WO2022249893A1 - 液媒加圧による高温高圧処理装置 - Google Patents

液媒加圧による高温高圧処理装置 Download PDF

Info

Publication number
WO2022249893A1
WO2022249893A1 PCT/JP2022/020084 JP2022020084W WO2022249893A1 WO 2022249893 A1 WO2022249893 A1 WO 2022249893A1 JP 2022020084 W JP2022020084 W JP 2022020084W WO 2022249893 A1 WO2022249893 A1 WO 2022249893A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
temperature
pressure medium
medium
pressure vessel
Prior art date
Application number
PCT/JP2022/020084
Other languages
English (en)
French (fr)
Inventor
隆太郎 和田
Original Assignee
隆太郎 和田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆太郎 和田 filed Critical 隆太郎 和田
Priority to US18/281,563 priority Critical patent/US20240042403A1/en
Priority to SE2351141A priority patent/SE2351141A1/en
Publication of WO2022249893A1 publication Critical patent/WO2022249893A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/065Presses for the formation of diamonds or boronitrides
    • B01J3/067Presses using a plurality of pressing members working in different directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B5/00Presses characterised by the use of pressing means other than those mentioned in the preceding groups
    • B30B5/02Presses characterised by the use of pressing means other than those mentioned in the preceding groups wherein the pressing means is in the form of a flexible element, e.g. diaphragm, urged by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond

Definitions

  • the present invention relates to a production apparatus for efficiently mass-producing large-sized synthetic diamonds by a hydrostatic pressurization type high-temperature, high-pressure method.
  • a pressurizing device is a device for generating high pressure, and is roughly divided into a piston pressurizing method and a hydrostatic pressure pressurizing method.
  • a high-pressure cell is a device that concentrates compressive force in an extremely small area to generate high pressure under electrical heating, and there are many types of cells according to shape and structure.
  • the piston pressurization method includes a mechanical pressurization method using a vertically uniaxial high-pressure press device and a multi-axis four or six press cylinder or the like, which are collectively referred to herein.
  • a mechanical pressurization method using a vertically uniaxial high-pressure press device and a multi-axis four or six press cylinder or the like which are collectively referred to herein.
  • the piston pressurization method is a pressurization method that pressurizes a fluid as a pressure medium.
  • the hydrostatic pressurization method can easily obtain a high pressure in which the compression force and its direction are uniform (hereinafter referred to as "isotropic pressure"), but it is said that there is a problem with operability. Since no improvements were made, it is mainly used for academic research in mineralogy and geology, and is hardly used for commercial synthetic diamond production at present.
  • a high-pressure cell that generates high pressure under electrical heating generally uses an anvil made of a superhard material to generate high pressure.
  • a raw material such as graphite, an internal heating source, diamond seeds and a metal catalyst (these are called "workpieces") are placed in the inner space of the anvil.
  • the area of the end face of the anvil has a large pressure-receiving surface from the outer pressurizing device and a small inner sample surface. It has a structure that can amplify about 100 times.
  • Electric heating is mainly based on resistance heating by applying an electric current to a heating source such as the anvil itself or a built-in heater. The heating source may be shared by the anvil.
  • a wide variety of methods have been developed, proposed, and put into practical use for the high-pressure cell, which consists of an object to be treated, a heating source, and an anvil, during the past half-century.
  • high-pressure cells applied to the piston pressurization method include 1) belt type and 2) cubic type.
  • the high-pressure cell applied to both the piston pressurization method and the hydrostatic pressure pressurization method includes 3) split sphere type.
  • the high-pressure cells of 2) and 3) are collectively called a multi-anvil type apparatus (MAA) because they use multiple assembled anvils.
  • MAA multi-anvil type apparatus
  • Belt type is the first developed high-pressure cell, and the sample is heated by applying pressure from the upper and lower sides of the cylindrical cell containing the sample through an anvil with a uniaxial compression press, and heating the upper and lower anvils by electric heating.
  • the advantage of the belt type is that it is easy to operate and does not require much work, but the disadvantage is that the pressure device is considerably large.
  • the cubic type in 2) includes a tetrahedral type that compresses a regular tetrahedral sample with four hydraulic cylinders, and a cupic type that compresses a cubic (regular hexahedral) sample with six hydraulic cylinders.
  • the raw material is heated by a heat source such as a heater installed inside the high-pressure cell.
  • the cubic type has a smaller pressurizing device than the belt type, and is characterized by a faster time to reach the pressure and temperature suitable for synthesizing diamond.
  • a relatively large volume can be secured in the 5 to 6 GPa region, it is suitable for the production of relatively small synthetic diamonds that are cheap in terms of quality.
  • the uniaxial compressive force is directed in an isotropic direction that approximates the shape of a sphere as much as possible. Creep deformation shortens their life and increases their wear frequency.
  • the pressurizing device in 1) becomes considerably large, but in 2), the dimensions of the anvil must be large in order to produce a larger size synthetic diamond with a cubic type, and the pressurizing force must be the square of the dimensions.
  • the problem with the equipment is that it becomes large, and at present, the mechanical equipment is already approaching its limit.
  • Non-Patent Document 1 thousands of cubic-type machines using a hexagonal pressing press were in operation in China as of 2009, producing large-sized synthetic diamonds with a diameter of 10 mm or less. It has said. Also, according to separate information, this hexagonal press is called the Chinese Cupick Press (CCP), and the current diameter of one press cylinder is 850 mm, and the maximum compression force is about 60 MN. It is said that the total pressure is 110 MPa when converted to the pressure on the outer surface area of the cubic type high pressure cell. On the other hand, it is said that the operating pressure of the cubic type is limited to 25 GPa no matter how small the sample is. According to Non-Patent Document 1, in this pressurization method, each of the six anvils must be synchronously advanced by each of the six-axis hydraulic units, which is difficult to handle and has a problem in workability.
  • CCP Chinese Cupick Press
  • segmented sphere type 3 which is a high-pressure cell that has been conventionally applied to the hydrostatic pressurization method
  • the anvil is assembled in two stages, with an outer anvil and an inner anvil.
  • the object to be processed and the internal anvil are collectively referred to as a sample.
  • the split-sphere type high-pressure cell the sample is placed in the center of an external anvil (split-sphere) that is divided into 6 or 8 parts, and the entire high-pressure cell is wrapped in a fluid-resistant rubber shell and immersed in drive oil. compression.
  • Non-Patent Document 2 a pressless split sphere device consisting of a pressurization device using a hydrostatic pressurization method and a split sphere type high pressure cell used for research on the formation mechanism of minerals in the mantle at domestic universities.
  • the detailed structure, advantages and disadvantages of (the BARS device) are described.
  • the BARS-type device of Non-Patent Document 2 consists of a Kawai cell (8-6 type) high-pressure cell consisting of eight steel outer anvils and six cubic tungsten carbide (WC) inner anvils. there is There are several types of internal anvils, with a void volume of 8 to 20 cubic centimeters (cm 3 ) containing the workpiece and internal heating source.
  • the outer diameter of the segmented sphere which is the outer anvil, is 290 mm, and the cubic inner anvil has an outer height and width of 47 mm.
  • a hydraulic pump with a maximum discharge pressure of 250 MPa for injecting oil into a spherical container in a pressure-resistant chamber is used as the pressurizing device.
  • a single high-pressure cell is housed in a single pressure chamber, while the outer surface of the segmented sphere rests loosely on a rubber sheath that is tightly connected to the ends of the two steel hemispheres of the spherical vessel.
  • Non-Patent Document 2 states that an operating pressure of 15.5 GPa was obtained with an oil pressure of 190 MPa of the hydraulic pump. The author claims that this is a compact device that does not require a large and expensive device such as a uniaxial compression press, and does not have the inconvenience of being dirty with open oil.
  • FIG. 1 shows a schematic diagram of a pressurization device and a high-pressure cell in a conventional hydrostatic pressurization method for academic research, published in Non-Patent Document 2. As shown in FIG. In FIG. 1, the symbols of the system of this specification are added.
  • a split-type high-pressure vessel 1 and a split frame 2 constitute a pressure-resistant chamber spherical vessel.
  • An outer anvil (divided into 8) 3 is installed inside thereof, and an inner anvil (divided into 6) 4 is installed inside thereof.
  • a rubber sheath is applied to the outside of the segmented spherical outer anvil 3 .
  • the narrow area between the inner wall of the high pressure vessel 1 and the rubber-sheathed outer anvil 3 is the area filled with the pressure medium 6 .
  • Two current/instrumentation leads 6 are provided on the upper container body and two on the lower container body. Inlet and outlet pipes are installed in the lower container body for cooling water.
  • Non-Patent Document 2 is intended to calibrate the operating pressure by a comparative experiment between an external uniaxial compression press and a device consisting of a segmented sphere type high pressure cell, so the operating pressure actually used in the experiment is kept as low as 5.5-7.5 GPa. Judging from this numerical value, it is expected that the pressure of the pressure medium during the experiment was suppressed to a low level of about 70 to 100 MPa. Further, in general, a slight change in volume of a liquid pressure medium causes a large change in pressure. Therefore, it is generally difficult to accurately control the pressure in the high pressure region.
  • Non-Patent Document 3 in this pressure range, both the device and the instrument themselves elastically deform, and the physical properties such as the density and viscosity of the pressure medium oil change, so the pressure can be accurately measured with a pressure gauge. it is not easy to do.
  • pressure control becomes more difficult due to changes in density.
  • Non-Patent Document 2 states that in the BARS-type device, the operating pressure exceeded the desired value due to the heating of the pressure medium during operation, and gradually increased over time, and became uncontrollable.
  • the BARS device has an internal cooling system with mesh channels that circulate cooling water between the sides of the anvil in close proximity to the heated high pressure cells.
  • Non-Patent Document 2 there is no explanation that the pressure of the pressure medium is measured and controlled.
  • the thin layer of oil (pressure medium) between the inner walls of the pressure-resistant spherical vessel and the small volume and mass of the oil are also factors that make control difficult. Cooling the high-pressure cell with cooling water is thought to indirectly suppress the pressure rise of the pressure medium, but with this method, it is difficult to instrument the pressure and control it with high precision.
  • Patent Document 1 a high-temperature and high-pressure processing apparatus has been devised with the aim of increasing the number of samples that can be processed at one time by using a belt-type apparatus employing a piston pressurization method.
  • a device consisting of this belt-type mold unit is called a solid ultra-high pressure pressurizing device.
  • One is to arrange multiple stages of mold units on the press axis to improve productivity. It is. At first glance, it seems possible to increase the number of wafers that can be processed at one time by means of multistage processing using a belt-type apparatus. However, if the molds are arranged in series in series, even if one mold unit is used, it is necessary to handle all the mold units.
  • Patent Document 1 uses a belt-type mold unit for the high-pressure cell, and the piston pressurization method is not a hexagonal press, but a uniaxial compression press from one vertical direction with only one press piston. .
  • the disadvantage of the belt-type high-pressure cell is that the pressurizing device becomes quite large. is not enough. Therefore, it is clear that if two or more high-pressure cells are used in series or in parallel, it becomes even more insufficient. Therefore, this method cannot be used to produce synthetic diamonds as large as 10 mm in diameter. It should be noted that, at present, this multi-stage treatment solid state ultra-high pressure apparatus has not been adopted even for the production of small diamonds.
  • the number of products that can be subjected to high pressure treatment at one time is one in the conventional hexagonal pressing method.
  • the BARS apparatus which is a conventional hydrostatic pressurization method, is not in a state of commercial use, and moreover, there is only one segmented sphere-type high-pressure cell that can be treated at one time in a pressure chamber spherical vessel.
  • the number of products that can be manufactured in several days of operation is one.
  • the conventional system currently in use does not embody a method for mass-producing large synthetic diamonds having a diameter of about 10 mm. At least for high quality synthetic diamonds with a diameter greater than 15 mm, there is no method of producing even small quantities.
  • the number of products that can be treated under high pressure at one time remains at one, and the problem is that the production efficiency is low.
  • the hexagonal press in recent years has almost reached its limit to increase the compressive force in order to manufacture a large diamond of 15 mm or more.
  • each anvil since each anvil must be advanced synchronously with each piston and each hydraulic unit, it is difficult to handle and there is a problem of workability.
  • the quality and yield of products are not improved due to the nonuniformity of the compressive force of the six-axis press cylinder.
  • the uniaxial compressive force of the press cylinder is directed in an isotropic direction that approximates the shape of a sphere as much as possible by the high-pressure cell. The problem is that the service life of these mechanical elements is short due to creep deformation and the wear frequency is high.
  • the hydrostatic pressurization method can obtain a high compressive force, but the one reported so far is an experimental device for academic research.
  • a high-pressure cell wrapped in a rubber sheath is immersed in oil as a pressure medium and hydrostatically pressurized.
  • the pressure medium is heated during operation, and the pressure exceeds the desired value and gradually rises over time, and becomes uncontrollable.
  • cooling water is circulated in a mesh pattern in the high-pressure cell, but the pressurizing device does not have a function to accurately control and stabilize the pressure.
  • the contingent increase in operating pressure can lead to variability in product quality, pressure limits of the pressure chambers of the equipment, and durability issues, including split-sphere equipment. and a serious problem arises.
  • the present invention solves the above-mentioned conventional problems, and its object is to provide a commercially stable, high-quality, large-sized synthetic diamond manufacturing apparatus.
  • the inventor of the present invention uses an isostatic hydrostatic pressurization method to synthesize a high-quality large diamond of 10 mm or more in size by a static pressurization method of the high temperature and high pressure method (HPHT method). Then, a plurality of high-pressure cells are installed in a high-pressure vessel, and a pressure medium that is liquid at normal temperature and pressure, which is a volume change rate (compressibility) due to a known pressure and a volume change rate due to heat, is used to measure the flow of the pressure medium. After controlling the temperature, the temperature is measured and controlled, and the pressure is controlled by the volume expansion of the pressure medium.
  • HPHT method high temperature and high pressure method
  • a sealing material made of a heat-resistant elastic material having vacuum pressure resistance and fluid intrusion resistance (hereinafter referred to as a "heat-resistant fluid-resistant elastic material seal"), It has been found that two or more high pressure cells having different shapes can be treated simultaneously by devising a support mechanism for the high pressure cells.
  • the present invention has been completed by discovering a high-temperature and high-pressure apparatus capable of manufacturing a large number of products in a single high-temperature and high-pressure treatment by simply operating this compact apparatus with a low frequency of damage.
  • the pressurization method is an isotropic pressure medium using a pressure medium consisting of a fluid having a known compressibility and a volume change rate due to heating and having fluidity at normal temperature and pressure. means a hydrostatic pressurization method.
  • the high-pressure cell is a general term for apparatuses having an object to be processed and an anvil of the above-described cupick type, split sphere type, or the like.
  • the anvil is a generic term for the inner anvil, the outer anvil, the split anvil, and the like.
  • a pressure medium compressed by a pressurizing mechanism is generally pushed into a high-pressure vessel to create a state of isotropic hydrostatic pressure (hereinafter referred to as "isotropic pressure"). Since the interior of the high-pressure container is in a state of isotropic pressure, the isostatic pressure acts on the outer surface of the high-pressure cell, ie, the pressure-receiving drive surface, in the high-pressure cell installed therein and sealed with a heat-resistant, fluid-resistant elastic material. As long as the shape and area of this pressure-driven surface (often the outer surface area of the split-spherical outer anvil) remain the same, there is essentially no compressive force directed inward from the isotropic outer surface.
  • the process pressure of the pressure medium is 700 MPa, operating pressures up to 50 GPa or more are theoretically possible. In the case of the hydrostatic pressurization method, the processing pressure is about one order of magnitude higher, so there is no need for a large external anvil as in the piston pressurization method, and the high pressure cell is smaller.
  • the pressure inside the high-pressure vessel is the same at any location, and if the outer surface has a symmetrical shape in which the pressure applied to the outer surface from all directions is the same, any shape and number of high-pressure cells can be placed at any location. Even if it is installed, the same phenomenon occurs as described above. That is, as long as the dimensions and volume of the high pressure vessel allow, many high pressure cells can be installed in the high pressure vessel and high pressure treatment can be performed at the same time.
  • the present invention also aims to facilitate pressure control of the pressure medium, and by installing two or more high-pressure cells in the same high-pressure vessel, contributes to increasing the mass and volume of the pressure medium. .
  • the shape of the high-pressure cell can be selected from all symmetrical shapes such as a regular hexahedron, a regular octahedron, or a cut-off product thereof, or a segmented sphere. That is, it is easy to increase the size of the apparatus, and two or more products such as synthetic diamond can be manufactured by one high-temperature and high-pressure treatment, thereby improving manufacturing efficiency.
  • a cold isostatic pressurization (CIP) device based on the same principle as the hydrostatic pressurization method utilizes water as a pressure medium and pressurizes with a compressor and a pressure multiplier to 700 MPa and 14.7 cubic meters in volume (high-pressure vessel treatment chamber diameter is 2,500 mm and height is 3,000 mm). there is This pressure is more than six times the maximum total pressure of the hexagonal press described above.
  • the pressure medium and its temperature are not used in the specifications of this CIP apparatus, there are large-scale apparatuses that can accommodate a considerably large-sized product in a high-pressure vessel and operate in a high-pressure region with a processing pressure of 700 MPa. Therefore, the hydrostatic pressurization method does not pose a scale problem in commercial industrial applications. These are the extent of the known facts.
  • the entire high-pressure cell is also pressurized in the direction of contraction inward.
  • the same compressive force acts on all anvils of the same shape and location inside the high-pressure cell, no excessive force is applied in a direction other than the direction of the operating pressure. damage is significantly reduced. This eliminates the loss of compressive force and makes the device compact. At the same time, by eliminating non-uniformity in compression force, product quality and yield can be improved.
  • the temperature of the pressure medium is measured, managed, and controlled, and the pressure of the pressure medium is controlled by the expansion of the pressure medium.
  • the processing pressure can be managed with high accuracy.
  • DAC diamond anvil cell high pressure device
  • the necessary physical property data of the pressure medium may be obtained in the temperature range from normal temperature to the maximum use temperature (eg, 250° C.) and the pressure range from normal pressure to the maximum allowable pressure of the apparatus (eg, 1 GPa).
  • the calibrating device may be a calibrated secondary standard as described in Non-Patent Document 3 instead of the primary standard.
  • Some DACs have a working pressure of 1 GPa or more.
  • Example 2 which will be described later, shows examples of pressure medium types, physical properties, viscosities, compression ratios, and expansion ratios that meet these requirements.
  • the volume of the pressure medium decreases slightly according to the compressibility corresponding to the increase in pressure, but if a pressure medium whose volume expansion due to heating is superior (for example, something other than water) is used, the effect is limited. target. That is, in the configuration of the present invention, by further developing and utilizing the volume expansion effect accompanying heating of the pressure medium, the pressure is increased without additional pressurizing operation by the pressurizing mechanism (or even after the pressurizing mechanism stops). Processing can be continued while maintaining the pressure of the medium, resulting in higher operating pressures.
  • Patent Document 3 describes a configuration in which a hydraulic medium heating device is provided outside the high-pressure vessel, and the pressure medium is inserted into the high-pressure vessel by a hydraulic medium supply/discharge means.
  • the present invention refers to pressurization to a higher region by heating the pressure medium in the high-pressure vessel than the stage where the pressure medium has already reached a certain high pressure by the pressurization mechanism. Since the amount of pressurized medium supplied is extremely small at the stage of reaching a certain high pressure, the configuration in which the pressurized medium is heated outside the high-pressure vessel in Patent Document 3 does not produce the effects referred to by the present invention.
  • the pressure in the high-pressure container is higher than the pressure in the pressurizing mechanism.
  • a check valve is provided that operates in the direction of closing the piping path when the pressure of the pressure medium in the high-pressure vessel becomes higher than that in the pressurizing mechanism. If the check valve closes the line, no additional pressure medium is added even if the pressurization device is in operation. Also, the pressurizing device may be stopped.
  • the pressure, temperature, and mass of the pressure medium at this time may be recorded and used as the reference conditions and the origin of the pressure control based on the temperature measurement described in the previous two paragraphs. Further, even when the drive is stopped or reduced, the piping route from the pressurizing mechanism to the high-pressure vessel can be removed on the pressurizing mechanism side of the check valve. This means that even if the pressurizing mechanism is stopped or disconnected from the pressurizing mechanism, the high-temperature and high-pressure treatment can be continued. That is, the pressurizing mechanism that has finished pressurizing the pressure medium in one high-pressure vessel finishes its role of pressurizing the pressure medium to a certain pressure in the first stage, and connects the removed piping route to another high-pressure vessel.
  • pressurization of the pressure medium in another high-pressure vessel can be undertaken. Since the pressurization mechanism is dominant in terms of size and cost among the devices that make up the hydrostatic pressurization method, the ability to share one fluid pressurization mechanism for a plurality of high-pressure vessels is an advantage of the processing equipment. It brings about a great effect in making it compact and bringing about rationality. That is, by further developing and using the thermal expansion due to the temperature rise of the pressure medium, it is possible to obtain a higher operating pressure without pressurizing the pressure medium by a pressurizing mechanism, and at the same time, one such as a high pressure compressor can be used.
  • the pressurizing mechanism can be shared by a plurality of high-pressure vessels, and the apparatus can be made more compact.
  • Patent Document 4 discloses a switching valve that switches between a high-pressure compression line and a low-pressure compression line in order to use two hydraulic pumps with different capacities. It is different from the idea of sharing it with multiple high pressure vessels, and the configuration of the flow path and equipment is also different. Therefore, the configuration and concept of the switching valve of Patent Document 4 do not have the effects referred to by the present invention.
  • Patent Document 5 two independent storage spaces are provided between the storage space in the inner storage container containing hot water preheated to 100° C. or less and the object to be processed and the outer processing space filled with the pressure medium. 1 shows the structure of a container for a CIP device in which two check valves are provided in the flow path.
  • This is intended to shorten the heating time when high-pressure sterilizing food using water as a pressure medium in a temperature range of 100° C. or less, and to quickly carry in and out the object to be treated.
  • the object and purpose are different from those of the present invention, the temperature conditions are in a higher temperature range, and the configuration is also different from the present invention in which a high pressure is obtained by heating a pressure medium in a high pressure vessel during several days of treatment operation. ing.
  • the operation of disconnecting the pressurizing mechanism described in the preceding paragraph requires a certain amount of time, it is operationally rational to increase the temperature of the object to be processed and further increase the pressure of the pressure medium during this period of time.
  • the material of the anvil in the high-pressure cell is changed to a type of ultra-hard material with different thermal conductivity as in Example 8 below, so that heat transfer from the internal heating source to the pressure medium
  • the pressurization speed of the pressure medium in the high-pressure vessel in the initial stage That is, the pressure medium can be pressurized within an appropriate range as the temperature of the object to be processed is increased.
  • the steady state pressure can be set to a desired value.
  • the required pressure of the pressure medium and its pressure increase speed vary depending on the size of the synthetic diamond to be manufactured. The size can be controlled to the appropriate conditions. As a result, the working time can be shortened.
  • the pressure medium in the high-pressure vessel does not flow very much because the viscosity of the liquid under high pressure generally increases at room temperature. Therefore, it is thought that the pressure in the high-pressure vessel is uniform due to the hydrostatic pressure, but the temperature is unevenly distributed. On the other hand, it is generally known that the viscosity of liquids decreases in inverse proportion to temperature.
  • the pressure medium that is preferred in the present invention is an organic solvent. For example, if the pressure is 500 MPa and the temperature is 250° C., as shown in Example 2 below, the compression and heating are subtracted, Its viscosity is about the same as that of water at normal temperature and pressure, and flow due to thermal convection occurs in a sufficiently high-pressure vessel.
  • thermodynamic siphon by further developing flow by thermal convection, by appropriately arranging a heating mechanism and a cooling mechanism in a high-pressure vessel and installing a partition plate in the pressure medium, natural convection (thermodynamic siphon).
  • heating sources an internal heating source of a high-pressure cell arranged on the central axis of the high-pressure vessel and a pressure medium heating heater of a heating mechanism installed at the bottom.
  • the cooling jacket of the temperature reduction mechanism is arranged on the outer upper portion of the high-pressure vessel.
  • thermosiphon is created in which the heated fluid rises in the central part and the cooled fluid descends in the outer wall. It is formed.
  • TC1 maximum temperature
  • TC2 minimum temperature
  • TC3 average temperature
  • the outer surface of the high-pressure cell has a symmetrical shape, but the outer anvil, such as a regular hexahedron or a split sphere, is exposed. Pressurization cannot apply operating pressure to the workpiece. Therefore, the outer surface of the high-pressure cell is generally provided with a seal capable of preventing penetration of the pressure medium (having fluid penetration resistance), such as the rubber shell or rubber sheath described above.
  • a seal capable of preventing penetration of the pressure medium (having fluid penetration resistance), such as the rubber shell or rubber sheath described above.
  • the shape of this seal such as a thick one with a narrow but thick fitting part that fits two upper and lower molds, and a thin bag-like face mask with high elasticity.
  • the area of the fitting portion is double overlapped with a wide width.
  • the inside of the high-pressure cell is generally evacuated before the high-temperature and high-pressure treatment. For this reason, a seal having strength to withstand the atmospheric pressure when evacuated (vacuum pressure resistance) is applied.
  • the materials and shapes of these rubber shells and rubber sheaths are within the range of known facts. Since the high-pressure cell of the present invention reaches a high temperature, conventional rubber shells and rubber sheaths cannot be used, and seals and molds made of heat-resistant, fluid-resistant elastic materials as shown in Example 3 below are used.
  • Non-Patent Document 1 states that this is the reason why it is not a commercial device beyond the realm of academic research.
  • Non-Patent Document 2 states that although an oil-free system has been developed for one segmented sphere type high-pressure cell, pressure control is not possible.
  • non-pressure medium contact or “dry process”.
  • Patent document 2 and non-patent document 4 show a non-contact pressure medium high pressure treatment method at room temperature for powder pre-compression in the field of ceramics and pressure treatment of packed products in the field of food and hygiene. , both are called dry methods or dry CIP devices.
  • the powder is pre-compressed by filling it into a pressurized rubber mold, which is a cylindrical natural rubber molding mold connected to a high-pressure vessel.
  • the pressurized rubber mold is cylindrical and can be pressurized in the circumferential direction, but not in the axial direction.
  • Patent Document 2 describes that a plurality of pressurized rubber molds are connected to obtain a plurality of products in one treatment.
  • non-patent document 4 for pressure processing of packed products, a large number of packed products are accommodated in flexible holders at a preparation station, and these several holders are transported to a processing chamber to process a large number of packed products at the same time. It says it will be pressure treated.
  • these methods since the outer surface of the product does not come into contact with the pressure medium, there is absolutely no danger of the pressure medium entering the product and contaminating it, thus ensuring high sanitary safety.
  • there is no need for a drying process after treatment which is effective in simplifying the process. Therefore, in the normal temperature range, it is a well-known fact that a plurality of products can be subjected to high pressure treatment at the same time by connecting multiple powder pressurized rubber molds or accommodating small and light packed products in a flexible holder.
  • the surface of the high-pressure cell is at a high temperature of, for example, about 250° C., and has a symmetrical shape.
  • the mass of one high-pressure cell which is mostly composed of metal, is several tens of kilograms or more, and a heavy one reaches several tons.
  • the entire outer surface in one direction is in contact with the floor and side surfaces of the high-pressure vessel in order to apply hydrostatic pressure to the entire surface. cannot be installed in this state.
  • the processing is carried out under such circumstances, unlike the prior art described in the previous section, dry processing cannot be performed by connecting a plurality of pressurized rubber dies or housing them in a large number of flexible holders.
  • the pressurized rubber mold mentioned in the preceding paragraph must be made of a material with added heat resistance, and must have a structure that realizes a method of applying hydrostatic pressure precisely and uniformly to the object to be processed without directivity.
  • a support mechanism is required to support the load of the high pressure cell, which is a heavy object.
  • the heat-resistant, fluid-resistant elastic seal material used in non-pressure medium contact type (dry process) liquid medium pressurized high-temperature and high-pressure treatment equipment is, for example, rubber or resin having heat resistance in the 250°C range.
  • molding mold When the cell is installed, it is necessary to install it as a molding mold (hereinafter referred to as "molding mold") that can follow the outer shape of the cell from all directions.
  • molding mold hereinafter referred to as "molding mold”
  • the molds are a pair of fluid-resistant elastic lids and container bodies which are fitted together at the bottom and top of the upper and lower molds.
  • a molding mold that is fixed to the main body in the normal direction of the outer peripheral surface and in the axial direction of the lower surface is called the "lower mold”
  • a molding mold that is fixed to the lower surface of the lid from the axial direction of the upper surface is called the "upper mold”.
  • the upper molding die and the lower molding die are a pair of molding dies made of an elastic material that fit together at the lower portion and the upper portion, and the contact portion is processed into a shape along the outer shape of the high-pressure cell.
  • the lower mold has a bottomed cylindrical shape with an opening at the top, and the recess accommodates the high-pressure cell.
  • the upper mold is a hollow cylindrical or vertically split container containing pressure medium and fits into the recess.
  • Patent Document 6 in order to perform hydrostatic pressurization that can be precisely compressed from all directions without directionality in the above dry process, high pressure cells and lower molding that are in invisible positions in both molds are required. a first step of remotely positioning the mold and the upper mold; a second step of forming a tight contact without wrinkles; and a third step of filling the upper mold with pressure medium without air bubbles or voids; A fourth step is required in which the entire inner surface of the upper mold and the entire outer surface of the lower mold are simultaneously hydrostatically pressurized.
  • the configuration of Patent Document 6 is limited to the normal temperature range, it realizes a method in which the high-pressure cell precisely pressurizes with a uniform pressure without directivity.
  • the above-described heat resistance is added to the fluid-resistant elastic material molding die of Patent Document 6, and furthermore, a support mechanism, a heat-resistant penetration tube, and a folding type vacuum exhaust that support the load of the high-pressure cell, which is a heavy object, will be described later. Add a mouth.
  • Patent Document 6 for details of the structure and operation procedure of the upper and lower molds and the gravity type pressure medium adjustment tank.
  • the high-pressure container is a horizontally placed dry processing apparatus
  • the lower molding die of the heat- and fluid-resistant elastic material is fixed in the vicinity of the lid opening above the body of the high-pressure cylinder.
  • a pressure medium is filled in the direction of gravity (underside) of the lower mold in the body of the high-pressure vessel.
  • the lower mold is an open-topped cylinder with a bottom shaped like a high-pressure cell, and shaped like a well with an opening at the top for loading and unloading.
  • the high-pressure cell is housed in the recess of the lower mold, the shape does not need to be exactly the same, and it is preferable that the recess has a slightly smaller diameter in consideration of its elasticity.
  • the upper and lower sides constitute a pair of molding dies, and the high-pressure cell is contained in a sandwiched manner.
  • the lower mold or the upper mold must cover the entire outer surface of the high pressure cell.
  • wrinkles in the mold are not preferable because they cause breakage.
  • air remaining in the mold is not preferable because the compression of the air affects the quality of the product.
