WO2022249786A1 - Electric power system operation plan generation device, and method for generating electric power system operation plan - Google Patents

Electric power system operation plan generation device, and method for generating electric power system operation plan Download PDF

Info

Publication number
WO2022249786A1
WO2022249786A1 PCT/JP2022/017902 JP2022017902W WO2022249786A1 WO 2022249786 A1 WO2022249786 A1 WO 2022249786A1 JP 2022017902 W JP2022017902 W JP 2022017902W WO 2022249786 A1 WO2022249786 A1 WO 2022249786A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation plan
power system
system operation
electric power
scenario
Prior art date
Application number
PCT/JP2022/017902
Other languages
French (fr)
Japanese (ja)
Inventor
哲嗣 小野
勉 河村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022249786A1 publication Critical patent/WO2022249786A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present invention relates to a power system operation plan generation device and a power system operation plan generation method.
  • uncertain parameters such as the output of renewable energy power sources and charging demand for electric vehicles.
  • variables that should be determined in advance such as the day before (hereinafter referred to as operation plan variables) and variables that can be determined in real time (hereinafter referred to as control variables on the day).
  • operation planning variables in a distribution system the tap position of a tap adjustment device (e.g., LRT: Load Ratio Control Transformer, SVR: Step Voltage Regulator), the distributed energy owned by consumers such as private generators, storage batteries, and electric vehicles
  • DER Distributed Energy Resource
  • control variables for the day SVC (: Static Var Compensator), distributed energy sources DER such as storage batteries for grids owned by system operators, and command to activate adjustment margin of distributed energy sources DER owned by reserved consumers quantity, etc.
  • the first possible method for determining the operation planning variables is to assume that the prediction of the uncertain parameters is correct, and to combine values that result in the best system operation KPI (e.g. voltage tolerance, line capacity violation amount, response cost). is a method of choosing This method does not take into account the case where the prediction is wrong, and depending on the fluctuation pattern of uncertain parameters, the system operation KPI will deteriorate significantly (e.g., violation of constraints such as voltage tolerance and line capacity, extreme cost increases, etc.) may occur.
  • KPI voltage tolerance, line capacity violation amount, response cost
  • Patent Document 1 describes "an operation plan formulation device, an operation plan formulation method, and an operation plan formulation program".
  • Patent Document 1 in order to handle the uncertainty of the output of renewable energy power sources in the optimization problem for solving the start-up and shutdown plan of a generator, a method of expressing this uncertainty in multiple scenarios is used.
  • Patent Document 1 assumes that the optimization problem can be simplified to be independent for each time period, with the aim of expressing uncertainty with a small number of scenarios.
  • tap adjustment devices used in power distribution systems are subject to restrictions across time zones, such as an upper limit on the number of tap position adjustments per day. Therefore, it cannot be simplified to be independent for each time zone.
  • the present invention has been made in view of the above, and is capable of obtaining an operation plan that satisfies three points: short calculation time, robustness against misprediction, and consideration of constraints across time zones.
  • An object of the present invention is to provide a plan generation device and a power system operation plan generation technology.
  • a power system operation plan generating device that obtains information on operation plan variables and information on current day control variables in the power system, and proposes an operation plan for objective function values in the most severe scenario assuming the severe state of the power system.
  • the most severe scenario generation unit that obtains the most severe scenario and the objective function value at that time from the fluctuation information of the uncertainty parameter, the operation plan proposal, and the objective function value of the control variable on the day, and the electricity
  • a power system operation plan generation device characterized by comprising a current control amount generation unit that determines an operation plan using system information, demand information, and the most severe scenario of the system.
  • the present invention "taking into account the uncertainty parameters in the power system, determining the operation planning variables to be determined in advance and the control variables on the day that can be determined in real time, and planning the operation of the power system.
  • a plan generation method in which information on operation plan variables in the electric power system and information on control variables for the day are obtained, and an operation plan proposal for the objective function value in the most severe scenario assuming the severe state of the electric power system is created.
  • the power system operation planning problem is divided into the main problem, the operation plan decision problem, and the subordinate problem.
  • the figure which shows the difference of an effect when this invention and a conventional system are compared.
  • the power system operation plan generation device will be described in the first embodiment, the concept of power system operation plan generation in the second embodiment, and the power system operation plan generation method in the third embodiment.
  • FIG. 1 is a diagram showing, as a representative processing function unit, the processing contents of the operation unit of the power system operation plan generation device realized using a computer device.
  • the robust operation plan generation device 10 has an operation plan generation unit 20, a most severe scenario generation unit 30, and a control amount generation unit 40 for that day.
  • the operation plan formulation device 10 has, for example, a display unit for displaying various information, an input unit for inputting input data, a communication interface unit for communicating with other terminals, and the like. You may
  • the robust operation plan generation device 10 obtains tap adjustment equipment information D1, customer-owned DER information D2, uncertain parameter variation information D3, demand information D4, and system information D5 as inputs from the outside in order to perform its processing.
  • the operation plan generation unit 20 in the robust operation plan generation device 10 obtains the tap adjustment device information D1 and the customer-owned DER information D2 as input data from the outside, and the objective function obtained by the most severe scenario generation unit 30 A value ⁇ p and sensitivity information b1 are input, an operation plan decision problem is generated based on these input data, and the solved operation plan proposal xp is output to the most severe scenario generator 30 .
  • the tap adjustment device information D1 includes, for example, the device type (for example, LRT, SVR, etc.) of each tap adjustment device, the installed bus ID, the number of tap stages, the tap width for each stage, the tap reference Including position, speed of response to control commands, tap adjustment limit per day, facility cost, installation cost, etc.
  • the device type for example, LRT, SVR, etc.
  • the consumer-owned DER information D2 includes, for example, the device type (eg, private power generator, electric vehicle, etc.), installed bus ID, installed capacity, response speed to control commands, and the like.
  • the consumer-owned DER information 110 may be input individually for each distributed energy source DER, or may be input as a total value of a plurality of distributed energy sources DER.
  • the objective function value ⁇ represents the objective function when the most severe scenario determination problem is solved by the most severe scenario generator 30, that is, the value of equation (14) described later.
  • the sensitivity information b1 is the amount of change in the objective function value ⁇ p when the operation plan xp is slightly changed.
  • the operation plan draft xp is obtained as a solution to the operation plan decision problem.
  • This example will be described with reference to FIG.
  • Each row in FIG. 2 represents a time step 221 and each column represents a tap adjuster ID 222 and a customer owned DER ID 223 .
  • the tap position 224 at each time step 221 is stored.
  • the reservation amount 225 of the adjustment margin of each time step is stored. Since the reservation amount 225 of the adjustment margin can take both values of demand increase and decrease, it can also take a negative value as shown in FIG.
  • the most severe scenario generation unit 30 in the power system operation plan generation device 10 inputs the uncertain parameter fluctuation information D3 as input data from the outside, and the operation plan proposal obtained by the operation plan generation unit 20 x, the objective function value ⁇ p KPI obtained by the control amount generation unit 40 for the current day, and the sensitivity information b2 are input, the most severe scenario determination problem is generated based on these input data, and the most severe scenario UP that is solved is controlled for the current day.
  • the objective function value ⁇ p KPI and the sensitivity information b2 are output to the most severe scenario generator 30 .
  • the graph considers PV output as an example of an uncertain parameter.
  • the horizontal axis represents the time of day and 24 hours, and the vertical axis represents the photovoltaic power output.
  • the part represented by the gray range is the fluctuation information 121 of the photovoltaic power generation output. It is assumed that the photovoltaic output may fluctuate within this gray range.
  • the range of the fluctuation information 121 may be determined based on actual values, or may be determined based on a weather forecast or the like.
  • the objective function value ⁇ p KPI represents the objective function when solving the most severe scenario determination problem, that is, the value of equation (15) described later.
  • the sensitivity information b2 is the amount of change in the objective function value ⁇ p KPI when the most severe scenario u is slightly changed.
  • the graph in Fig. 4 shows an example of the most severe scenario up.
  • the graph considers PV output as an example of an uncertain parameter.
  • the horizontal axis represents the time of day and 24 hours, and the vertical axis represents the photovoltaic power output.
  • the part represented by the gray range is the fluctuation information 121 of the photovoltaic power generation output.
  • a thick line 241 represents the most severe scenario up.
  • the most severe scenario up is determined by solving the most severe scenario determination problem. Also, the thick line 241 falls within the gray range 121 at any time step.
  • the current control amount generation unit 40 in the power system operation plan generation device 10 obtains the customer-owned DER information D2, the demand information D4, and the system information D5 as input data from the outside.
  • the most severe scenario up obtained by the severe scenario generation unit 30 is input, the current day control amount determination problem is generated based on these input data, and the solved objective function value ⁇ p KPI and sensitivity information b2 are sent to the most severe scenario generation unit. 30.
  • the device shown in FIG. 1 will be used to explain in detail that a robust operation plan can be generated using mathematical formulas.
  • the normal operation planning method it is better to compare it with the normal operation planning method, so the normal operation planning method will be explained first.
  • the characteristic of the normal operation planning method is that the user inputs in advance a group of scenarios that express uncertainty, and the operation plan is obtained by solving a mathematical programming problem with the optimization of the system operation KPI as the objective function.
  • the above mathematical programming problem is represented by the following equations (1) and (2).
  • a lower case letter s represents a scenario
  • a capital letter S represents a set of input scenarios
  • a small letter t represents time
  • a capital letter T represents a set of times t included in the planning period
  • ⁇ KPI represents system operation KPI.
  • the subscript of min represents a decision variable
  • x is a vector of operation plan variables (e.g., tap position control amount, adjustment margin reservation amount of customer-owned DER)
  • y is a vector of control variables for the day (e.g., reserved adjustment Activation command amount of reserve power) respectively. It should be noted that these are vectors
  • equation (2) is a constraint expression indicating the system constraint conditions for obtaining equation (1).
  • the operation plan variable vector x must be determined at a stage where the risk of the uncertain parameter fluctuating from the predicted value remains. Therefore, the same operation plan x is determined for all scenarios S input by the user in advance. be.
  • the intraday control variable vector y is a variable that can be adjusted in real time after the uncertain parameters become clear (for example, after the actual photovoltaic output is measured). Control y is determined.
  • a typical operation planning technique simultaneously optimizes the above decision variables x and y in a single mathematical programming problem.
  • the system constraint of expression (2) is set.
  • the system constraints include the energy balance formula for each bus, the voltage calculation formula for each bus, the power distribution loss calculation formula for each line, the upper limit of the number of tap position adjustments per day for the tap adjustment device, and the adjustable amount of the consumer DER device. A lower limit etc. are mentioned.
  • A1, A2, and C in equation (2) are matrices or vectors representing system constraints, and the constraint equations in equation (2) are matrix notations of system constraints.
  • This mathematical programming problem can be solved with a mathematical programming solver such as CPLEX or Gurobi as a mixed integer programming (hereinafter referred to as MILP) or a mixed integer second-order cone programming (hereinafter referred to as MISOCP).
  • MILP mixed integer programming
  • MISOCP mixed integer second-order cone programming
  • the scenario group S that is input does not include the scenario u that makes the system operation KPI worst (hereafter referred to as the most severe scenario)
  • the most severe scenario there is a possibility that the system operation KPI will be extremely deteriorated in some cases. Therefore, in order to obtain an operation plan x that is robust against any variation pattern, it is necessary to include the most severe scenario u in the input scenario group S.
  • the first reason is that there are a huge number of candidates for the most severe scenario u.
  • the number of uncertain parameters increases due to the spread of renewable energy sources and electric vehicles, the number of candidates increases explosively.
  • the second reason is that it is difficult to appropriately select the most severe scenario u before determining the operation plan x, because which scenario u will be the most severe scenario varies depending on the operation plan x. .
  • the proposed operation planning method (hereinafter referred to as the proposed method) is superior to the normal operation planning method in the following two points.
  • the first point is that in the normal operation planning method, it is necessary to prepare a group of scenarios that express uncertainty, but in the proposed method, it is only necessary to input the fluctuation range of the uncertain parameter, and the scenario group No preparation is required.
  • the first point is that the normal operation planning method can only ensure robustness against the input scenario group, but the proposed method can guarantee robustness against any fluctuation pattern within the fluctuation range.
  • Equation (3) The mathematical programming problem (hereinafter referred to as robust operation planning problem) solved by the proposed method according to the present invention is shown in Equations (3) and (4) below.
  • explanation may be omitted about the matter which has already been explained.
  • u is a vector of uncertain parameters and, like x and y, is a decision variable of the power system operation planning problem.
  • the system operation KPI, ⁇ KPI , and formula (4) are set as the system constraint in the same manner as in the normal operation planning method.
  • the most severe scenario u in which the system operation KPI deteriorates the most, is determined among the fluctuation patterns within the fluctuation range.
  • the operation plan x and the day control y that optimize the system operation KPI in the most severe scenario u are determined.
  • the value of the system operation KPI at this time becomes the theoretical worst value, and even if any other fluctuation pattern occurs, the value will not deteriorate from this theoretical worst value. Therefore, by solving this power system operation planning problem, it is possible to obtain an operation plan x that is robust against any fluctuation pattern.
  • the most severe scenario u is generated while solving the power system operation planning problem, it is not necessary to prepare the scenario s as a candidate in advance.
  • ⁇ cost , ⁇ loss , and ⁇ penalty represent operation cost, transmission loss, and constraint violation penalty, respectively.
  • W c , W l , and W p represent weighting factors for operating cost, transmission loss, and constraint violation penalty, respectively.
  • the weighting factor ratio is generally set as shown in equation (6). Items other than these may be added to the system operation KPI.
  • the power transmission loss ⁇ loss is represented by the following equation (7) as an example.
  • equation (7) it is assumed that the lowercase time t and the uppercase time T, which is a set of times t included in the planning period, have a relationship of t ⁇ T.
  • j is a bus number
  • N tap is a set of bus numbers with tap adjusting devices such as SVRs
  • N der is a set of bus numbers with customer-owned DERs.
  • C j tap represents the cost per tap adjustment in the tap adjustment equipment. The value of C j tap is obtained, for example, by dividing the sum of the tap adjustment equipment price and the installation cost by the number of tap adjustments that reach the end of the equipment life.
  • x j,t tap represents the number of tap adjustments in the tap adjustment device.
  • cj ,tder_r and cj,tder_c represent the incentive unit price for the adjustment margin reservation of the customer-owned DER and the incentive unit price for the same-day control.
  • x j, t der and y j, t der represent the reservation amount of the adjustment margin of the customer-owned DER and the activation command amount for the current day.
  • the first term on the right side of the equation (7) corresponds to the adjustment cost of the tap adjusting device
  • the second term corresponds to the incentive cost for the reserve adjustment capacity
  • the third term corresponds to the incentive cost for the actual control command.
  • x j, t tap , y j, t der are included in the vector x of the operation plan variables
  • x j, t der is included in the vector y of the current day control variables.
  • the power transmission loss ⁇ loss in the formula (5) is represented by the following formula (8), for example.
  • the equation (8) it is assumed that the lowercase time t and the uppercase time T, which is a set of times t included in the planning period, have a relationship of t ⁇ T.
  • B in equation (8) represents a set of lines.
  • r ij represents the resistance value in the line from bus (bus) i to bus j
  • lij, s, t represents the absolute value of the amount of current in scenario s, time t in the line from bus i to bus j.
  • the constraint violation penalty ⁇ penalty of the expression (5) is expressed by the following expression (9) as an example.
  • the lowercase time t and the uppercase time T which is a set of times t included in the planning period, have a relationship of t ⁇ T.
  • ⁇ ij,t represents the excess amount of the line constraint on the line connecting the bus i to the bus j
  • ⁇ j,t represents the deviation amount of the voltage on the bus j from the allowable range.
  • B represents a set of buses.
  • the operation plan generation unit 20 in the power system operation plan generation device 10 shown in FIG. 1 solves the power system operation plan problems shown in formulas (1) to (9) above.
  • the power system operation planning problem has a three-layer structure as described above, mathematical programming solvers such as CPLEX and Gurobi do not support multi-structured mathematical programming problems and cannot be solved as they are.
  • the power system operation planning problem consists of a three-layer structure
  • the outermost min part is divided into a main problem (hereinafter referred to as an operation plan decision problem), and the other parts are divided into subordinate problems.
  • this dependent problem has a double structure of max and min, Bender's decomposition is applied again, and the problem is again divided into a main problem and a dependent problem (hereinafter referred to as the most severe scenario determination problem and today's control amount determination problem, respectively).
  • the power system operation planning problem with a triple structure can be decomposed into the following three mathematical programming problems.
  • the current day control amount determination problem is processed in the current day control amount generation part 40 .
  • the operation plan decision problem is the main problem, and its subordinate problem corresponds to the most severe scenario decision problem.
  • the most severe scenario determination problem is the main problem for the today's controlled variable determination problem, and the today's controlled variable determination problem corresponds to its subordinate problem.
  • the operation plan decision problem processed by the operation plan generation unit 20 is represented by the following equations (10) and (11).
  • the decision variables are ⁇ and x.
  • the proposed operation plan xp obtained by solving this is determined so as to minimize the estimated value of the system operation KPI.
  • a variable with the symbol p indicates a constant value obtained as a calculation result.
  • Bender's cut is set as the constraint condition of formula (11) and added for each iteration of calculation.
  • b1 is sensitivity information defined as the amount of change in ⁇ p when the operation plan xp is slightly changed, and is also called shadow price. Sensitivity information is obtained as a solution of the dual problem of the dependent problem.
  • the above Bender's cut formula can be regarded as a linear approximation formula of ⁇ with respect to x. By sequentially adding these, the estimation accuracy of ⁇ is improved, and the operation plan xp is updated.
  • the most severe scenario determination problem to be processed by the most severe scenario generation unit 30 is represented by the following equation (9).
  • the decision variables are ⁇ and x.
  • the proposed operation plan xp obtained by solving this is determined so as to minimize the estimated value of the system operation KPI.
  • a vendor's cut is set as the constraint condition of the formula and added for each iteration.
  • b2 is sensitivity information defined as the amount of change in ⁇ KPI when the scenario up is slightly changed. By sequentially adding these, the estimation accuracy of is improved and the most severe scenario up is updated.
  • the today's controlled variable decision problem processed by the today's controlled variable generator 40 is represented by the following equations (14) and (15).
  • the decision variable is the current day control y, which is solved to minimize the estimated value of the system operation KPI.
  • the ⁇ KPI of the objective function for the today's controlled variable determination problem represents the system operation KPI.
  • a system constraint is set as the constraint condition of the equation (15). Therefore, in the today's control amount determination problem, the system operation KPI is directly calculated based on system constraints.
  • is the allowable error rate and is set to 0.0001, for example.
  • UB and LB represent the upper and lower bounds of the objective function value, respectively. In the case of iterative calculations between the operation plan determination problem and the most severe scenario determination problem, UB and LB are calculated by the following equation (17).
  • ⁇ p is the value of ⁇ determined by the operation plan decision problem. That is, it can be interpreted that the calculation is repeated until ⁇ , which is the estimated value of ⁇ , becomes sufficiently close to the true value of ⁇ .
  • UB and LB are calculated by the following equation (18).
  • ⁇ p is the value of ⁇ determined by the uncertain parameter determination problem. This can also be interpreted as repeating the calculation until ⁇ , which is the estimated value of ⁇ KPI , becomes sufficiently close to the true value of ⁇ KPI .
  • processing step S4 the solutions of equations (12) and (13), which are the most severe scenario determination problem, are obtained.
  • the generation and addition of vendor's cuts are performed according to the formulas (12) and (13) in processing step S3.
  • Processing step S4 is performed on the condition that The uncertain parameter fluctuation information (renewable energy power supply output and electric vehicle charging demand) used at this time, the conditions for the control amount of the day (objective function value ⁇ , sensitivity information b2), the operation plan xp, etc. are shown in Fig. 1.
  • processing step S5 as processing of the control amount generation unit 40 on the current day, the solution of equations (14) and (15), which is the control amount determination problem for the current day, is obtained.
  • the today's control amount determination processing in processing step S5 includes determination of the end of calculation using equations (16) and (18) for the convergence of the most severe scenario determination problem in processing step S6, and the operation plan determination problem in processing step S7. It is repeatedly executed until the calculation end determination using the equations (16) and (17) of convergence is satisfied.
  • Demand information and system information used at this time are as shown in FIG.
  • FIG. 6 is a diagram showing the difference in effect when comparing the present invention and the conventional method.
  • the final output of the power system operation plan generating apparatus in FIG. 1 is displayed on a monitor screen or the like, and is shown as an image diagram in that case.
  • the system operation KPI for one assumed scenario is obtained as point information, but in the case of the present invention, the most severe scenario is internally generated, A system operation KPI value 270 (theoretical worst value) is calculated for it. Therefore, the system operation KPI value is output in the form of being within the range even if any conceivable scenario occurs. In other words, compared to the conventional method, it is determined as a range rather than as a point.
  • 10 power system operation plan generation device
  • 20 operation plan generation unit
  • 30 most severe scenario generation unit
  • 40 current day control amount generation unit

Abstract

Provided are an electric power system operation plan generation device and an electric power system operation plan generation technology with which it is possible to derive an operation plan that satisfies three requirements, specifically a short calculation time, a robustness to missed prediction, and the consideration of restraints crossing over time slots. Provided is an electric power system operation plan generation device for defining, in consideration of uncertainty parameters in an electric power system, an operation plan variable that should be determined in preliminary stages and an on-day control variable that can be determined in real time, and producing an operation plan for the electric power system, the electric power system operation plan generation being characterized by comprising: an operation plan generation unit for acquiring information pertaining to an operation plan variable and information pertaining to an on-day control variable in the electric power system and creating a proposed operation plan with respect to an objective function value in the case of a severest scenario assuming severe states of the electric power system; a severest scenario generation unit for deriving a severest scenario and an objective function value in that case from uncertainty parameter variability information, the proposed operation plan, and the objective function value of the on-day control variable; and an on-day control quantity generation unit for determining an operation plan using the system information, demand information, and severest scenario of the electric power system.

Description

電力系統運用計画生成装置および電力系統運用計画生成方法POWER SYSTEM OPERATION PLAN GENERATION DEVICE AND POWER SYSTEM OPERATION PLAN GENERATION METHOD
 本発明は、電力系統運用計画生成装置および電力系統運用計画生成方法に関する。 The present invention relates to a power system operation plan generation device and a power system operation plan generation method.
 電力系統では,温室効果ガスを排出しない再生可能エネルギー電源の導入が進んでいる。代表的な再生可能エネルギー電源である太陽光発電や風力発電は気象条件よって出力が変動する。加えて、電気自動車の普及を背景に、急速充電ステーションの普及や大容量化が進んでおり、この電力需要が電力系統に影響を与える可能性がある。こうした再生可能エネルギー電源の出力や電気自動車の充電需要に代表される、不確実性を有するパラメータ(以下、不確実パラメータという)を考慮に入れた系統運用が求められている。 In power systems, the introduction of renewable energy power sources that do not emit greenhouse gases is progressing. The output of photovoltaic power generation and wind power generation, which are representative renewable energy sources, fluctuates depending on weather conditions. In addition, with the spread of electric vehicles, the spread of quick charging stations and the increase in capacity are progressing, and this power demand may affect the power system. There is a demand for system operation that takes into account uncertain parameters (hereinafter referred to as uncertain parameters), such as the output of renewable energy power sources and charging demand for electric vehicles.
 一方、系統運用には、前日等の事前の段階で決定すべき変数(以下、運用計画変数という)とリアルタイムに決定できる変数(以下、当日制御変数という)の2種類の変数が存在する。例えば、配電系統における運用計画変数としては、タップ調整機器(例、LRT:Load Ratio control Transfomer、SVR:Step Voltage Regulator)のタップ位置、自家用発電機や蓄電池、電気自動車などの需要家所有の分散エネルギー源(DER:Destributed Energy Resource)の調整余力の予約量などが挙げられる。また、当日制御変数としては、SVC(:Static Var Compensator)や、系統運用事業者が所有する系統用蓄電池などの分散エネルギー源DER、予約した需要家所有の分散エネルギー源DERの調整余力の発動指令量などが挙げられる。 On the other hand, in system operation, there are two types of variables: variables that should be determined in advance such as the day before (hereinafter referred to as operation plan variables) and variables that can be determined in real time (hereinafter referred to as control variables on the day). For example, as operation planning variables in a distribution system, the tap position of a tap adjustment device (e.g., LRT: Load Ratio Control Transformer, SVR: Step Voltage Regulator), the distributed energy owned by consumers such as private generators, storage batteries, and electric vehicles The reserved amount of the adjustment margin of the source (DER: Distributed Energy Resource) and the like can be mentioned. In addition, as control variables for the day, SVC (: Static Var Compensator), distributed energy sources DER such as storage batteries for grids owned by system operators, and command to activate adjustment margin of distributed energy sources DER owned by reserved consumers quantity, etc.
 運用計画変数の決定方法としてまず考えられるのは、不確実パラメータの予測が当たると仮定し、系統運用KPI(例:電圧許容範囲や線路容量の違反量、対応コスト)が最良となる値の組み合わせを選ぶ方法である。この方法では、予測が外れた場合は考慮されておらず、不確実パラメータの変動パターンによっては系統運用KPIの極端な悪化(例:電圧許容範囲や線路容量などの制約違反の発生、追加対応による極端なコスト増など)が発生する可能性がある。 The first possible method for determining the operation planning variables is to assume that the prediction of the uncertain parameters is correct, and to combine values that result in the best system operation KPI (e.g. voltage tolerance, line capacity violation amount, response cost). is a method of choosing This method does not take into account the case where the prediction is wrong, and depending on the fluctuation pattern of uncertain parameters, the system operation KPI will deteriorate significantly (e.g., violation of constraints such as voltage tolerance and line capacity, extreme cost increases, etc.) may occur.
 そのため、不確実パラメータの予測が変動した場合も、系統運用KPI(例:電圧許容範囲や線路容量の違反量、対応コスト)が極端に悪化しない(以下、ロバストな、と表記する)ように運用計画変数を決定する必要がある。 Therefore, even if the prediction of uncertain parameters fluctuates, the system operation KPI (e.g. voltage tolerance, line capacity violation amount, response cost) will not deteriorate significantly (hereinafter referred to as robust). Planning variables need to be determined.
 ロバストな系統運用を目的とした運用計画変数の決定技術の一つとして、特許文献1には、「運用計画策定装置、運用計画策定方法および運用計画策定プログラム」が記されている。特許文献1では、発電機の起動停止計画を解く最適化問題の中で、再生可能エネルギー電源の出力の不確実性を取り扱うために、この不確実性を複数シナリオで表現する手法が用いられている。 As one of the techniques for determining operation plan variables for the purpose of robust system operation, Patent Document 1 describes "an operation plan formulation device, an operation plan formulation method, and an operation plan formulation program". In Patent Document 1, in order to handle the uncertainty of the output of renewable energy power sources in the optimization problem for solving the start-up and shutdown plan of a generator, a method of expressing this uncertainty in multiple scenarios is used. there is
特開2016-63609号公報JP 2016-63609 A
 一般に、シナリオ数を増やすと最適化問題の計算時間が増加する。このため、例えば、計算時間に制限がある場合は、十分な数のシナリオを用いることができず、得られる解の信頼性が低下するという課題がある。 In general, increasing the number of scenarios increases the computation time of the optimization problem. For this reason, for example, when there is a limit on computation time, a sufficient number of scenarios cannot be used, and the reliability of the obtained solution is lowered.
 上記課題解決のため、特許文献1では、少ないシナリオ数で不確実性を表現することを目的に、最適化問題を時間帯ごとに独立なものへと単純化できるという仮定を置いている。しかし、配電系統で用いられるタップ調整機器は、日当たりのタップ位置調整回数上限などの、時間帯を跨ぐ制約が存在する。そのため、時間帯ごとに独立なものへと単純化することができない。 In order to solve the above problem, Patent Document 1 assumes that the optimization problem can be simplified to be independent for each time period, with the aim of expressing uncertainty with a small number of scenarios. However, tap adjustment devices used in power distribution systems are subject to restrictions across time zones, such as an upper limit on the number of tap position adjustments per day. Therefore, it cannot be simplified to be independent for each time zone.
 本発明は、上記に鑑みてなされたものであって、短い計算時間、予測外れへのロバスト性、および時間帯を跨ぐ制約の考慮の3点を満たす運用計画を求めることができる、電力系統運用計画生成装置および電力系統運用計画生成技術を提供することを目的とする。 The present invention has been made in view of the above, and is capable of obtaining an operation plan that satisfies three points: short calculation time, robustness against misprediction, and consideration of constraints across time zones. An object of the present invention is to provide a plan generation device and a power system operation plan generation technology.
 以上のことから本発明においては、「電力系統における不確実性パラメータを考慮に入れ、事前の段階で決定すべき運用計画変数とリアルタイムに決定できる当日制御変数を定め、電力系統の運用計画を行う電力系統運用計画生成装置であって、電力系統における運用計画変数の情報と当日制御変数の情報を入手して、電力系統の過酷状態を想定した最過酷シナリオのときの目的関数値に対する運用計画案を作成する運用計画生成部と、不確実性パラメータの変動情報と運用計画案と当日制御変数の目的関数値とから最過酷シナリオとそのときの目的関数値を求める最過酷シナリオ生成部と、電力系統の系統情報と需要情報と最過酷シナリオとを用いて運用計画を決定する当日制御量生成部を備えることを特徴とする電力系統運用計画生成装置」としたものである。 From the above, in the present invention, "taking into account the uncertainty parameters in the power system, determining the operation plan variables that should be determined in advance and the control variables that can be determined in real time, and planning the operation of the power system A power system operation plan generating device that obtains information on operation plan variables and information on current day control variables in the power system, and proposes an operation plan for objective function values in the most severe scenario assuming the severe state of the power system. , the most severe scenario generation unit that obtains the most severe scenario and the objective function value at that time from the fluctuation information of the uncertainty parameter, the operation plan proposal, and the objective function value of the control variable on the day, and the electricity A power system operation plan generation device characterized by comprising a current control amount generation unit that determines an operation plan using system information, demand information, and the most severe scenario of the system.
 また本発明においては、「電力系統における不確実性パラメータを考慮に入れ、事前の段階で決定すべき運用計画変数とリアルタイムに決定できる当日制御変数を定め、電力系統の運用計画を行う電力系統運用計画生成方法であって、電力系統における運用計画変数の情報と当日制御変数の情報を入手して、電力系統の過酷状態を想定した最過酷シナリオのときの目的関数値に対する運用計画案を作成する電力系統運用計画問題について、電力系統運用計画問題を主問題である運用計画決定問題と従属問題にわけ、さらに従属問題を主問題である最過酷シナリオ決定問題と従属問題である当日制御量決定問題に分け、これにより3重構造の電力系統運用計画問題の解として電力系統の運用計画を行う電力系統運用計画生成方法」としたものである。 In addition, in the present invention, "taking into account the uncertainty parameters in the power system, determining the operation planning variables to be determined in advance and the control variables on the day that can be determined in real time, and planning the operation of the power system. A plan generation method in which information on operation plan variables in the electric power system and information on control variables for the day are obtained, and an operation plan proposal for the objective function value in the most severe scenario assuming the severe state of the electric power system is created. Regarding the power system operation planning problem, the power system operation planning problem is divided into the main problem, the operation plan decision problem, and the subordinate problem. A power system operation plan generation method for performing an operation plan for a power system as a solution to a triple structure power system operation plan problem.
 本発明によれば、短い計算時間、予測外れへのロバスト性、および時間帯を跨ぐ制約の考慮の3点を満たす運用計画を求めることができるという効果を奏する。 According to the present invention, it is possible to obtain an operation plan that satisfies three points: short calculation time, robustness against misprediction, and consideration of constraints across time zones.
電力系統運用計画生成装置の演算部における処理内容を、その代表的な処理機能部として表記した図。The figure which described the processing content in the calculating part of a power system operation plan production|generation apparatus as the representative processing function part. 運用計画案xpが運用計画決定問題の解として求まることを示す図。The figure which shows that the operational plan proposal xp is obtained as a solution of the operational plan decision problem. 不確実パラメータ変動情報の例を示す図。The figure which shows the example of uncertain parameter fluctuation|variation information. 最過酷シナリオの例を示す図。The figure which shows the example of a severest scenario. 電力系統運用計画生成方法の処理フロー。A processing flow of a power system operation plan generation method. 本発明と従来方式を比較した時の効果の相違を示す図。The figure which shows the difference of an effect when this invention and a conventional system are compared.
 以下に、本発明に係る電力系統運用計画生成装置および電力系統運用計画生成技術の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。そして、各実施例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Below, embodiments of the power system operation plan generation device and the power system operation plan generation technology according to the present invention will be described in detail based on the drawings. In addition, this invention is not limited by this Example. Further, each embodiment can be appropriately combined within a range that does not contradict the processing contents.
 以下の説明では、実施例1において電力系統運用計画生成装置について、実施例2において電力系統運用計画生成の考え方について、実施例3において電力系統運用計画生成方法について説明する。 In the following description, the power system operation plan generation device will be described in the first embodiment, the concept of power system operation plan generation in the second embodiment, and the power system operation plan generation method in the third embodiment.
 本発明の実施例1では、電力系統運用計画生成装置について説明するが、この適用事例をタップ調節機器と需要家所有DERを含む配電系統を対象として、不確実パラメータの変動に対しロバストな運用計画を策定する電力系統運用計画生成装置について述べる。 In the first embodiment of the present invention, a power system operation plan generation apparatus will be described, but this application example is targeted at a distribution system including a tap adjustment device and a customer-owned DER, and a robust operation plan against fluctuations in uncertain parameters We will describe the power system operation plan generation device that formulates the
 まず電力系統運用計画生成装置の構成について説明する。図1は、計算機装置を用いて実現される電力系統運用計画生成装置の演算部における処理内容を、その代表的な処理機能部として表記した図である。 First, the configuration of the power system operation plan generation device will be explained. FIG. 1 is a diagram showing, as a representative processing function unit, the processing contents of the operation unit of the power system operation plan generation device realized using a computer device.
 図1に示すように、ロバスト運用計画生成装置10は、運用計画生成部20と最過酷シナリオ生成部30と当日制御量生成部40を有している。ただし運用計画策定装置10は、図1に示した機能部以外にも、例えば、各種情報を表示する表示部、入力データを入力する入力部、他の端末と通信を行う通信インタフェース部などを有してもよい。 As shown in FIG. 1, the robust operation plan generation device 10 has an operation plan generation unit 20, a most severe scenario generation unit 30, and a control amount generation unit 40 for that day. However, in addition to the functional units shown in FIG. 1, the operation plan formulation device 10 has, for example, a display unit for displaying various information, an input unit for inputting input data, a communication interface unit for communicating with other terminals, and the like. You may
 ロバスト運用計画生成装置10は、その処理遂行のために、外部からの入力として、タップ調整機器情報D1と需要家所有DER情報D2と不確実パラメータ変動情報D3と需要情報D4系統情報D5を得る。 The robust operation plan generation device 10 obtains tap adjustment equipment information D1, customer-owned DER information D2, uncertain parameter variation information D3, demand information D4, and system information D5 as inputs from the outside in order to perform its processing.
 ロバスト運用計画生成装置10内の運用計画生成部20では、外部からの入力データとして、タップ調整機器情報D1と需要家所有DER情報D2を入手し、また最過酷シナリオ生成部30で求めた目的関数値ηpおよび感度情報b1を入力して、これらの入力データを基に運用計画決定問題を生成し、求解した運用計画案xpを最過酷シナリオ生成部30に出力する。 The operation plan generation unit 20 in the robust operation plan generation device 10 obtains the tap adjustment device information D1 and the customer-owned DER information D2 as input data from the outside, and the objective function obtained by the most severe scenario generation unit 30 A value ηp and sensitivity information b1 are input, an operation plan decision problem is generated based on these input data, and the solved operation plan proposal xp is output to the most severe scenario generator 30 .
 この場合に使用する外部入力のうちタップ調整機器情報D1は、例えば、各タップ調整機器の機器種別(例えば、LRT、SVRなど)、設置バスID、タップ段数、1段毎のタップ幅、タップ基準位置、制御指令への応答速度、日当たりのタップ調整制限回数、設備コスト、設置コストなどを含む。 Among the external inputs used in this case, the tap adjustment device information D1 includes, for example, the device type (for example, LRT, SVR, etc.) of each tap adjustment device, the installed bus ID, the number of tap stages, the tap width for each stage, the tap reference Including position, speed of response to control commands, tap adjustment limit per day, facility cost, installation cost, etc.
 また同じ外部入力のうち需要家所有DER情報D2は、例えば、機器種別(例えば、自家発、電気自動車など)、設置バスID、設備容量、制御指令への応答速度などがある。
また、上記需要家所有DER情報110は、個別に分散エネルギー源DER毎に入力しても、複数の分散エネルギー源DERの合算値を入力してもよい。
Among the same external inputs, the consumer-owned DER information D2 includes, for example, the device type (eg, private power generator, electric vehicle, etc.), installed bus ID, installed capacity, response speed to control commands, and the like.
The consumer-owned DER information 110 may be input individually for each distributed energy source DER, or may be input as a total value of a plurality of distributed energy sources DER.
 またここで目的関数値ηは、最過酷シナリオ生成部30において最過酷シナリオ決定問題を解いたときの目的関数、即ち後述する(14)式の値を表す。また感度情報b1は、運用計画案xpをわずかに変化させたときの目的関数値ηpの変化量である。 Here, the objective function value η represents the objective function when the most severe scenario determination problem is solved by the most severe scenario generator 30, that is, the value of equation (14) described later. The sensitivity information b1 is the amount of change in the objective function value ηp when the operation plan xp is slightly changed.
 運用計画案xpは、運用計画決定問題の解として求まる。この例を、図2を用いて説明する。図2の各行は各時間ステップ221を表し、各列はタップ調節機器のID222および需要家所有DERのID223を表す。各タップ調節機器のID222については、各時間ステップ221におけるタップ位置224を格納する。また、各需要家所有DERのID223については、各時間ステップの調整余力の予約量225を格納する。調整余力の予約量225は需要増減双方の値を取り得るため、図2で示すように負の値も取り得る。 The operation plan draft xp is obtained as a solution to the operation plan decision problem. This example will be described with reference to FIG. Each row in FIG. 2 represents a time step 221 and each column represents a tap adjuster ID 222 and a customer owned DER ID 223 . For each tap adjuster ID 222, the tap position 224 at each time step 221 is stored. In addition, for the ID 223 of each customer-owned DER, the reservation amount 225 of the adjustment margin of each time step is stored. Since the reservation amount 225 of the adjustment margin can take both values of demand increase and decrease, it can also take a negative value as shown in FIG.
 図1に戻り、電力系統運用計画生成装置10内の最過酷シナリオ生成部30では、外部からの入力データとして不確実パラメータ変動情報D3を入力し、また運用計画生成部20で求めた運用計画案xと、当日制御量生成部40で求めた目的関数値φpKPIと感度情報b2を入力して、これら入力データを基に最過酷シナリオ決定問題を生成し、求解した最過酷シナリオupを当日制御量生成部40に出力し、目的関数値φpKPIと感度情報b2を最過酷シナリオ生成部30に出力する。 Returning to FIG. 1, the most severe scenario generation unit 30 in the power system operation plan generation device 10 inputs the uncertain parameter fluctuation information D3 as input data from the outside, and the operation plan proposal obtained by the operation plan generation unit 20 x, the objective function value φp KPI obtained by the control amount generation unit 40 for the current day, and the sensitivity information b2 are input, the most severe scenario determination problem is generated based on these input data, and the most severe scenario UP that is solved is controlled for the current day. The objective function value φp KPI and the sensitivity information b2 are output to the most severe scenario generator 30 .
 この場合に使用する外部入力である不確実パラメータ変動情報D3の例を、図3のグラフに示している。グラフでは、不確実パラメータの例として太陽光発電出力を考えている。横軸は1日、24時間の時刻を、縦軸は太陽光発電出力を表す。グレーの範囲で表す部分が太陽光発電出力の変動情報121である。太陽光発電出力はこのグレーの範囲内で変動する可能性があるとする。上記変動情報121の範囲は、実績値に基づき決定しても良いし、気象予報などに基づき決定してもよい。 An example of the uncertain parameter fluctuation information D3, which is an external input used in this case, is shown in the graph of FIG. The graph considers PV output as an example of an uncertain parameter. The horizontal axis represents the time of day and 24 hours, and the vertical axis represents the photovoltaic power output. The part represented by the gray range is the fluctuation information 121 of the photovoltaic power generation output. It is assumed that the photovoltaic output may fluctuate within this gray range. The range of the fluctuation information 121 may be determined based on actual values, or may be determined based on a weather forecast or the like.
 目的関数値φpKPIは、最過酷シナリオ決定問題を解いたときの目的関数、即ち後述する(15)式の値を表す。感度情報b2は、最過酷シナリオuをわずかに変化させたときの目的関数値φpKPIの変化量である。 The objective function value φp KPI represents the objective function when solving the most severe scenario determination problem, that is, the value of equation (15) described later. The sensitivity information b2 is the amount of change in the objective function value φp KPI when the most severe scenario u is slightly changed.
 最過酷シナリオupの例を、図4のグラフに示す。グラフでは、不確実パラメータの例として太陽光発電出力を考えている。横軸は1日、24時間の時刻を、縦軸は太陽光発電出力を表す。グレーの範囲で表す部分が太陽光発電出力の変動情報121である。太線241が、最過酷シナリオupを表す。最過酷シナリオupは、最過酷シナリオ決定問題を解くことで決定される。また、太線241はいずれの時間ステップに置いても、グレーの範囲121に入る。 The graph in Fig. 4 shows an example of the most severe scenario up. The graph considers PV output as an example of an uncertain parameter. The horizontal axis represents the time of day and 24 hours, and the vertical axis represents the photovoltaic power output. The part represented by the gray range is the fluctuation information 121 of the photovoltaic power generation output. A thick line 241 represents the most severe scenario up. The most severe scenario up is determined by solving the most severe scenario determination problem. Also, the thick line 241 falls within the gray range 121 at any time step.
 再度図1に戻り、電力系統運用計画生成装置10内の当日制御量生成部40では、外部からの入力データとして、需要家所有DER情報D2と需要情報D4と系統情報D5を入手し、また最過酷シナリオ生成部30で求めた最過酷シナリオupを入力し、これらの入力データを基に当日制御量決定問題を生成し、求解した目的関数値φpKPIと感度情報b2を、最過酷シナリオ生成部30に出力する。 Returning to FIG. 1 again, the current control amount generation unit 40 in the power system operation plan generation device 10 obtains the customer-owned DER information D2, the demand information D4, and the system information D5 as input data from the outside. The most severe scenario up obtained by the severe scenario generation unit 30 is input, the current day control amount determination problem is generated based on these input data, and the solved objective function value φp KPI and sensitivity information b2 are sent to the most severe scenario generation unit. 30.
 また、運用計画生成部20と最過酷シナリオ生成部30と当日制御量生成部40の処理における繰り返し処理の結果得られた最終的な解として、運用計画案xpと目的関数値ηp(=系統運用KPIの理論最悪値)を電力系統運用計画生成装置10から出力する。 Further, as the final solution obtained as a result of repeated processing in the processing of the operation plan generation unit 20, the severest scenario generation unit 30, and the today's controlled variable generation unit 40, the operation plan proposal xp and the objective function value ηp (=system operation theoretical worst value of KPI) is output from the power system operation plan generation device 10 .
 実施例2では、電力系統運用計画生成の考え方について、図1に示した装置により、ロバストな運用計画が生成できることについて、数式を用いて詳細に説明する。なお、本発明に係る運用計画手法の特徴を明確にするには、通常の運用計画手法と対比して述べるのがよいことから、まず通常の運用計画手法について説明する。 In the second embodiment, regarding the concept of power system operation plan generation, the device shown in FIG. 1 will be used to explain in detail that a robust operation plan can be generated using mathematical formulas. In order to clarify the characteristics of the operation planning method according to the present invention, it is better to compare it with the normal operation planning method, so the normal operation planning method will be explained first.
 通常の運用計画手法の特徴は、不確実性を表現するシナリオ群を予め利用者が入力し、系統運用KPIの最良化を目的関数とする数理計画問題を解くことで、運用計画を求める点である。より具体的に数式事例で述べると、上記数理計画問題の例は、以下の(1)(2)式に表すものである。 The characteristic of the normal operation planning method is that the user inputs in advance a group of scenarios that express uncertainty, and the operation plan is obtained by solving a mathematical programming problem with the optimization of the system operation KPI as the objective function. be. More specifically, the above mathematical programming problem is represented by the following equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (1)(2)式において、小文字のsはシナリオ、大文字のSは入力されたシナリオ群の集合を表している。また小文字のtは時刻、大文字のTは計画期間に含まれる時刻tの集合、φKPIは系統運用KPIを表している。minの下付き文字は決定変数を表し、xは運用計画変数のベクトル(例:タップ位置制御量、需要家所有DERの調整余力予約量)、yは当日制御変数のベクトル(例:予約した調整余力の発動指令量)をそれぞれ表す。なお、これらはベクトルであり、(2)式は(1)式を求めるうえでの系統制約条件を示す制約式である。 In the equations (1) and (2), a lower case letter s represents a scenario, and a capital letter S represents a set of input scenarios. A small letter t represents time, a capital letter T represents a set of times t included in the planning period, and φ KPI represents system operation KPI. The subscript of min represents a decision variable, x is a vector of operation plan variables (e.g., tap position control amount, adjustment margin reservation amount of customer-owned DER), y is a vector of control variables for the day (e.g., reserved adjustment Activation command amount of reserve power) respectively. It should be noted that these are vectors, and equation (2) is a constraint expression indicating the system constraint conditions for obtaining equation (1).
 ここで運用計画変数ベクトルxは、不確実パラメータが予測値から変動するリスクが残る段階で決定する必要があるため、予め利用者が入力した全てのシナリオSに対し同一の運用計画xが決定される。これに対し、当日制御変数ベクトルyは、不確実パラメータが明らかになった後(例えば、実際の太陽光発電出力の計測後)にリアルタイムで調整可能な変数であるため、シナリオs毎に異なる当日制御yが決定される。通常の運用計画手法では、上記の決定変数xおよび決定変数yを、単一の数理計画問題の中で、同時に最適化する。 Here, the operation plan variable vector x must be determined at a stage where the risk of the uncertain parameter fluctuating from the predicted value remains. Therefore, the same operation plan x is determined for all scenarios S input by the user in advance. be. On the other hand, the intraday control variable vector y is a variable that can be adjusted in real time after the uncertain parameters become clear (for example, after the actual photovoltaic output is measured). Control y is determined. A typical operation planning technique simultaneously optimizes the above decision variables x and y in a single mathematical programming problem.
 また、(1)式に示す数理計画問題の制約式として、(2)式の系統制約を設定する。
系統制約としては、各バスのエネルギーバランス式、各バスの電圧の計算式、各線路の配電ロス計算式、タップ調節機器の日当たりのタップ位置調整回数上限、需要家DERの機器の調整可能量上下限などが挙げられる。なお、(2)式のA1,A2,Cは系統制約を表す行列またはベクトルであり、(2)式の制約式は、系統制約を行列表記したものである。
Also, as a constraint expression of the mathematical programming problem shown in expression (1), the system constraint of expression (2) is set.
The system constraints include the energy balance formula for each bus, the voltage calculation formula for each bus, the power distribution loss calculation formula for each line, the upper limit of the number of tap position adjustments per day for the tap adjustment device, and the adjustable amount of the consumer DER device. A lower limit etc. are mentioned. Note that A1, A2, and C in equation (2) are matrices or vectors representing system constraints, and the constraint equations in equation (2) are matrix notations of system constraints.
 この数理計画問題は、混合整数計画(以下、MILP)、または、混合整数二次錐計画(以下、MISOCP)として、CPLEXやGurobi等の数理計画ソルバーで解くことができる。求解結果として、入力したシナリオsに対し、計画期間Tにおける系統運用KPIを最小(=最良)にする運用計画xが得られる。この運用計画xは、入力シナリオsに対しては、電圧許容範囲などの違反による系統運用KPIの極端な悪化が発生しないと期待できる。 This mathematical programming problem can be solved with a mathematical programming solver such as CPLEX or Gurobi as a mixed integer programming (hereinafter referred to as MILP) or a mixed integer second-order cone programming (hereinafter referred to as MISOCP). As a result of finding the solution, an operation plan x that minimizes (=best) the system operation KPI in the planning period T for the input scenario s is obtained. With this operation plan x, it can be expected that, for the input scenario s, extreme deterioration of the system operation KPI due to violation of the allowable voltage range or the like will not occur.
 しかし、入力したシナリオ群Sに系統運用KPIを最悪化させるシナリオu(以下、最過酷シナリオ)が含まれていないとき、場合によっては系統運用KPIの極端な悪化等が発生する可能性がある。そのため、いかなる変動パターンに対してもロバストな運用計画xを得るには、入力するシナリオ群Sに最過酷シナリオuを含める必要がある。しかし、最過酷シナリオuの適切な選定を事前に行うことは、以下2つの理由から難しい。 However, when the scenario group S that is input does not include the scenario u that makes the system operation KPI worst (hereafter referred to as the most severe scenario), there is a possibility that the system operation KPI will be extremely deteriorated in some cases. Therefore, in order to obtain an operation plan x that is robust against any variation pattern, it is necessary to include the most severe scenario u in the input scenario group S. However, it is difficult to appropriately select the most severe scenario u in advance for the following two reasons.
 第1の理由は、最過酷シナリオuの候補は膨大に存在することにある。特に、再生可能エネルギー電源や電気自動車の普及により不確実パラメータ数が増大した場合、候補数は爆発的に増加する。 The first reason is that there are a huge number of candidates for the most severe scenario u. In particular, when the number of uncertain parameters increases due to the spread of renewable energy sources and electric vehicles, the number of candidates increases explosively.
 第2の理由は、どれが最過酷シナリオuとなるかは、運用計画xにより変動するため、運用計画xを決定する前段階で、最過酷シナリオuを適切に選定することは難しいことである。 The second reason is that it is difficult to appropriately select the most severe scenario u before determining the operation plan x, because which scenario u will be the most severe scenario varies depending on the operation plan x. .
 然るに、その一方で、考え得る最過酷シナリオuの候補を全て入力する方法も考え得るが、入力シナリオ数が膨大になるため、計算時間が増加し、所定の制限時間内に計算が終了しない可能性がある。 On the other hand, on the other hand, it is possible to consider a method of inputting all possible candidates for the most severe scenario u. have a nature.
 通常の運用計画手法における上記問題点のゆえに、本発明においては、以下の運用計画手法を提案する。提案する運用計画手法(以下、提案方式)は、通常の運用計画手法に対し、以下2点で優位性がある。 Due to the above problems in the normal operation planning method, the following operation planning method is proposed in the present invention. The proposed operation planning method (hereinafter referred to as the proposed method) is superior to the normal operation planning method in the following two points.
 第1点は、通常の運用計画手法では、不確実性を表現するシナリオ群を準備する必要があるのに対し、提案方式では、不確実パラメータの変動範囲を入力するだけで良く、シナリオ群の準備が不要であることである。 The first point is that in the normal operation planning method, it is necessary to prepare a group of scenarios that express uncertainty, but in the proposed method, it is only necessary to input the fluctuation range of the uncertain parameter, and the scenario group No preparation is required.
 第1点は、通常の運用計画手法では、入力したシナリオ群に対するロバスト性しか担保できないが、提案方式では、変動範囲中のいかなる変動パターンに対してもロバスト性を担保できることである。 The first point is that the normal operation planning method can only ensure robustness against the input scenario group, but the proposed method can guarantee robustness against any fluctuation pattern within the fluctuation range.
 本発明に係る提案方式で解く数理計画問題(以下、ロバスト運用計画問題)を以下の(3)(4)式に示す。なお、すでに説明済みの事項については説明を割愛することがある。 The mathematical programming problem (hereinafter referred to as robust operation planning problem) solved by the proposed method according to the present invention is shown in Equations (3) and (4) below. In addition, explanation may be omitted about the matter which has already been explained.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 (3)式において、uは不確実パラメータのベクトルであり、x,yと同様に、電力系統運用計画問題の決定変数である。目的関数および制約式としては、通常の運用計画手法の時と同様に、系統運用KPIであるφKPIおよび系統制約として(4)式を設定する。 In equation (3), u is a vector of uncertain parameters and, like x and y, is a decision variable of the power system operation planning problem. As for the objective function and the constraint formula, the system operation KPI, φ KPI , and formula (4) are set as the system constraint in the same manner as in the normal operation planning method.
 この電力系統運用計画問題の特徴は、目的関数がminおよびmaxの3層構造となっている点である。(3)式の外側から順に、系統運用KPIを最小化(=最良化)する運用計画xを決定する部分、系統運用KPIを最大化(=最悪化)する不確実パラメータuの値(=最過酷シナリオ)を決定する部分、系統運用KPIを最小化する当日制御yを決定する部分である。 A feature of this power system operation planning problem is that the objective function has a three-layer structure of min and max. (3) In order from the outside of the formula, the part that determines the operation plan x that minimizes (=optimizes) the system operation KPI, the value of the uncertainty parameter u that maximizes (=worst) the system operation KPI (=maximum severe scenario), and the part that determines the same-day control y that minimizes the system operation KPI.
 これを解くことで、変動範囲内における変動パターンの中で、最も系統運用KPIが悪化する最過酷シナリオuが決定される。同時に、最過酷シナリオuにおける系統運用KPIを最良化する運用計画xおよび当日制御yを決定される。また、この時の系統運用KPIの値が理論最悪値となり、それ以外のいかなる変動パターンが発生しても、この理論最悪値より悪化することがない。従って、本電力系統運用計画問題を解くことで、いかなる変動パターンに対してもロバストな運用計画xを得ることができる。また、最過酷シナリオuは電力系統運用計画問題を解く中で生成されるため、その候補となるシナリオsを事前に準備する必要がない。 By solving this, the most severe scenario u, in which the system operation KPI deteriorates the most, is determined among the fluctuation patterns within the fluctuation range. At the same time, the operation plan x and the day control y that optimize the system operation KPI in the most severe scenario u are determined. Also, the value of the system operation KPI at this time becomes the theoretical worst value, and even if any other fluctuation pattern occurs, the value will not deteriorate from this theoretical worst value. Therefore, by solving this power system operation planning problem, it is possible to obtain an operation plan x that is robust against any fluctuation pattern. In addition, since the most severe scenario u is generated while solving the power system operation planning problem, it is not necessary to prepare the scenario s as a candidate in advance.
 また、目的関数である系統運用KPI(φKPI)は例として、以下の(5)式で定義される。 Also, the system operation KPI (φ KPI ), which is the objective function, is defined by the following equation (5) as an example.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 この(5)式において、φcost、φloss、φpenaltyはそれぞれ、運用コスト、送電ロス、および制約違反ペナルティを表す。W,W,Wは、それぞれ運用コスト、送電ロスおよび制約違反ペナルティの重み係数を表す。重み係数の比率は、一般に(6)式のように設定する。なお、これら以外の項を系統運用KPIに追加しても良い。 In this equation (5), φ cost , φ loss , and φ penalty represent operation cost, transmission loss, and constraint violation penalty, respectively. W c , W l , and W p represent weighting factors for operating cost, transmission loss, and constraint violation penalty, respectively. The weighting factor ratio is generally set as shown in equation (6). Items other than these may be added to the system operation KPI.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 また送電ロスφlossは例として、以下の(7)式で表される。ただし、(7)式において小文字の時刻tと、計画期間に含まれる時刻tの集合である大文字の時刻Tは、t∈Tの関係にあるものとする。 Also, the power transmission loss φ loss is represented by the following equation (7) as an example. However, in the equation (7), it is assumed that the lowercase time t and the uppercase time T, which is a set of times t included in the planning period, have a relationship of tεT.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 この(7)式において、jはバス番号、NtapはSVRなどのタップ調整機器があるバス番号の集合、Nderは需要家所有DERがあるバス番号の集合を表す。C tapはタップ調整機器におけるタップ調節1回あたりのコストを表す。なお、C tapの値は、例えばタップ調整機器価格と取り付け費用の和を、機器寿命を迎えるタップ調整回数で割ることで求める。xj,t tapはタップ調整機器におけるタップ調整回数を表す。
またcj,t der_r、cj,t der_cは需要家所有DERの調整余力予約のインセンティブ単価、および当日制御のインセンティブ単価を表す。xj,t der、yj,t derは、需要家所有DERの調整余力の予約量および当日の発動指令量を表す。
In this equation (7), j is a bus number, N tap is a set of bus numbers with tap adjusting devices such as SVRs, and N der is a set of bus numbers with customer-owned DERs. C j tap represents the cost per tap adjustment in the tap adjustment equipment. The value of C j tap is obtained, for example, by dividing the sum of the tap adjustment equipment price and the installation cost by the number of tap adjustments that reach the end of the equipment life. x j,t tap represents the number of tap adjustments in the tap adjustment device.
Also, cj ,tder_r and cj,tder_c represent the incentive unit price for the adjustment margin reservation of the customer-owned DER and the incentive unit price for the same-day control. x j, t der and y j, t der represent the reservation amount of the adjustment margin of the customer-owned DER and the activation command amount for the current day.
 以上により、(7)式の右辺第1項はタップ調整機器の調整コスト、第2項は調整余力予約に対するインセンティブコスト、第3項は実際の制御指令に対するインセンティブコストに相当する。なお、xj,t tap、yj,t derは、上記運用計画変数のベクトルxに、xj,t derは当日制御変数のベクトルyに含まれる。 As described above, the first term on the right side of the equation (7) corresponds to the adjustment cost of the tap adjusting device, the second term corresponds to the incentive cost for the reserve adjustment capacity, and the third term corresponds to the incentive cost for the actual control command. Note that x j, t tap , y j, t der are included in the vector x of the operation plan variables, and x j, t der is included in the vector y of the current day control variables.
 また(5)式の送電ロスφlossは、例として、以下の(8)式で表される。ただし、(8)式において小文字の時刻tと、計画期間に含まれる時刻tの集合である大文字の時刻Tは、t∈Tの関係にあるものとする。 Also, the power transmission loss φ loss in the formula (5) is represented by the following formula (8), for example. However, in the equation (8), it is assumed that the lowercase time t and the uppercase time T, which is a set of times t included in the planning period, have a relationship of tεT.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 なお(8)式においてBは線路の集合を表す。rijはバス(母線)iからバスjへの線路における抵抗値、lij,s,tは、バスiからバスjへの線路における、シナリオs、時刻tでの電流量の絶対値を表す。 Note that B in equation (8) represents a set of lines. r ij represents the resistance value in the line from bus (bus) i to bus j, and lij, s, t represents the absolute value of the amount of current in scenario s, time t in the line from bus i to bus j.
 また(5)式の制約違反ペナルティφpenaltyは例として、以下の(9)式で表される。ただし、(9)式において小文字の時刻tと、計画期間に含まれる時刻tの集合である大文字の時刻Tは、t∈Tの関係にあるものとする。 Also, the constraint violation penalty φ penalty of the expression (5) is expressed by the following expression (9) as an example. However, in the equation (9), it is assumed that the lowercase time t and the uppercase time T, which is a set of times t included in the planning period, have a relationship of tεT.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 なお(9)式においてζij,tはバスiからバスjに繋がる線路における線路制約の超過量を表し、ηj,tはバスjにおける電圧の許容範囲からの逸脱量を表す。Bはバスの集合を表す。 In the equation (9), ζ ij,t represents the excess amount of the line constraint on the line connecting the bus i to the bus j, and η j,t represents the deviation amount of the voltage on the bus j from the allowable range. B represents a set of buses.
 図1に示す電力系統運用計画生成装置10内の運用計画生成部20では、上記した(1)式から(9)式に示される電力系統運用計画問題を解くことになる。然るに、上述のように電力系統運用計画問題は3層構造から成ため、CPLEXやGurobi等の数理計画ソルバーは多重構造の数理計画問題をサポートしておらず、そのままでは解けない。 The operation plan generation unit 20 in the power system operation plan generation device 10 shown in FIG. 1 solves the power system operation plan problems shown in formulas (1) to (9) above. However, since the power system operation planning problem has a three-layer structure as described above, mathematical programming solvers such as CPLEX and Gurobi do not support multi-structured mathematical programming problems and cannot be solved as they are.
 そこで、以下では代表的な分解手法であるベンダーズ分解を用いた解き方の例を説明する。ベンダーズ分解では,数理計画問題を主問題と従属問題の2つに分解する。まず主問題を解き、その解を制約として従属問題を解く。従属問題は、ベンダーズカットと呼ばれる制約式を主問題に渡す。主問題のこの制約式を追加し,解の探索領域を制限した上で解く。以上を繰り返すことで,全体最適解を求める。 Therefore, below, we will explain an example of how to solve using Bender's decomposition, which is a typical decomposition method. In the Benders decomposition, a mathematical programming problem is decomposed into two parts, a main problem and a subordinate problem. First, the main problem is solved, and then the subordinate problems are solved using the solution as a constraint. The dependent problem passes a constraint equation called the vendor's cut to the primal problem. Add this constraint to the primal problem, limit the solution search region, and solve. By repeating the above, the global optimum solution is obtained.
 電力系統運用計画問題は3層構造から成るため、このベンダーズ分解を2度適用する。
まず、最も外側のminの部分を主問題(以下、運用計画決定問題)、それ以外の部分を従属問題に分ける。この従属問題はmaxとminの2重構造となるため、ベンダーズ分解を再度適用し、再度主問題、従属問題(以下、それぞれ最過酷シナリオ決定問題、当日制御量決定問題)に分ける。これにより3重構造の電力系統運用計画問題を、以下の3つの数理計画問題に分解することができる。
Since the power system operation planning problem consists of a three-layer structure, we apply this Vendor's decomposition twice.
First, the outermost min part is divided into a main problem (hereinafter referred to as an operation plan decision problem), and the other parts are divided into subordinate problems. Since this dependent problem has a double structure of max and min, Bender's decomposition is applied again, and the problem is again divided into a main problem and a dependent problem (hereinafter referred to as the most severe scenario determination problem and today's control amount determination problem, respectively). As a result, the power system operation planning problem with a triple structure can be decomposed into the following three mathematical programming problems.
 これらは、運用計画決定問題と、最過酷シナリオ決定問題と、当日制御量決定問題であり、運用計画決定問題を図1の運用計画生成部20で処理し、最過酷シナリオ決定問題を最過酷シナリオ生成部30で処理し、当日制御量決定問題を当日制御量生成部40で処理する。 These are an operation plan decision problem, a most severe scenario decision problem, and a control amount decision problem for the day. The current day control amount determination problem is processed in the current day control amount generation part 40 .
 またこの関係において、運用計画決定問題は主問題で、その従属問題は最過酷シナリオ決定問題に当たる。同時に、最過酷シナリオ決定問題は当日制御量決定問題に対する主問題であり、当日制御量決定問題はその従属問題に当たる。 Also, in this relationship, the operation plan decision problem is the main problem, and its subordinate problem corresponds to the most severe scenario decision problem. At the same time, the most severe scenario determination problem is the main problem for the today's controlled variable determination problem, and the today's controlled variable determination problem corresponds to its subordinate problem.
 運用計画生成部20で処理する上記運用計画決定問題は、以下の(10)(11)式で表される。 The operation plan decision problem processed by the operation plan generation unit 20 is represented by the following equations (10) and (11).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 これらの式において、運用計画決定問題の目的関数のθは、最過酷シナリオ決定問題の目的関数値ηpの推定値(=系統運用KPIの推定値)を表す。決定変数はθおよびxである。これを解くことで得られる運用計画の案xpは、系統運用KPIの推定値を最小にするように決定される。なお、記号p付きの変数は、計算結果として得られる定数値を示す。 In these formulas, θ of the objective function of the operation plan determination problem represents the estimated value of the objective function value ηp of the most severe scenario determination problem (=estimated value of system operation KPI). The decision variables are θ and x. The proposed operation plan xp obtained by solving this is determined so as to minimize the estimated value of the system operation KPI. A variable with the symbol p indicates a constant value obtained as a calculation result.
 (11)式の制約条件にはベンダーズカットを設定し、繰り返し計算毎に追加する。b1は、運用計画案xpをわずかに変化させたときのηpの変化量として定義される感度情報であり、shadow priceとも呼ばれる。感度情報は従属問題の双対問題の解として求められる。以上で構成されるベンダーズカットの式は、xに対するηの線形近似式と見做せる。これを順次追加することにより、θの推定精度を向上し、運用計画案xpを更新する。  Bender's cut is set as the constraint condition of formula (11) and added for each iteration of calculation. b1 is sensitivity information defined as the amount of change in ηp when the operation plan xp is slightly changed, and is also called shadow price. Sensitivity information is obtained as a solution of the dual problem of the dependent problem. The above Bender's cut formula can be regarded as a linear approximation formula of η with respect to x. By sequentially adding these, the estimation accuracy of θ is improved, and the operation plan xp is updated.
 最過酷シナリオ生成部30で処理する上記最過酷シナリオ決定問題は、以下の式(9)で表される。 The most severe scenario determination problem to be processed by the most severe scenario generation unit 30 is represented by the following equation (9).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 これらの式において、最過酷シナリオ決定問題の目的関数のθは、最過酷シナリオ決定問題の目的関数値φpKPI(=系統運用KPI)の推定値を表す。決定変数はθおよびxである。これを解くことで得られる運用計画の案xpは、系統運用KPIの推定値を最小にするように決定される。(13)式の制約条件にはベンダーズカットを設定し、繰り返し計算毎に追加する。b2は、シナリオupをわずかに変化させたときのφKPIの変化量として定義される感度情報である。これを順次追加することにより、の推定精度を向上し、最過酷シナリオupを更新する。 In these equations, θ of the objective function of the most severe scenario determination problem represents the estimated value of the objective function value φp KPI (=system operation KPI) of the most severe scenario determination problem. The decision variables are θ and x. The proposed operation plan xp obtained by solving this is determined so as to minimize the estimated value of the system operation KPI. (13) A vendor's cut is set as the constraint condition of the formula and added for each iteration. b2 is sensitivity information defined as the amount of change in φ KPI when the scenario up is slightly changed. By sequentially adding these, the estimation accuracy of is improved and the most severe scenario up is updated.
 当日制御量生成部40で処理される当日制御量決定問題は、以下の(14)(15)式で表される。決定変数は当日制御yであり、これを解くことで系統運用KPIの推定値を最小にするように決定される。 The today's controlled variable decision problem processed by the today's controlled variable generator 40 is represented by the following equations (14) and (15). The decision variable is the current day control y, which is solved to minimize the estimated value of the system operation KPI.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 これらの式において、当日制御量決定問題の目的関数のφKPIは、系統運用KPIを表す。(15)式の制約条件には系統制約を設定する。従って、当日制御量決定問題では、系統制約に基づき系統運用KPIを直接計算する。 In these formulas, the φ KPI of the objective function for the today's controlled variable determination problem represents the system operation KPI. A system constraint is set as the constraint condition of the equation (15). Therefore, in the today's control amount determination problem, the system operation KPI is directly calculated based on system constraints.
 分解した3つの数理計画問題は、上記のように繰り返し計算により交互に解く。繰り返し計算の終了判定条件を、以下の(16)式で表す。 The three decomposed mathematical programming problems are solved alternately by repeated calculations as described above. The condition for judging the end of repeated calculation is represented by the following equation (16).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 この式において、εは許容誤差率であり、例えば、0.0001などと設定する。UBおよびLBはそれぞれ目的関数値の上限および下限を表す。運用計画決定問題と最過酷シナリオ決定問題間の繰り返し計算の場合、UBおよびLBは以下の(17)式で計算される。 In this formula, ε is the allowable error rate and is set to 0.0001, for example. UB and LB represent the upper and lower bounds of the objective function value, respectively. In the case of iterative calculations between the operation plan determination problem and the most severe scenario determination problem, UB and LB are calculated by the following equation (17).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 この式において、θpは運用計画決定問題により決定されるθの値である。すなわち、ηの推定値であるθが、真値であるηと十分に近い値になるまで、繰り返し計算を行う、と解釈できる。また最過酷シナリオ決定問題と当日制御計画間の繰り返し計算の場合、UBおよびLBは以下の(18)式で計算される。 In this formula, θp is the value of θ determined by the operation plan decision problem. That is, it can be interpreted that the calculation is repeated until θ, which is the estimated value of η, becomes sufficiently close to the true value of η. In the case of repeated calculation between the most severe scenario decision problem and the control plan for the day, UB and LB are calculated by the following equation (18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 この式において、ηpは不確実パラメータ決定問題により決定されるηの値である。これについても、φKPIの推定値であるηが、真値であるφKPIと十分に近い値になるまで、繰り返し計算を行う、と解釈できる。 where ηp is the value of η determined by the uncertain parameter determination problem. This can also be interpreted as repeating the calculation until η, which is the estimated value of φ KPI , becomes sufficiently close to the true value of φ KPI .
 実施例3では、電力系統運用計画生成方法について図5の処理フローを用いて説明する。 In the third embodiment, the power system operation plan generation method will be explained using the processing flow of FIG.
 図5のフローにおいて、処理が開始されると処理ステップS2では、運用計画生成部20の機能として運用計画決定問題である(10)(11)式の解を求める。但し、ここでは運用計画決定問題を主問題とし、他の部分を従属問題とするために、処理ステップS1においてベンダーズカットの生成、追加を(10)(11)式により実施し、これを条件として処理ステップS2が実施される。なお、この時に使用する運用計画変数の入力(タップ調整機器入力100,需要家所有DER情報110)や最過酷シナリオの条件(目的関数値η、感度情報b1)などは、図1に示すとおりである。 In the flow of FIG. 5, when the process is started, in processing step S2, as a function of the operation plan generation unit 20, solutions to equations (10) and (11), which are operation plan determination problems, are obtained. However, here, in order to make the operation plan decision problem the main problem and other parts to be subordinate problems, the generation and addition of the vendor's cut are performed by the formulas (10) and (11) in the processing step S1, and on the condition that Processing step S2 is performed. The operation plan variable input (tap adjustment device input 100, customer-owned DER information 110) and the conditions of the most severe scenario (objective function value η, sensitivity information b1) used at this time are as shown in FIG. be.
 次に、最過酷シナリオ生成部30の処理として、処理ステップS4では、最過酷シナリオ決定問題である(12)(13)式の解を求める。但し、ここでは最過酷シナリオ決定問題を主問題とし、当日制御量決定問題を従属問題とするために、処理ステップS3においてベンダーズカットの生成、追加を(12)(13)式により実施し、これを条件として処理ステップS4が実施される。なお、この時に使用する不確実パラメータ変動情報(再生可能エネルギー電源の出力や電気自動車の充電需要)や当日制御量の条件(目的関数値η、感度情報b2)や運用計画案xpなどは、図1に示すとおりである。 Next, as the processing of the most severe scenario generation unit 30, in processing step S4, the solutions of equations (12) and (13), which are the most severe scenario determination problem, are obtained. However, in order to make the most severe scenario decision problem the main problem and the day control amount decision problem the subordinate problem, the generation and addition of vendor's cuts are performed according to the formulas (12) and (13) in processing step S3. Processing step S4 is performed on the condition that The uncertain parameter fluctuation information (renewable energy power supply output and electric vehicle charging demand) used at this time, the conditions for the control amount of the day (objective function value η, sensitivity information b2), the operation plan xp, etc. are shown in Fig. 1.
 次に、当日制御量生成部40の処理として、処理ステップS5では、当日制御量決定問題である(14)(15)式の解を求める。但し処理ステップS5の当日制御量決定処理は、処理ステップS6における最過酷シナリオ決定問題が収束することの(16)(18)式を用いた計算終了判定、および処理ステップS7における運用計画決定問題が収束することの(16)(17)式を用いた計算終了判定が成立するまで繰り返し実行される。
なお、この時に使用する需要情報及び系統情報などは、図1に示すとおりである。
Next, in processing step S5 as processing of the control amount generation unit 40 on the current day, the solution of equations (14) and (15), which is the control amount determination problem for the current day, is obtained. However, the today's control amount determination processing in processing step S5 includes determination of the end of calculation using equations (16) and (18) for the convergence of the most severe scenario determination problem in processing step S6, and the operation plan determination problem in processing step S7. It is repeatedly executed until the calculation end determination using the equations (16) and (17) of convergence is satisfied.
Demand information and system information used at this time are as shown in FIG.
 図6は、本発明と従来方式を比較した時の効果の相違を示す図である。図1の電力系統運用計画生成装置の最終出力はモニタ画面などに表示出力されることになるが、その場合のイメージ図として表記している。 FIG. 6 is a diagram showing the difference in effect when comparing the present invention and the conventional method. The final output of the power system operation plan generating apparatus in FIG. 1 is displayed on a monitor screen or the like, and is shown as an image diagram in that case.
 この表記によれば、従来の場合には、あらかじめ想定した1つのシナリオの時の系統運用KPIが点情報として求められることになるが、本発明の場合には最過酷シナリオを内部で生成し、それに対する系統運用KPI値270(理論最悪値)が計算されている。そのため、考えうるどんなシナリオが発生しても系統運用KPI値は、範囲内に収まるという形式で出力される。つまり、従来に比べると点ではなく、範囲として求められることになる。 According to this notation, in the conventional case, the system operation KPI for one assumed scenario is obtained as point information, but in the case of the present invention, the most severe scenario is internally generated, A system operation KPI value 270 (theoretical worst value) is calculated for it. Therefore, the system operation KPI value is output in the form of being within the range even if any conceivable scenario occurs. In other words, compared to the conventional method, it is determined as a range rather than as a point.
10:電力系統運用計画生成装置、20:運用計画生成部、30:最過酷シナリオ生成部、40:当日制御量生成部 10: power system operation plan generation device, 20: operation plan generation unit, 30: most severe scenario generation unit, 40: current day control amount generation unit

Claims (4)

  1.  電力系統における不確実性パラメータを考慮に入れ、事前の段階で決定すべき運用計画変数とリアルタイムに決定できる当日制御変数を定め、電力系統の運用計画を行う電力系統運用計画生成装置であって、
     電力系統における運用計画変数の情報と当日制御変数の情報を入手して、電力系統の過酷状態を想定した最過酷シナリオのときの目的関数値に対する運用計画案を作成する運用計画生成部と、不確実性パラメータの変動情報と前記運用計画案と当日制御変数の目的関数値とから前記最過酷シナリオとそのときの目的関数値を求める最過酷シナリオ生成部と、電力系統の系統情報と需要情報と前記最過酷シナリオとを用いて運用計画を決定する当日制御量生成部を備えることを特徴とする電力系統運用計画生成装置。
    A power system operation plan generation device that takes into account uncertainty parameters in the power system, determines operation plan variables that should be determined in advance and on-day control variables that can be determined in real time, and performs an operation plan for the power system,
    an operation plan generation unit that obtains information on operation plan variables and information on current day control variables in the power system and creates an operation plan proposal for the objective function value in the most severe scenario assuming the severe state of the power system; a most severe scenario generation unit that obtains the most severe scenario and the objective function value at that time from the variation information of the certainty parameter, the operation plan, and the objective function value of the current day control variable; A power system operation plan generation device, comprising: a current day controlled variable generation unit that determines an operation plan using the most severe scenario.
  2.  請求項1に記載の電力系統運用計画生成装置であって、
     前記運用計画変数は、タップ調整機器のタップ位置、需要家所有の分散エネルギー源の調整余力の一つ以上を含むことを特徴とする電力系統運用計画生成装置。
    The power system operation plan generation device according to claim 1,
    The power system operation plan generating apparatus, wherein the operation plan variables include one or more of a tap position of a tap adjusting device and an adjustment margin of distributed energy sources owned by the customer.
  3.  請求項1に記載の電力系統運用計画生成装置であって、
     前記当日制御変数は、系統運用事業者が所有する分散エネルギー源、予約した需要家所有の分散エネルギー源の調整余力の発動指令量の一つ以上を含むことを特徴とする電力系統運用計画生成装置。
    The power system operation plan generation device according to claim 1,
    The power system operation plan generating device, wherein the control variable for the current day includes one or more of a distributed energy source owned by a system operator and an activation command amount for an adjustment margin of a distributed energy source owned by a reserved consumer. .
  4.  電力系統における不確実性パラメータを考慮に入れ、事前の段階で決定すべき運用計画変数とリアルタイムに決定できる当日制御変数を定め、電力系統の運用計画を行う電力系統運用計画生成方法であって、
     電力系統における運用計画変数の情報と当日制御変数の情報を入手して、電力系統の過酷状態を想定した最過酷シナリオのときの目的関数値に対する運用計画案を作成する電力系統運用計画問題について、前記電力系統運用計画問題を主問題である運用計画決定問題と従属問題にわけ、さらに前記従属問題を主問題である最過酷シナリオ決定問題と従属問題である当日制御量決定問題に分け、これにより3重構造の電力系統運用計画問題の解として電力系統の運用計画を行うことを特徴とする電力系統運用計画生成方法。
    A power system operation plan generation method that takes into account uncertainty parameters in the power system, determines operation plan variables that should be determined in advance and intraday control variables that can be determined in real time, and performs an operation plan for the power system,
    For the power system operation planning problem, obtain the information of the operation plan variables and the information of the control variables of the day in the power system, and create an operation plan proposal for the objective function value in the most severe scenario assuming the severe state of the power system. The power system operation planning problem is divided into an operation plan decision problem that is a main problem and a subordinate problem, and the subordinate problem is further divided into a main problem of the most severe scenario decision problem and a subordinate problem of the day control amount determination problem, An electric power system operation plan generation method, characterized in that an electric power system operation plan is performed as a solution to a three-layer electric power system operation plan problem.
PCT/JP2022/017902 2021-05-26 2022-04-15 Electric power system operation plan generation device, and method for generating electric power system operation plan WO2022249786A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021088077A JP2022181250A (en) 2021-05-26 2021-05-26 Power system operation plan generation device and power system operation plan generation method
JP2021-088077 2021-05-26

Publications (1)

Publication Number Publication Date
WO2022249786A1 true WO2022249786A1 (en) 2022-12-01

Family

ID=84229910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017902 WO2022249786A1 (en) 2021-05-26 2022-04-15 Electric power system operation plan generation device, and method for generating electric power system operation plan

Country Status (2)

Country Link
JP (1) JP2022181250A (en)
WO (1) WO2022249786A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032337A (en) * 2014-07-28 2016-03-07 株式会社Ihi Energy management system, power demand plan optimization method and power demand plan optimization
JP2016116290A (en) * 2014-12-12 2016-06-23 富士電機株式会社 Load allowance calculation device, load allowance calculation method, and program
JP2018148753A (en) * 2017-03-08 2018-09-20 三菱重工業株式会社 Power equipment planning method, power equipment manufacturing method, power equipment planning apparatus, and program
JP2019535225A (en) * 2017-02-14 2019-12-05 三菱電機株式会社 Simultaneous optimization of power generation system energy production and frequency adjustment
JP2021033625A (en) * 2019-08-23 2021-03-01 東芝エネルギーシステムズ株式会社 Operation plan creating apparatus, and program therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032337A (en) * 2014-07-28 2016-03-07 株式会社Ihi Energy management system, power demand plan optimization method and power demand plan optimization
JP2016116290A (en) * 2014-12-12 2016-06-23 富士電機株式会社 Load allowance calculation device, load allowance calculation method, and program
JP2019535225A (en) * 2017-02-14 2019-12-05 三菱電機株式会社 Simultaneous optimization of power generation system energy production and frequency adjustment
JP2018148753A (en) * 2017-03-08 2018-09-20 三菱重工業株式会社 Power equipment planning method, power equipment manufacturing method, power equipment planning apparatus, and program
JP2021033625A (en) * 2019-08-23 2021-03-01 東芝エネルギーシステムズ株式会社 Operation plan creating apparatus, and program therefor

Also Published As

Publication number Publication date
JP2022181250A (en) 2022-12-08

Similar Documents

Publication Publication Date Title
Teng et al. Understanding the benefits of dynamic line rating under multiple sources of uncertainty
JP6244255B2 (en) Voltage stability monitoring apparatus and method
JP5527325B2 (en) Control device, energy system and control method thereof
US9093842B2 (en) Method for globally optimizing power flows in electric networks
Li et al. Privacy-preserving collaborative operation of networked microgrids with the local utility grid based on enhanced benders decomposition
Khoo et al. Demand response and dynamic line ratings for optimum power network reliability and ageing
Rahmani-Andebili et al. Price-controlled energy management of smart homes for maximizing profit of a GENCO
JP2019030065A (en) Power system reliability evaluation system
Chen et al. Distributed robust dynamic economic dispatch of integrated transmission and distribution systems
US9261864B2 (en) Method and device for producing a state signal
CN107528314A (en) The power network robust planing method of safety check is considered under a kind of uncertain environment
JP2018191482A (en) Optimum tidal current calculation device, optimum tidal current calculation method, and optimum tidal current calculation program
Ferraz et al. MILP model for volt-var optimization considering chronological operation of distribution systems containing DERs
Pinto et al. Reliability‐constrained robust expansion planning of active distribution networks
Sadeghpour et al. A novel approximate dynamic programming approach for constrained equipment replacement problems: A case study.
Liu et al. A novel adaptive model predictive control for proton exchange membrane fuel cell in DC microgrids
Yin et al. A Flexibility-oriented robust transmission expansion planning approach under high renewable energy resource penetration
WO2022249786A1 (en) Electric power system operation plan generation device, and method for generating electric power system operation plan
Guo et al. Long-term operation of isolated microgrids with renewables and hybrid seasonal-battery storage
Abdelaziz et al. Fuel-saving benefit analysis of islanded microgrid central controllers
Ghayoor et al. Power network-planning optimization considering average power not supplied reliability index: Modified by chance-constrained programming
Anders et al. Proactive guidance for dynamic and cooperative resource allocation under uncertainties
EP3700043B1 (en) Method of controlling a microgrid, power management system, and energy management system
Santos et al. A novel methodology to determine the reactive power range requirements for wind generators considering the correlation of electricity demand and wind generation
CN111614126B (en) Method for controlling micro-grid, power management system and energy management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22811060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE