、例えば、1重量%以上とすることができる。固体組成物中のマトリクス材料の含有量は、5重量%以上であってもよく、10重量%以上であってもよい。固体組成物中のマトリクス材料の含有量は、例えば、99重量%以下とすることができる。固体組成物中のマトリクス材料の含有量は、97重量%以下であってもよく、95重量%以下であってもよく、90重量%以下であってもよく、80重量%以下であってもよく、60重量%以下であってもよく、30重量%以下であってもよい。 The content of the matrix material in the solid composition can be, for example, 1% by weight or more. The content of the matrix material in the solid composition may be 5% by weight or more, or 10% by weight or more. The content of matrix material in the solid composition can be, for example, 99% by weight or less. The content of the matrix material in the solid composition may be 97% by weight or less, 95% by weight or less, 90% by weight or less, or 80% by weight or less. It may be 60% by weight or less, or 30% by weight or less.
 本実施形態に係る固体組成物は上記の粒子群Pを含むので、当該粒子群Pを添加しない場合と比べて固体組成物の熱線膨張係数を低くすることができる。したがって、この固体組成物によれば、温度変化した際の寸法変化が極めて少ない部材を得ることができる。このため、温度による寸法変化に特に敏感な光学部材や半導体製造装置用部材に好適に利用できる。 Since the solid composition according to the present embodiment contains the above-described particle group P, the linear thermal expansion coefficient of the solid composition can be made lower than when the particle group P is not added. Therefore, with this solid composition, it is possible to obtain a member that undergoes very little dimensional change when the temperature changes. Therefore, it can be suitably used for optical members and members for semiconductor manufacturing equipment, which are particularly sensitive to dimensional changes due to temperature.
 <第3の組成物(液体組成物)>
 本実施形態に係る液体組成物は、上記の粒子群Pと、液状材料とを含む。本実施形態の永会組成物は25℃において流動性を有する組成物である。この液体組成物は、上記の固体組成物の原料であることができる。
 「25℃において流動性を有する」とは、所定の容器内に組成物を供給して液面を水平とした後、当該容器を45度傾斜させ、1時間後に当該液面が移動又は変形することを言う。
<Third composition (liquid composition)>
The liquid composition according to this embodiment includes the particle group P and a liquid material. The Eikai composition of this embodiment is a composition having fluidity at 25°C. This liquid composition can be the source of the solid composition described above.
"It has fluidity at 25 ° C." means that after the composition is supplied to a predetermined container and the liquid surface is leveled, the container is tilted at 45 degrees, and the liquid surface moves or deforms after 1 hour. Say things.
[液状材料]
 液状材料は液状であり、上記の粒子群Pを分散させられるものであってよい。液状材料は、マトリクス材料の原料であることができる。
[Liquid material]
The liquid material is liquid, and may be one in which the particle group P can be dispersed. The liquid material can be the source of the matrix material.
 例えば、マトリクス材料がアルカリ金属珪酸塩である場合には、液状材料は、アルカリ金属珪酸塩、及び、アルカリ金属珪酸塩を溶解又は分散することができる溶媒を含むことができる。マトリクス材料が熱可塑性樹脂である場合には、液状材料は、熱可塑性樹脂、及び、熱可塑性樹脂を溶解又は分散することができる溶媒を含むことができる。マトリクス材料が、熱又は活性エネルギー線硬化型樹脂の硬化物である場合には、液状材料は、硬化前の熱又は活性エネルギー線硬化型樹脂である。 For example, when the matrix material is an alkali metal silicate, the liquid material can contain the alkali metal silicate and a solvent capable of dissolving or dispersing the alkali metal silicate. When the matrix material is a thermoplastic resin, the liquid material can contain a thermoplastic resin and a solvent capable of dissolving or dispersing the thermoplastic resin. When the matrix material is a cured product of heat- or active energy ray-curable resin, the liquid material is the heat- or active energy ray-curable resin before curing.
 硬化前の熱硬化型樹脂は、室温で流動性を有し、加熱すると架橋反応などにより硬化する。硬化前の熱硬化型樹脂は、樹脂を1種含んでいてもよく、2種以上含んでいてもよい。 The thermosetting resin before curing has fluidity at room temperature, and when heated, it cures due to a cross-linking reaction. The thermosetting resin before curing may contain one type of resin, or may contain two or more types.
 硬化前の活性エネルギー線硬化型樹脂は、室温で流動性を有し、光(UVなど)又は電子線などの活性エネルギー線の照射により、架橋反応などが起こり硬化する。硬化前の活性エネルギー線硬化型樹脂は、硬化性モノマー及び/又は硬化性オリゴマーを含み、必要に応じて、さらに、溶媒、及び/又は、光開始剤を含むことができる。硬化性モノマー及び硬化性オリゴマーの例は、光硬化性モノマー及び光硬化性オリゴマーである。光硬化性モノマーの例は単官能又は多官能アクリレートモノマーである。光硬化性オリゴマーの例は、ウレタンアクリレート、エポキシアクリレート、アクリルアクリレート、ポリエステルアクリレート、フェノールメタクリレートである。 The active energy ray-curable resin before curing has fluidity at room temperature, and when irradiated with light (UV, etc.) or an active energy ray such as an electron beam, a cross-linking reaction occurs and cures. The active energy ray-curable resin before curing contains a curable monomer and/or a curable oligomer, and if necessary, can further contain a solvent and/or a photoinitiator. Examples of curable monomers and curable oligomers are photocurable monomers and photocurable oligomers. Examples of photocurable monomers are monofunctional or multifunctional acrylate monomers. Examples of photocurable oligomers are urethane acrylates, epoxy acrylates, acrylic acrylates, polyester acrylates, phenol methacrylates.
 溶媒の例は、アルコール溶媒、エーテル溶媒、ケトン溶媒、グリコール溶媒、炭化水素溶媒、非プロトン性極性溶媒などの有機溶媒、水が挙げられる。また、アルカリ金属珪酸塩の場合の溶媒は例えば水である。 Examples of solvents include organic solvents such as alcohol solvents, ether solvents, ketone solvents, glycol solvents, hydrocarbon solvents, aprotic polar solvents, and water. Moreover, the solvent in the case of the alkali metal silicate is, for example, water.
 [その他の成分]
 本実施形態の液体組成物は、液状材料及び上記の粒子群P以外のその他の成分を含んでいてもよい。例えば、第1の組成物(粉体組成物)で挙げた粒子群P以外のその他の粉体を含むことができる。
[Other ingredients]
The liquid composition of the present embodiment may contain components other than the liquid material and the particle group P described above. For example, powders other than the particle group P exemplified in the first composition (powder composition) can be included.
 本実施形態の液体組成物中の上記粒子群Pの含有量は特に限定されず、硬化後の固体組成物における熱膨張率の制御の観点から適宜設定できる。具体的には、第2の組成物(固体組成物)中の上記粒子群Pの含有量と同様にすることができる。 The content of the particle group P in the liquid composition of the present embodiment is not particularly limited, and can be set as appropriate from the viewpoint of controlling the coefficient of thermal expansion in the cured solid composition. Specifically, it can be the same as the content of the particle group P in the second composition (solid composition).
 <液体組成物の製造方法>
 液体組成物の製造方法は特に制限されない。例えば、上記の粒子群P又は粉体組成物と、液状材料とを攪拌混合することで液体組成物を得ることができる。攪拌方法としては、例えばミキサーによる攪拌混合が挙げられる。あるいは、超音波処理により、粒子群P等を液状材料中に分散させることが可能である。
<Method for producing liquid composition>
The method for producing the liquid composition is not particularly limited. For example, the liquid composition can be obtained by stirring and mixing the particle group P or the powder composition and the liquid material. Examples of the stirring method include stirring and mixing using a mixer. Alternatively, it is possible to disperse the particle group P and the like in the liquid material by ultrasonic treatment.
 混合工程に用いられる混合方法としては、例えば、ボールミル法、自転・公転ミキサー、インペラ旋回法、ブレード旋回法、旋回薄膜法、ローター/ステーター式ミキサー法、コロイドミル法、高圧ホモジナイザー法、超音波分散法が挙げられる。混合工程においては、複数の混合方法を順番に行っても、同時に複数の混合方法を行ってもよい。
 混合工程において組成物を均質化するとともに、せん断を与えることで、組成物の流動性及び変形性を高めることができる。
Mixing methods used in the mixing step include, for example, a ball mill method, a rotation/revolution mixer, an impeller swirling method, a blade swirling method, a swirling thin film method, a rotor/stator mixer method, a colloid mill method, a high-pressure homogenizer method, and an ultrasonic dispersion method. law. In the mixing step, a plurality of mixing methods may be performed in order or may be performed simultaneously.
By homogenizing the composition and applying shear during the mixing process, the fluidity and deformability of the composition can be enhanced.
 <固体組成物の製造方法>
 上記の液体組成物を所望の形状に成形した後、液体組成物中の液状材料をマトリクス材料に転化することにより、上記の粒子群P又は粉体組成物とマトリクス材料とを複合化した固体組成物を製造することができる。
<Method for producing solid composition>
After shaping the liquid composition into a desired shape, the liquid material in the liquid composition is converted into a matrix material, thereby forming a solid composition in which the particle group P or the powder composition and the matrix material are combined. can manufacture things.
 例えば、液状材料が、アルカリ金属珪酸塩、及び、アルカリ金属珪酸塩を溶解又は分散することができる溶媒を含む場合、及び、熱可塑性樹脂、及び、熱可塑性樹脂を溶解又は分散することができる溶媒を含む場合には、液体組成物を所望の形状にした上で、液体組成物から溶媒を除去することにより、上記の粒子群等とマトリクス材料(アルカリ金属塩又は熱可塑性樹脂)を含む固体組成物を得ることができる。 For example, when the liquid material contains an alkali metal silicate and a solvent capable of dissolving or dispersing the alkali metal silicate, and a thermoplastic resin and a solvent capable of dissolving or dispersing the thermoplastic resin When the liquid composition is formed into a desired shape and the solvent is removed from the liquid composition, a solid composition containing the above-mentioned particle groups and the matrix material (alkali metal salt or thermoplastic resin) can get things.
 溶媒の除去方法は、自然乾燥、真空乾燥、加熱などにより溶媒を蒸発させる方法を適用できる。粗大な気泡の発生を抑制する観点から、溶媒を除去する際には、混合物の温度を溶媒の沸点以下に維持しつつ溶媒を除去することが好適である。 As for the method of removing the solvent, a method of evaporating the solvent by natural drying, vacuum drying, heating, etc. can be applied. From the viewpoint of suppressing the generation of coarse air bubbles, when removing the solvent, it is preferable to remove the solvent while maintaining the temperature of the mixture below the boiling point of the solvent.
 液状材料が、硬化前の熱又は活性エネルギー線硬化型樹脂である場合には、液体組成物を所望の形状にした上で、熱又は活性エネルギー線(UV等)により液体組成物の硬化処理を行えばよい。 When the liquid material is a heat- or actinic-energy-ray-curable resin before curing, the liquid composition is formed into a desired shape, and the liquid composition is cured by heat or actinic-energy rays (UV, etc.). Do it.
 液体組成物を所定の形状にする方法の例は、型内に注ぎ込むこと、及び、基板表面に塗布してフィルム形状とすることである。 Examples of methods for shaping the liquid composition into a predetermined shape are pouring it into a mold and coating it on the substrate surface to form a film.
 また、マトリクス材料がセラミックス又は金属の場合には、以下のようにすることができる。マトリクス材料の原料粉と、上記の粒子群P等との混合物を調製し、混合物を熱処理してマトリクス材料の原料粉を焼結することにより、焼結体としてのマトリクス材料と、上記の粒子群P等と、を含む固体組成物が得られる。必要に応じて、アニーリング等の熱処理により、固体組成物の細孔の調整を行うことができる。焼結方法としては、通常の加熱、ホットプレス、放電プラズマ焼結などの方法が採用できる。 Also, when the matrix material is ceramics or metal, the following can be done. A mixture of the raw material powder of the matrix material and the above-described particle group P or the like is prepared, and the mixture is heat-treated to sinter the raw material powder of the matrix material, thereby obtaining the matrix material as a sintered body and the above-described particle group. A solid composition containing P and the like is obtained. If necessary, the pores of the solid composition can be adjusted by heat treatment such as annealing. As a sintering method, methods such as ordinary heating, hot pressing, and discharge plasma sintering can be used.
 放電プラズマ焼結とは、マトリクス材料の原料粉と、上記の粒子群P等との混合物を加圧しながら、混合物にパルス状の電流を通電させる。これにより、マトリクス材料の原料粉間で放電が生じ、マトリクス材料の原料粉を加熱させて焼結させることができる。 In the discharge plasma sintering, a pulsed electric current is passed through the mixture while pressurizing the mixture of the raw material powder of the matrix material and the above-described particle group P and the like. As a result, electric discharge is generated between the raw powders of the matrix material, and the raw powders of the matrix material can be heated and sintered.
 得られる化合物が空気と触れて変質することを防止するために、プラズマ焼結工程は、アルゴン、窒素、真空などの不活性雰囲気下で行うことが好ましい。 The plasma sintering process is preferably carried out under an inert atmosphere such as argon, nitrogen, or vacuum in order to prevent the obtained compound from deteriorating due to contact with air.
 プラズマ焼結工程における加圧圧力は、0MPaを超え100MPa以下の範囲が好ましい。高密度の第一の材料を得るため、プラズマ焼結工程における加圧圧力は10MPa以上とすることが好ましく、30MPa以上とすることがより好ましい。 The applied pressure in the plasma sintering process is preferably in the range of over 0 MPa and 100 MPa or less. In order to obtain a high-density first material, the applied pressure in the plasma sintering step is preferably 10 MPa or higher, more preferably 30 MPa or higher.
 プラズマ焼結工程の加熱温度は、目的物であるマトリクス材料の融点よりも十分に低いことが好ましい。 The heating temperature in the plasma sintering process is preferably sufficiently lower than the melting point of the target matrix material.
 さらに、得られた固体組成物の熱処理によって、細孔の大きさや分布などの調整を行うことができる。 Furthermore, the size and distribution of pores can be adjusted by heat-treating the obtained solid composition.
 <粒子群P又は粉体組成物の成形体>
 本実施形態にかかる成形体は、上記の粒子群P又は粉体組成物の成形体である。本実施形態における成形体は、上記の粒子群P又は粉体組成物の焼結により得られる焼結体であってよい。
<Particle group P or molded body of powder composition>
The molded body according to this embodiment is a molded body of the particle group P or the powder composition. The molded body in this embodiment may be a sintered body obtained by sintering the particle group P or the powder composition.
 通常、上記の粒子群P又は粉体組成物を焼結することにより成形体を得る。この場合、粒子群P中の結晶構造が維持される温度範囲で焼結を行うことが好適である。 A molded body is usually obtained by sintering the particle group P or the powder composition. In this case, it is preferable to perform sintering in a temperature range in which the crystal structure in the particle group P is maintained.
 焼結体を得るためには公知の種々の焼結方法を適用できる。焼結体を得る方法としては、通常の加熱、ホットプレス、放電プラズマ焼結などの方法が採用できる。 Various known sintering methods can be applied to obtain a sintered body. As a method for obtaining a sintered body, a method such as ordinary heating, hot pressing, or discharge plasma sintering can be employed.
 なお、本実施形態にかかる成形体は、焼結体に限られず、例えば、上記の粒子群P又は粉体組成物の加圧成形により得られた圧粉体であってもよい。 The molded body according to the present embodiment is not limited to a sintered body, and may be, for example, a green compact obtained by pressure-molding the particle group P or the powder composition.
 本実施形態に係る上記の粒子群P又は粉体組成物の成形体によれば、熱膨張の少ない部材を提供することができ、温度変化した際の部材の寸法変化を極めて小さくできる。したがって、温度による寸法変化に特に敏感な装置に用いられる種々の部材に好適に利用できる。このため、温度による寸法変化に特に敏感な光学部材や半導体製造装置用部材に好適に利用できる。 According to the molded body of the particle group P or the powder composition according to the present embodiment, it is possible to provide a member with little thermal expansion, and it is possible to extremely reduce the dimensional change of the member when the temperature changes. Therefore, it can be suitably used for various members used in devices that are particularly sensitive to dimensional changes due to temperature. Therefore, it can be suitably used for optical members and members for semiconductor manufacturing equipment, which are particularly sensitive to dimensional changes due to temperature.
 続いて、上記の固体組成物及び成形体の具体的な使用形態について説明する。
 上記実施形態にかかる固体組成物及び成形体は、電気絶縁性に優れるので、電子デバイス用部材、機械部材、容器、光学部材、接着剤であることができる。
Next, specific usage forms of the above solid composition and molded article will be described.
Since the solid composition and molded article according to the above embodiment are excellent in electrical insulation, they can be used as electronic device members, mechanical members, containers, optical members, and adhesives.
[電子デバイス用部材]
 電子デバイス用部材の例は、封止部材、導電性接着剤、回路基板、プリプレグ、絶縁シートである。
[Electronic device components]
Examples of electronic device members are sealing members, conductive adhesives, circuit boards, prepregs, and insulating sheets.
 封止部材の例は、半導体素子の封止部材、アンダーフィル部材、3D-LSI用インターチップフィルである。半導体素子の例は、パワートランジスタ、パワーICなどのパワー半導体;LED素子などの発光素子である。上記固体組成物及び成形体を用いた封止部材によれば、熱線膨張係数の差による割れを抑制することが可能になる。 Examples of sealing members are sealing members for semiconductor elements, underfill members, and inter-chip fill for 3D-LSI. Examples of semiconductor elements are power semiconductors such as power transistors and power ICs; and light emitting elements such as LED elements. According to the sealing member using the above-mentioned solid composition and molded article, it is possible to suppress cracking due to the difference in coefficient of thermal expansion.
 導電性接着剤の例は、異方性導電フィルム、異方性導電ペーストである。導電性接着剤に本実施形態の粒子を含有させることで、接着部材の熱線膨張を下げることができ、異種材料接触部分における、割れや反りの問題を無くすことが可能になり、また、電気絶縁性を高めることが可能になる。 Examples of conductive adhesives are anisotropic conductive films and anisotropic conductive pastes. By including the particles of the present embodiment in the conductive adhesive, the linear thermal expansion of the adhesive member can be reduced, making it possible to eliminate the problems of cracking and warping at the parts where dissimilar materials come into contact. sexuality can be enhanced.
 回路基板は、金属層と、金属層上に設けられた電気絶縁層と、を備えている。電気絶縁層に、上記固体組成物及び成形体を用いることにより、電気絶縁性を維持したまま熱線膨張係数を下げ、金属層の熱線膨張係数との差を小さくすることができ、反りや割れといった問題を無くすことが可能になる。回路基板の具体例としては、プリント回路基板、多層プリント配線基板、ビルドアップ基板、キャパシタ内蔵基板等が挙げられる。 A circuit board includes a metal layer and an electrical insulating layer provided on the metal layer. By using the solid composition and molded body for the electrical insulating layer, the thermal linear expansion coefficient can be lowered while maintaining the electrical insulation properties, and the difference from the thermal linear expansion coefficient of the metal layer can be reduced. problem can be eliminated. Specific examples of circuit boards include printed circuit boards, multilayer printed wiring boards, build-up boards, capacitor-embedded boards, and the like.
 プリプレグは、補強基材と、当該補強基材に含浸させたマトリックス材と、を含有する含浸基材の半硬化物である。プリプレグに本実施形態の粒子を含有させることにより、硬化後のプリプレグが熱負荷のかかる環境下においても高い寸法安定性を発揮することが可能になる。 A prepreg is a semi-cured product of an impregnated base material containing a reinforcing base material and a matrix material impregnated in the reinforcing base material. By including the particles of the present embodiment in the prepreg, it becomes possible for the cured prepreg to exhibit high dimensional stability even in an environment where a heat load is applied.
 絶縁シートの例は、ポリ塩化ビニルなどの樹脂シートである。絶縁シートに上記粒子を含有させることにより、電気絶縁性を保ちつつ寸法精度を向上させることが可能になる。 An example of an insulating sheet is a resin sheet such as polyvinyl chloride. By including the particles in the insulating sheet, it is possible to improve the dimensional accuracy while maintaining electrical insulation.
 [機械部材]
 機械部材とは、種々の機械装置を構成する部材である。機械装置の例は、切削装置などの工作機械、プロセス機器、半導体製造装置である。機械部材の例は、固定機構、移動機構、工具などである。上記固体組成物及び成形体を用いた放熱部材によれば、熱膨張による寸法ずれを抑制することができ、工作精度、加工精度などの精度を向上させること可能になる。また、異なる材料の部材間の接合部分に用いることも好適である。
[Mechanical components]
A mechanical member is a member that constitutes various mechanical devices. Examples of mechanical equipment are machine tools such as cutting equipment, process equipment, and semiconductor manufacturing equipment. Examples of mechanical members are fixed mechanisms, moving mechanisms, tools, and the like. According to the heat dissipating member using the above-mentioned solid composition and molded article, it is possible to suppress dimensional deviation due to thermal expansion, and to improve accuracy such as machining accuracy and processing accuracy. It is also suitable for use in joints between members made of different materials.
 また、機械部材は回転部材であってもよい。回転部材とは、例えば歯車のように、回転しながら他の部材と力学的な作用を及ぼしあう部材を指す。回転部材においては、熱膨張によって寸法が変化すると、かみ合わせが悪く、摩耗するなどの問題が生じることから、上記固体組成物及び成形体を適用するのに好適である。 Also, the mechanical member may be a rotating member. A rotating member refers to a member, such as a gear, that exerts a mechanical action on another member while rotating. In rotating members, when the dimensions change due to thermal expansion, problems such as poor meshing and wear occur, so the above solid composition and molded article are suitable for application.
 また、機械部材は基板であってもよい。基板においては、熱膨張によって寸法が変化すると、位置ずれを起こすなどの問題が生じることから、上記固体組成物及び成形体を適用するのに好適である。 Also, the mechanical member may be a substrate. In the substrate, if the dimensions change due to thermal expansion, problems such as misalignment will occur, so it is suitable for applying the above solid composition and molded article.
 [容器]
 容器とは、気体、液体、固体などを収容するための部材である。例えば、容器の例は、成形体を作製するための金型である。例えば金型においては、熱膨張によって寸法が変化すると、成形体の寸法精度が保てないなどの問題が生じることから、上記固体組成物及び成形体を適用するのに好適である。
[container]
A container is a member for containing gas, liquid, solid, or the like. For example, an example of a container is a mold for making a molded body. For example, in a mold, if the dimensions change due to thermal expansion, problems such as the inability to maintain the dimensional accuracy of the molded body arise.
 [光学部材]
 光学部材の例は、光ファイバ、光導波路、レンズ、反射鏡、プリズム、光学フィルタ、回折格子、ファイバーグレーティング、波長変換部材である。レンズの例は、光ピックアップレンズ、カメラ用レンズである。光導波路の例は、アレイドウエーブガイドや平面光回路である。
[Optical components]
Examples of optical members are optical fibers, optical waveguides, lenses, reflectors, prisms, optical filters, diffraction gratings, fiber gratings and wavelength conversion members. Examples of lenses are optical pickup lenses and camera lenses. Examples of optical waveguides are arrayed waveguides and planar optical circuits.
 光学部材は、温度の変化にともない格子間隔、屈折率、光路長等が変化すると、特性が変動するという問題を有している。上記固体組成物及び成形体を用いた光学部材又は光学部材の固定部材又は支持基材によれば、このような温度に基づく光学部材の特性の変動を小さくすることが可能になる。 Optical members have the problem that their characteristics fluctuate when the lattice spacing, refractive index, optical path length, etc. change with changes in temperature. According to the optical member or the fixing member or supporting base material of the optical member using the solid composition and the molded article, it is possible to reduce such temperature-dependent fluctuations in the characteristics of the optical member.
 [接着剤]
 接着剤の例は、マトリックス材としてのエポキシ、シリコーン樹脂などの熱硬化性樹脂と、上記の粒子とを含む。接着剤は、硬化前は液状であってもよいし、固体状であってもよい。この接着剤の硬化物は、低い熱線膨張係数を有することができるので、割れを抑制することが可能になる。特に、熱負荷のかかる耐熱接着部材への適用などに好適である。
[glue]
Examples of adhesives include thermosetting resins such as epoxy and silicone resins as matrix materials and the particles described above. The adhesive may be liquid or solid before curing. A cured product of this adhesive can have a low coefficient of linear thermal expansion, so cracking can be suppressed. In particular, it is suitable for application to heat-resistant adhesive members to which heat load is applied.
 以下、本発明を実施例により更に詳しく説明する。
1.粒子群の結晶構造解析
 結晶構造の解析として、粉末X線回折測定装置SmartLab(株式会社リガク製)を用いて、下記の条件で、温度を変えて、粒子群を粉末X線回折測定し、粉末X線回折パターンを得た。結晶を構成する化合物について、得られた粉末X線回折パターンに基づいて、PDXL2(株式会社リガク製)ソフトウェアを用い、最小二乗法による格子定数の精密化を行い、2つの格子定数、すなわち、a軸長、及び、c軸長を求めた。
EXAMPLES The present invention will be described in more detail below with reference to examples.
1. Crystal structure analysis of particle group For analysis of the crystal structure, powder X-ray diffraction measurement of the particle group was performed using a powder X-ray diffraction measurement device SmartLab (manufactured by Rigaku Co., Ltd.) under the following conditions while changing the temperature. An X-ray diffraction pattern was obtained. Based on the powder X-ray diffraction pattern obtained for the compound constituting the crystal, PDXL2 (manufactured by Rigaku Co., Ltd.) software was used to refine the lattice constant by the least squares method, and two lattice constants, that is, a The axial length and c-axis length were obtained.
 測定装置:粉末X線回折測定装置SmartLab(株式会社リガク製)
 X線発生器:CuKα線源 電圧45kV、電流200mA
 スリット:スリット幅2mm
 スキャンステップ:0.02deg
 スキャン範囲:5-80deg
 スキャンスピード:10deg/min
 X線検出器:一次元半導体検出器
 測定雰囲気:Ar 100mL/min
 試料台:専用のガラス基板SiO
Measuring device: Powder X-ray diffraction measuring device SmartLab (manufactured by Rigaku Corporation)
X-ray generator: CuKα ray source voltage 45 kV, current 200 mA
Slit: Slit width 2mm
Scan step: 0.02deg
Scan range: 5-80deg
Scan speed: 10deg/min
X-ray detector: One-dimensional semiconductor detector Measurement atmosphere: Ar 100 mL/min
Sample table: made of dedicated glass substrate SiO2
2.粒子群のBET比表面積(SBET)測定
 以下の方法により粒子のBET比表面積を測定した。
前処理:窒素雰囲気中で200℃、30分間粒子群の乾燥を行った。
測定:BET流動法により測定した。
測定条件:窒素ガス及びヘリウムガスの混合ガスを用いた。混合ガス中の窒素ガスの割合は30体積%とし、混合ガス中のヘリウムガスの割合は70体積%とした。
測定装置:BET比表面積測定装置 Macsorb HM-1201(株式会社マウンテック製)
2. Measurement of BET Specific Surface Area (S BET ) of Particle Group The BET specific surface area of particles was measured by the following method.
Pretreatment: The particle group was dried at 200° C. for 30 minutes in a nitrogen atmosphere.
Measurement: Measured by the BET flow method.
Measurement conditions: A mixed gas of nitrogen gas and helium gas was used. The ratio of nitrogen gas in the mixed gas was set to 30% by volume, and the ratio of helium gas in the mixed gas was set to 70% by volume.
Measuring device: BET specific surface area measuring device Macsorb HM-1201 (manufactured by Mountec Co., Ltd.)
3.粒子群の粒子径分布測定
 以下の方法により粒子群の粒子径分布を測定した。
 前処理:粒子群1重量部に対して水を99重量部加えて希釈し、超音波洗浄機により超音波処理を行った。超音波処理時間は10分間とし、超音波洗浄機としては、株式会社日本精機製作所製のNS200-6Uを用いた。超音波の周波数としては、約28kHzで実施した。
 測定:レーザー回折散乱法により、体積基準の粒子群の粒子径分布を測定した。
 測定条件:Tiの屈折率を2.40とした。
 測定装置:レーザー回折式粒度分布測定装置 Mastersizer 2000(Malvern Instruments Ltd.製)
 得られた粒子群の粒子径分布と、各粒子の形状が球形との仮定に基づいて、SPSDを算出した。また、粒子群のD50を求めた。
3. Measurement of Particle Size Distribution of Particle Group The particle size distribution of the particle group was measured by the following method.
Pretreatment: 99 parts by weight of water was added to 1 part by weight of the particle group for dilution, and ultrasonic treatment was performed using an ultrasonic cleaner. The ultrasonic treatment time was 10 minutes, and NS200-6U manufactured by Nippon Seiki Seisakusho Co., Ltd. was used as an ultrasonic cleaner. The ultrasonic frequency was about 28 kHz.
Measurement: The volume-based particle size distribution of the particles was measured by a laser diffraction scattering method.
Measurement conditions: Ti 2 O 3 had a refractive index of 2.40.
Measuring device: laser diffraction particle size distribution measuring device Mastersizer 2000 (manufactured by Malvern Instruments Ltd.)
The S PSD was calculated based on the particle size distribution of the resulting particle group and the assumption that each particle had a spherical shape. Also, the D50 of the particle group was determined.
4.粒子群の空隙率測定
 粒子群の見掛密度を、容積10mLの比重瓶(アズワン株式会社製)を用いてJIS Z 8807に準ずる方法で測定した。液体としては水を用いた。
 粒子群の材料がTiである場合、Tiの真密度を4.49g/cmとして計算した。
 粒子群の見掛密度及び粒子群の真密度を用いて(2)式より粒子群の空隙率を算出した。
 空隙率(%)=(1―粒子群の見掛密度/粒子群の真密度)×100…(2)
4. Measurement of Porosity of Particle Group The apparent density of the particle group was measured by a method according to JIS Z 8807 using a pycnometer with a volume of 10 mL (manufactured by AS ONE Corporation). Water was used as the liquid.
When the material of the particle group is Ti 2 O 3 , the true density of Ti 2 O 3 is calculated as 4.49 g/cm 3 .
Using the apparent density of the particle group and the true density of the particle group, the porosity of the particle group was calculated from the formula (2).
Porosity (%) = (1-apparent density of particle group/true density of particle group) x 100 (2)
5.熱膨張制御特性(エポキシ樹脂複合材料)の評価
 以下の方法により、粒子群とエポキシ樹脂との複合材料を作製し、熱線膨張制御特性を評価した。
 エポキシ樹脂(住友化学株式会社製、ELM-100)57.5g、硬化剤(東京化成株式会社製、Bis(4―aminophenyl) Sulfone)26.4g、及び硬化促進剤(東京化成株式会社製、PiperidiniumTrifluoroborate)0.3gを混合することで未硬化のエポキシ樹脂組成物を得た。実施例及び比較例の粒子群5.0gと未硬化のエポキシ樹脂組成物1.3gを混合することで混合物を得た。
 得られた混合物を鋳型に入れ、圧力を加えながら180℃で5分間硬化させた後、室温まで冷却し鋳型より取り外し、さらに220℃で2時間硬化させ、エポキシ樹脂複合材料を得た。
5. Evaluation of Thermal Expansion Controlling Property (Epoxy Resin Composite Material) A composite material of a particle group and an epoxy resin was produced by the following method, and the linear thermal expansion controlling property was evaluated.
Epoxy resin (manufactured by Sumitomo Chemical Co., Ltd., ELM-100) 57.5 g, curing agent (manufactured by Tokyo Chemical Co., Ltd., Bis (4-aminophenyl) sulfone) 26.4 g, and curing accelerator (manufactured by Tokyo Chemical Co., Ltd., Piperidinium Trifluoroborate ) to obtain an uncured epoxy resin composition. A mixture was obtained by mixing 5.0 g of the particle groups of Examples and Comparative Examples with 1.3 g of the uncured epoxy resin composition.
The resulting mixture was placed in a mold and cured at 180°C for 5 minutes while applying pressure, then cooled to room temperature, removed from the mold, and cured at 220°C for 2 hours to obtain an epoxy resin composite material.
 得られたエポキシ樹脂複合材料の熱線膨張係数を、以下の装置を用いて測定した。
 測定装置:Thermo plus EVO2 TMAシリーズ Thermo plus 8311
 測定条件は温度領域:-10℃~160℃、温度変化速度:10℃/min、サンプリング間隔:2.7秒とした。
 リファレンス固体:シリカ
The thermal linear expansion coefficient of the obtained epoxy resin composite material was measured using the following equipment.
Measuring device: Thermo plus EVO2 TMA series Thermo plus 8311
The measurement conditions were temperature range: -10°C to 160°C, temperature change rate: 10°C/min, sampling interval: 2.7 seconds.
Reference solid: silica
 固体組成物の測定試料の典型的な大きさとしては、15mm×4mm×4mmとした。
 固体組成物の測定試料の最長辺を試料長Lとして温度Tにおける試料長L(T)を測定した。30℃の試料長(L(30℃))に対する寸法変化率ΔL(T)/L(30℃)を下記式により算出した。
 ΔL(100℃)/L(30℃)=(L(100℃)-L(30℃))/L(30℃)
A typical size of the measurement sample of the solid composition was 15 mm×4 mm×4 mm.
A sample length L (T) at a temperature T was measured with the longest side of the measurement sample of the solid composition as the sample length L. The dimensional change rate ΔL(T)/L(30°C) with respect to the sample length (L(30°C)) at 30°C was calculated by the following formula.
ΔL (100°C)/L (30°C) = (L (100°C) - L (30°C))/L (30°C)
 100℃における寸法変化率、すなわちΔL(100℃)/L(30℃)が0.1%未満である場合に、熱膨張制御特性が良好であると評価した。 When the dimensional change rate at 100°C, that is, ΔL (100°C)/L (30°C) was less than 0.1%, the thermal expansion control characteristics were evaluated as good.
(実施例1~2及び比較例1~2)
 以下の方法により実施例1~2及び比較例1~2の粒子群を得た。
(Examples 1-2 and Comparative Examples 1-2)
Particle groups of Examples 1 and 2 and Comparative Examples 1 and 2 were obtained by the following method.
<実施例1>
<工程1>
 プラスチック製の1Lポリボトル(外径97.4mm)に、1000gの2mmφジルコニアボールと、166.7gのTiO(石原産業株式会社製、CR-EL)と、33.3gのTi(株式会社高純度化学研究所製、<38μm)とを入れて、ボールミル架台に1Lポリボトルを載せて回転数60rpmでボールミル混合を4時間行い、原料混合粉1を作製した。
<Example 1>
<Step 1>
In a plastic 1 L poly bottle (outer diameter 97.4 mm), 1000 g of 2 mmφ zirconia ball, 166.7 g of TiO 2 (manufactured by Ishihara Sangyo Co., Ltd., CR-EL), and 33.3 g of Ti (Kojundo Co., Ltd. Kagaku Kenkyusho Co., Ltd., <38 μm) was added, a 1 L plastic bottle was placed on a ball mill stand, and ball mill mixing was performed for 4 hours at a rotation speed of 60 rpm to prepare a raw material mixed powder 1.
 前記原料混合粉1を焼成用容器(株式会社ニッカトー製、SSA-Tサヤ90角)に充填し、電気炉(株式会社モトヤマ製、PCR)に入れ、電気炉内の雰囲気をArで置換して、原料混合粉を焼成した。焼成プログラムを、0℃から1100℃まで11時間で昇温させ、1100℃で1時間保持させ、1100℃から0℃まで11時間で降温させる設定にした。焼成プログラム作動中は5L/分でArガスをフローした。焼成後、中間体粉末1を得た。 The raw material mixed powder 1 is filled in a firing container (SSA-T Saya 90 square manufactured by Nikkato Co., Ltd.), placed in an electric furnace (PCR manufactured by Motoyama Co., Ltd.), and the atmosphere in the electric furnace is replaced with Ar. , the raw material mixed powder was calcined. The firing program was set to raise the temperature from 0° C. to 1100° C. in 11 hours, hold the temperature at 1100° C. for 1 hour, and lower the temperature from 1100° C. to 0° C. in 11 hours. Ar gas was flowed at 5 L/min during the firing program. After firing, an intermediate powder 1 was obtained.
<工程2>
 中間体粉末1をバッチ式レディーミル(アイメックス株式会社製、RM B-08)を用いて粉砕した。800cmのベッセルを用い、1348rpm、周速5m/sの条件で粉砕をした。0.5mmの粒子径のZrOビーズを用い、エタノール113g、ZrOを675g、中間体粉末1を80gの割合で混合し、60分間粉砕した。粉砕後、粉末A1を得た。
<Step 2>
The intermediate powder 1 was pulverized using a batch-type ready mill (RM B-08, manufactured by Imex Co., Ltd.). Using a vessel of 800 cm 3 , pulverization was carried out under the conditions of 1348 rpm and a peripheral speed of 5 m/s. Using ZrO 2 beads with a particle size of 0.5 mm, 113 g of ethanol, 675 g of ZrO 2 and 80 g of intermediate powder 1 were mixed and ground for 60 minutes. After grinding, powder A1 was obtained.
 50gの粉末A1、純水200g、ポリビニルアルコール(富士フイルム和光純薬株式会社製、PVA―3500)の10wt%水溶液10g及びポリエチレングリコール(富士フイルム和光純薬株式会社製、PEG―400)を混合し、スラリーB1を得た。 50 g of powder A1, 200 g of pure water, 10 g of a 10 wt% aqueous solution of polyvinyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., PVA-3500) and polyethylene glycol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., PEG-400) were mixed. , to obtain slurry B1.
 スラリーB1を小型スプレードライヤー(ヤマト科学株式会社製)を用いて噴霧乾燥した。圧力1.0MPa、出口温度85℃、アスピレータ表示値40の条件で、送液ポンプ出力は出口温度が一定となるように適宜調節し、噴霧乾燥した。噴霧乾燥後、前駆体粉末1を得た。 Slurry B1 was spray-dried using a small spray dryer (manufactured by Yamato Scientific Co., Ltd.). Spray-drying was carried out under the conditions of a pressure of 1.0 MPa, an outlet temperature of 85° C., and an aspirator display value of 40, and the liquid feed pump output was appropriately adjusted so that the outlet temperature was kept constant. Precursor powder 1 was obtained after spray drying.
<工程3>
 前駆体粉末1を焼成用容器(アズワン株式会社製、焼成ボートNo.5)に充填し、管状炉(株式会社モトヤマ製、DSPSH28)に入れ、管状炉内の雰囲気をArで置換して、前駆体粉末を焼成した。焼成プログラムを、0℃から1150℃まで11.5時間で昇温させ、1150℃で1時間保持させ、1150℃から0℃まで11.5時間で降温させる設定にした。焼成プログラム作動中は100mL/分でArガスをフローした。焼成後、実施例1の粒子群を得た。
<Step 3>
Precursor powder 1 is filled in a firing container (manufactured by AS ONE Co., Ltd., firing boat No. 5), placed in a tubular furnace (manufactured by Motoyama Co., Ltd., DSPSH28), the atmosphere in the tubular furnace is replaced with Ar, and the precursor is The body powder was calcined. The firing program was set to raise the temperature from 0° C. to 1150° C. in 11.5 hours, hold the temperature at 1150° C. for 1 hour, and lower the temperature from 1150° C. to 0° C. in 11.5 hours. Ar gas was flowed at 100 mL/min during the firing program. After firing, a particle group of Example 1 was obtained.
<実施例2>
<工程1>
 実施例1に記載の方法で、原料混合粉1を作製した。
<Example 2>
<Step 1>
Raw material mixed powder 1 was prepared by the method described in Example 1.
 前記原料混合粉1を焼成用容器(株式会社ニッカトー製、SSA-Tサヤ150角)に充填し、電気炉(ネムス株式会社製、FD-40×40×60-1Z4-18TMP)に入れ、電気炉内の雰囲気をArで置換して、原料混合粉を焼成した。焼成プログラムを、0℃から1150℃まで11.5時間で昇温させ、1150℃で1時間保持させ、1150℃から0℃まで11.5時間で降温させる設定にした。焼成プログラム作動中は2L/分でArガスをフローした。焼成後、中間体粉末2を得た。 The raw material mixed powder 1 is filled in a firing container (SSA-T Saya 150 square, manufactured by Nikkato Co., Ltd.), placed in an electric furnace (FD-40 × 40 × 60-1Z4-18TMP, manufactured by Nemus Co., Ltd.), and The atmosphere in the furnace was replaced with Ar, and the raw material mixed powder was fired. The firing program was set to raise the temperature from 0° C. to 1150° C. in 11.5 hours, hold the temperature at 1150° C. for 1 hour, and lower the temperature from 1150° C. to 0° C. in 11.5 hours. Ar gas was flowed at 2 L/min during the firing program. After firing, an intermediate powder 2 was obtained.
<工程2>
 中間体粉末2をバッチ式レディーミル(アイメックス株式会社製、RM B-08)を用いて粉砕した。800cmのベッセルを用い、1348rpm、周速5m/sの条件で粉砕をした。0.5mmの粒子径のZrOビーズを用い、エタノール113g、ZrOを675g、中間体粉末2を80gの割合で混合し、60分間粉砕した。粉砕後、粉末A2を得た。
<Step 2>
Intermediate powder 2 was pulverized using a batch-type ready mill (RM B-08, manufactured by Imex Co., Ltd.). Using a vessel of 800 cm 3 , pulverization was carried out under the conditions of 1348 rpm and a peripheral speed of 5 m/s. Using ZrO 2 beads with a particle size of 0.5 mm, 113 g of ethanol, 675 g of ZrO 2 and 80 g of intermediate powder 2 were mixed and ground for 60 minutes. After grinding, powder A2 was obtained.
 粉末A50g、純水200g、ポリビニルアルコール(富士フイルム和光純薬株式会社製、PVA―3500)の10wt%水溶液10g及びポリエチレングリコール(富士フイルム和光純薬株式会社製、PEG―400)を混合し、スラリーB2を得た。 50 g of powder A, 200 g of pure water, 10 g of a 10 wt% aqueous solution of polyvinyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., PVA-3500) and polyethylene glycol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., PEG-400) were mixed to form a slurry. B2 was obtained.
 スラリーB2を実施例1に記載の方法で噴霧乾燥して、前駆体粉末2を得た。 Slurry B2 was spray-dried by the method described in Example 1 to obtain precursor powder 2.
<工程3>
 前駆体粉末2を焼成用容器(アズワン株式会社製、焼成ボートNo.5)に充填し、管状炉(株式会社モトヤマ製、DSPSH28)に入れ、管状炉内の雰囲気をArで置換して、前駆体粉末を焼成した。焼成プログラムを、0℃から1220℃まで12.2時間で昇温させ、1220℃で5時間保持させ、1220℃から0℃まで12.2時間で降温させる設定にした。焼成プログラム作動中は100mL/分でArガスをフローした。焼成後、実施例2の粒子群を得た。
<Step 3>
Precursor powder 2 is filled in a firing container (manufactured by AS ONE Co., Ltd., firing boat No. 5), placed in a tubular furnace (manufactured by Motoyama Co., Ltd., DSPSH28), the atmosphere in the tubular furnace is replaced with Ar, and the precursor is The body powder was calcined. The firing program was set to raise the temperature from 0° C. to 1220° C. in 12.2 hours, hold the temperature at 1220° C. for 5 hours, and lower the temperature from 1220° C. to 0° C. in 12.2 hours. Ar gas was flowed at 100 mL/min during the firing program. After firing, a particle group of Example 2 was obtained.
<比較例1>
 実施例1に記載の方法にて原料混合粉を得た。1000gの前記原料混合粉を焼成用容器(株式会社ニッカトー製、SSA-Tサヤ150角)に充填し、電気炉(ネムス株式会社製、FD-40×40×60-1Z4-18TMP)に入れ、電気炉内の雰囲気をArで置換して、原料混合粉を焼成した。焼成プログラムを、0℃から1500℃まで15時間で昇温させ、1500℃で3時間保持させ、1500℃から0℃まで15時間で降温させる設定にした。焼成プログラム作動中は2L/分でArガスをフローした。焼成後、粉末Cを得た。
<Comparative Example 1>
A raw material mixed powder was obtained by the method described in Example 1. 1000 g of the raw material mixed powder is filled in a firing container (manufactured by Nikkato Co., Ltd., SSA-T Saya 150 square), and placed in an electric furnace (manufactured by Nemus Co., Ltd., FD-40 × 40 × 60-1Z4-18TMP). The atmosphere in the electric furnace was replaced with Ar, and the raw material mixed powder was fired. The firing program was set to raise the temperature from 0° C. to 1500° C. in 15 hours, hold the temperature at 1500° C. for 3 hours, and lower the temperature from 1500° C. to 0° C. in 15 hours. Ar gas was flowed at 2 L/min during the firing program. Powder C was obtained after firing.
 プラスチック製の1Lポリボトル(外径97.4mm)に、1000gの2mmφジルコニアボールと、161gの粉末Cを入れて、ボールミル架台に1Lポリボトルを載せて回転数60rpmでボールミル粉砕を4時間行い、中間体粉末を粉砕した。粉砕後、粉末Dを得た。粉砕後の粉末を45μm目開きの篩にかけ、篩を通過した粉末を比較例1の粉末とした。 Put 1000 g of 2 mmφ zirconia balls and 161 g of powder C in a plastic 1 L poly bottle (outer diameter 97.4 mm), place the 1 L poly bottle on a ball mill stand, and perform ball mill pulverization at a rotation speed of 60 rpm for 4 hours to obtain an intermediate. The powder was ground. Powder D was obtained after grinding. The pulverized powder was passed through a sieve with an opening of 45 μm, and the powder passed through the sieve was designated as the powder of Comparative Example 1.
<比較例2>
 Ti(株式会社高純度化学研究所製、<45μm)を比較例2の粉末とした。
<Comparative Example 2>
Ti 2 O 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., <45 μm) was used as the powder of Comparative Example 2.
 得られた実施例1~2及び比較例1~2の各測定の結果を表1にまとめる。 Table 1 summarizes the measurement results obtained in Examples 1 and 2 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例にかかる粒子群によれば、固体組成物における寸法変化率を低くできた。すなわち、実施例にかかる粒子群は熱膨張制御特性に優れる粒子群であった。 According to the particle group according to the example, the dimensional change rate in the solid composition could be reduced. In other words, the particle group according to the example was a particle group having excellent thermal expansion control properties.
 2…結晶、4…粒子、6…閉気孔。

 
2...Crystal, 4...Particle, 6...Closed pore.

Claims (14)

  1.  粒子群であって、各粒子は複数の結晶を含有し、以下の要件1を満たし、以下の要件2及び要件3の少なくとも一方を満たす、粒子群。
     要件1:-200℃~1200℃における少なくとも一つの温度T1で|dA(T)/dT|が10ppm/℃以上である。
     Aは(前記結晶のa軸(短軸)の格子定数)/(前記結晶のc軸(長軸)の格子定数)であり、各格子定数は前記粒子群のX線回折測定から得られる。
     要件2:SBET/SPSDが4.0~20.0である。
     SBETは、BET法により得られる前記粒子群の比表面積である。
     SPSDは、仮想粒子群の比表面積であり、前記仮想粒子群は、レーザー回折散乱法により得られる前記粒子群の体積基準の粒子径分布と同じ粒子径分布及び前記粒子群の真密度と同じ真密度を有し、かつ、各前記仮想粒子は真球の形状を有する。
     要件3:下式で定義される空隙率が2.0~20.0%である。
     空隙率(%)=(1-前記粒子群の見掛密度/前記粒子群の真密度)×100
    A group of particles, each particle containing a plurality of crystals, satisfying requirement 1 below and at least one of requirement 2 and requirement 3 below.
    Requirement 1: |dA(T)/dT| is 10 ppm/°C or more at at least one temperature T1 between -200°C and 1200°C.
    A is (lattice constant of the a-axis (minor axis) of the crystal)/(lattice constant of the c-axis (long axis) of the crystal), and each lattice constant is obtained from the X-ray diffraction measurement of the particle group.
    Requirement 2: S BET /S PSD is 4.0 to 20.0.
    SBET is the specific surface area of the particle group obtained by the BET method.
    S PSD is the specific surface area of the virtual particle group, and the virtual particle group has the same particle size distribution as the volume-based particle size distribution of the particle group obtained by the laser diffraction scattering method and the same true density of the particle group It has a true density and each said virtual particle has the shape of a true sphere.
    Requirement 3: The porosity defined by the following formula is 2.0 to 20.0%.
    Porosity (%) = (1-apparent density of the particle group / true density of the particle group) x 100
  2.  前記要件1~3の全てを満たす請求項1に記載の粒子群。 The particle group according to claim 1, which satisfies all of the above requirements 1 to 3.
  3.  レーザー回折散乱法により得られる前記粒子群の体積基準の粒子径分布曲線における、累積頻度が50%となる径D50が1~100μmである請求項1又は2に記載の粒子群。 The particle group according to claim 1 or 2, wherein the diameter D50 at which the cumulative frequency is 50% in the volume-based particle size distribution curve of the particle group obtained by a laser diffraction scattering method is 1 to 100 µm.
  4.  前記結晶は、金属酸化物である請求項1~3のいずれか一項に記載の粒子群。 The particle group according to any one of claims 1 to 3, wherein the crystal is a metal oxide.
  5.  前記金属酸化物がd電子を有する金属を含有する金属酸化物である、請求項4に記載の粒子群。 The particle group according to claim 4, wherein the metal oxide is a metal oxide containing a metal having d electrons.
  6.  前記金属酸化物がチタンを含有する金属酸化物である請求項4又は5に記載の粒子群。 The particle group according to claim 4 or 5, wherein the metal oxide is a metal oxide containing titanium.
  7.  前記チタンを含有する金属酸化物がTiO(x=1.30~1.66)である請求項6に記載の粒子群。 7. The particle group according to claim 6, wherein the metal oxide containing titanium is TiO x (x=1.30 to 1.66).
  8.  請求項1~7のいずれか一項に記載の粒子群を含む、組成物。 A composition comprising the particle group according to any one of claims 1 to 7.
  9.  粉体の形態を有する、請求項8に記載の組成物。 The composition according to claim 8, which has a powder form.
  10.  さらに、マトリクス材料を含む、請求項8に記載の組成物。 The composition according to claim 8, further comprising a matrix material.
  11.  さらに、未硬化の硬化性樹脂、を含む、請求項8に記載の組成物。 The composition according to claim 8, further comprising an uncured curable resin.
  12.  請求項1~7のいずれか1項に記載の粒子群又は請求項8又は9に記載の組成物の成形体。 A molded body of the particle group according to any one of claims 1 to 7 or the composition according to claim 8 or 9.
  13.  請求項1~7のいずれか一項に記載の粒子群の製造方法であって、
     原料を焼成して中間体を得る工程1、前記中間体を粉砕して前駆体を得る工程2、及び前記前駆体を焼成する工程3を含み、前記工程1及び工程3での焼成温度は1000~1300℃である、方法。
    A method for producing a particle group according to any one of claims 1 to 7,
    Step 1 of firing raw materials to obtain an intermediate, Step 2 of pulverizing the intermediate to obtain a precursor, and Step 3 of firing the precursor, wherein the firing temperature in steps 1 and 3 is 1000 ~1300°C, the method.
  14.  前記工程2及び工程3の間に、前記前駆体を噴霧乾燥法により顆粒化して顆粒状の前駆体を得る工程をさらに含む、請求項13に記載の方法。 14. The method according to claim 13, further comprising, between said steps 2 and 3, granulating said precursor by a spray-drying method to obtain a granular precursor.
PCT/JP2022/020796 2021-05-24 2022-05-19 Particle group, composition, molded article, and particle group production method WO2022249967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280036804.XA CN117460700A (en) 2021-05-24 2022-05-19 Particle group, composition, molded article, and method for producing particle group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-086959 2021-05-24
JP2021086959A JP2022180056A (en) 2021-05-24 2021-05-24 Particle group, composition, molded article, and method for producing particle group

Publications (1)

Publication Number Publication Date
WO2022249967A1 true WO2022249967A1 (en) 2022-12-01

Family

ID=84230044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020796 WO2022249967A1 (en) 2021-05-24 2022-05-19 Particle group, composition, molded article, and particle group production method

Country Status (4)

Country Link
JP (1) JP2022180056A (en)
CN (1) CN117460700A (en)
TW (1) TW202248137A (en)
WO (1) WO2022249967A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273236A (en) * 2001-03-22 2002-09-24 Mitsui Kozan Material Kk Method for manufacturing photocatalyst
JP2012056835A (en) * 2010-09-06 2012-03-22 Jeongkwan Co Ltd Crystallized glass with negative coefficient of thermal expansion and method for producing the same
JP2021014387A (en) * 2019-07-12 2021-02-12 住友化学株式会社 Solid composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273236A (en) * 2001-03-22 2002-09-24 Mitsui Kozan Material Kk Method for manufacturing photocatalyst
JP2012056835A (en) * 2010-09-06 2012-03-22 Jeongkwan Co Ltd Crystallized glass with negative coefficient of thermal expansion and method for producing the same
JP2021014387A (en) * 2019-07-12 2021-02-12 住友化学株式会社 Solid composition

Also Published As

Publication number Publication date
TW202248137A (en) 2022-12-16
CN117460700A (en) 2024-01-26
JP2022180056A (en) 2022-12-06

Similar Documents

Publication Publication Date Title
JP7397590B2 (en) Powder compacts and filler powders
KR101136665B1 (en) Composite dielectric material
WO2021010095A1 (en) Solid composition
WO2022249967A1 (en) Particle group, composition, molded article, and particle group production method
JP5774510B2 (en) Dielectric ceramic material and method for producing perovskite type complex oxide coarse particles used therefor
WO2021200507A1 (en) Titanium oxide, powder, powder composition, solid composition, liquid composition, and molded body
CN115335328B (en) Particle, powder composition, solid composition, liquid composition, and molded article
WO2021215245A1 (en) Particle group, powder composition, solid composition, liquid composition, and molded body
WO2021010096A1 (en) Powder and solid composition
WO2021200319A1 (en) Titanium compound, powder, and method for manufacturing titanium compound
JP6903538B2 (en) Dielectric composite
JP7486666B2 (en) Heat dissipation member and heat sink
KR101559379B1 (en) Glass-Ceramic Compositions for LTCC Using Aluminium Pphospate Based Ceramic Fillers
JP2004363065A (en) Dielectric composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280036804.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22811239

Country of ref document: EP

Kind code of ref document: A1