  • the upper molding die of the heat and fluid resistant stretchable material is a one-piece hollow cylindrical or 2 to 4 split type container that encloses the pressure medium and is fixed to the lower part of the lid of the high pressure container.
  • the outer shape of the upper mold conforms to the upper half of the high-pressure cell and the inner shape of the recess of the open cylindrical lower mold, and the outer diameter is several millimeters smaller than the inner diameter of the lower mold.
  • the length dimension should be only a few centimeters (e.g., 6 centimeters (cm) or less), longer than the required length for close matching.
  • a tapered guide mechanism based on the 7/24 taper structure of JIS B6101 is provided only below the center position in the height direction of the upper molding die.
  • the width of the notch at the lower end of the upper molding die by this guide mechanism is several centimeters (for example, 5.3 cm or less).
  • by using a plastic material it may be slightly deformed by high temperature or high pressure.
  • the upper mold is filled with atmospheric pressure medium prior to processing in order to fit the shape into the recesses of the lower mold and the high-pressure cell. Also, since it is a heat-resistant, fluid-resistant stretchable material, it is slightly stretched and deformed by the weight of the pressure medium, and is suspended from the lid of the high-pressure vessel. In this state, the lid of the high-pressure container is positioned by the above-described guide mechanism in the process of lowering it (first step). The descent of the lid is temporarily stopped immediately before joining the lid to the main body, and the air in the space between the upper mold and the lower mold is evacuated, so that the molds are tightly attached without wrinkles (second process).
  • the inside of the upper mold is filled with the pressure medium from the upper gravity type pressure medium adjustment tank without air bubbles or voids (third step). Furthermore, the lid of the high-pressure container is joined to the main body, and at the same time, the lower mold and the upper mold are fitted together while enclosing the high-pressure cell. At this time, excess pressure medium squeezed out is collected in the gravity type pressure medium adjustment tank.
  • the upper molding die is a container that contains a pressure medium with an integrated hollow cylinder or vertically split type. Provide a space for evacuation by piercing the air release pipe and, if necessary, the cooling water pipe.
  • a thermocouple, a fiber scope, or the like may be installed inside.
  • the heat-resistant penetrating tube penetrates through the cylindrical part in the center of the upper molding die, has heat resistance that matches the operating temperature of the pressure medium, and has power supply/measurement lead wires, an atmospheric release pipe, and a high-pressure cell if necessary.
  • This penetration pipe is made of a material and structure that maintains its shape even under working pressure due to its inherent strength in order to accommodate cooling water piping (inlet/outlet). Thick pipes made of metal, ceramic, or heat-resistant engineering plastic are required because heat-resistant materials and considerable pressure resistance are required. It is preferable to fill the internal space of the hollow tube with metal powder or the like after the lead wires and pipes are housed to improve the pressure resistance and the repeated durability.
  • vacuum exhaust port At the time of vacuum suction before high-temperature and high-pressure treatment, at room temperature and at a pressure from vacuum to normal pressure, an air passage with a diameter larger than the heat-resistant penetration tube that penetrates the upper mold (hereinafter referred to as "vacuum exhaust port ) must be ensured.
  • the diameter of the evacuation port should be as large as possible in cross-sectional area, but if it is too large, the function of the upper mold, that is, the uniformity of hydrostatic pressurization will be affected. Therefore, it is preferable that the vacuum exhaust port is folded and closed during high-temperature and high-pressure processing after vacuum suction.
  • the vacuum exhaust port with this folding function is referred to as a folding vacuum exhaust port.
  • the collapsible vacuum exhaust port is a through-tube with a larger diameter than the heat-resistant through-tube described in the previous section.
  • this vacuum-exhaust tube is folded by the supply of a pressure medium and the upper molded body subjected to hydrostatic pressure. Since the atmosphere only needs to be circulated during vacuum suction before high-temperature and high-pressure processing, the through-pipe should be made of a stretchable material, or the pipe itself should be folded and crushed by a spring or the like during high-temperature and high-pressure processing. .
  • the maximum strength that the collapsible vacuum exhaust port itself must have is the vacuum pressure (atmospheric pressure).
  • the penetrating tube made of a stretchable material a flexible (also called microelastic) material made of a heat-resistant resin, such as the penetrating stretchable tube of Patent Literature 6, can be considered.
  • the penetration tube having a spring or the like may have a structure similar to that of a medical stent.
  • the lower molding die has a certain degree of elasticity, it should have a shape roughly following the contour of the high-pressure cell so that wrinkles do not occur when the high-pressure cell is placed gently. Furthermore, it is necessary to have a structure that does not hinder the circulation of the pressure medium to the outside while supporting the weight of the high pressure cell of 10 kg or more. For this purpose, it is necessary to prepare a support mechanism having a net-like or porous pressure-medium circulation layer having a shape conforming to the contour of the high-pressure cell in the direction of gravity. Each shaped high pressure cell is gently placed in a processing pit with a uniquely shaped support mechanism. The horizontal placement of the high-pressure vessel is more convenient for handling, but vertical placement is also acceptable. By providing two or more treatment pits in the high-pressure vessel, high-temperature and high-pressure treatment of two or more high-pressure cells is possible in one treatment.
  • the shape of the high-pressure cell that can be used in the hydrostatic pressurization method in the case of the pressure medium non-contact type (dry process) includes all symmetrical regular hexahedron, regular octahedron, split sphere, and the like. Any shape can be used, but it is necessary to prepare in advance a pair of molding die and a support mechanism of a specific shape for each processing pit of the high pressure cell of each shape. Therefore, the shape of the high-pressure cell during dry processing cannot be chosen completely arbitrarily and must be planned in advance to some extent.
  • the projection end faces should be uniformly flat to prevent damage to the lower and upper molds due to the high-temperature high-pressure cell. It is preferable to use a product with all tip parts cut in a shape. In the case of the segmented sphere type, since there are no projections on the surface, this kind of consideration is unnecessary.
  • a lower mold and an upper mold of a heat and fluid resistant elastic material A mold is provided between which the high-pressure cell is sandwiched and contained, and two or more high-pressure cells having a mesh or porous medium flow layer conforming to the outer shape of the high-pressure cell in the direction of gravity on the outside of the mold are supported.
  • a high-temperature and high-pressure treatment device was devised that applies a high-temperature, high-pressure treatment to the workpiece precisely and irrespective of direction by simultaneously applying hydrostatic pressure to the entire inner surface of the upper mold and the entire outer surface of the lower mold.
  • the present invention solves the conventional problems described above, and by utilizing the isostatic pressure by the hydrostatic pressurization method, the size of the apparatus can be increased, and a large number of processes can be performed by one high-temperature and high-pressure treatment.
  • a synthetic diamond product having a diameter of 10 mm or more to 15 mm or better, or 30 mm or more can be obtained, and the production efficiency can be increased because the frequency of equipment damage is reduced.
  • using a pressure medium with a known compressibility and volume change rate due to heat after controlling the flow of the pressure medium in the high-pressure vessel, the temperature of the pressure medium is measured, managed, and controlled.
  • a method was devised to control the pressure of the pressure medium by the expansion of the
  • a pressure medium with thermal expansion is used, and a heating mechanism is installed in the high-pressure vessel to pressurize using the thermal expansion due to heating, and the pressure of the pressure medium exceeds the capacity of the pressure mechanism. to obtain synthetic diamonds of even larger size.
  • one pressurizing mechanism can be shared by a plurality of high-pressure vessels by using a piping route provided with a check valve.
  • the labor for decontamination of the pressure medium can be eliminated, and the work efficiency can be dramatically improved.
  • FIG. 1 is a schematic diagram of a pressurization device and a high-pressure cell in a conventional hydrostatic pressurization method for academic research. (The hydraulic pressure device is integrated with the high pressure cell).
  • FIG. 2 is a configuration flow of a high-temperature and high-pressure processing apparatus (pressure medium contact type: wet processing) using liquid medium hydrostatic pressurization.
  • FIG. 3 shows an example of a lashing device (a. vertical installation, b. horizontal installation) in a high-pressure vessel in a pressure medium contact type (wet process).
  • FIG. 4 shows an example of a processing apparatus in which one pressurizing mechanism is shared by a plurality of high pressure vessels.
  • FIG. 5 is a schematic diagram of the configuration of a high-temperature and high-pressure processing apparatus using liquid medium hydrostatic pressurization in a pressure medium non-contact type (dry process).
  • FIG. 6 is an example of a configuration flow of a high-temperature and high-pressure processing apparatus by liquid medium hydrostatic pressure pressurization for dry processing in the preparatory stage.
  • FIG. 7 is an example of a configuration flow of a liquid medium pressurized high-temperature/high-pressure processing apparatus for dry processing after the preparatory stage and before processing.
  • FIG. 8 is an enlarged view of the upper molding die 40 for the heat and fluid resistant elastic material used in the dry processing apparatus described in FIGS. 6 and 7, and an explanatory view of the effect thereof.
  • FIG. 6 is an example of a configuration flow of a high-temperature and high-pressure processing apparatus by liquid medium hydrostatic pressure pressurization for dry processing in the preparatory stage.
  • FIG. 7 is an example of a configuration flow of a liquid medium pressurized high-temperature/
  • FIG. 9 is a schematic diagram of a circulation state of a pressure medium due to heat convection by a thermosiphon in a high-pressure vessel (a. wet treatment, b. dry treatment).
  • FIG. 10 shows a comparison of compressibility of pure alcohol and aqueous alcohol solution.
  • the present invention is a high-temperature and high-pressure processing apparatus by liquid medium hydrostatic pressure pressurization, 1) Outline of pressure medium contact type (wet processing) configuration flow, 2) Pressure medium non-contact type (dry processing ), the structure of the mold, and the procedure of operation will be explained with reference to the drawings.
  • 3) a processing apparatus in which one pressurizing mechanism is shared by a plurality of high-pressure vessels, and 4) a structure in which a pressure medium is circulated by a thermosiphon in the high-pressure vessel, which are common to both, will be described in detail. 2-9 are merely examples and are not intended to limit the present invention.
  • FIG. 2 is a flow diagram schematically showing an example of the configuration of a high-temperature and high-pressure processing apparatus (pressure medium contact type: wet processing) using liquid medium hydrostatic pressurization according to the present invention.
  • a closed space surrounded by a high-pressure vessel main body 7 and a lid 8 is filled with a liquid pressure medium 6, and two or more high-pressure cells 9 are installed therein.
  • the high-pressure cell 9 can be a symmetrical regular hexahedral type, a regular octahedral type, a shape obtained by cutting off all of the protruding end surfaces thereof into a plane, or a split sphere type.
  • the outer surface of all the high pressure cells 9 is covered with a seal 19 made of a heat-resistant, fluid-resistant elastic material so that the pressure solvent does not enter.
  • a vacuum is drawn before installation.
  • the pressure medium in the closed space surrounded by the main body 7 and lid 8 of the high-pressure container is connected to the pressurizing mechanism 10 through a piping line.
  • a fluid having a known compressibility due to pressure and a coefficient of volume change or volume expansion due to temperature and having a maximum specification temperature of 250° C. or more is used.
  • a check valve 11 and a gate valve 12 are installed in the middle of the pipeline.
  • a certain pressure for example, 500 MPa
  • an object to be treated 13 an internal heating source 14, and an anvil 15 are installed from the inside, and the mass of each cell exceeds 10 kilograms (Kg).
  • the plurality of high pressure cells 9 are also fixed or suspended within the high pressure vessel by a lashing mechanism 20 such that any outer surface does not directly contact the inner wall of the high pressure vessel.
  • the maximum operating pressure of this device is determined by the design pressure resistance of the high-pressure vessel, and in recent years, some high-pressure devices have a pressure of several GPa. Also, although not strictly, the maximum operating temperature of the device is determined by the maximum specified temperature at which no significant deformation of the heat and fluid resistant elastic seals occurs.
  • the high-pressure container 7 may be placed vertically or horizontally.
  • the pressurizing mechanism 10 may be a motor type pump or a piston type pump.
  • the number of high-pressure cells is three and four, but there are no restrictions on the type and quantity as long as the number is two or more.
  • the internal heating source 12 connected to the internal heating source power supply 21 is heated, the object to be processed is heated to 1300° C. or higher, and the heat transfer due to this , the pressure medium 6 is heated to a predetermined temperature (eg 150° C.) over time.
  • a predetermined temperature eg 150° C.
  • a change in the temperature of the pressure medium 6 is detected by a high-pressure container thermocouple 22 exposed on the inner surface of the high-pressure container, and a temperature detection function 23 monitors the change.
  • Three types of high-pressure container thermocouples 22 are installed: TC1 (highest point), TC2 (lowest point), and TC3 (average point).
  • Temperature TC1 and minimum temperature TC2 are also used for temperature control. If the compressibility and volume change rate of the pressure medium are unknown, a DAC device and a calibration device may be connected to the gate valve 12 in the processing equipment to acquire these physical property data before a series of actual treatments.
  • the pressure adjustment function 24 receives a signal from the temperature detection function 23 and determines that the pressure of the pressure medium 6 should be reduced, The signal is transmitted to the temperature reduction mechanism 25 , the refrigerant cooler 26 is operated, the refrigerant is sent to the cooling jacket 27 , and the returned refrigerant is cooled by the refrigerant cooler 26 .
  • the pressure in the high-pressure vessel does not rise by chance, and the processing apparatus accurately detects the temperature of the pressure medium 6 with the high-pressure vessel thermocouple 22, thereby controlling the pressure to achieve the desired processing pressure ( For example, 500 MPa) can be controlled with high accuracy.
  • the signal from the temperature detection function 23 determines that the pressure of the pressure medium 6 should be increased, transmits the signal to the heating mechanism 28, operates the pressure medium heater power supply 29, and installs the pressure medium heater in the high pressure vessel 30 heats the pressure medium 6 (eg to 250° C.). Even in this case, the temperature of the pressure medium 6 is detected by the high-pressure container thermocouple 22, and the control to accurately manage the processing pressure is continued, and pressurization does not continue until the pressure exceeds the withstand pressure limit of the high-pressure container.
  • the temperature reduction mechanism 25 reduces the pressure to the desired processing pressure.
  • This makes it possible to maintain a pressure medium pressure (eg 700 MPa) capable of obtaining the high operating pressures (eg 7 GPa) necessary for the production of large size synthetic diamond products.
  • the pressure inside the high-pressure vessel becomes higher than the pressure (for example, 500 MPa) pressurized by the pressurizing mechanism 10 . Therefore, the piping route leading to the high-pressure vessel can be removed on the pressurizing mechanism side of the check valve 11 .
  • the processing apparatus of the present invention can continue the high-temperature and high-pressure processing even if the pressurizing mechanism 10 is stopped or disconnected from the pressurizing mechanism 10 .
  • the pressurizing mechanism 10 may be stopped when the disconnection is performed, or may be operated in a state where the output is reduced.
  • a pressure relief mechanism 55 is provided which consists of a valve of the type such as a needle valve, a diaphragm valve, etc., capable of reducing the pressure of the pressure medium in the high pressure vessel by discharging it out of range.
  • the measurement accuracy is poor and, in many cases, it cannot be used for pressure control.
  • FIG. 3 is a diagram schematically showing an example of a lashing device 20 (a. vertical installation, b. horizontal installation) in a high-pressure vessel in the pressure medium contact type (wet treatment) of the present invention.
  • the processing apparatus of the present invention can process any type of high pressure cell 9 as long as it has a symmetrical shape.
  • the lashing device 20 has a shape suspended from the lid 8 in a. vertical installation and b. horizontal installation. In this figure, the axial force exerted by the pressure medium 6 on the lid 8 is supported by the press frame 33 .
  • a plurality of high-pressure cells 9 installed in the high-pressure vessel must propagate pressure from the pressure medium 6 all around. Therefore, almost the entire surface of the high-pressure cell 9 is exposed without touching most of the inner side wall and bottom surface of the main body 7 of the high-pressure vessel, and the high-pressure cell 9 can be fixed or suspended in the high-pressure vessel while maintaining the vacuum state inside. There must be. Therefore, the lashing device 20 has a shape and structure that reduces the area in contact with the high-pressure cell 9 as much as possible. In addition, when isotropic pressure cannot be obtained due to the influence of the lashing device 20, and product quality is affected, a pressure medium circulation layer 48, which will be described later, may be provided inevitably in the portion in contact with the high pressure cell 9. In FIG.
  • the lashing device has a shape suspended from the lid 8, but it may have a shape in which it is supported or fixed from the floor or wall surface of the high-pressure cylinder.
  • Several high pressure cells may be fixed or suspended in one securing device, whether vertically or horizontally.
  • the structural structure for supporting the axial force may be a method other than the press frame 33, such as bolt fastening or load application.
  • FIG. 4 shows an example of a processing apparatus in which one pressurizing mechanism of the present invention is shared by a plurality of vertically placed high-pressure vessels.
  • the processing apparatus is such that the pressurizing mechanism 10 is stopped. High-temperature and high-pressure treatment can be continued even when In addition, it becomes possible to remove the check valve 11 from the piping route connected to the high pressure container on the side of the pressurized container. By connecting the removed piping route to another high-pressure vessel, it is possible to start up another processing apparatus, that is, to pressurize the pressure medium in the high-pressure vessel.
  • FIG. 10 shows an example of a processing apparatus in which one pressurizing mechanism of the present invention is shared by a plurality of vertically placed high-pressure vessels.
  • FIG. 4 is a diagram for explaining a state in which a pressurizing pump 36, which is one hydraulic pump type pressurizing mechanism 10, is shared by the bodies 7 and lids 8 of eight high-pressure containers A to H.
  • a pressurizing pump 36 which is one hydraulic pump type pressurizing mechanism 10
  • One pressurizing pump 36 is mounted on a mobile carriage 35 and can be moved on a rail 34 to a predetermined position for pressurizing the pressure medium of the body 7 and lid 8 of the high-pressure vessels A to H.
  • the high-pressure hose 37 is attached to the pressurizing mechanism side of the check valve 11 from A to H.
  • the pressurizing pump 36 By operating the pressurizing pump 36 here, the pressure medium is pressurized to a certain pressure (for example, 500 MPa) that its performance allows under normal temperature.
  • a pressure medium tank 38 is installed below the pressurizing pump 36 of the mobile carriage 35 .
  • FIG. 4 eight high-pressure vessels can be connected to one pressurizing mechanism 10, but the number of main bodies 7 and lids 8 of the high-pressure vessels to be connected may be larger or smaller.
  • the growth time varies depending on the size of the synthetic diamond product to be manufactured, and the time to be held at high temperature and high pressure may extend to several days, but the holding time is mainly proportional to the size of the synthetic diamond product to be manufactured.
  • the pressurizing mechanism 10, the high-pressure container, the press frame 33, and the like are arranged in a plane. It does not matter whether it is a simple arrangement or an arrangement in which these arrangements are combined.
  • the pressurizing mechanism 10, the high-pressure vessel, the press frame 33, etc. are both fixed, and the piping system is connected with a long high-pressure hose 37, thereby forming a single pressurizing mechanism 10. may be shared by the bodies 7 and lids 8 of a plurality of high-pressure containers.
  • FIG. 5 shows the configuration of a high-temperature and high-pressure processing apparatus (a. before lid tightening, b. after lid tightening) of a pressure medium non-contact type (dry process) liquid medium hydrostatic pressurization in the preparatory stage of the present invention.
  • It is a schematic diagram.
  • the seal 19 made of heat and fluid resistant elastic material and the pressure medium 6 adhering to the high pressure cell 9 are contaminated , the work efficiency deteriorates remarkably.
  • the high-pressure cell 9 is a heavy object that may weigh more than 10 kilograms and weigh several tons.
  • a hollow cylindrical upper molding die 40 is fixed to the lower portion of the lid 8 of the high-pressure vessel via an upper molding die mounting jig 41.
  • a notch 53 serving as a guide mechanism is provided at the lower end of the upper molding die 40 .
  • a heat-resistant penetrating tube 43 is provided in the hollow cylindrical portion at the center of the upper molding die 40, and a folding type vacuum exhaust port 49 containing a stent-like metal mesh spring tube 57 is provided around the tube.
  • the heat-resistant penetrating tube 43 has a heat-resistant and pressure-resistant structure, and contains therein the current/instrumentation lead wire 5, the internal thermocouple 16, and the high-pressure cell cooling water pipe 44 as necessary.
  • the folding mold vacuum exhaust port 49 maintains its shape and outer diameter during vacuum suction, but is closed by an external force when the pressure medium presses the upper molding die 40 .
  • the heat-resistant penetrating tube 43 and the air release tube 45 are connected to a suction tube connection box 54 in a space recessed from the surface of the lid 8, and a connection nozzle for vacuum suction piping is provided there.
  • the heat-resistant penetration tube 43 is fixed to the suction tube connection box 54 via a spline bearing having a gap through which fluid can flow, and is movable several centimeters in the vertical direction.
  • a flexible pipe leading to the vacuum pump 50 is connected to this connection nozzle.
  • the heat-resistant penetration tube 43 in the suction tube connection box 54 is notched in half, and the current/instrumentation lead wire 5, the internal thermocouple 16, and the high-pressure cell cooling water pipe 44 are connected in the outer peripheral direction of the lid 8 here.
  • the surface of the lid 8 has no projections, and the press frame 33 can be attached by sliding the surface of the lid 8. - ⁇ Inside the lid 8 , an atmosphere discharge pipe 45 surrounds the heat-resistant penetration tube 43 .
  • the lower part of the atmospheric discharge pipe 45 is a folding type vacuum exhaust port 49, and the folding type vacuum exhaust port 49 is connected with a spigot structure (a structure in which uneven parts mesh with each other) that allows the folding type vacuum exhaust port 49 to contract freely in the diameter direction.
  • a metal mesh spring tube 57 is enclosed inside the foldable vacuum exhaust port 49 .
  • the body 7 of the high-pressure vessel lying on its side has a lid opening at the top of the high-pressure cylinder.
  • a lower mold 39 is fixed to this opening.
  • the lower mold 39 has an open cylindrical concave shape with an opening for loading and unloading the high pressure cell 9 at the top.
  • the high-pressure cell 9 is housed in the recess, and the bottom of the heavy high-pressure cell 9 is supported by the lower support mechanism 47 via the lower molding die 39 .
  • a mesh-like or porous pressure medium flow layer 48 having a shape conforming to the outer shape of the high-pressure cell 9 is provided on the support mechanism side, The structure allows the pressure medium 6 to flow freely even after the high pressure cell 9 is fixed.
  • the pipe leading to the vacuum pump 50 is connected to the suction pipe connection box 54 before and after the body 7 and the lid 8 of the high-pressure container are in close contact with each other. Further, as the lid 8 descends, it is guided by the notch at the lower end of the upper molding die 40, and the upper molding die 40 and the lower molding die 39 are engaged to enclose the high-pressure cell 9 therebetween. Before the main body 7 and the lid 8 are brought into close contact with each other, the air in the space between the upper molding die 40 and the lower molding die 39 is vacuum-sucked. The inside of the mold 40 is filled with the pressure medium 6 .
  • FIG. 6 is an example of a configuration flow of a high-temperature and high-pressure processing apparatus by liquid medium hydrostatic pressurization of a pressure medium non-contact type (dry process) in the preparatory stage of the present invention.
  • FIG. 7 is an example of a configuration flow of a dry processing apparatus before processing after going through the preparatory stage of FIG.
  • FIG. 8 is an enlarged view of the upper molding die 40 for the heat and fluid resistant elastic material used in the dry processing apparatus described in FIGS. 6 and 7, and an explanatory view of the effect thereof. 6 and 7 do not show the overall configuration of the liquid medium pressurized high temperature and high pressure processing apparatus, but the overall configuration including the control system described in FIG. It is explained by extracting the points that differ in the structure of the facility when the pressure medium non-contact type (dry process) is adopted.
  • FIG. 6 shows a preparatory stage in which the high-pressure cell 9 is installed in the main body 7 of the high-pressure container placed horizontally by the dry process, and the lid 8 is lowered to be in close contact with the main body 7 to be closed.
  • the pressure medium 6 in the main body 7 is confined by the inner wall surface of the main body 7 and the lower molding die 39, and there is no portion where the pressure medium 6 is exposed to the atmosphere.
  • the partition plate 31 is located in the pressure medium 6 in the main body 7 and has an elongated copper plate 65 for measuring the average temperature on its surface.
  • the high-pressure cell 9 is brought into close contact with the molding die by fitting the lower molding die 39 and the upper molding die 40 made of heat-resistant, fluid-resistant elastic material.
  • FIG. 6 shows an example in which four treatment pits 46 are formed in one high-pressure vessel.
  • FIG. 6 shows an upper molding die 40 of a vertically split four-part type as an example, and a pipe for the pressure medium 6 is connected to each split bag.
  • a gravity-type pressure medium regulating tank 42 which is an open-top type and is in equilibrium with the atmosphere. is connected.
  • the pressure medium atmosphere release valve 62 of the gravity type pressure medium adjustment tank 42 is in an open state.
  • the upper pressure medium gate valve 58 on the pressurizing mechanism 10 side is in a closed state.
  • a heat-resistant penetrating tube 43 penetrating the lid 8 is installed in the center of the upper molding die 40 . Outside the heat-resistant penetrating tube 43, there is an atmosphere discharge pipe 45, which also serves as an evacuation pipe. A metal mesh spring tube 57 is enclosed inside the folding die vacuum exhaust port 49 below the atmospheric release tube 45 inside the upper mold 40 . The upper ends of the heat-resistant penetrating tube 43 and the air release tube 45 are connected to a suction tube connection box 54 installed in a recess on the surface of the lid 8 .
  • the heat-resistant penetrating tube 43 has a pressure-resistant and heat-resistant structure, in which a heat-resistant and pressure-resistant current/instrumentation lead wire 5, an internal thermocouple 16, and, if necessary, a pressure-resistant high-pressure cell cooling water pipe 44 are installed. be. Although not all of them are shown in FIG. 6, the current/instrumentation lead wires 5 are connected to the high-voltage cells 9 by flexible connection cables 17 via pressure-resistant connectors.
  • FIG. 7 shows the pretreatment stage immediately after the preparatory stage of FIG. 6 has been completed and the lid 8 has been lowered into close contact with the body 7 of the high pressure vessel.
  • the pressurizing mechanism 10 is not yet in operation, and neither are any of the heating means.
  • the right side of FIG. 7 shows a view taken along the line AA.
  • the upper molding die 40 can be moved by remote control using the notch 53 at the lower end of the upper molding die 40 and the tapered guide mechanism at the lower part. Lower the lid while inserting it into 39 (first step).
  • the upper molding die 40 penetrates into the concave portion of the lower molding die 39 by remote control and fits therewith.
  • the cover 8 of the high-pressure vessel is further lowered and just before it comes into close contact with the main body 7, that is, a closed space is formed by the lower mold 39, the high-pressure cell 9, and the upper mold 40, and the heat-resistant type
  • the penetrating tube 43 comes close to the high-pressure cell 9
  • the lowering of the lid 8 is temporarily stopped.
  • the vacuum pump 50 is operated, and the atmosphere in the gap between the lower molding die 39 and the upper molding die 40 is discharged by vacuum suction through the heat-resistant penetration tube 43 .
  • the air remaining in the high-pressure cell 9 is also discharged by vacuum suction.
  • the gap between the lower mold 39 and the upper mold 40 disappears, and the upper mold 40 stretched by the vacuum pressure fills the space, so that they are in close contact without wrinkling. .
  • all the outer surfaces of the high-pressure cell 9 can be sandwiched between both molding dies without gaps. (Second step).
  • the upper molding die 40 is stretched and pulled by the vacuum pressure to increase the internal volume, and is in a state where additional fluid can be sucked into the interior.
  • the pressure medium 6 is supplied to the upper molding die 40 by opening the pressure medium adjustment tank gate valve 59 and the pressure medium atmosphere release valve 62 of the piping connected to the gravity type pressure medium adjustment tank 42, Loaded with atmospheric pressure and gravity.
  • the inside of the upper molding die 40 can be filled with the pressure medium 6 without residual air and without mixing bubbles, voids, etc. from the atmosphere (third step).
  • a press frame 33 is installed by sliding or the like to support the axial force applied to the lid 8 from the pressure medium 6, and the lid 8 and the high-pressure vessel 7 are fastened. Also, the gate valve 59 on the side of the gravity type pressure medium adjusting tank 42 is closed, and the gate valve 58 on the side of the pressure mechanism 10 is opened.
  • the pressurizing mechanism 10 is operated, and the entire inner surface of the upper mold 40 and the entire outer surface of the lower mold 29 are simultaneously hydrostatically pressurized by the same pressure medium 6, so that the high-pressure cells 9 are filled without gaps. Isotropic pressurization can be performed with precise, uniform pressure without directionality. (Fourth step)
  • FIGS. 6 and 7 show a configuration in which four high-pressure cells 9 of three types are processed simultaneously in a pressure medium non-contact type in the main body 7 of a horizontal high-pressure vessel.
  • the number of high-pressure cells 9 shown here is three and four, there is no limit to the number and type of cells as long as they are two or more.
  • the pressure medium non-contact type dry process
  • the pressure medium non-contact type dry process
  • the pressure medium non-contact type is not suitable for cases where the type and number of high pressure cells 9 to be processed fluctuate from day to day. Can handle high pressure.
  • FIG. 8 is an enlarged view of the upper molding die 40 for the heat and fluid resistant elastic material used in the dry processing apparatus described in FIGS. 6 and 7, and an explanatory view of the effect thereof.
  • FIG. 4 is an enlarged schematic diagram of an upper molding die 40 for heat and fluid resistant elastic material used in a pressure medium non-contact type processing apparatus.
  • FIG. 8a indicates the state before pressurization by the pressure medium 6; b. and c. indicates the state after pressurization.
  • b. indicates the force balance without the upper mold 40,
  • c. indicates the force balance when the upper mold 40 is present. It should be noted that these show the structure at the position of the AA cross section of FIG. Also, in FIG. and c.
  • FIG. 8b. and c. indicates the magnitude and direction of the force applied by the pressure medium 6 by arrows, and shows the balanced state of the pressure due to the pressure medium 6 in the high pressure container when the pressure mechanism 10 is operated. b. of FIG. 8 c. of FIG. In , the entire inner surface of the upper molding die 40 and the entire outer surface of the lower molding die 39 are simultaneously hydrostatically pressurized. FIG. 8b. and c.
  • the pressurization of the pressure medium 6 causes balance and imbalance of forces in the high-pressure vessel. If there is no upper molding die 40, the force from above is insufficient, so b. , the high-pressure cell 9 is lifted by the action of the pressure medium 6 and pressed against the lid 8 with an anisotropic force. If the upper molding die 40 is present, a force from above is applied evenly, so that the high-pressure cell 9 is isotropically pressurized while maintaining its original position. Isotropic pressurization can be performed with any of the upper molds 40 of (a), (b), (c), and (d), but the upper mold 40 is selected to conform to the shape of the upper part of the high-pressure cell 9. be done.
  • FIG. 9 is a schematic view of the circulation state of the pressure medium 6 due to heat convection by the thermosiphon in the high-pressure vessel (a. wet treatment, b. dry treatment).
  • the viscosity of the organic solvent used as the pressure medium 6 is approximately the same as that of water at normal temperature and pressure. Therefore, if the arrangement of the heating mechanism 28 installed in the high-pressure vessel and the arrangement of the temperature reducing mechanism 25 by the cooling jacket 27 attached to the outer wall of the high-pressure vessel are devised, thermal convection (thermosiphon) will occur in the high-pressure vessel. be able to.
  • the present invention is a system in which two or more high-pressure cells are housed in a high-pressure container to intentionally increase the mass and volume for controlling the pressure of the pressure medium.
  • FIG. 9a. is the structure for wet processing
  • b. in FIG. is the structure of dry processing.
  • the heating sources in the high-pressure vessel are the internal heating source 14 in the high-pressure cell and the pressure medium heater 30 of the heating mechanism 28 .
  • a cooling jacket 27 is attached to the outside of the high pressure vessel.
  • body 7 is a cylindrical high-pressure vessel (hereinafter referred to as "high-pressure cylinder"). These heat sources are arranged vertically in a row in the main body 7 of the high-pressure vessel at the central portion (the center position of the cylinder) and the bottom portion (the lower end of the cylinder) on the central axis.
  • FIG. 9a shows an example of a structure capable of generating a thermosyphon in a high-temperature and high-pressure treatment apparatus using a pressure medium contact type (wet treatment) liquid medium hydrostatic pressurization in which a high-pressure cylinder is vertically placed.
  • the high pressure cells 9 suspended from the lid 8 are arranged vertically in a line on the central axis of the high pressure cylinder.
  • FIG. 9a. is an example in which four high pressure cells 9 are suspended.
  • An internal heat source 14 is contained within each high pressure cell 9 .
  • the pressure medium heater 30 is arranged at the center of the bottom plate (lower end of the high pressure cylinder).
  • the cooling jacket 27 of one temperature reduction mechanism 25 is arranged in the lid 8 and in the upper half of the outer wall of the high-pressure cylinder from the center.
  • Two partition plates 31 made of ceramic or the like are installed on both sides in parallel with the four high pressure cells 9 .
  • the partition plate 31 is for the purpose of blocking mixing due to flow of fluid on both sides, and a copper plate 65 for average temperature measurement, which is thin and elongated like a wire, is installed on the surface over the entire length in the vertical direction. .
  • a fluid (a pressure medium with a slightly reduced density) heated by two types of heat sources rises between the two partition plates 31, that is, in the central portion of the high-pressure cylinder.
  • the heated fluid moved to the upper part of the high-pressure cylinder is cooled by the cooling jacket 27 in the lid 8 and the upper half of the outer wall of the high-pressure cylinder, and the cooled fluid (pressure medium with a slightly increased density) descends on the outer wall.
  • the heated fluid rises in the central part and the cooled fluid descends in the outer wall. is formed.
  • the highest temperature (TC1) after reaching a steady state in the vertical high-pressure cylinder is the upper part of the uppermost high-pressure cell in the center, and the lowest temperature (TC2) is the lower end of the cooling jacket on the outer wall.
  • the average temperature (TC3) is on the copper plate 65 for average temperature measurement, and does not differ greatly at any position on the elongated copper plate like a wire.
  • FIG. 9b shows a structure capable of generating a thermosiphon in a high-temperature and high-pressure treatment apparatus using a pressure medium non-contact type (dry treatment) liquid medium hydrostatic pressurization in which a high-pressure cylinder is placed horizontally.
  • FIG. 9b. shows the structure at the position of the AA section of FIG. The basic configuration is shown in FIG. 9a. , but since it is placed horizontally, the plurality of high pressure cells 9 are arranged in the horizontal direction. Therefore, only one high pressure cell 9 is visible on the AA cross section. Due to this structure, if the heat quantity of the internal heating source 14 is different in each high pressure cell 9, the temperature in the high pressure container tends to be localized in the horizontal direction.
  • the pressure medium heater 30 and the cooling jacket 27 can be controlled for each processing pit 46 .
  • the fluid is heated by the internal heating source 14 at the center of the high-pressure cylinder and the pressure medium heater 30 at the lower end, and cooled by the lid 8 on the top of the high-pressure cylinder and the cooling jacket 27 on the upper half of the body of the high-pressure cylinder.
  • Mixing of the fluid is blocked by two partition plates 31 for one high-pressure cell, forming a thermosiphon in which the heated fluid rises in the central portion and the cooled fluid descends in the outer wall portion. be.
  • the highest temperature (TC1), lowest temperature (TC2), and average temperature (TC3) are the same concept as the previous section.
  • Example 1 High-pressure container, lid, and high-pressure cell fixing system and pressurizing mechanism
  • Example 2 Type and physical properties of pressure medium, viscosity and compressibility under high pressure
  • Example 3 Heat-resistant fluid-resistant expansion and contraction used in mold Material
  • Example 4 Heat-resistant through-tube and foldable vacuum exhaust port
  • Example 5 Heating mechanism for pressure medium, heating mechanism in high-pressure vessel, and thermosiphon structure
  • Example 6 Implementation of high-pressure parts such as high-pressure check valves
  • Example 7 Configuration of high pressure cell and inner anvil
  • Example 8 Type and thermal conductivity of super hard material for inner anvil in high pressure cell
  • Embodiment 1 a high-pressure container, a lid, a method of fixing a workpiece, and a pressurizing mechanism will be described.
  • the high-pressure vessel of the present invention is required to have an internal volume as large as possible within a reasonable range and to increase the mass and volume of the pressure medium in the piping system.
  • the cell is installed in one high pressure vessel. It is rational that the main body of the high-pressure container should be a high-pressure cylinder that can easily ensure pressure resistance and is easy to manufacture.
  • High-pressure cylinders are generally single-walled cylinders or composite cylinders with a shrink-fit structure, but there are also wire-wound structures (a structure in which piano wire or the like is wound around the outer circumference of a high-pressure cylinder to strengthen it).
  • High pressure cylinders are typically designed according to a design fatigue curve that has a non-failure probability of 99.99% or greater.
  • the structure and design of the pressure vessel, such as the shape and thickness of the high-pressure cylinder are based on JIS B8265 (2017) and JIS B8267 (2015). In the case of high-pressure equipment for mass production, it is often the case that the axial force applied to the lid is supported by a press frame.
  • the high-pressure cell is a split sphere type with a diameter of 29 cm (corresponding volume is about 10 liters) of Non-Patent Document 2, and the mass of one piece is thought to be about 700 kg, and if it is larger, it can reach several tons.
  • the elastic lower mold cannot support it because it does not have enough tensile strength. Therefore, it is necessary to consider a system for supporting the heavy high-pressure cell inside the high-pressure vessel.
  • the support method can be any of suspension, stationary, and slide types for horizontal placement of wet processing. is not impossible either. In the case of the vertical suspension type of wet processing, a hanging net system may be used under the lid.
  • the stacking may be performed by isolating with a spacer.
  • Table 1 summarizes the orientation of the main body of the high-pressure vessel, the handling of the lid, and the support system of the high-pressure cell in the wet and dry processes.
  • a hydraulic or electric piston pressurizing device As the pressurizing mechanism for the pressure medium, a hydraulic or electric piston pressurizing device, a combination device of an electric high pressure pump and an intensifier, and the like are commercially available, and any type may be used. Hydraulic or electric piston pressurizers or reciprocating piston pressurizers are often used when constant pressure control is desired in the high pressure range. The maximum operating pressure is 700 MPa for the hydraulic piston pressurizing device, and about 100 MPa for the electric high-pressure pump alone. In addition, when the pressurizing mechanism moves so that one pressurizing mechanism is shared by a plurality of high-pressure containers as shown in FIG. 4 of the present invention, a compact and lightweight electric high-pressure pump is advantageous.
  • Riken's two-stage discharge type electric pump MP-75 55 Kw, maximum working pressure 70 MPa
  • super high pressure hydraulic booster IRE-10K-46 secondary side maximum pressure 1000 MPa
  • Example 2 the type and physical properties of the pressure medium, and the viscosity and compressibility under high pressure will be described.
  • pressure is applied by hydrostatic pressurization, so the pressure medium must have a certain degree of heat resistance.
  • An internal heating source that heats the workpiece to 1300-1500° C. is in the high pressure cell.
  • the pressure medium used since the idea is to control the pressure inside the high-pressure vessel by measuring and controlling the temperature, the pressure medium used must be a liquid fluid with a known compressibility due to pressure and a volume change rate or volume expansion rate due to temperature.
  • the first target for the use temperature (maximum use temperature) on the high temperature side of the pressure medium used in the present invention is 250° C.
  • the pressure limit of the high-pressure equipment such as the press frame is set to 1 GPa, and the performance of the pressurizing mechanism is set to 500 MPa, which is the conventional technology, as the first target. This is because the multi-anvil of the split-sphere type high-pressure cell has a pressure multiplication factor of 10 to 100 times. It is premised on aiming at the production of larger size synthetic diamonds.
  • the pressure is increased to 500 MPa by the pressurizing mechanism, the pressure is maintained by volumetric expansion due to heating of the pressure medium, and the pressure is further increased to about 700 MPa, which is allowed by currently available high-pressure parts such as valves, to produce a larger size synthetic diamond.
  • Toluene, ethanol, methanol, benzene, and acetone are candidates for the liquid pressure medium that can be used under the above temperature and pressure conditions, and Table 2 shows their physical properties. Table 2 also shows water, which is often used as a pressure medium in the prior art. A liquid mixture of these organic solvents or water can also be used.
  • the type of pressure medium is selected, it is possible to use machine oil or synthetic oil as in Non-Patent Document 2.
  • dimethyl silicone oil is generally used as a loose liquid spring because it causes a volumetric shrinkage of about 15% under a pressure of 350 MPa at room temperature.
  • the pressure medium was greatly compressed, and when the pressure medium was then heated by the internal heating source, there was more mass than expected in the high-pressure vessel, resulting in unexpected volume expansion.
  • the applicability of dimethylsilicone oil to the pressure medium of the present invention is not necessarily high.
  • Table 2 Note 1) The physical properties in the table above are measured under normal pressure and at a temperature of 20 to 25°C. Note 2) Figures in parentheses indicate the measurement temperature (°C) Note 3) The coefficient of expansion of water is highly dependent on temperature, reaching 0.0018/K at 220°C. Citation) Rika Nenpyo 2021, p. Object 27, Object 53, Object 54, Object 62, Object 65
  • thermosiphon mechanism is a mechanical solution to this problem.
  • Table 3 shows the viscosities of the candidate liquids for the pressure medium under high pressure registered in the AIST distributed thermophysical property database.
  • Table 3 shows the reported viscosity of the liquids under measured pressures from 0.1 to 400 MPa, with the measured temperatures in brackets in the table. The measurement temperature is reported to be 10 to 160°C.
  • Table 3 is used for the purpose of grasping the global pressure/temperature dependence of viscosity.
  • the viscosities at 400 MPa at the same temperature in Table 3 are about twice that of methanol and about four times that of ethanol, compared to those under normal pressure. There is no significant change in the viscosity of toluene at 200 MPa. Conversely, the same viscosity of benzene at 400 MPa is about half. That is, the viscosity at 400 MPa is 0.5 to 4 times higher than that under normal pressure, depending on the type of substance.
  • looking at the numerical values in Table 3 in more detail, including the temperature conditions in parentheses it can be seen that the viscosities other than benzene are approximately halved by raising the temperature from the room temperature range to 75 to 160°C. Conversely, only benzene is reported to increase its viscosity two to three times by heating. It is important to know these characteristics in advance.
  • Temperature measurement and control are relatively easy if the viscosity is about the same as that of water at normal temperature and normal pressure.
  • the operation mode at start-up is not a complete pre-pressurization, and it is necessary to devise a certain degree of temperature rise at the same time. operation and control will not be impossible.
  • Table 5 shows the results of comparing the compression rate (%) and the expansion rate (%) of the liquid pressure medium under high pressure.
  • the compression rate (%) was calculated from the compression rate of each pressure (0.1, 100, 200, 500 MPa) reported in Table 4 and the like.
  • the expansion ratio was calculated by multiplying the expansion coefficient of the physical property by the temperature (100 and 250°C). It is important for the present invention that the expansion rate at least at 250° C. is greater than the compression rate at 500 MPa.
  • the column of compression in Table 5 shows compression ratios (%) of 0.1 MPa and 500 MPa calculated from the compressibility (10 ⁇ 9 /Pa) of the liquid due to the pressure in Table 4. For 100 MPa and 200 MPa, values read from figures of cited documents in the lower column of the table are added with parentheses.
  • the compressibility of ethanol, benzene, etc. is considered to be about the same as that of methanol, and the compressibility at 500 MPa is not considered to exceed 15%, and is generally considered to be about 11% or less. Therefore, a value of ⁇ 11% is added in the table.
  • the expansion column in Table 5 shows the calculated value of the expansion rate (%) calculated from the volume expansion coefficient of the liquid depending on the temperature in Table 2.
  • Table 5 Note 1) Refer to Table 4 for the compression ratio (10 -9 /Pa) of the calculated value of the compression ratio. Note 2) Refer to Table 2 for the expansion ratio of the expansion ratio. Note 3) The numbers in parentheses in the table above are the numbers read in Fig. 2 of Citation 1. Citation 1) Tadashi Makita, Pressure effect on thermophysical properties of organic liquids, Thermophysical Properties, Vol.1, No.1 (1987)
  • organic solvents other than water such as toluene, ethanol, methanol, benzene, and acetone, have an expansion rate of approximately 20% or more at 250°C.
  • the compression rate at 500 MPa is not considered to exceed 15%, and will generally be about 11% or less. Therefore, these pressure media alone satisfy the requirements of the pressure media of the present invention.
  • the expansion rate is approximately 15%, and more precise data is required for use at temperatures below this temperature.
  • water which is a pressure medium frequently used in the prior art, has an expansion ratio of 3.8% and a compression ratio of 9.0%, and thus does not satisfy the requirements of the pressure medium of the present invention. do not have.
  • a mixed liquid of water and an organic solvent such as ethanol, methanol, or acetone, which is soluble in water is used as the pressure solvent
  • the compressibility can be freely selected according to the mixing ratio.
  • Fig. 10 shows a comparison of compressibility at 100 MPa between pure alcohol substances such as ethanol and methanol (Fig. 2 in Fig. 10) and aqueous alcohol solutions with low alcohol concentrations (Fig. 8 in Fig. 10).
  • the compressibility of the mixture is almost proportional as the alcohol concentration increases, except that there is a concave portion where the compressibility is minimal in the region where the alcohol concentration is low near 0.1 (mol / mol). and approaches the pure substance compressibility of alcohol.
  • the compressibility can be freely set by the liquid mixture of the water-soluble organic solvent and water.
  • the pressure solvent is toluene, ethanol, methanol, Liquids such as benzene, acetone, etc., and mixtures of these organic solvents can be selected.
  • water-soluble substances such as ethanol, methanol, and acetone, mixed liquids of these organic solvents and water can be selected.
  • Example 3 the heat-resistant stretchable material used in the mold will be described.
  • Table 6 shows the names of candidate substances, their properties such as tensile strength, elongation, heat resistance temperature, melting point, etc., and their applicability.
  • the maximum heat resistance temperature hereinafter referred to as “heat resistance temperature”
  • the deflection temperature under load is 280 ° C silicone rubber, 300 ° C fluorine rubber (Viton), and slightly inferior 200° C.
  • ethylene-vinyl acetate rubber is applicable to the present invention.
  • heat-resistant fluororesin-based tetrafluoroethylene/hexafluoropropylene copolymer (FEP), tetrafluoroethylene/perfluoroalkoxyethylene copolymer (PFA), and polytetrafluoroethylene (PTFE) have heat resistance temperatures. It has high elongation and high applicability.
  • a hollow cylinder or a 2- to 4-part split mold is used as the shape of the mold made of the heat-resistant elastic material. Refer to Patent Document 6 for its specific shape and structure.
  • thermosetting resins are difficult to apply, but among heat-resistant engineering plastics called super engineering plastics, some thermoplastic resins can also be applied to the present invention.
  • thermoplastic resin if it is below the melting point, it should be used at a temperature exceeding about 30% of the heat resistance temperature. It's not a problem because there isn't one.
  • applicability to the present invention when the elastic material is used alone is evaluated. Those having a heat resistance of less than 200°C or having an elongation of less than 100% were judged to have low applicability. If the heat resistance is less than 250°C or the elongation is less than 150%, the applicability is evaluated as moderate. Those having a heat resistance of 250° C.
  • a hollow cylinder having a central hollow portion or a 2- to 4-part split mold is used for the upper molded body, but the manufacturing method is preferably injection molding into a mold.
  • NR Natural rubber
  • NBR Nitrile rubber
  • Si Silicone rubber
  • EVA Ethylene/vinyl acetate rubber
  • FKM Fluoro rubber (Viton)
  • FEP Tetrafluoroethylene/propylene hexafluoride copolymer
  • PFA Tetrafluoroethylene Fluorinated ethylene/perfluoroalkoxyethylene copolymer
  • PTFE polytetrafluoroethylene
  • PPS polyphenylene sulfide
  • PEK polyetherketone
  • PEEK polyetheretherketone
  • PI polyimide
  • PAI polyamideimide
  • PES polyethersulfone
  • PBI Polybenzimidazole
  • the heat resistance temperature in the above table basically indicates the deflection temperature under load as the maximum heat resistance temperature, but various values have been reported.
  • Polyimide (PI) is basically Although it is crystalline, it is sometimes classified as amorphous due to its slow crystallization rate.
  • Ketones are generally hard and have low elongation, but the elongation value of polyetherketone (PEK) is an estimated value.
  • Example 4 a heat-resistant penetrating tube and a collapsible vacuum exhaust port to be attached to the central cylindrical portion of the upper mold for dry processing will be described.
  • the heat-resistant penetrating tube of the present invention penetrates the upper molding die, has heat resistance corresponding to the working temperature of the pressure medium (e.g. 250 ° C), and has power supply and measurement lead wires inside, and cooling of the high pressure cell as necessary.
  • the penetration pipe is made of a material and structure that can maintain its shape due to its inherent strength even at working pressure (eg, 1 GPa).
  • the heat-resistant penetrating tube is preferably a thick-walled metal tube having a high strength through which a pressure-resistant power source/instrumentation lead wire and a thick-walled cooling water pipe pass through the hollow portion.
  • the extra space of lead wires and thick-walled pipes is densely filled with metal powder such as stainless steel powder, and solid pipes are used to ensure greater strength. If there is no dimensional leeway in the placement of the heat-resistant penetrating tube in the lid or upper forming mold of the high-pressure vessel, the heat-resistant penetrating tube is made of pure titanium or a titanium alloy with high strength. If the wall thickness is thick, drill a hole in a solid titanium round bar. Piping materials made of titanium comply with JIS H4635 or JIS H4650 TB340.
  • the collapsible vacuum exhaust port is secured by supporting the central hollow portion of the upper molded body with a certain strength slightly higher than the vacuum pressure resistance outside of the heat-resistant penetrating tube.
  • the folding type vacuum exhaust port is secured by supporting the central hollow part of the upper molded body with a metal mesh tube made of titanium alloy or other wire material woven in a mesh like a spring and an outer cylinder made of a thin heat-resistant elastic material. do.
  • the supporting member in the central hollow portion of the upper molding is called a metal mesh spring tube.
  • the shape of this metal mesh spring tube is similar to that of a stent, which is often used for medical purposes. Are different. Medical stents are made of stainless steel or titanium alloy and are several centimeters long.
  • Stents have been widely used for medical purposes such as coronary artery, biliary, esophageal, large intestine, and intracranial artery dilatation operations, and currently exist in various diameters.
  • Coronary stents are classified into tubular, coil, and mesh types, and the materials used for the skeleton are stainless steel, tantalum, and nickel-titanium alloys.
  • a stent made of a shape memory nickel-titanium alloy is expanded by body temperature when placed in a deflated state. Since this shape memory alloy has a constant spring force, it is relatively close to the application of the present invention.
  • a stent made of a shape memory alloy was invented more than 30 years before the present invention, but at present there is no specification or standard for its material or manufacturing method.
  • medical stents themselves meet difficult requirements such as installation position accuracy, deployment performance at the target position, adhesion to the wall, etc., and design conditions that combine many of them. Numerical analysis and prototyping are repeated for each product.
  • the metal mesh spring tube for the folding type vacuum exhaust port of the present invention has clear required performance and can be installed visually. Therefore, compared to medical stents, metal mesh spring tubes are similar in shape and structure, but are technically quite easy to design and manufacture.
  • Example 5 a temperature reduction mechanism by a cooling jacket attached to the outer wall of the high-pressure vessel, a heating mechanism and a thermosiphon structure installed in the high-pressure vessel will be described.
  • the temperature reduction mechanism operates when the pressure adjustment function receives a signal from the temperature detection function that manages the temperature of the pressure medium in the high pressure vessel and determines that the pressure should be lowered, and operates the refrigerant cooler to cool the body of the high pressure vessel. Refrigerant is sent to the cooling jacket on the outer side, and the returning refrigerant is cooled by the refrigerant cooler.
  • the position to attach the cooling jacket is determined by the thermosiphon structure described later.
  • a refrigerant cooler is a common commercial chiller device, and its required cooling capacity is determined by the heat quantity of the internal heating source in the high pressure cell and the heating mechanism installed in the high pressure vessel. Since the working temperature of the pressure medium to be cooled is about several hundred degrees Celsius, the chiller device may be either water-cooled or air-cooled.
  • the heating mechanism operates when the pressure adjustment function receives a signal from the temperature detection function that manages the temperature of the pressure medium inside the high pressure vessel and determines that the pressure should be increased, and activates the pressure medium heater power supply to heat the high pressure vessel.
  • the pressure medium is heated by the pressure medium heater installed inside.
  • the position where the pressure medium heating heater is attached is determined by the thermosiphon structure.
  • the pressure medium heater is a sheath heater or resistance heater with high pressure specifications and liquid resistance, and the required heating capacity is mainly determined by the temperature to be raised and the mass of the pressure medium in the high pressure vessel. Note that the pressure medium does not need to be heated rapidly, and may reach a predetermined temperature within one day, for example, considering the time (for example, several days) required for the production of synthetic diamond.
  • the pressure medium heating heater power supply may be of a direct current type or an alternating current type.
  • the pressure medium heater may be a plate type, cartridge type, flexible type, or micro type heater.
  • a thermocouple may be incorporated.
  • the resistance heating element may be a metal rod (wire), graphite, SiC, or the like.
  • Thermosiphon is a convection phenomenon that occurs from the principle that heated fluid becomes lighter and rises, and cold fluid becomes heavier and descends. It is generally known that the density of a liquid has a negative correlation with temperature, that is, the density decreases as the temperature rises. Although there are few reports of density data showing temperature dependence under high pressure, as shown in Table 5, the densities of liquids such as toluene, ethanol, methanol, and benzene are affected by the effect of volume expansion rather than volume compression due to pressure. is superior, and even under a high pressure of 500 MPa, if the temperature rises, the density will decrease.
  • the viscosity of the pressure medium of the candidate organic solvent is about 1 mPa s. , is expected to have a viscosity similar to that of water at normal temperature and pressure. Therefore, under the temperature and pressure conditions of the pressure medium of the present invention, in principle, the thermosyphon can be generated by the density difference due to the temperature difference between heating and cooling of the pressure medium.
  • the heating mechanism and the cooling mechanism are arranged appropriately, and a partition plate is installed to prevent the flow of hot and cold fluids mixing between them.
  • a partition plate is made of ceramic or the like, which has a poor thermal conductivity.
  • a thin and elongated metal plate made of a material with high thermal conductivity such as copper or aluminum is installed along the entire length in the vertical direction, and a thermocouple ( TC3) is brought into contact to measure the average temperature of the pressure medium.
  • the heating sources in the high-pressure container are the internal heating source in the high-pressure cell and the pressure medium heater of the heating mechanism. These are arranged vertically in a row at the central portion (the center position of the cylinder) and the bottom portion (the lower end of the cylinder) on the central axis.
  • the cooling jacket of one of the cooling mechanisms is arranged in the upper half from the center of the outer wall of the high-pressure cylinder.
  • thermosiphon of the high-pressure cylinder described above determines the highest temperature at the highest temperature and the lowest temperature at the lowest temperature in the high-pressure vessel.
  • the average temperature of the pressure medium can be obtained by measuring a long and thin high heat conductive metal plate (copper plate for average temperature measurement) like a wire attached to the partition plate (support plate) in the vertical direction.
  • the copper plate for measuring the average temperature may be attached by circling the partition plate in the vertical direction.
  • the measured temperature will fluctuate for a while.
  • the degree of heating exceeds a certain level after the lapse of time from the start of heating, the fluid begins to circulate due to heat convection, and thereafter the rotational direction of the fluid is maintained, so the measured temperature stabilizes.
  • the flow velocity depends on the degree of heating, and if the degree of heating is constant, the flow becomes steady and the measured temperature is stable.
  • the present invention uses hydrostatic pressurization in principle, the pressure of the pressure medium is not localized, and the pressure is the same at any position in the high-pressure vessel.
  • the information on the numerical value of the temperature unevenly distributed locally in the pressure medium is not so important, and the average as a whole It is sufficient if the representative temperature is known. Therefore, in the case of the configuration of the present invention, the average temperature (TC3) is used as the representative temperature during steady operation. However, since the average temperature fluctuates at the start of operation or during sudden heating or cooling, the representative temperature is determined by taking into consideration the information of the maximum temperature (TC1) and minimum temperature (TC2), which have little fluctuation, and making a logical decision. .
  • the representative temperature at the time of start-up, rapid heating or cooling is information that can be easily clarified empirically, and may be input to the condition determination function of the control device reflecting the empirical rule.
  • each high-pressure cell has three temperature measurement points and that the heating mechanism and the cooling mechanism can be individually controlled.
  • the first target for the pressure resistance limit in the design of high-pressure equipment such as high-pressure vessels and press frames was set to 1 GPa. It is necessary to obtain physical property data using a DAC device or the like on the machine side.
  • the maximum working pressure of the available pressure medium is also influenced to some extent by the pressure resistance limit of high-pressure parts such as high-pressure valves attached to the high-pressure piping. DACs are manufactured and sold by Shimizu Seisakusho and others. In the case of the configuration of the present invention, since the flow rate of the pressure medium under high pressure is small, the high pressure pipes are thin and the sizes of the high pressure parts used are necessarily small.
  • the pressure limit of high pressure parts is limited to 20 to 70 MPa, which is used in power plants in the catalog products of domestic manufacturers, but in the ultra high pressure area, the European company BUTECH (Japanese distributor is Sunny Trading (Sunny Trading) Ltd.) supplies a variety of high-pressure specification products.
  • Gate valves two-way valves and three-way valves with a withstand pressure limit of about 1 GPa are already on the market as catalog products.
  • the model number is made of SUS316, and the 2-way valve is 150V51-316WP, and the 3-way valve is 150V53-316WP.
  • a spring-loaded ball type check valve with a model number of 60BC9-316WP-316S is on the market, but this pressure limit is several hundred MPa, which is not sufficient for use in the present invention. do not have.
  • the material can be changed to Hastelloy TM, Inconel TM, titanium, ALLOY400, etc., as long as it is a metal that can be machined. Ultra high pressure specifications up to 1,034 MPa are available as options.
  • a change to a high-tensile material such as a titanium alloy (for example, Ti-6Al-4V of ASTM Grade 5 or Ti-10V-2Fe-3Al of AMS4983) whose tensile strength is about three times that of pure titanium is possible.
  • a high-tensile material such as a titanium alloy (for example, Ti-6Al-4V of ASTM Grade 5 or Ti-10V-2Fe-3Al of AMS4983) whose tensile strength is about three times that of pure titanium is possible.
  • a high-tensile material such as a titanium alloy (for example, Ti-6Al-4V of ASTM Grade 5 or Ti-10V-2Fe-3Al of AMS4983) whose tensile strength is about three times that of pure titanium is possible.
  • ball type check valves there are disc types, swing types, wafer types, lift types, etc. Some of the disc types and ball types have springs. Those with springs are the same size as piping parts such as nipples and
  • the water chamber (casing) and valve support must have great strength, and these types of valves result in fairly large forged valves.
  • the arrangement can utilize the spring-loaded ball check valve described above.
  • Example 7 describes a high pressure cell.
  • Each high-pressure cell has an anvil, an object to be treated, an internal heating source, and an internal thermocouple for temperature measurement.
  • the internal heating source may have a built-in thermocouple.
  • Current and instrumentation leads for the internal heating source and internal thermocouple are exposed from the high voltage cell and connect to external connectors. Cooling water lines (inlet/outlet) are exposed from the high pressure cell to connect to external industrial or clean water, as required.
  • each high-pressure cell is wrapped with a heat-resistant, fluid-resistant elastic seal. Since the present invention relates to a pressure device for manufacturing synthetic diamond, the type and structure of the high-pressure cell are not required except for the superhard material of the inner anvil.
  • the specific shape may be spherical, regular hexahedron (cubic), or regular octahedron.
  • belt-type high-pressure cells are out of scope because they are not all symmetrical.
  • the pressurizing device and high-pressure cell (BARS device) for conventional academic research using the hydrostatic pressurization method shown in FIG. do not have.
  • the cube type (cubic type anvil) used in the Chinese CCP described in the above "Background Art” may be used as it is.
  • the regular octahedral shape such as the inner anvil described in the above “background art” may be used as it is.
  • the temperature of the pressure medium rises due to heat transfer from the internal heating source of the high-pressure cell, it is necessary to take this into account and control the temperature by heat transfer in order to apply the present invention.
  • the BARS device shown in FIG. 1 described in "Background Art” uses tungsten carbide (WC), which has good thermal conductivity, for the internal anvil, and the temperature of the oil used as the pressure medium rises with the operation time of several days. and said that the operating pressure of the hydraulic pump and the work piece rose uncontrollably.
  • the solution is to run cooling water vertically and horizontally within the high-pressure cell to remove the heat from the internal heating source.
  • the superhard materials used for the inner anvil of the high-pressure cell include those made of metal and those made of ceramic.
  • Metal ones include cemented carbide (WC+Co), tungsten (W), and the like.
  • Ceramics include zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), cermet, boron carbide (B 4 C), silicon carbide (SiC), and the like.
  • Table 7 shows the thermal conductivity of cemented carbide materials whose Vickers hardness (Hv) is comparable to that of cemented carbide. As shown in Table 7, metal ones have high thermal conductivity, and ceramic ones other than silicon carbide (SiC) have low thermal conductivity.
  • the heating of the object to be processed by the internal heating source is started at the same time as the pressurization by the pressurizing mechanism. to obtain even higher pressures.
  • the cemented carbide material of the anvil in the high pressure cell should be a cemented carbide with high thermal conductivity shown in Table 7, silicon carbide, tungsten, or A material containing these as main components may be used.
  • the superhard material of the anvil in the high-pressure cell should be zirconia or nitride, which has low thermal conductivity. Silicon, cermet, boron carbide, or a material containing these as main components may be used.
  • the pressure medium contact type (wet process) and the pressure medium non-contact type (dry process) are mixed on the same page, so the description of the functions and configurations that are correlated to which one It is hard to tell whether it is.
  • Correspondence between the function and configuration of the above-mentioned high-temperature and high-pressure processing equipment using liquid medium hydrostatic pressurization containing two or more high-pressure cells, and pressure medium contact type (wet processing) or pressure medium non-contact type (dry processing) are shown in Table 8.
  • the high-temperature and high-pressure processing apparatus of the liquid medium pressurization type was explained as the apparatus for producing large-sized synthetic diamonds, but the object to be produced need not be limited to large-sized synthetic diamonds.
  • synthetic diamond cubic boron nitride (cBN) and its analogues, ceramic materials manufactured using high pressure, hard materials, intermetallic compound materials, and compacts thereof including sintered products It can also be applied to a manufacturing apparatus using a high temperature and high pressure method (HPHT method).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Press Drives And Press Lines (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】高品質な大きなサイズの合成ダイヤモンドを効率良く大量に生産するための、湿式法および乾式法による静水圧加圧式の高温高圧処理装置を提供する。 【解決手段】高圧容器内に圧力媒体の内部への侵入を防いだ高圧セルを収納して液体状である圧力媒体により静水圧加圧する処理装置であって、処理装置に付属する最初に利用可能な少なくとも1つの圧力媒体6の加圧機構10があり、圧縮率と体積変化率が既知な圧力媒体を使用し、圧力媒体の加温手段と鉛直方向の平均となる温度の計測手段を設け、圧力媒体を所期の温度に加熱することで熱膨張させ、加圧機構が停止した後も圧力を維持しながら処理を継続し、2つ以上の高圧セル9を同時に方向性がない均等な圧力で高温高圧処理できる処理装置 11.逆止弁、22.熱電対、27.冷却ジャケット、30.圧媒加熱ヒータ、31.仕切り板、65.銅板

Description

液媒加圧による高温高圧処理装置
本発明は、大きなサイズの合成ダイヤモンドを効率良く大量に生産するための静水圧加圧式の高温高圧法による製造装置に関するものである。
ダイヤモンドは熱力学的に高圧下で安定であるため,その合成は通常5~6GPa,1300~1500°Cの静的な高圧下で行われる。合成ダイヤモンドの製造方法が見いだされたのは1950年代であり、既に半世紀の製造の歴史がある。現在生産されている合成ダイヤモンドの多くは,この高温高圧法(HPHT法)のうち静的加圧法によるものである。大粒の単結晶ダイヤモンドの合成は,温度差によって生じるダイヤモンドの溶媒に対する溶解度差を駆動力とした温度差法が用いられる。グラファイト等を原料とするこの方法によってサイズが数ミリメートル(mm)以下の比較的小さな合成ダイヤモンドを製造する方法や装置は、工業的に確立されている。品質は不純物量と結晶度に依存する。
多くの静的加圧法の場合、炭素を特定種類の一連の溶融触媒により形成された金属薄膜を浸透・拡散させることによって、ダイヤモンドの成長が行われる。粒状のダイヤモンドはダイヤモンドの種材料と炭素源の間に予め決められた温度勾配が生じるようにされた合成容器の中で製造する。成長時間が長くなるよう温度勾配を比較的小さくし、さらに温度と圧力を非常に注意深く調節することによって、大きさが数mm以上のサイズのダイヤモンドを製造することができる。しかし、この方法では製品の大きさに従って1~数日間の長時間を要する。従来システムでは1個の合成ダイヤモンドの製造に1台の処理装置を占有しているので、成長時間、すなわち製品の大きさがマシンタイムを決めている。
合成ダイヤモンドの製造装置は多くの種類があるが、高温高圧法の静的加圧法の場合は基本的には、加圧装置と高圧セルより構成される。加圧装置は高圧を発生するための装置であり、ピストン加圧方法と静水圧加圧方法に大別される。高圧セルは通電加熱下で高圧力を発生させるのに圧縮力を極めて狭い面積に集約する装置であり、形状と構造別に多数の種類がある。
ピストン加圧方法には、垂直に一軸方向の高圧プレス装置と多軸で4本または6本のプレスシリンダ等による機械的な加圧方法があり、ここではその総称としている。黎明期のピストン加圧方法は大型の一軸圧縮プレスのみであったが、この半世紀の間の技術進歩により、近年では中国を中心として六方押プレスが多用されている。現時点での商業的な合成ダイヤモンドの製造は、その殆どがピストン加圧方法による。
一方、静水圧加圧方法は、流体を圧力媒体として加圧する加圧方法である。静水圧加圧方法は、容易に圧縮力とその方向が均等的な高圧(以下、「等方圧」と言う)が得られるが、操作性に難点があると言われており、過去に技術改良も図られなかったことから主に鉱物学・地質学等の学術研究用に使われるのみで、商業的な合成ダイヤモンドの製造には現時点でほとんど使われていない。
通電加熱下で高圧力を発生させる高圧セルは、一般に高圧力を発生させるのには超硬材料製のアンビルを使用する。合成ダイヤモンドを製造する際には、アンビルの内部空間にはグラファイト等の原料と内部加熱源とダイヤモンド種および金属触媒(これらを「被処理物」と呼ぶ)を入れる。アンビルの端面の面積は、外側の加圧装置からの受圧面が大きく、内側の試料面が小さいため、外側から圧縮力を受けた場合に原料への動作圧力を面積比に応じて10倍から100倍程度に増幅できる構造になっている。通電加熱は主にアンビル自体や内蔵するヒータ等の加熱源に電流を流しての抵抗加熱による。なお、加熱源はアンビルが共用する場合がある。被処理物、加熱源、および、アンビルより構成される高圧セルは、この半世紀の間に多種多様な方法が開発・提案され、実用化されている。
ここで高圧セルの種類と加圧装置との相関を説明する。従来、ピストン加圧方法に適用される高圧セルには、1)ベルト型、2)キュービック型がある。また、従来、ピストン加圧方法と静水圧加圧方法の両方に適用される高圧セルには、3)分割球型がある。2)と3)の高圧セルでは、複数個の組立式のアンビルを使用しているためマルチアンビル型装置(MAA)と総称されている。非特許文献1には、これらのマルチアンビルの概念と構造が示されている。
1)のベルト型は最初に開発された高圧セルであり、試料の入った筒状セルの上下からアンビルを介して一軸圧縮プレスで加圧し、上下アンビルを通電加熱して試料を加熱する。ベルト型は操作が容易で手間はかからないことが長所であるが、加圧装置がかなり大きくなることが短所である。2)のキュービック型は、4本の油圧シリンダで正四面体状の試料を圧縮するテトラヘドラル型と、6本の油圧シリンダで立方体状(正六面体状)の試料を圧縮するキューピック型がある。原料の加熱は、高圧セルの内部に設置したヒータ等の加熱源による。キュービック型は加圧装置の大きさがベルト型より小さく、ダイヤモンドを合成するのに適した圧力と温度に達する時間が速いのが特徴である。また、5~6GPa領域では比較的大きな容積を確保できるので,品質的に安価で比較的小さな合成ダイヤモンドの生産に向いている。しかし、1)と2)では一軸方向の圧縮力をなるべく球の形状に近づけるような等方的な方向に向けようとしているので、力学的にアンビルやプレスピストンに無理な力がかかり、破損やクリープ変形によってこれらの寿命が短くなり、その損耗頻度がさらに高くなる。さらに1)の加圧装置がかなり大きくなることは既に述べたが、2)でもキュービック型でより大きなサイズの合成ダイヤモンドを製造するにはアンビルの寸法が大きくなり、プレス加圧力は寸法の2乗で大きくなることが装置上の課題であり、現時点で既に機械装置は限界に近付いている。
非特許文献1によれば、六方押プレスによる2)のキュービック型の装置は、2009年当時において中国国内で数千台稼動しており、直径10mm以下の大きなサイズの合成ダイヤモンドを製造していると述べている。また、別途情報によれば、この六方押プレスは中国キューピックプレス(CCP)と呼ばれており、現時点の1本のプレスシリンダの直径は850mmであり、その圧縮力は最大60MN程度であり、キュービック型の高圧セル外表面積での圧力に換算すると全圧力は110MPaであると言われている。また、一方でどんなに試料を小さくしてもキュービック型の動作圧力は25GPaに限界があると言われている。非特許文献1によれば、この加圧方法では6個各々のアンビルを六軸の各油圧ユニットで同期進行させる必要があるため扱いが難しく、作業性に問題があるとしている。
次に、従来、静水圧加圧方法にも適用されてきた高圧セルである3)の分割球型を説明する。3)の分割球型の場合、アンビルは2段で組立てる構造となっており、外部アンビルと内部アンビルがある。なお、ここでは被処理物および内部アンビルを総称して試料と呼ぶ。分割球型の高圧セルでは、球体を6分割または8分割した形状の外部アンビル(分割球)の中心に試料を配し、高圧セルすべてを耐流体侵入性のゴム殻で包んで駆動油に浸けて圧縮するというものである。また、8分割の球状の外部アンビルの中の試料には、立方体型の6個の超硬合金製の内部アンビルが用いられる構成が多用されており、この構成は川井型(または8-6型)セルと呼ばれている。一方で、アンビルを2段で組立てる構造により、分割球型の高圧セルの動作圧力はキュービック型よりも一層高く、理論上は40GPa以上に達すると言われている。明らかに静水圧加圧方法の方が高い圧力を容易に得られるため、この静水圧加圧方法と高圧セルの組合せは、ピストン加圧方法よりも大きなサイズの合成ダイヤモンドの製造に向いている。但し、従来の静水圧加圧方法でも1度に高圧処理できる高圧セルは1個だけである。
非特許文献2では、国内の大学でのマントル中の鉱物の生成メカニズムの研究等に用いられている静水圧加圧方法による加圧装置と分割球型の高圧セルより成るプレスレス・スプリットスフィア装置(BARS装置)の詳細な構造や長所・短所が述べられている。
非特許文献2のBARS型装置は、8つの鋼製の外部アンビルと、6つの立方体型の炭化タングステン(WC)製の内部アンビルより成る川井セル(8-6型)の高圧セルで構成されている。内部アンビルは数種類あり、被処理物・内部加熱源を収納する8ないし20立方センチメートル(cm)の空間体積のものがある。外部アンビルである分割球の外直径は290mmであり、立方体の内部アンビルは外形高さ・幅が47mmである。加圧装置には耐圧チェンバーの球形容器に油を注入する最大吐出圧250MPaの油圧ポンプが採用されている。高圧セル1個は1台の耐圧チェンバー中に収納されるが、分割球の外表面は球形容器の2つの鋼製半球の端にしっかりと接続されているゴム製シース上に静かに置かれる。圧力媒体である油層はゴム製シースと耐圧チェンバーの球形容器の内壁の間の薄い層にのみ充填され、ゴム製シースを介して分割球の外表面が等方圧で加圧される。非特許文献2では油圧ポンプの190MPaの油圧で15.5GPaの動作圧力を得たと述べている。この筆者は一軸圧縮プレスのような巨大で高コストな装置が不要で、オープンオイルで汚れるという不便さがないコンパクトな装置だと述べている。ここでシースとは、上記の耐流体侵入性のゴム殻と同じ目的で使用されるものであり、高圧セルの外面に密着した樹脂やゴム等の塑性材料製のカバーとの意味である。
非特許文献2に掲載された、従来の学術研究用の静水圧加圧法での加圧装置と高圧セルの概要図を図1に示す。図1には本明細書の体系の符号を追記した。分割型の高圧容器1と分割フレーム2で耐圧チェンバー球形容器が構成される。その内側に外部アンビル(8分割)3、その内側に内部アンビル(6分割)4が設置される。分割球型の外部アンビル3の外側にゴム製シースが施される。BARS型装置では、高圧容器1の内壁とゴム製シースを施した外部アンビル3の間の狭い領域は圧力媒体6が満たされる領域である。電流・計装リード線6は上部の容器本体に2つ、下部の容器本体に2つ設けられる。冷却水は下部の容器本体に入口と出口の配管が設置される。
非特許文献2はもとより外部の一軸圧縮プレスと分割球型の高圧セルより成る装置との間の比較実験により動作圧力のキャリブレーションを行う目的のものであるため、実際に実験に使用した動作圧力は5.5-7.5GPaと低く抑えられている。この数値から推測すると実験時の圧力媒体の圧力は70~100MPa程度と低く抑えられたと予想される。また、液体状の圧力媒体は一般に僅かに体積が変化すると大幅に圧力が変化してしまう。そのため、高圧力領域の精度良い圧力制御は一般に難しい。非特許文献3に示される通り、この圧力領域になると装置・計器共にそれ自体が弾性変形し、圧力媒体の油の密度や粘性等の物性が変化もあるため、圧力計により精度良く圧力を計測することは容易ではない。圧力媒体に温度変化が伴うと、密度の変化により圧力の制御は一層難しくなる。非特許文献2では、BARS型装置では稼働に伴う圧力媒体の加熱により動作圧力が所期の値を超えて時間と共にどんどん上昇して制御不能となったと述べている。
圧力が制御不能になる対策として、BARS装置には網目状の経路による内部冷却システムがあり、加熱された高圧セルのすぐ近くにあるアンビルの側面の間に冷却水を循環している。これは圧力媒体の熱による膨張に伴う圧力の上昇を抑制するため、冷却水を循環して高圧セルを冷やしているものと予想される。なお、BARS装置の内部アンビルには熱伝導率の良い炭化タングステン(WC)を使用している。
非特許文献2には圧力媒体の圧力を計測し、制御しているとの説明は見当たらない。BARS装置の構成の場合、これは耐圧チェンバー球形容器の内壁の間の油(圧力媒体)の層が薄く、油の体積・質量が少ないことも制御を困難とした一因である。冷却水による高圧セルの冷却は間接的に圧力媒体の圧力上昇を抑制できると思われるが、この方法だと圧力を計装して精度良く制御することは難しい。地質実験の場合は許容されるかも知れないが、長い成長時間をかけて大きいダイヤモンドを商業的に製造する場合は、処理圧力の経時的な変動は製品の品質や装置の耐圧チェンバーの圧力限度や高圧セルを含めた耐久性を管理する上で重大な問題が生じる。商業用の装置では圧力媒体の圧力の変化を計測等の手段により把握し、所期の処理圧力となった後は処理中に圧力が大きく変動しないような制御機構を導入する必要がある。
上記の通り、製造に必要な圧力と温度は既に1950年代に見出されて、半世紀の経験に基づいて合成ダイヤモンドが製造されており、その粒径の拡大や品質・歩留まりの向上を目的として高圧セルは次第に進歩している。しかしながら、その一方で加圧装置の方はあまり進歩していない。ピストン加圧方法では六軸までシリンダの数が増えた六方押プレスであるCCPが登場したが、機械式のプレスシリンダを利用していることに変わりはない。均等圧を厳しく求める製品であるため六軸でプレスすることで1度に高圧処理できるのは1個だけである。また、力学的にアンビルやプレスピストンに無理な力がかかり、破損やクリープ変形によりこれらの寿命が短く、これらの損耗頻度がさらに高くなっている。一方の静水圧加圧方法では、高圧セルはゴム製シースや冷却システムの採用等で進歩はあるが、加圧方法が進歩した従来例は見当たらない。
過去には、特許文献1の通り、ピストン加圧方法でのベルト型の装置により1回で処理できる試料の個数を増やすことを目指した高温高圧処理装置が考案されている。このベルト型の金型ユニットにより成る装置は固体超高圧加圧装置と呼ばれており、1つにはプレス軸心上に、多段の金型ユニットを複数段配置して生産性の向上を図るものである。
ベルト型の装置の多段処理により1回で処理できる個数を増やすことは一見可能であるように見える。ただ、金型をシリーズに直列で配設すれば、ひとつの金型ユニットを使用する場合でも、すべての金型ユニットのハンドリングを必要とするし、又、ひとつの金型ユニットのアンビル、シリンダ等に破損等があっても全ての作業を中止する必要がある。そのため特許文献1では既存のものに加えて改良を施し、金型ユニットをシリーズに設けるのではなく、それぞれ完全に独立させることによって、前述問題点を解決したとされている。しかし、特許文献1は高圧セルにベルト型の金型ユニットを使用するものであり、ピストン加圧方法は六方押プレスではなく、プレスピストンが1個しかない垂直一方向からの一軸圧縮プレスである。
冒頭で述べた通りベルト型の高圧セルでは加圧装置がかなり大きくなることが短所であり、直径10mm程度の大きなダイヤモンドを製造するには1台のベルト型の高圧セルでも一軸圧縮プレスの圧縮力が足りない。
従って、高圧セルを直列であっても並列であっても2台以上とすれば一層足りなくなるのは明らかである。そのため、直径10mm程度の大きな合成ダイヤモンドの製造にこの方法は使えない。なお、現状でこの多段処理の固体超高圧加圧装置は、小さなダイヤモンドの製造にも採用されていない。
従来のピストン加圧方法である六方押プレスでは原理的に1度に高圧処理できる製品個数は1個である。また、プレス能力の限界の点で現状より大きな合成ダイヤモンドを製造することは難しい。一方で、従来の静水圧加圧法であるBARS装置は商業利用できる状態でない上に、耐圧チェンバー球形容器中にて1回で処理できる分割球型の高圧セルは1個である。両者共に数日間の稼働で製造できる製品個数は1個である。
すなわち、現時点で利用されている従来システムでは、直径10mm程度のサイズの大きな合成ダイヤモンドを大量に製造する方法が具現化されていない。少なくとも、高品質で直径が15mmを超える合成ダイヤモンドについては少量でも製造する方法が具現化されていない。全ての利用可能な製造方法において1度に高圧処理できる製品個数は1個に留まっており、製造効率が低い点が課題である。
角谷 均(著),「ダイヤモンド合成用超高圧セルの最近の動向」、特集-高圧セル技術の最新動向―実験室から生産現場まで―、高圧力の科学と技術、Vol.19,No.4,pp.264-269(2009) Anton Shatskiy.et.al, "Pressless split-sphere apparatus equipped with scaled-up Kawai-cell for mineralogical studies at 10-20 GPa",American Mineralogist,Volume96,pages541-548,2011 梶川 宏明、「信頼性の高い圧力測定のために―圧力の国家標準から現場の圧力測定まで―」、精密工学会誌、Vol.83、No.7、pp.651―654(2017) 岸 新和,「食品・バイオ分野向け高圧処理装置」、R&D神戸製鋼技報、Vol.58、No.2、pp.24-27(2008)
特開昭63-319039公報 特開2017-070985号公報 特開昭61-124503号公報 特開2013-113538号公報 特開2021-004692号公報 特願2021-088277公報(同日出願の整理番号P210526-1) 特開平11-42283号公報
 合成ダイヤモンドの需要量は、その応用展開に伴って、今後ますます増加し、特に大きなサイズのものは半導体の集積率の増加に伴った半導体基板、ヒートシンクの要求、および各種窓材、光学レンズ等で産業上の要求も高い。しかし、現状の静的加圧法の温度差法では、大きい合成ダイヤモンドを製造するには成長時間が長くなるよう温度勾配を小さくし、さらに温度と圧力を非常に注意深く調節することが必要となる。すなわち、大きなサイズになるに従い、より時間と労力がかかる。大きなサイズの合成ダイヤモンドを合理的に製造する方法を具現化することが課題である。また、国際的な競争力の観点からは、電気料金・人件費が相対的に高い部類の国であると日本では、従来システムで大きなサイズの合成ダイヤモンドを製造することは経済的に採算が取れないという問題がある。
現時点で利用されているピストン加圧方法または静水圧加圧方法のいずれの装置の場合でも、上記の従来システムでは1度に処理できる製品個数は1個に留まっている。大きいダイヤモンドを製造するのに必要な長い成長時間が必要となるので、数日間にわたり1台の処理装置を占有するので製造効率が低いことが問題を深刻なものとしている。
ピストン加圧方法においては、近年の六方押プレスでは、15mm以上の大きなダイヤモンドを製造するために圧縮力を増加させることもほぼ限界に達している。また、それぞれのアンビルを各ピストン・各油圧ユニットで同期進行させる必要があるため扱いが難しく、作業性の問題がある。さらに、六軸のプレスシリンダの圧縮力の非均等性より製品の品質や歩留まりが向上しないとの問題がある。その上、プレスシリンダによる一軸方向の圧縮力を高圧セルによりなるべく球の形状に近づけた等方的な方向に向けようとしているので、力学的にアンビルやプレスピストンには無理な力がかかり、破損やクリープ変形によりこれらの機械要素の寿命が短く、これらの損耗頻度が高いことが問題である。
一方の静水圧加圧方法においては、高い圧縮力を得られるが、現時点で報告されたものは学術研究用の実験装置である。基本構成は、圧力媒体の油の中にゴム製シースで包んだ高圧セルを浸して静水圧加圧している。また、この装置では稼働に伴う圧力媒体の加熱により、圧力が所期の値を超えて時間と共にどんどん上昇して制御不能となる。従来システムでは、高圧セル内を網目状に冷却水循環させて対策しているが、加圧装置側に圧力を精度良く制御し、安定させる機能はない。加えて、一般に1GPa近傍の圧力を精度良く計測すること自体が容易ではない。しかし、商業的に大きいダイヤモンドを製造する場合は、動作圧力が成り行きで上昇することは、製品の品質のばらつき、装置の耐圧チェンバーの圧力限度や分割球型装置を含めた耐久性を管理する上で、重大な問題が生じる。
 本発明は、上記従来の問題点を解決するものであり、その目的は、商業的に安定して品質が高く、大きなサイズの合成ダイヤモンドの製造装置を提供すること、さらに詳しくは、1台の装置で複数個の大きなサイズの合成ダイヤモンドを簡単な操作で効率的に製造し、かつ、装置の損傷頻度が少ない製造装置を提供することにある。
本発明者は、合成ダイヤモンドを高温高圧法(HPHT法)のうち静的加圧法により、高品質で大きさが10mm以上の大きなダイヤモンドを合成するにあたり、等方圧の静水圧加圧方法を利用し、高圧容器内に複数の高圧セルを設置し、既知の圧力による体積変化率(圧縮率)・熱による体積変化率である常温・常圧で液体状の圧力媒体を用い、圧力媒体の流動を制御した上で温度を計測・制御し、圧力媒体の体積膨張により圧力を制御して高温高圧処理すれば良いことが判った。また、1台の高圧容器中で、高圧セルの外表面には耐真空圧性および耐流体侵入性を有する耐熱伸縮素材のシール材(以下、「耐熱耐流体性伸縮素材のシール」と呼ぶ)や高圧セルの支持機構を工夫すれば、形状の異なる2個以上の高圧セルを同時に処理することができることが判った。この損傷頻度が少ないコンパクトな装置を簡易に操作することより、1回の高温高圧処理で多数の製品を製造できる高温高圧装置を見出し、本発明を完成した。
本明細書の以降の項では、特に断りがない限り、加圧方法は圧縮率と加熱による体積変化率が既知で常温・常圧で流動性を有する流体から成る圧力媒体を使用した等方的な静水圧加圧方法を意味する。また、高圧セルは、被処理物と、上記したキューピック型、分割球型等の形式のアンビルを有する装置の総称を意味する。さらに、アンビルは、上記した内部アンビル、外部アンビル、分割アンビル等の総称を意味する。但し、キューピック型の高圧セルを示す際には、正六面体型、正八面体型またはそれらの全ての突起端面を平面状に切除したもの(以下、「全突端部切除品」と呼ぶ)を区別して表現する。
静水圧加圧方法では一般に高圧容器内に加圧機構で圧縮した圧力媒体を押し込んで、等方向の静水圧(以下、「等方圧」という)の状態を作り出す。高圧容器の内部が等方圧の状態なのでここに設置して耐熱耐流体性伸縮素材のシールを施した高圧セルでは、等方圧が高圧セルの外面、すなわち受圧駆動面に作用する。この受圧駆動面の形状と面積(多くの場合は分割球型の外部アンビルの外側表面積)が同じである限り、等方圧を受けた外表面から内側に向けて生じる圧縮力は本質的に全く同じとなる。そのため、六方押プレスにあるような扱いの難しさや作業性の問題は生じない。また、同様に処理装置を起源とした製品の品質のばらつきは解消される。さらに、プレスピストンが存在しないので、これが損傷することはない。圧力媒体の処理圧力が700MPaの場合、理論上、50GPa以上に至る動作圧力が可能である。静水圧加圧方法の場合は、処理圧力が約1オーダー高いので、ピストン加圧法のように大きな外部アンビルは必要なくなり、高圧セルも小さくなる。
その上、高圧容器内はどの場所においても同じ等方圧の状態にあり、外表面が全方向から受ける圧力が同じとなる全対象形状であれば、どんな形状の高圧セルをどの場所に何個設置しても、上述と同じ現象となる。すなわち、高圧容器内の寸法・容積が許す限り、多くの高圧セルを高圧容器内に設置し、同時に高圧処理できる。本発明では、圧力媒体の圧力制御を容易にする目的もあり、同一の高圧容器内に2個以上の高圧セルを設置することにより、圧力媒体の質量・体積を大きくすることに寄与してする。
高圧セルの形状は全対象形状である、正六面体型、正八面体型またはそれらの全突端部切除品、または、分割球型うち、どの形状のものでも選択できる。すなわち、装置の大型化が容易で、1回の高温高圧処理で2個以上の合成ダイヤモンド等の製品を製造でき、製造効率が向上する。
非特許文献4にある通り、静水圧加圧方法の同じ原理による冷間等方圧加圧(CIP)装置が、圧力媒体として水を利用してコンプレッサーと圧力増倍器で加圧することで圧力については700MPa,容積については14.7立方メートル(高圧容器の処理室直径は2,500mmで、高さは3,000mm)の加圧処理装置が現存し、2008年時点で生産設備として稼動している。この圧力は上記の六方押プレスの最大の全圧力の6倍以上である。圧力媒体やその温度はこのCIP装置の仕様では使用しないが、かなりの大きな寸法の処理品を高圧容器内に収納でき、処理圧力が700MPaの高圧領域で稼働する大型の装置が現存している。そのため、商業的な工業利用において静水圧加圧方法には規模的な問題が生じることはない。これらは既知の事実の範囲である。
等方的な静水圧加圧方法を利用することにより、高圧セル全体も内側に収縮する方向に圧力を受ける。同時に、高圧セル内の同じ形状・部位のアンビルにはいずれも同じ圧縮力が作用しているので、動作圧力の方向以外の無理な力が加わることはなく、外部アンビルの内側表面等で欠け等の損傷が生じる可能性が著しく小さくなる。これにより圧縮力の損失(ロス)がなくなり、コンパクトな装置となる。同時に、圧縮力の非均等性が無くなることで、製品の品質や歩留まりを向上できる。
一方で、従来の静水圧加圧方法において課題とされる圧力媒体の温度上昇に伴う圧力上昇を人為的に制御する方法は、上記の「背景技術」で述べた通り容易ではない。
本発明では同一の高圧容器内に2個以上の高圧セルを設置することにより圧力媒体の質量・体積を大きくした上で、圧縮率およびその温度依存性が既知な圧力媒体に利用する。この圧力媒体の温度を計測管理すると共に、高圧容器内の空間容積や圧力媒体の質量や体積を変化させることなく、圧力媒体の温度を積極的に加温または減温する機構を高圧容器に設置する。すなわち高圧容器内での圧力媒体の流動を制御した上で、圧力媒体の温度の計測・管理とその制御を行い、圧力媒体の膨張により圧力媒体の圧力を制御する方法を考案した。これにより、処理圧力を精度良く管理することができる。
なお、圧縮率およびその温度依存性が既知な流体がない場合は、高温高圧処理装置の実機の仕切り弁に市販のダイヤモンドアンビルセル高圧装置(DAC)と圧力の校正装置を接続して、実処理前に、温度が常温から最高使用温度(例えば250°C)で圧力が常圧から装置の最大許容圧力(例えば1GPa)の範囲で圧力媒体の必要な物性データを取得しても良い。さらに校正装置は一次標準器ではなく、非特許文献3にあるような校正された二次標準器でも良い。なお、DACは使用圧力が1GPa以上の例もある。
 加えて、大きなサイズの合成ダイヤモンドを製造するためには、一層、高い動作圧力を得る必要がある。前項では温度による体積変化率が既知な流体の圧力制御について説明したが、ここでは加熱により明らかに体積膨張する流体を用いる。高圧セル内では内部加熱源により被処理物は小さな体積ながら1300°C以上の高温領域まで加熱する。高圧セル内のアンビル等の構造物を介して、その熱は高圧容器内の大きな体積の圧力媒体に伝わり、必然的に圧力媒体は温度上昇する。常温から例えば250°Cに至る領域で加熱による体積膨張が比較的大きな所期の数値の流体である圧力媒体を使用すれば、体積膨張により高圧容器内の圧力媒体の圧力は上昇する。後述の実施例2には、この要件に見合った圧力媒体の種類と物性および粘度や圧縮率・膨張率の一例を示す。圧力の上昇に相応した圧縮率に応じて圧力媒体は若干の体積減少があるが、加熱による体積膨張の方が勝っている圧力媒体(例えば水以外のもの)を使用すれば、その影響は限定的である。
すなわち、本発明の構成では、圧力媒体の加熱に伴う体積膨張作用をさらに発展して利用する方法により、加圧機構による追加の加圧操作なしに(または加圧機構が停止した後も)圧力媒体の圧力を維持しながら処理を継続し、高い動作圧力を得ることができる。また、本発明の構成では、高圧容器内に圧力媒体の温度を上昇させる耐圧型ヒータ等の加温機構を設けることにより、高圧セル中の被処理物への動作圧力を加圧機構では及ばない一層高い領域までさらに上昇させて高温高圧処理を継続できる。さらに、上記の方法で圧力を精度良く制御できる。
特許文献3には、高圧容器外に液圧媒加熱装置を設け、液圧媒給排手段により高圧容器に圧力媒体を挿入する構成が述べられている。しかし、本発明は加圧機構により圧力媒体が既に一定の高圧まで達した段階より、高圧容器内の圧力媒体の加熱により一層高い領域への加圧について言及している。一定の高圧まで達した段階では圧力媒体の送入量は極めて少ないため、特許文献3の高圧容器外で圧力媒体を加熱するという構成では、本発明が言及する効果を及ぼさない。
前項と前々項で述べた高圧容器内の内部加熱源からの伝熱や、高圧容器内での積極的な加温機構による加熱による圧力媒体の体積膨張により、処理開始から一定の時間経過後には必然的に高圧容器内の圧力は加圧機構の圧力よりも高くなる。本発明の構成では、圧力媒体の圧力が高圧容器内の方が加圧機構内よりも高くなった時に配管経路を閉止する方向に作動する逆止弁を設けている。
逆止弁が配管経路を閉止すれば、加圧装置が駆動中であっても、圧力媒体が追加されることはない。また、加圧装置を停止しても構わない。この時点の圧力媒体の圧力と温度、および、その質量を記録し、前々項で述べた温度計測による圧力制御の基準条件や原点としても良い。
また、駆動を停止または減少した場合であっても加圧機構から高圧容器へ至る配管経路は逆止弁の加圧機構側で取り外しできる。これは加圧機構を停止しても、加圧機構と切り離しても高温高圧処理を継続できることを意味する。すなわち、1つの高圧容器内の圧力媒体の加圧を終えた加圧機構は、最初の段階で圧力媒体を一定の圧力まで加圧するという役割を終え、取り外した配管経路を別の高圧容器に接続することにより、別の高圧容器内の圧力媒体の加圧に取り掛かることができる。
加圧機構は静水圧加圧方法を構成する装置の中ではサイズ・費用共に支配的な位置付けの装置であるため、複数個の高圧容器で1つの流体の加圧機構を共用できることは、処理装置をコンパクトにして合理性をもたらす上で大きな効果をもたらす。
すなわち、圧力媒体の温度上昇による熱膨張を一層発展させて利用する方法により、加圧機構による圧力媒体の加圧操作なしに一層高い動作圧力を得ることができると同時に、高圧コンプレッサー等の1つの加圧機構を複数の高圧容器で共用することができ、一層装置をコンパクトにすることができる。
また、上記の「背景技術」で述べた通り、より大きなサイズの合成ダイヤモンドを製造するためには数日間と高温高圧処理の時間がより長くなるため、最初の立ち上げ時にしか使用しない加圧機構は不使用(アブセンス)な時間がより長くなる。本発明のこの1つの加圧機構を複数の高圧容器で共用できるようにすることは、複数の高圧容器で大量の大きなサイズの合成ダイヤモンドを製造する処理装置をコンパクト化し、高圧ポンプ等の構成装置を合理化し、全装置の設置面積を低減し、製造行為自体を経済的に合理化する上で大きな効果をもたらす。
なお、特許文献4には、2台の能力が異なる油圧ポンプを使うために高圧圧縮ラインと低圧圧縮ラインとの間で切り替える切替弁が示されているが、本発明の1つの加圧機構を複数の高圧容器で共用して使うとの考え方とは違っており、流路や機器の構成も違っている。そのため、特許文献4の切替弁の構成と考え方は、本発明が言及する効果を及ぼさない。また、特許文献5には、事前に100°C以下に加熱した温水と被処理物を入れた内側の収納容器内の収納空間と外側の圧力媒体を満たした処理空間の間に、2つの独立した流路に2個の逆止弁を設けたCIP装置の収納容器の構造が示されている。これは100°C以下の温度領域で、水を圧力媒体として食品の高圧殺菌を行う際に加熱時間を短縮して被処理物を素早く搬出入する操作を行うことを目的としたものである。本発明とは対象と目的が異なっており、温度条件も更に高温領域であり、構成も数日間の処理操作の中で高圧容器内での圧力媒体の加熱により高圧を得るという本発明とは異なっている。
ここでは上記(0028)の内部加熱源から圧力媒体への熱伝達を利用して圧力媒体の圧力を加圧する状態において、作業における手間を省き、作業時間を短縮できる方法を提案する。一般に高温高圧条件下での合成ダイヤモンドの製造では、昇圧操作を昇温操作に先行させる昇圧先行型で運転される。圧力媒体には圧力による圧縮率が低い流体を使用するので、加圧機構による加圧操作は短時間で終わる。
前項の加圧機構を切り離す操作には一定の時間を要するが、この時間で被処理物の昇温や圧力媒体の一層の昇圧を進めることが作業的に合理的である。
この時間を有効に利用するために、高圧セル中のアンビルの材料を後述の実施例8のような熱伝導率が異なる超硬材料の種類に変えて、内部加熱源から圧力媒体への熱伝達を変化することにより、初期段階の高圧容器内の圧力媒体の昇圧速度を変化させることができる。すなわち、被処理物の昇温操作に伴い、適切な範囲で圧力媒体の昇圧を行うことができる。また、定常状態の圧力を所期の値に設定することができる。必要となる圧力媒体の圧力やその昇圧速度は製造する合成ダイヤモンドのサイズによって異なるが、アンビルの超硬材料の種類を選択することで、内部加熱源からの加熱に伴う圧力媒体の昇圧速度を当該のサイズに適切な条件に制御することができる。これにより、作業時間を短縮できる。
一般に常温で高圧下の液体の粘性は上昇するので、高圧容器内の圧力媒体はあまり流動しないことが知られている。そのため、高圧容器内の圧力は静水圧により均一だが、温度は偏在化すると思われている。一方、液体の粘度は温度と反比例して減少することが一般に知られている。本発明が好ましいとする圧力媒体は有機溶媒であるが、例えば圧力が500MPaで温度が250°Cであれば、後述の実施例2に示した通り、その圧縮分と加熱分が差し引きされて、その粘度は常温・常圧の水と同程度となり、十分に高圧容器内で熱対流による流動が起きる。
本発明では、熱対流による流動をさらに発展させ、高圧容器で加温機構と減温機構を適切に配置し、圧力媒体中に仕切り板を設置することにより、熱による密度差で自然対流(サーモサイフォン)を起こす。加熱源は高圧容器の中心軸上に配置する高圧セルの内部加熱源と、底部に設置した加温機構の圧媒加熱ヒータの2種類である。また、減温機構の冷却ジャケットは高圧容器の外側上部に配置する。そのため、高圧容器の中央部の下端と中心を加熱して、外壁の上半分を冷却することで、中央部を熱された流体が上昇して外壁部を冷えた流体が下降するというサーモサイフォンが形成される。サーモサイフォンにより決まる温度の最高点・最低点の位置に計測点TC1(最高温度)とTC2(最低温度)を決めて設置し、立ち上げ時の操作等の温度制御に利用可能な温度を計測する。また、仕切り板(支持板)に圧力媒体の温度を平均化する金属板を設置してその位置に計測点TC3(平均温度)を設置し、定常時の操作の温度制御に利用可能な温度を計測する。圧力媒体の減温機構および高圧容器内の加温機構と温度計測点およびサーモサイフォン構造の詳細は、後述の実施例5に示す。
さて、高圧セルの外表面は全対象形状であるが、正六面体や分割球型等の外部アンビルが露出しているため、この表面状態のままでは圧力媒体が内部を満たしてしまうため、静水圧加圧により被処理物に動作圧力を加えることができない。そのため、高圧セルの外表面には前述のゴム殻やゴム製シースのような、圧力媒体の侵入を防ぐことができる(耐流体侵入性のある)シールを設置するのが一般的である。このシールの形状は既存の従来技術があり、幅は狭いが厚い勘合部を持つ上下2つの型を勘合する厚手のものや、高伸縮性の薄手の袋状の顔面マスク的なもの2枚を勘合部の領域の幅を広く2重に重ね合わせたものがある。また、製品に空気の残留によるボイドが残ることを防ぐため、高圧セルの内部は高温高圧処理前に真空引きするのが一般的である。そのため、このシールには、真空引きした際に大気圧に耐える強度を有する(耐真空圧性がある)ものが適用されている。なお、これらのゴム殻やゴム製シースの材料と形状は既知の事実の範囲である。
本発明の高圧セルは高温になるため、従来のゴム殻やゴム製シースは使用できず、後述の実施例3に示すような耐熱耐流体性伸縮素材のシールや成形型を使用する。
前項では、外表面に耐熱耐流体性伸縮素材のシールを施した高圧セルが圧力媒体に接触する場合(以下、「圧力媒体接触型」または「湿式処理」と呼ぶ)を説明した。本発明の湿式処理の液媒加圧高温高圧処理装置では、複数個の高圧セルは外表面に耐熱耐流体性伸縮素材のシールを施し、固縛機構で高圧容器の蓋から懸垂して圧力媒体に浸す。
しかし、圧力媒体接触型(湿式処理)の高温高圧処理では、従来から駆動油等の圧力媒体に浸した耐熱耐流体性伸縮素材のシールを施した高圧セルの取扱い、すなわち油まみれの高圧セル等を除染等により取り扱う手順が、作業を煩雑にし、著しく困難している。非特許文献1ではこれが学術研究の域を出て商業装置にはならない理由だと述べている。非特許文献2では1個の分割球型の高圧セルについてはオイルフリーのシステムができたが、圧力制御はできないと述べている。従って、効率良く大量に生産するための高温高圧処理方法を具現化するには上述した従来技術に留まらず、1回の処理で2個以上を製造した上で、高圧セル外表面またはその耐熱耐流体性伸縮素材のシールが圧力媒体に接触しない場合(以下、「圧力媒体非接触型」または「乾式処理」と呼ぶ)の構成を考案する必要がある。
特許文献2と非特許文献4には、窯業(セラミック)分野の粉末事前圧縮用や食品・衛生分野のパック製品加圧処理用の圧力媒体非接触型の常温での高圧処理方法を示しており、両者は乾式法または乾式CIP装置と呼ばれている。粉末事前圧縮用は、高圧容器に接続した円筒形の天然ゴム製の成形モールドである加圧ゴム型中に粉末を充填して予備圧縮する。加圧ゴム型は円筒形であり、周方向の加圧は可能であるが、軸方向には加圧できない。特許文献2はその加圧ゴム型を複数連結して、1回の処理で複数個の製品を得るとしている。また、非特許文献4ではパック製品加圧処理用は多数のパック製品を準備ステーションで可撓性ホルダに収納し、この数個のホルダを処理室に搬送してかなり多数のパック製品を同時に加圧処理すると述べている。これら方式では,製品の外面が圧力媒体に触れることがないため,圧力媒体が製品中に混入して汚染させる恐れが全くなく,衛生上の安全性が高い。また,処理後の乾燥工程が不要となり,工程の簡略化にも有効であると述べている。従って、常温の範囲では粉末の加圧ゴム型の複数連結や小さくて軽いパック製品を可撓性ホルダ収納により、同時に複数の製品を高圧処理する方法は既知の事実の範囲である。
本発明の圧力媒体非接触型(乾式処理)の液媒加圧高温高圧処理装置の場合は、高圧セルの表面は例えば250°C程度の高温であり、その外形が全対象形状である。また、構成材料の多くが金属である高圧セル1個の質量が数10キログラム以上で重いものは数トンに及ぶ重量物である。また、高温であり、全対象形状であり、重量物であるにも係わらず、全表面に静水圧を印加するために、1つの方位の全外表面を高圧容器の床面や側面に接触する状態で設置できない。このような状況での処理であるため、前項の従来技術とは異なり、加圧ゴム型の複数連結や多数の可撓性ホルダへの収納により乾式処理する訳にはいかない。少なくとも、前項の加圧ゴム型には耐熱性を追加した材料を用い、その上で被処理物が精密に方向性なく均等な圧力で静水圧加圧する方法を実現する構造としなければならない。また、重量物である高圧セルの荷重を支える支持機構が必要である。
圧力媒体非接触型(乾式処理)の液媒加圧高温高圧処理装置に使用する耐熱耐流体性伸縮素材のシールの材料は、例えば250°C領域の耐熱性を有するゴム・樹脂等とし、高圧セルを設置した際にその外形形状を全方向から追随できる成形モールド(以下、「成形型」と呼ぶ)として設置する必要がある。シールの材料に耐熱性の有無の違いはあるが、成型型の基本構成は、別途出願の特許文献6で詳細に述べた通りである。
この成形型は上部成形型と下部成形型が下部と上部で勘合する一対の耐流体性伸縮素材の蓋と容器本体である。本体に固定する外周面法線方向と下面軸方向の成形モールドを「下部成形型」と呼び、蓋の下面に固定する上面軸方向からの成形モールドを「上部成形型」と呼ぶ。上部成形型と下部成形型は下部と上部で勘合する一対の伸縮性材料の成形型であり、接触する部位を高圧セルの外形形状に沿う形状に加工したものである。下部成形型は上方に開口部がある底付きの円筒形状であり、凹部に高圧セルを収納する。上部成形型は中空円筒形または縦割り分割型の圧力媒体を内包する容器であり、この凹部に勘合する。特許文献6に記載の通り、上記の乾式処理で精密に全方位から方向性なく圧縮できる静水圧加圧を行うためには、両成形型中にあって見えない位置にある高圧セルと下部成形型と上部成形型を遠隔操作で位置決めをする第1の工程と、皺入りなくぴったりと密着させる第2の工程と、気泡やボイドなく上部成形型に圧力媒体を充填する第3の工程と、上部成形型の内面全面と下部成形型の外面全面を同時に静水圧加圧する第4の工程が必要となる。特許文献6の構成は常温の範囲に限られるが、高圧セルが精密に方向性なく均等な圧力で静水圧加圧する方法が実現する。
本発明では、特許文献6の耐流体性伸縮素材の成形型に、前述する耐熱性を加え、さらに後述する重量物である高圧セルの荷重を支える支持機構や耐熱式貫通チューブおよび折り畳み型真空排気口等を加える。上部成形型と下部成形型および重力式圧力媒体調整槽の構造や操作手順の詳細は特許文献6を参照とする。
耐熱耐流体性伸縮素材の下部成形型は、高圧容器が横置きの乾式処理の処理装置の場合は、高圧円筒の胴部上方の蓋開口部近傍に固定される。高圧容器の本体中の下部成形型の重力方向(下側)に圧力媒体が満たされる。下部成形型は高圧セルに即した形状の底がある上部開放円筒であり、上方に搬出入のための開口部を有する井戸のような形状となる。なお、下部成形型の窪みに高圧セルを収納するが、その形状はぴったり一致している必要はなく、その伸縮性を考慮して窪みはやや小さめの直径となることが好ましい。高圧セルを静かに設置した後には、高圧容器の蓋の下降操作に伴い、下部成形型の窪みの上方の開口部が蓋の下部に固定して取付けられた上部成形型を挿入して閉じられる。
上部成形型の内部には、下部成形型と液絡している同じ圧力媒体で同時に静水圧加圧するため、両者により高圧セルには精密に方向性なく均等な圧力が加わる。
圧力媒体非接触型(乾式処理)の場合は、この上下の両者により一対の成形型が構成され、高圧セルが挟み込まれる形で内包される。下部成形型と上部成形型のいずれかにより、高圧セルの外表面を全て覆っている必要がある。また、成形型に皺が入ることはこれらの破損の原因になるため好ましくない。さらに成形型内に大気が残留していると、その圧縮により製品の品質に影響を与えるため、好ましくない。
耐熱耐流体性伸縮素材の上部成形型は高圧容器の蓋の下部に固定された、一体型の中空円筒形または2~4に縦割りの分割型の圧力媒体を内包する容器である。上部成形型の外側の形状は高圧セルの上側半分と開放円筒状の下部成形型の窪みの内側の形状に沿っていて、外径は下部成形型の内径よりも数mm小さい寸法とする。また、長さ方向は僅かに数センチメートル(例えば6センチメートル(cm)以下)程度、ぴったり一致する必要長より長い寸法とする。さらに、上部成形型の高さ方向の中心位置より下部のみにJIS B6101の7/24テーパの構造に基づくテーパ状のガイド機構を設ける。このガイド機構による上部成形型の下端部の切り欠きの幅の寸法は数cm(例えば5.3cm以下)である。また、可塑性の材料を使うことで、高温や高圧により僅かに変形しても構わない。
上部成形型は、形状を下部成形型の窪みと高圧セルに勘合させるため、処理前の段階で常圧の圧力媒体が満たされる。また、耐熱耐流体性伸縮素材であるため圧力媒体の重みで僅かに伸縮変形し、高圧容器の蓋から懸垂している状態にある。この状態で高圧容器の蓋を下降させる過程で上述のガイド機構により位置決めされる(第1の工程)。蓋の下降は蓋を本体に接合させる直前に一旦止めて、上部成形型と下部成形型の間の空間の大気を真空排気することで、成形型を皺入りなくぴったりと密着させる(第2の工程)。この状態で上部の重力式圧力媒体調整槽から上部成形型の内部に圧力媒体を気泡やボイドなく充填する(第3の工程)。さらに、高圧容器の蓋を本体に接合させると同時に、高圧セルを内包した状態で下部成形型と上部成形型を勘合させる。この際に余分として絞り出された圧力媒体は重力式圧力媒体調整槽に回収される。
上部成形型は一体型の中空円筒形または縦割り分割型の圧力媒体を内包する容器であるが、中心部の円筒部分に耐熱式貫通チューブと真空放出口を設置し、電源・計装ケーブルや大気開放管および必要に応じて冷却水配管を貫通させ、真空排気のための空間を確保する。また、耐熱式貫通チューブは高温高圧処理中も形状が変形なく維持されるため、内部に熱電対、ファイバースコープ等を設置しても構わない。
耐熱式貫通チューブは、上部成形型の中心部の円筒部分を貫通し、圧力媒体の使用温度に見合う耐熱性を有し、内部に電源・計測リード線と大気放出管および必要に応じて高圧セルの冷却水配管(入口・出口)等を収納するため使用圧力でもその固有の強度により形状を保てる材料・構造の貫通管である。耐熱性のある材料とし、かなりの耐圧強度が要求されるため、金属製、セラミック製、耐熱エンジニアリングプラスチック製の厚肉配管となる。リード線や配管を収納後に、中空管の内部空間は金属粉末等を充填し、耐圧強度やその繰り返し耐久性を向上させることが好ましい。
高温高圧処理前の真空吸引の際は、常温で、かつ、真空から常圧付近の圧力で上部成形型を貫通する耐熱式貫通チューブよりも直径が大きな大気の流路(以下、「真空排気口」と呼ぶ)を確保する必要がある。真空排気口の直径はなるべく大きな断面積とするのが良いが、あまり大きいと上部成形型の機能、すなわち静水圧加圧の均等性に影響を生じる。そのため、真空排気口は真空吸引後の高温高圧処理時には折り畳まれて閉止することが好ましい。以下ではこの折り畳み機能のある真空排気口を折り畳み型真空排気口と呼ぶ。
折り畳み型真空排気口は前項の耐熱式貫通チューブの外側により大きな直径の貫通管であるが、この真空排気管は高温高圧処理時には圧力媒体の供給と静水圧を受けた上部成形体により折り畳まれる。これは高温高圧処理前の真空吸引の際のみ大気を流通させれば良いので、高温高圧処理時には伸縮性のある材料の貫通管、または、管自体がバネ等により折り畳まれて潰れる貫通管とする。どちらの貫通管の場合でも折り畳み型真空排気口自体が備えなければならない強度は最大でも真空圧(大気圧)である。伸縮性のある材料の貫通管は、特許文献6の貫通伸縮チューブのように可撓性(微弾性とも言う)材料の耐熱樹脂製の管が考えられる。また、特許文献7や後述の実施例4のようにバネ等がある貫通管は医療用のステントと同様の構造のものが考えられる。
下部成形型は一定の伸縮性があるものの、概ね高圧セルの外形に沿った形状とし、高圧セルを静かに置いた際には皺が生じることないのが良い。さらに、高圧セルの10キログラム以上の重量を支えつつ、その外側に圧力媒体の流通を妨げない構造とする必要がある。そのためには、その重力方向に高圧セルの外形に則った形状の網状または多孔質状の圧力媒体流通層を持たせた支持機構を準備する必要がある。各形状の高圧セルは、固有の形状の支持機構がある処理ピットに静かに置く。高圧容器は横置きとする方がハンドリング性は良いが、特に縦置きでも構わない。この処理ピットを高圧容器中に2か所以上設けることで、1回の処理で2個以上の高圧セルの高温高圧処理が可能である。
圧力媒体非接触型(乾式処理)の場合の静水圧加圧方法で利用可能な高圧セルの形状は、全対象形状の正六面体型、正八面体型、および、分割球型等がある。いずれの形状も利用は可能であるが、各形状の高圧セルの処理ピット毎に、固有の形状の一対の成形型と支持機構を予め準備する必要がある。そのため、乾式処理の際の高圧セルの形状は、完全に任意に選択することはできず、ある程度は事前に計画する必要がある。
一方で、特に高圧セルの形状が突起のある正六面体型や正八面体型であった場合は、高温の高圧セルによる下部成形型・上部成形型の破損を防ぐために全突起端面を一様に平面状に切除した全突端部切除品とするのが好ましい。なお、分割球型の場合は表面に突起がないので、この種の配慮は不要である。
本発明の上記(0034から0044)では、圧力媒体非接触型(乾式処理)により1回の処理で2個以上の製品を製造するために、耐熱耐流体性伸縮素材の下部成形型と上部成形型とを設け、これらの間に高圧セルを挟み込み形で内包し、その外側の重力方向に高圧セルの外形に則った網状または多孔質状の媒体流通層を有する2個以上の高圧セルの支持機構を設け、上部成形型の内面全面と下部成形型の外面全面を同時に静水圧加圧することで被処理物が精密に方向性なく均等な圧力で高温高圧処理する処理装置を考案した。
本発明は、上記で述べてきた従来の問題点を解決するものであり、静水圧加圧方法による等方圧を利用することで、装置の大型化でき、1回の高温高圧処理により多数の直径が10mm以上ないし15mm以上より良くは30mm以上の大きなサイズの合成ダイヤモンド製品が得ることができ、装置の損傷頻度が少なくなるので製造効率が高くできる。
また、圧縮率と熱による体積変化率が既知な圧力媒体を使用し、高圧容器内での圧力媒体の流動を制御した上で、圧力媒体の温度の計測・管理とその制御を行い、圧力媒体の膨張により圧力媒体の圧力を制御する方法を考案した。
さらに発展させて熱膨張性のある圧力媒体を使用し、高圧容器内に加温機構を設けることで加熱による熱膨張を利用して加圧し、加圧機構の能力を超える高い圧力媒体の圧力を得て、一層大きなサイズの合成ダイヤモンドを得ることができる。これを一層発展させて逆止弁を設けた配管経路により、1つの加圧機構を複数の高圧容器で共用できる。その上、圧力媒体と高圧セルが非接触な乾式処理とすることで、圧力媒体の除染の手間等を無くし、作業効率を飛躍的に改善できる。
すなわち、複数の高圧セルと複数の高圧容器で多数の大きなサイズの合成ダイヤモンドを同時に製造できるコンパクトな処理装置を実現し、その作業効率を高めることができる。これらにより大きなサイズの合成ダイヤモンドを効率良く大量に生産するための静水圧加圧方法による高温高圧製造装置を実現できる。以って、当該技術の産業分野への利用に多大な寄与をなしうるものである。
図1は、従来の学術研究用の静水圧加圧法での加圧装置と高圧セルの概要図である。(油圧による加圧装置は高圧セルと一体化している)。 図2は、液媒静水圧加圧による高温高圧処理装置(圧力媒体接触型:湿式処理)の構成フローである。 図3は、圧力媒体接触型(湿式処理)における高圧容器内の固縛装置(a.縦置き、b.横置き)の例である。 図4は、1つの加圧機構を複数の高圧容器で共用した処理装置の例である。 図5は、圧力媒体非接触型(乾式処理)における液媒静水圧加圧による高温高圧処理装置の構成の模式図である。 図6は、準備段階における乾式処理の液媒静水圧加圧による高温高圧処理装置の構成フローの例である。 図7は、準備段階後で処理前における乾式処理の液媒加圧高温高圧処理装置の構成フローの例である。 図6と図7で説明した乾式処理の処理装置で使用する耐熱耐流体性伸縮素材の上部成形型40の拡大図とその効果の説明図である。 図9は、高圧容器内のサーモサイフォンによる圧力媒体の熱対流による循環状況の概要図(a.湿式処理,b.乾式処理)である。 図10は、アルコールの純物質とアルコール水溶液の圧縮率の比較を示す。
 本発明を実施するための形態として、液媒静水圧加圧による高温高圧処理装置である、1)圧力媒体接触型(湿式処理)の構成フローの概要、2)圧力媒体非接触型(乾式処理)の構成フローと成形型の構造および操作の手順に関して図面を用いて説明する。また、両者に共通のものとして、3)1つの加圧機構を複数の高圧容器で共用した処理装置、4)高圧容器内のサーモサイフォンによる圧力媒体が循環する構造について詳しく説明する。図2~図9は単なる例示であって、本発明を限定することを意図するものではない。
 図2は、本発明の液媒静水圧加圧による高温高圧処理装置(圧力媒体接触型:湿式処理)の構成の一例を模式的に示すフロー図である。
この処理装置は、高圧容器の本体7、蓋8で囲まれた閉空間内が液体状の流体の圧力媒体6で満たされており、その中に2個以上の高圧セル9が設置される。高圧セル9は全対象形状の正六面体型、正八面体型またはそれらの全ての突起端面を平面状に切除したもの、または、分割球型が考えられる。圧力媒体接触型(湿式処理)の場合、全ての高圧セル9の外表面は耐熱耐流体性伸縮素材のシール19で覆われて圧力溶媒が侵入しない構造となっており、内部は本処理装置に設置される前に真空引きされている。高圧容器の本体7、蓋8で囲まれた閉空間中の圧力媒体は配管管路で加圧機構10と接続されている。圧力媒体を圧力による圧縮率と温度による体積変化率または体積膨張率が既知で、250°C以上の最高仕様温度である流体が使用される。配管管路の途中には逆止弁11,仕切弁12が設置される。閉空間内が液体の圧力媒体6は、処理の最初に加圧機構10によりその性能が許容する一定の圧力(例えば500MPa)まで常温下で加圧される。一方、高圧セル9の内部には、内側から被処理物13、内部加熱源14、アンビル15が設置されており、1個当たりの質量は10キログラム(Kg)を超える重さがある。内部加熱源14用の電源線と被処理物の温度を計測する内部熱電対16の計測線等の接続ケーブル17は高圧セル9の外表面から出て高圧容器内の耐水圧コネクタ18に接続される。  
また、複数個の高圧セル9は、あらゆる外表面が高圧容器の内壁に直接接触しないように固縛機構20により高圧容器内に定置または懸垂される。この装置の最高使用圧力は、高圧容器の設計上の耐圧強度によって決まり、近年ではそれが数GPaの高圧装置もある。また、厳密ではないが装置の最高使用温度は、耐熱耐流体性伸縮素材のシールの大きな変形が生じない最高仕様温度によって決まる。
なお、高圧容器7は縦置きであっても、横置きであっても構わない。また、加圧機構10はモータ型ポンプであってもピストン型ポンプであっても構わない。さらに図2では高圧セルは3種類で4個であるが、2個以上であれば種類や数量には制限はない。
図2では、加圧機構10による圧力媒体の加圧の次に、内部加熱源電源21に接続した内部加熱源12が加熱され、被処理物が1300°C以上に加熱され、これによる伝熱で圧力媒体6が時間と共に所定の温度(例えば150°C)まで加熱される。圧力媒体6が加熱するとその温度による体積変化により、その圧力が変動する。圧力媒体6の温度変化は高圧容器内面に露出して設置された高圧容器熱電対22により検出されて温度検知機能23によりその変動が監視される。高圧容器熱電対22はTC1(最高点)、TC2(最低点),TC3(平均点)の3種類が設置され、定常時は平均温度のTC3が、立ち上げ時や急な加熱や冷却時には最高温度のTC1と最低温度のTC2も温度制御に利用される。圧力媒体の圧縮率と体積変化率が未知な場合は、一連の実処理前に、処理装置にDAC装置と校正装置を仕切り弁12に接続してこれらの物性データを取得しても良い。
もし、圧力媒体6の温度の上昇による体積変化に伴う圧力の上昇が好ましくない場合は、温度検知機能23からの信号を受けて圧力調整機能24が圧力媒体6の圧力を下げるべきと判断し、その信号を減温機構25に伝え、冷媒冷却器26を作動させて冷却ジャケット27に冷媒を送液し、戻ってきた冷媒を冷媒冷却器26で冷却する。これにより高圧容器内の圧力は成り行きで上昇することはなく、処理装置は高圧容器熱電対22で圧力媒体6の温度を正確に検出することにより、その圧力を制御して所期の処理圧力(例えば500MPa)に精度良く管理することができる。
逆に、圧力媒体6の温度の上昇による体積変化に伴う圧力の上昇が好ましい場合、すなわち加圧機構10の性能が許容する圧力よりも一層高い圧力としたい場合は、温度検知機能23からの信号を受けて圧力調整機能24が圧力媒体6の圧力を上げるべきと判断し、その信号を加温機構28に伝え、圧媒加熱ヒータ電源29を作動させて高圧容器内に設置した圧媒加熱ヒータ30により圧力媒体6を加熱(例えば250°C)する。この場合でも高圧容器熱電対22により圧力媒体6の温度を検出して処理圧力に精度良く管理する制御は続けており、高圧容器の耐圧限度を超える圧力まで加圧が続くことはない。万一、加圧が行き過ぎた場合は、減温機構25により所期の処理圧力まで下げる。これにより、大きなサイズの合成ダイヤモンド製品の製造に必要な高い動作圧力(例えば7GPa)を得ることができる圧力媒体の圧力(例えば700MPa)を維持することができる。
圧力媒体6の加熱が進むと、高圧容器内の圧力は加圧機構10で加圧した圧力(例えば500MPa)よりも高くなる。そのため、高圧容器へ至る配管経路は逆止弁11の加圧機構側で取り外しできる。本発明の処理装置はこのように、高圧容器を加圧機構10を停止しても、加圧機構10と切り離しても高温高圧処理を継続できる。なお、加圧機構10を切り離す際には仕切弁12により配管経路を閉じることも可能である。また、切り離しを行う際に加圧機構10は停止していても、出力を絞った状態で稼働していても構わない。
その他の機能として、処理装置の稼働を停止させる場合や過昇圧トラブル等の際に、圧力媒体の圧力を伝播する流体の数~数10立法センチメートル(cm)程度の微小な容積を配管経路の範囲外に排出することにより高圧容器内の圧力媒体の圧力を減少することができるニードルバルブ、ダイヤフラムバルブ等の形式のバルブより成る除圧機構55が設置されている。また、この圧力領域では計測精度が悪いので圧力制御には使えない場合が多いが、大まかな圧力の監視用にロードセル等の圧電センサー32が設置されている。
 図3は、本発明の圧力媒体接触型(湿式処理)における高圧容器内の固縛装置20(a.縦置き、b.横置き)の一例を模式的に示した図である。また、製品の寸法や形状により適切な高圧セル9、すなわちアンビル15の形状は変わるが、本発明の処理装置では、高圧セル9は全対象形状であればどの種類でも処理することができる。
 図3では、a.縦置き、b.横置きの場合でも、固縛装置20は蓋8から懸垂する形状としている。この図では圧力媒体6から蓋8に加わる軸力はプレスフレーム33で支持している。高圧容器内に設置される複数の高圧セル9は、全周囲の圧力媒体6から圧力を伝播させる必要がある。そのため、高圧容器の本体7の側壁内面・底面表面の大部分に触れることなく、高圧セル9のほぼ全表面を露出し、かつ、内部の真空状態を維持したまま高圧容器内に定置または懸垂しなければならない。そのため、固縛装置20は可能な限り高圧セル9と接する面積を減らす形状・構造としている。また、固縛装置20の影響で等方圧が得られず、製品品質に影響を生じる場合は、やむを得ず高圧セル9と接する部分には、後述の圧力媒体流通層48を設ける場合もある。
なお、図3では固縛装置は蓋8から懸垂する形状としているが、高圧円筒の床面や壁面から支持したり、定置したりする形状でも構わない。縦置きまたは横置きに係わらず、数個の高圧セルを1つの固縛装置で定置または懸垂しても構わない。また、軸力を支持する構構造はプレスフレーム33以外のボルト締結や荷重載荷等の方法であっても構わない。
図4は、本発明の1つの加圧機構を複数の縦置きの高圧容器で共用した処理装置の例である。上記(0052)で述べた通り、加圧機構10は任意の1つの高圧容器の最初の段階でその中の圧力媒体の加圧を終えた後は、その処理装置は加圧機構10が停止していても、高温高圧処理を継続できる。また、その高圧容器と接続する配管経路から逆止弁11の加圧容器側で取り外すことが可能となる。取り外した配管経路を別の高圧容器に接続することにより、別の処理装置の立ち上げ、すなわち高圧容器内の圧力媒体の加圧に取り掛かることができる。図4は、1台の油圧ポンプ型の加圧機構10である加圧ポンプ36をAからHの8台の高圧容器の本体7と蓋8で共用する状態を説明する図である。
1台の加圧ポンプ36は移動台車35に載せられて、レール34上をAからHの高圧容器の本体7と蓋8の圧力媒体を加圧する所定の位置に移動することができる。所定の位置で停止して固定後に、高圧ホース37をAからHの逆止弁11の加圧機構側に取付ける。ここで加圧ポンプ36を稼働することにより、圧力媒体をその性能が許容する一定の圧力(例えば500MPa)まで常温下で加圧する。なお、移動台車35の加圧ポンプ36の下層に圧力媒体タンク38が設置されている。
図4では1台の加圧機構10に接続できる高圧容器は8台としたが、接続する高圧容器の本体7と蓋8はこれより多くても少なくても構わない。製造する合成ダイヤモンド製品の大きさにより成長時間が異なり、高温高圧で保持すべき時間は数日間にも及ぶ場合があるが、保持時間は主に製造する合成ダイヤモンドの製品の大きさに比例する。製造する製品の大きさで決まる処理装置の稼働スケジュールの全体計画を策定し、1台の加圧機構で対応できる高圧容器の数量を算出して工場の設備や配置の計画・運転スケジュール・運転要員数等を決めるのが合理的である。
なお、図4では、加圧機構10および高圧容器とプレスフレーム33等は平面的な配置としたが、加圧機構10の移動手段をエレベータ等の別の形態とすることで垂直方向の立体的な配置としても、これらの配置を組合せた配置としても構わない。また、やや処理時の作業効率は低下するが、加圧機構10および高圧容器とプレスフレーム33等は両者共に固定し、長い高圧ホース37で配管系統を接続することにより1台の加圧機構10を複数の高圧容器の本体7と蓋8で共用する方法でも構わない。
図5は、本発明の本発明の準備段階における圧力媒体非接触型(乾式処理)の液媒静水圧加圧による高温高圧処理装置の構成(a.蓋締め前、b.蓋締め後)の模式図である。上記の「課題を解決するための手段」の後半で述べた通り、圧力媒体接触型(湿式処理)の場合は耐熱耐流体性伸縮素材のシール19や高圧セル9に付着した圧力媒体6の汚染の取扱いで、作業効率が著しく悪くなる。高圧セル9が10キログラム以上で数トンに及ぶ場合がある重量物であることもその一因である。そのため、圧力媒体非接触型(乾式処理)の液媒静水圧加圧法が求められるが、装置の構造上、圧力媒体非接触とした状況で等方圧を得て1回の高温高圧処理で複数個の製品を得るには、耐熱耐流体性伸縮素材のシール19の構造とそこへ圧力媒体6を送入する機構にかなりの工夫が必要である。
図5のa.に示される通り、中空円筒状の上部成形型40は、高圧容器の蓋8の下部に上部成形型取付け治具41を介して固定されている。上部成形型40の下端部にはガイド機構となる切り欠き53がある。上部成形型40の中心の中空円筒部には耐熱式貫通チューブ43があり、その周囲にステント状の金属網バネ管57を内包する折り畳み型真空排気口49が設置されている。耐熱式貫通チューブ43は耐熱・耐圧構造であり、内部は電流・計装リード線5、内部熱電対16、必要に応じて高圧セル冷却水配管44が内包されている。一方、折り畳み型真空排気口49は真空吸引時には形状・外径を維持するが、圧力媒体が上部成形型40を加圧した際には外力により閉塞する。耐熱式貫通チューブ43と大気放出管45は蓋8の表面から凹んだ空間にある吸引管接続ボックス54に接続され、そこに真空吸引配管との接続ノズルが設けられている。耐熱式貫通チューブ43は熱膨張や高圧セル9との干渉に備え、流体が流通できる隙間を有するスプライン軸受けを介して吸引管接続ボックス54に固定され、鉛直方向に数cm可動である。この接続ノズルに、真空ポンプ50に至る可撓性の配管が接続される。一方、吸引管接続ボックス54内の耐熱式貫通チューブ43は半面が切り欠かれており、電流・計装リード線5、内部熱電対16,高圧セル冷却水配管44はここで蓋8の外周方向に方向転換する。方向転換後の配線・配管も蓋8の表面から凹んだ空間中に設置されるため、蓋8の表面には凸部がなく、プレスフレーム33は蓋8の表面をスライドさせて取付けできる。
蓋8の内部では耐熱式貫通チューブ43の周囲が大気放出管45である。大気放出管45の下部が折り畳み型真空排気口49であり、折り畳み型真空排気口49が直径方向に自由に収縮できるインロー構造(凹凸になった状態の部品同士が噛み合う構造)で接続されている。折り畳み型真空排気口49の内部には金属網バネ管57が内包されている。
図5のa.に示される通り、横置きした高圧容器の本体7には、高圧円筒の頂部に蓋の開口がある。この開口部に下部成形型39が固定されている。下部成形型39は上方に高圧セル9の搬出入のための開口部を有する開放円筒状の底付きの凹形状をしている。高圧セル9はその凹部に収納され、重量物である高圧セル9の底部は下部成形型39を介して下部の支持機構47により支持される。下部成形型39を介して支持機構47と高圧セル9との接触部には、支持機構側に高圧セル9の外形に則った形状の網状または多孔質状の圧力媒体流通層48が設けられ、高圧セル9を定置した後も圧力媒体6が自由に流通できる構造となっている。
図5のb.に示される通り、高圧容器の本体7と蓋8が密着する前後の時点では、真空ポンプ50に至る配管が吸引管接続ボックス54に接続される。また、蓋8の下降に伴い、上部成形型40の下端の切り欠きにガイドされ、上部成形型40と下部成形型39が勘合し、高圧セル9を挟んで包み込む状態となる。本体7と蓋8が密着する前の時点で、上部成形型40と下部成形型39の間の空間の空気は真空吸引され、その負圧の効果も併せて重力式圧力媒体調整槽42から上部成形型40の内部に圧力媒体6が供給されて満たされる。しかし、この段階での操作、すなわち、上記(0040)の第1の工程から第3の工程に相当する操作はバルブの開閉もあってかなり複雑であるため、処理ピット46の1個分の上部成形型40と下部成形型39が既に組み合わさった状態の図5のb.だけでは説明ができない。そのため、次項以降で図6、図7および図8により、その構成と操作を説明する。
図6は、本発明の準備段階における圧力媒体非接触型(乾式処理)の液媒静水圧加圧による高温高圧処理装置の構成フローの例である。図7は、図6の準備段階を経た後の、処理前における乾式処理装置の構成フローの例である。また、図8は図6と図7で説明した乾式処理装置で使用する耐熱耐流体性伸縮素材の上部成形型40の拡大図とその効果の説明図である。
 なお、図6と図7は液媒加圧高温高圧処理装置の全体構成を示したものではなく、圧力媒体接触型(湿式処理)により図2で説明した制御系統を含めた全体構成の内、圧力媒体非接触型(乾式処理)とする際に設備の構造が異なる点を抽出して説明したものである。
図6は、乾式処理で高圧セル9を横置きした高圧容器の本体7内に設置し、これから蓋8を下降させて本体7に密着させて閉じようとする準備段階を示すものである。
本体7中の圧力媒体6は本体7の内壁面と下部成形型39によって閉じ込められており、圧力媒体6が大気に露出している部位はない。仕切り板31は本体7中の圧力媒体6中にあり、その表面には細長の平均温度計測用の銅板65が設置されている。高圧セル9は、耐熱耐流体性伸縮素材の下部成形型39と上部成形型40とが勘合することで成形型と密着する。図6の高圧セル9は形状を3種類、個数を4個である。なお、高圧セルの1つである正八面体型のものは全突端部切除品の高圧セル49である。支持機構47は圧力媒体6中に浸して設置されている。すなわち、図6では、これらにより1個の高圧容器中に4か所の処理ピット46を構成した例を示している。
一方、図6の耐熱耐流体伸縮素材の上部成形型40は、上部成形型取付け治具41により蓋8の下部に固定された袋状の伸縮物であり、内部は圧力媒体6で満たされる。袋状の上部成形型40の中の圧力媒体6は大気に露出していない
上部成形型40の下端部はガイド機構となる切り欠き37があり、高圧セル9と馴染む形状となっている。図6では、縦割り4分割型の上部成形型40が例として示されており、各々の分割袋に圧力媒体6の配管が接続される。蓋8の上方には上部開放型で大気と平衡する重力式圧力媒体調整槽42が設置されており、図6では開いた状態の圧媒調整槽仕切弁59を介して圧力媒体6の配管経路が接続されている。また、重力式圧力媒体調整槽42の圧媒大気開放バルブ62は開いた状態である。一方で、加圧機構10側の上部圧媒仕切弁58は閉じた状態である。
上部成形型40の中心には蓋8を貫通する耐熱式貫通チューブ43が設置されている。耐熱式貫通チューブ43の外側に大気放出管45があり、それが真空排気管を兼ねている。上部成形型40の内部の大気放出管45の下側の折り畳み型真空排気口49の内部には金属網バネ管57が内包されている。耐熱式貫通チューブ43と大気放出管45の上側の先端は、蓋8表面の凹部に設置された吸引管接続ボックス54に接続される。耐熱式貫通チューブ43は耐圧・耐熱構造であり、その中には耐熱耐圧式の電流・計装リード線5、内部熱電対16、必要に応じて耐圧式の高圧セル冷却水配管44が設置される。図6には全数を記載していないものがあるが、この電流・計装リード線5は耐圧式のコネクタを介して、フレキシブルな接続ケーブル17により高圧セル9に接続されている。
図7は、図6の準備段階を終え、蓋8を下降させて高圧容器の本体7に密着させて閉じた直後の処理前の段階を示す図である。但し、この段階では加圧機構10はまだ稼働しておらず、全ての加熱手段も稼働していない。図7の右にはA-A断面で矢視した図を示す。
蓋8を下降させると、蓋8の下部に固定した上部成形型40は、その下端の切り欠き53と下部成形型39の内壁をガイドとして下降し、やがては高圧セル9の上部に当たる。上部成形型40の下端部は高圧セル9と馴染む形状となっているため、上部成形型40の下端の切り欠き53と下部のテーパ状のガイド機構により遠隔操作で上部成形型40を下部成形型39中に挿入しながら蓋を下降させる(第1の工程)。
前段の第1の工程で上部成形型40は下部成形型39の凹部に遠隔操作で侵入して勘合する。図7では、次に高圧容器の蓋8をさらに下降させて本体7に密着する少し前の時点、すなわち下部成形型39および高圧セル9と上部成形型40とにより閉空間が形成され、耐熱式貫通チューブ43が高圧セル9の直近位置に近付いた時点で蓋8の下降を一旦止める。ここで真空ポンプ50を稼働させ、耐熱式貫通チューブ43を介して下部成形型39と上部成形型40の間隙の大気を真空吸引により放出する。同時に高圧セル9内に残留する大気も真空吸引により放出する。残留する大気を真空吸引することで、下部成形型39と上部成形型40の間隙はなくなり、真空圧で伸びた上部成形型40がその空間を埋めることで両者が皺入りすることなくぴったり密着する。これにより、高圧セル9の全ての外表面を隙間なく両方の成形型で挟み込むことができる。(第2の工程)。
前段の第2の工程で上部成形型40は、真空圧により伸びて引っ張られて内容積が増加し、その内部に追加して流体を吸引できる状況にある。図7では、さらにここで重力式圧力媒体調整槽42と接続する配管の圧媒調整槽仕切り弁59と圧媒大気開放バルブ62を開けることにより、上部成形型40に圧力媒体6が供給され、大気圧と重力で載荷される。これにより、残留空気なく、また、大気から気泡・ボイド等を混入させることなく上部成形型40内を圧力媒体6で満たすことができる(第3の工程)。
図7では、最後に高圧容器の蓋8をさらに下降させて本体7に密着した際に、上部成形型40が占める体積が僅かに小さくなり、上部成形型40内の圧力媒体6が絞り出される。絞り出された圧力媒体6は重力に打ち勝ち、蓋8の上方の重力式圧力媒体調整槽42に流出する。重力式圧力媒体調整槽42中の圧力媒体の液位は、図6よりも図7の方が高くなっている。この動作により高圧容器内の圧力媒体6は空気のボイド等が入ることなく、配管経路内に密に充填される。この段階で真空ポンプ60に至る可撓性の配管は吸引管接続ボックス54の接続ノズルから切り離しても良い。蓋8を高圧容器の本体7に密着させた後に、圧力媒体6から蓋8に加わる軸力を支持するために、スライド等によりプレスフレーム33が設置され、蓋8と高圧容器7を締結する。また、重力式圧力媒体調整槽42側の仕切弁59を閉じ、加圧機構10側の仕切弁58を開ける。乾式処理ではこれにより、加圧機構10を稼働させて、同じ圧力媒体6により上部成形型40の内面全面と下部成形型29の外面全面を同時に静水圧加圧することで、高圧セル9に隙間なく精密に方向性なく均等な圧力で等方圧加圧することができる。(第4の工程)
 図6と図7では、横置きの高圧容器の本体7中に3種類で4個の高圧セル9を同時に圧力媒体非接触型で処理する構成を示した。なお、ここで例示した高圧セル9は3種類で4個であるが、2個以上であれば種類や数量には制限はない。しかし、圧力媒体非接触型(乾式処理)の場合は、当該の処理ピット46で高温高圧処理する高圧セル9の種類を変えるには、上部成形型40が固定された上部成形型取付け治具41と下部の支持機構47、および、場合によっては下部成形型39を交換する必要がある。そのため、圧力媒体非接触型(乾式処理)は、日々、処理対象の高圧セル9の種類や個数が変動する場合は不向きであり、種類と個数が変動しない構成の製品を効率的に大量に高温高圧処理できる。
図8は、図6と図7で説明した乾式処理の処理装置で使用する耐熱耐流体性伸縮素材の上部成形型40の拡大図とその効果の説明図である。圧力媒体非接触型の処理装置で使用する耐熱耐流体性伸縮素材の上部成形型40の拡大概要図である。図8のa.は圧力媒体6による加圧前の状態を示し、b.とc.は加圧後の状態を示す。b.は上部成形型40が無い場合の力の釣り合いを示し、c.は上部成形型40が有る場合の力の釣り合いを示す。なお、これらは図7のA-A断面の位置の構造を示す。また、図8のa.とc.のB-B断面での上部成形型40の拡大図として(a)は一体型の中空円筒を、(b)は縦割り2分割型を、(c)は縦割り3分割型を、(d)は縦割り4分割型を示す。
図8のb.とc.には圧力媒体6により力が加わっている大きさと向きを矢印で示しており、加圧機構10を動作させた段階での高圧容器内での圧力媒体6による圧力の釣り合い状態を示している。加圧機構10で加圧された圧力媒体6により図8のb.では下部成形型39の外面全面のみ、図8のc.では上部成形型40の内面全面と下部成形型39の外面全面を同時に静水圧加圧される。図8のb.とc.に示される通り、高圧容器内では圧力媒体6の加圧により、力の釣り合いと不釣り合いが生じている。
上部成形型40が無ければ上方からの力が足りないので図8のb.の通り、高圧セル9は圧力媒体6の作用で持ち上がり、蓋8に異方性のある力で押しつけられる。上部成形型40があれば上方からの力も均等に加わるため、高圧セル9は元の位置を維持して等方圧加圧される。(a)、(b)、(c)、(d)のいずれの上部成形型40でも等方圧加圧することができるが、上部成形型40は高圧セル9の上部の形状に沿うものが選定される。
図9は、高圧容器内のサーモサイフォンによる圧力媒体6の熱対流による循環状況の概要図(a.湿式処理,b.乾式処理)である。後述の実施例2の通り、本発明の運転条件にあっては圧力媒体6とする有機溶媒等の粘度は常温・常圧の水の粘度と同程度である。そのため、高圧容器内に設置する加温機構28の配置と、高圧容器の外壁に付属する冷却ジャケット27による減温機構25の配置を工夫すれば、高圧容器内に熱対流(サーモサイフォン)を起こすことができる。本発明は、2つ以上の高圧セルを高圧容器内に収納することで、圧力媒体の圧力の制御のためにその質量・体積を意図的に大きくした体系であるが、滞留による温度の局在化を防ぐことにより、温度の計測・制御の精度、すなわち本発明における圧力制御の精度を向上することができる。図9のa.は湿式処理の構造であり、図9のb.は乾式処理の構造である。両者共に高圧容器内の加熱源は、高圧セル内の内部加熱源14と、加温機構28の圧媒加熱ヒータ30である。冷却ジャケット27は高圧容器の外側に付属している。また、図9ではa.とb.共に本体7は円筒形の高圧容器(以下、「高圧円筒」と呼ぶ)である。これら加熱源は高圧容器の本体7中に鉛直方向に一列となるように中心軸上の中央部(円筒の中心位置)と底部(円筒の下端)に配置する。
図9のa.は、高圧円筒を縦置きした圧力媒体接触型(湿式処理)の液媒静水圧加圧による高温高圧処理装置でサーモサイフォンを起こすことができる構造の例を示す。縦置きの場合、蓋8から懸垂した高圧セル9は、高圧円筒の中心軸上で鉛直に一列に並んでいる。図9のa.の場合は4個の高圧セル9を懸垂した例である。この各々の高圧セル9内に内部加熱源14が内包されている。また、圧媒加熱ヒータ30は底板部の中央(高圧円筒の下端)に配置している。一方の減温機構25の冷却ジャケット27は蓋8内と高圧円筒の外壁の概ね中央から上半分に配置している。また、セラミック製等の仕切り板31は4個の高圧セル9と並行する形で両側に2枚設置されている。仕切り板31は両側の流体の流通による混合を遮断する目的のものであり、表面には鉛直方向全ての長さで線材のように薄く細長い形状の平均温度計測用の銅板65が設置されている。2種類の加熱源で熱された流体(密度が少し下がった圧力媒体)は2枚の仕切り板31の間、すなわち高圧円筒の中央部を上昇する。熱されて高圧円筒の上部に移動した流体は蓋8内と高圧円筒の外壁上半分の冷却ジャケット27で冷やされ、外壁部を冷えた流体(密度が少し上がった圧力媒体)が下降する。これにより、高圧円筒の中央部の下端と中心を加熱して、外壁の上半分を冷却することで、中央部を熱された流体が上昇して外壁部を冷えた流体が下降するというサーモサイフォンが形成される。
なお、縦置きの高圧円筒で定常状態となった後の最高温度(TC1)は中央部の最上段の高圧セルの上部であり、最低温度(TC2)は外壁部の冷却ジャケットの下端部である。平均温度(TC3)は平均温度計測用の銅板65上であり、線材のように細長い銅板上のどの位置でも大きく違わない。
図9のb.は、高圧円筒を横置きした圧力媒体非接触型(乾式処理)の液媒静水圧加圧による高温高圧処理装置でサーモサイフォンを起こすことができる構造を示す。図9のb.は図7のA-A断面の位置での構造を示す。
基本的な構成は図9のa.と同じであるが、横置きであるため複数ある高圧セル9は水平方向に並んでいる。そのため、A-A断面上の高圧セル9は1個だけが見えている。この構造上、各々の高圧セル9内に内部加熱源14の熱量が違うと、水平方向に高圧容器内の温度の局在化が起こりやすい。そのため、横置きの場合は各々の処理ピット46毎に圧媒加熱ヒータ30と冷却ジャケット27を制御できることが好ましい。
流体の加熱は高圧円筒の中央部での内部加熱源14と下端の圧媒加熱ヒータ30であり、冷却は高圧円筒の上部の蓋8と高圧円筒の胴部上半分の冷却ジャケット27であり、高圧セル1個に対して2枚の仕切り板31で流体の混合が遮断されることで、中央部を熱された流体が上昇して外壁部を冷えた流体が下降するというサーモサイフォンが形成される。
最高温度(TC1)、最低温度(TC2)、平均温度(TC3)の点は、前項と同じ考え方である。
以下、実施例に基づいて、以下の構成で本発明の実施の形態について更に具体的に説明する。なお、本発明の範囲は実施例により限定されない。
実施例1:高圧容器と蓋および高圧セルの固定方式と加圧機構
実施例2:圧力媒体の種類と物性、高圧下の粘度と圧縮率
実施例3:成形型で使用する耐熱耐流体性伸縮素材
実施例4:耐熱式貫通チューブと折り畳み型真空排気口
実施例5:圧力媒体の減温機構および高圧容器内の加温機構とサーモサイフォン構造
実施例6:高圧逆止弁等の高圧部品
実施例7:高圧セルの構成と内部アンビル
実施例8:高圧セル内の内部アンビルの超硬材料の種類と熱伝導率
実施例1では高圧容器と蓋および被処理物の固定方式と加圧機構について説明する。本発明の高圧容器は圧力制御を容易とするために合理的な範囲でなるべく大きな内容積として配管系統内の圧力媒体の質量・体積を大きくすることが求められるため、2個以上の多数の高圧セルを1台の高圧容器内に設置する。高圧容器の本体は、耐圧性能の確保が容易で製造が容易な高圧円筒とすることが合理的である。高圧円筒は,単肉円筒あるいは焼き嵌め構造による複合円筒が一般的であるが,線巻き構造(ピアノ線等を高圧円筒の外周に巻き付けて強化した構造)のものもある。高圧円筒は、99.99%以上の非破壊確率を有する設計疲労曲線に従って設計されるのが一般的である。高圧円筒の形状・肉厚等の圧力容器の構造と設計はJIS B8265(2017)およびJIS B8267(2015)に基づく。大量生産用の高圧装置の場合、蓋に加わる軸力はプレスフレームで支持する枠形フレーム方式とすることが多い。
高圧円筒を利用する場合は円筒の直径を増すと指数関数的に容器壁を厚くする必要があるため、なるべく細くする方が合理的である。そのため、高圧容器の直径方向には高圧セルを1列のみとし、円筒の長手方向に複数個を設置することになる。そのため設置の向きが縦置きだと縦長に、横置きだと横長の配置となる。また、湿式処理の場合は縦置き・横置き共に可能であるが、乾式処理の場合は成形型の制約から横置きのみとなる。
高圧セルは、非特許文献2の直径29cm(相当する容積は約10リットル)の分割球型で1個の質量が約700Kgあると思われ、より大きなサイズとなれば数トンにも及ぶ。伸縮材料の下部成形型では引張強度が足りないので、これを支持することはできない。そのため、高圧容器内で重量物である高圧セルを支持する方式を検討する必要がある。
支持方式は湿式処理の横置きでは懸垂式・定置式・スライド式のいずれもが可能であるが、乾式処理の横置きでは成形型の制約から個別に床への定置式が好ましいが、懸垂式も不可能ではない。湿式処理の縦置きの懸垂式では、蓋下部に吊下げ網方式でも構わない。また、横置きの床への定置式の場合、圧力媒体の流通経路を工夫すれば、スペーサーで隔離しての段積みでも構わない。湿式処理と乾式処理における高圧容器の本体の設置に向きと蓋の取扱いにおいて対応可能な構成と高圧セルの支持方式を表1に整理した。
表1
Figure JPOXMLDOC01-appb-I000001
凡例 〇:好ましい、△:あまり好ましくない、×:実現性しない
圧力媒体の加圧機構は、油圧または電動ピストン加圧装置、電動高圧ポンプと増圧機の組合せ装置等が市販されており、型式はいずれのものでも構わない。高い圧力領域で一定の圧力制御を求める場合は、油圧または電動ピストン加圧装置または往復ピストン型加圧装置が多く利用されている。最高使用圧力は油圧ピストン加圧装置で700MPa、電動高圧ポンプ単体でも約100MPaに達するものもある。また、本発明の図4ように1つの加圧機構を複数の高圧容器で共用するために加圧機構が移動する場合は、コンパクトで軽量な電動高圧ポンプが有利である。電動高圧ポンプと増圧機の組合せ装置の一例として理研製の二段吐出型電動ポンプMP-75(55Kw、最高使用圧力70MPa)と超高圧油圧ブースターIRE-10K-46(2次側最高圧力1000MPa)等がある。
実施例2では圧力媒体の種類と物性、高圧下の粘度と圧縮率について説明する。本発明の高温高圧処理では、圧力は静水圧加圧で加えるため、圧力媒体には一定の耐熱性が必要となる。被処理物を1300~1500°Cに加熱する内部加熱源は高圧セル中にある。また、温度の計測と制御により高圧容器内の圧力を制御する考えなので、使用する圧力媒体は、圧力による圧縮率と温度による体積変化率または体積膨張率が既知な液体状の流体を使用する必要がある。
本発明で使用する圧力媒体の高温側の使用温度(最高使用温度)は、高圧容器内で使用する伸縮材料の耐熱限度から、250°Cを第1のターゲットとしている。複合材料等で耐熱性の高い伸縮材料が進化すれば、さらに必要あれば300~400°Cまで高くすることが次のターゲットであり、これにより圧力媒体の加熱膨張による昇圧性能をより高めることができる。また、使用圧力は高圧セルのサイズに比例する増圧効果との相関になるため必要圧力は圧力媒体側だけで一概には決まらないが、より大きなサイズのダイヤモンド合成に適用するために高圧容器・プレスフレーム等の高圧機器の耐圧限度としては1GPaとし、加圧機構の性能は従来技術にある500MPaを第1のターゲットとしている。これは、高圧セルの分割球型等のマルチアンビルによる圧力増倍率は10~100倍であるため、高圧セルはマルチアンビル構造によりダイヤモンド合成に必要な動作圧力5GPaを確実に得て、その上でより大きなサイズの合成ダイヤモンド製造を目指すことを前提としている。加圧機構で500MPaまで昇圧後、圧力媒体の加熱による体積膨張により高圧を維持すると共に、さらに現状で入手可能なバルブ等の高圧部品で許容される700MPa程度まで昇圧し、より大きなサイズの合成ダイヤモンド製造することができる。
上記の温度条件、圧力条件で利用できる液体状の圧力媒体の候補は、トルエン、エタノール、メタノール、ベンゼン、アセトンとし、その物性を表2に示す。また、表2には従来技術の圧力媒体として良く使用されている水を付記した。これらの有機溶媒同士または水との混合液体を用いることも可能である。
一方、圧力媒体には種類を選べば非特許文献2のように機械油・合成油を利用することも可能性はある。しかし、常温での知見であるが、圧延油、基油(オイルやグリースの基材)や合成油のアルキルナフタレン、アルキルベンゼンは約300MPaで、ガソリンエンジン油やギヤ油は500~700MPaで固化してしまうため、使用することが難しい。ポリーα-オレフィンは、1200MPaまで固化しないため、圧縮率・膨張率等の特性値を取得すれば使用できる可能性がある。但し、これらの油類は汚染すると油まみれになり、除染などの取扱いが難しいことに注意が必要である。
また、シリコーンオイルは全般に圧力による圧縮率が大きいため、本発明の用途での使用にはその種類毎で取扱いに注意が必要である。例えば、ジメチルシリコーンオイルは、常温下の350MPaの圧力下で、約15%の容積収縮を起こすので、一般には緩性液体スプリングとして使用されている。しかし、装置を圧力先行で先に昇圧した際には大きく圧力媒体が圧縮し、その後内部の加熱源で加熱すると高圧容器内には予想した以上の質量が存在して、予想を超える体積膨張を起こす可能性があり、本発明の圧力媒体にはジメチルシリコーンオイルの適用性は必ずしも高くはない。
表2 
Figure JPOXMLDOC01-appb-I000002
注1)上表の物性の測定条件は、常圧下、温度20~25°C
注2)カッコ内の数値は測定温度(°C)を示す
注3)水の膨張率は温度依存性が高く、220℃では0.0018/Kと大きくなる.
引用)理科年表2021,P.物27、物53、物54、物62、物65
高圧下では、液体の粘度が高くなることは一般に知られており、高圧下にある高圧容器内では液体の流動は常圧とは異なっている。液体の粘度が高くなると、高圧容器内の圧力媒体の流動が滞り、高圧容器内に加熱源や冷却機構があると局所的に温度が高い部位ができる傾向にあるため、温度計測・制御する上で注意する必要がある。この課題への機構的な対応策がサーモサイフォン機構であるが、まずここでは圧力媒体とする液体の粘度(mPa・s)の圧力依存性とその一部の温度依存性を示す。産総研(AIST)分散型熱物性データベースに登録があった高圧下の圧力媒体の候補液体の粘度を表3に示す。表3では0.1~400MPaの測定圧力下での液体の粘度の報告結果を示し、表中のカッコ内にはその測定温度を示した。測定温度は10~160°Cの報告がある。なお、このデータベースには複数の実験報告の情報を登録しているため、各々の実験間でデータ取得条件が異なることにより、測定圧力等の数値が若干ばらついている。そのため、本明細書では表3は大局的な粘度の圧力・温度依存性を把握する目的で利用している。
表3の同一温度での400MPaの粘度は、常圧下に比べて、メタノールでは約2倍、エタノールでは約4倍になっている。トルエンの200MPaの同・粘度は大きな変化はない。ベンゼンの400MPaの同・粘度は逆に約半分になっている。すなわち、400MPaの粘度は物質の種類に応じて常圧下に比べて0.5~4倍になっている。
一方、表3内の数値をカッコ内の温度条件を含めてもっと詳細にみると、温度が常温域から75~160°Cに上昇することで、ベンゼン以外の粘度は約半分になっている。ベンゼンだけは逆に加温により粘度が2~3倍になると報告されている。これらの特性を事前に周知しておくことが重要である。
表3 
Figure JPOXMLDOC01-appb-I000003
注)カッコ内は温度(°C)
引用)産総研(AIST)分散型熱物性データベース
表3の高圧下の液体の粘度を考察すると、本発明の第1ターゲットの圧力媒体の圧力(500MPa)と温度(250°C)の条件を前提とした場合、物質毎に圧力・温度依存性は様々だが、常温・常圧での粘度に比べ、0.5~2倍程度の上昇に収まり、その粘度は1mPa・s程度になることが予想される。すなわち、これは高圧下で圧力媒体の粘度が一旦上昇するが、加熱に伴い低下し、本発明の運転条件にあっては常温常圧の水の粘度と同程度になることを意味する。常温常圧の水の粘度と同程度であれば、温度計測と制御は比較的容易に可能である。立ち上げ時の運転モードは完全な昇圧先行ではなく、ある程度の昇温も同時並行させる等の工夫が必要であるが、高圧による粘度の低下により、圧力媒体の温度の計測や制御に支障が生じて運転・制御が不能になることはない。
高圧下では、液体がある程度圧縮されることは一般に知られている。本発明では、処理条件とする当該温度(250°C)での体積膨張の割合が、当該圧力(500MPa)での圧力媒体の圧縮割合よりも大きいことが重要である。そのため、温度による液体の体積膨張率は表2の物性に示した通りであるが、圧力による液体の圧縮率(10-9/Pa)を表4に示す。なお、表4の理科年表2021の掲載データにはでは現時点で圧縮率が見当たらなかった有機溶媒の数値を-(ブランク)としている。但し、有機溶媒の場合、同数の炭素をもつ化合物では, 分子内の回転の自由度の大きな化合物ほど圧縮率が大きいことが知られている。これによれば、圧縮率が大きな順は、直鎖化合物>側鎖化合物>単環化合物>融合環化合物であることが判っている。また、1価アルコールでは、鎖長の短いものほど易圧縮性である。すなわち、この原則に従えば、500MPaの圧縮率データが見当たらなかったエタノール、ベンゼン等の圧縮率は原理的にメタノールと同程度かそれ以下であり、メタノールの2×10-10/Paとかけ離れて大きな数値となることは考え難い。
表4 
Figure JPOXMLDOC01-appb-I000004
注1)測定温度は全て20°C、 引用)理科年表2021、p.物35
表5では、高圧下での液体状の圧力媒体の圧縮割合(%)と膨張割合(%)を対比した結果を示す。圧縮割合(%)は表4等で報告された各圧力(0.1、100、200、500MPa)の圧縮率より算出した。膨張割合は物性値の膨張率に温度(100と250°C)を乗じて算出した。本発明では少なくとも250°Cでの膨張割合が、500MPaでの圧縮割合よりも大きいことが重要である。表5の圧縮の列は表4の圧力による液体の圧縮率(10-9/Pa)より算出したより0.1MPa、500MPaの圧縮割合(%)を示す。100MPa、200MPaは表の下欄の引用文献の図からの読み取り数値をカッコ付きで付記した。また、エタノール、ベンゼン等の圧縮率はメタノールと同程度と考えられ、圧縮率は500MPaで15%を超えることは考えられず、概ね約11%以下になると考えられる。そのため、<11%との値を表中に付記した。表5の膨張の列は、表2の温度による液体の体積膨張率より算出した膨張割合(%)の計算値を示す。
表5 
Figure JPOXMLDOC01-appb-I000005
注1)圧縮割合の計算値の圧縮率(10-9/Pa)は表4を参照とする
注2)膨張割合の膨張率は表2を参照とし、起点となる温度は20°Cとした
注3)上表のカッコ内の数値は、引用1の文献のFig.2の読み取り数値である。
引用1)蒔田董、有機液体の熱物性に対する圧力効果、熱物性、Vol.1、No.1(1987)
表5によれば、水以外のトルエン、エタノール、メタノール、ベンゼン、アセトン等の有機溶媒では250°Cでの膨張割合が概ね20%以上である。500MPaでの圧縮割合が15%を超えることは考えられず、概ね約11%以下になる。そのため、これらの圧力媒体は、単体で本発明の圧力媒体の要件を満たしている。但し、150°Cでは膨張割合が概ね15%付近となり、この温度以下での利用はさらに精密なデータが必要である。
しかしながら、従来技術で多用されてきた圧力媒体である水は、単体で膨張割合が3.8%であり、圧縮割合が9.0%であることから、本発明の圧力媒体の要件を満たしていない。しかし、これらの水に可溶なエタノール、メタノール、アセトン等の有機溶媒と水との混合液体を圧力溶媒とすれば、混合率により圧縮率を自由に選択できることが知られている。図10にはエタノール、メタノール等のアルコールの純物質(図10のFig.2)とアルコール濃度の低いアルコール水溶液(図10のFig.8)の100MPaでの圧縮率の比較を示す。モル分率が0.1(mol/mol)付近のアルコール濃度が希薄な領域で圧縮率が極小となる凹部が存在する以外は、混合物の圧縮率はアルコール濃度が高くなるに従い、ほぼ比例の関係で増加し、アルコールの純物質の圧縮率に漸近している。そのため、これらの水に可溶な有機溶媒と水との混合液体により、自由に圧縮率を設定できる。
結論として、本発明の温度を計測して加温機能・冷却機能により圧力溶媒の温度を制御してその熱による体積膨張で圧力の制御を実現するには、圧力溶媒はトルエン、エタノール、メタノール、ベンゼン、アセトン等、および、これらの有機溶媒同士を混合した液体を選定できる。また、エタノール、メタノール、アセトン等の水に可溶なものはこれら有機溶媒と水との混合液体を選定できる。
実施例3では成形型で使用する耐熱伸縮素材について説明する。本発明の圧力媒体接触型(湿式処理)における耐熱耐流体性伸縮素材のシール、および、圧力媒体非接触型(乾式処理)における同・上部成形型や下部成形型等の成形型の伸縮性材料の候補となる物質名とその引張強さ、伸び、耐熱温度、融点等の特性と適用性を表6に示す。一般の伸縮性材料の場合でも荷重たわみ温度を意味する耐熱最高温度(以下、「耐熱温度」と呼ぶ)が280°Cのシリコーンゴムと、300°Cのフッ素ゴム(バイトン)、および、やや劣るが200°Cのエチレン・酢酸ビニルゴムは、本発明に適用できる。加えて、耐熱性のフッ素樹脂系の四フッ化エチレン・六フッ化プロピレン共重合(FEP)、四フッ化エチレン・パーフルオロアルコキシエチレン共重合(PFA)、ポリテトラフルオロエチレン(PTFE)は耐熱温度が高く、伸びが大きいため適用性が高い。なお、耐熱伸縮素材による成形型の形状は中空円筒または2~4分割型を使用する。その具体的な形状・構造は特許文献6を参照とする。但し、一般の伸縮性材料(カッコ内は耐熱温度(°C)の数値)のうち、天然ゴム(120)、イソプレンゴム(120)、ニトリルゴム(130)、エチレン・プロピレンゴム(150)、ネオプレン(130)、ウレタンゴム(80)は、耐熱温度が圧力媒体に予定している運転温度である250°Cを超えないため、本発明での使用は難しい。
さらに、熱硬化性樹脂は適用が難しいが、スーパーエンジニアリングプラスチックと呼ばれている耐熱エンジニアリングプラスチックのうち、熱可塑性樹脂の一部も本発明に適用できるものもある。熱可塑性樹脂である場合、融点以下であれば耐熱温度を3割程度超えて使用し、仮に塑性変形してしまっても、かえって被処理物の形状に馴染みが良くなり、真空引き時に皺が入らないので問題にならない。表6の最右欄にはその伸縮材料を単体で使用する場合の本発明への適用性を評価した。耐熱性が200°C未満のもの、または、伸びが100%未満のものは、適用性が低いとした。耐熱性が250°C未満のもの、または、伸びが150%未満のものは、適用性が中程度とした。耐熱性が250°C以上で、かつ、伸びが150%以上のものは、適用性が高いとした。単体で使用する場合は、引張強さはより大きい方が好ましい。しかし、複合材料として異材の補強材により不足分は補充できるので引張強さは単体での評価対象としなかった。
その結果、現状の耐熱エンジニアリングプラスチック単体では、伸びの観点から本発明への適用性は中程度から低いとの評価になった。しかしながら、ポリエーテルケトン(PEK)、ポリイミド(PI)、ポリベンゾイミダゾール(PBI)等は引張強さが大きい上に耐熱温度が高いため、これらを成形型の補強材として他の伸びが大きな熱可塑性樹脂を成形型の膜材とするような2種類以上の樹脂を組み合わせた複合材料とすることにより本発明への適用性が高くなることが期待できる。なお、上部成形体は中央の中空部がある中空円筒または2~4分割型を使用するが、製造方法は金型への射出成型が好ましい。
表6
Figure JPOXMLDOC01-appb-I000006
略記注)NR:天然ゴム、NBR:ニトリルゴム、Si:シリコーンゴム、EVA:エチレン・酢酸ビニルゴム、FKM:フッ素ゴム(バイトン)、FEP:四フッ化エチレン・六フッ化プロピレン共重合、PFA:四フッ化エチレン・パーフルオロアルコキシエチレン共重合、PTFE:ポリテトラフルオロエチレン、PPS:ポリフェニレンサルファイド、PEK:ポリエーテルケトン、PEEK:ポリエーテルエーテルケトン、PI:ポリイミド、PAI:ポリアミドイミド、PES:ポリエーテルスルホン、PBI:ポリベンゾイミダゾール
注1)上表の耐熱温度は、基本的に耐熱最高温度として荷重たわみ温度を示すが、様々な数値が報告されている
注2)ポリイミド(PI)は基本的には結晶性であるが、結晶化速度が遅いため、非晶性に分類する場合もある。
注3)ケトン類は全般に硬くて伸びが小さいが、ポリエーテルケトン(PEK)の伸びの数値は推定値である。
実施例4では乾式処理の上部成形型の中心部の円筒部分に取付ける耐熱式貫通チューブと折り畳み型真空排気口について説明する。
本発明の耐熱式貫通チューブは上部成形型を貫通し、圧力媒体の使用温度(例えば250°C)に見合う耐熱性を有し、内部に電源・計測リード線と必要に応じて高圧セルの冷却水配管(入口・出口)を収納するため使用圧力(例えば1GPa)でもその固有の強度により形状を保てる材料・構造の貫通管としている。
一方、高温高圧処理前の真空吸引の際は、常温で、かつ、真空から常圧付近の圧力で上部成形型を貫通する耐熱式貫通チューブよりも直径が大きな気体としての大気の流路を確保し、かつ、上部成形型の静水圧加圧の均等性をもたす機能に影響を生じさせない折り畳み型真空排気口を設置する。真空排気口には使用圧力での形状維持は期待しない。
上記の耐熱式貫通チューブと折り畳み型真空排気口は一見相反した性能を要求しているように思われるが、内側と外側でそれぞれ別の機能を持つ、同軸の複合構造物とすることで、本発明の要求を満たすことができる。
耐熱式貫通チューブは、耐圧式の電源・計装リード線や厚肉の冷却水配管を中空部に通過させる強度の高い厚肉金属管が好ましい。リード線や厚肉配管の余空間はステンレス粉等の金属粉末を密に充填して中実状の配管することでより強度を確保する。高圧容器の蓋部や上部成形型において耐熱式貫通チューブの配置に寸法的な余裕がない場合は 耐熱式貫通チューブは純チタンまたはチタン合金等の強度の高い金属材料を用いる。肉厚が厚い場合は中実のチタン丸棒を穴開け加工する。チタン製の配管材料はJIS H4635またはJIS H4650 TB340に準拠する。
折り畳み型真空排気口は耐熱式貫通チューブの外側に強度的に上部成形体の中央の中空部を耐真空圧より少し強い一定の強度で支持することで確保する。折り畳み型真空排気口はチタン合金等の線材をバネになるように網目状に編んだ金属網チューブと薄膜状の耐熱伸縮素材の外筒により上部成形体の中央の中空部を支持することで確保する。この上部成形体の中央の中空部の支持材を金属網バネ管と呼ぶ。この金属網バネ管は医療用に多用されているステントと似た形状であるが、真空吸引時にある程度の形状を維持できるように少し太い線材を使ってバネ力をやや大きくしている点が多少違っている。
医療用のステントはステンレスやチタン合金を網目様に組んだ長さ数cmほどのものである。ステントは、医療用に血管の冠動脈、胆道、食道、大腸、頭蓋内動脈等の拡管手術に多用されており、様々な直径のものが現存している。冠動脈用ステントの形状はチューブ型、コイル型それにメッシュ型に分けられ、骨格となる素材にはステンレス鋼のほか、タンタルあるいはニッケルチタン合金が用いられている。形状記憶のニッケルチタン合金製のステントは萎めた状態で留置したものが体温によって拡張するものである。この形状記憶合金製のものは一定のバネ力を有するため、本発明の用途と比較的近い。
形状記憶合金製のステントは本発明より30年以上も以前に考案されたものであるが、現時点でその材料や製造方法の規格や基準は見当たらない。また、現代においても医療用のステント自体が設置位置の精度、目的位置での展開性能、壁への密着性等の難易度の高い要求事項に対して、その多数を組み合わせの設計条件に対して一件毎に数値解析と試作を繰り返して製造している。一方で、本発明の折り畳み型真空排気口用の金属網バネ管は、要求性能は明確であり、目視で設置できる。そのため、医療用のステントに比較すると、金属網バネ管は、形状・構造は似ているが、設計と製造は技術的にかなり容易である。そのため、折り畳み型真空排気口用の金属網バネ管の製造方法の例は、形状記憶合金製のステントの材料と製造方法を出願した過去の特許文献7を参考にするものとし、医療用のステントものに準じてかなり簡易化して製造するものとする。
実施例5では、高圧容器の外壁に付属する冷却ジャケットによる減温機構と、高圧容器内に設置する加温機構とサーモサイフォン構造およびについて説明する。
減温機構は高圧容器内で圧力媒体の温度を管理する温度検知機能より信号を受けた圧力調整機能が圧力を下げるべきと判断した場合に動作し、冷媒冷却器を作動させて高圧容器の胴部外側の冷却ジャケットに冷媒を送液し、戻ってきた冷媒を冷媒冷却器で冷却する。冷却ジャケットを取り付ける位置は後述のサーモサイフォン構造により決まる。冷媒冷却器は一般的な市販のチラー装置であり、その必要となる冷却能力は高圧セル内の内部加熱源と高圧容器内に設置する加温機構の熱量により決まる。冷却対象の圧力媒体の使用温度が数100°C程度なので、チラー装置は水冷式でも空冷式でも良く、冷媒は気体状のフロンまたはフロン代替ガス等であっても液体状のものでも構わない。
加温機構は高圧容器内で圧力媒体の温度を管理する温度検知機能より信号を受けた圧力調整機能が圧力を上げるべきと判断した場合に動作し、圧媒加熱ヒータ電源を作動させて高圧容器内に設置した圧媒加熱ヒータにより圧力媒体を加熱する。圧媒加熱ヒータを取り付ける位置はサーモサイフォン構造により決まる。圧媒加熱ヒータは高圧仕様で耐液性のあるシースヒータや抵抗加熱器であり、その必要となる加熱能力は主に昇温する温度と高圧容器内の圧力媒体の質量により決まる。なお、圧力媒体の加熱は急速である必要はなく、合成ダイヤモンドの製造に要する時間(例えば数日)を考慮して、例えば1日以内に所定温度に到達すれば良い。圧媒加熱ヒータ電源は直流式でも交流式でも良い。圧媒加熱ヒータはプレート型やカートリッジ型またはフレキ型やマイクロ型と言われるヒータでも良い。熱電対を内蔵するものでも良い。抵抗加熱体は金属棒(線)、グラファイト、SiC等のいずれでも良い。
サーモサイフォンとは、熱された流体が軽くなって上昇し、冷えた流体が重くなって下降する原理から起こる対流現象である。一般に液体の密度は温度と負の相関、すなわち、温度が上昇すれば密度は低下することが知られている。高圧下での温度依存性を示した密度データの報告例は少ないが、表5の通り、トルエン、エタノール、メタノール、ベンゼン等の液体の密度は圧力による体積の圧縮効果よりも体積の膨張効果の方が勝っており、500MPaの高圧下でも温度が上昇すれば密度は低下する。また、実施例2で上記した通り、本発明の圧力媒体の圧力条件(例えば500MPa)と温度条件(例えば250°C)では、候補とした有機溶媒の圧力媒体の粘度は1mPa・s程度になり、常温常圧の水の粘度と同程度の粘度であることが予想される。そのため、本発明の圧力媒体の温度圧力条件下において、原理的には圧力媒体の加熱と冷却の温度差による密度差でサーモサイフォンを起こすことができる。
高圧容器の本体である高圧円筒内でサーモサイフォンを起こすには、加温機構と減温機構を適切に配置し、その間の途中で熱された流体と冷えた流体が混合する流れを妨げる仕切り板を鉛直方向に設置する必要がある。仕切り板の材料は熱伝導率の悪いセラミック等が好ましい。仕切り板(支持板)の表面に鉛直方向全ての長さに薄く細長い形状の銅・アルミニウム等の熱伝導性の高い材料の金属製の板材を設置し、ここに平均温度計測用の熱電対(TC3)を接触させて圧力媒体の平均的な温度を計測する。高圧容器内の加熱源は、高圧セル内の内部加熱源と、加温機構の圧媒加熱ヒータである。これらを鉛直方向に一列に中心軸上の中央部(円筒の中心位置)と底部(円筒の下端)に配置する。一方の減温機構の冷却ジャケットは高圧円筒の外壁の中央から上半分に配置する。これにより、高圧円筒の中央部の下端と中心を加熱して、外壁の上半分を冷却することで、中央部を熱された流体が上昇して外壁部を冷えた流体が下降するというサーモサイフォンが形成される。
前項に上記した高圧円筒のサーモサイフォンにより、高圧容器内で温度が最高になる位置での最高温度と、最低になる位置での最低温度が決まる。また、仕切り板(支持板)に鉛直方向に張り付けた線材のように細長い高熱伝導金属の板材(平均温度計測用の銅板)の計測で圧力媒体の平均的な温度(平均温度)が判る。平均温度計測用の銅板は仕切り板を鉛直方向に周回して取付けても構わない。
しかし、装置を立ち上げた初期の加熱度が小さい場合は、熱の移動は圧力媒体中の熱伝導のみに依存して熱対流による流体の動きはないため、計測温度はばらつく傾向にある。また、途中で急な加温や減温があると、暫くの間、計測温度はばらつくことに注意が必要である。加温の開始から時間経過後にある加熱度を越えると流体は熱対流による循環を始め、その後、流体の回転方向は保たれるため計測温度は安定する。流速は加熱度に依存し、加熱度が一定ならば流れは定常となり計測温度は安定する。
一方で、本発明は原理的に静水圧加圧であるため圧力媒体の圧力は局在化することはなく、高圧容器内のどの位置でも同じ圧力となる。本発明の圧力媒体の熱による体積膨張で圧力媒体を加圧するとの目的を考慮すると、圧力媒体の局所的に偏在化している温度のばらついた数値の情報はあまり重要ではなく、全体として平均的な代表温度が判れば良い。
従って、本発明の構成の場合、定常運転時には平均温度(TC3)を代表温度とする。しかし、運転の立ち上げ時や急な加温や減温時には平均温度はばらつくため、ばらつきの少ない最高温度(TC1)や最低温度(TC2)の情報を加味して論理判断して代表温度を求める。立ち上げ時や急な加温や減温時の代表温度は経験的に容易に明らかになる情報であり、その経験則を反映した制御用機器の条件判断機能に入力しても良い。
湿式処理の場合は縦置き配置が可能であるが、上述のサーモサイフォンの熱された流体の上昇と冷えた流体が下降の距離が長くなるため、定常時であっても圧力媒体の温度計測・制御は感度が鈍くなる。そのため、温度計測点は上述の3点に加えて鉛直方向に途中の計測点を増やしても良いが、その監視・管理には手間がかかることとなる。
乾式処理または湿式処理で横置き配置の場合は上昇と下降の距離が短いため、上述の圧力媒体の温度の監視・管理にかかる手間の問題はない。しかし、1つの高圧容器内に多数の高圧セルを設置する場合は、横置きの周辺部と中央部では高圧セルの内部加熱源に基づく相互影響や高圧円筒が放冷される外表面積の違い等の周囲環境の条件が異なる。そのため、より安定な定常状態を求めるには高圧セル毎に3点の温度計測点を持ち、加温機構・減温機構を個別に制御できることが好ましい。
実施例2で述べた通り、高圧容器・プレスフレーム等の高圧機器の設計上の耐圧限度の第1ターゲットは1GPaとしたが、利用には400MPa以上の圧力領域での圧力媒体の圧縮率等の物性データを機側のDAC装置等で入手する必要がある。一方で、利用可能な圧力媒体の最高使用圧力は、高圧配管に付属して設置する高圧バルブ等の高圧部品の耐圧限度にもある程度は影響される。なお、DACは清水製作所等で製造・販売している。
本発明の構成の場合は、高圧下で圧力媒体が行き交いする流量は少ないため、高圧配管は細く、必然的に使用する高圧部品のサイズも小さい。高圧部品の耐圧限度は、国内メーカのカタログ製品では発電プラントでの利用がある20~70MPaのものに限られているが、超高圧領域では欧州企業のBUTECH社(日本代理店はサニー・トレーディング(株))が種々の高圧仕様の製品を供給している。仕切弁(2方弁・3方弁)は耐圧限度が約1GPaのものが既にカタログ製品で販売されている。その型番はSUS316製のもので2方弁が150V51-316WP、3方弁が150V53-316WPである。
一方、逆止弁は型番が60BC9-316WP-316Sであるバネ付きボール式逆止弁が販売されているが、この耐圧限度は数100MPaであり、本発明での利用には耐圧限度が足りていない。材質は機械加工が可能な金属であればハステロイTM、インコネルTM、チタン、ALLOY400等に変更可能であり、1,034MPaまでの超高圧仕様のものはオプションでの対応とされている。そのため、張力が純チタンの約3倍のチタン合金(例えばASTM Grade5のTi-6Al-4VやAMS4983のTi-10V-2Fe-3Al)等の高張力材料への変更も可能と予想される。
逆止弁にはボール式のほかに、ディスク式、スイング式、ウエハー式、リフト式等の型式があり、ディスク式とボール式はバネ付きのものがある。バネ付きのものはニップルやレデューサー等の配管部品と同様のサイズであるが、他は流路中に弁体室のあるグローブ弁(玉形弁)、ゲート弁や逃がし弁(安全弁)等と同様の大きなサイズのものとなる。また、使用圧力が高いことから、水室(ケーシング)や弁の支持体に大きな強度を持たせる必要があり、これらの型式とするとかなり大きな鍛造バルブとなる。これらの設計・製造に特に技術上の問題はなく、特注設計した巨大な鍛造バルブを設置している事例もあるが、既存のカタログ製品への外周へのピアノ線巻き付け補強や材質変更等での対応により上述のバネ付きボール式逆止弁を利用できることが好ましい。
実施例7では、高圧セルついて説明する。いずれの高圧セルも、内部にはアンビル、被処理物、内部加熱源および温度計測用の内部熱電対が設置される。内部加熱源は熱電対を内蔵するものでも良い。内部加熱源と内部熱電対の電流・計装リード線が高圧セルから露出しており、外部のコネクタへ接続する。必要に応じて、冷却水配管(入口/出口)が高圧セルから露出しており、外部の工業用水や上水と接続する。湿式処理では高圧セルは1台毎に耐熱耐流体性伸縮のシールで包まれるが、乾式処理ではそのまま成形型に収納される。本発明は、合成ダイヤモンドの製造に係る加圧装置に関するものであるため、内部アンビルの超硬材料の材質を除けば高圧セルの種類や構造については要件としない。全対象形状の高圧セルであれば、具体的な形状は球型、正六面体型(立方体型)、正八面体型のいずれでも構わない。なお、ベルト型の高圧セルは全対象形状ではないため、対象外である。
例えば、図1で示した従来の学術研究用の静水圧加圧法での加圧装置と高圧セル(BARS装置)のうち、駆動油層の内側の部分となる分割球型をそのまま利用しても構わない。また、上記の「背景技術」で説明した中国CCPで使用されている立方体型(キュービック型アンビル)をそのまま利用しても構わない。さらに、上記の「背景技術」で説明した内部アンビルのような正八面体型をそのまま利用しても構わない。
但し、高圧セルの内部加熱源からの伝熱で圧力媒体の温度が上昇するため、本発明に適用するにはそれに対する配慮と伝熱による温度の制御が必要となる。
合成ダイヤモンドの製造では、被処理物を1300~1500°Cに加熱する必要があるので内部加熱源は高圧セルの内部アンビル中にある。「背景技術」で説明した図1のBARS装置は内部アンビルには熱伝導率の良い炭化タングステン(WC)を使用しており、数日間の稼働時間に伴って圧力媒体とした油の温度が上昇し、油圧ポンプと被処理物の動作圧力が制御不能に上昇したと述べている。最終的には高圧セル内の縦横に冷却水を流し、内部加熱源からの熱を除去することで解決を図っている。すなわち、BARS装置で制御不能に圧力が上昇した原因は、1)内部アンビルの熱伝導率が良いこと、2)圧力媒体である油層の体積と質量が小さかったこと、3)そもそも圧力を制御する機構がないこと、であると考えられる。本発明では、この2)と3)は解決策を提示済みであり、ここでは1)の内部アンビルの熱伝導率の設定とそれによる温度の制御方法について以降で説明する。
高圧セルの内部アンビルの材料とする超硬材料は金属製のものと、セラミック(陶磁)製のものがある。金属製のものには超硬合金(WC+Co)、タングステン(W)等がある。セラミック(陶磁)製のものには、ジルコニア(ZrO)、窒化珪素(Si)、サーメット、炭化ホウ素(BC)、炭化珪素(SiC)等がある。ビッカース硬さ(Hv)が超硬合金並みの超硬材料の熱伝導率を表7に示す。表7の通り、金属製のものは熱伝導率が高く、炭化珪素(SiC)を除くセラミック(陶磁)製のものは熱伝導率が低い。
表7 
Figure JPOXMLDOC01-appb-I000007
注)特性値は常温の数値、略語注)Hv:ビッカース硬さ、陶磁:セラミック
本発明では加圧機構による昇圧と同時に内部加熱源による被処理物の加熱を開始するが、加圧機構の性能で決まる最大圧力を超えた圧力とするために、圧力媒体を昇温による熱膨張により更に高い圧力を得る。
圧力媒体の昇温速度、すなわち、昇圧速度を速くするためには、高圧セル中のアンビルの超硬材料は、表7に示される熱伝導率の高い超硬合金、炭化珪素、タングステン、または、これらを主成分とする材料とすれば良い。
一方、内部加熱源による影響を出来るだけ排除する場合や、圧力媒体の同・昇圧速度を遅くするためには、高圧セル中のアンビルの超硬材料は、同・熱伝導率の低いジルコニア、窒化珪素、サーメット、炭化ホウ素、または、これらを主成分とする材料とすれば良い。
本発明の本明細書では、圧力媒体接触型(湿式処理)と圧力媒体非接触型(乾式処理)とを同一紙面に入り混じって記載されているため、どちらに相関がある機能や構成の説明であるかが判り難い。上記した2つ以上の高圧セルを収納した液媒静水圧加圧による高温高圧処理装置の機能や構成と、圧力媒体接触型(湿式処理)または圧力媒体非接触型(乾式処理)との対応関係を表8に示す。
表8
Figure JPOXMLDOC01-appb-I000008
凡例 〇:相関がある、△:少し相関がある、-:相関がない
上記では大きなサイズの合成ダイヤモンドの製造装置として液媒加圧式の高温高圧処理装置を説明したが、製造する対象は大きなサイズの合成ダイヤモンドに限る必要はない。合成ダイヤモンド以外にも立方晶系窒化ホウ素(cBN)とその類似物質、および、高圧を用いて製造するセラミック材料、硬質材料、金属間化合物材料、並びに、焼結品を含めたこれらの成形体の高温高圧法(HPHT法)による製造装置にも適用できる。
1.分割型の高圧容器
2.分割フレーム
3.外部アンビル(8分割)
4.内部アンビル(6分割)
5.電流・計装リード線
6.圧力媒体
7.高圧容器の本体
8.高圧容器の蓋
9.高圧セル
10.加圧機構
11.逆止弁
12.仕切弁
13.被処理物
14.内部加熱源
15.アンビル
16.内部熱電対
17.接続ケーブル
18.耐水圧コネクタ
19.耐熱耐流体性伸縮素材のシール
20.固縛機構
21.内部加熱源電源
22.高圧容器熱電対
23.温度検知機能
24.圧力調整機能
25.減温機構
26.冷媒冷却器
27.冷却ジャケット
28.加温機構
29.圧媒加熱ヒータ電源
30.圧媒加熱ヒータ
31.仕切り板(支持板)
32.圧電センサー
33.プレスフレーム
34.レール
35.移動台車
36.加圧ポンプ
37.高圧ホース
38.圧力媒体タンク
39.下部成形型
40.上部成形型
41.上部成形型取付け治具
42.重力式圧力媒体調整槽
43.耐熱式貫通チューブ
44.高圧セル冷却水配管
45.大気放出管
46.処理ピット
47.支持機構
48.圧力媒体流通層
49.折り畳み型真空排気口
50.真空ポンプ
51.下部外部アンビル
52.上部外部アンビル
53.切り欠き
54.吸引管接続ボックス
55.除圧機構
56.全突端部切除品の高圧セル
57.金属網バネ管
58.上部圧媒仕切弁
59.圧媒調整槽仕切弁
60.大気開放バルブ
61.真空ポンプバルブ
62.圧媒大気開放バルブ
63.圧力伝達物質
64.油媒体の圧入口
65.平均温度計測用の銅板
 

Claims (17)

  1. 高圧容器に充填する液体状の圧力媒体を加圧することにより高圧容器内の全ての物質の外表面を等方圧に加圧する静水圧加圧装置において、高圧容器を縦置きまたは横置きに配置し、
    200°C以上の荷重たわみ温度を有する伸縮性があって耐流体侵入性であるシール材料を表面に施した高圧セルを高圧容器内に収納し、
    圧力による圧縮率と熱による体積変化率が既知な圧力媒体を使用し、
    高圧容器内に圧力媒体を加温する加温手段と圧力媒体の鉛直方向の平均となる温度を計測する計測手段を設け、
    前記高圧容器外の鉛直方向の中心位置から上方に減温手段を設け、
    最初に高圧容器の外部から圧力媒体を昇圧できる加圧機構を動作させて一定の圧力まで加圧し、
    高圧容器内に満たした圧力媒体を所期の温度に加熱することで熱膨張させ、
    加圧機構が停止した後も圧力と温度を継続して計測し、圧力が低い場合は加温手段を動作させることで加熱に伴う圧力媒体の熱膨張により圧力を増加し、圧力が高い場合は減温手段を動作させて圧力を低減する圧力調整機能により、所期の圧力を維持しながら処理を継続し、
    2つ以上の高圧セルを同時に方向性がない均等な圧力で高温高圧処理できる処理装置
  2. 請求項1に記載の処理装置において、
    前記処理装置が最初に利用できる少なくとも1つの前記圧力媒体の前記加圧機構があり、
    150°Cでの熱による体積膨張割合が500MPaでの圧力による体積圧縮割合よりも
    大きな液体状の前記圧力媒体を使用し、
    前記高圧容器内に前記圧力媒体を加温する前記加温手段を設け、
    前記高圧容器外の鉛直方向の中心位置から上方に減温手段を設け、
    高圧容器の鉛直方向全ての長さで設置した支持板の鉛直方向の表面に張り付けた高熱伝導体の表面温度の計測により鉛直方向の平均となる温度を計測する手段を設け
    前記高圧容器内での前記圧力媒体の熱流動で決まる温度の最高点と最低点の位置に温度を計測する手段を設け、
    前記高圧容器内に満たした前記圧力媒体の前記加温手段と前記減温手段により前記圧力媒体の温度を制御し、
    前記圧力媒体の加熱による熱膨張を利用して前記加圧機構で到達した数値以上に前記高圧容器内の圧力を上昇させ、
    2つ以上の前記高圧セルを同時に方向性がない均等な圧力で高温高圧処理できる処理装置
  3. 横置きに配置した高圧容器内に液体状の圧力媒体により静水圧加圧する処理装置であって、
    200°C以上の荷重たわみ温度を有する伸縮性があって耐流体侵入性である下部と上部で勘合する一対の成形型があり、
    上部成形型は高圧容器の蓋の下面に固定して取付けられた円柱状の容器であって、圧力媒体の注入配管と圧力媒体を回収する容器への配管が接続されており、
    下部成形型は凹部に高圧セルを収納した上方に開口部がある底付き中空円筒形状であって、高圧容器の本体の内壁に固定して取付けられており、
    高圧容器の本体には圧力媒体の注入配管が接続されており、
    下部成形型は凹部に高圧セルを収納した後に、
    高圧容器の蓋締めの際に上部成形型の下部のテーパ状のガイド機構により遠隔操作で上部成形型を下部成形型中に挿入しながら蓋を下降させる第1の工程と、
    蓋と本体を密着する直前に上部成形型と下部成形型の間の空間の大気を真空吸引することにより両方の成形型を密着させる第2の工程と、
    蓋と本体を密着する際に上部成形型内に予め満した圧力媒体を絞り出すことで鉛直方法の上方に設置した容器で回収する第3の工程と、
    蓋を締結後に上部成形型の内面全面と下部成形型の外面全面を液絡している同じ圧力媒体で同時に静水圧加圧する第4の工程により、
    2つ以上の高圧セルを圧力媒体に非接触な状態で、均等な圧力で静水圧加圧できることを特徴とする処理装置。
  4. 請求項1、請求項2または請求項3に記載の処理装置において、
    横置きに配置した高圧容器内に液体状の圧力媒体により静水圧加圧する処理装置であって、
    200°C以上の荷重たわみ温度を有する伸縮性があって耐流体侵入性である下部と上部で勘合する一対の成形型があり、
    処理装置が最初に利用できる少なくとも1つの圧力媒体の加圧機構があり、
    圧力による圧縮率と熱による体積変化率が既知な圧力媒体を使用し、
    高圧容器内に圧力媒体を加温する加温手段と圧力媒体の鉛直方向の平均となる温度を計測する計測手段を設け、
    前記高圧容器外の鉛直方向の中心位置から上方に減温手段を設け、
    上部成形型は高圧容器の蓋の下面に固定して取付けられた円柱状の容器であって、圧力媒体の注入配管と圧力媒体を回収する容器への配管が接続されており、
    下部成形型は凹部に高圧セルを収納した上方に開口部がある底付き中空円筒形状であって、高圧容器の本体の内壁に固定して取付けられており、
    高圧容器の本体には圧力媒体の注入配管が接続されており、
    下部成形型は凹部に高圧セルを収納した後に、
    高圧容器の蓋締めの際に上部成形型の下部のテーパ状のガイド機構により遠隔操作で上部成形型を下部成形型中に挿入しながら蓋を下降させる第1の工程と、
    蓋と本体を密着する直前に上部成形型と下部成形型の間の空間の大気を真空吸引することにより両方の成形型を密着させる第2の工程と、
    蓋と本体を密着する際に上部成形型内に予め満した圧力媒体を絞り出すことで鉛直方法の上方に設置した容器で回収する第3の工程と、
    蓋を締結後に上部成形型の内面全面と下部成形型の外面全面を液絡している同じ圧力媒体で同時に静水圧加圧する第4の工程により、
    高圧容器内に満たした圧力媒体を所期の温度に加熱することで熱膨張させ、
    加圧機構が停止した後も圧力を維持しながら処理を継続し、
    2つ以上の高圧セルを圧力媒体に非接触な状態で、均等な圧力で静水圧加圧できることを特徴とする処理装置
  5. 請求項3または請求項4の処理装置において、前記の一対の成形型の材料は、シリコーンゴム、ニトリルゴム、フッ素ゴム、耐熱性のフッ素樹脂、または、これらを複合させた材料を用いた処理装置
  6. 請求項3または請求項4の処理装置において、前記下部成形型を介して、10キログラム以上の高圧セルを重力方向に支持する網状または多孔質状の媒体流通式の機構を有し、前記圧力媒体の流通を妨げることなく高温高圧処理ができる処理装置
  7. 請求項1、請求項2、請求項3または請求項4に記載の処理装置において、2つ以上の高圧セルはそれぞれが全対象形状であれば、2種類以上の形状の高圧セルを同時に高温高圧処理できる処理装置
  8. 請求項1、請求項2、請求項3または請求項4に記載の処理装置において、2つ以上の高圧セルは、正六面体型、正八面体型またはそれらの全ての突起端面を平面状に切除したもの、または、分割球型である処理装置
  9. 請求項1、請求項2、請求項3または請求項4に記載の処理装置において、前記圧力媒体には、トルエン、エタノール、メタノール、ベンゼン、アセトン、および、これらの有機溶媒同士の混合液体を用いた処理装置
  10. 請求項1、請求項2、請求項3または請求項4に記載の処理装置において、前記圧力媒体には、エタノール、メタノール、アセトンと水との混合率を管理した液体を用いることで熱膨張率をさらに精緻に決めることにより、温度計測と制御による圧力制御の精度を一層高めることができる処理装置
  11. 請求項1、請求項2、請求項3または請求項4に記載の処理装置において、円筒形の前記高圧容器内の加熱源を中心位置の鉛直方向の下部から中央の位置に整列して配置し、冷媒による冷却機能を前記高圧容器外の鉛直方向の上部に配置し、その間の前記圧力媒体の流動を熱伝導率の低い材料の仕切り板により遮断することで鉛直方向とその逆方向に行き交う熱対流が生じる構造とし、熱対流により決まる温度の最高点・最低点の位置をより厳密に決め、その最高温度と最低温度を計測することにより、温度の計測とその制御の精度をより向上できる処理装置
  12. 請求項11に記載の処理装置において、前記仕切り板の表面に鉛直方向全ての長さで薄く細長い形状の熱伝導率の高い板状の材料を張り付け、この表面の温度を計測することにより、前記圧力媒体の前記鉛直方向の平均となる温度をより精度良く計測できる処理装置
  13. 請求項1、請求項2、請求項3または請求項4に記載の処理装置において、前記高圧セル中の超硬材料であるアンビル材料の熱伝導率を選択することにより、前記高圧容器内の圧力媒体の昇圧速度と到達圧力を変化させることができる処理装置
  14. 請求項13に記載の処理装置において、前記高圧セル中の前記アンビル材料は、熱伝導率が低いため昇圧速度を遅くする方向に制御できるジルコニア、窒化珪素、サーメット、炭化ホウ素、または、これらを主成分とする材料である処理装置
  15. 請求項1、請求項2、請求項3または請求項4に記載の処理装置において、前記圧力媒体の温度上昇により前記高圧容器内の圧力の方が前記加圧機構内よりも高くなった際に前記圧力媒体の配管経路を閉止する方向に作動する逆止弁を設けることにより、前記高温高圧処理中に前記加圧機構から前記高圧容器へ至る前記配管経路を前記逆止弁の加圧機構側で取り外すことができる処理装置
  16. 請求項1、請求項2、請求項3または請求項4に記載の処理装置において、前記加圧機構からの配管経路を別途の前記高圧容器へ接続することにより、複数個の前記高圧容器で1つの前記加圧機構を共用することができる処理装置
  17. 請求項1、請求項2、請求項3または請求項4に記載の処理装置において、前記加圧機構を外しても、内包する2つ以上の前記高圧セルが8時間以上にわたり前記高圧容器を占有して、高温高圧処理が継続できる処理装置
PCT/JP2022/020084 2021-05-26 2022-05-12 液媒加圧による高温高圧処理装置 WO2022249893A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/281,563 US20240042403A1 (en) 2021-05-26 2022-05-12 High-temperature-high-pressure processing unit by solvent application of pressure
SE2351141A SE2351141A1 (en) 2021-05-26 2022-05-12 High-temperature high-pressure processing device using liquid medium pressurization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021088698A JP7052969B1 (ja) 2021-05-26 2021-05-26 液媒加圧による高温高圧処理装置
JP2021-088698 2021-05-26

Publications (1)

Publication Number Publication Date
WO2022249893A1 true WO2022249893A1 (ja) 2022-12-01

Family

ID=81260097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020084 WO2022249893A1 (ja) 2021-05-26 2022-05-12 液媒加圧による高温高圧処理装置

Country Status (4)

Country Link
US (1) US20240042403A1 (ja)
JP (1) JP7052969B1 (ja)
SE (1) SE2351141A1 (ja)
WO (1) WO2022249893A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117577953A (zh) * 2024-01-19 2024-02-20 北京海德利森科技有限公司 一种应用于固态锂电池的热等静压工艺方法及装置
NL2033668B1 (en) * 2022-12-05 2024-06-11 Pre Vise B V High-pressure high-temperature apparatus and manufacturing facility comprising such an apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052969B1 (ja) * 2021-05-26 2022-04-12 隆太郎 和田 液媒加圧による高温高圧処理装置
JP2024070979A (ja) 2022-11-14 2024-05-24 セイコーエプソン株式会社 印刷装置、及び、印刷方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529324A (en) * 1966-08-13 1970-09-22 Naoto Kawai High pressure generating method and apparatus
JPS4613430B1 (ja) * 1966-08-13 1971-04-09
JPS60151096U (ja) * 1984-03-17 1985-10-07 株式会社神戸製鋼所 熱間静水圧加圧装置
JPS6384796A (ja) * 1986-09-26 1988-04-15 Kobe Steel Ltd 湿式冷間静水圧加圧装置
US20050150444A1 (en) * 2004-01-13 2005-07-14 Chien-Min Sung High pressure crystal growth apparatuses and associated methods
JP2008546528A (ja) * 2005-06-24 2008-12-25 ザ ジェメシス コーポレーション 人工ダイヤモンドを成長させる装置と方法
JP2010117076A (ja) * 2008-11-13 2010-05-27 Kobe Steel Ltd 熱間等方圧加圧装置
JP2012187612A (ja) * 2011-03-11 2012-10-04 Japan Atomic Energy Agency 高圧発生装置及び磁化測定装置
CN109289704A (zh) * 2018-10-18 2019-02-01 遵义医学院 一种小型高压实验装置中的高压腔装置
JP2020185595A (ja) * 2019-05-15 2020-11-19 株式会社神戸製鋼所 等方圧加圧装置、等方圧加圧装置用収容ユニット、等方圧加圧処理方法
JP2021004692A (ja) * 2019-06-26 2021-01-14 株式会社神戸製鋼所 等方圧加圧装置、等方圧加圧装置用収容容器、等方圧加圧処理方法
JP7052969B1 (ja) * 2021-05-26 2022-04-12 隆太郎 和田 液媒加圧による高温高圧処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9539781B2 (en) * 2014-08-29 2017-01-10 Novatek Ip, Llc Balanced cell for high-pressure high-temperature press

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529324A (en) * 1966-08-13 1970-09-22 Naoto Kawai High pressure generating method and apparatus
JPS4613430B1 (ja) * 1966-08-13 1971-04-09
JPS60151096U (ja) * 1984-03-17 1985-10-07 株式会社神戸製鋼所 熱間静水圧加圧装置
JPS6384796A (ja) * 1986-09-26 1988-04-15 Kobe Steel Ltd 湿式冷間静水圧加圧装置
US20050150444A1 (en) * 2004-01-13 2005-07-14 Chien-Min Sung High pressure crystal growth apparatuses and associated methods
JP2008546528A (ja) * 2005-06-24 2008-12-25 ザ ジェメシス コーポレーション 人工ダイヤモンドを成長させる装置と方法
JP2010117076A (ja) * 2008-11-13 2010-05-27 Kobe Steel Ltd 熱間等方圧加圧装置
JP2012187612A (ja) * 2011-03-11 2012-10-04 Japan Atomic Energy Agency 高圧発生装置及び磁化測定装置
CN109289704A (zh) * 2018-10-18 2019-02-01 遵义医学院 一种小型高压实验装置中的高压腔装置
JP2020185595A (ja) * 2019-05-15 2020-11-19 株式会社神戸製鋼所 等方圧加圧装置、等方圧加圧装置用収容ユニット、等方圧加圧処理方法
JP2021004692A (ja) * 2019-06-26 2021-01-14 株式会社神戸製鋼所 等方圧加圧装置、等方圧加圧装置用収容容器、等方圧加圧処理方法
JP7052969B1 (ja) * 2021-05-26 2022-04-12 隆太郎 和田 液媒加圧による高温高圧処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2033668B1 (en) * 2022-12-05 2024-06-11 Pre Vise B V High-pressure high-temperature apparatus and manufacturing facility comprising such an apparatus
CN117577953A (zh) * 2024-01-19 2024-02-20 北京海德利森科技有限公司 一种应用于固态锂电池的热等静压工艺方法及装置
CN117577953B (zh) * 2024-01-19 2024-03-29 北京海德利森科技有限公司 一种应用于固态锂电池的热等静压工艺方法及装置

Also Published As

Publication number Publication date
JP2022181648A (ja) 2022-12-08
US20240042403A1 (en) 2024-02-08
JP7052969B1 (ja) 2022-04-12
SE2351141A1 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2022249893A1 (ja) 液媒加圧による高温高圧処理装置
CN107748110B (zh) 微机控制电液伺服岩石三轴动态剪切渗流耦合试验方法
EP1476249B1 (en) Improved pressure vessel
CN107782634B (zh) 微机控制电液伺服岩石三轴动态剪切渗流耦合试验装置
EP1846148B1 (en) Apparatus for processing materials in supercritical fluids
US8871024B2 (en) High pressure apparatus and method for nitride crystal growth
US10145021B2 (en) Apparatus for processing materials at high temperatures and pressures
TW468014B (en) Compliant high temperature seals for dissimilar materials
Kenichi et al. Versatile gas-loading system for diamond-anvil cells
Suehiro et al. Critical parameters of {xCO2+ (1− x) CHF3} forx=(1.0000, 0.7496, 0.5013, and 0.2522)
JP2006514581A (ja) 超臨界流体中で材料を処理するための高温高圧カプセル
US5997273A (en) Differential pressure HIP forging in a controlled gaseous environment
CN109750356B (zh) 用于在超临界流体中生长材料的装置和材料的生长方法
CN109494176A (zh) 用于加工半导体器件的装置和方法
JP2004340920A (ja) 機械特性試験装置
US3523148A (en) Isostatic pressure transmitting apparatus and method
RU2393058C2 (ru) Двухкамерный газостат
US8398929B2 (en) Device and method for producing a tubular refractory metal compound structure
Bocian et al. Gas loading apparatus for the Paris-Edinburgh press
Freitas et al. Heitt Mjölnir: a heated miniature triaxial apparatus for 4D synchrotron microtomography
JP2020185595A (ja) 等方圧加圧装置、等方圧加圧装置用収容ユニット、等方圧加圧処理方法
JPS63267883A (ja) 熱間静水圧プレス装置
EP3976243A1 (en) Apparatus and methods for the manufacture of synthetic diamonds
WO2020240213A1 (en) Apparatus and methods for the manufacture of synthetic diamonds
JPH01139212A (ja) Hip鍛造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811166

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18281563

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2351141-3

Country of ref document: SE

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22811166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP