WO2022249720A1 - Dc power distribution system - Google Patents

Dc power distribution system Download PDF

Info

Publication number
WO2022249720A1
WO2022249720A1 PCT/JP2022/014862 JP2022014862W WO2022249720A1 WO 2022249720 A1 WO2022249720 A1 WO 2022249720A1 JP 2022014862 W JP2022014862 W JP 2022014862W WO 2022249720 A1 WO2022249720 A1 WO 2022249720A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
wiring
distribution system
unit
power distribution
Prior art date
Application number
PCT/JP2022/014862
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 大堀
達雄 古賀
和憲 木寺
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022249720A1 publication Critical patent/WO2022249720A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks

Definitions

  • the present invention relates to a DC power distribution system.
  • the present invention provides a DC power distribution system capable of detecting abnormalities in a DC power distribution network in which a power supply and loads are connected via two or more current paths.
  • One aspect of the DC power distribution system is a power source that supplies power, one or more first loads that consume the power supplied from the power source, and the output power or output current from the power source is measured.
  • a current switching unit that switches a current path through which current flows to the first load from among the two or more current paths, and a measurement result of the measuring unit when the current path is switched by the current switching unit, and an abnormality detection unit that detects an abnormality in the wiring.
  • FIG. 1 is a configuration diagram showing an example of a DC power distribution system according to an embodiment.
  • FIG. 2 is a configuration diagram showing an example of a power supply according to the embodiment.
  • FIG. 3 is a diagram for explaining an example of two current paths connecting the power supply and the first load.
  • FIG. 4A is a diagram for explaining switching of current paths.
  • FIG. 4B is a diagram for explaining switching of current paths.
  • FIG. 5 is a diagram showing a circuit configuration of a portion where resistors are connected.
  • FIG. 6A is a diagram showing changes in the output current from the power supply in response to switching of the switch at a location without disconnection.
  • FIG. 6B is a diagram showing changes in the output current from the power supply according to the switching of the switch at the disconnection point.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code
  • FIG. 1 is a configuration diagram showing an example of a DC power distribution system 1 according to an embodiment. In addition to the DC power distribution system 1, FIG. showing.
  • the DC power distribution system 1 includes one or more power sources that supply power, one or more first loads and one or more second loads that consume the power supplied from the power sources, and one or more current switching units. and one or more current interrupters.
  • the current switching unit and the current interrupting unit have different names for the sake of explanation, but both are switches that switch between conduction and non-conduction of the current path.
  • the one or more power sources may be a plurality of power sources
  • the one or more first loads may be a plurality of first loads
  • the one or more second loads may be a plurality of second loads.
  • an AC/DC converter 10a as a power supply
  • lighting fixtures 30a, 30c and 30e as a plurality of first loads
  • a lighting fixture 30g as one second load
  • switches 40a to 40q as a plurality of current switching units
  • a plurality of current interrupters Switches 40r and 40s are shown as parts.
  • Lighting fixtures 30b, 30d and 30f are shown as loads other than the first load and the second load.
  • the DC power distribution system 1 may include a plurality of power supplies, may include only one first load, may include only one current switching unit, or may include a current interrupting unit. Only one may be provided.
  • the DC power distribution system 1 may include a plurality of second loads.
  • the power supply is not limited to an AC/DC converter, and is not particularly limited as long as it supplies power.
  • Each load is not limited to a lighting fixture, and is not particularly limited as long as it consumes power supplied from a power supply.
  • the current switching unit and the current interrupting unit may be an electromagnetic relay or a mechanical relay, or may be a relay or switch such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • the DC power distribution system 1 includes wiring 100 .
  • the wiring 100 is provided on the ceiling, wall, floor, or the like of the facility and arranged in a mesh pattern.
  • the wiring 100 has a branch point.
  • the wiring 100 has multiple branch points.
  • branch points n1 to n13 are shown as a plurality of branch points. Note that the wiring 100 may not be included in the DC power distribution system 1 .
  • a first load is a load provided between adjacent branch points in the wiring 100 .
  • the number of first loads between branch points is not limited to one, and there may be a plurality of loads.
  • the lighting fixture 30a is provided between the branch points n1 and n2 on the wiring 100
  • the lighting fixture 30c is provided between the branch points n4 and n5 on the wiring 100
  • the lighting fixture 30e is provided between the branch points n5 and n6 on the wiring 100.
  • one or more first loads have a second communication unit, and output information indicating that their own operation will stop via the second communication unit when their own operation stops.
  • the information is output by wire or wirelessly.
  • the information is output to, for example, the anomaly detection unit 14, which will be described later.
  • the lighting fixtures 30b, 30d, and 30f may also have a second communication unit, and information indicating that their own operation will stop via the second communication unit when their own operation stops. may be output.
  • a second load is a load provided on a straight wiring that has no further branch after branching at any one of the plurality of branch points in the wiring 100 .
  • the number of the second loads on the straight wiring is not limited to one, but may be plural.
  • the wiring 100 is provided with five straight wirings that branch off at branch points n9, n10, n11, n12 and n13 and have no further branches. After branching off at the branch point n10, the lighting fixture 30g is provided in a straight wiring with no further branching.
  • the second load may also have a second communication unit, and when its own operation stops, it outputs information indicating that its own operation will stop via the second communication unit. good too.
  • the first load and the second load may be provided with DC/DC converters.
  • the voltage can be stepped down according to the first load and the second load.
  • the current switching unit selects the load from among the two or more current paths in wiring that connects the power supply and one or more first loads via two or more current paths after branching at a branch point. Switches the current path through which the current flows.
  • the current switching unit is provided in each of the two or more current paths after branching at the branch point, and switches the current paths by switching conduction and non-conduction of each of the two or more current paths.
  • the current switching unit is provided between adjacent branch points in the wiring 100 .
  • the switch 40 a is provided on the branch point n1 side between the branch points n1 and n4 in the wiring 100 .
  • the switch 40b is provided on the branch point n1 side between the branch points n1 and n2 in the wiring 100 .
  • the switch 40 c is provided on the branch point n1 side between the branch points n1 and n5 in the wiring 100 .
  • the switch 40d is provided on the branch point n4 side between the branch points n1 and n4 in the wiring 100 .
  • the switch 40 e is provided on the branch point n5 side between the branch points n1 and n5 in the wiring 100 .
  • the switch 40 f is provided on the branch point n4 side between the branch points n4 and n5 in the wiring 100 .
  • the switch 40 g is provided on the branch point n5 side between the branch points n4 and n5 in the wiring 100 .
  • the switch 40 h is provided on the branch point n5 side between the branch points n5 and n6 in the wiring 100 .
  • the switch 40 i is provided on the branch point n4 side between the branch points n4 and n9 in the wiring 100 .
  • the switch 40 j is provided on the branch point n5 side between the branch points n5 and n10 in the wiring 100 .
  • the switch 40 k is provided on the branch point n9 side between the branch points n4 and n9 in the wiring 100 .
  • the switch 40l is provided on the branch point n10 side between the branch points n5 and n10 in the wiring 100 .
  • the switch 40 m is provided on the branch point n9 side between the branch points n9 and n10 in the wiring 100 .
  • the switch 40n is provided on the branch point n10 side between the branch points n9 and n10 in the wiring 100 .
  • the switch 40 o is provided on the branch point n10 side between the branch points n10 and n11 in the wiring 100 .
  • the switch 40p is provided on the branch point n2 side between the branch points n1 and n2 in the wiring 100 .
  • the switch 40 q is provided on the branch point n6 side between the branch points n5 and n6 in the wiring 100 .
  • the AC/DC converter 10a and the lighting equipment 30a are connected mainly via two current paths.
  • the two current paths are a current path that branches at the branch point n1 and then leads directly to the lighting fixture 30a, and a current path that branches at the branch point n1 and then passes through the branch points n5, n6, and n2 to reach the lighting fixture 30a.
  • the switches 40b and 40p are current switching units that switch the current path through which the current flows to the lighting device 30a from among these two current paths.
  • the AC/DC converter 10a and the lighting fixture 30c are connected mainly via two current paths.
  • the two current paths branch at the branch point n1 and pass through the branch point n5 to reach the lighting fixture 30c. is.
  • a current switching unit that switches the current path through which the current flows to the lighting device 30c from among these two current paths is, for example, the switches 40f and 40g.
  • the AC/DC converter 10a and the lighting device 30e are connected mainly via two current paths.
  • the two current paths branch at the branch point n1 and pass through the branch points n2 and n6 to reach the lighting fixture 30e. is.
  • the current switching units for switching the current path through which the current flows to the lighting device 30e from among these two current paths are, for example, the switches 40q and 40h.
  • the current switching unit has a first communication unit, and switching between conduction and non-conduction of the current path is controlled via the first communication unit.
  • a current interrupting part is provided in a straight wiring that does not branch further after branching at any one of a plurality of branching points in the wiring 100 .
  • the switch 40r is provided in a straight line with no further branch after branching at the branch point n9.
  • the switch 40s is provided in a straight line with no further branch after branching at the branch point n10.
  • the DC power distribution system 1 may be equipped with a DC breaker.
  • the DC power distribution system 1 includes a DC breaker 20a corresponding to the AC/DC converter 10a.
  • DC breaker 20 a is a breaker for breaking the connection between AC/DC converter 10 a and wiring 100 . For example, even if an abnormality such as disconnection occurs in the wiring 100, the DC breaker 20a cuts off the connection between the AC/DC converter 10a and the wiring 100, thereby preventing arcing in advance.
  • FIG. 2 is a configuration diagram showing an example of a power supply (eg AC/DC converter 10a) according to the embodiment.
  • a power supply eg AC/DC converter 10a
  • the AC/DC converter 10 a includes a measurement section 11 , a switching control section 12 , a determination section 13 , an abnormality detection section 14 and an output section 15 .
  • the measurement unit 11, the switching control unit 12, the determination unit 13, the abnormality detection unit 14, and the output unit 15 may be realized by a microcomputer.
  • the microcomputer consists of a ROM (Read Only Memory) in which the program is stored, a RAM (Random Access Memory), a processor (CPU: Central Processing Unit) that executes the program, a communication interface, a timer, an A/D converter and a D/A conversion It is a semiconductor integrated circuit or the like having a device or the like.
  • the measurement unit 11, the switching control unit 12, the determination unit 13, the abnormality detection unit 14, and the output unit 15 are dedicated electronic circuits composed of A/D converters, logic circuits, gate arrays, D/A converters, and the like. It may be realized in hardware by a circuit or the like.
  • the measurement unit 11 measures output power or output current from the power supply.
  • the AC/DC converter 10a may include a voltmeter and an ammeter, and the measurement unit 11 may be realized by the voltmeter and the ammeter.
  • the switching control section 12 controls the current switching section.
  • the switching control unit 12 controls the current switching unit by communicating with the current switching unit wirelessly or by wire.
  • the switching control unit 12 sequentially controls the current switching units (switches 40a to 40q). A control example of the current switching unit will be described later.
  • the determination unit 13 determines whether or not the current switching unit and the current interrupting unit are provided on the straight wiring. For example, whether or not each of the switches 40a to 40s is provided on the straight wiring is stored in advance in a memory, and the determination unit 13 makes the above determination by referring to the memory. For example, the determination unit 13 determines that the switches 40r and 40s are provided in straight wiring. For example, like the switches 40a to 40q, the switches 40r and 40s also have a first communication unit and can be controlled by the switching control unit 12. Thus, the switching control unit 12 can keep the switches 40r and 40s on without switching between on and off.
  • the abnormality detection unit 14 detects an abnormality in the wiring 100 according to the measurement result of the measurement unit 11 when the current path is switched by the current switching unit. For example, the abnormality detection unit 14 detects an abnormality in the wiring 100 when the measurement result of the measurement unit 11 does not reach a specified value. Further, the abnormality detection unit 14 identifies the location where the abnormality occurs in the wiring 100 according to the current path when the measurement result of the measurement unit 11 does not reach the specified value. Details of the operation of the abnormality detection unit 14 will be described later.
  • the output unit 15 outputs the detection result of the abnormality detection unit 14. For example, the output unit 15 outputs the detection result indicating that an abnormality has occurred in the wiring 100 and the location where the abnormality has occurred in the wiring 100 to the administrator of the facility in which the DC power distribution system 1 is provided or the administrator of the DC power distribution system 1. Notify the maintenance company.
  • the AC/DC converter 10a does not have to include the measuring section 11.
  • the DC power distribution system 1 may include a device that measures the current flowing through the path connecting the DC breaker 20a and the branch point n1, and the measurement unit 11 may be provided in the device. Since the current flowing through the path is the output current from the AC/DC converter 10a, the output current from the AC/DC converter 10a can be measured even in this case.
  • the AC/DC converter 10a does not have to include the switching control section 12.
  • the switching control unit 12 may be provided in any device as long as it can communicate with the current switching unit.
  • the switching control unit 12 may be provided in any one of the switches 40a to 40s, may be provided in the DC breaker 20a, or may be provided in a dedicated device for controlling the current switching unit. , may be provided on the server.
  • the AC/DC converter 10a does not have to include the determination unit 13.
  • the determination unit 13 may be provided in any device as long as it can communicate with the switching control unit 12 .
  • the determination unit 13 may be provided in any one of the switches 40a to 40s, may be provided in the DC breaker 20a, may be provided in a dedicated device for controlling the current switching unit, It may be provided in the server.
  • the AC/DC converter 10a does not have to include the abnormality detection unit 14.
  • the abnormality detection unit 14 may be provided in any device as long as it can communicate with the measurement unit 11 .
  • the abnormality detection unit 14 may be provided in any one of the switches 40a to 40s, may be provided in the DC breaker 20a, or may be provided in a dedicated device for controlling the current switching unit. , may be provided on the server.
  • the measurement unit 11 may have the function of the abnormality detection unit 14 .
  • the AC/DC converter 10a may not include the output unit 15.
  • the output unit 15 may be provided in any device as long as it can communicate with the abnormality detection unit 14 .
  • the output unit 15 may be provided in any one of the switches 40a to 40s, may be provided in the DC breaker 20a, may be provided in a dedicated device for controlling the current switching unit, It may be provided in the server.
  • FIG. 3 is a diagram for explaining an example of two current paths connecting a power source (for example, AC/DC converter 10a) and a first load (for example, lighting fixture 30c).
  • FIG. 3 shows the periphery of the lighting fixture 30c. It is assumed that the switches 40a, 40c, 40d, 40e, 40f, and 40g are all on during normal operation of the load, such as during business hours of the facility.
  • the AC/DC converter 10a and the lighting fixture 30c are connected via two current paths A1 and A2 after branching at the branch point n1.
  • the lighting fixture 30c even if disconnection or the like occurs between the lighting fixture 30c and the branch point n5 on the current path A1, power can be supplied to the lighting fixture 30c via the current path A2.
  • the lighting fixture 30c even if a disconnection or the like occurs between the lighting fixture 30c on the current path A1 and the branch point n5, the lighting fixture 30c will remain lit, and the measurement result of the measuring unit 11 will not change easily. It is difficult to recognize that an abnormality has occurred in 100.
  • an abnormality in the wiring 100 can be detected according to the measurement result of the measuring unit 11 when the current path is switched by the current switching unit.
  • the current switching unit periodically switches current paths. For example, without stopping the power supply to the load (in other words, without stopping the output of the power supply), the current path is switched periodically even during normal operation of the load.
  • 4A and 4B are diagrams for explaining switching of current paths. For example, it is assumed that disconnection has occurred between the switch 40f and the lighting fixture 30c in the wiring 100 .
  • the switch 40f is controlled to be turned off.
  • the path through which the current flows to the lighting device 30c is switched from the current paths A1 and A2 to the current path A1. Since no disconnection has occurred between the lighting fixture 30c and the branch point n5 on the current path A1, the current can flow to the lighting fixture 30c (in other words, the lighting fixture 30c receives power supplied from the AC/DC converter 10a). can be consumed), and the measurement result of the measurement unit 11 remains the specified value.
  • the switch 40g is turned off and the switch 40f is controlled to be turned on.
  • the path through which the current flows to the lighting device 30c is switched to the current path A2. Since there is a disconnection between the lighting fixture 30c and the branch point n4 on the current path A2, current cannot flow to the lighting fixture 30c (in other words, the lighting fixture 30c is supplied from the AC/DC converter 10a). power cannot be consumed), and the measurement result of the measurement unit 11 does not become a specified value. Accordingly, the abnormality detection unit 14 can detect that an abnormality has occurred between the lighting fixture 30c and the branch point n4 on the current path A2 connecting the branch point n1 and the lighting fixture 30c.
  • the switch 40p is controlled to be turned off, then the switch 40p is controlled to be turned on, and the switch 40b is controlled to be turned off.
  • Abnormality on the current path leading to and from the branch point n2 to the lighting device 30a can be detected.
  • the switch 40h is controlled to be turned off, then the switch 40h is controlled to be turned on, and the switch 40q is controlled to be turned off. Abnormalities on the current path leading to and from the branch point n6 to the lighting device 30e can be detected. In this way, by sequentially controlling the current switching units, it is possible to detect abnormalities in various current paths leading to the first loads.
  • the wiring 100 has a portion where a current switching unit is not provided between adjacent branch points, but it may be provided between all the branch points. Alternatively, from the viewpoint of cost or the like, current switching units may be provided only at places where deterioration is likely to occur.
  • the DC power distribution system 1 may further include resistors provided between adjacent branch points (for example, between branch points where the first load is not provided) among the plurality of branch points in the wiring 100. good.
  • resistors provided between adjacent branch points (for example, between branch points where the first load is not provided) among the plurality of branch points in the wiring 100. good.
  • the operation of the DC power distribution system 1 when resistors are provided between the branch points n9 and n10 and between the branch points n5 and n10 will be described with reference to FIGS. 5, 6A and 6B.
  • FIG. 5 is a diagram showing the circuit configuration of the portion where the resistor is connected.
  • FIG. 5 shows the vicinity of the branch point n10. Also, in FIG. 1 and the like, the wiring and the current switching unit are simply shown, but in FIG. there is
  • a resistor 50a is connected between branch point n9 (not shown) and branch point n10, and a resistor 50b is connected between branch point n5 (not shown) and branch point n10. be done.
  • the resistor 50a is connected between the positive electrode wiring and the negative electrode wiring between the branch points n9 and n10, and the positive electrode wiring and the negative electrode wiring are connected between the branch points n5 and n10.
  • a resistor 50b is connected to the wiring. Since the resistors 50a and 50b can consume the power supplied from the power supply, when an abnormality occurs between the branch points n9 and n10 or between the branch points n5 and n10, the current path is switched. The measurement result of the measurement unit 11 can be changed.
  • the DC power distribution system 1 further includes a switch 60a that switches on and off the supply of power to the resistor 50a, and a switch 60b that switches on and off the supply of power to the resistor 50b.
  • a switch that switches on and off the supply of power to the resistor provided between the branch points supplies power to the resistor when current path switching is not performed for two or more current paths corresponding to the resistor. is turned off, and the supply of power to the resistor is turned on when current path switching is performed for two or more current paths corresponding to the resistor.
  • FIG. 6A is a diagram showing changes in the output current from the power supply in response to switching of the switch at a location without disconnection.
  • FIG. 6B is a diagram showing changes in the output current from the power supply according to the switching of the switch at the disconnection point. For example, it is assumed that a disconnection occurs between the branch point n9 and the branch point n10.
  • the switches 60a and 60b are off until the abnormality inspection is started. This is because power is consumed in the resistor 50a when the switch 60a is turned on, and power is consumed in the resistor 50b when the switch 60b is turned on.
  • the switch 60b When detecting an abnormality between the branch points n5 and n10, first, the switch 60b is turned on and the resistor 50b is enabled, as shown in FIG. 6A. As a result, the output current from the power supply increases by the amount of power consumed by the resistor 50b. Next, switch 40j is controlled to be off. Since the current flows from the branch point n10 to the resistor 50b via the switch 40l, it can be seen that there is no change in the output current from the power supply. From this, it can be seen that there is no abnormality in the wiring on the branch point n10 side of the portion where the resistor 50b is connected between the branch points n5 and n10. Next, the switch 40j is turned on and the switch 40l is turned off.
  • the switch 60a When detecting an abnormality between the branch points n9 and n10, first, the switch 60a is turned on and the resistor 50a is enabled, as shown in FIG. 6B. As a result, the output current from the power supply increases by the amount of power consumed by the resistor 50a. Next, switch 40n is controlled to be off. Since the wiring between the switch 40m and the resistor 50a is disconnected, current does not flow from the branch point n9 to the resistor 50b via the switch 40m, so the power is not consumed by the resistor 50b, and the output current from the power supply is reduced. I know you do.
  • the DC power distribution system 1 includes a power source that supplies power, one or more first loads that consume the power supplied from the power source, and output power or output from the power source.
  • a measuring unit 11 that measures current and wiring 100 having a branch point, which connects the power supply and one or more first loads via two or more current paths after branching at the branch point.
  • a current switching unit that switches a current path through which current flows to the first load from among two or more current paths, and a measurement result of the measuring unit 11 when the current path is switched by the current switching unit.
  • an abnormality detection unit 14 that detects an abnormality in the wiring 100 .
  • the measurement unit 11 can perform the current flow to the first load through the current path in which the abnormality has occurred.
  • is an abnormal result it is possible to detect an abnormality in the DC distribution network (wiring 100) in which the power supply and the load are connected via two or more current paths. In particular, it is possible to identify a location where an abnormality has occurred in the DC power distribution network.
  • the first load is connected to the power supply via two or more current paths, power supply to the first load is maintained even if the current path is switched when there is no abnormality in the wiring 100. be able to. Therefore, an abnormality can be inspected while power supply to the first load is maintained.
  • the current switching unit may be provided in each of two or more current paths, and switch the current paths by switching conduction and non-conduction of each of the two or more current paths.
  • the current switching unit is provided in each of the two or more current paths, the current path through which the current flows to the first load can be easily switched among the two or more current paths.
  • the current switching unit may have a first communication unit.
  • the DC power distribution system 1 may further include a switching control section 12 that controls the current switching section.
  • the current switching units can be controlled via the first communication unit, and the current switching units can be switched in order, so that the current can be supplied to the first load from among the two or more current paths. It is possible to easily switch the current path to flow.
  • one or more first loads have a second communication unit, and output information indicating that their own operation will stop via the second communication unit when their own operation stops. good.
  • the output power or output current from the power supply will decrease, and there is a risk that an abnormality will be erroneously detected.
  • the abnormality detection unit 14 or the like is notified that the operation of the first load has stopped, it is possible to detect that the decrease in the output power or the output current is due to the operation of the first load having stopped.
  • the detection unit 14 and the like can recognize, and erroneous detection is suppressed.
  • the wiring 100 has a plurality of branch points, the one or more first loads are the plurality of first loads, and each of the plurality of first loads is one of the plurality of branch points on the wiring 100.
  • the wiring 100 is provided between adjacent branch points, and the wiring 100 is provided with two or more current paths corresponding to each of the plurality of first loads. Current path switching may be performed for one or more current paths.
  • the DC power distribution system 1 may further include resistors provided between adjacent branch points among the plurality of branch points in the wiring 100 .
  • the DC power distribution system 1 further includes a switch for switching on and off the supply of power to a resistor provided between the branch points where the first load is not provided, and the switch corresponds to the resistor.
  • a switch for switching on and off the supply of power to a resistor provided between the branch points where the first load is not provided, and the switch corresponds to the resistor.
  • the power supply to the resistor is turned off when the current path is not switched (that is, when the abnormality inspection is not performed), so power consumption can be suppressed.
  • the DC power distribution system 1 is further provided in straight wiring without further branching after branching at any one of the plurality of branching points in the wiring 100, and consumes power supplied from the power supply.
  • the second loads provided on the straight wiring are two. Since it is not connected to the power supply via the above current path, power cannot be supplied to the second load. Therefore, by determining that the current interrupting unit is provided in the straight wiring, the current interrupting unit that is determined to be provided in the straight wiring can be kept on, and power is supplied to the second load in the normal state. It is possible to suppress the inability to supply
  • the current switching unit may periodically switch the current path.
  • each current switching unit may store a program for sequentially switching conduction and non-conduction of the current path, and the current switching unit may operate according to the program. Also, the current switching unit does not have to have the first communication unit.
  • the first load has the second communication unit, but it does not have to have the second communication unit. That is, the first load does not need to output information indicating that its own operation will stop when its own operation stops.
  • the wiring 100 has a plurality of branch points and the DC power distribution system 1 has a plurality of first loads, but the present invention is not limited to this.
  • the wiring 100 may have only one branch point, and the DC power distribution system 1 may have only one first load.
  • the DC power distribution system 1 includes the determination unit 13
  • the determination unit 13 may not be provided.
  • the DC power distribution system 1 does not have to include the second load and the current interrupter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

This DC power distribution system (1) comprises: an AC/DC converter (10a) that feeds power; a lighting device (30c) that consumes power fed from the AC/DC converter (10a); a measurement unit that measures an output voltage or an output current from the AC/DC converter (10a); switches (40f, 40g) that, in a wiring (100) in which the AC/DC converter (10a) and the lighting device (30c) are connected through two electric current paths branching off from a branching point (n1), each perform switching between the two electric current paths for passing electric current to the lighting device (30c); and an abnormality detection unit that detects an abnormality in the wiring (100) in accordance with a measurement result by the measurement unit at the time of switching the electric current paths by the switches (40f, 40g).

Description

直流配電システムDC power distribution system
 本発明は、直流配電システムに関する。 The present invention relates to a DC power distribution system.
 従来、天井等に設けられ、網目状に配置された直流配電網が知られている(例えば特許文献1)。これにより、天井等における様々な箇所から直流電力を負荷に供給することができる。 Conventionally, a DC power distribution network that is provided on the ceiling or the like and arranged in a mesh pattern is known (for example, Patent Document 1). As a result, DC power can be supplied to the load from various locations on the ceiling or the like.
特開2009-159657号公報JP 2009-159657 A
 しかしながら、上記特許文献1に開示されたような直流配電網では、断線等の異常が発生したとしても、電源と負荷とが2つ以上の電流経路を介して接続されているため、異常を検知することが難しい。 However, in the DC power distribution network as disclosed in Patent Document 1, even if an abnormality such as disconnection occurs, the power supply and the load are connected via two or more current paths, so the abnormality is detected. difficult to do
 そこで、本発明は、電源と負荷とが2つ以上の電流経路を介して接続されている直流配電網における異常を検知することができる直流配電システムを提供する。 Therefore, the present invention provides a DC power distribution system capable of detecting abnormalities in a DC power distribution network in which a power supply and loads are connected via two or more current paths.
 本発明に係る直流配電システムの一態様は、電力を供給する電源と、前記電源から供給される電力を消費する1つ以上の第1負荷と、前記電源からの出力電力又は出力電流を計測する計測部と、分岐点を有する配線であって、前記電源と前記1つ以上の第1負荷のいずれかとを前記分岐点で分岐した後の2つ以上の電流経路を介して接続する配線において、前記2つ以上の電流経路のうちから当該第1負荷へ電流を流す電流経路を切り替える電流切替部と、前記電流切替部により電流経路が切り替えられた際の前記計測部の計測結果に応じて、前記配線における異常を検知する異常検知部と、を備える。 One aspect of the DC power distribution system according to the present invention is a power source that supplies power, one or more first loads that consume the power supplied from the power source, and the output power or output current from the power source is measured. A measuring unit and a wiring having a branch point, wherein the wiring connects the power supply and one of the one or more first loads via two or more current paths after branching at the branch point, A current switching unit that switches a current path through which current flows to the first load from among the two or more current paths, and a measurement result of the measuring unit when the current path is switched by the current switching unit, and an abnormality detection unit that detects an abnormality in the wiring.
 本発明の一態様によれば、電源と負荷とが2つ以上の電流経路を介して接続されている直流配電網における異常を検知することができる。 According to one aspect of the present invention, it is possible to detect an abnormality in a DC distribution network in which a power supply and a load are connected via two or more current paths.
図1は、実施の形態に係る直流配電システムの一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a DC power distribution system according to an embodiment. 図2は、実施の形態に係る電源の一例を示す構成図である。FIG. 2 is a configuration diagram showing an example of a power supply according to the embodiment. 図3は、電源と第1負荷とを接続する2つの電流経路の一例を説明するための図である。FIG. 3 is a diagram for explaining an example of two current paths connecting the power supply and the first load. 図4Aは、電流経路の切り替えを説明するための図である。FIG. 4A is a diagram for explaining switching of current paths. 図4Bは、電流経路の切り替えを説明するための図である。FIG. 4B is a diagram for explaining switching of current paths. 図5は、抵抗が接続された箇所の回路構成を示す図である。FIG. 5 is a diagram showing a circuit configuration of a portion where resistors are connected. 図6Aは、断線のない箇所でのスイッチの切り替えに応じた電源からの出力電流の変化を示す図である。FIG. 6A is a diagram showing changes in the output current from the power supply in response to switching of the switch at a location without disconnection. 図6Bは、断線のある箇所でのスイッチの切り替えに応じた電源からの出力電流の変化を示す図である。FIG. 6B is a diagram showing changes in the output current from the power supply according to the switching of the switch at the disconnection point.
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ並びにステップの順序等は、一例であって本発明を限定する主旨ではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. All of the embodiments described below represent specific examples of the present invention. Therefore, the numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, etc. shown in the following embodiments are examples and are not intended to limit the present invention.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 It should be noted that each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code|symbol is attached|subjected to the substantially same structure, and the overlapping description is abbreviate|omitted or simplified.
 (実施の形態)
 図1は、実施の形態に係る直流配電システム1の一例を示す構成図である。図1には、直流配電システム1の他に、系統電源2及び系統電源2を介して発電所等から送られた高電圧を施設内の設備で使用できる電圧に変換して分配する配電盤3を示している。
(Embodiment)
FIG. 1 is a configuration diagram showing an example of a DC power distribution system 1 according to an embodiment. In addition to the DC power distribution system 1, FIG. showing.
 直流配電システム1は、電力を供給する1つ以上の電源と、電源から供給される電力を消費する1つ以上の第1負荷及び1つ以上の第2負荷と、1つ以上の電流切替部と、1つ以上の電流遮断部と、を備える。電流切替部及び電流遮断部は、説明上、名称を異なるものとしているが、共に電流経路の導通及び非導通を切り替えるスイッチである。1つ以上の電源は、複数の電源であってもよいし、1つ以上の第1負荷は、複数の第1負荷であってもよいし、1つ以上の第2負荷は、複数の第2負荷であってもよいし、1つ以上の電流切替部は、複数の電流切替部であってもよいし、1つ以上の電流遮断部は、複数の電流遮断部であってもよい。ここでは、電源としてAC/DCコンバータ10a、複数の第1負荷として照明器具30a、30c及び30e、1つの第2負荷として照明器具30g、複数の電流切替部としてスイッチ40a~40q、複数の電流遮断部としてスイッチ40r及び40sを示している。また、第1負荷及び第2負荷以外の負荷として、照明器具30b、30d及び30fを示している。なお、直流配電システム1は、電源を複数備えていてもよいし、第1負荷を1つのみ備えていてもよいし、電流切替部を1つのみ備えていてもよいし、電流遮断部を1つのみ備えていてもよい。また、直流配電システム1は、第2負荷を複数備えていてもよい。電源は、AC/DCコンバータに限らず、電力を供給するものであれば特に限定されない。各負荷は、照明器具に限らず、電源から供給される電力を消費するものであれば特に限定されない。電流切替部及び電流遮断部は、電磁リレー又は機械式リレーであってもよく、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等のリレー又はスイッチであってもよい。 The DC power distribution system 1 includes one or more power sources that supply power, one or more first loads and one or more second loads that consume the power supplied from the power sources, and one or more current switching units. and one or more current interrupters. The current switching unit and the current interrupting unit have different names for the sake of explanation, but both are switches that switch between conduction and non-conduction of the current path. The one or more power sources may be a plurality of power sources, the one or more first loads may be a plurality of first loads, and the one or more second loads may be a plurality of second loads. There may be two loads, one or more current switching units may be a plurality of current switching units, and one or more current interrupting units may be a plurality of current interrupting units. Here, an AC/DC converter 10a as a power supply, lighting fixtures 30a, 30c and 30e as a plurality of first loads, a lighting fixture 30g as one second load, switches 40a to 40q as a plurality of current switching units, and a plurality of current interrupters Switches 40r and 40s are shown as parts. Lighting fixtures 30b, 30d and 30f are shown as loads other than the first load and the second load. Note that the DC power distribution system 1 may include a plurality of power supplies, may include only one first load, may include only one current switching unit, or may include a current interrupting unit. Only one may be provided. Moreover, the DC power distribution system 1 may include a plurality of second loads. The power supply is not limited to an AC/DC converter, and is not particularly limited as long as it supplies power. Each load is not limited to a lighting fixture, and is not particularly limited as long as it consumes power supplied from a power supply. The current switching unit and the current interrupting unit may be an electromagnetic relay or a mechanical relay, or may be a relay or switch such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
 直流配電システム1は、配線100を備える。例えば、配線100は、施設の天井、壁又は床等に設けられ、網目状に配置される。配線100は、分岐点を有する。例えば、配線100は、複数の分岐点を有する。ここでは、複数の分岐点として分岐点n1~n13を示している。なお、配線100は、直流配電システム1に含まれていなくてもよい。 The DC power distribution system 1 includes wiring 100 . For example, the wiring 100 is provided on the ceiling, wall, floor, or the like of the facility and arranged in a mesh pattern. The wiring 100 has a branch point. For example, the wiring 100 has multiple branch points. Here, branch points n1 to n13 are shown as a plurality of branch points. Note that the wiring 100 may not be included in the DC power distribution system 1 .
 第1負荷は、配線100において隣り合う分岐点間に設けられた負荷である。ここで第1負荷は分岐点間に1つと限定する必要はなく、複数あっても良い。照明器具30aは、配線100における分岐点n1及びn2間に設けられ、照明器具30cは、配線100における分岐点n4及びn5間に設けられ、照明器具30eは、配線100における分岐点n5及びn6間に設けられる。 A first load is a load provided between adjacent branch points in the wiring 100 . Here, the number of first loads between branch points is not limited to one, and there may be a plurality of loads. The lighting fixture 30a is provided between the branch points n1 and n2 on the wiring 100, the lighting fixture 30c is provided between the branch points n4 and n5 on the wiring 100, and the lighting fixture 30e is provided between the branch points n5 and n6 on the wiring 100. provided in
 例えば、1つ以上の第1負荷は、第2通信部を有し、自身の動作が停止する際に、第2通信部を介して自身の動作が停止することを示す情報を出力する。例えば、有線又は無線により、当該情報が出力される。当該情報は、例えば、後述する異常検知部14等へ出力される。なお、照明器具30b、30d及び30fについても、第2通信部を有していてもよく、自身の動作が停止する際に、第2通信部を介して自身の動作が停止することを示す情報を出力してもよい。 For example, one or more first loads have a second communication unit, and output information indicating that their own operation will stop via the second communication unit when their own operation stops. For example, the information is output by wire or wirelessly. The information is output to, for example, the anomaly detection unit 14, which will be described later. Note that the lighting fixtures 30b, 30d, and 30f may also have a second communication unit, and information indicating that their own operation will stop via the second communication unit when their own operation stops. may be output.
 第2負荷は、配線100における、複数の分岐点のうちのいずれかの分岐点で分岐した後、さらなる分岐がない直線配線に設けられる負荷である。ここで第2負荷は直線配線上に1つと限定する必要はなく、複数あっても良い。例えば、配線100には、分岐点n9、n10、n11、n12及びn13で分岐した後、さらなる分岐がない直線配線が5つ設けられている。照明器具30gは、分岐点n10で分岐した後、さらなる分岐がない直線配線に設けられる。なお、第2負荷についても、第2通信部を有していてもよく、自身の動作が停止する際に、第2通信部を介して自身の動作が停止することを示す情報を出力してもよい。 A second load is a load provided on a straight wiring that has no further branch after branching at any one of the plurality of branch points in the wiring 100 . Here, the number of the second loads on the straight wiring is not limited to one, but may be plural. For example, the wiring 100 is provided with five straight wirings that branch off at branch points n9, n10, n11, n12 and n13 and have no further branches. After branching off at the branch point n10, the lighting fixture 30g is provided in a straight wiring with no further branching. Note that the second load may also have a second communication unit, and when its own operation stops, it outputs information indicating that its own operation will stop via the second communication unit. good too.
 例えば、第1負荷及び第2負荷には、DC/DCコンバータが設けられていてもよい。例えば、配線100には24Vの直流電圧が印可されるため、第1負荷及び第2負荷に応じた電圧に降圧することができる。 For example, the first load and the second load may be provided with DC/DC converters. For example, since a DC voltage of 24 V is applied to the wiring 100, the voltage can be stepped down according to the first load and the second load.
 電流切替部は、電源と1つ以上の第1負荷のいずれかとを分岐点で分岐した後の2つ以上の電流経路を介して接続する配線において、2つ以上の電流経路のうちから当該負荷へ電流を流す電流経路を切り替える。例えば、電流切替部は、分岐点で分岐した後の2つ以上の電流経路のそれぞれに設けられ、2つ以上の電流経路のそれぞれの導通及び非導通を切り替えることで、電流経路の切り替えを行う。例えば、電流切替部は、配線100において隣り合う分岐点間に設けられる。スイッチ40aは、配線100における分岐点n1及びn4間の分岐点n1側に設けられる。スイッチ40bは、配線100における分岐点n1及びn2間の分岐点n1側に設けられる。スイッチ40cは、配線100における分岐点n1及びn5間の分岐点n1側に設けられる。スイッチ40dは、配線100における分岐点n1及びn4間の分岐点n4側に設けられる。スイッチ40eは、配線100における分岐点n1及びn5間の分岐点n5側に設けられる。スイッチ40fは、配線100における分岐点n4及びn5間の分岐点n4側に設けられる。スイッチ40gは、配線100における分岐点n4及びn5間の分岐点n5側に設けられる。スイッチ40hは、配線100における分岐点n5及びn6間の分岐点n5側に設けられる。スイッチ40iは、配線100における分岐点n4及びn9間の分岐点n4側に設けられる。スイッチ40jは、配線100における分岐点n5及びn10間の分岐点n5側に設けられる。スイッチ40kは、配線100における分岐点n4及びn9間の分岐点n9側に設けられる。スイッチ40lは、配線100における分岐点n5及びn10間の分岐点n10側に設けられる。スイッチ40mは、配線100における分岐点n9及びn10間の分岐点n9側に設けられる。スイッチ40nは、配線100における分岐点n9及びn10間の分岐点n10側に設けられる。スイッチ40oは、配線100における分岐点n10及びn11間の分岐点n10側に設けられる。スイッチ40pは、配線100における分岐点n1及びn2間の分岐点n2側に設けられる。スイッチ40qは、配線100における分岐点n5及びn6間の分岐点n6側に設けられる。 The current switching unit selects the load from among the two or more current paths in wiring that connects the power supply and one or more first loads via two or more current paths after branching at a branch point. Switches the current path through which the current flows. For example, the current switching unit is provided in each of the two or more current paths after branching at the branch point, and switches the current paths by switching conduction and non-conduction of each of the two or more current paths. . For example, the current switching unit is provided between adjacent branch points in the wiring 100 . The switch 40 a is provided on the branch point n1 side between the branch points n1 and n4 in the wiring 100 . The switch 40b is provided on the branch point n1 side between the branch points n1 and n2 in the wiring 100 . The switch 40 c is provided on the branch point n1 side between the branch points n1 and n5 in the wiring 100 . The switch 40d is provided on the branch point n4 side between the branch points n1 and n4 in the wiring 100 . The switch 40 e is provided on the branch point n5 side between the branch points n1 and n5 in the wiring 100 . The switch 40 f is provided on the branch point n4 side between the branch points n4 and n5 in the wiring 100 . The switch 40 g is provided on the branch point n5 side between the branch points n4 and n5 in the wiring 100 . The switch 40 h is provided on the branch point n5 side between the branch points n5 and n6 in the wiring 100 . The switch 40 i is provided on the branch point n4 side between the branch points n4 and n9 in the wiring 100 . The switch 40 j is provided on the branch point n5 side between the branch points n5 and n10 in the wiring 100 . The switch 40 k is provided on the branch point n9 side between the branch points n4 and n9 in the wiring 100 . The switch 40l is provided on the branch point n10 side between the branch points n5 and n10 in the wiring 100 . The switch 40 m is provided on the branch point n9 side between the branch points n9 and n10 in the wiring 100 . The switch 40n is provided on the branch point n10 side between the branch points n9 and n10 in the wiring 100 . The switch 40 o is provided on the branch point n10 side between the branch points n10 and n11 in the wiring 100 . The switch 40p is provided on the branch point n2 side between the branch points n1 and n2 in the wiring 100 . The switch 40 q is provided on the branch point n6 side between the branch points n5 and n6 in the wiring 100 .
 照明器具30aに着目すると、AC/DCコンバータ10aと照明器具30aとは主に2つの電流経路を介して接続される。当該2つの電流経路は、分岐点n1で分岐した後、直接照明器具30aに至る電流経路、及び、分岐点n1で分岐した後、分岐点n5、n6、n2を通り照明器具30aへ至る電流経路である。これら2つの電流経路のうちから照明器具30aへ電流を流す電流経路を切り替える電流切替部は、例えば、スイッチ40b及び40pとなる。 Focusing on the lighting equipment 30a, the AC/DC converter 10a and the lighting equipment 30a are connected mainly via two current paths. The two current paths are a current path that branches at the branch point n1 and then leads directly to the lighting fixture 30a, and a current path that branches at the branch point n1 and then passes through the branch points n5, n6, and n2 to reach the lighting fixture 30a. is. For example, the switches 40b and 40p are current switching units that switch the current path through which the current flows to the lighting device 30a from among these two current paths.
 照明器具30cに着目すると、AC/DCコンバータ10aと照明器具30cとは主に2つの電流経路を介して接続される。当該2つの電流経路は、分岐点n1で分岐した後、分岐点n5を通り照明器具30cへ至る電流経路、及び、分岐点n1で分岐した後、分岐点n4を通り照明器具30cへ至る電流経路である。これら2つの電流経路のうちから照明器具30cへ電流を流す電流経路を切り替える電流切替部は、例えば、スイッチ40f及び40gとなる。 Focusing on the lighting fixture 30c, the AC/DC converter 10a and the lighting fixture 30c are connected mainly via two current paths. The two current paths branch at the branch point n1 and pass through the branch point n5 to reach the lighting fixture 30c. is. A current switching unit that switches the current path through which the current flows to the lighting device 30c from among these two current paths is, for example, the switches 40f and 40g.
 照明器具30eに着目すると、AC/DCコンバータ10aと照明器具30eとは主に2つの電流経路を介して接続される。当該2つの電流経路は、分岐点n1で分岐した後、分岐点n2、n6を通り照明器具30eへ至る電流経路、分岐点n1で分岐した後、分岐点n5を通り照明器具30eへ至る電流経路である。これら2つの電流経路のうちから照明器具30eへ電流を流す電流経路を切り替える電流切替部は、例えば、スイッチ40q及び40hとなる。 Focusing on the lighting device 30e, the AC/DC converter 10a and the lighting device 30e are connected mainly via two current paths. The two current paths branch at the branch point n1 and pass through the branch points n2 and n6 to reach the lighting fixture 30e. is. The current switching units for switching the current path through which the current flows to the lighting device 30e from among these two current paths are, for example, the switches 40q and 40h.
 電流切替部による電流経路の切り替えの詳細については後述する。 The details of the current path switching by the current switching unit will be described later.
 例えば、電流切替部は、第1通信部を有し、第1通信部を介して電流経路の導通及び非導通の切り替えが制御される。 For example, the current switching unit has a first communication unit, and switching between conduction and non-conduction of the current path is controlled via the first communication unit.
 電流遮断部は、配線100における、複数の分岐点のうちのいずれかの分岐点で分岐した後、さらなる分岐がない直線配線に設けられる。スイッチ40rは、分岐点n9で分岐した後、さらなる分岐がない直線配線に設けられる。スイッチ40sは、分岐点n10で分岐した後、さらなる分岐がない直線配線に設けられる。 A current interrupting part is provided in a straight wiring that does not branch further after branching at any one of a plurality of branching points in the wiring 100 . The switch 40r is provided in a straight line with no further branch after branching at the branch point n9. The switch 40s is provided in a straight line with no further branch after branching at the branch point n10.
 直流配電システム1は、DCブレーカを備えていてもよい。ここでは、直流配電システム1は、AC/DCコンバータ10aに対応するDCブレーカ20aを備える。DCブレーカ20aは、AC/DCコンバータ10aと配線100との接続を遮断するためのブレーカである。例えば、配線100に断線等の異常が発生したとしても、DCブレーカ20aによってAC/DCコンバータ10aと配線100との接続が遮断されることで、アークの発生を事前に予防することができる。 The DC power distribution system 1 may be equipped with a DC breaker. Here, the DC power distribution system 1 includes a DC breaker 20a corresponding to the AC/DC converter 10a. DC breaker 20 a is a breaker for breaking the connection between AC/DC converter 10 a and wiring 100 . For example, even if an abnormality such as disconnection occurs in the wiring 100, the DC breaker 20a cuts off the connection between the AC/DC converter 10a and the wiring 100, thereby preventing arcing in advance.
 次に、電源の詳細について図2を用いて説明する。 Next, the details of the power supply will be explained using FIG.
 図2は、実施の形態に係る電源(例えばAC/DCコンバータ10a)の一例を示す構成図である。 FIG. 2 is a configuration diagram showing an example of a power supply (eg AC/DC converter 10a) according to the embodiment.
 AC/DCコンバータ10aは、計測部11、切替制御部12、判定部13、異常検知部14及び出力部15を備える。例えば、計測部11、切替制御部12、判定部13、異常検知部14及び出力部15は、マイコン(マイクロコンピュータ)により実現されてもよい。マイコンは、プログラムが格納されたROM(Read Only Memory)、RAM(Randam Access Memory)、プログラムを実行するプロセッサ(CPU:Central Processing Unit)、通信インタフェース、タイマ、A/D変換器及びD/A変換器等を有する半導体集積回路等である。なお、計測部11、切替制御部12、判定部13、異常検知部14及び出力部15は、A/D変換器、論理回路、ゲートアレイ及びD/A変換器等で構成される専用の電子回路等によってハードウェア的に実現されてもよい。 The AC/DC converter 10 a includes a measurement section 11 , a switching control section 12 , a determination section 13 , an abnormality detection section 14 and an output section 15 . For example, the measurement unit 11, the switching control unit 12, the determination unit 13, the abnormality detection unit 14, and the output unit 15 may be realized by a microcomputer. The microcomputer consists of a ROM (Read Only Memory) in which the program is stored, a RAM (Random Access Memory), a processor (CPU: Central Processing Unit) that executes the program, a communication interface, a timer, an A/D converter and a D/A conversion It is a semiconductor integrated circuit or the like having a device or the like. Note that the measurement unit 11, the switching control unit 12, the determination unit 13, the abnormality detection unit 14, and the output unit 15 are dedicated electronic circuits composed of A/D converters, logic circuits, gate arrays, D/A converters, and the like. It may be realized in hardware by a circuit or the like.
 計測部11は、電源からの出力電力又は出力電流を計測する。例えば、AC/DCコンバータ10aは、電圧計及び電流計を備えていてもよく、電圧計及び電流計によって計測部11が実現されてもよい。 The measurement unit 11 measures output power or output current from the power supply. For example, the AC/DC converter 10a may include a voltmeter and an ammeter, and the measurement unit 11 may be realized by the voltmeter and the ammeter.
 切替制御部12は、電流切替部を制御する。例えば、切替制御部12は、電流切替部と無線又は有線により通信を行うことで、電流切替部を制御する。例えば、切替制御部12は、電流切替部(スイッチ40a~40q)を順序立てて制御する。電流切替部の制御例については後述する。 The switching control section 12 controls the current switching section. For example, the switching control unit 12 controls the current switching unit by communicating with the current switching unit wirelessly or by wire. For example, the switching control unit 12 sequentially controls the current switching units (switches 40a to 40q). A control example of the current switching unit will be described later.
 判定部13は、電流切替部及び電流遮断部が直線配線に設けられているか否かを判定する。例えば、スイッチ40a~40sのそれぞれが直線配線に設けられているか否かが予めメモリに記憶されており、判定部13は、当該メモリを参照することで、上記判定を行う。例えば、判定部13は、スイッチ40r及び40sが直線配線に設けられていると判定する。例えば、スイッチ40r及び40sもスイッチ40a~40qと同様に第1通信部を有し、切替制御部12によって制御可能となっているが、スイッチ40r及び40sが直線配線に設けられていると判定されることで、切替制御部12は、スイッチ40r及び40sのオン及びオフを切り替えず、オンのままとすることができる。 The determination unit 13 determines whether or not the current switching unit and the current interrupting unit are provided on the straight wiring. For example, whether or not each of the switches 40a to 40s is provided on the straight wiring is stored in advance in a memory, and the determination unit 13 makes the above determination by referring to the memory. For example, the determination unit 13 determines that the switches 40r and 40s are provided in straight wiring. For example, like the switches 40a to 40q, the switches 40r and 40s also have a first communication unit and can be controlled by the switching control unit 12. Thus, the switching control unit 12 can keep the switches 40r and 40s on without switching between on and off.
 異常検知部14は、電流切替部により電流経路が切り替えられた際の計測部11の計測結果に応じて、配線100における異常を検知する。例えば、異常検知部14は、計測部11の計測結果が規定値とならなかった場合に、配線100における異常を検知する。また、異常検知部14は、計測部11の計測結果が規定値とならなかったときの電流経路に応じて、配線100における異常が発生した箇所を特定する。異常検知部14の動作の詳細については後述する。 The abnormality detection unit 14 detects an abnormality in the wiring 100 according to the measurement result of the measurement unit 11 when the current path is switched by the current switching unit. For example, the abnormality detection unit 14 detects an abnormality in the wiring 100 when the measurement result of the measurement unit 11 does not reach a specified value. Further, the abnormality detection unit 14 identifies the location where the abnormality occurs in the wiring 100 according to the current path when the measurement result of the measurement unit 11 does not reach the specified value. Details of the operation of the abnormality detection unit 14 will be described later.
 出力部15は、異常検知部14の検知結果を出力する。例えば、出力部15は、配線100において異常が発生していることや、配線100における異常が発生した箇所を示す検知結果を直流配電システム1が設けられた施設の管理者又は直流配電システム1のメンテナンス業者等に通知する。 The output unit 15 outputs the detection result of the abnormality detection unit 14. For example, the output unit 15 outputs the detection result indicating that an abnormality has occurred in the wiring 100 and the location where the abnormality has occurred in the wiring 100 to the administrator of the facility in which the DC power distribution system 1 is provided or the administrator of the DC power distribution system 1. Notify the maintenance company.
 また、AC/DCコンバータ10aに加えて、さらに電源を加える場合、全ての電源は通信などで連携し、各電源から直流配電システム1へ供給する電力もしくは電流が管理されていることが望ましい。このようにすることで電流切替部により電流経路が切り替えられた際に各電源からの供給電力・電流が、配線に異常が無いにも関わらず変化した場合でも、異常と誤検出することを無くすことが可能になる。 Also, when additional power supplies are added in addition to the AC/DC converter 10a, it is desirable that all power supplies are linked by communication or the like, and the power or current supplied from each power supply to the DC power distribution system 1 is managed. By doing so, when the current path is switched by the current switching unit, even if the power supply/current from each power supply changes even though there is no abnormality in the wiring, it will not be erroneously detected as an abnormality. becomes possible.
 なお、AC/DCコンバータ10aは、計測部11を備えていなくてもよい。例えば、直流配電システム1は、DCブレーカ20aと分岐点n1とを接続する経路を流れる電流を計測する装置を備えていてもよく、計測部11は当該装置に設けられていてもよい。上記経路を流れる電流は、AC/DCコンバータ10aからの出力電流となるため、この場合でも、AC/DCコンバータ10aからの出力電流を計測することができる。 It should be noted that the AC/DC converter 10a does not have to include the measuring section 11. For example, the DC power distribution system 1 may include a device that measures the current flowing through the path connecting the DC breaker 20a and the branch point n1, and the measurement unit 11 may be provided in the device. Since the current flowing through the path is the output current from the AC/DC converter 10a, the output current from the AC/DC converter 10a can be measured even in this case.
 また、AC/DCコンバータ10aは、切替制御部12を備えていなくてもよい。例えば、切替制御部12は、電流切替部と通信が可能な装置であれば、どのような装置に設けられてもよい。例えば、切替制御部12は、スイッチ40a~40sのいずれかに設けられてもよいし、DCブレーカ20aに設けられてもよいし、電流切替部を制御する専用の装置に設けられてもよいし、サーバに設けられてもよい。 Also, the AC/DC converter 10a does not have to include the switching control section 12. For example, the switching control unit 12 may be provided in any device as long as it can communicate with the current switching unit. For example, the switching control unit 12 may be provided in any one of the switches 40a to 40s, may be provided in the DC breaker 20a, or may be provided in a dedicated device for controlling the current switching unit. , may be provided on the server.
 また、AC/DCコンバータ10aは、判定部13を備えていなくてもよい。例えば、判定部13は、切替制御部12と通信が可能な装置であれば、どのような装置に設けられてもよい。例えば、判定部13は、スイッチ40a~40sのいずれかに設けられてもよいし、DCブレーカ20aに設けられてもよいし、電流切替部を制御する専用の装置に設けられてもよいし、サーバに設けられてもよい。 Also, the AC/DC converter 10a does not have to include the determination unit 13. For example, the determination unit 13 may be provided in any device as long as it can communicate with the switching control unit 12 . For example, the determination unit 13 may be provided in any one of the switches 40a to 40s, may be provided in the DC breaker 20a, may be provided in a dedicated device for controlling the current switching unit, It may be provided in the server.
 また、AC/DCコンバータ10aは、異常検知部14を備えていなくてもよい。例えば、異常検知部14は、計測部11と通信が可能な装置であれば、どのような装置に設けられてもよい。例えば、異常検知部14は、スイッチ40a~40sのいずれかに設けられてもよいし、DCブレーカ20aに設けられてもよいし、電流切替部を制御する専用の装置に設けられてもよいし、サーバに設けられてもよい。なお、異常検知部14の機能を計測部11が有していてもよい。 Also, the AC/DC converter 10a does not have to include the abnormality detection unit 14. For example, the abnormality detection unit 14 may be provided in any device as long as it can communicate with the measurement unit 11 . For example, the abnormality detection unit 14 may be provided in any one of the switches 40a to 40s, may be provided in the DC breaker 20a, or may be provided in a dedicated device for controlling the current switching unit. , may be provided on the server. Note that the measurement unit 11 may have the function of the abnormality detection unit 14 .
 また、AC/DCコンバータ10aは、出力部15を備えていなくてもよい。例えば、出力部15は、異常検知部14と通信が可能な装置であれば、どのような装置に設けられてもよい。例えば、出力部15は、スイッチ40a~40sのいずれかに設けられてもよいし、DCブレーカ20aに設けられてもよいし、電流切替部を制御する専用の装置に設けられてもよいし、サーバに設けられてもよい。 Also, the AC/DC converter 10a may not include the output unit 15. For example, the output unit 15 may be provided in any device as long as it can communicate with the abnormality detection unit 14 . For example, the output unit 15 may be provided in any one of the switches 40a to 40s, may be provided in the DC breaker 20a, may be provided in a dedicated device for controlling the current switching unit, It may be provided in the server.
 次に、電源と第1負荷とが分岐点で分岐した後の2つ以上の電流経路を介して接続されることの具体例について図3を用いて説明する。 Next, a specific example of connecting the power supply and the first load via two or more current paths after branching at the branch point will be described with reference to FIG.
 図3は、電源(例えばAC/DCコンバータ10a)と第1負荷(例えば照明器具30c)とを接続する2つの電流経路の一例を説明するための図である。図3では、照明器具30cの周辺を示している。なお、スイッチ40a、40c、40d、40e、40f及び40gは、施設の営業時間中等、負荷の通常動作時には全てオンとなっているとする。 FIG. 3 is a diagram for explaining an example of two current paths connecting a power source (for example, AC/DC converter 10a) and a first load (for example, lighting fixture 30c). FIG. 3 shows the periphery of the lighting fixture 30c. It is assumed that the switches 40a, 40c, 40d, 40e, 40f, and 40g are all on during normal operation of the load, such as during business hours of the facility.
 図3に示されるように、AC/DCコンバータ10aと照明器具30cとは、分岐点n1で分岐した後の2つの電流経路A1及びA2を介して接続される。例えば、電流経路A1上の照明器具30cと分岐点n5の間で断線等が発生したとしても電流経路A2を介して照明器具30cへ電力を供給することができる。言い換えると、電流経路A1上の照明器具30cと分岐点n5の間で断線等が発生したとしても照明器具30cが点灯したままとなり、また、計測部11の計測結果に変化が表れにくいため、配線100に異常が発生したことを認識することが難しい。例えば、配線100において、断線が放置されるとさらなる断線を招くおそれがあり、アークが発生するおそれがある。これに対して、本発明では、電流切替部により電流経路が切り替えられた際の計測部11の計測結果に応じて、配線100における異常を検知することができる。例えば、電流切替部は、定期的に電流経路の切り替えを行う。例えば、負荷への電力供給を止めることなく(言い換えると、電源の出力を止めることなく)、負荷の通常動作時にも定期的に電流経路の切り替えが行われる。 As shown in FIG. 3, the AC/DC converter 10a and the lighting fixture 30c are connected via two current paths A1 and A2 after branching at the branch point n1. For example, even if disconnection or the like occurs between the lighting fixture 30c and the branch point n5 on the current path A1, power can be supplied to the lighting fixture 30c via the current path A2. In other words, even if a disconnection or the like occurs between the lighting fixture 30c on the current path A1 and the branch point n5, the lighting fixture 30c will remain lit, and the measurement result of the measuring unit 11 will not change easily. It is difficult to recognize that an abnormality has occurred in 100. For example, in the wiring 100, if a disconnection is left unattended, it may lead to further disconnection, which may cause an arc. In contrast, according to the present invention, an abnormality in the wiring 100 can be detected according to the measurement result of the measuring unit 11 when the current path is switched by the current switching unit. For example, the current switching unit periodically switches current paths. For example, without stopping the power supply to the load (in other words, without stopping the output of the power supply), the current path is switched periodically even during normal operation of the load.
 次に、電流経路の切り替えについて図4A及び図4Bを用いて説明する。 Next, switching of current paths will be described using FIGS. 4A and 4B.
 図4A及び図4Bは、電流経路の切り替えを説明するための図である。例えば、配線100におけるスイッチ40fと照明器具30cとの間で断線が発生しているとする。 4A and 4B are diagrams for explaining switching of current paths. For example, it is assumed that disconnection has occurred between the switch 40f and the lighting fixture 30c in the wiring 100 .
 例えば、図4Aに示されるように、スイッチ40fがオフとなるように制御される。これにより、電流経路A1及びA2のうちから、照明器具30cへ電流を流す経路が電流経路A1に切り替えられる。電流経路A1上の照明器具30cと分岐点n5の間では断線が発生していないため、照明器具30cへ電流を流すことができ(言い換えると照明器具30cはAC/DCコンバータ10aから供給される電力を消費することができ)、計測部11の計測結果は規定値のままとなる。 For example, as shown in FIG. 4A, the switch 40f is controlled to be turned off. As a result, the path through which the current flows to the lighting device 30c is switched from the current paths A1 and A2 to the current path A1. Since no disconnection has occurred between the lighting fixture 30c and the branch point n5 on the current path A1, the current can flow to the lighting fixture 30c (in other words, the lighting fixture 30c receives power supplied from the AC/DC converter 10a). can be consumed), and the measurement result of the measurement unit 11 remains the specified value.
 次に、図4Bに示されるように、スイッチ40gがオフとなり、スイッチ40fがオンとなるように制御される。これにより、電流経路A1及びA2のうちから、照明器具30cへ電流を流す経路が電流経路A2に切り替えられる。電流経路A2上の照明器具30cと分岐点n4の間では断線が発生しているため、照明器具30cへ電流を流すことができず(言い換えると照明器具30cはAC/DCコンバータ10aから供給される電力を消費することができず)、計測部11の計測結果は規定値とならない。これにより、異常検知部14は、分岐点n1と照明器具30cとを接続する電流経路A2上の照明器具30cと分岐点n4の間に異常が発生していることを検知することができる。 Next, as shown in FIG. 4B, the switch 40g is turned off and the switch 40f is controlled to be turned on. As a result, from among the current paths A1 and A2, the path through which the current flows to the lighting device 30c is switched to the current path A2. Since there is a disconnection between the lighting fixture 30c and the branch point n4 on the current path A2, current cannot flow to the lighting fixture 30c (in other words, the lighting fixture 30c is supplied from the AC/DC converter 10a). power cannot be consumed), and the measurement result of the measurement unit 11 does not become a specified value. Accordingly, the abnormality detection unit 14 can detect that an abnormality has occurred between the lighting fixture 30c and the branch point n4 on the current path A2 connecting the branch point n1 and the lighting fixture 30c.
 同じように、スイッチ40pがオフとなるように制御され、その後、スイッチ40pがオンとなるように制御され、スイッチ40bがオフとなるように制御されることで、分岐点n1から照明器具30aへ至る電流経路、及び、分岐点n2から照明器具30aへ至る電流経路上の異常を検知することができる。同じように、スイッチ40hがオフとなるように制御され、その後、スイッチ40hがオンとなるように制御され、スイッチ40qがオフとなるように制御されることで、分岐点n5から照明器具30eへ至る電流経路、及び、分岐点n6から照明器具30eへ至る電流経路上の異常を検知することができる。このように、各電流切替部を順序だてて制御することで、各第1負荷に至る様々な電流経路の異常を検知することができる。 Similarly, the switch 40p is controlled to be turned off, then the switch 40p is controlled to be turned on, and the switch 40b is controlled to be turned off. Abnormality on the current path leading to and from the branch point n2 to the lighting device 30a can be detected. Similarly, the switch 40h is controlled to be turned off, then the switch 40h is controlled to be turned on, and the switch 40q is controlled to be turned off. Abnormalities on the current path leading to and from the branch point n6 to the lighting device 30e can be detected. In this way, by sequentially controlling the current switching units, it is possible to detect abnormalities in various current paths leading to the first loads.
 なお、配線100には、隣り合う分岐点間に電流切替部が設けられていない箇所があるが、全ての分岐点間に設けられてもよい。或いは、コスト等の観点から、劣化しやすい箇所等にのみ電流切替部が設けられてもよい。 It should be noted that the wiring 100 has a portion where a current switching unit is not provided between adjacent branch points, but it may be provided between all the branch points. Alternatively, from the viewpoint of cost or the like, current switching units may be provided only at places where deterioration is likely to occur.
 例えば、図1に示される例では、配線100における分岐点n9及びn10間の異常を検知したり、配線100における分岐点n5及びn10間の異常を検知したりすることが難しい。分岐点n9及びn10間、並びに、分岐点n5及びn10間には、電源から供給される電力を消費する第1負荷が設けられておらず、分岐点n9及びn10間、又は、分岐点n5及びn10間に異常が発生したとしても、電流経路の切り替えに応じて計測部11の計測結果が変化しない場合があるためである。 For example, in the example shown in FIG. 1, it is difficult to detect an abnormality between the branch points n9 and n10 on the wiring 100, and to detect an abnormality between the branch points n5 and n10 on the wiring 100. Between the branch points n9 and n10 and between the branch points n5 and n10, there is no first load that consumes the power supplied from the power supply, and between the branch points n9 and n10 or between the branch points n5 and n10 This is because even if an abnormality occurs during n10, the measurement result of the measurement unit 11 may not change according to the switching of the current path.
 そこで、直流配電システム1は、さらに、配線100における複数の分岐点のうちの隣り合う分岐点間(例えば、第1負荷が設けられていない分岐点間)に設けられた抵抗を備えていてもよい。例えば、分岐点n9及びn10間、並びに、分岐点n5及びn10間に抵抗が設けられた場合の直流配電システム1の動作について、図5、図6A及び図6Bを用いて説明する。 Therefore, the DC power distribution system 1 may further include resistors provided between adjacent branch points (for example, between branch points where the first load is not provided) among the plurality of branch points in the wiring 100. good. For example, the operation of the DC power distribution system 1 when resistors are provided between the branch points n9 and n10 and between the branch points n5 and n10 will be described with reference to FIGS. 5, 6A and 6B.
 図5は、抵抗が接続された箇所の回路構成を示す図である。図5では、分岐点n10の周辺を示している。また、図1等では、配線及び電流切替部を簡易的に示しているが、図5では、配線として正極側配線及び負極側配線を示し、それぞれに電流切替部が接続される例を示している。 FIG. 5 is a diagram showing the circuit configuration of the portion where the resistor is connected. FIG. 5 shows the vicinity of the branch point n10. Also, in FIG. 1 and the like, the wiring and the current switching unit are simply shown, but in FIG. there is
 図5に示されるように、分岐点n9(図示せず)と分岐点n10との間に抵抗50aが接続され、分岐点n5(図示せず)と分岐点n10との間に抵抗50bが接続される。具体的には、分岐点n9と分岐点n10との間における正極側配線と負極側配線との間に抵抗50aが接続され、分岐点n5と分岐点n10との間における正極側配線と負極側配線との間に抵抗50bが接続される。抵抗50a及び50bは、電源から供給される電力を消費することができるため、分岐点n9及びn10間、又は、分岐点n5及びn10間に異常が発生したときに、電流経路の切り替えに応じて計測部11の計測結果を変化させることができる。 As shown in FIG. 5, a resistor 50a is connected between branch point n9 (not shown) and branch point n10, and a resistor 50b is connected between branch point n5 (not shown) and branch point n10. be done. Specifically, the resistor 50a is connected between the positive electrode wiring and the negative electrode wiring between the branch points n9 and n10, and the positive electrode wiring and the negative electrode wiring are connected between the branch points n5 and n10. A resistor 50b is connected to the wiring. Since the resistors 50a and 50b can consume the power supplied from the power supply, when an abnormality occurs between the branch points n9 and n10 or between the branch points n5 and n10, the current path is switched. The measurement result of the measurement unit 11 can be changed.
 また、直流配電システム1は、さらに、抵抗50aへの電力の供給のオン及びオフを切り替えるスイッチ60a、並びに、抵抗50bへの電力の供給のオン及びオフを切り替えるスイッチ60bを備える。分岐点間に設けられた抵抗への電力の供給のオン及びオフを切り替えるスイッチは、抵抗に対応する2つ以上の電流経路についての電流経路の切り替えが行われないときには、抵抗への電力の供給をオフし、抵抗に対応する2つ以上の電流経路についての電流経路の切り替えが行われる際に、抵抗への電力の供給をオンする。 In addition, the DC power distribution system 1 further includes a switch 60a that switches on and off the supply of power to the resistor 50a, and a switch 60b that switches on and off the supply of power to the resistor 50b. A switch that switches on and off the supply of power to the resistor provided between the branch points supplies power to the resistor when current path switching is not performed for two or more current paths corresponding to the resistor. is turned off, and the supply of power to the resistor is turned on when current path switching is performed for two or more current paths corresponding to the resistor.
 図6Aは、断線のない箇所でのスイッチの切り替えに応じた電源からの出力電流の変化を示す図である。図6Bは、断線のある箇所でのスイッチの切り替えに応じた電源からの出力電流の変化を示す図である。例えば、分岐点n9と分岐点n10との間において断線が発生しているとする。異常の検査が開始されるまでは、スイッチ60a及び60bはオフとなっている。スイッチ60aがオンとなると、抵抗50aにおいて電力が消費され、スイッチ60bがオンとなると、抵抗50bにおいて電力が消費されるためである。 FIG. 6A is a diagram showing changes in the output current from the power supply in response to switching of the switch at a location without disconnection. FIG. 6B is a diagram showing changes in the output current from the power supply according to the switching of the switch at the disconnection point. For example, it is assumed that a disconnection occurs between the branch point n9 and the branch point n10. The switches 60a and 60b are off until the abnormality inspection is started. This is because power is consumed in the resistor 50a when the switch 60a is turned on, and power is consumed in the resistor 50b when the switch 60b is turned on.
 分岐点n5及びn10間の異常の検知が行われる場合、図6Aに示されるように、まず、スイッチ60bがオンに制御され、抵抗50bが有効化される。これにより、抵抗50bで電力が消費される分、電源からの出力電流が増加する。次に、スイッチ40jがオフに制御される。分岐点n10からスイッチ40lを介して抵抗50bに電流が流れるため、電源からの出力電流に変化がないことがわかる。これにより、分岐点n5及び分岐点n10間の抵抗50bが接続された部分よりも分岐点n10側の配線に異常がないことがわかる。次に、スイッチ40jがオンに制御され、スイッチ40lがオフに制御される。分岐点n5からスイッチ40jを介して抵抗50bに電流が流れるため、電源からの出力電流に変化がないことがわかる。これにより、分岐点n5及び分岐点n10間の抵抗50bが接続された部分よりも分岐点n5側の配線に異常がないことがわかる。そして、スイッチ40lがオンに制御され、スイッチ60bがオフに制御され、抵抗50bが無効化される。これにより、抵抗50bで電力が消費されない分、電源からの出力電流が低下する。 When detecting an abnormality between the branch points n5 and n10, first, the switch 60b is turned on and the resistor 50b is enabled, as shown in FIG. 6A. As a result, the output current from the power supply increases by the amount of power consumed by the resistor 50b. Next, switch 40j is controlled to be off. Since the current flows from the branch point n10 to the resistor 50b via the switch 40l, it can be seen that there is no change in the output current from the power supply. From this, it can be seen that there is no abnormality in the wiring on the branch point n10 side of the portion where the resistor 50b is connected between the branch points n5 and n10. Next, the switch 40j is turned on and the switch 40l is turned off. Since the current flows from the branch point n5 through the switch 40j to the resistor 50b, it can be seen that there is no change in the output current from the power supply. From this, it can be seen that there is no abnormality in the wiring on the branch point n5 side of the portion where the resistor 50b is connected between the branch points n5 and n10. Then, the switch 40l is turned on, the switch 60b is turned off, and the resistor 50b is disabled. As a result, the output current from the power supply is reduced by the amount that power is not consumed by the resistor 50b.
 分岐点n9及びn10間の異常の検知が行われる場合、図6Bに示されるように、まず、スイッチ60aがオンに制御され、抵抗50aが有効化される。これにより、抵抗50aで電力が消費される分、電源からの出力電流が増加する。次に、スイッチ40nがオフに制御される。スイッチ40mと抵抗50aとの間の配線が断線しており、分岐点n9からスイッチ40mを介して抵抗50bに電流が流れないため、抵抗50bで電力が消費されない分、電源からの出力電流が低下することがわかる。これにより、分岐点n9及び分岐点n10間の抵抗50aが接続された部分よりも分岐点n9側の配線に異常があることがわかる。次に、スイッチ40nがオンに制御され、スイッチ40mがオフに制御される。分岐点n10からスイッチ40nを介して抵抗50aに電流が流れるため、抵抗50aで電力が消費される分、電源からの出力電流が増加することがわかる。これにより、分岐点n9及び分岐点n10間の抵抗50aが接続された部分よりも分岐点n10側の配線に異常がないことがわかる。そして、スイッチ40mがオンに制御され、スイッチ60aがオフに制御され、抵抗50aが無効化される。これにより、抵抗50aで電力が消費されない分、電源からの出力電流が低下する。 When detecting an abnormality between the branch points n9 and n10, first, the switch 60a is turned on and the resistor 50a is enabled, as shown in FIG. 6B. As a result, the output current from the power supply increases by the amount of power consumed by the resistor 50a. Next, switch 40n is controlled to be off. Since the wiring between the switch 40m and the resistor 50a is disconnected, current does not flow from the branch point n9 to the resistor 50b via the switch 40m, so the power is not consumed by the resistor 50b, and the output current from the power supply is reduced. I know you do. From this, it can be seen that there is an abnormality in the wiring on the branch point n9 side of the portion where the resistor 50a is connected between the branch points n9 and n10. Next, the switch 40n is turned on and the switch 40m is turned off. Since the current flows from the branch point n10 to the resistor 50a via the switch 40n, it can be seen that the output current from the power supply increases by the power consumed by the resistor 50a. From this, it can be seen that there is no abnormality in the wiring on the branch point n10 side of the portion where the resistor 50a is connected between the branch points n9 and n10. Then, the switch 40m is turned on, the switch 60a is turned off, and the resistor 50a is disabled. As a result, the output current from the power supply is reduced by the amount that power is not consumed by the resistor 50a.
 このように、隣り合う分岐点間(例えば第1負荷が設けられていない分岐点間)に抵抗が設けられることで、配線100における隣り合う分岐点間の異常を検知することができる。 In this way, by providing a resistor between adjacent branch points (for example, between branch points where the first load is not provided), an abnormality between adjacent branch points in the wiring 100 can be detected.
 以上説明したように、本実施の形態に係る直流配電システム1は、電力を供給する電源と、電源から供給される電力を消費する1つ以上の第1負荷と、電源からの出力電力又は出力電流を計測する計測部11と、分岐点を有する配線100であって、電源と1つ以上の第1負荷のいずれかとを分岐点で分岐した後の2つ以上の電流経路を介して接続する配線100において、2つ以上の電流経路のうちから当該第1負荷へ電流を流す電流経路を切り替える電流切替部と、電流切替部により電流経路が切り替えられた際の計測部11の計測結果に応じて、配線100における異常を検知する異常検知部14と、を備える。 As described above, the DC power distribution system 1 according to the present embodiment includes a power source that supplies power, one or more first loads that consume the power supplied from the power source, and output power or output from the power source. A measuring unit 11 that measures current and wiring 100 having a branch point, which connects the power supply and one or more first loads via two or more current paths after branching at the branch point. In the wiring 100, a current switching unit that switches a current path through which current flows to the first load from among two or more current paths, and a measurement result of the measuring unit 11 when the current path is switched by the current switching unit. and an abnormality detection unit 14 that detects an abnormality in the wiring 100 .
 これによれば、2つ以上の電流経路のいずれかに断線等の異常が発生していたとしても、異常が発生している電流経路を介して電流を第1負荷へ流す際の計測部11の計測結果が異常な結果となるため、電源と負荷とが2つ以上の電流経路を介して接続されている直流配電網(配線100)における異常を検知することができる。特に、直流配電網において異常が発生している箇所を特定することができる。また、第1負荷が2つ以上の電流経路を介して電源と接続されているため、配線100に異常がない場合には、電流経路を切り替えても第1負荷への電力の供給を維持することができる。このため、第1負荷への電力の供給を維持したまま、異常の検査を行うことができる。 According to this, even if an abnormality such as a disconnection occurs in one of the two or more current paths, the measurement unit 11 can perform the current flow to the first load through the current path in which the abnormality has occurred. is an abnormal result, it is possible to detect an abnormality in the DC distribution network (wiring 100) in which the power supply and the load are connected via two or more current paths. In particular, it is possible to identify a location where an abnormality has occurred in the DC power distribution network. In addition, since the first load is connected to the power supply via two or more current paths, power supply to the first load is maintained even if the current path is switched when there is no abnormality in the wiring 100. be able to. Therefore, an abnormality can be inspected while power supply to the first load is maintained.
 例えば、電流切替部は、2つ以上の電流経路のそれぞれに設けられ、2つ以上の電流経路のそれぞれの導通及び非導通を切り替えることで、電流経路の切り替えを行ってもよい。 For example, the current switching unit may be provided in each of two or more current paths, and switch the current paths by switching conduction and non-conduction of each of the two or more current paths.
 これによれば、2つ以上の電流経路のそれぞれに電流切替部が設けられるため、2つ以上の電流経路のうちから第1負荷へ電流を流す電流経路を容易に切り替えることができる。 According to this, since the current switching unit is provided in each of the two or more current paths, the current path through which the current flows to the first load can be easily switched among the two or more current paths.
 例えば、電流切替部は、第1通信部を有していてもよい。例えば、直流配電システム1は、さらに、電流切替部を制御する切替制御部12を備えていてもよい。 For example, the current switching unit may have a first communication unit. For example, the DC power distribution system 1 may further include a switching control section 12 that controls the current switching section.
 これによれば、第1通信部を介して電流切替部を制御することができ、電流切替部を順序立てて切り替えることができるため、2つ以上の電流経路のうちから第1負荷へ電流を流す電流経路を容易に切り替えることができる。 According to this, the current switching units can be controlled via the first communication unit, and the current switching units can be switched in order, so that the current can be supplied to the first load from among the two or more current paths. It is possible to easily switch the current path to flow.
 例えば、1つ以上の第1負荷は、第2通信部を有し、自身の動作が停止する際に、第2通信部を介して自身の動作が停止することを示す情報を出力してもよい。 For example, one or more first loads have a second communication unit, and output information indicating that their own operation will stop via the second communication unit when their own operation stops. good.
 第1負荷の動作が停止する場合、電源からの出力電力又は出力電流が減少し、異常が発生したと誤検知されるおそれがある。これに対して、第1負荷の動作が停止したことが異常検知部14等に通知されるため、出力電力又は出力電流の減少が第1負荷の動作が停止したことによるものであることを異常検知部14等は認識することができ、誤検知が抑制される。 If the operation of the first load stops, the output power or output current from the power supply will decrease, and there is a risk that an abnormality will be erroneously detected. On the other hand, since the abnormality detection unit 14 or the like is notified that the operation of the first load has stopped, it is possible to detect that the decrease in the output power or the output current is due to the operation of the first load having stopped. The detection unit 14 and the like can recognize, and erroneous detection is suppressed.
 例えば、配線100は、複数の分岐点を有し、1つ以上の第1負荷は、複数の第1負荷であり、複数の第1負荷のそれぞれは、配線100における複数の分岐点のうちの隣り合う分岐点間に設けられ、配線100には、複数の第1負荷のそれぞれに対応する2つ以上の電流経路が設けられ、電流切替部は、複数の第1負荷のそれぞれに対応する2つ以上の電流経路について、電流経路の切り替えを行ってもよい。 For example, the wiring 100 has a plurality of branch points, the one or more first loads are the plurality of first loads, and each of the plurality of first loads is one of the plurality of branch points on the wiring 100. The wiring 100 is provided between adjacent branch points, and the wiring 100 is provided with two or more current paths corresponding to each of the plurality of first loads. Current path switching may be performed for one or more current paths.
 これによれば、図1に示されるように、配線100が複数の分岐点を有し、複数の第1負荷が接続される場合であっても、配線100における異常を検知することができ、また、異常が発生している箇所を特定することができる。 According to this, as shown in FIG. 1, even when the wiring 100 has a plurality of branch points and a plurality of first loads are connected, an abnormality in the wiring 100 can be detected. In addition, it is possible to specify the location where the abnormality occurs.
 例えば、直流配電システム1は、さらに、配線100における複数の分岐点のうちの隣り合う分岐点間に設けられた抵抗を備えていてもよい。 For example, the DC power distribution system 1 may further include resistors provided between adjacent branch points among the plurality of branch points in the wiring 100 .
 図1に示されるように、隣り合う分岐点間に照明器具等の電力を消費する第1負荷が接続されない場合には、このような箇所における異常を検知することが難しいが、このような箇所に抵抗が接続されることで、第1負荷が接続されない箇所における異常を検知することができる。 As shown in FIG. 1, when a first load that consumes power such as a lighting fixture is not connected between adjacent branch points, it is difficult to detect an abnormality at such a point. By connecting a resistor to , it is possible to detect an abnormality at a location where the first load is not connected.
 例えば、直流配電システム1は、さらに、第1負荷が設けられていない分岐点間に設けられた抵抗への電力の供給のオン及びオフを切り替えるスイッチを備え、当該スイッチは、上記抵抗に対応する2つ以上の電流経路についての電流経路の切り替えが行われないときには、抵抗への電力の供給をオフし、上記抵抗に対応する2つ以上の電流経路についての電流経路の切り替えが行われる際に、抵抗への電力の供給をオンしてもよい。 For example, the DC power distribution system 1 further includes a switch for switching on and off the supply of power to a resistor provided between the branch points where the first load is not provided, and the switch corresponds to the resistor. When the current paths are not switched for two or more current paths, the power supply to the resistor is turned off, and when the current paths are switched for the two or more current paths corresponding to the resistors. , may turn on the power supply to the resistor.
 これによれば、電流経路の切り替えが行われないとき(すなわち、異常の検査が行われないとき)には抵抗への電力供給がオフされるため、電力の消費を抑制することができる。 According to this, the power supply to the resistor is turned off when the current path is not switched (that is, when the abnormality inspection is not performed), so power consumption can be suppressed.
 例えば、直流配電システム1は、さらに、配線100における、複数の分岐点のうちのいずれかの分岐点で分岐した後、さらなる分岐がない直線配線に設けられ、電源から供給される電力を消費する1つ以上の第2負荷と、直線配線に設けられた電流遮断部と、電流切替部及び電流遮断部が直線配線に設けられているか否かを判定する判定部13と、を備えていてもよい。 For example, the DC power distribution system 1 is further provided in straight wiring without further branching after branching at any one of the plurality of branching points in the wiring 100, and consumes power supplied from the power supply. One or more second loads, a current interrupting unit provided in the straight wiring, and a determination unit 13 that determines whether or not the current switching unit and the current interrupting unit are provided in the straight wiring. good.
 直線配線に電流遮断部が設けられている場合において、直線配線に異常が発生していないときに、電流遮断部のオン及びオフが切り替えられると、直線配線に設けられた第2負荷は2つ以上の電流経路を介して電源と接続されていないため、第2負荷に電力を供給できなくなる。このため、電流遮断部が直線配線に設けられていると判定できることで、直線配線に設けられていると判定された電流遮断部をオンのままにすることができ、正常時に第2負荷に電力を供給できなくなることを抑制できる。 In the case where the straight wiring is provided with the current interrupting unit, when the current interrupting unit is switched on and off when there is no abnormality in the straight wiring, the second loads provided on the straight wiring are two. Since it is not connected to the power supply via the above current path, power cannot be supplied to the second load. Therefore, by determining that the current interrupting unit is provided in the straight wiring, the current interrupting unit that is determined to be provided in the straight wiring can be kept on, and power is supplied to the second load in the normal state. It is possible to suppress the inability to supply
 例えば、電流切替部は、定期的に電流経路の切り替えを行ってもよい。 For example, the current switching unit may periodically switch the current path.
 これによれば、電源から第1負荷への電力供給を止めることなく定期的に異常の検知を行うことができる。 According to this, it is possible to periodically detect an abnormality without stopping the power supply from the power source to the first load.
 (その他の実施の形態)
 以上、実施の形態に係る直流配電システム1について説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other embodiments)
Although the DC power distribution system 1 according to the embodiment has been described above, the present invention is not limited to the above embodiment.
 例えば、上記実施の形態では、直流配電システム1が切替制御部12を備える例について説明したが、切替制御部12を備えていなくてもよい。例えば、各電流切替部には、順序だてて電流経路の導通及び非導通を切り替えるためのプログラムが記憶されていてもよく、電流切替部は、当該プログラムに応じて動作してもよい。また、電流切替部は、第1通信部を有していなくてもよい。 For example, in the above embodiment, an example in which the DC power distribution system 1 includes the switching control unit 12 has been described, but the switching control unit 12 may not be included. For example, each current switching unit may store a program for sequentially switching conduction and non-conduction of the current path, and the current switching unit may operate according to the program. Also, the current switching unit does not have to have the first communication unit.
 例えば、上記実施の形態では、第1負荷が第2通信部を有する例について説明したが、第2通信部を有していなくてもよい。すなわち、第1負荷は、自身の動作が停止する際に、自身の動作が停止することを示す情報を出力しなくてもよい。 For example, in the above embodiment, an example in which the first load has the second communication unit has been described, but it does not have to have the second communication unit. That is, the first load does not need to output information indicating that its own operation will stop when its own operation stops.
 例えば、上記実施の形態では、配線100が複数の分岐点を有し、直流配電システム1が複数の第1負荷を備える例について説明したが、これに限らない。例えば、配線100は、分岐点を1つのみ有していてもよく、直流配電システム1は、第1負荷を1つのみ備えていてもよい。 For example, in the above embodiment, the wiring 100 has a plurality of branch points and the DC power distribution system 1 has a plurality of first loads, but the present invention is not limited to this. For example, the wiring 100 may have only one branch point, and the DC power distribution system 1 may have only one first load.
 例えば、上記実施の形態では、直流配電システム1が判定部13を備える例について説明したが、判定部13を備えていなくてもよい。また、直流配電システム1は、第2負荷及び電流遮断部を備えていなくてもよい。 For example, in the above embodiment, an example in which the DC power distribution system 1 includes the determination unit 13 has been described, but the determination unit 13 may not be provided. Also, the DC power distribution system 1 does not have to include the second load and the current interrupter.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, it can be realized by applying various modifications to each embodiment that a person skilled in the art can think of, or by arbitrarily combining the constituent elements and functions of each embodiment without departing from the spirit of the present invention. Forms are also included in the present invention.
 1 直流配電システム
 10a AC/DCコンバータ(電源)
 11 計測部
 12 切替制御部
 13 判定部
 14 異常検知部
 30a、30c、30e 照明器具(第1負荷)
 30g 照明器具(第2負荷)
 40a、40b、40c、40d、40e、40f、40g、40h、40i、40j、40k、40l、40m、40n、40o、40p、40q スイッチ(電流切替部)
 40r、40s スイッチ(電流遮断部)
 50a、50b 抵抗
 60a、60b スイッチ
 100 配線
 n1、n2、n3、n4、n5、n6、n7、n8、n9、n10、n11、n12、n13 分岐点
1 DC power distribution system 10a AC/DC converter (power supply)
Reference Signs List 11 measurement unit 12 switching control unit 13 determination unit 14 abnormality detection unit 30a, 30c, 30e lighting equipment (first load)
30g lighting equipment (second load)
40a, 40b, 40c, 40d, 40e, 40f, 40g, 40h, 40i, 40j, 40k, 40l, 40m, 40n, 40o, 40p, 40q Switch (current switching unit)
40r, 40s switch (current breaker)
50a, 50b resistance 60a, 60b switch 100 wiring n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13 branch point

Claims (11)

  1.  電力を供給する電源と、
     前記電源から供給される電力を消費する1つ以上の第1負荷と、
     前記電源からの出力電力又は出力電流を計測する計測部と、
     分岐点を有する配線であって、前記電源と前記1つ以上の第1負荷のいずれかとを前記分岐点で分岐した後の2つ以上の電流経路を介して接続する配線において、前記2つ以上の電流経路のうちから当該第1負荷へ電流を流す電流経路を切り替える電流切替部と、
     前記電流切替部により電流経路が切り替えられた際の前記計測部の計測結果に応じて、前記配線における異常を検知する異常検知部と、を備える、
     直流配電システム。
    a power supply that supplies power;
    one or more first loads that consume power supplied from the power supply;
    a measuring unit that measures output power or output current from the power supply;
    Wiring having a branch point, wherein the wiring connects the power supply and one of the one or more first loads via two or more current paths after branching at the branch point, wherein the two or more a current switching unit that switches a current path through which current flows to the first load from among the current paths of
    an abnormality detection unit that detects an abnormality in the wiring according to the measurement result of the measurement unit when the current path is switched by the current switching unit;
    DC power distribution system.
  2.  前記電流切替部は、前記2つ以上の電流経路のそれぞれに設けられ、前記2つ以上の電流経路のそれぞれの導通及び非導通を切り替えることで、電流経路の切り替えを行う、
     請求項1に記載の直流配電システム。
    The current switching unit is provided in each of the two or more current paths, and switches the current path by switching conduction and non-conduction of each of the two or more current paths.
    A DC power distribution system according to claim 1 .
  3.  前記電流切替部は、第1通信部を有する、
     請求項1又は2に記載の直流配電システム。
    The current switching unit has a first communication unit,
    The DC power distribution system according to claim 1 or 2.
  4.  前記直流配電システムは、さらに、前記電流切替部を制御する切替制御部を備える、
     請求項3に記載の直流配電システム。
    The DC power distribution system further comprises a switching control unit that controls the current switching unit.
    A DC power distribution system according to claim 3 .
  5.  前記1つ以上の第1負荷は、第2通信部を有し、自身の動作が停止する際に、前記第2通信部を介して自身の動作が停止することを示す情報を出力する、
     請求項1~4のいずれか1項に記載の直流配電システム。
    The one or more first loads have a second communication unit, and output information indicating that their own operation will stop via the second communication unit when their own operation stops.
    The DC power distribution system according to any one of claims 1 to 4.
  6.  前記配線は、複数の分岐点を有し、
     前記1つ以上の第1負荷は、複数の第1負荷であり、
     前記複数の第1負荷のそれぞれは、前記配線における前記複数の分岐点のうちの隣り合う分岐点間に設けられ、
     前記配線には、前記複数の第1負荷のそれぞれに対応する前記2つ以上の電流経路が設けられ、
     前記電流切替部は、前記複数の第1負荷のそれぞれに対応する前記2つ以上の電流経路について、電流経路の切り替えを行う、
     請求項1~5のいずれか1項に記載の直流配電システム。
    The wiring has a plurality of branch points,
    the one or more first loads are a plurality of first loads;
    each of the plurality of first loads is provided between adjacent branch points of the plurality of branch points in the wiring;
    the wiring is provided with the two or more current paths corresponding to each of the plurality of first loads;
    The current switching unit switches between the two or more current paths corresponding to each of the plurality of first loads.
    The DC power distribution system according to any one of claims 1-5.
  7.  前記直流配電システムは、さらに、前記配線における前記複数の分岐点のうちの隣り合う分岐点間に設けられた抵抗を備える、
     請求項6に記載の直流配電システム。
    The DC power distribution system further comprises a resistor provided between adjacent branch points of the plurality of branch points in the wiring.
    A DC power distribution system according to claim 6 .
  8.  前記直流配電システムは、さらに、前記抵抗への電力の供給のオン及びオフを切り替えるスイッチを備え、
     前記スイッチは、
      前記抵抗に対応する前記2つ以上の電流経路についての電流経路の切り替えが行われないときには、前記抵抗への電力の供給をオフし、
      前記抵抗に対応する前記2つ以上の電流経路についての電流経路の切り替えが行われる際に、前記抵抗への電力の供給をオンする、
     請求項7に記載の直流配電システム。
    The DC power distribution system further comprises a switch for turning on and off the supply of power to the resistor,
    The switch is
    turning off power supply to the resistor when switching of the current paths for the two or more current paths corresponding to the resistor is not performed;
    turning on power supply to the resistor when current path switching is performed for the two or more current paths corresponding to the resistor;
    A DC power distribution system according to claim 7 .
  9.  前記直流配電システムは、さらに、
     前記配線における、前記複数の分岐点のうちのいずれかの分岐点で分岐した後、さらなる分岐がない直線配線に設けられ、前記電源から供給される電力を消費する1つ以上の第2負荷と、
     前記直線配線に設けられた電流遮断部と、
     前記電流切替部及び前記電流遮断部が前記直線配線に設けられているか否かを判定する判定部と、を備える、
     請求項6~8のいずれか1項に記載の直流配電システム。
    The DC power distribution system further comprises:
    one or more second loads that are provided on a straight line that has no further branch after being branched at one of the plurality of branch points in the wiring, and that consumes power supplied from the power supply; ,
    a current interrupter provided in the straight wiring;
    a determining unit that determines whether the current switching unit and the current interrupting unit are provided in the straight wiring,
    The DC power distribution system according to any one of claims 6-8.
  10.  前記電流切替部は、定期的に電流経路の切り替えを行う、
     請求項1~9のいずれか1項に記載の直流配電システム。
    The current switching unit periodically switches the current path,
    The DC power distribution system according to any one of claims 1-9.
  11.  前記直流配電システムは、さらに、前記配線を備える、
     請求項1~10のいずれか1項に記載の直流配電システム。
    The DC power distribution system further comprises the wiring,
    The DC power distribution system according to any one of claims 1-10.
PCT/JP2022/014862 2021-05-26 2022-03-28 Dc power distribution system WO2022249720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021088246 2021-05-26
JP2021-088246 2021-05-26

Publications (1)

Publication Number Publication Date
WO2022249720A1 true WO2022249720A1 (en) 2022-12-01

Family

ID=84228703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014862 WO2022249720A1 (en) 2021-05-26 2022-03-28 Dc power distribution system

Country Status (1)

Country Link
WO (1) WO2022249720A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161079U (en) * 1983-04-14 1984-10-29 株式会社ピ−エフユ− Photo sensor break state detection device
JP2009159657A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Direct-current power feeding device and luminaire
WO2021019935A1 (en) * 2019-07-26 2021-02-04 株式会社デンソー Power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161079U (en) * 1983-04-14 1984-10-29 株式会社ピ−エフユ− Photo sensor break state detection device
JP2009159657A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Direct-current power feeding device and luminaire
WO2021019935A1 (en) * 2019-07-26 2021-02-04 株式会社デンソー Power supply system

Similar Documents

Publication Publication Date Title
KR101079900B1 (en) Static transfer switch device, power supply apparatus using the switch device and switching method thereof
CN105305387B (en) The device and method of monitoring and switching load circuit
CN105722728B (en) Power control system
JP2006254669A (en) Current balance circuit
WO2022249720A1 (en) Dc power distribution system
JP2005086969A (en) Uninterruptible power supply system
JP5106579B2 (en) Terminal block device
US10978872B2 (en) Power distribution system
US7701684B2 (en) Power supply apparatus and power supply system including the same addressing abnormality
KR102018235B1 (en) DC power automatic switcher
KR100840061B1 (en) Parallel high speed trasnfer switch for uninterruptable power supply and transfer method therof
WO2012081242A1 (en) Portable electronic device
JP2010285269A (en) Elevator control system
US20180097349A1 (en) Junction box and network for distributing energy
EP1453072B1 (en) Method of supervising an electrical contact
JPH11299075A (en) Protective relay
JP2002272016A (en) Uninterruptible power supply unit
JP2005229694A (en) Ups system
JP2010206913A (en) Power supply conversion device
JP5530822B2 (en) Power switching device
JP7363230B2 (en) Image forming device
JP7088702B2 (en) Power supply circuit and power supply method
JP6664546B1 (en) Failure diagnosis system
WO2021131394A1 (en) Welding detector and welding detection method
JP2008172903A (en) Device for preventing burning by overcurrent in information processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810996

Country of ref document: EP

Kind code of ref document: A1