WO2022249607A1 - Optical scanning device and optical scanning method - Google Patents

Optical scanning device and optical scanning method Download PDF

Info

Publication number
WO2022249607A1
WO2022249607A1 PCT/JP2022/008111 JP2022008111W WO2022249607A1 WO 2022249607 A1 WO2022249607 A1 WO 2022249607A1 JP 2022008111 W JP2022008111 W JP 2022008111W WO 2022249607 A1 WO2022249607 A1 WO 2022249607A1
Authority
WO
WIPO (PCT)
Prior art keywords
command waveform
waveform
amplitude
command
mirror
Prior art date
Application number
PCT/JP2022/008111
Other languages
French (fr)
Japanese (ja)
Inventor
年賢 難波
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2023524006A priority Critical patent/JP7526889B2/en
Publication of WO2022249607A1 publication Critical patent/WO2022249607A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to an optical scanning device and an optical scanning method for scanning an object with a laser beam.
  • optical scanning devices that scan objects with laser light are widely used.
  • a device using a galvanometer scanner as a scanning unit for scanning laser light includes a first mirror and a second mirror, which are a pair of mirrors that reflect laser light, a first motor that changes the tilt of the first mirror in the first direction, and a tilt of the second mirror in the second direction. a second motor for changing the tilt.
  • the first motor is controlled by a first command waveform and the second motor is controlled by a second command waveform.
  • a device using a two-axis tilt stage as a scanning unit, as described in Japanese Patent Application Laid-Open No. 2002-200022.
  • the biaxial tilt stage has a function of tilting the mirror in a first direction according to a first command waveform (for example, slightly rotating the mirror with the x-axis as a rotation axis), and a function of tilting the mirror in a second direction according to a second command waveform. (for example, the mirror is slightly rotated with the y-axis as the rotation axis).
  • the trajectory drawn by the irradiation point of the laser light is distorted, and the roundness of the trajectory is reduced.
  • An aspect of the present invention has been made in view of the above problems, and is an optical scanning device capable of increasing the roundness of a trajectory drawn by an irradiation point when scanning a laser beam in a circular trajectory.
  • the object is to realize an optical scanning method.
  • an optical scanning device includes a mirror that reflects a laser beam, a scanning unit that scans the laser beam by changing the inclination of the mirror; a command waveform generator that generates a first command waveform for controlling scanning of the part in a first direction and a second command waveform for controlling scanning of the scanning part in a second direction; and a command waveform correction unit for correcting at least one of the first command waveform and the second command waveform, wherein the command waveform correction unit increases the circularity of the trajectory. and at least one of a first amplitude that is the amplitude of the first command waveform and a second amplitude that is the amplitude of the second command waveform, and a phase difference between the first command waveform and the second command waveform. correct.
  • an optical scanning device includes a mirror that reflects a laser beam, a scanning unit that scans the laser beam by changing the inclination of the mirror; a command waveform generator that generates a first command waveform for controlling scanning of the part in a first direction and a second command waveform for controlling scanning of the scanning part in a second direction; a trajectory acquisition unit that acquires the first command waveform and the second command waveform by a frequency common to each, a first amplitude and a second amplitude that are amplitudes of each, and a phase difference of each It is a prescribed sine wave, and the command waveform generation unit (1) determines the relationship between the frequency of scanning the laser light, the diameter of the trajectory, the first amplitude, the second amplitude, and the phase difference (2) said first command waveform having a desired frequency and having a first amplitude, a second amplitude and a phase difference corresponding to said desired frequency and a desired diameter and said generating a second command
  • an optical scanning method includes a mirror that reflects a laser beam, and a scanning unit that scans the laser beam by changing the tilt of the mirror.
  • a command waveform generation step of generating a first command waveform for controlling scanning in a first direction of the scanning unit and a second command waveform for controlling scanning in a second direction by the scanning unit and a locus obtaining step of obtaining the locus of the laser beam, and a command waveform correcting step of correcting at least one of the first command waveform and the second command waveform, wherein the command waveform correcting step comprises the A first amplitude, which is the amplitude of the first command waveform; a second amplitude, which is the amplitude of the second command waveform; At least one of the phase differences is corrected.
  • an optical scanning device or an optical scanning method capable of increasing the roundness of a trajectory drawn by an irradiation point when scanning laser light so as to draw a circular trajectory.
  • FIG. 1 is a block diagram showing the configuration of an optical scanning device according to a first embodiment of the present invention
  • FIG. 2 is a block diagram showing the configuration of a first correction value generation unit provided in the optical scanning device shown in FIG. 1
  • FIG. 2 is a graph showing command waveforms in the optical scanning device shown in FIG. 1
  • 2A and 2B are schematic diagrams for explaining the operation of a mirror included in the optical scanning device shown in FIG. 1
  • FIG. 4 is a graph showing command amplitude dependence of the center of amplitude in an example of the present invention and a comparative example thereof
  • 2 is a block diagram showing the configuration of an optical scanning device according to a second embodiment of the present invention
  • FIG. 1 is a block diagram showing the configuration of an optical scanning device according to a first embodiment of the present invention
  • FIG. 2 is a block diagram showing the configuration of a first correction value generation unit provided in the optical scanning device shown in FIG. 1
  • FIG. 2 is a graph showing command waveforms in the optical scanning device shown
  • FIG. 7 is a Lissajous figure showing the trajectory of irradiation points obtained as a result of wobble scanning performed using the optical scanning device shown in FIG. 6; (a) shows a perfectly circular trajectory, and (b) shows an elliptical trajectory. 7 is a flowchart of an optical scanning method performed by the optical scanning device shown in FIG. 6; FIG. 7 is a schematic diagram showing a configuration of a modified example of a scanning unit included in the optical scanning device shown in FIG. 6; FIG. 4 shows the frequency dependence of the first amplitude, the second amplitude and the phase difference obtained according to one embodiment of the present invention; FIG.
  • FIG. 1 is a block diagram showing the configuration of the optical scanning device 1.
  • FIG. 2 is a block diagram showing the configuration of the first correction value generator 13a provided in the optical scanning device 1.
  • FIG. 3 is a graph showing command waveforms in the optical scanning device 1.
  • FIG. 4A and 4B are schematic diagrams for explaining the operation of the mirror 11 included in the optical scanning device 1.
  • FIG. 4 illustration of the biaxial tilt stage 12 provided in the optical scanning device 1 is omitted.
  • the optical scanning device 1 has, as a basic configuration, a mirror 11, a biaxial tilt stage 12, a first correction value generator 13a, a second correction value generator 13b, a first combined waveform generator 14a, a first A two-composite waveform generating section 14 b and a driving section 15 are provided.
  • the optical scanning device 1 is incorporated in, for example, a laser processing machine, and is used to move an irradiation point of laser light on an object.
  • the mirror 11 is configured to reflect the laser light.
  • the laser beam reflected by the mirror 11 is directly applied to the object.
  • the laser beam reflected by the mirror 11 is applied to the object through the galvanometer scanner.
  • the biaxial tilt stage 12 is configured to change the tilt of the mirror 11 using piezo elements.
  • the biaxial tilt stage 12 includes a first columnar piezo element, a second columnar piezo element, a first displacement sensor 12a, and a second displacement sensor 12b.
  • illustration of the first columnar piezoelectric element and the second columnar piezoelectric element is omitted.
  • the two-axis tilt stage 12 is configured to (1) slightly rotate the stage on which the mirror 11 is mounted by expanding and contracting the first columnar piezoelectric element about the x-axis, and (2) A two-axis integral piezo stage is used, which allows the stage on which the mirror 11 is mounted to be slightly rotated about the y-axis by expanding and contracting two columnar piezo elements.
  • the expansion and contraction of each of the first columnar piezo element and the second columnar piezo element changes the height of each of the first columnar piezo element and the second columnar piezo element.
  • first displacement the amount of change in height of the first columnar piezo element
  • second displacement the amount of change in height of the second columnar piezo element
  • the first displacement sensor 12a detects a first displacement in the first columnar piezo element
  • the second displacement sensor 12b detects a second displacement in the second columnar piezo element
  • the biaxial tilt stage 12 changes the tilt of the mirror 11 so that, for example, the irradiation point of the laser beam reflected by the mirror 11 draws a circular orbit on the object.
  • the galvanometer scanner by combining the translational movement of the object or the translational movement of the laser beam irradiation point by the galvanometer scanner, wobbling in which the laser beam irradiation point draws a spiral trajectory on the object can be realized.
  • slightly rotating the stage of the biaxial tilt stage 12 about the x-axis as the rotation axis Ar is also described as tilting the biaxial tilt stage 12 with respect to the first direction.
  • the rotation angle of the stage from the first reference position P0 with the x-axis as the rotation axis Ar is also referred to as the tilt of the biaxial tilt stage 12 with respect to the first direction (FIG. 3 reference).
  • the first reference position P0 is the position of the stage in the first direction when the voltage applied to the first columnar piezoelectric element is 0V. That is, the first reference position P0 is the position of the stage in the first direction when the first displacement is zero.
  • the rotation angle of the stage from the second reference position with the y-axis as the rotation axis is also referred to as the tilt of the biaxial tilt stage 12 with respect to the second direction.
  • the rotation axis when the stage is slightly rotated about the y-axis and the second reference position are not shown, but the rotation axis Ar when the stage is slightly rotated about the x-axis is shown. and the first reference position P0 .
  • the second reference position is the position of the stage in the first direction when the voltage applied to the second columnar piezoelectric element is 0V. That is, the second reference position is the position of the stage in the first direction when the second displacement is zero.
  • the command waveform is the waveform of the control signal used to control the displacement of the piezo element. Since the piezoelectric element is displaced according to the applied voltage, the command waveform is preferably the waveform of the voltage signal.
  • the biaxial tilt stage 12 includes the first columnar piezoelectric element used to tilt the biaxial tilt stage 12 in the first direction and the first columnar piezoelectric element used to tilt the biaxial tilt stage 12 in the second direction. and a second columnar piezo element to be used. Therefore, the command waveform consists of a first command waveform used for controlling the first displacement of the first columnar piezoelectric element and a second command waveform used for controlling the second displacement of the second columnar piezoelectric element. include.
  • the first command waveform as an example, the operation of the mirror 11 when tilting the biaxial tilt stage 12 with respect to the first direction will be described with reference to FIGS. 3 and 4.
  • the operation of the mirror 11 when tilting the biaxial tilt stage 12 in the second direction is as follows, using the first command waveform as an example, except that the rotation axis differs between the x-axis and the y-axis. is used to tilt the biaxial tilt stage 12 with respect to the first direction. Therefore, detailed description of the operation of the mirror 11 when the two-axis tilt stage 12 is tilted in the second direction using the second command waveform is omitted here.
  • the first command waveform is a voltage signal waveform represented by a time-varying positive voltage.
  • the first command waveform has a waveform that oscillates periodically and is symmetrical with respect to the amplitude center voltage Vc .
  • the amplitude center voltage Vc is the amplitude center when the command waveform is the waveform of the voltage signal.
  • the first command waveform has a sinusoidal shape defined by frequency f, amplitude center voltage Vc , and amplitude VI .
  • the first columnar piezoelectric element has a first displacement of zero when the applied voltage is 0V, that is, when the first command waveform is off.
  • the tilt of the biaxial tilt stage 12 with respect to the first direction is the first reference position P0 , and the reflecting surface of the mirror 11 is parallel to the y-axis.
  • the biaxial tilt stage 12 tilts in the first direction (the counterclockwise direction in FIG. 4).
  • the position of the mirror 11 when the amplitude center voltage Vc is applied is represented by the amplitude center position Pc
  • the position of the mirror 11 when the maximum voltage Vw + is applied is represented by the minimum amplitude position PW- .
  • the angle formed by the mirror 11 at the amplitude center position Pc and the mirror 11 at the first reference position P0 is represented as the angle ⁇ c .
  • the angle formed by the mirror 11 at the amplitude maximum position PW + and the mirror 11 at the amplitude center position Pc is represented as an angle ⁇ W .
  • the first command waveform is a sine wave and has a symmetrical waveform with respect to the amplitude center voltage Vc . Therefore, the maximum amplitude position PW + and the minimum amplitude position PW- are symmetrical with respect to the center amplitude position Pc . As a result, the angle formed by the mirror 11 at the amplitude minimum position P W ⁇ and the mirror 11 at the amplitude center position P c is also the angle ⁇ W .
  • the first columnar piezo element has hysteresis. Therefore, even when the same voltage (for example, the amplitude center voltage V c ) is applied to the first columnar piezoelectric element, the values of the angle ⁇ c often differ. Due to the variation in the value of the angle ⁇ c in this manner, the position of the irradiation point of the laser beam reflected by the mirror 11 varies even when the same voltage is applied to the first columnar piezoelectric element. In the optical scanning device 1, by correcting the first command waveform using the first correction value generated by the first correction value generating section 13a, it is possible to suppress this variation in the irradiation point. Note that detailed functions of the first correction value generation unit 13a will be described later with reference to FIG.
  • the first displacement sensor 12a generates a first monitor waveform representing a first displacement that changes over time.
  • the second displacement sensor 12b generates a second monitor waveform representing the temporally changing second displacement.
  • the first correction value generator 13a generates a first correction value based on a first monitor waveform and a first target value for controlling the tilt of the biaxial tilt stage 12 in the first direction.
  • the first correction value is a correction value for correcting temporal drift that may occur in the amplitude center of the periodically vibrating first displacement (and thus the amplitude center position P c in the first direction). This is a correction value for bringing the amplitude center closer to the first target value.
  • the first correction value is obtained, for example, by calculating the difference between the first target value and the center of amplitude of the first displacement (first target value - center of amplitude of first displacement).
  • the first correction value is positive, and if the center of amplitude of the first displacement is larger than the first target value, the first correction value is negative.
  • the first correction value is provided to the first composite waveform generator 14a.
  • the configuration example of the first correction value generation unit 13a includes a low-pass filter (LPF) 13a1, an averaging unit 13a2, a comparison unit 13a3, a PID control unit 13a4, and a limiter 13a5.
  • LPF low-pass filter
  • the LPF 13a1 has a passband defined by a predetermined center frequency and a predetermined band.
  • the LPF 13a1 passes, as a signal, components included in the passband of the first monitor waveform, and blocks other components as noise.
  • the passband of the LPF 13a1 includes the frequency f of the first command waveform.
  • the first monitor waveform that has passed through the LPF 13a1 is supplied to the averaging section 13a2.
  • the averaging unit 13a2 averages the components of the first monitor waveform passed by the LPF 13a1 to calculate the amplitude center of the first displacement, and supplies the amplitude center of the first displacement to the comparison unit 13a3.
  • the comparison unit 13a3 generates the first correction value by calculating the difference between the first target value and the amplitude center of the first displacement.
  • a subtraction circuit is used as the comparator 13a3.
  • the first target value and the first correction value are supplied to the PID controller 13a4.
  • the PID control unit 13a4 performs PID (Proportional-Integral-Differential) control of the first correction value so that the amplitude center of the first displacement approaches (more preferably matches) the first target value.
  • PID-controlled first correction value is supplied to the limiter 13a5.
  • the limiter 13a5 refers to the first correction value, the upper limit value, and the lower limit value supplied from the PID control unit 13a4, and (1) if the first correction value is equal to or more than the lower limit value and less than the upper limit value, the first (2) if the first correction value is less than the lower limit, supply the lower limit as the first correction value to the first composite waveform generation unit 14a; 3) If the first correction value is greater than or equal to the upper limit value, the upper limit value is supplied to the first composite waveform generator 14a as the first correction value.
  • the PID control section 13a4 and the limiter 13a5 can be omitted from the first correction value generation section 13a.
  • the first synthetic waveform generator 14a is configured to generate a first synthetic waveform by synthesizing the first command waveform and the first correction value.
  • an adder circuit is used as the first combined waveform generator 14a.
  • the first composite waveform generated by the first composite waveform generation section 14 a is provided to the driving section 15 .
  • the second correction value generator 13b generates a second correction value based on a second monitor waveform and a second target value for controlling the tilt of the biaxial tilt stage 12 with respect to the first direction.
  • the second correction value is a correction value for correcting drift over time that can occur in the amplitude center of the second displacement that oscillates periodically (and thus the amplitude center position P c in the second direction). This is a correction value for bringing the amplitude center closer to the second target value.
  • the second correction value like the first correction value, is obtained, for example, by calculating the difference between the second target value and the center of the amplitude of the second displacement (the second target value - the center of the amplitude of the second displacement). .
  • the second correction value is provided to the second composite waveform generator 14b.
  • a configuration example of the second correction value generation unit 13b can be configured in the same manner as the configuration example of the first correction value generation unit 13a shown in FIG. Therefore, detailed description of the configuration example of the second correction value generation unit 13b is omitted here.
  • the second synthetic waveform generator 14b is configured to generate a second synthetic waveform by synthesizing the second command waveform and the second correction value.
  • an adder circuit is used as the second synthesized waveform generator 14b.
  • the second composite waveform generated by the second composite waveform generator 14 b is supplied to the drive section 15 .
  • the drive unit 15 is configured to control the tilt of the biaxial tilt stage 12 with respect to the first direction by driving the biaxial tilt stage 12 according to the first synthesized waveform.
  • the driving section 15 is configured to control the tilt of the biaxial tilt stage 12 in the second direction by driving the biaxial tilt stage 12 according to the second synthesized waveform.
  • the first correction value generated by the first correction value generator 13a is determined so as to bring the center of amplitude of the first displacement closer to the first target value.
  • the driving unit 15 controls the tilt of the two-axis tilt stage 12 with respect to the first direction according to the first synthesized waveform obtained by synthesizing the first command waveform and the first correction value. It can be brought close to the first target value.
  • the second correction value generated by the second correction value generator 13b is determined so as to bring the center of amplitude of the second displacement closer to the second target value.
  • the amplitude center of the second displacement is shifted to the second It is possible to approach the target value.
  • the drift over time that can occur in the amplitude center of the piezo element is a slow phenomenon compared to one cycle of the command waveform. This is for the following reasons. That is, in feedback control (correction), it is necessary to sample the angle and position of the controlled object at a sufficiently fast period (frequency) in response to changes in the controlled object, and output a correction value so as to match the target value.
  • the drift of the piezo element gradually changes (for example, 0.1 mrad change in 10 minutes), the drift can be suppressed by performing feedback control with a period that is in time for the change (for example, if correction is performed with a 10 s period, feedback control
  • the command waveform is a sine wave with an amplitude of 0.1 mrad and a frequency of 1000 Hz, and the piezoelectric element is driven by angle feedback control (with angle correction)
  • the cycle is sufficiently faster than the command waveform cycle of 1 ms. (For example, correction at a period of 1 ⁇ s or less).Since the drift period is sufficiently slower than the command waveform period, the drift correction frequency is much higher than the command waveform correction frequency.
  • the drift correction frequency is 1/10000000 or less of the command waveform correction frequency. Therefore, the drift can be suppressed by correcting the drift once every several hundred to several thousand cycles of the command waveform.
  • the frequency at which the first correction value generator 13a generates the first correction value can be determined without greatly depending on the frequency of the first command waveform, and the second correction value generator 13b generates the second correction value
  • the generation frequency can be determined without greatly depending on the frequency of the command waveform, so that the optical scanning device 1 can speed up scanning while suppressing temporal drift that may occur in the displacement of the piezoelectric element. can.
  • the optical scanning device 1 includes the mirror 11 that reflects laser light and the piezoelectric element (the first A tilt stage (two-axis tilt stage 12) that changes the tilt of the mirror 11 by means of a columnar piezoelectric element and a second columnar piezoelectric element), and displacement of the piezoelectric elements (the first columnar piezoelectric element and the second columnar piezoelectric element) (first displacement , second displacement), and displacements detected by the displacement sensors (first displacement sensor 12a, second displacement sensor 12b) (first displacement, second displacement).
  • the first A tilt stage two-axis tilt stage 12
  • displacement of the piezoelectric elements the first columnar piezoelectric element and the second columnar piezoelectric element
  • displacements detected by the displacement sensors first displacement sensor 12a, second displacement sensor 12b
  • correction values for correcting command waveforms (first command waveform, second command waveform) (first correction value generation unit 13a , second correction value generation unit 13b), and a composite waveform (first composite a composite waveform generator (first composite waveform generator 14a, second composite waveform generator 14b) for generating a waveform and a second composite waveform); and a driving unit 15 for driving (the first columnar piezoelectric element and the second columnar piezoelectric element), and the command waveforms (the first command waveform and the second command waveform) oscillate periodically and
  • the correction value generator (first correction value generator 13a, second correction value generator 13b) sets the amplitude center of the periodically oscillating displacement to the target value (first target value,
  • the correction values (first correction value, second correction value) are determined so as to approach the second target value).
  • a correction value generation unit calculates the center of amplitude of the displacement that oscillates periodically, and then uses the center of amplitude to generate a correction value (first correction value, second correction value).
  • the temporal drift that can occur in the center of amplitude of the piezo elements is a slow phenomenon compared to one cycle of the command waveforms (the first command waveform and the second command waveform). be. Therefore, in the optical scanning device 1, the correction value generator (first correction value generator 13a, second correction value generator 13b) instructs the frequency of generating the correction values (first correction value, second correction value).
  • the optical scanning device 1 can further increase the operating frequency of wobble scanning while suppressing temporal drift that may occur in the displacement of the piezoelectric elements (the first columnar piezoelectric element and the second columnar piezoelectric element). That is, the optical scanning device 1 can speed up scanning while suppressing drift.
  • the correction value generators (the first correction value generator 13a and the second correction value generator 13b) average the outputs of the displacement sensors (the first displacement sensor 12a and the second displacement sensor 12b).
  • a configuration is adopted in which a value is calculated and the average value is used as the amplitude center.
  • the amplitude center of displacement (first displacement, second displacement) can be obtained, for example, by calculating the average value of the outputs of the displacement sensors (first displacement sensor 12a, second displacement sensor 12b).
  • the drift over time that can occur in the amplitude center of the piezo elements is compared with one cycle of the command waveforms (the first command waveform and the second command waveform). It is a slow phenomenon. Therefore, the average value of the outputs of the displacement sensors (first displacement sensor 12a, second displacement sensor 12b) is used as the center of amplitude, and the correction value can be calculated by taking the difference between the target value and the center of amplitude.
  • the first columnar piezoelectric element and the second columnar piezoelectric element) can be easily suppressed from drifting over time.
  • the correction value generators (first correction value generator 13a, second correction value generator 13b) generate correction values (first correction value, second correction value) using PID control.
  • the configuration of generating is adopted.
  • PID control is suitable as feedback control for bringing the amplitude center closer to the target value.
  • the piezo elements include a first piezo element that changes the tilt of the mirror with respect to the first direction and a second piezo element that changes the tilt of the mirror with respect to the second direction.
  • the stage is a two-axis tilt stage including the first piezo element (first columnar piezo element) and the second piezo element (second columnar piezo element), and is equipped with a displacement sensor.
  • the (first displacement sensor 12a, second displacement sensor 12b) includes the first displacement sensor 12a for detecting the first displacement, which is the displacement of the first piezo element (first columnar piezo element), and the second piezo element (second and a second displacement sensor 12b for detecting a second displacement that is a displacement of a columnar piezoelectric element).
  • first correction value generator 13a, second correction value generator 13b is configured such that the amplitude center of the first displacement that oscillates periodically is generating a first correction value so as to approach a first target value, and generating a second correction value such that the amplitude center of the second displacement that oscillates periodically approaches a second target value; drives the first piezoelectric element (first columnar piezoelectric element) according to a first composite waveform that is the sum of the first command waveform and the first correction value, and the second command waveform and the second correction value, A second piezo element (second columnar piezo element) is driven in accordance with a second composite waveform that is the sum of .
  • the irradiation point of the laser light can be scanned along the first direction and the second direction, which are two independent directions. Therefore, it is possible to increase the degree of freedom when setting the trajectory of the irradiation point to be drawn on the object.
  • the optical scanning device 1 can, for example, draw a circular trajectory or a spiral trajectory on the object.
  • the frequency of the command waveforms (first command waveform, second command waveform) is 1000 Hz or more.
  • the optical scanning device 1 the command waveform ( (first command waveform, second command waveform). Therefore, the optical scanning device 1 is effective when the frequency of the command waveform (first command waveform, second command waveform) is 1000 Hz or more.
  • optical scanning device 1 Modified example of optical scanning device
  • the optical scanning device 1 includes two piezoelectric elements, the first columnar piezoelectric element and the second columnar piezoelectric element, has been described.
  • the optical scanning device 1 in the case of one-dimensional drawing (eg, straight line drawing) instead of two-dimensional drawing (eg, circular drawing), the second columnar piezo element can be omitted.
  • the optical scanning device 1 tilts the biaxial tilt stage 12 only in the first direction. can be done. Therefore, the optical scanning device 1 can scan the irradiation point of the laser beam on the object along the direction corresponding to the first direction. Then, by using a galvanometer scanner to translate the irradiation point in a direction that intersects (preferably orthogonally) to the direction corresponding to the first direction, wobbling that the irradiation point draws a zigzag trajectory on the object is realized. can do.
  • the optical scanning device 1 includes a first command waveform generator 16a, a second command waveform generator 16b, and a controller 17 as additional components.
  • the first command waveform generator 16a is configured to generate a first command waveform.
  • the first command waveform generator 16a generates a sine wave having a frequency f, an amplitude center voltage V c , and an amplitude VI specified by the controller 17 as the first command waveform.
  • the first command waveform generated by the first command waveform generator 16a is supplied to the first composite waveform generator 14a.
  • the second command waveform generator 16b is configured to generate a second command waveform.
  • the second command waveform generator 16b generates a sine wave having a frequency f, an amplitude center voltage V c , and an amplitude VI specified by the controller 17 as the second command waveform.
  • the second command waveform generated by the second command waveform generator 16b is provided to the second composite waveform generator 14b.
  • the control unit 17 acquires the first monitor waveform and the second monitor waveform from each of the first displacement sensor 12a and the second displacement sensor 12b. Further, the control unit 17 controls the frequency f, the amplitude center voltage V c and the amplitude V I of each of the first command waveform and the second command waveform, the first target value, and the A second target value and a phase difference between the first command waveform and the second command waveform are generated. For example, when the frequency f, the amplitude center voltage V c , and the amplitude VI are equal in each of the first command waveform and the second command waveform, and the phase difference between the first command waveform and the second command waveform is ⁇ /2.
  • the irradiation point of the laser beam can draw a circular trajectory on the object.
  • wobbling in which the laser light irradiation point draws a spiral trajectory on the object can be realized.
  • the frequency f, the amplitude center voltage V c , and the amplitude V I of the first command waveform are supplied to the first command waveform generator 16a, and the first monitor waveform and the first target value are supplied to the first correction value generator 13a. supplied. Further, the frequency f, the amplitude center voltage V c and the amplitude V I of the second command waveform are supplied to the second command waveform generator 16b, and the second monitor waveform and the second target value are supplied to the second correction value generator 16b. 13b.
  • the comparative example was obtained by omitting the first correction value generation unit 13a and the first synthetic waveform generation unit 14a based on the present embodiment. That is, in the comparative example, the first command waveform is not corrected.
  • results of performing wobble scanning using each of the example and the comparative example of the optical scanning device 1 as described above are the results when ⁇ w is changed sequentially to 0.2 mrad, 0.6 mrad, and 1.0 mrad.
  • FIG. 6 is a block diagram showing the configuration of the optical scanning device 2.
  • FIG. 7 is a Lissajous figure showing the trajectory of irradiation points obtained as a result of wobble scanning performed using the optical scanning device 2 .
  • (a) of FIG. 7 shows a perfectly circular trajectory
  • (b) of FIG. 7 shows an elliptical trajectory.
  • FIG. 8 is a flowchart of the optical scanning method M10 performed by the optical scanning device 2.
  • FIG. 9 is a schematic diagram showing the configuration of a scanning section 30 that is a modified example of the scanning section 20 provided in the optical scanning device 2.
  • the optical scanning device 2 basically includes a mirror 21, a two-axis tilt stage 22, a first command waveform correction section 23a, a second command waveform correction section 23b, a drive section 25, and a trajectory acquisition section 28. , and a determination unit 29 .
  • the mirror 21 and the biaxial tilt stage 22 are an example of a scanning section.
  • the optical scanning device 2 is incorporated in, for example, a laser processing machine, and is used to move the irradiation point of the laser beam on the object.
  • Each of the mirror 21 and the two-axis tilt stage 22 has the same configuration as the mirror 11 and the two-axis tilt stage 12 provided in the optical scanning device 1, and each of the first displacement sensor 22a and the second displacement sensor 22b is , have the same configurations as the first displacement sensor 12a and the second displacement sensor 12b provided in the biaxial tilt stage 12 (see FIGS. 1 and 6). Therefore, in this embodiment, description of the mirror 21 and the biaxial tilt stage 22 is omitted.
  • the optical scanning device 2 further includes a first command waveform generator 26a, a second command waveform generator 26b, and a controller 27 as additional components.
  • the first command waveform generator 26a, the second command waveform generator 26b, and the controller 27 are provided as additional components of the optical scanning device 1.
  • wobble scanning is performed using a sine wave as each of the first command waveform input to the first columnar piezoelectric element and the second command waveform input to the second columnar piezoelectric element.
  • the first command waveform correction section 23a and the second command waveform correction section 23b which will be described later, do not correct the first command waveform and the second command waveform, respectively (for example, the state immediately after the start of wobble scanning).
  • the first command waveform and the second command waveform have the same frequency f, the same first amplitude I1 and the second amplitude I2 , and the phase difference ⁇ of 90°. is.
  • the first amplitude I1 and the second amplitude I2 are hereinafter also simply referred to as the amplitude I1 and the amplitude I2 .
  • axial interference is known in an optical scanning device using a two-axis tilt stage. That is, when the tilt of the mirror 21 in the first direction is periodically changed according to the first command waveform, the tilt of the mirror 21 in the second direction is periodically changed in conjunction therewith. Therefore, the actual tilt of the mirror 21 in the second direction is the tilt represented by the second command waveform and the tilt caused by the periodic change in the tilt of the mirror 21 in the first direction. That is, the tilt of the mirror 21 with respect to the second direction is different from the tilt of the mirror 21 represented by the second command waveform. Similarly, if the tilt of the mirror 21 in the second direction is changed periodically according to the second command waveform, the tilt of the mirror 21 in the first direction will change periodically accordingly.
  • the actual tilt of the mirror 21 in the first direction is the tilt represented by the first command waveform superimposed with the tilt caused by the periodic change in the tilt of the mirror 21 in the second direction. That is, the tilt of the mirror 21 with respect to the first direction is different from the tilt of the mirror 21 represented by the first command waveform.
  • Such a phenomenon is called axial interference.
  • a sine wave is input to the biaxial tilt stage as the first command waveform so that the irradiation point of the laser beam draws a circular orbit, and two sine waves delayed by 90° from the first command waveform are input as the second command waveform. Even if it is input to the axis tilt stage, since mutual axis interference occurs, the trajectory drawn by the irradiation point of the laser light is distorted and the roundness of the trajectory is reduced.
  • each of the above-described first command waveform and second command waveform is input to the first columnar piezo element and the second columnar piezo element, respectively.
  • the irradiation point of the laser beam reflected by the mirror 21 draws a circular trajectory as shown in FIG. 7(a).
  • the diameter is constant even when the angle for measuring the diameter is changed. Therefore, the trajectory shown in FIG. 7A has a roundness of 100%.
  • the x-axis shown in FIG. 7 is determined to be parallel to the linear trajectory drawn by the irradiation point when the biaxial tilt stage 22 is tilted with respect to the first direction.
  • the y-axis shown in FIG. 7 is determined to be parallel to the linear trajectory drawn by the irradiation point when the biaxial tilt stage 22 is tilted with respect to the second direction.
  • the purpose of the optical scanning device 2 is to make the elliptical trajectory as shown in FIG. 7B approach a circular trajectory as shown in FIG. 7A using a method different from conventional feedback control.
  • the conventional feedback control means that the displacement of the columnar piezoelectric element or the tilt of the mirror is sequentially monitored, and the feedback continues to correct the first command waveform and the second command waveform so that the monitored tilt of the mirror becomes the desired tilt. It refers to control.
  • optical scanning method M10 An optical scanning method M10 in which the optical scanning device 2 performs wobble scanning, and for bringing an elliptical trajectory closer to a circle will be described with reference to FIG. As shown in FIG. 8, the optical scanning method M10 includes steps S11 to S24.
  • Step S11 is a step of setting frequency f and diameter d in wobble scanning.
  • Step S12 is a step of performing wobble scanning with the center position of wobble scanning fixed, that is, with the irradiation point not translated.
  • the control unit 27 supplies the frequency f set in step S11, the amplitude I1 determined according to the diameter d, and the amplitude center voltage to the first command waveform generation unit 26a, and supplies the frequency f and the diameter d and the amplitude center voltage are supplied to the second command waveform generator 26b.
  • the first command waveform generator 26a generates a first command waveform according to the acquired frequency f, amplitude I 1 , and amplitude center voltage.
  • the second command waveform generator 26b generates a second command waveform according to the acquired frequency f, amplitude I 2 , and amplitude center voltage.
  • the drive unit 25 performs wobble scanning by controlling the biaxial tilt stage 22 according to the first command waveform and the second command waveform.
  • Step S13 is a step of measuring the x-axis diameter using the trajectory of the irradiation point.
  • the trajectory acquisition unit 28 uses the first monitor waveform and the second monitor waveform acquired from the biaxial tilt stage 22 via the control unit 27 to create a Lissajous figure and obtain the trajectory of the irradiation point.
  • the trajectory of the irradiation point is supplied to the determination section 29 .
  • the determination unit 29 measures the x-axis diameter using the trajectory of the irradiation point.
  • the trajectory acquisition unit 28 is configured to obtain a trajectory by creating a Lissajous figure.
  • the optical scanning device 2 is provided with an imaging unit 34 (for example, a digital camera) that captures an image representing the trajectory (hereinafter referred to as a trajectory image)
  • the trajectory acquisition The unit 28 may be configured to acquire a trajectory image via the control unit 27 and obtain a trajectory from the trajectory image by performing image processing on the trajectory image.
  • step S14 the determination unit 29 determines whether or not the measured value of the x-axis diameter is equal to the set value of the x-axis diameter.
  • the set value of the x-axis diameter is 500 ⁇ m.
  • the number of significant digits is predetermined, for example, 3 digits, and the fourth digit is rounded off. If the measured value of the rounded x-axis diameter is equal to the set value, the determination unit 29 determines “Yes”.
  • step S15 the first command waveform correction unit 23a corrects the amplitude I1 of the first command waveform so that the measured value of the x-axis diameter approaches the set value. do.
  • the first command waveform whose amplitude I1 has been corrected is supplied to the driving section 25 .
  • step S16 the driving section 25 performs wobble scanning.
  • the drive unit 25 controls the tilt of the biaxial tilt stage 22 in the first direction according to the first command waveform whose amplitude I1 is corrected.
  • the biaxial tilt stage 22 changes the tilt of the mirror 21 with respect to the first direction according to the first command waveform whose amplitude I1 is corrected. Then, the biaxial tilt stage 22 generates a first monitor waveform and a second monitor waveform and supplies them to the control section 27 .
  • the trajectory acquisition unit 28 uses the new first monitor waveform and second monitor waveform to create a Lissajous figure and obtains a new trajectory of the irradiation point. A new trajectory of the irradiation point is supplied to the determination unit 29 .
  • the determination unit 29 measures the x-axis diameter using the new trajectory of the irradiation point, and determines whether or not the measured value of the x-axis diameter is equal to the set value, which is the desired diameter. In optical scanning method M10, steps S13-S16 are repeated until the measured x-axis diameter equals the desired diameter setting.
  • Step S17 is a step of measuring the y-axis diameter using the trajectory of the irradiated point with the x-axis diameter corrected. If the measured value of the x-axis diameter is equal to the set value, which is the desired diameter, in step S17, the determining unit 29 measures the y-axis diameter using the trajectory of the irradiation point with the corrected x-axis diameter.
  • step S18 the determination unit 29 determines whether or not the measured value of the y-axis diameter is equal to the set value of the y-axis diameter.
  • the set value for the y-axis diameter is 500 ⁇ m.
  • the number of significant digits is predetermined, for example, 3 digits, and the fourth digit is rounded off. If the measured value of the rounded y-axis diameter is equal to the set value, the determination unit 29 determines “Yes”.
  • step S19 the second command waveform correction unit 23b corrects the amplitude I2 of the second command waveform so that the measured value of the y-axis diameter approaches the set value. do.
  • the second command waveform with corrected amplitude I2 is supplied to the driving section 25 .
  • step S20 the driving section 25 performs wobble scanning.
  • the drive unit 25 controls the tilt of the biaxial tilt stage 22 in the second direction according to the second command waveform whose amplitude I2 is corrected.
  • the biaxial tilt stage 22 changes the tilt of the mirror 21 with respect to the second direction according to the second command waveform whose amplitude I2 is corrected. Then, the biaxial tilt stage 22 generates a first monitor waveform and a second monitor waveform and supplies them to the control section 27 .
  • the trajectory acquisition unit 28 uses the first monitor waveform and the new second monitor waveform to create a Lissajous figure and obtains a new trajectory of the irradiation point. A new trajectory of the irradiation point is supplied to the determination unit 29 .
  • the determination unit 29 measures the y-axis diameter using the new trajectory of the irradiation point, and determines whether or not the measured value of the y-axis diameter is equal to the set value of the y-axis diameter.
  • steps S17 to S20 are repeated until the measured value of the y-axis diameter is equal to the set value, which is the desired diameter.
  • Step S21 is a step of calculating the roundness of the trajectory using the trajectory of the irradiation point with the corrected x-axis diameter and y-axis diameter. If the measured value of the y-axis diameter is equal to the set value, which is the desired diameter, in step S21, the determination unit 29 calculates the roundness of the trajectory of the irradiation point with the corrected x-axis diameter and y-axis diameter.
  • step S22 the determination unit 29 determines whether or not the calculated roundness is equal to or greater than the roundness set value. Roundness is obtained by dividing the minor axis length of the current trajectory by the major axis length. In this embodiment, 95% is adopted as the setting value for the roundness.
  • step S23 the second command waveform correction unit 23b adjusts the first command waveform so that the calculated roundness approaches the set value. is corrected for the phase difference ⁇ of the second command waveform with respect to The second command waveform corrected for the phase difference ⁇ is supplied to the driving section 25 .
  • step S24 the driving section 25 performs wobble scanning.
  • the drive unit 25 controls the tilt of the biaxial tilt stage 22 in the second direction according to the second command waveform whose amplitude I2 is corrected.
  • the biaxial tilt stage 22 changes the tilt of the mirror 21 with respect to the second direction according to the second command waveform whose amplitude I2 is corrected. Then, the biaxial tilt stage 22 generates a first monitor waveform and a second monitor waveform and supplies them to the control section 27 .
  • the trajectory acquisition unit 28 uses the first monitor waveform and the new second monitor waveform to create a Lissajous figure and obtains a new trajectory of the irradiation point. A new trajectory of the irradiation point is supplied to the determination unit 29 .
  • the determination unit 29 uses the new trajectory of the irradiation point to calculate the circularity of the trajectory, and determines whether the calculated circularity is equal to or greater than the set value. In the optical scanning method M10, steps S21 to S24 are repeated until the calculated roundness reaches or exceeds the set value.
  • the optical scanning method M10 shown in FIG. 8 (1) the x-axis diameter, y-axis diameter, and circularity of the trajectory obtained by performing wobble scanning are obtained using the trajectory of the irradiation point. , (2) a configuration in which steps S13 to S16, steps S17 to S20, and steps S21 to S24 are repeated.
  • the optical scanning method M10 configured in this manner is such that the roundness of the trajectory after correction exceeds the set value of the roundness, and the x-axis diameter and the y-axis diameter of the trajectory after correction are each set. Correct the first command waveform and the second command waveform so as to approach the value.
  • a table representing the relationship between frequency f, diameter d, amplitude I 1 , amplitude I 2 , and phase difference ⁇ is created in advance with respect to typical frequency f and diameter d.
  • the table may be stored in a storage unit provided in the optical scanning device 2 .
  • the first command waveform generator 26a can easily generate the first command waveform having the amplitude I1 and the phase difference ⁇ corresponding to the desired frequency f and diameter d by referring to Table 2.
  • the second command waveform generator 26b can easily generate the second command waveform having the amplitude I2 and the phase difference ⁇ corresponding to the desired frequency f and diameter d by referring to the table of Table 2. can be done.
  • the first command waveform generator 26a and the second command waveform generator 26b together constitute an example of a command waveform generator.
  • the optical scanning device 2 shown in FIG. 6 wobble scanning is performed using the scanning section 20 including the biaxial tilt stage 22 .
  • the optical scanning device 2 may be configured to perform wobble scanning using a scanning section 30 (see FIG. 9) instead of the scanning section 20 .
  • the scanning unit 30 is provided with a galvanometer scanner after the mirror 21 and the two-axis tilt stage 22 that constitute the scanning unit 20 .
  • the objective lens OL provided in the optical scanning device 2 the object W, the table T on which the object W is placed, and the imaging unit 34 are shown in addition to the scanning unit 30. ing.
  • the scanning unit 30 is a galvanometer scanner including a first mirror 31a, a second mirror 31b, a first galvanometer motor 32a, and a second galvanometer motor 32b.
  • the first galvanometer motor 32a corresponds to the first columnar piezo element of the biaxial tilt stage 22 and is used to tilt the first mirror 31a in the first direction.
  • the first galvanometer motor 32a is controlled by the first command waveform.
  • the second galvanometer motor 32b corresponds to the second columnar piezo element of the biaxial tilt stage 22 and is used to tilt the second mirror 31b in the second direction.
  • the first galvanometer motor 32a and the second galvanometer motor 32b are not integrated, and the first mirror 31a and the second mirror 31b are provided independently.
  • the scanning unit 30 configured in this way, since the first galvanometer motor 32a and the second galvanometer motor 32b are independent, axial interference is unlikely to occur. However, since the first mirror 31a and the second mirror 31b are larger than the mirror 21 of the scanning unit 20, the scanning unit 30 has a problem that it is difficult to increase the frequency f of wobble scanning.
  • the arrangement of each of the first mirror 31a, the second mirror 31b, the first galvanomotor 32a, and the second galvanomotor 32b is restricted for the reason of space saving, for example.
  • the first rotation axis and the second rotation axis of the galvanometer scanner are not orthogonal to each other.
  • pincushion distortion and barrel distortion may occur in an optical system that constitutes a galvanometer scanner.
  • Pincushion distortion is due to pincushion errors in the first mirror 31a and the second mirror 31b of the galvanometer scanner.
  • the barrel distortion is caused by the distortion aberration of the objective lens OL provided behind the first mirror 31a and the second mirror 31b.
  • the optical scanning device 2 uses a configuration in which a two-axis galvanometer scanner having a first rotation axis and a second rotation axis that are not orthogonal to each other is arranged behind the two-axis tilt stage 22, and a circle is drawn by the two-axis tilt stage 22. , pincushion distortion, and barrel distortion can be suppressed.
  • the optical scanning device 2 includes mirrors that reflect laser light, and the scanning units 20 and 30 that scan the laser light by changing the inclination of the mirrors.
  • command waveform generators first command waveform generator 26a, second command waveform generator 26a, second a command waveform generator 26b
  • a trajectory acquisition unit 28 that acquires the trajectory of the laser beam
  • a command waveform correction unit that corrects at least one of the first command waveform and the second command waveform
  • the command waveform correction unit (first command waveform correction unit 23a, second command waveform correction unit 23b) is provided with a second command waveform correction unit 23b), and the command waveform correction unit (first command waveform correction unit 23a, second command waveform correction unit 23b) adjusts the first amplitude I 1 and/or the second amplitude I2 and the phase difference ⁇ .
  • the scanning unit 20 includes a mirror 21, and the scanning unit 30 includes a first mirror 31a, a second mirror 31b, and a mirror 21.
  • the roundness of the trajectory drawn by the irradiation point of the laser light can be increased.
  • the first command waveform and the second command waveform have the same frequency, the same first amplitude I1 and the second amplitude I2 , and a phase difference ⁇ of 90°. It is preferably a sine wave.
  • the scanning unit 20 further includes a biaxial tilt stage 22 that changes the tilt of the mirror 21 using piezoelectric elements (first and second columnar piezoelectric elements).
  • a biaxial tilt stage 22 that changes the tilt of the mirror 21 using piezoelectric elements (first and second columnar piezoelectric elements).
  • a configuration is adopted in which each of the waveform and the second command waveform controls the tilt of the biaxial tilt stage 22 with respect to the first direction and the second direction, respectively.
  • the roundness of the trajectory drawn by the irradiation point of the laser beam can be improved. can.
  • the scanning unit 30 includes a first mirror 31a and a second mirror 31b that reflect laser light, a first motor (first galvanometer motor 32a) that changes the inclination of the first mirror 31a, and a second motor (second galvanometer motor 32b) that changes the inclination of the second mirror 31b.
  • first galvanometer motor 32a that changes the inclination of the first mirror 31a
  • second galvanometer motor 32b that changes the inclination of the second mirror 31b.
  • the tilt of the first mirror 31a in the first direction is controlled, and the second command waveform controls the tilt of the second mirror 31b in the second direction by controlling the second motor (second galvanometer motor 32b). configuration is adopted.
  • a modified example of the optical scanning device 2 includes the scanning units 20 and 30, a first command waveform for controlling the scanning of the scanning units 20 and 30 in the first direction, and the scanning units 20 and 30 in the second direction.
  • a command waveform generation unit (first command waveform correction unit 23a, second command waveform correction unit 23b) that generates a second command waveform for controlling scanning, and a trajectory acquisition unit 28 that acquires the trajectory of the laser light.
  • the first command waveform and the second command waveform are sine waves defined by a common frequency f, a first amplitude I1 and a second amplitude I2 , and a phase difference ⁇ .
  • the command waveform generator determines (1) the frequency f, the diameter d of the trajectory of the laser light, the first amplitude I1 , ( 2 ) having a desired frequency f and corresponding to the desired frequency and the desired diameter d to generate first and second command waveforms having a first amplitude I 1 , a second amplitude I 2 , and a phase difference ⁇ , wherein the table shows that the first amplitude I 1 and the second amplitude I 2 are equal, Also, the first amplitude I 1 , the second amplitude I 2 , and the phase difference ⁇ are determined so as to increase the circularity of the trajectory compared to when the phase difference ⁇ is 90°.
  • a modified example of the optical scanning device 2 has the same effects as the optical scanning device 2 . Furthermore, according to a modified example of the optical scanning device 2, the command waveform generators (the first command waveform generator 26a and the second command waveform generator 26b) obtain the desired frequency f and the desired frequency f by referring to the table. A first command waveform and a second command waveform having a first amplitude I 1 , a second amplitude I 2 , and a phase difference ⁇ corresponding to the diameter d of the can be generated. Therefore, the modified example of the optical scanning device 2 can easily improve the roundness of the trajectory drawn by the irradiation point of the laser light compared to the optical scanning device 2 .
  • the frequency f of the first command waveform and the second command waveform is 1000 Hz or more.
  • the displacement of the piezoelectric elements (the first columnar piezoelectric element and the second columnar piezoelectric element) is adjusted.
  • feedback control is widely performed in which the tilt of the mirror is sequentially monitored and the first command waveform and the second command waveform are continuously corrected so that the monitored tilt of the mirror becomes a desired tilt.
  • such feedback takes time. Therefore, when the frequency f of the wobble scanning is increased, the feedback control eventually cannot catch up with the frequency f of the wobble scanning.
  • the optical scanning device 2 corrects at least one of the first amplitude I.sub.1 , the second amplitude I.sub.2 , and the phase difference .DELTA. Circularity can be increased. Therefore, the optical scanning device 2 is suitable for increasing the frequency of the first command waveform and the second command waveform.
  • the optical scanning device 2 further includes an imaging unit 34 that captures an image (trajectory image) representing the trajectory of the laser beam, and the trajectory acquisition unit 28 performs image processing on the image (trajectory image) to A configuration is employed in which the trajectory is obtained from (trajectory image).
  • an imaging unit 34 that captures an image (trajectory image) representing the trajectory of the laser beam
  • the trajectory acquisition unit 28 performs image processing on the image (trajectory image) to A configuration is employed in which the trajectory is obtained from (trajectory image).
  • the trajectory of the laser light can also be obtained by performing image processing on the image representing the trajectory captured by the imaging unit 34 (trajectory image).
  • the present invention is expressed as an apparatus (optical scanning device), but the present invention can also be expressed as a method (optical scanning method). That is, "an optical scanning method using a scanning unit that includes a mirror that reflects a laser beam and scans the laser beam by changing the inclination of the mirror, wherein the scanning of the scanning unit in a first direction is controlled.
  • the scope of the present invention also includes an optical scanning method characterized by:
  • the step of generating command waveforms is performed using sinusoidal waves having the same frequency, the same first amplitude I1 and the second amplitude I2 , and the phase difference of 90°.
  • a certain first command waveform and said second command waveform are generated. This point is the same as in the case of the optical scanning device 2 described above.
  • the configuration of the optical scanning device 1 (see FIG. 1) according to the first embodiment and the configuration of the optical scanning device 2 (see FIG. 6) according to the second embodiment A configuration that also has a configuration may be adopted.
  • the optical scanning device configured as described above can increase the circularity of the trajectory drawn by the irradiation point of the laser beam, can bring the diameter d of the trajectory closer to the set value, and can and the drift over time that can occur in the first displacement and the second displacement, which are the displacements of the second columnar piezoelectric element, can be suppressed.
  • the typical frequency f and the diameter d are:
  • a table representing the relationship between the frequency f, the diameter d, the amplitude I 1 , the amplitude I 2 , and the phase difference ⁇ may be created in advance and stored in the storage unit provided in the optical scanning device. good.
  • the optical scanning device configured in this way can easily improve the roundness of the trajectory drawn by the irradiation point of the laser light. This is because the command waveform generator can generate the first command waveform and the second command waveform by referring to the table.
  • FIGS. 10 and 11 shows the frequency dependence of amplitude I 1 , amplitude I 2 , and phase difference ⁇ obtained by the present example and comparative example, respectively.
  • FIG. 12 is a graph showing the frequency dependence of the roundness of the trajectory obtained by each of the example and the comparative example.
  • f 3000 Hz
  • V c 4.27 V
  • V c 5.16 V
  • V I 7.32 V, respectively. It was adopted.
  • the optical scanning method M10 was performed.
  • d 500 ⁇ m was used as each of the set value of the x-axis diameter and the set value of the y-axis diameter, and 95% was used as the set value of the roundness.
  • f 100, 1000, 2000, 3000 and 4000 Hz are adopted.
  • the comparative example was based on the present embodiment, and the first command waveform and the second command waveform were not corrected in the comparative example.
  • the corrected amplitude I 1 , amplitude I 2 , and phase difference ⁇ have different values depending on the frequency f.
  • the roundness of the trajectory of the irradiation point was 95% or more.
  • the present invention is expressed as a device (optical scanning device).
  • the present invention can also be expressed as a method (optical scanning method). That is, "an optical scanning method using a scanning unit that includes a mirror that reflects a laser beam and scans the laser beam by changing the inclination of the mirror, wherein the scanning of the scanning unit in a first direction is controlled.
  • a scanning method” is also included in the scope of the present invention.
  • the command waveform generating step is a sine wave having the same frequency, the same first amplitude and the second amplitude, and a phase difference of 90°.
  • a first command waveform and said second command waveform are generated.
  • An optical scanning device includes a mirror that reflects a laser beam, a scanning unit that scans the laser beam by changing the inclination of the mirror, and a scanning unit that scans the laser beam in a first direction.
  • a command waveform generation unit that generates a first command waveform for controlling the scanning unit and a second command waveform for controlling the scanning in the second direction of the scanning unit;
  • a trajectory acquisition unit that acquires the trajectory of the laser light;
  • a command waveform correction unit that corrects at least one of the first command waveform and the second command waveform, wherein the command waveform correction unit corrects the first command waveform so as to increase the circularity of the trajectory.
  • at least one of the second amplitude which is the amplitude of the second command waveform, and the phase difference between the first command waveform and the second command waveform.
  • the roundness of the trajectory drawn by the irradiation point of the laser light can be increased.
  • the first command waveform and the second command waveform have the same frequency, and , the first amplitude and the second amplitude are equal, and the phase difference is a sine wave of 90°.
  • the scanning unit uses a piezo element to tilt the mirror.
  • a variable 2-axis tilt stage is further provided, wherein each of the first command waveform and the second command waveform controls tilt of the 2-axis tilt stage with respect to the first direction and the second direction, respectively. , is adopted.
  • the roundness of the trajectory drawn by the irradiation point of the laser beam can be improved. can.
  • the piezoelectric element is a first piezoelectric element that is displaced according to the first command waveform. and a second piezoelectric element that is displaced according to the second command waveform.
  • a first displacement sensor that detects a first displacement that is the displacement of the first piezoelectric element;
  • a second displacement sensor for detecting a second displacement, which is the displacement of an element, and correcting the first command waveform so that the center of amplitude of the first displacement detected by the first displacement sensor approaches a first target value.
  • a first correction value generation unit that generates a first correction value
  • a second correction value generation unit that corrects the second command waveform so that the center of amplitude of the second displacement detected by the second displacement sensor approaches a second target value.
  • a second correction value generator that generates a correction value
  • a first combined waveform generator that generates a first composite waveform by combining the first command waveform and the first correction value
  • the second command waveform and the second correction value to generate a second composite waveform
  • a first drive section for driving the first piezo element according to the first composite waveform
  • a second driving section for driving the second piezo element according to the two synthesized waveforms.
  • the first correction value generating section calculates the center of amplitude of the first displacement, generates the first correction value using the center of amplitude
  • the second correction value generating section calculates the center of amplitude of the second displacement, and then uses the center of amplitude to generate a second correction value.
  • the possible drift over time in the center of amplitude of the first and second displacements is a slow phenomenon compared to one period of the first and second command waveforms. Therefore, in the present optical scanning device, the frequency at which the first correction value generator generates the correction value and the frequency at which the second correction value generator generates the correction value are determined by the first command waveform and the second command waveform. It can be determined without greatly depending on the frequency. Therefore, the present optical scanning device can suppress temporal drift that may occur in the displacement of the piezoelectric element.
  • the scanning unit in addition to the configuration of the optical scanning device according to the first aspect or the second aspect, the scanning unit is provided behind the mirror.
  • a galvanometer scanner comprising a first mirror and a second mirror that reflect laser light, a first motor that changes the tilt of the first mirror, and a second motor that changes the tilt of the second mirror.
  • the first command waveform controls the tilt of the first mirror in the first direction by controlling the first motor; and the second command waveform controls the second motor.
  • a configuration is adopted in which the inclination of the second mirror in the second direction is controlled by controlling the tilt.
  • the galvanometer scanner as the scanning unit, even if distortions called pincushion distortion and barrel distortion may occur, the roundness of the trajectory drawn by the irradiation point of the laser light can be corrected. can be enhanced.
  • An optical scanning device is provided with a mirror that reflects a laser beam, a scanning unit that scans the laser beam by changing the inclination of the mirror, and a scanning unit that scans the laser beam in a first direction.
  • a command waveform generation unit that generates a first command waveform for controlling the scanning unit and a second command waveform for controlling the scanning in the second direction of the scanning unit; a trajectory acquisition unit that acquires the trajectory of the laser light; wherein the first command waveform and the second command waveform are sine waves defined by a frequency common to each, a first amplitude and a second amplitude that are amplitudes of each, and a phase difference of each , the command waveform generator (1) refers to a table representing the relationship between the laser beam scanning frequency, the trajectory diameter, the first amplitude, the second amplitude, and the phase difference; (2) generating said first command waveform and said second command waveform having a desired frequency and having a first amplitude, a second amplitude and a phase difference corresponding to said desired frequency and desired diameter; , the table includes the first amplitude, the second amplitude, and the A second amplitude and the phase difference are defined.
  • the optical scanning device has the same effect as the optical scanning device according to the first aspect.
  • the command waveform generation section refers to the table to generate the first command waveform having the first amplitude, the second amplitude, and the phase difference corresponding to the desired frequency and the desired diameter. and the second command waveform. Therefore, the present optical scanning device can easily improve the circularity of the trajectory drawn by the irradiation point of the laser light, as compared with the optical scanning device according to the first aspect of the present invention.
  • the scanning unit includes a two-axis tilting device that changes the tilt of the mirror using a piezo element.
  • a stage wherein each of the first command waveform and the second command waveform controls tilts of the two-axis tilt stage with respect to the first direction and the second direction, respectively; , a first piezo element that is displaced according to the first command waveform, and a second piezo element that is displaced according to the second command waveform, and the displacement of the first piezo element is the first a first displacement sensor that detects a displacement; a second displacement sensor that detects a second displacement that is the displacement of the second piezoelectric element; and a center of amplitude of the first displacement detected by the first displacement sensor as a first target.
  • a first correction value generator for generating a first correction value for correcting the first command waveform so that the center of amplitude of the second displacement detected by the second displacement sensor approaches the second target value
  • a second correction value generation unit that generates a second correction value for correcting the second command waveform so as to approximate the second command waveform, and a first combined waveform that generates a first combined waveform by combining the first command waveform and the first correction value.
  • a first composite waveform generation section that generates a second composite waveform by combining the second command waveform and the second correction value; and a second composite waveform generation section that generates a second composite waveform according to the first composite waveform.
  • a configuration is adopted in which a first driving section for driving one piezoelectric element and a second driving section for driving the second piezoelectric element according to the second synthesized waveform are further provided.
  • the optical scanning device has the same effects as the optical scanning device according to the fourth aspect. That is, according to the above configuration, even when the circularity of the trajectory of the laser beam is increased by referring to the table, it is possible to suppress temporal drift that may occur in the displacement of the piezoelectric element.
  • an image representing the locus is captured.
  • a configuration is adopted in which an imaging unit is further provided, and the trajectory acquisition unit acquires the trajectory from the image by performing image processing on the image.
  • the trajectory of the laser light can also be obtained by performing image processing on the image representing the trajectory captured by the imaging unit.
  • An optical scanning method is an optical scanning method using a scanning unit that includes a mirror that reflects a laser beam and that scans the laser beam by changing the tilt of the mirror, a command waveform generating step of generating a first command waveform for controlling scanning of the scanning unit in the first direction and a second command waveform for controlling the scanning of the scanning unit in the second direction; and a trajectory of the laser beam. and a command waveform correction step of correcting at least one of the first command waveform and the second command waveform, wherein the command waveform correction step increases the circularity of the trajectory. at least one of a first amplitude that is the amplitude of the first command waveform, a second amplitude that is the amplitude of the second command waveform, and a phase difference between the first command waveform and the second command waveform correct.
  • the optical scanning method according to the ninth aspect has the same effects as the optical scanning device according to the first aspect.
  • the command waveform generating step has equal frequencies and amplitudes and the first and second command waveforms, which are sinusoidal waves having equal first and second amplitudes and a phase difference of 90°, are employed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

This optical scanning device (2) increases the roundness of a trajectory drawn by an irradiation point when scanning a laser beam so as to draw a circular trajectory. An optical scanning device (2) equipped with a scanning unit (20), command waveform generation units (first command waveform generation unit 26a, second command waveform generation unit 26b) for generating a first command waveform and a second command waveform for controlling the scanning unit (20), a trajectory acquisition unit 28 for acquiring the trajectory of the laser beam, and command waveform correction units (first command waveform correction unit 23a, second command waveform correction unit 23b) for correcting the first command waveform and/or the second command waveform, wherein the command waveform correction units (first command waveform correction unit 23a, second command waveform correction unit 23b) correct the amplitude of the first command waveform and/or the amplitude of the second command waveform and the phase difference between the first command waveform and the second command waveform so as to increase the roundness of the trajectory.

Description

光走査装置及び光走査方法Optical scanning device and optical scanning method
 レーザ光によって対象物を走査する光走査装置及び光走査方法に関する。 The present invention relates to an optical scanning device and an optical scanning method for scanning an object with a laser beam.
 レーザ加工の分野では、レーザ光によって対象物を走査する光走査装置が広く利用されている。 In the field of laser processing, optical scanning devices that scan objects with laser light are widely used.
日本国公開特許公報特開2015-30011号Japanese Patent Publication JP 2015-30011 日本国公開特許公報特開2014-217875号Japanese Patent Publication JP 2014-217875
 光走査装置としては、例えば、特許文献1に記載のように、レーザ光を走査する走査部としてガルバノスキャナを用いた装置が知られている。ガルバノスキャナは、レーザ光を反射する一対のミラーである第1ミラーおよび第2ミラーと、前記第1ミラーの第1方向における傾きを変化させる第1モータと、前記第2ミラーの第2方向における傾きを変化させる第2モータと、を備えている。第1モータは、第1指令波形により制御され、第2モータは、第2指令波形により制御される。また、別のタイプの光走査装置として、特許文献2に記載のように、走査部として2軸チルトステージを用いた装置が知られている。2軸チルトステージは、第1指令波形に従って第1方向に対してミラーを傾ける(例えば、x軸を回転軸としてミラーを微小回転させる)機能と、第2指令波形に従って第2方向に対してミラーを傾ける(例えば、y軸を回転軸としてミラーを微小回転させる)機能と、を有している。 As an optical scanning device, for example, as described in Patent Document 1, a device using a galvanometer scanner as a scanning unit for scanning laser light is known. The galvanometer scanner includes a first mirror and a second mirror, which are a pair of mirrors that reflect laser light, a first motor that changes the tilt of the first mirror in the first direction, and a tilt of the second mirror in the second direction. a second motor for changing the tilt. The first motor is controlled by a first command waveform and the second motor is controlled by a second command waveform. As another type of optical scanning device, there is known a device using a two-axis tilt stage as a scanning unit, as described in Japanese Patent Application Laid-Open No. 2002-200022. The biaxial tilt stage has a function of tilting the mirror in a first direction according to a first command waveform (for example, slightly rotating the mirror with the x-axis as a rotation axis), and a function of tilting the mirror in a second direction according to a second command waveform. (for example, the mirror is slightly rotated with the y-axis as the rotation axis).
 しかしながら、実際の光走査装置においては、レーザ光の照射点が描く軌跡に歪みが生じ、軌跡の真円度が低下する。 However, in an actual optical scanning device, the trajectory drawn by the irradiation point of the laser light is distorted, and the roundness of the trajectory is reduced.
 本発明の一態様は、上記の問題に鑑みてなされたものであり、円軌道を描くようにレーザ光を走査する場合に、照射点が描く軌跡の真円度を高めることができる光走査装置または光走査方法を実現することを目的とする。 An aspect of the present invention has been made in view of the above problems, and is an optical scanning device capable of increasing the roundness of a trajectory drawn by an irradiation point when scanning a laser beam in a circular trajectory. Alternatively, the object is to realize an optical scanning method.
 上記の課題を解決するために、本発明の一態様に係る光走査装置は、レーザ光を反射するミラーを備え、当該ミラーの傾きを変えることにより前記レーザ光を走査する走査部と、前記走査部の第1方向における走査を制御するための第1指令波形および前記走査部の第2方向における走査を制御するための第2指令波形を生成する指令波形生成部と、前記レーザ光の軌跡を取得する軌跡取得部と、前記第1指令波形および前記第2指令波形の少なくとも何れかを補正する指令波形補正部と、を備え、前記指令波形補正部は、前記軌跡の真円度を高めるように、前記第1指令波形の振幅である第1振幅、および、前記第2指令波形の振幅である第2振幅の少なくとも何れかと、前記第1指令波形と前記第2指令波形との位相差とを補正する。 In order to solve the above problems, an optical scanning device according to an aspect of the present invention includes a mirror that reflects a laser beam, a scanning unit that scans the laser beam by changing the inclination of the mirror; a command waveform generator that generates a first command waveform for controlling scanning of the part in a first direction and a second command waveform for controlling scanning of the scanning part in a second direction; and a command waveform correction unit for correcting at least one of the first command waveform and the second command waveform, wherein the command waveform correction unit increases the circularity of the trajectory. and at least one of a first amplitude that is the amplitude of the first command waveform and a second amplitude that is the amplitude of the second command waveform, and a phase difference between the first command waveform and the second command waveform. correct.
 上記の課題を解決するために、本発明の一態様に係る光走査装置は、レーザ光を反射するミラーを備え、当該ミラーの傾きを変えることにより前記レーザ光を走査する走査部と、前記走査部の第1方向における走査を制御するための第1指令波形および前記走査部の第2方向における走査を制御するための第2指令波形を生成する指令波形生成部と、前記レーザ光の軌跡を取得する軌跡取得部と、を備え、前記第1指令波形および前記第2指令波形は、各々に共通する周波数と、各々の振幅である第1振幅および第2振幅と、各々の位相差とにより規定される正弦波であり、指令波形生成部は、(1)前記レーザ光を走査する周波数と、前記軌跡の直径と、前記第1振幅と、前記第2振幅と、前記位相差との関係を表すテーブルを参照し、(2)所望の周波数を有し、かつ、当該所望の周波数および所望の直径に対応する第1振幅、第2振幅、および位相差を有する前記第1指令波形および前記第2指令波形を生成し、前記テーブルは、前記第1振幅と前記第2振幅とが等しく、かつ、前記位相差が90°である場合と比較して、前記軌跡の真円度を高めるように前記第1振幅、前記第2振幅、および前記位相差が定められている。 In order to solve the above problems, an optical scanning device according to an aspect of the present invention includes a mirror that reflects a laser beam, a scanning unit that scans the laser beam by changing the inclination of the mirror; a command waveform generator that generates a first command waveform for controlling scanning of the part in a first direction and a second command waveform for controlling scanning of the scanning part in a second direction; a trajectory acquisition unit that acquires the first command waveform and the second command waveform by a frequency common to each, a first amplitude and a second amplitude that are amplitudes of each, and a phase difference of each It is a prescribed sine wave, and the command waveform generation unit (1) determines the relationship between the frequency of scanning the laser light, the diameter of the trajectory, the first amplitude, the second amplitude, and the phase difference (2) said first command waveform having a desired frequency and having a first amplitude, a second amplitude and a phase difference corresponding to said desired frequency and a desired diameter and said generating a second command waveform, wherein the table is adapted to increase the circularity of the trajectory compared to when the first amplitude and the second amplitude are equal and the phase difference is 90°; is defined for the first amplitude, the second amplitude, and the phase difference.
 上記の課題を解決するために、本発明の一態様に係る光走査方法は、レーザ光を反射するミラーを備え、当該ミラーの傾きを変えることにより前記レーザ光を走査する走査部を用いた光走査方法であって、前記走査部の第1方向における走査を制御するための第1指令波形および前記走査部の第2方向における走査を制御するための第2指令波形を生成する指令波形生成工程と、前記レーザ光の軌跡を取得する軌跡取得工程と、前記第1指令波形および前記第2指令波形の少なくとも何れかを補正する指令波形補正工程と、を含み、前記指令波形補正工程は、前記軌跡の真円度を高めるように、前記第1指令波形の振幅である第1振幅、前記第2指令波形の振幅である第2振幅、および前記第1指令波形と前記第2指令波形との位相差のうち少なくとも何れかを補正する。 In order to solve the above problems, an optical scanning method according to an aspect of the present invention includes a mirror that reflects a laser beam, and a scanning unit that scans the laser beam by changing the tilt of the mirror. In the scanning method, a command waveform generation step of generating a first command waveform for controlling scanning in a first direction of the scanning unit and a second command waveform for controlling scanning in a second direction by the scanning unit and a locus obtaining step of obtaining the locus of the laser beam, and a command waveform correcting step of correcting at least one of the first command waveform and the second command waveform, wherein the command waveform correcting step comprises the A first amplitude, which is the amplitude of the first command waveform; a second amplitude, which is the amplitude of the second command waveform; At least one of the phase differences is corrected.
 本発明の一態様によれば、円軌道を描くようにレーザ光を走査する場合に、照射点が描く軌跡の真円度を高めることができる光走査装置または光走査方法を実現することができる。 According to one aspect of the present invention, it is possible to realize an optical scanning device or an optical scanning method capable of increasing the roundness of a trajectory drawn by an irradiation point when scanning laser light so as to draw a circular trajectory. .
本発明の第1の実施形態に係る光走査装置の構成を示すブロック図である。1 is a block diagram showing the configuration of an optical scanning device according to a first embodiment of the present invention; FIG. 図1に示す光走査装置が備えている第1補正値生成部の構成を示すブロック図である。2 is a block diagram showing the configuration of a first correction value generation unit provided in the optical scanning device shown in FIG. 1; FIG. 図1に示す光走査装置における指令波形を示すグラフである。2 is a graph showing command waveforms in the optical scanning device shown in FIG. 1; 図1に示す光走査装置が備えているミラーの動作を説明する模式図である。2A and 2B are schematic diagrams for explaining the operation of a mirror included in the optical scanning device shown in FIG. 1; FIG. 本発明の一実施例およびその比較例における振幅中心の指令振幅依存性を示すグラフである。4 is a graph showing command amplitude dependence of the center of amplitude in an example of the present invention and a comparative example thereof; 本発明の第2の実施形態に係る光走査装置の構成を示すブロック図である。2 is a block diagram showing the configuration of an optical scanning device according to a second embodiment of the present invention; FIG. 図6に示す光走査装置を用いて実施したウォブル走査の結果得られる照射点の軌跡を示すリサジュー図形である。(a)は、真円である軌跡を示し、(b)は、楕円である軌跡を示す。7 is a Lissajous figure showing the trajectory of irradiation points obtained as a result of wobble scanning performed using the optical scanning device shown in FIG. 6; (a) shows a perfectly circular trajectory, and (b) shows an elliptical trajectory. 図6に示す光走査装置が実施する光走査方法のフローチャートである。7 is a flowchart of an optical scanning method performed by the optical scanning device shown in FIG. 6; 図6に示す光走査装置が備えている走査部の一変形例の構成を示す模式図である。FIG. 7 is a schematic diagram showing a configuration of a modified example of a scanning unit included in the optical scanning device shown in FIG. 6; 本発明の一実施例により得られた第1振幅、第2振幅、および位相差の周波数依存性である。FIG. 4 shows the frequency dependence of the first amplitude, the second amplitude and the phase difference obtained according to one embodiment of the present invention; FIG. 本発明の比較例により得られた第1振幅、第2振幅、および位相差の周波数依存性である。It is the frequency dependence of the 1st amplitude obtained by the comparative example of this invention, a 2nd amplitude, and a phase difference. 本発明の一実施例および比較例の各々により得られた軌跡の真円度の周波数依存性を示すグラフである。4 is a graph showing the frequency dependence of circularity of trajectories obtained by each of an example of the present invention and a comparative example.
 〔第1の実施形態〕
 本発明の第1の実施形態に係る光走査装置1の基本的構成について、図1~図4を参照して説明する。図1は、光走査装置1の構成を示すブロック図である。図2は、光走査装置1が備えている第1補正値生成部13aの構成を示すブロック図である。図3は、光走査装置1における指令波形を示すグラフである。図4は、光走査装置1が備えているミラー11の動作を説明する模式図である。なお、図4においては、光走査装置1が備えている2軸チルトステージ12の図示を省略している。
[First embodiment]
A basic configuration of an optical scanning device 1 according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG. FIG. 1 is a block diagram showing the configuration of the optical scanning device 1. As shown in FIG. FIG. 2 is a block diagram showing the configuration of the first correction value generator 13a provided in the optical scanning device 1. As shown in FIG. FIG. 3 is a graph showing command waveforms in the optical scanning device 1. As shown in FIG. 4A and 4B are schematic diagrams for explaining the operation of the mirror 11 included in the optical scanning device 1. FIG. 4, illustration of the biaxial tilt stage 12 provided in the optical scanning device 1 is omitted.
 (光走査装置の基本的構成)
 光走査装置1は、基本的構成として、ミラー11と、2軸チルトステージ12と、第1補正値生成部13aと、第2補正値生成部13bと、第1合成波形生成部14aと、第2合成波形生成部14bと、駆動部15と、を備えている。光走査装置1は、例えば、レーザ加工機に内蔵され、レーザ光の照射点を対象物上で移動させるために利用される。
(Basic Configuration of Optical Scanning Device)
The optical scanning device 1 has, as a basic configuration, a mirror 11, a biaxial tilt stage 12, a first correction value generator 13a, a second correction value generator 13b, a first combined waveform generator 14a, a first A two-composite waveform generating section 14 b and a driving section 15 are provided. The optical scanning device 1 is incorporated in, for example, a laser processing machine, and is used to move an irradiation point of laser light on an object.
 ミラー11は、レーザ光を反射するための構成である。例えば、ミラー11にて反射されたレーザ光は、直接、対象物に照射される。或いは、ミラー11にて反射されたレーザ光は、ガルバノスキャナを介して、対象物に照射される。 The mirror 11 is configured to reflect the laser light. For example, the laser beam reflected by the mirror 11 is directly applied to the object. Alternatively, the laser beam reflected by the mirror 11 is applied to the object through the galvanometer scanner.
 2軸チルトステージ12は、ピエゾ素子を用いてミラー11の傾きを変化させるための構成である。2軸チルトステージ12は、第1柱状ピエゾ素子と、第2柱状ピエゾ素子と、第1変位センサ12aと、第2変位センサ12bと、を備えている。なお、図1においては、第1柱状ピエゾ素子および第2柱状ピエゾ素子の図示を省略している。 The biaxial tilt stage 12 is configured to change the tilt of the mirror 11 using piezo elements. The biaxial tilt stage 12 includes a first columnar piezo element, a second columnar piezo element, a first displacement sensor 12a, and a second displacement sensor 12b. In FIG. 1, illustration of the first columnar piezoelectric element and the second columnar piezoelectric element is omitted.
 本実施形態においては、2軸チルトステージ12として、(1)第1柱状ピエゾ素子の伸縮によって、ミラー11を載置するステージをx軸を回転軸として微小回転させること、及び、(2)第2柱状ピエゾ素子の伸縮によって、ミラー11を載置するステージをy軸を回転軸として微小回転させることが可能な2軸一体ピエゾステージを用いている。第1柱状ピエゾ素子および第2柱状ピエゾ素子の各々が伸縮することによって、第1柱状ピエゾ素子および第2柱状ピエゾ素子の各々の高さが変化する。以下において、第1柱状ピエゾ素子の高さの変化量を第1変位とよび、第2柱状ピエゾ素子の高さの変化量を第2変位とよぶ。なお、第1柱状ピエゾ素子および第2柱状ピエゾ素子の各々は、それぞれ、第1ピエゾ素子および第2ピエゾ素子の一例である。 In this embodiment, the two-axis tilt stage 12 is configured to (1) slightly rotate the stage on which the mirror 11 is mounted by expanding and contracting the first columnar piezoelectric element about the x-axis, and (2) A two-axis integral piezo stage is used, which allows the stage on which the mirror 11 is mounted to be slightly rotated about the y-axis by expanding and contracting two columnar piezo elements. The expansion and contraction of each of the first columnar piezo element and the second columnar piezo element changes the height of each of the first columnar piezo element and the second columnar piezo element. Hereinafter, the amount of change in height of the first columnar piezo element will be referred to as first displacement, and the amount of change in height of the second columnar piezo element will be referred to as second displacement. Note that each of the first columnar piezo element and the second columnar piezo element is an example of the first piezo element and the second piezo element, respectively.
 また、本実施形態において、第1変位センサ12aは、第1柱状ピエゾ素子における第1変位を検出し、第2変位センサ12bは、第2柱状ピエゾ素子における第2変位を検出する。 Also, in this embodiment, the first displacement sensor 12a detects a first displacement in the first columnar piezo element, and the second displacement sensor 12b detects a second displacement in the second columnar piezo element.
 2軸チルトステージ12は、例えば、ミラー11により反射されたレーザ光の照射点が対象物上で円軌道を描くようにミラー11の傾きを変化させる。この場合、対象物の並進移動、又は、ガルバノスキャナによるレーザ光の照射点の並進移動を組み合わせることによって、レーザ光の照射点が対象物上で螺旋軌道を描くウォブリングを実現することができる。 The biaxial tilt stage 12 changes the tilt of the mirror 11 so that, for example, the irradiation point of the laser beam reflected by the mirror 11 draws a circular orbit on the object. In this case, by combining the translational movement of the object or the translational movement of the laser beam irradiation point by the galvanometer scanner, wobbling in which the laser beam irradiation point draws a spiral trajectory on the object can be realized.
 なお、2軸チルトステージ12のステージをx軸を回転軸Aとして微小回転させることを、本明細書においては、2軸チルトステージ12を第1方向に対して傾ける、とも記載する。また、x軸を回転軸Aとするステージの第1基準位置Pからの回転角のことを、本明細書においては、2軸チルトステージ12の第1方向に対する傾きとも記載する(図3参照)。なお、第1基準位置Pは、第1柱状ピエゾ素子に印加される電圧が0Vである場合におけるステージの第1方向における位置である。すなわち、第1基準位置Pは、第1変位がゼロである場合におけるステージの第1方向における位置である。 It should be noted that, in this specification, slightly rotating the stage of the biaxial tilt stage 12 about the x-axis as the rotation axis Ar is also described as tilting the biaxial tilt stage 12 with respect to the first direction. In this specification, the rotation angle of the stage from the first reference position P0 with the x-axis as the rotation axis Ar is also referred to as the tilt of the biaxial tilt stage 12 with respect to the first direction (FIG. 3 reference). The first reference position P0 is the position of the stage in the first direction when the voltage applied to the first columnar piezoelectric element is 0V. That is, the first reference position P0 is the position of the stage in the first direction when the first displacement is zero.
 一方、y軸を回転軸としてステージを微小回転させることを、本明細書においては、2軸チルトステージ12を第2方向に傾ける、とも記載する。また、y軸を回転軸とするステージの第2基準位置からの回転角のことを、本明細書においては、2軸チルトステージ12の第2方向に対する傾きとも記載する。ここでは、y軸を回転軸としてステージを微小回転させる場合の回転軸と、第2基準位置とについては図示を省略するが、x軸を回転軸としてステージを微小回転させる場合の回転軸Aと、第1基準位置Pと同様である。なお、第2基準位置は、第2柱状ピエゾ素子に印加される電圧が0Vである場合におけるステージの第1方向における位置である。すなわち、第2基準位置は、第2変位がゼロである場合におけるステージの第1方向における位置である。 On the other hand, minutely rotating the stage about the y-axis is also described in this specification as tilting the biaxial tilt stage 12 in the second direction. In this specification, the rotation angle of the stage from the second reference position with the y-axis as the rotation axis is also referred to as the tilt of the biaxial tilt stage 12 with respect to the second direction. Here, the rotation axis when the stage is slightly rotated about the y-axis and the second reference position are not shown, but the rotation axis Ar when the stage is slightly rotated about the x-axis is shown. and the first reference position P0 . The second reference position is the position of the stage in the first direction when the voltage applied to the second columnar piezoelectric element is 0V. That is, the second reference position is the position of the stage in the first direction when the second displacement is zero.
 (指令波形および2軸チルトステージの動作)
 指令波形は、ピエゾ素子の変位を制御するために用いられる制御信号の波形である。ピエゾ素子は、印加される電圧に応じて変位するため、指令波形は、電圧信号の波形であることが好ましい。
(Command waveform and operation of 2-axis tilt stage)
The command waveform is the waveform of the control signal used to control the displacement of the piezo element. Since the piezoelectric element is displaced according to the applied voltage, the command waveform is preferably the waveform of the voltage signal.
 上述したように、2軸チルトステージ12は、2軸チルトステージ12を第1方向に対して傾けるために用いる第1柱状ピエゾ素子と、2軸チルトステージ12を第2方向に対して傾けるために用いる第2柱状ピエゾ素子と、備えている。したがって、指令波形は、第1柱状ピエゾ素子の第1変位を制御するために用いられる第1指令波形と、第2柱状ピエゾ素子の第2変位を制御するために用いられる第2指令波形とを含む。以下では、第1指令波形を例として用いて、2軸チルトステージ12を第1方向に対して傾ける場合のミラー11の動作について図3および図4を参照して説明する。第2指令波形を用いて、2軸チルトステージ12を第2方向に対して傾ける場合のミラー11の動作は、回転軸がx軸とy軸とで異なる以外は、第1指令波形を例として用いて、2軸チルトステージ12を第1方向に対して傾ける場合のミラー11の動作と同様である。したがって、ここでは、第2指令波形を用いて、2軸チルトステージ12を第2方向に対して傾ける場合のミラー11の動作の詳しい説明を省略する。 As described above, the biaxial tilt stage 12 includes the first columnar piezoelectric element used to tilt the biaxial tilt stage 12 in the first direction and the first columnar piezoelectric element used to tilt the biaxial tilt stage 12 in the second direction. and a second columnar piezo element to be used. Therefore, the command waveform consists of a first command waveform used for controlling the first displacement of the first columnar piezoelectric element and a second command waveform used for controlling the second displacement of the second columnar piezoelectric element. include. In the following, using the first command waveform as an example, the operation of the mirror 11 when tilting the biaxial tilt stage 12 with respect to the first direction will be described with reference to FIGS. 3 and 4. FIG. Using the second command waveform, the operation of the mirror 11 when tilting the biaxial tilt stage 12 in the second direction is as follows, using the first command waveform as an example, except that the rotation axis differs between the x-axis and the y-axis. is used to tilt the biaxial tilt stage 12 with respect to the first direction. Therefore, detailed description of the operation of the mirror 11 when the two-axis tilt stage 12 is tilted in the second direction using the second command waveform is omitted here.
 図3に示すように、第1指令波形は、時間変化する正の電圧により表される電圧信号の波形である。ウォブル走査を実施するために、第1指令波形は、周期的に振動し、且つ、振幅中心電圧Vに対して対称な波形を有する。振幅中心電圧Vは、指令波形が電圧信号の波形である場合における振幅中心である。本実施形態において、第1指令波形は、周波数fと、振幅中心電圧Vと、振幅Vとにより規定される正弦波の形状を有する。第1指令波形の最大電圧VW+および最小電圧VWーの各々は、それぞれ、VW+=V+V/2、および、VWー=V-V/2で与えられる。 As shown in FIG. 3, the first command waveform is a voltage signal waveform represented by a time-varying positive voltage. In order to perform wobble scanning, the first command waveform has a waveform that oscillates periodically and is symmetrical with respect to the amplitude center voltage Vc . The amplitude center voltage Vc is the amplitude center when the command waveform is the waveform of the voltage signal. In this embodiment, the first command waveform has a sinusoidal shape defined by frequency f, amplitude center voltage Vc , and amplitude VI . Each of the maximum voltage V W+ and minimum voltage V W− of the first command waveform is given by V W+ =V c +V I /2 and V W− =V c −V I /2, respectively.
 第1柱状ピエゾ素子は、印加される電圧が0Vである場合、すなわち、第1指令波形がオフである場合、第1変位がゼロである。その結果、図4に示すように、2軸チルトステージ12の第1方向に対する傾きは第1基準位置Pをとり、ミラー11の反射面は、y軸と平行な状態をとる。 The first columnar piezoelectric element has a first displacement of zero when the applied voltage is 0V, that is, when the first command waveform is off. As a result, as shown in FIG. 4, the tilt of the biaxial tilt stage 12 with respect to the first direction is the first reference position P0 , and the reflecting surface of the mirror 11 is parallel to the y-axis.
 また、第1柱状ピエゾ素子は、正電圧を印加された場合、その正電圧に応じた第1変位を示す。その結果、図4に示すように、2軸チルトステージ12は、第1方向(図4においては反時計回りの方向)に対して傾く。 Also, when a positive voltage is applied to the first columnar piezoelectric element, it exhibits a first displacement according to the positive voltage. As a result, as shown in FIG. 4, the biaxial tilt stage 12 tilts in the first direction (the counterclockwise direction in FIG. 4).
 図4においては、(1)振幅中心電圧Vが印加された場合のミラー11の位置を振幅中心位置Pで表し、(2)最大電圧VW+が印加された場合のミラー11の位置を振幅最大位置PW+で表し、(3)最小電圧VWーが印加された場合のミラー11の位置を振幅最小位置PWーで表している。また、図4においては、振幅中心位置Pにおけるミラー11と第1基準位置Pにおけるミラー11とのなす角を角θと表す。また、振幅最大位置PW+におけるミラー11と振幅中心位置Pにおけるミラー11とのなす角を角θと表す。 In FIG. 4, (1) the position of the mirror 11 when the amplitude center voltage Vc is applied is represented by the amplitude center position Pc , and (2) the position of the mirror 11 when the maximum voltage Vw + is applied is (3) The position of the mirror 11 when the minimum voltage VW- is applied is represented by the minimum amplitude position PW- . Also, in FIG. 4, the angle formed by the mirror 11 at the amplitude center position Pc and the mirror 11 at the first reference position P0 is represented as the angle θc . The angle formed by the mirror 11 at the amplitude maximum position PW + and the mirror 11 at the amplitude center position Pc is represented as an angle θW .
 上述したように、第1指令波形は、正弦波であり、振幅中心電圧Vに対して対称な波形を有する。したがって、振幅最大位置PW+と振幅最小位置PW-とは、振幅中心位置Pに対して対称である。結果として、振幅最小位置PW-におけるミラー11と振幅中心位置Pにおけるミラー11とのなす角も角θとなる。 As described above, the first command waveform is a sine wave and has a symmetrical waveform with respect to the amplitude center voltage Vc . Therefore, the maximum amplitude position PW + and the minimum amplitude position PW- are symmetrical with respect to the center amplitude position Pc . As a result, the angle formed by the mirror 11 at the amplitude minimum position P W− and the mirror 11 at the amplitude center position P c is also the angle θ W .
 ところで、第1柱状ピエゾ素子は、ヒステリシスを有する。そのため、第1柱状ピエゾ素子に同じ電圧(例えば、振幅中心電圧V)を印加した場合であっても、角θの値が異なる場合が多い。このように、角θの値がばらつくことによって、第1柱状ピエゾ素子に同じ電圧を印加した場合であってもミラー11により反射されたレーザ光の照射点の位置がばらつく。光走査装置1においては、第1補正値生成部13aが生成する第1補正値を用いて第1指令波形を補正することによって、この照射点のばらつきを抑制することができる。なお、第1補正値生成部13aの詳しい機能については、図2を参照して後述する。 By the way, the first columnar piezo element has hysteresis. Therefore, even when the same voltage (for example, the amplitude center voltage V c ) is applied to the first columnar piezoelectric element, the values of the angle θ c often differ. Due to the variation in the value of the angle θ c in this manner, the position of the irradiation point of the laser beam reflected by the mirror 11 varies even when the same voltage is applied to the first columnar piezoelectric element. In the optical scanning device 1, by correcting the first command waveform using the first correction value generated by the first correction value generating section 13a, it is possible to suppress this variation in the irradiation point. Note that detailed functions of the first correction value generation unit 13a will be described later with reference to FIG.
 (指令波形の補正)
 第1変位センサ12aは、時間的に変化する第1変位を表す第1モニタ波形を生成する。
(Correction of command waveform)
The first displacement sensor 12a generates a first monitor waveform representing a first displacement that changes over time.
 第2変位センサ12bは、時間的に変化する第2変位を表す第2モニタ波形を生成する。 The second displacement sensor 12b generates a second monitor waveform representing the temporally changing second displacement.
 第1補正値生成部13aは、2軸チルトステージ12の第1方向に対する傾きを制御するための第1モニタ波形および第1目標値に基づいて第1補正値を生成する。第1補正値は、周期的に振動する第1変位の振幅中心(ひいては第1方向における振幅中心位置P)に生じ得る経時的なドリフトを補正するための補正値であり、第1変位の振幅中心を第1目標値に近づけるための補正値である。第1補正値は、例えば、第1目標値と第1変位の振幅中心との差分(第1目標値-第1変位の振幅中心)を算出することにより得られる。第1変位の振幅中心が第1目標値よりも小さい場合、第1補正値は正となり、第1変位の振幅中心が第1目標値よりも大きい場合、第1補正値は負となる。第1補正値は、第1合成波形生成部14aに提供される。 The first correction value generator 13a generates a first correction value based on a first monitor waveform and a first target value for controlling the tilt of the biaxial tilt stage 12 in the first direction. The first correction value is a correction value for correcting temporal drift that may occur in the amplitude center of the periodically vibrating first displacement (and thus the amplitude center position P c in the first direction). This is a correction value for bringing the amplitude center closer to the first target value. The first correction value is obtained, for example, by calculating the difference between the first target value and the center of amplitude of the first displacement (first target value - center of amplitude of first displacement). If the center of amplitude of the first displacement is smaller than the first target value, the first correction value is positive, and if the center of amplitude of the first displacement is larger than the first target value, the first correction value is negative. The first correction value is provided to the first composite waveform generator 14a.
 第1補正値生成部13aの構成例を図2に示す。図2に示すように、第1補正値生成部13aの構成例は、ローパスフィルタ(LPF)13a1と、平均化部13a2と、比較部13a3と、PID制御部13a4と、リミッタ13a5とを備えている。 A configuration example of the first correction value generation unit 13a is shown in FIG. As shown in FIG. 2, the configuration example of the first correction value generation unit 13a includes a low-pass filter (LPF) 13a1, an averaging unit 13a2, a comparison unit 13a3, a PID control unit 13a4, and a limiter 13a5. there is
 LPF13a1は、所定の中心周波数と、所定の帯域とにより規定される通過帯域を有する。LPF13a1は、第1モニタ波形のうち、通過帯域に含まれる成分を信号として通過させ、それ以外の成分をノイズとして遮断する。本実施形態において、LPF13a1の通過帯域は、第1指令波形の周波数fを含んでいる。LPF13a1を通過した第1モニタ波形は、平均化部13a2に供給される。 The LPF 13a1 has a passband defined by a predetermined center frequency and a predetermined band. The LPF 13a1 passes, as a signal, components included in the passband of the first monitor waveform, and blocks other components as noise. In this embodiment, the passband of the LPF 13a1 includes the frequency f of the first command waveform. The first monitor waveform that has passed through the LPF 13a1 is supplied to the averaging section 13a2.
 平均化部13a2は、第1モニタ波形のうちLPF13a1が通過させた成分を平均化することによって、第1変位の振幅中心を算出する第1変位の振幅中心は、比較部13a3に供給される。 The averaging unit 13a2 averages the components of the first monitor waveform passed by the LPF 13a1 to calculate the amplitude center of the first displacement, and supplies the amplitude center of the first displacement to the comparison unit 13a3.
 比較部13a3は、第1目標値と第1変位の振幅中心との差分を算出することによって第1補正値を生成する。本実施形態においては、比較部13a3として減算回路を用いている。第1目標値および第1補正値は、PID制御部13a4に供給される。 The comparison unit 13a3 generates the first correction value by calculating the difference between the first target value and the amplitude center of the first displacement. In this embodiment, a subtraction circuit is used as the comparator 13a3. The first target value and the first correction value are supplied to the PID controller 13a4.
 PID制御部13a4は、第1変位の振幅中心が第1目標値に近づけるために(より好ましくは一致させるために)、第1補正値をPID(Proportional-Integral-Differential)制御する。PID制御された第1補正値は、リミッタ13a5に供給される。 The PID control unit 13a4 performs PID (Proportional-Integral-Differential) control of the first correction value so that the amplitude center of the first displacement approaches (more preferably matches) the first target value. The PID-controlled first correction value is supplied to the limiter 13a5.
 リミッタ13a5においては、上限値および下限値が定められている。リミッタ13a5は、PID制御部13a4から供給された第1補正値と、上限値および下限値とを参照し、(1)第1補正値が下限値以上かつ上限値未満である場合には第1補正値を第1合成波形生成部14aに供給し、(2)第1補正値が下限値未満である場合には第1補正値として下限値を第1合成波形生成部14aに供給し、(3)第1補正値が上限値以上である場合には第1補正値として上限値を第1合成波形生成部14aに供給する。 An upper limit value and a lower limit value are defined for the limiter 13a5. The limiter 13a5 refers to the first correction value, the upper limit value, and the lower limit value supplied from the PID control unit 13a4, and (1) if the first correction value is equal to or more than the lower limit value and less than the upper limit value, the first (2) if the first correction value is less than the lower limit, supply the lower limit as the first correction value to the first composite waveform generation unit 14a; 3) If the first correction value is greater than or equal to the upper limit value, the upper limit value is supplied to the first composite waveform generator 14a as the first correction value.
 なお、第1補正値生成部13aにおいて、PID制御部13a4およびリミッタ13a5は省略可能である。 It should be noted that the PID control section 13a4 and the limiter 13a5 can be omitted from the first correction value generation section 13a.
 第1合成波形生成部14aは、第1指令波形と第1補正値とを合成することによって、第1合成波形を生成するための構成である。本実施形態においては、第1合成波形生成部14aとして、加算回路を用いている。第1合成波形生成部14aにて生成された第1合成波形は、駆動部15に提供される。 The first synthetic waveform generator 14a is configured to generate a first synthetic waveform by synthesizing the first command waveform and the first correction value. In this embodiment, an adder circuit is used as the first combined waveform generator 14a. The first composite waveform generated by the first composite waveform generation section 14 a is provided to the driving section 15 .
 第2補正値生成部13bは、2軸チルトステージ12の第1方向に対する傾きを制御するための第2モニタ波形および第2目標値に基づいて第2補正値を生成する。第2補正値は、周期的に振動する第2変位の振幅中心(ひいては第2方向における振幅中心位置P)に生じ得る経時的なドリフトを補正するための補正値であり、第2変位の振幅中心を第2目標値に近づけるための補正値である。第2補正値は、第1補正値と同様に、例えば、第2目標値と第2変位の振幅中心との差分(第2目標値-第2変位の振幅中心)を算出することにより得られる。第2補正値は、第2合成波形生成部14bに提供される。 The second correction value generator 13b generates a second correction value based on a second monitor waveform and a second target value for controlling the tilt of the biaxial tilt stage 12 with respect to the first direction. The second correction value is a correction value for correcting drift over time that can occur in the amplitude center of the second displacement that oscillates periodically (and thus the amplitude center position P c in the second direction). This is a correction value for bringing the amplitude center closer to the second target value. The second correction value, like the first correction value, is obtained, for example, by calculating the difference between the second target value and the center of the amplitude of the second displacement (the second target value - the center of the amplitude of the second displacement). . The second correction value is provided to the second composite waveform generator 14b.
 第2補正値生成部13bの構成例は、図2に示した第1補正値生成部13aの構成例と同様に構成することができる。したがって、ここでは、第2補正値生成部13bの構成例の詳しい説明を省略する。 A configuration example of the second correction value generation unit 13b can be configured in the same manner as the configuration example of the first correction value generation unit 13a shown in FIG. Therefore, detailed description of the configuration example of the second correction value generation unit 13b is omitted here.
 第2合成波形生成部14bは、第2指令波形と第2補正値とを合成することによって、第2合成波形を生成するための構成である。本実施形態においては、第2合成波形生成部14bとして、加算回路を用いている。第2合成波形生成部14bにて生成された第2合成波形は、駆動部15に供給される。 The second synthetic waveform generator 14b is configured to generate a second synthetic waveform by synthesizing the second command waveform and the second correction value. In this embodiment, an adder circuit is used as the second synthesized waveform generator 14b. The second composite waveform generated by the second composite waveform generator 14 b is supplied to the drive section 15 .
 駆動部15は、第1合成波形に従って2軸チルトステージ12を駆動することにより、2軸チルトステージ12の第1方向に対する傾きを制御するための構成である。同様に、駆動部15は、第2合成波形に従って2軸チルトステージ12を駆動することにより、2軸チルトステージ12の第2方向に対する傾きを制御するための構成である。 The drive unit 15 is configured to control the tilt of the biaxial tilt stage 12 with respect to the first direction by driving the biaxial tilt stage 12 according to the first synthesized waveform. Similarly, the driving section 15 is configured to control the tilt of the biaxial tilt stage 12 in the second direction by driving the biaxial tilt stage 12 according to the second synthesized waveform.
 上述したように、第1補正値生成部13aが生成する第1補正値は、第1変位の振幅中心を第1目標値に近づけるように定められている。第1指令波形と第1補正値とを合成することによって得られる第1合成波形に従って駆動部15が2軸チルトステージ12の第1方向に対する傾きを制御することによって、第1変位の振幅中心を第1目標値に近づけることができる。同様に、第2補正値生成部13bが生成する第2補正値は、第2変位の振幅中心を第2目標値に近づけるように定められている。第2指令波形と第2補正値とを合成することによって得られる第2合成波形を用いて2軸チルトステージ12の第2方向に対する傾きを制御することによって、第2変位の振幅中心を第2目標値に近づけることができる。 As described above, the first correction value generated by the first correction value generator 13a is determined so as to bring the center of amplitude of the first displacement closer to the first target value. The driving unit 15 controls the tilt of the two-axis tilt stage 12 with respect to the first direction according to the first synthesized waveform obtained by synthesizing the first command waveform and the first correction value. It can be brought close to the first target value. Similarly, the second correction value generated by the second correction value generator 13b is determined so as to bring the center of amplitude of the second displacement closer to the second target value. By controlling the tilt of the biaxial tilt stage 12 in the second direction using the second synthesized waveform obtained by synthesizing the second command waveform and the second correction value, the amplitude center of the second displacement is shifted to the second It is possible to approach the target value.
 ピエゾ素子の振幅中心において生じ得る経時的なドリフトは、指令波形の1周期と比較して遅い現象である。これは以下の理由による。すなわち、フィードバック制御(補正)は制御対象の変化に対して、十分に速い周期(頻度)で制御対象の角度や位置をサンプリングし、目標値と一致するように補正値を出力する必要がある。ここで、ピエゾ素子のドリフトは徐々に変化する(例えば、10分で0.1mrad変化)為、その変化に間に合う周期でフィードバック制御を行えばドリフトを抑制できる(例えば10s周期で補正すればフィードバック制御が間に合う。一方、指令波形が振幅0.1mrad、周波数1000Hzの正弦波の条件にて角度フィードバック制御してピエゾ素子を駆動する場合(角度補正あり)、指令波形の周期1msよりも十分に速い周期でフィードバック制御を行う必要がある(例えば1μs以下の周期で補正)。このようにドリフトの周期は指令波形の周期より十分に遅い為、ドリフトの補正頻度は指令波形の補正頻度に比べて非常に低い(例えば、ドリフトの補正頻度は指令波形の補正頻度の1/10000000以下)。このことから、指令波形の数百~数千周期に1回、ドリフトの補正を行えばドリフトを抑制できる。そのため、第1補正値生成部13aが第1補正値を生成する頻度を第1指令波形の周波数に大きく依存せずに定めることができる。また、第2補正値生成部13bが第2補正値を生成する頻度を指令波形の周波数に大きく依存せずに定めることができる。したがって、光走査装置1は、ピエゾ素子の変位に生じ得る経時的なドリフトを抑制しつつ、走査を高速化することができる。 The drift over time that can occur in the amplitude center of the piezo element is a slow phenomenon compared to one cycle of the command waveform. This is for the following reasons. That is, in feedback control (correction), it is necessary to sample the angle and position of the controlled object at a sufficiently fast period (frequency) in response to changes in the controlled object, and output a correction value so as to match the target value. Here, since the drift of the piezo element gradually changes (for example, 0.1 mrad change in 10 minutes), the drift can be suppressed by performing feedback control with a period that is in time for the change (for example, if correction is performed with a 10 s period, feedback control On the other hand, if the command waveform is a sine wave with an amplitude of 0.1 mrad and a frequency of 1000 Hz, and the piezoelectric element is driven by angle feedback control (with angle correction), the cycle is sufficiently faster than the command waveform cycle of 1 ms. (For example, correction at a period of 1 μs or less).Since the drift period is sufficiently slower than the command waveform period, the drift correction frequency is much higher than the command waveform correction frequency. (For example, the drift correction frequency is 1/10000000 or less of the command waveform correction frequency.) Therefore, the drift can be suppressed by correcting the drift once every several hundred to several thousand cycles of the command waveform. , the frequency at which the first correction value generator 13a generates the first correction value can be determined without greatly depending on the frequency of the first command waveform, and the second correction value generator 13b generates the second correction value The generation frequency can be determined without greatly depending on the frequency of the command waveform, so that the optical scanning device 1 can speed up scanning while suppressing temporal drift that may occur in the displacement of the piezoelectric element. can.
 (基本的構成により得られる効果)
 以上のように、光走査装置1は、レーザ光を反射するミラー11と、ミラー11を載置し、指令波形(第1指令波形,第2指令波形)に応じて変位するピエゾ素子(第1柱状ピエゾ素子および第2柱状ピエゾ素子)によってミラー11の傾きを変化させるチルトステージ(2軸チルトステージ12)と、ピエゾ素子(第1柱状ピエゾ素子および第2柱状ピエゾ素子)の変位(第1変位,第2変位)を検出する変位センサ(第1変位センサ12a,第2変位センサ12b)と、変位センサ(第1変位センサ12a,第2変位センサ12b)が検出した変位(第1変位,第2変位)に応じて指令波形(第1指令波形,第2指令波形)を補正する補正値(第1補正値,第2補正値)を生成する補正値生成部(第1補正値生成部13a,第2補正値生成部13b)と、指令波形(第1指令波形,第2指令波形)と補正値(第1補正値,第2補正値)とを合成することによって合成波形(第1合成波形,第2合成波形)を生成する合成波形生成部(第1合成波形生成部14a,第2合成波形生成部14b)と、合成波形(第1合成波形,第2合成波形)にしたがってピエゾ素子(第1柱状ピエゾ素子および第2柱状ピエゾ素子)を駆動する駆動部15と、を備え、指令波形(第1指令波形,第2指令波形)は、周期的に振動し、且つ、振幅中心に対して対称な波形であり、補正値生成部(第1補正値生成部13a,第2補正値生成部13b)は、周期的に振動する前記変位の振幅中心を目標値(第1目標値,第2目標値)に近づけるように補正値(第1補正値,第2補正値)を定める。
(Effect obtained by basic configuration)
As described above, the optical scanning device 1 includes the mirror 11 that reflects laser light and the piezoelectric element (the first A tilt stage (two-axis tilt stage 12) that changes the tilt of the mirror 11 by means of a columnar piezoelectric element and a second columnar piezoelectric element), and displacement of the piezoelectric elements (the first columnar piezoelectric element and the second columnar piezoelectric element) (first displacement , second displacement), and displacements detected by the displacement sensors (first displacement sensor 12a, second displacement sensor 12b) (first displacement, second displacement). 2 displacement) to generate correction values (first correction value, second correction value) for correcting command waveforms (first command waveform, second command waveform) (first correction value generation unit 13a , second correction value generation unit 13b), and a composite waveform (first composite a composite waveform generator (first composite waveform generator 14a, second composite waveform generator 14b) for generating a waveform and a second composite waveform); and a driving unit 15 for driving (the first columnar piezoelectric element and the second columnar piezoelectric element), and the command waveforms (the first command waveform and the second command waveform) oscillate periodically and The correction value generator (first correction value generator 13a, second correction value generator 13b) sets the amplitude center of the periodically oscillating displacement to the target value (first target value, The correction values (first correction value, second correction value) are determined so as to approach the second target value).
 補正値生成部(第1補正値生成部13a,第2補正値生成部13b)は、周期的に振動する前記変位の振幅中心を算出したうえで、当該振幅中心を用いて補正値(第1補正値,第2補正値)を生成する。ピエゾ素子(第1柱状ピエゾ素子および第2柱状ピエゾ素子)の振幅中心において生じ得る経時的なドリフトは、指令波形(第1指令波形,第2指令波形)の1周期と比較して遅い現象である。そのため、光走査装置1においては、補正値生成部(第1補正値生成部13a,第2補正値生成部13b)が補正値(第1補正値,第2補正値)を生成する頻度を指令波形(第1指令波形,第2指令波形)の周波数fに大きく依存せずに定めることができる。したがって、光走査装置1は、ピエゾ素子(第1柱状ピエゾ素子および第2柱状ピエゾ素子)の変位に生じ得る経時的なドリフトを抑制しつつ、ウォブル走査の動作周波数をより高めることができる。すなわち、光走査装置1は、ドリフトを抑制しつつ走査を高速化することができる。 A correction value generation unit (first correction value generation unit 13a, second correction value generation unit 13b) calculates the center of amplitude of the displacement that oscillates periodically, and then uses the center of amplitude to generate a correction value (first correction value, second correction value). The temporal drift that can occur in the center of amplitude of the piezo elements (the first columnar piezo element and the second columnar piezo element) is a slow phenomenon compared to one cycle of the command waveforms (the first command waveform and the second command waveform). be. Therefore, in the optical scanning device 1, the correction value generator (first correction value generator 13a, second correction value generator 13b) instructs the frequency of generating the correction values (first correction value, second correction value). It can be determined without greatly depending on the frequency f of the waveforms (first command waveform, second command waveform). Therefore, the optical scanning device 1 can further increase the operating frequency of wobble scanning while suppressing temporal drift that may occur in the displacement of the piezoelectric elements (the first columnar piezoelectric element and the second columnar piezoelectric element). That is, the optical scanning device 1 can speed up scanning while suppressing drift.
 また、光走査装置1において、補正値生成部(第1補正値生成部13a,第2補正値生成部13b)は、変位センサ(第1変位センサ12a,第2変位センサ12b)の出力の平均値を算出し、当該平均値を前記振幅中心とする、という構成が採用されている。 In the optical scanning device 1, the correction value generators (the first correction value generator 13a and the second correction value generator 13b) average the outputs of the displacement sensors (the first displacement sensor 12a and the second displacement sensor 12b). A configuration is adopted in which a value is calculated and the average value is used as the amplitude center.
 このように、変位(第1変位,第2変位)の振幅中心は、例えば、変位センサ(第1変位センサ12a,第2変位センサ12b)の出力の平均値を算出することによって得ることができる。上述したように、ピエゾ素子(第1柱状ピエゾ素子および第2柱状ピエゾ素子)の振幅中心において生じ得る経時的なドリフトは、指令波形(第1指令波形,第2指令波形)の1周期と比較して遅い現象である。そのため、変位センサ(第1変位センサ12a,第2変位センサ12b)の出力の平均値を振幅中心として用い、目標値と振幅中心との差分を取ることによって補正値を算出できるので、ピエゾ素子(第1柱状ピエゾ素子および第2柱状ピエゾ素子)の経時的なドリフトを容易に抑制することができる。 Thus, the amplitude center of displacement (first displacement, second displacement) can be obtained, for example, by calculating the average value of the outputs of the displacement sensors (first displacement sensor 12a, second displacement sensor 12b). . As described above, the drift over time that can occur in the amplitude center of the piezo elements (the first columnar piezo element and the second columnar piezo element) is compared with one cycle of the command waveforms (the first command waveform and the second command waveform). It is a slow phenomenon. Therefore, the average value of the outputs of the displacement sensors (first displacement sensor 12a, second displacement sensor 12b) is used as the center of amplitude, and the correction value can be calculated by taking the difference between the target value and the center of amplitude. The first columnar piezoelectric element and the second columnar piezoelectric element) can be easily suppressed from drifting over time.
 また、光走査装置1において、補正値生成部(第1補正値生成部13a,第2補正値生成部13b)は、PID制御を用いて補正値(第1補正値,第2補正値)を生成する、という構成が採用されている。 In the optical scanning device 1, the correction value generators (first correction value generator 13a, second correction value generator 13b) generate correction values (first correction value, second correction value) using PID control. The configuration of generating is adopted.
 このように、振幅中心を目標値に近づけるフィードバック制御としては、PID制御が好適である。 Thus, PID control is suitable as feedback control for bringing the amplitude center closer to the target value.
 また、光走査装置1において、ピエゾ素子は、第1方向に対する前記ミラーの傾きを変化させる第1ピエゾ素子と、第2方向に対する前記ミラーの傾きを変化させる第2ピエゾ素子と、を含み、チルトステージ(2軸チルトステージ12)は、前記第1ピエゾ素子(第1柱状ピエゾ素子)と、前記第2ピエゾ素子(第2柱状ピエゾ素子)と、を備えた2軸チルトステージであり、変位センサ(第1変位センサ12a,第2変位センサ12b)は、第1ピエゾ素子(第1柱状ピエゾ素子)の変位である第1変位を検出する第1変位センサ12aと、第2ピエゾ素子(第2柱状ピエゾ素子)の変位である第2変位を検出する第2変位センサ12bとを含み、指令波形は、前記第1ピエゾ素子を制御するための第1指令波形であって、周期的に振動し、且つ、振幅中心に対して対称な波形である第1指令波形と、前記第2ピエゾ素子を制御するための第2指令波形であって、周期的に振動し、且つ、振幅中心に対して対称な波形である第2指令波形と、を含み、補正値生成部(第1補正値生成部13a,第2補正値生成部13b)は、周期的に振動する前記第1変位の振幅中心が第1目標値に近づくように第1補正値を生成し、且つ、周期的に振動する前記第2変位の振幅中心が第2目標値に近づくように第2補正値を生成し、駆動部15は、第1指令波形と第1補正値との和である第1合成波形にしたがって第1ピエゾ素子(第1柱状ピエゾ素子)を駆動し、且つ、第2指令波形と前記第2補正値との和である第2合成波形にしたがって第2ピエゾ素子(第2柱状ピエゾ素子)を駆動する、という構成が採用されている。 Further, in the optical scanning device 1, the piezo elements include a first piezo element that changes the tilt of the mirror with respect to the first direction and a second piezo element that changes the tilt of the mirror with respect to the second direction. The stage (two-axis tilt stage 12) is a two-axis tilt stage including the first piezo element (first columnar piezo element) and the second piezo element (second columnar piezo element), and is equipped with a displacement sensor. The (first displacement sensor 12a, second displacement sensor 12b) includes the first displacement sensor 12a for detecting the first displacement, which is the displacement of the first piezo element (first columnar piezo element), and the second piezo element (second and a second displacement sensor 12b for detecting a second displacement that is a displacement of a columnar piezoelectric element). and a first command waveform that is symmetrical with respect to the center of amplitude, and a second command waveform for controlling the second piezo element, which oscillates periodically and is symmetrical with respect to the center of amplitude and a second command waveform that is a symmetrical waveform, and the correction value generator (first correction value generator 13a, second correction value generator 13b) is configured such that the amplitude center of the first displacement that oscillates periodically is generating a first correction value so as to approach a first target value, and generating a second correction value such that the amplitude center of the second displacement that oscillates periodically approaches a second target value; drives the first piezoelectric element (first columnar piezoelectric element) according to a first composite waveform that is the sum of the first command waveform and the first correction value, and the second command waveform and the second correction value, A second piezo element (second columnar piezo element) is driven in accordance with a second composite waveform that is the sum of .
 上記の構成によれば、レーザ光の照射点を独立した2つの方向である第1方向及び第2方向に沿って走査することができる。そのため、対象物上に描く照射点の軌道を設定する場合の自由度を高めることができる。光走査装置1は、例えば、対象物上に円軌道または螺旋軌道を描くことができる。また、上記の構成によれば、第1ピエゾ素子および第2ピエゾ素子の変位に生じ得る経時的なドリフトを抑制しつつ、走査を高速化し得る。 According to the above configuration, the irradiation point of the laser light can be scanned along the first direction and the second direction, which are two independent directions. Therefore, it is possible to increase the degree of freedom when setting the trajectory of the irradiation point to be drawn on the object. The optical scanning device 1 can, for example, draw a circular trajectory or a spiral trajectory on the object. Moreover, according to the above configuration, it is possible to speed up scanning while suppressing temporal drift that may occur in the displacements of the first piezoelectric element and the second piezoelectric element.
 また、光走査装置1においては、指令波形(第1指令波形,第2指令波形)の周波数が1000Hz以上である、という構成が採用されている。 Also, in the optical scanning device 1, a configuration is adopted in which the frequency of the command waveforms (first command waveform, second command waveform) is 1000 Hz or more.
 光走査装置1においては、補正値生成部(第1補正値生成部13a,第2補正値生成部13b)が補正値(第1補正値,第2補正値)を生成する頻度を指令波形(第1指令波形,第2指令波形)の周波数に大きく依存せずに定めることができる。したがって、光走査装置1は、指令波形(第1指令波形,第2指令波形)の周波数が1000Hz以上の場合に効果的である。 In the optical scanning device 1, the command waveform ( (first command waveform, second command waveform). Therefore, the optical scanning device 1 is effective when the frequency of the command waveform (first command waveform, second command waveform) is 1000 Hz or more.
 (光走査装置の変形例)
 本実施形態では、光走査装置1が2つのピエゾ素子である第1柱状ピエゾ素子と第2柱状ピエゾ素子とを備えている場合について説明した。ただし、光走査装置1においては、二次元の描画(例えば円描画)ではなく一次元の描画(例えば直線描画)の場合、第2柱状ピエゾ素子を省略することができる。
(Modified example of optical scanning device)
In this embodiment, the case where the optical scanning device 1 includes two piezoelectric elements, the first columnar piezoelectric element and the second columnar piezoelectric element, has been described. However, in the optical scanning device 1, in the case of one-dimensional drawing (eg, straight line drawing) instead of two-dimensional drawing (eg, circular drawing), the second columnar piezo element can be omitted.
 光走査装置1において、第2柱状ピエゾ素子を省略した場合(第1柱状ピエゾ素子のみを備えている場合)、光走査装置1は、2軸チルトステージ12を第1方向に対してのみ傾けることができる。したがって、光走査装置1は、対象物上においてレーザ光の照射点を第1方向に対応した方向に沿って走査することができる。そのうえで、ガルバノスキャナを用いて、第1方向に対応した方向に交わる方向(好ましくは直交する方向)に照射点を並進移動させることによって、照射点が対象物上でジグザグな軌道を描くウォブリングを実現することができる。 When the second columnar piezo element is omitted in the optical scanning device 1 (when only the first columnar piezo element is provided), the optical scanning device 1 tilts the biaxial tilt stage 12 only in the first direction. can be done. Therefore, the optical scanning device 1 can scan the irradiation point of the laser beam on the object along the direction corresponding to the first direction. Then, by using a galvanometer scanner to translate the irradiation point in a direction that intersects (preferably orthogonally) to the direction corresponding to the first direction, wobbling that the irradiation point draws a zigzag trajectory on the object is realized. can do.
 (光走査装置の追加的構成)
 光走査装置1の追加的構成について、引き続き図1を参照して説明する。光走査装置1は、上述した基本的構成に加えて、第1指令波形生成部16aと、第2指令波形生成部16bと、制御部17と、を、追加的構成として備えている。
(Additional Configuration of Optical Scanning Device)
An additional configuration of the optical scanning device 1 will be described with continued reference to FIG. In addition to the basic configuration described above, the optical scanning device 1 includes a first command waveform generator 16a, a second command waveform generator 16b, and a controller 17 as additional components.
 第1指令波形生成部16aは、第1指令波形を生成するための構成である。例えば、第1指令波形生成部16aは、第1指令波形として、制御部17により指定された周波数f、振幅中心電圧V、および振幅Vを有する正弦波を生成する。第1指令波形生成部16aにて生成された第1指令波形は、第1合成波形生成部14aに供給される。 The first command waveform generator 16a is configured to generate a first command waveform. For example, the first command waveform generator 16a generates a sine wave having a frequency f, an amplitude center voltage V c , and an amplitude VI specified by the controller 17 as the first command waveform. The first command waveform generated by the first command waveform generator 16a is supplied to the first composite waveform generator 14a.
 第2指令波形生成部16bは、第2指令波形を生成するための構成である。例えば、第2指令波形生成部16bは、第2指令波形として、制御部17により指定された周波数f、振幅中心電圧V、および振幅Vを有する正弦波を生成する。第2指令波形生成部16bにて生成された第2指令波形は、第2合成波形生成部14bに提供される。 The second command waveform generator 16b is configured to generate a second command waveform. For example, the second command waveform generator 16b generates a sine wave having a frequency f, an amplitude center voltage V c , and an amplitude VI specified by the controller 17 as the second command waveform. The second command waveform generated by the second command waveform generator 16b is provided to the second composite waveform generator 14b.
 制御部17は、第1変位センサ12aおよび第2変位センサ12bの各々より、それぞれ、第1モニタ波形および第2モニタ波形を取得する。また、制御部17は、ユーザが選択したウォブル走査に応じて、第1指令波形および第2指令波形の各々における周波数f、振幅中心電圧V、および振幅Vと、第1目標値と、第2目標値と、第1指令波形と第2指令波形との位相差と、を生成する。例えば、第1指令波形および第2指令波形の各々における周波数f、振幅中心電圧V、および振幅Vが等しく、第1指令波形と第2指令波形との位相差がπ/2である場合、レーザ光の照射点が対象物上で円軌道を描くことができる。この場合、例えば、ガルバノスキャナによるレーザ光の照射点の並進移動を組み合わせることによって、レーザ光の照射点が対象物上で螺旋軌道を描くウォブリングを実現することができる。 The control unit 17 acquires the first monitor waveform and the second monitor waveform from each of the first displacement sensor 12a and the second displacement sensor 12b. Further, the control unit 17 controls the frequency f, the amplitude center voltage V c and the amplitude V I of each of the first command waveform and the second command waveform, the first target value, and the A second target value and a phase difference between the first command waveform and the second command waveform are generated. For example, when the frequency f, the amplitude center voltage V c , and the amplitude VI are equal in each of the first command waveform and the second command waveform, and the phase difference between the first command waveform and the second command waveform is π/2. , the irradiation point of the laser beam can draw a circular trajectory on the object. In this case, for example, by combining the translational movement of the laser light irradiation point by the galvanometer scanner, wobbling in which the laser light irradiation point draws a spiral trajectory on the object can be realized.
 第1指令波形の周波数f、振幅中心電圧V、および振幅Vは、第1指令波形生成部16aに供給され、第1モニタ波形および第1目標値は、第1補正値生成部13aに供給される。また、第2指令波形の周波数f、振幅中心電圧V、および振幅Vは、第2指令波形生成部16bに供給され、第2モニタ波形および第2目標値は、第2補正値生成部13bに供給される。 The frequency f, the amplitude center voltage V c , and the amplitude V I of the first command waveform are supplied to the first command waveform generator 16a, and the first monitor waveform and the first target value are supplied to the first correction value generator 13a. supplied. Further, the frequency f, the amplitude center voltage V c and the amplitude V I of the second command waveform are supplied to the second command waveform generator 16b, and the second monitor waveform and the second target value are supplied to the second correction value generator 16b. 13b.
 〔実施例〕
 光走査装置1の実施例と、当該実施例に対する比較例とについて、以下に説明する。本実施例では、第1指令波形の周波数f、振幅中心電圧V、および振幅Vとして、それぞれ、f=3000Hz、V=3.59V、およびV=0.68Vを採用した。V=3.59Vは、第1目標値であるθ=1.3mrad.に対応し、V=0.68Vは、θ=0.2mrad.に対応する。
〔Example〕
An embodiment of the optical scanning device 1 and a comparative example for the embodiment will be described below. In this embodiment, f=3000 Hz, V c =3.59 V, and V I =0.68 V are adopted as the frequency f, amplitude center voltage V c , and amplitude V I of the first command waveform, respectively. V c =3.59 V is the first target value θ c =1.3 mrad. and V I =0.68 V corresponds to θ W =0.2 mrad. corresponds to
 なお、比較例は、本実施例をベースにして、第1補正値生成部13a、第1合成波形生成部14a、を省略することによって得られた。すなわち、比較例においては、第1指令波形に対する補正を実施していない。 Note that the comparative example was obtained by omitting the first correction value generation unit 13a and the first synthetic waveform generation unit 14a based on the present embodiment. That is, in the comparative example, the first command waveform is not corrected.
 光走査装置1の実施例および比較例の各々を用いて、10分間にわたって第1ピエゾ素子のみを連続動作させてウォブル走査を実施した結果であって、第1方向に対する傾きの結果を、以下の表1に示す。なお、比較例の振幅中心電圧Vは、V=3.40Vである。 Using each of the optical scanning device 1 of the example and the comparative example, the results of wobble scanning by continuously operating only the first piezo element for 10 minutes, and the results of the inclination with respect to the first direction are shown below. Table 1 shows. Note that the amplitude center voltage V c of the comparative example is V c =3.40V.
Figure JPOXMLDOC01-appb-T000001
 表1を参照すれば、本実施例は、比較例と比較して、周波数が3000Hzであるウォブル走査を10分間にわたって実施した場合に、ピエゾ素子の振幅中心である角θにおいて生じる経時的なドリフトを抑制できることが分かった。なお、従来の角度フィードバック制御を用いた光走査装置においては、ウォブル走査の周波数が高くなると(例えば1000Hzを超えると)ウォブル走査の周波数に角度フィードバック制御が追いつかなくなり、ウォブル走査が乱れる。本実施例においては、角度フィードバック制御を用いていないので、3000Hzのように高い周波数であっても、ウォブル走査が乱れることはなかった。
Figure JPOXMLDOC01-appb-T000001
Referring to Table 1, in this example, when wobble scanning with a frequency of 3000 Hz is performed for 10 minutes, the time - dependent It was found that the drift can be suppressed. In a conventional optical scanning device using angle feedback control, when the frequency of wobble scanning increases (for example, when it exceeds 1000 Hz), angle feedback control cannot keep up with the frequency of wobble scanning, and wobble scanning is disturbed. In this embodiment, angle feedback control is not used, so wobble scanning is not disturbed even at a frequency as high as 3000 Hz.
 次に、本実施例および比較例の各々において、第2指令波形の振幅Vとして、V=0.70V,2.11V,3.51Vと変化させた場合について説明する。V=0.70V,2.11V,3.51Vの各々は、それぞれ、θ=0.2mrad,0.6mrad,1.0mrad.に対応する。また本実施例では、第2指令波形の周波数f、振幅中心電圧Vcとして、それぞれ、f=3000Hz、Vc=3.50Vを採用した。Vc=3.50Vは、第2目標値であるθc=1.225mrad.に対応する。このような光走査装置1の実施例および比較例の各々を用いて、ウォブル走査を実施した結果であって、θwを順次0.2mrad,0.6mrad,1.0mradと変化させたときの第2方向に対する傾きの結果を図5に示す。なお、比較例の振幅中心電圧Vは、V=3.40Vである。 Next, in each of the present embodiment and the comparative example, the case where the amplitude V I of the second command waveform is changed to V I =0.70 V, 2.11 V, and 3.51 V will be described. Each of V I =0.70 V, 2.11 V, and 3.51 V corresponds to θ W =0.2 mrad, 0.6 mrad, 1.0 mrad. corresponds to In this embodiment, f=3000 Hz and Vc=3.50 V are used as the frequency f of the second command waveform and the amplitude center voltage Vc, respectively. Vc=3.50V is the second target value θc=1.225 mrad. corresponds to The results of performing wobble scanning using each of the example and the comparative example of the optical scanning device 1 as described above are the results when θw is changed sequentially to 0.2 mrad, 0.6 mrad, and 1.0 mrad. The tilt results for the two directions are shown in FIG. Note that the amplitude center voltage V c of the comparative example is V c =3.40V.
 図5を参照すれば、比較例においては、(1)θ=0.2mrad.のとき、θ=1.185mrad.であり、(2)θ=0.6mrad.のとき、θ=1.225mrad.であり、(3)θ=1.0mrad.のとき、θ=1.257mrad.であった。その一方で、本実施例においては、角θがθ=0.2mrad,0.6mrad,1.0mrad.の何れの場合においても、10分後の角θがθ=1.225mrad.でほぼ変化しないことが分かった。 Referring to FIG. 5, in the comparative example, (1) θ W =0.2 mrad. , θ c =1.185 mrad. and (2) θ W =0.6 mrad. , θ c =1.225 mrad. and (3) θ W =1.0 mrad. , θ c =1.257 mrad. Met. On the other hand, in the present embodiment, the angle θ c is θ W =0.2 mrad, 0.6 mrad, 1.0 mrad. , the angle θ c after 10 minutes is θ c =1.225 mrad. was found to be almost unchanged.
 図5の結果より、本実施例は、比較例と比較して、角θwを変化させながら周波数が3000Hzであるウォブル走査を実施した場合に、ピエゾ素子の振幅中心である角θにおける角θに依存するドリフトを抑制できることが分かった。 From the results of FIG. 5, when wobble scanning is performed at a frequency of 3000 Hz while changing the angle θw, the present example shows that the angle θ It was found that W -dependent drift can be suppressed.
 〔第2の実施形態〕
 本発明の第2の実施形態に係る光走査装置2の構成について、図6~図9を参照して説明する。図6は、光走査装置2の構成を示すブロック図である。図7は、光走査装置2を用いて実施したウォブル走査の結果得られた照射点の軌跡を示すリサジュー図形である。図7の(a)は、真円である軌跡を示し、図7の(b)は、楕円である軌跡を示す。図8は、光走査装置2が実施する光走査方法M10のフローチャートである。図9は、光走査装置2が備えている走査部20の一変形例である走査部30の構成を示す模式図である。
[Second embodiment]
A configuration of an optical scanning device 2 according to a second embodiment of the present invention will be described with reference to FIGS. 6 to 9. FIG. FIG. 6 is a block diagram showing the configuration of the optical scanning device 2. As shown in FIG. FIG. 7 is a Lissajous figure showing the trajectory of irradiation points obtained as a result of wobble scanning performed using the optical scanning device 2 . (a) of FIG. 7 shows a perfectly circular trajectory, and (b) of FIG. 7 shows an elliptical trajectory. FIG. 8 is a flowchart of the optical scanning method M10 performed by the optical scanning device 2. As shown in FIG. FIG. 9 is a schematic diagram showing the configuration of a scanning section 30 that is a modified example of the scanning section 20 provided in the optical scanning device 2. As shown in FIG.
 (光走査装置の構成)
 光走査装置2は、基本的構成として、ミラー21と、2軸チルトステージ22と、第1指令波形補正部23aと、第2指令波形補正部23bと、駆動部25と、軌跡取得部28と、判定部29と、を備えている。なお、ミラー21および2軸チルトステージ22は、走査部の一例である。光走査装置2は、光走査装置1と同様に、例えば、レーザ加工機に内蔵され、レーザ光の照射点を対象物上で移動させるために利用される。
(Configuration of Optical Scanning Device)
The optical scanning device 2 basically includes a mirror 21, a two-axis tilt stage 22, a first command waveform correction section 23a, a second command waveform correction section 23b, a drive section 25, and a trajectory acquisition section 28. , and a determination unit 29 . Note that the mirror 21 and the biaxial tilt stage 22 are an example of a scanning section. Similar to the optical scanning device 1, the optical scanning device 2 is incorporated in, for example, a laser processing machine, and is used to move the irradiation point of the laser beam on the object.
 ミラー21および2軸チルトステージ22の各々は、それぞれ、光走査装置1が備えているミラー11および2軸チルトステージ12と同じ構成であり、第1変位センサ22aおよび第2変位センサ22bの各々は、それぞれ、2軸チルトステージ12が備えている第1変位センサ12aおよび第2変位センサ12bと同じ構成である(図1および図6参照)。したがって、本実施形態では、ミラー21および2軸チルトステージ22の説明を省略する。 Each of the mirror 21 and the two-axis tilt stage 22 has the same configuration as the mirror 11 and the two-axis tilt stage 12 provided in the optical scanning device 1, and each of the first displacement sensor 22a and the second displacement sensor 22b is , have the same configurations as the first displacement sensor 12a and the second displacement sensor 12b provided in the biaxial tilt stage 12 (see FIGS. 1 and 6). Therefore, in this embodiment, description of the mirror 21 and the biaxial tilt stage 22 is omitted.
 また、光走査装置2は、上述した基本的構成2加えて、第1指令波形生成部26aと、第2指令波形生成部26bと、制御部27と、を、追加的構成として備えている。第1指令波形生成部26a、第2指令波形生成部26b、および制御部27は、光走査装置1が追加的構成として備えている第1指令波形生成部16a、第2指令波形生成部16b、および制御部17と同様の構成である。したがって、本実施形態では、第1指令波形生成部26a、第2指令波形生成部26b、および制御部27の詳しい説明を省略する。 In addition to the basic configuration 2 described above, the optical scanning device 2 further includes a first command waveform generator 26a, a second command waveform generator 26b, and a controller 27 as additional components. The first command waveform generator 26a, the second command waveform generator 26b, and the controller 27 are provided as additional components of the optical scanning device 1. The first command waveform generator 16a, the second command waveform generator 16b, and the same configuration as the control unit 17 . Therefore, in the present embodiment, detailed descriptions of the first command waveform generator 26a, the second command waveform generator 26b, and the controller 27 are omitted.
 (指令波形および軌跡のリサジュー図形)
 本実施形態では、第1柱状ピエゾ素子に入力する第1指令波形および第2柱状ピエゾ素子に入力する第2指令波形の各々として、それぞれ、正弦波を用いてウォブル走査を実施する。後述する第1指令波形補正部23aおよび第2指令波形補正部23bの各々が、それぞれ、第1指令波形および第2指令波形に補正を施していない状態(例えば、ウォブル走査開始直後の状態)において、第1指令波形および第2指令波形は、各々の周波数fが等しく、かつ、各々の振幅である第1振幅Iおよび第2振幅Iが等しく、かつ、各々の位相差Δが90°である。なお、以下において、第1振幅Iおよび第2振幅Iのことを単に振幅Iおよび振幅Iとも称する。
(Lissajous figure of command waveform and trajectory)
In this embodiment, wobble scanning is performed using a sine wave as each of the first command waveform input to the first columnar piezoelectric element and the second command waveform input to the second columnar piezoelectric element. In a state where the first command waveform correction section 23a and the second command waveform correction section 23b, which will be described later, do not correct the first command waveform and the second command waveform, respectively (for example, the state immediately after the start of wobble scanning). , the first command waveform and the second command waveform have the same frequency f, the same first amplitude I1 and the second amplitude I2 , and the phase difference Δ of 90°. is. Note that the first amplitude I1 and the second amplitude I2 are hereinafter also simply referred to as the amplitude I1 and the amplitude I2 .
 ところで、2軸チルトステージを用いた光走査装置においては、軸干渉と呼ばれる問題が知られている。すなわち、第1指令波形に従って第1方向に対するミラー21の傾きを周期的に変化させると、これに連動して第2方向に対するミラー21の傾きが周期的に変化してしまう。このため、第2方向に対する実際のミラー21の傾きは、第2指令波形が表す傾きに、第1方向に対するミラー21の傾きの周期的な変化に起因する傾きが重畳したものになる。つまり、第2方向に対するミラー21の傾きは、第2指令波形が表すミラー21の傾きと異なるものになる。同様に、第2指令波形に従って第2方向に対するミラー21の傾きを周期的に変化させると、これに連動して第1方向に対するミラー21の傾きが周期的に変化してしまう。このため、第1方向に対するミラー21の実際の傾きは、第1指令波形が表す傾きに、第2方向に対するミラー21の傾きの周期的な変化に起因する傾きが重畳したものになる。つまり、第1方向に対するミラー21の傾きは、第1指令波形が表すミラー21の傾きと異なるものになる。このような現象を、軸干渉と呼ぶ。 By the way, a problem called axial interference is known in an optical scanning device using a two-axis tilt stage. That is, when the tilt of the mirror 21 in the first direction is periodically changed according to the first command waveform, the tilt of the mirror 21 in the second direction is periodically changed in conjunction therewith. Therefore, the actual tilt of the mirror 21 in the second direction is the tilt represented by the second command waveform and the tilt caused by the periodic change in the tilt of the mirror 21 in the first direction. That is, the tilt of the mirror 21 with respect to the second direction is different from the tilt of the mirror 21 represented by the second command waveform. Similarly, if the tilt of the mirror 21 in the second direction is changed periodically according to the second command waveform, the tilt of the mirror 21 in the first direction will change periodically accordingly. Therefore, the actual tilt of the mirror 21 in the first direction is the tilt represented by the first command waveform superimposed with the tilt caused by the periodic change in the tilt of the mirror 21 in the second direction. That is, the tilt of the mirror 21 with respect to the first direction is different from the tilt of the mirror 21 represented by the first command waveform. Such a phenomenon is called axial interference.
 例えば、レーザ光の照射点が円軌道を描くように、第1指令波形として正弦波を2軸チルトステージに入力し、第2指令波形として第1指令波形よりも90°遅れた正弦波を2軸チルトステージに入力しても、相互に軸干渉が生じるため、レーザ光の照射点が描く軌跡に歪みが生じ、軌跡の真円度が低下する。 For example, a sine wave is input to the biaxial tilt stage as the first command waveform so that the irradiation point of the laser beam draws a circular orbit, and two sine waves delayed by 90° from the first command waveform are input as the second command waveform. Even if it is input to the axis tilt stage, since mutual axis interference occurs, the trajectory drawn by the irradiation point of the laser light is distorted and the roundness of the trajectory is reduced.
 2軸チルトステージ22において生じ得る軸干渉を想定しない理想的な場合、上述した第1指令波形および第2指令波形の各々を、それぞれ、第1柱状ピエゾ素子および第2柱状ピエゾ素子に入力することにより、ミラー21により反射されたレーザ光の照射点は、図7の(a)に示すような円形の軌跡を描く。図7の(a)に示した軌跡においては、直径を測定する角度を変化させた場合においても直径が一定である。したがって、図7の(a)に示した軌跡は、真円度が100%である。 In an ideal case where axial interference that may occur in the biaxial tilt stage 22 is not assumed, each of the above-described first command waveform and second command waveform is input to the first columnar piezo element and the second columnar piezo element, respectively. Thus, the irradiation point of the laser beam reflected by the mirror 21 draws a circular trajectory as shown in FIG. 7(a). In the trajectory shown in FIG. 7(a), the diameter is constant even when the angle for measuring the diameter is changed. Therefore, the trajectory shown in FIG. 7A has a roundness of 100%.
 なお、図7に示すx軸は、2軸チルトステージ22を第1方向に対して傾けた場合に、照射点が描く直線状の軌跡と平行になるように定められている。同様に、図7に示すy軸は、2軸チルトステージ22を第2方向に対して傾けた場合に、照射点が描く直線状の軌跡と平行になるように定められている。 Note that the x-axis shown in FIG. 7 is determined to be parallel to the linear trajectory drawn by the irradiation point when the biaxial tilt stage 22 is tilted with respect to the first direction. Similarly, the y-axis shown in FIG. 7 is determined to be parallel to the linear trajectory drawn by the irradiation point when the biaxial tilt stage 22 is tilted with respect to the second direction.
 一方、2軸チルトステージ22において軸干渉が生じている場合、上述した第1指令波形および第2指令波形の各々を、それぞれ、第1柱状ピエゾ素子および第2柱状ピエゾ素子に入力することにより、照射点は、図7の(b)に示すような楕円の軌跡を描く。図7の(b)に示す軌跡において、長軸および短軸は、x軸およびy軸に対して傾いている。ここで、x軸上における軌跡の直径をx軸直径と呼び、y軸上における軌跡の直径をy軸直径と呼ぶ。 On the other hand, when axial interference occurs in the biaxial tilt stage 22, by inputting each of the above-described first command waveform and second command waveform to the first columnar piezo element and the second columnar piezo element, respectively, The irradiation point draws an elliptical trajectory as shown in FIG. 7(b). In the trajectory shown in FIG. 7(b), the major and minor axes are tilted with respect to the x-axis and y-axis. Here, the diameter of the trajectory on the x-axis is called the x-axis diameter, and the diameter of the trajectory on the y-axis is called the y-axis diameter.
 光走査装置2は、従来のフィードバック制御とは異なる手法を用いて、図7の(b)のように楕円である軌跡を、図7の(a)のように円の軌跡に近づけることを目的にしている。なお、従来のフィードバック制御とは、柱状ピエゾ素子の変位またはミラーの傾きを逐次モニタし、モニタしたミラーの傾きが所望の傾きになるように第1指令波形および第2指令波形を補正し続けるフィードバック制御のことを指す。 The purpose of the optical scanning device 2 is to make the elliptical trajectory as shown in FIG. 7B approach a circular trajectory as shown in FIG. 7A using a method different from conventional feedback control. I have to. The conventional feedback control means that the displacement of the columnar piezoelectric element or the tilt of the mirror is sequentially monitored, and the feedback continues to correct the first command waveform and the second command waveform so that the monitored tilt of the mirror becomes the desired tilt. It refers to control.
 (光走査方法M10)
 光走査装置2がウォブル走査を実施する光走査方法M10であって、楕円である軌跡を円に近づけるための光走査方法M10について、図8を参照して説明する。図8に示すように、光走査方法M10は、工程S11~S24を含んでいる。
(Optical scanning method M10)
An optical scanning method M10 in which the optical scanning device 2 performs wobble scanning, and for bringing an elliptical trajectory closer to a circle will be described with reference to FIG. As shown in FIG. 8, the optical scanning method M10 includes steps S11 to S24.
 工程S11は、ウォブル走査における周波数fおよび直径dを設定する工程である。光走査装置2において、周波数fおよび直径dは、ユーザが設定するように構成されていてもよいし、対象物の素材や対象物の厚みなどに応じて、光走査装置2が自動的に設定するように構成されていてもよい。本実施形態においては、周波数fとしてf=3000Hzを採用し、直径dとしてd=500μmを採用する。 Step S11 is a step of setting frequency f and diameter d in wobble scanning. In the optical scanning device 2, the frequency f and the diameter d may be set by the user, or automatically set by the optical scanning device 2 according to the material of the object, the thickness of the object, and the like. may be configured to In this embodiment, f=3000 Hz is adopted as the frequency f, and d=500 μm is adopted as the diameter d.
 工程S12は、ウォブル走査の中心位置を固定した状態で、すなわち、照射点を並進移動させない状態で、ウォブル走査を実施する工程である。制御部27は、工程S11において設定された周波数fと、直径dに応じて定めた振幅Iと、振幅中心電圧とを第1指令波形生成部26aに供給するとともに、周波数fと、直径dに応じて定めた振幅Iと、振幅中心電圧とを第2指令波形生成部26bに供給する。第1指令波形生成部26aは、取得した周波数f、振幅I、および振幅中心電圧に応じて、第1指令波形を生成する。第2指令波形生成部26bは、取得した周波数f、振幅I、および振幅中心電圧に応じて、第2指令波形を生成する。駆動部25は、第1指令波形および第2指令波形にしたがって2軸チルトステージ22を制御することによりウォブル走査を実施する。 Step S12 is a step of performing wobble scanning with the center position of wobble scanning fixed, that is, with the irradiation point not translated. The control unit 27 supplies the frequency f set in step S11, the amplitude I1 determined according to the diameter d, and the amplitude center voltage to the first command waveform generation unit 26a, and supplies the frequency f and the diameter d and the amplitude center voltage are supplied to the second command waveform generator 26b. The first command waveform generator 26a generates a first command waveform according to the acquired frequency f, amplitude I 1 , and amplitude center voltage. The second command waveform generator 26b generates a second command waveform according to the acquired frequency f, amplitude I 2 , and amplitude center voltage. The drive unit 25 performs wobble scanning by controlling the biaxial tilt stage 22 according to the first command waveform and the second command waveform.
 工程S13は、照射点の軌跡を用いてx軸直径を測定する工程である。軌跡取得部28は、制御部27を介して2軸チルトステージ22から取得した第1モニタ波形および第2モニタ波形を用いて、リサジュー図形を作成し、照射点の軌跡を得る。照射点の軌跡は、判定部29に供給される。判定部29は、照射点の軌跡を用いてx軸直径を測定する。 Step S13 is a step of measuring the x-axis diameter using the trajectory of the irradiation point. The trajectory acquisition unit 28 uses the first monitor waveform and the second monitor waveform acquired from the biaxial tilt stage 22 via the control unit 27 to create a Lissajous figure and obtain the trajectory of the irradiation point. The trajectory of the irradiation point is supplied to the determination section 29 . The determination unit 29 measures the x-axis diameter using the trajectory of the irradiation point.
 なお、本実施形態において、軌跡取得部28は、リサジュー図形を作成することで軌跡を得るように構成されている。ただし、図9に示した変形例のように、光走査装置2が軌跡を表す画像(以下において、軌跡画像と称する)を撮影する撮像部34(例えばデジタルカメラ)を備えている場合、軌跡取得部28は、制御部27を介して軌跡画像を取得し、軌跡画像に画像処理を施すことによって軌跡画像から軌跡を得るように構成されていてもよい。 Note that in the present embodiment, the trajectory acquisition unit 28 is configured to obtain a trajectory by creating a Lissajous figure. However, as in the modification shown in FIG. 9, when the optical scanning device 2 is provided with an imaging unit 34 (for example, a digital camera) that captures an image representing the trajectory (hereinafter referred to as a trajectory image), the trajectory acquisition The unit 28 may be configured to acquire a trajectory image via the control unit 27 and obtain a trajectory from the trajectory image by performing image processing on the trajectory image.
 工程S14において、判定部29は、x軸直径の測定値がx軸直径の設定値と等しいか否かを判定する。本実施形態において、x軸直径の設定値は500μmである。なお、この判定においては、有効数字の桁数を例えば3桁というように予め定めておき、4桁目の数字を四捨五入すればよい。四捨五入したx軸直径の測定値が設定値と等しい場合、判定部29は、「Yes」と判定する。 In step S14, the determination unit 29 determines whether or not the measured value of the x-axis diameter is equal to the set value of the x-axis diameter. In this embodiment, the set value of the x-axis diameter is 500 μm. In this determination, the number of significant digits is predetermined, for example, 3 digits, and the fourth digit is rounded off. If the measured value of the rounded x-axis diameter is equal to the set value, the determination unit 29 determines “Yes”.
 x軸直径の測定値が設定値と等しくない場合、工程S15において、第1指令波形補正部23aは、x軸直径の測定値が設定値に近づくように第1指令波形の振幅Iを補正する。振幅Iが補正された第1指令波形は、駆動部25に供給される。 If the measured value of the x-axis diameter is not equal to the set value, in step S15, the first command waveform correction unit 23a corrects the amplitude I1 of the first command waveform so that the measured value of the x-axis diameter approaches the set value. do. The first command waveform whose amplitude I1 has been corrected is supplied to the driving section 25 .
 工程S16において、駆動部25は、ウォブル走査を実施する。このとき、駆動部25は、振幅Iが補正された第1指令波形に従って2軸チルトステージ22の第1方向に対する傾きを制御する。 In step S16, the driving section 25 performs wobble scanning. At this time, the drive unit 25 controls the tilt of the biaxial tilt stage 22 in the first direction according to the first command waveform whose amplitude I1 is corrected.
 2軸チルトステージ22は、振幅Iが補正された第1指令波形に従いミラー21の第1方向に対する傾きを変化させる。そのうえで、2軸チルトステージ22は、第1モニタ波形および第2モニタ波形を生成し、制御部27に供給する。 The biaxial tilt stage 22 changes the tilt of the mirror 21 with respect to the first direction according to the first command waveform whose amplitude I1 is corrected. Then, the biaxial tilt stage 22 generates a first monitor waveform and a second monitor waveform and supplies them to the control section 27 .
 軌跡取得部28は、新たな第1モニタ波形および第2モニタ波形を用いて、リサジュー図形を作成し、照射点の新たな軌跡を得る。照射点の新たな軌跡は、判定部29に供給される。 Using the new first monitor waveform and second monitor waveform, the trajectory acquisition unit 28 creates a Lissajous figure and obtains a new trajectory of the irradiation point. A new trajectory of the irradiation point is supplied to the determination unit 29 .
 再び工程S13に戻り、判定部29は、照射点の新たな軌跡を用いてx軸直径を測定し、x軸直径の測定値が所望の直径である設定値と等しいか否かを判定する。光走査方法M10においては、x軸直径の測定値が所望の直径である設定値と等しくなるまで、工程S13~S16を繰り返す。 Returning to step S13 again, the determination unit 29 measures the x-axis diameter using the new trajectory of the irradiation point, and determines whether or not the measured value of the x-axis diameter is equal to the set value, which is the desired diameter. In optical scanning method M10, steps S13-S16 are repeated until the measured x-axis diameter equals the desired diameter setting.
 工程S17は、x軸直径が補正された照射点の軌跡を用いてy軸直径を測定する工程である。x軸直径の測定値が所望の直径である設定値と等しい場合、工程S17において、判定部29は、x軸直径が補正された照射点の軌跡を用いてy軸直径を測定する。 Step S17 is a step of measuring the y-axis diameter using the trajectory of the irradiated point with the x-axis diameter corrected. If the measured value of the x-axis diameter is equal to the set value, which is the desired diameter, in step S17, the determining unit 29 measures the y-axis diameter using the trajectory of the irradiation point with the corrected x-axis diameter.
 工程S18において、判定部29は、y軸直径の測定値がy軸直径の設定値と等しいか否かを判定する。本実施形態において、y軸直径における設定値は500μmである。なお、この判定においては、有効数字の桁数を例えば3桁というように予め定めておき、4桁目の数字を四捨五入すればよい。四捨五入したy軸直径の測定値が設定値と等しい場合、判定部29は、「Yes」と判定する。 In step S18, the determination unit 29 determines whether or not the measured value of the y-axis diameter is equal to the set value of the y-axis diameter. In this embodiment, the set value for the y-axis diameter is 500 μm. In this determination, the number of significant digits is predetermined, for example, 3 digits, and the fourth digit is rounded off. If the measured value of the rounded y-axis diameter is equal to the set value, the determination unit 29 determines “Yes”.
 y軸直径の測定値が設定値と等しくない場合、工程S19において、第2指令波形補正部23bは、y軸直径の測定値が設定値に近づくように第2指令波形の振幅Iを補正する。振幅Iが補正された第2指令波形は、駆動部25に供給される。 If the measured value of the y-axis diameter is not equal to the set value, in step S19, the second command waveform correction unit 23b corrects the amplitude I2 of the second command waveform so that the measured value of the y-axis diameter approaches the set value. do. The second command waveform with corrected amplitude I2 is supplied to the driving section 25 .
 工程S20において、駆動部25は、ウォブル走査を実施する。このとき、駆動部25は、振幅Iが補正された第2指令波形に従って2軸チルトステージ22の第2方向に対する傾きを制御する。 In step S20, the driving section 25 performs wobble scanning. At this time, the drive unit 25 controls the tilt of the biaxial tilt stage 22 in the second direction according to the second command waveform whose amplitude I2 is corrected.
 2軸チルトステージ22は、振幅Iが補正された第2指令波形に従いミラー21の第2方向に対する傾きを変化させる。そのうえで、2軸チルトステージ22は、第1モニタ波形および第2モニタ波形を生成し、制御部27に供給する。 The biaxial tilt stage 22 changes the tilt of the mirror 21 with respect to the second direction according to the second command waveform whose amplitude I2 is corrected. Then, the biaxial tilt stage 22 generates a first monitor waveform and a second monitor waveform and supplies them to the control section 27 .
 軌跡取得部28は、第1モニタ波形および新たな第2モニタ波形を用いて、リサジュー図形を作成し、照射点の新たな軌跡を得る。照射点の新たな軌跡は、判定部29に供給される。 Using the first monitor waveform and the new second monitor waveform, the trajectory acquisition unit 28 creates a Lissajous figure and obtains a new trajectory of the irradiation point. A new trajectory of the irradiation point is supplied to the determination unit 29 .
 再び工程S17に戻り、判定部29は、照射点の新たな軌跡を用いてy軸直径を測定し、y軸直径の測定値がy軸直径の設定値と等しいか否かを判定する。光走査方法M10においては、y軸直径の測定値が所望の直径である設定値と等しくなるまで、工程S17~工程S20を繰り返す。 Returning to step S17 again, the determination unit 29 measures the y-axis diameter using the new trajectory of the irradiation point, and determines whether or not the measured value of the y-axis diameter is equal to the set value of the y-axis diameter. In optical scanning method M10, steps S17 to S20 are repeated until the measured value of the y-axis diameter is equal to the set value, which is the desired diameter.
 工程S21は、x軸直径およびy軸直径が補正された照射点の軌跡を用いて軌跡の真円度を算出する工程である。y軸直径の測定値が所望の直径である設定値と等しい場合、工程S21において、判定部29は、x軸直径およびy軸直径が補正された照射点の軌跡の真円度を算出する。 Step S21 is a step of calculating the roundness of the trajectory using the trajectory of the irradiation point with the corrected x-axis diameter and y-axis diameter. If the measured value of the y-axis diameter is equal to the set value, which is the desired diameter, in step S21, the determination unit 29 calculates the roundness of the trajectory of the irradiation point with the corrected x-axis diameter and y-axis diameter.
 工程S22において、判定部29は、算出された真円度が真円度の設定値以上であるか否かを判定する。真円度は、最新の軌跡の短軸の長さを長軸の長さで割ることによって得られる。本実施形態において、真円度における設定値として95%を採用している。 In step S22, the determination unit 29 determines whether or not the calculated roundness is equal to or greater than the roundness set value. Roundness is obtained by dividing the minor axis length of the current trajectory by the major axis length. In this embodiment, 95% is adopted as the setting value for the roundness.
 算出した真円度が所望の真円度である設定値未満である場合、工程S23において、第2指令波形補正部23bは、算出した真円度が設定値に近づくように、第1指令波形に対する第2指令波形の位相差Δを補正する。位相差Δが補正された第2指令波形は、駆動部25に供給される。 If the calculated roundness is less than the set value, which is the desired roundness, in step S23, the second command waveform correction unit 23b adjusts the first command waveform so that the calculated roundness approaches the set value. is corrected for the phase difference Δ of the second command waveform with respect to The second command waveform corrected for the phase difference Δ is supplied to the driving section 25 .
 工程S24において、駆動部25は、ウォブル走査を実施する。このとき、駆動部25は、振幅Iが補正された第2指令波形に従って2軸チルトステージ22の第2方向に対する傾きを制御する。 In step S24, the driving section 25 performs wobble scanning. At this time, the drive unit 25 controls the tilt of the biaxial tilt stage 22 in the second direction according to the second command waveform whose amplitude I2 is corrected.
 2軸チルトステージ22は、振幅Iが補正された第2指令波形に従いミラー21の第2方向に対する傾きを変化させる。そのうえで、2軸チルトステージ22は、第1モニタ波形および第2モニタ波形を生成し、制御部27に供給する。 The biaxial tilt stage 22 changes the tilt of the mirror 21 with respect to the second direction according to the second command waveform whose amplitude I2 is corrected. Then, the biaxial tilt stage 22 generates a first monitor waveform and a second monitor waveform and supplies them to the control section 27 .
 軌跡取得部28は、第1モニタ波形および新たな第2モニタ波形を用いて、リサジュー図形を作成し、照射点の新たな軌跡を得る。照射点の新たな軌跡は、判定部29に供給される。 Using the first monitor waveform and the new second monitor waveform, the trajectory acquisition unit 28 creates a Lissajous figure and obtains a new trajectory of the irradiation point. A new trajectory of the irradiation point is supplied to the determination unit 29 .
 再び工程S21に戻り、判定部29は、照射点の新たな軌跡を用いて、軌跡の真円度を算出し、算出された真円度が設定値以上であるか否かを判定する。光走査方法M10においては、算出された真円度が設定値以上になるまで、工程S21~S24を繰り返す。 Returning to step S21 again, the determination unit 29 uses the new trajectory of the irradiation point to calculate the circularity of the trajectory, and determines whether the calculated circularity is equal to or greater than the set value. In the optical scanning method M10, steps S21 to S24 are repeated until the calculated roundness reaches or exceeds the set value.
 (テーブルを用いた補正)
 図8に示した光走査方法M10では、(1)ウォブル走査を実施することにより得られた照射点の軌跡を用いて、当該軌跡のx軸直径、y軸直径、および真円度を取得し、(2)工程S13~S16、工程S17~工程S20、および工程S21~S24を繰り返す構成を採用していた。このように構成された光走査方法M10は、補正後の軌跡における真円度が真円度の設定値を超えるように、かつ、補正後の軌跡におけるx軸直径およびy軸直径が各々の設定値に近づくように、第1指令波形および第2指令波形を補正する。
(Correction using a table)
In the optical scanning method M10 shown in FIG. 8, (1) the x-axis diameter, y-axis diameter, and circularity of the trajectory obtained by performing wobble scanning are obtained using the trajectory of the irradiation point. , (2) a configuration in which steps S13 to S16, steps S17 to S20, and steps S21 to S24 are repeated. The optical scanning method M10 configured in this manner is such that the roundness of the trajectory after correction exceeds the set value of the roundness, and the x-axis diameter and the y-axis diameter of the trajectory after correction are each set. Correct the first command waveform and the second command waveform so as to approach the value.
 ただし、光走査装置2の一変形例においては、典型的な周波数fおよび直径dに関して、周波数f、直径d、振幅I、振幅I、および位相差Δの関係を表すテーブルを予め作成しておき、当該テーブルを光走査装置2が備えている記憶部に格納しておいてもよい。 However, in a modified example of the optical scanning device 2, a table representing the relationship between frequency f, diameter d, amplitude I 1 , amplitude I 2 , and phase difference Δ is created in advance with respect to typical frequency f and diameter d. Alternatively, the table may be stored in a storage unit provided in the optical scanning device 2 .
 表2に、d=500μmであり、f=100,1000,2000,3000,4000Hzの各々である場合についてのテーブルを例示する。このテーブルは、d=500μmであり、f=100,1000,2000,3000,4000Hzの各々である各場合について、図8に示した光走査方法M10を実施することにより得られる。すなわち、このテーブルは、第1指令波形および第2指令波形において、振幅Iと振幅Iとが等しく、かつ、位相差Δが90°である場合と比較して、軌跡の真円度を高めるように位相差Δが定められており、かつ、直径dが設定値である500μmに近づくように振幅Iおよび振幅Iが定められている。 Table 2 illustrates tables for d=500 μm and f=100, 1000, 2000, 3000 and 4000 Hz. This table is obtained by performing the optical scanning method M10 shown in FIG. 8 for each of d=500 μm and f=100, 1000, 2000, 3000 and 4000 Hz. That is, in this table, in the first command waveform and the second command waveform, the circularity of the trajectory is improved as compared with the case where the amplitude I1 and the amplitude I2 are equal and the phase difference Δ is 90°. The phase difference Δ is set to increase, and the amplitudes I 1 and I 2 are set so that the diameter d approaches the set value of 500 μm.
Figure JPOXMLDOC01-appb-T000002
 第1指令波形生成部26aは、表2のテーブルを参照することにより、所望の周波数fおよび直径dに対応する振幅Iおよび位相差Δを有する第1指令波形を容易に生成することができる。また、第2指令波形生成部26bは、表2のテーブルを参照することにより、所望の周波数fおよび直径dに対応する振幅Iおよび位相差Δを有する第2指令波形を容易に生成することができる。第1指令波形生成部26aおよび第2指令波形生成部26bは、ともに指令波形生成部の一例を構成する。
Figure JPOXMLDOC01-appb-T000002
The first command waveform generator 26a can easily generate the first command waveform having the amplitude I1 and the phase difference Δ corresponding to the desired frequency f and diameter d by referring to Table 2. . Further, the second command waveform generator 26b can easily generate the second command waveform having the amplitude I2 and the phase difference Δ corresponding to the desired frequency f and diameter d by referring to the table of Table 2. can be done. The first command waveform generator 26a and the second command waveform generator 26b together constitute an example of a command waveform generator.
 なお、表2のテーブルは、d=500μmである場合のテーブルであるが、d=300,400,600μmというように用いる頻度が高い直径dに関するテーブルを併せて作成しておくことが好ましい。 Although the table in Table 2 is for d=500 μm, it is preferable to also create a table for diameter d, which is frequently used such as d=300, 400, and 600 μm.
 これらのテーブルに登録されていない周波数fおよび直径dを用いたウォブル走査を実施する場合には、1又は複数のテーブルに登録されている周波数fおよび直径dに対応する振幅I、振幅I、および位相差Δから、線形補間により求めればよい。 When performing wobble scanning using frequencies f and diameters d not registered in these tables, amplitudes I 1 and I 2 corresponding to frequencies f and diameters d registered in one or more tables , and the phase difference Δ by linear interpolation.
 例えば、f=3500Hzであり、d=500μmである場合の振幅I、振幅I、および位相差Δは、表2に示したテーブルに登録されているf=3000Hzかつd=500μmの行と、f=4000Hzかつd=500μmの行とを用いて線形補間することにより得ることができる。 For example, when f=3500 Hz and d=500 μm, the amplitude I 1 , amplitude I 2 , and phase difference , f=4000 Hz and d=500 μm rows.
 また、f=3000Hzであり、d=450μmである場合の振幅I、振幅I、および位相差Δは、表2のテーブルに登録されたf=3000Hzかつd=500μmの行と、d=400μmに対応する振幅I、振幅I、および位相差Δが登録されているテーブルのf=3000Hzかつd=400μmの行とを用いて線形補間することにより得ることができる。 Further, the amplitude I 1 , the amplitude I 2 , and the phase difference Δ when f = 3000 Hz and d = 450 µm are obtained from the row of f = 3000 Hz and d = 500 µm registered in the table of Table 2 and d = It can be obtained by linear interpolation using the row of f=3000 Hz and d=400 μm of the table in which the amplitude I 1 , the amplitude I 2 corresponding to 400 μm, and the phase difference Δ are registered.
 (走査部の変形例)
 図6に示した光走査装置2では、2軸チルトステージ22を含む走査部20を用いてウォブル走査を実施した。しかし、光走査装置2は、走査部20の代わりに走査部30(図9参照)を用いてウォブル走査を実施するように構成されていてもよい。走査部30は、走査部20を構成していたミラー21及び2軸チルトステージ22の後段にガルバノスキャナを設けたものである。また、図9においては、光走査装置2が備えている対物レンズOLと、対象物Wと、対象物Wを載置するテーブルTと、撮像部34と、を走査部30に加えて図示している。
(Modified example of scanning unit)
In the optical scanning device 2 shown in FIG. 6, wobble scanning is performed using the scanning section 20 including the biaxial tilt stage 22 . However, the optical scanning device 2 may be configured to perform wobble scanning using a scanning section 30 (see FIG. 9) instead of the scanning section 20 . The scanning unit 30 is provided with a galvanometer scanner after the mirror 21 and the two-axis tilt stage 22 that constitute the scanning unit 20 . 9, the objective lens OL provided in the optical scanning device 2, the object W, the table T on which the object W is placed, and the imaging unit 34 are shown in addition to the scanning unit 30. ing.
 図9に示すように、走査部30は、第1ミラー31aと、第2ミラー31bと、第1ガルバノモータ32aと、第2ガルバノモータ32bと、を備えているガルバノスキャナである。第1ガルバノモータ32aは、2軸チルトステージ22の第1柱状ピエゾ素子に対応し、第1ミラー31aを第1方向に対して傾けるために用いられる。第1ガルバノモータ32aは、第1指令波形により制御される。同様に、第2ガルバノモータ32bは、2軸チルトステージ22の第2柱状ピエゾ素子に対応し、第2ミラー31bを第2方向に対して傾けるために用いられる。走査部30においては、第1ガルバノモータ32a及び第2ガルバノモータ32bが一体化されておらず、第1ミラー31aおよび第2ミラー31bが独立して設けられている。 As shown in FIG. 9, the scanning unit 30 is a galvanometer scanner including a first mirror 31a, a second mirror 31b, a first galvanometer motor 32a, and a second galvanometer motor 32b. The first galvanometer motor 32a corresponds to the first columnar piezo element of the biaxial tilt stage 22 and is used to tilt the first mirror 31a in the first direction. The first galvanometer motor 32a is controlled by the first command waveform. Similarly, the second galvanometer motor 32b corresponds to the second columnar piezo element of the biaxial tilt stage 22 and is used to tilt the second mirror 31b in the second direction. In the scanning unit 30, the first galvanometer motor 32a and the second galvanometer motor 32b are not integrated, and the first mirror 31a and the second mirror 31b are provided independently.
 このように構成された走査部30においては、第1ガルバノモータ32aおよび第2ガルバノモータ32bが独立しているため、軸干渉は生じにくい。ただし、走査部20のミラー21と比較して第1ミラー31aおよび第2ミラー31bが大型化するため、ウォブル走査の周波数fを高めることが難しいという課題が走査部30にはある。 In the scanning unit 30 configured in this way, since the first galvanometer motor 32a and the second galvanometer motor 32b are independent, axial interference is unlikely to occur. However, since the first mirror 31a and the second mirror 31b are larger than the mirror 21 of the scanning unit 20, the scanning unit 30 has a problem that it is difficult to increase the frequency f of wobble scanning.
 また、ガルバノスキャナにおいては、例えば省スペース化を図るといった理由で、第1ミラー31a、第2ミラー31b、第1ガルバノモータ32a、および第2ガルバノモータ32bの各々の配置が制約される。たとえば、第1ミラー31aと第1ガルバノモータ32aとに共通する回転軸である第1回転軸、および、第2ミラー31bと第2ガルバノモータ32bとに共通する回転軸である第2回転軸の少なくとも何れかが理想的な角度からずれて配置される場合がある。この場合、ガルバノスキャナの第1回転軸および第2回転軸は、互いに直行しない。第1ミラー31a、第2ミラー31b、第1ガルバノモータ32a、および第2ガルバノモータ32bの各々が理想的に配置されている場合、第1指令波形として正弦波を第1ガルバノモータ32aに入力し、第2指令波形として第1指令波形よりも位相が90°遅れた正弦波を第2ガルバノモータ32bに入力することによって、照射点は円軌道を描く。2軸チルトステージの後段に、第1回転軸および第2回転軸が互いに直交しない2軸ガルバノスキャナを配置した構成を用いて、2軸チルトステージにより円描画した場合、軌跡の真円度が低下する。 In addition, in the galvanometer scanner, the arrangement of each of the first mirror 31a, the second mirror 31b, the first galvanomotor 32a, and the second galvanomotor 32b is restricted for the reason of space saving, for example. For example, a first rotation axis that is a rotation axis common to the first mirror 31a and the first galvanomotor 32a, and a second rotation axis that is a rotation axis common to the second mirror 31b and the second galvanomotor 32b. At least one of them may be arranged at an angle that deviates from the ideal angle. In this case, the first rotation axis and the second rotation axis of the galvanometer scanner are not orthogonal to each other. When each of the first mirror 31a, the second mirror 31b, the first galvano motor 32a, and the second galvano motor 32b is ideally arranged, a sine wave is input to the first galvano motor 32a as the first command waveform. By inputting a sine wave whose phase is delayed by 90° from the first command waveform as the second command waveform to the second galvano motor 32b, the irradiation point draws a circular orbit. When drawing a circle with the 2-axis tilt stage using a configuration in which a 2-axis galvano scanner whose first and second rotation axes are not perpendicular to each other is arranged after the 2-axis tilt stage, the roundness of the trajectory decreases. do.
 また、特開2009-06641号公報の背景技術の欄に記載されているように、ガルバノスキャナを構成する光学系には、糸巻き型歪みおよび樽型歪みと呼ばれる歪みが生じ得ることが知られている。糸巻き型歪みは、ガルバノスキャナの第1ミラー31aおよび第2ミラー31bのピンクッションエラーに起因する。また、樽型歪みは、第1ミラー31aおよび第2ミラー31bの後段に設けられる対物レンズOLの歪曲収差に起因する。これらの糸巻き型歪みおよび樽型歪みも、照射点が描く軌跡を歪ませ、軌跡の真円度を低下させる。 Further, as described in the background art section of Japanese Patent Application Laid-Open No. 2009-06641, it is known that distortions called pincushion distortion and barrel distortion may occur in an optical system that constitutes a galvanometer scanner. there is Pincushion distortion is due to pincushion errors in the first mirror 31a and the second mirror 31b of the galvanometer scanner. Also, the barrel distortion is caused by the distortion aberration of the objective lens OL provided behind the first mirror 31a and the second mirror 31b. These pincushion and barrel distortions also distort the trajectory drawn by the illuminated point and reduce the circularity of the trajectory.
 光走査装置2は、2軸チルトステージ22の後段に、第1回転軸および第2回転軸が互いに直交しない2軸ガルバノスキャナを配置した構成を用いて、2軸チルトステージ22により円描画した場合、糸巻き型歪み、樽型歪みに起因する真円度の低下を抑制できる。 The optical scanning device 2 uses a configuration in which a two-axis galvanometer scanner having a first rotation axis and a second rotation axis that are not orthogonal to each other is arranged behind the two-axis tilt stage 22, and a circle is drawn by the two-axis tilt stage 22. , pincushion distortion, and barrel distortion can be suppressed.
 (第2の実施形態により得られる効果)
 以上のように、光走査装置2は、レーザ光を反射するミラーを備え、当該ミラーの傾きを変えることにより前記レーザ光を走査する走査部20,30と、走査部20,30の第1方向における走査を制御するための第1指令波形および走査部20,30の第2方向における走査を制御するための第2指令波形を生成する指令波形生成部(第1指令波形生成部26a,第2指令波形生成部26b)と、レーザ光の軌跡を取得する軌跡取得部28と、第1指令波形および第2指令波形の少なくとも何れかを補正する指令波形補正部(第1指令波形補正部23a,第2指令波形補正部23b)と、を備え、指令波形補正部(第1指令波形補正部23a,第2指令波形補正部23b)は、軌跡の真円度を高めるように、第1振幅Iおよび第2振幅Iの少なくとも何れかと、位相差Δとを補正する。
(Effect obtained by the second embodiment)
As described above, the optical scanning device 2 includes mirrors that reflect laser light, and the scanning units 20 and 30 that scan the laser light by changing the inclination of the mirrors. command waveform generators (first command waveform generator 26a, second command waveform generator 26a, second a command waveform generator 26b), a trajectory acquisition unit 28 that acquires the trajectory of the laser beam, and a command waveform correction unit that corrects at least one of the first command waveform and the second command waveform (first command waveform correction unit 23a, The command waveform correction unit (first command waveform correction unit 23a, second command waveform correction unit 23b) is provided with a second command waveform correction unit 23b), and the command waveform correction unit (first command waveform correction unit 23a, second command waveform correction unit 23b) adjusts the first amplitude I 1 and/or the second amplitude I2 and the phase difference Δ.
 なお、走査部20は、ミラー21を備えており、走査部30は、第1ミラー31a,第2ミラー31b、ミラー21を備えている。 The scanning unit 20 includes a mirror 21, and the scanning unit 30 includes a first mirror 31a, a second mirror 31b, and a mirror 21.
 上記の構成によれば、レーザ光の照射点が描く軌跡の真円度を高めることができる。 According to the above configuration, the roundness of the trajectory drawn by the irradiation point of the laser light can be increased.
 また、光走査装置2において、第1指令波形および第2指令波形は、各々の周波数が等しく、かつ、第1振幅Iおよび第2振幅Iが等しく、かつ、位相差Δが90°である正弦波である、ことが好ましい。 In the optical scanning device 2, the first command waveform and the second command waveform have the same frequency, the same first amplitude I1 and the second amplitude I2 , and a phase difference Δ of 90°. It is preferably a sine wave.
 上記の構成によれば、レーザ光の照射点が円軌道を描くように描画する事を容易に実現できる。これにより、いずれの走査方向においても加工幅が概ね一定とすることを容易に実現できる。 According to the above configuration, it is possible to easily realize drawing so that the irradiation point of the laser light draws a circular trajectory. As a result, it is possible to easily achieve a substantially constant processing width in any scanning direction.
 また、光走査装置2において、走査部20は、ピエゾ素子(第1柱状ピエゾ素子,第2柱状ピエゾ素子)を用いてミラー21の傾きを変化させる2軸チルトステージ22を更に備え、第1指令波形および第2指令波形の各々は、ぞれぞれ、2軸チルトステージ22の第1方向および第2方向に対する傾きを制御する、という構成が採用されている。 In the optical scanning device 2, the scanning unit 20 further includes a biaxial tilt stage 22 that changes the tilt of the mirror 21 using piezoelectric elements (first and second columnar piezoelectric elements). A configuration is adopted in which each of the waveform and the second command waveform controls the tilt of the biaxial tilt stage 22 with respect to the first direction and the second direction, respectively.
 上記の構成によれば、走査部の一部として2軸チルトステージを採用することによって、軸干渉が生じ得る場合であっても、レーザ光の照射点が描く軌跡の真円度を高めることができる。 According to the above configuration, by adopting the two-axis tilt stage as part of the scanning unit, even if axial interference may occur, the roundness of the trajectory drawn by the irradiation point of the laser beam can be improved. can.
 また、光走査装置2において、走査部30は、レーザ光を反射する第1ミラー31aおよび第2ミラー31bと、第1ミラー31aの傾きを変化させる第1モータ(第1ガルバノモータ32a)と、第2ミラー31bの傾きを変化させる第2モータ(第2ガルバノモータ32b)と、を備えたガルバノスキャナであり、第1指令波形は、第1モータ(第1ガルバノモータ32a)を制御することにより第1ミラー31aの第1方向における傾きを制御し、第2指令波形は、第2モータ(第2ガルバノモータ32b)を制御することにより第2ミラー31bの第2方向における傾きを制御する、という構成が採用されている。 In the optical scanning device 2, the scanning unit 30 includes a first mirror 31a and a second mirror 31b that reflect laser light, a first motor (first galvanometer motor 32a) that changes the inclination of the first mirror 31a, and a second motor (second galvanometer motor 32b) that changes the inclination of the second mirror 31b. The tilt of the first mirror 31a in the first direction is controlled, and the second command waveform controls the tilt of the second mirror 31b in the second direction by controlling the second motor (second galvanometer motor 32b). configuration is adopted.
 上記の構成によれば、ミラー21及び2軸チルトステージ22の後段にガルバノスキャナが設けられた走査部30を採用することによって、円描画した場合に生じ得る、糸巻き型歪み、樽型歪みに起因する真円度の低下を抑制できる。 According to the above configuration, by adopting the scanning unit 30 provided with the galvanometer scanner in the rear stage of the mirror 21 and the biaxial tilt stage 22, pincushion distortion and barrel distortion that may occur when drawing a circle are caused. It is possible to suppress the decrease in roundness that occurs.
 また、光走査装置2の一変形例は、走査部20,30と、走査部20,30の第1方向における走査を制御するための第1指令波形および走査部20,30の第2方向における走査を制御するための第2指令波形を生成する指令波形生成部(第1指令波形補正部23a,第2指令波形補正部23b)と、レーザ光の軌跡を取得する軌跡取得部28と、を備え、第1指令波形および第2指令波形は、各々に共通する周波数fと、各々の振幅である第1振幅Iおよび第2振幅Iと、各々の位相差Δとにより規定される正弦波であり、指令波形生成部(第1指令波形生成部26a,第2指令波形生成部26b)は、(1)周波数fと、レーザ光の軌跡の直径dと、第1振幅Iと、第2振幅Iと、位相差Δとの関係を表すテーブル(例えば表1参照)を参照し、(2)所望の周波数fを有し、かつ、当該所望の周波数および所望の直径dに対応する第1振幅I、第2振幅I、および位相差Δを有する第1指令波形および第2指令波形を生成し、テーブルは、第1振幅Iと第2振幅Iとが等しく、かつ、位相差Δが90°である場合と比較して、軌跡の真円度を高めるように第1振幅I、第2振幅I、および位相差Δが定められている。 A modified example of the optical scanning device 2 includes the scanning units 20 and 30, a first command waveform for controlling the scanning of the scanning units 20 and 30 in the first direction, and the scanning units 20 and 30 in the second direction. A command waveform generation unit (first command waveform correction unit 23a, second command waveform correction unit 23b) that generates a second command waveform for controlling scanning, and a trajectory acquisition unit 28 that acquires the trajectory of the laser light. The first command waveform and the second command waveform are sine waves defined by a common frequency f, a first amplitude I1 and a second amplitude I2 , and a phase difference Δ. The command waveform generator (the first command waveform generator 26a and the second command waveform generator 26b) determines (1) the frequency f, the diameter d of the trajectory of the laser light, the first amplitude I1 , ( 2 ) having a desired frequency f and corresponding to the desired frequency and the desired diameter d to generate first and second command waveforms having a first amplitude I 1 , a second amplitude I 2 , and a phase difference Δ, wherein the table shows that the first amplitude I 1 and the second amplitude I 2 are equal, Also, the first amplitude I 1 , the second amplitude I 2 , and the phase difference Δ are determined so as to increase the circularity of the trajectory compared to when the phase difference Δ is 90°.
 光走査装置2の一変形例は、光走査装置2と同様の効果を奏する。さらに、光走査装置2の一変形例によれば、指令波形生成部(第1指令波形生成部26a,第2指令波形生成部26b)は、テーブルを参照することによって、所望の周波数fおよび所望の直径dに対応する第1振幅I、第2振幅I、および位相差Δを有する第1指令波形および第2指令波形を生成することができる。したがって、光走査装置2の一変形例は、光走査装置2と比較して、レーザ光の照射点が描く軌跡の真円度を容易に高めることができる。 A modified example of the optical scanning device 2 has the same effects as the optical scanning device 2 . Furthermore, according to a modified example of the optical scanning device 2, the command waveform generators (the first command waveform generator 26a and the second command waveform generator 26b) obtain the desired frequency f and the desired frequency f by referring to the table. A first command waveform and a second command waveform having a first amplitude I 1 , a second amplitude I 2 , and a phase difference Δ corresponding to the diameter d of the can be generated. Therefore, the modified example of the optical scanning device 2 can easily improve the roundness of the trajectory drawn by the irradiation point of the laser light compared to the optical scanning device 2 .
 また、光走査装置2においては、第1指令波形および第2指令波形の周波数fが1000Hz以上である、という構成が採用されている。 Also, in the optical scanning device 2, a configuration is adopted in which the frequency f of the first command waveform and the second command waveform is 1000 Hz or more.
 2軸チルトステージ22に起因する軸干渉や、ガルバノスキャナ光学系に起因する糸巻き型歪みおよび樽型歪みなどを解消するために、ピエゾ素子(第1柱状ピエゾ素子および第2柱状ピエゾ素子)の変位またはミラーの傾きを逐次モニタし、モニタしたミラーの傾きが所望の傾きになるように第1指令波形および第2指令波形を補正し続けるフィードバック制御が広く行われている。しかしながら、このようなフィードバックには時間を要する。そのため、ウォブル走査の周波数fを高周波化していった場合に、やがてフィードバック制御がウォブル走査の周波数fに追いつかなくなる。一方、光走査装置2では、このようなフィードバック制御を用いずに、第1振幅I、第2振幅I、および位相差Δのうち少なくとも何れかを補正することによって照射点の軌跡の真円度を高めることができる。したがって、光走査装置2は、第1指令波形および第2指令波形の高周波化に好適である。 In order to eliminate axial interference caused by the biaxial tilt stage 22 and pincushion distortion and barrel distortion caused by the galvanometer scanner optical system, the displacement of the piezoelectric elements (the first columnar piezoelectric element and the second columnar piezoelectric element) is adjusted. Alternatively, feedback control is widely performed in which the tilt of the mirror is sequentially monitored and the first command waveform and the second command waveform are continuously corrected so that the monitored tilt of the mirror becomes a desired tilt. However, such feedback takes time. Therefore, when the frequency f of the wobble scanning is increased, the feedback control eventually cannot catch up with the frequency f of the wobble scanning. On the other hand, the optical scanning device 2 corrects at least one of the first amplitude I.sub.1 , the second amplitude I.sub.2 , and the phase difference .DELTA. Circularity can be increased. Therefore, the optical scanning device 2 is suitable for increasing the frequency of the first command waveform and the second command waveform.
 また、光走査装置2においては、レーザ光の軌跡を表す画像(軌跡画像)を撮像する撮像部34を更に備え、軌跡取得部28は、画像(軌跡画像)に画像処理を施すことによって当該画像(軌跡画像)から前記軌跡を取得する、という構成が採用されている。 The optical scanning device 2 further includes an imaging unit 34 that captures an image (trajectory image) representing the trajectory of the laser beam, and the trajectory acquisition unit 28 performs image processing on the image (trajectory image) to A configuration is employed in which the trajectory is obtained from (trajectory image).
 このように、レーザ光の軌跡は、撮像部34が撮像した軌跡を表す画像(軌跡画像)に画像処理を施すことによって取得することもできる。 In this way, the trajectory of the laser light can also be obtained by performing image processing on the image representing the trajectory captured by the imaging unit 34 (trajectory image).
 また、上述した実施形態では、本発明を装置(光走査装置)として表現したが、本発明は方法(光走査方法)としても表現することができる。すなわち、「レーザ光を反射するミラーを備え、当該ミラーの傾きを変えることにより前記レーザ光を走査する走査部を用いた光走査方法であって、前記走査部の第1方向における走査を制御するための第1指令波形および前記走査部の第2方向における走査を制御するための第2指令波形を生成する指令波形生成工程と、前記レーザ光の軌跡を取得する軌跡取得工程と、前記第1指令波形および前記第2指令波形の少なくとも何れかを補正する指令波形補正工程と、を含み、前記指令波形補正工程は、前記軌跡の真円度を高めるように、前記第1指令波形の振幅である第1振幅I、および、前記第2指令波形の振幅である第2振幅Iの少なくとも何れかと、前記第1指令波形と前記第2指令波形との位相差Δとを補正する、ことを特徴とする光走査方法」も本発明の範疇に含まれる。 Further, in the above-described embodiments, the present invention is expressed as an apparatus (optical scanning device), but the present invention can also be expressed as a method (optical scanning method). That is, "an optical scanning method using a scanning unit that includes a mirror that reflects a laser beam and scans the laser beam by changing the inclination of the mirror, wherein the scanning of the scanning unit in a first direction is controlled. a command waveform generating step of generating a first command waveform for controlling scanning of the scanning unit and a second command waveform for controlling scanning in a second direction of the scanning unit; a locus obtaining step of obtaining a locus of the laser light; and a command waveform correcting step of correcting at least one of the command waveform and the second command waveform, wherein the command waveform correcting step corrects the amplitude of the first command waveform so as to increase the circularity of the locus. correcting at least one of a certain first amplitude I 1 and a second amplitude I 2 that is the amplitude of the second command waveform, and a phase difference Δ between the first command waveform and the second command waveform; The scope of the present invention also includes an optical scanning method characterized by:
 なお、この光走査方法において、前記指令波形生成工程は、各々の周波数が等しく、かつ、第1振幅Iおよび第2振幅Iが等しく、かつ、前記位相差が90°である正弦波である前記第1指令波形および前記第2指令波形を生成する、ことが好ましい。この点については、上述した光走査装置2の場合と同様である。 In this optical scanning method, the step of generating command waveforms is performed using sinusoidal waves having the same frequency, the same first amplitude I1 and the second amplitude I2 , and the phase difference of 90°. Preferably, a certain first command waveform and said second command waveform are generated. This point is the same as in the case of the optical scanning device 2 described above.
 〔第1の実施形態および第2の実施形態の組み合わせ〕
 本発明の一実施形態に係る光走査装置においては、第1の実施形態に係る光走査装置1(図1参照)の構成と、第2の実施形態に係る光走査装置2(図6)の構成とを兼ね備えた構成が採用されていてもよい。このように構成された光走査装置は、レーザ光の照射点が描く軌跡の真円度を高めることができ、当該軌跡の直径dを設定値に近づけることができ、かつ、第1柱状ピエゾ素子および第2柱状ピエゾ素子の変位である第1変位および第2変位に生じ得る経時的なドリフトを抑制することができる。
[Combination of First Embodiment and Second Embodiment]
In the optical scanning device according to one embodiment of the present invention, the configuration of the optical scanning device 1 (see FIG. 1) according to the first embodiment and the configuration of the optical scanning device 2 (see FIG. 6) according to the second embodiment A configuration that also has a configuration may be adopted. The optical scanning device configured as described above can increase the circularity of the trajectory drawn by the irradiation point of the laser beam, can bring the diameter d of the trajectory closer to the set value, and can and the drift over time that can occur in the first displacement and the second displacement, which are the displacements of the second columnar piezoelectric element, can be suppressed.
 また、本発明の一実施形態に係る光走査装置においては、上述した光走査装置1の構成と光走査装置2の構成とを兼ね備えた光走査装置において、典型的な周波数fおよび直径dに関して、周波数f、直径d、振幅I、振幅I、および位相差Δの関係を表すテーブルを予め作成しておき、当該テーブルを当該光走査装置が備えている記憶部に格納しておいてもよい。このように構成された光走査装置は、上述した効果に加えて、レーザ光の照射点が描く軌跡の真円度を容易に高めることができる。テーブルを参照することによって、指令波形生成部が第1指令波形および第2指令波形を生成することができるためである。 Further, in the optical scanning device according to the embodiment of the present invention, in the optical scanning device having both the configuration of the optical scanning device 1 and the configuration of the optical scanning device 2, the typical frequency f and the diameter d are: A table representing the relationship between the frequency f, the diameter d, the amplitude I 1 , the amplitude I 2 , and the phase difference Δ may be created in advance and stored in the storage unit provided in the optical scanning device. good. In addition to the effects described above, the optical scanning device configured in this way can easily improve the roundness of the trajectory drawn by the irradiation point of the laser light. This is because the command waveform generator can generate the first command waveform and the second command waveform by referring to the table.
 〔実施例〕
 光走査装置2に光走査装置1を組み合わせた光走査装置の実施例と、当該実施例に対する比較例とについて、以下に説明する。図10および図11の各々は、それぞれ、本実施例および比較例により得られた振幅I、振幅I、および位相差Δの周波数依存性である。図12は、実施例および比較例の各々により得られた軌跡の真円度の周波数依存性を示すグラフである。
〔Example〕
An embodiment of the optical scanning device in which the optical scanning device 1 is combined with the optical scanning device 2 and a comparative example for the embodiment will be described below. Each of FIGS. 10 and 11 shows the frequency dependence of amplitude I 1 , amplitude I 2 , and phase difference Δ obtained by the present example and comparative example, respectively. FIG. 12 is a graph showing the frequency dependence of the roundness of the trajectory obtained by each of the example and the comparative example.
 本実施例では、起動時における第1指令波形の周波数f、振幅中心電圧V、および振幅Vとして、それぞれ、f=3000Hz、V=4.27V、およびV=5.54Vを採用した。V=4.27Vは、第1目標値であるθ=1.55mrad.に対応し、V=5.54Vは、θ=1.63mrad.に対応する。また、本実施例では、起動時における第2指令波形の周波数f、振幅中心電圧V、および振幅Vとして、それぞれ、f=3000Hz、V=5.16V、およびV=7.32Vを採用した。V=5.16Vは、第2目標値であるθ=1.82mrad.に対応し、V=7.32Vは、θ=2.09mrad.に対応する。 In this embodiment, f = 3000 Hz, V c = 4.27 V, and V I = 5.54 V are adopted as the frequency f, the amplitude center voltage V c , and the amplitude V I of the first command waveform at startup, respectively. did. V c =4.27 V is the first target value θ c =1.55 mrad. and V I =5.54 V corresponds to θ W =1.63 mrad. corresponds to Further, in this embodiment, the frequency f, amplitude center voltage V c and amplitude V I of the second command waveform at startup are f=3000 Hz, V c =5.16 V, and V I =7.32 V, respectively. It was adopted. V c =5.16 V is the second target value θ c =1.82 mrad. and V I =7.32 V corresponds to θ W =2.09 mrad. corresponds to
 また、本実施例では、光走査方法M10を実施した。本実施例では、x軸直径の設定値およびy軸直径の設定値の各々として、d=500μmを用い、真円度の設定値として95%を用いた。また、周波数fとして、f=100,1000,2000,3000,4000Hzの各々を採用した。 Also, in this example, the optical scanning method M10 was performed. In this example, d=500 μm was used as each of the set value of the x-axis diameter and the set value of the y-axis diameter, and 95% was used as the set value of the roundness. As the frequency f, f=100, 1000, 2000, 3000 and 4000 Hz are adopted.
 なお、比較例においては、本実施例をベースにして、比較例においては、第1指令波形および第2指令波形に対する補正を実施しなかった。 It should be noted that the comparative example was based on the present embodiment, and the first command waveform and the second command waveform were not corrected in the comparative example.
 図10を参照すれば、本実施例では、光走査方法M10を実施することにより、補正後の振幅I、振幅I、および位相差Δが周波数fに応じて異なる値になった。その結果、何れの場合においても、照射点の軌跡の真円度は、95%以上になった。 Referring to FIG. 10, in this example, by performing the optical scanning method M10, the corrected amplitude I 1 , amplitude I 2 , and phase difference Δ have different values depending on the frequency f. As a result, in any case, the roundness of the trajectory of the irradiation point was 95% or more.
 一方、図11を参照すれば、比較例では、光走査方法M10を実施していないため、振幅I、振幅I、および位相差Δは、何れも起動時の振幅I、振幅I、および位相差Δのままだった。図12を参照すれば、比較例においては、周波数fと真円度との間に負の相関があり、周波数fが高くなればなるほど真円度が低下することが分かった。この真円度の低下は、軸干渉に起因するものと考えられる。一方、本実施例においては、周波数fと真円度との間に相関は認められず、周波数fを変化させた場合でも真円度は、低下しなかった。 On the other hand, referring to FIG. 11, since the optical scanning method M10 is not performed in the comparative example, the amplitude I 1 , the amplitude I 2 , and the phase difference Δ , and the phase difference Δ remained. Referring to FIG. 12, it was found that in the comparative example, there was a negative correlation between the frequency f and the roundness, and the higher the frequency f, the lower the roundness. This decrease in roundness is considered to be caused by axial interference. On the other hand, in this example, no correlation was observed between the frequency f and the circularity, and the circularity did not decrease even when the frequency f was changed.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional notes]
The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.
 また、上述した実施形態では、本発明を装置(光走査装置)として表現した。ただし、本発明は、方法(光走査方法)としても表現することができる。すなわち、「レーザ光を反射するミラーを備え、当該ミラーの傾きを変えることにより前記レーザ光を走査する走査部を用いた光走査方法であって、前記走査部の第1方向における走査を制御するための第1指令波形および前記走査部の第2方向における走査を制御するための第2指令波形を生成する指令波形生成工程と、前記レーザ光の軌跡を取得する軌跡取得工程と、前記第1指令波形および前記第2指令波形の少なくとも何れかを補正する指令波形補正工程と、を含み、前記指令波形補正工程は、前記軌跡の真円度を高めるように、前記第1指令波形の振幅である第1振幅、および、前記第2指令波形の振幅である第2振幅の少なくとも何れかと、前記第1指令波形と前記第2指令波形との位相差とを補正する、ことを特徴とする光走査方法」も本発明の範疇に含まれる。 Also, in the above-described embodiments, the present invention is expressed as a device (optical scanning device). However, the present invention can also be expressed as a method (optical scanning method). That is, "an optical scanning method using a scanning unit that includes a mirror that reflects a laser beam and scans the laser beam by changing the inclination of the mirror, wherein the scanning of the scanning unit in a first direction is controlled. a command waveform generating step of generating a first command waveform for controlling scanning of the scanning unit and a second command waveform for controlling scanning in a second direction of the scanning unit; a locus obtaining step of obtaining a locus of the laser light; and a command waveform correcting step of correcting at least one of the command waveform and the second command waveform, wherein the command waveform correcting step corrects the amplitude of the first command waveform so as to increase the circularity of the locus. and correcting at least one of a certain first amplitude and a second amplitude that is the amplitude of the second command waveform, and a phase difference between the first command waveform and the second command waveform. A scanning method” is also included in the scope of the present invention.
 なお、この光走査方法において、前記指令波形生成工程は、各々の周波数が等しく、かつ、前記第1振幅および前記第2振幅が等しく、かつ、前記位相差が90°である正弦波である前記第1指令波形および前記第2指令波形を生成する、ことが好ましい。 In this optical scanning method, the command waveform generating step is a sine wave having the same frequency, the same first amplitude and the second amplitude, and a phase difference of 90°. Preferably, a first command waveform and said second command waveform are generated.
(まとめ)
 本発明の第1の態様に係る光走査装置は、レーザ光を反射するミラーを備え、当該ミラーの傾きを変えることにより前記レーザ光を走査する走査部と、前記走査部の第1方向における走査を制御するための第1指令波形および前記走査部の第2方向における走査を制御するための第2指令波形を生成する指令波形生成部と、前記レーザ光の軌跡を取得する軌跡取得部と、前記第1指令波形および前記第2指令波形の少なくとも何れかを補正する指令波形補正部と、を備え、前記指令波形補正部は、前記軌跡の真円度を高めるように、前記第1指令波形の振幅である第1振幅、および、前記第2指令波形の振幅である第2振幅の少なくとも何れかと、前記第1指令波形と前記第2指令波形との位相差とを補正する。
(summary)
An optical scanning device according to a first aspect of the present invention includes a mirror that reflects a laser beam, a scanning unit that scans the laser beam by changing the inclination of the mirror, and a scanning unit that scans the laser beam in a first direction. a command waveform generation unit that generates a first command waveform for controlling the scanning unit and a second command waveform for controlling the scanning in the second direction of the scanning unit; a trajectory acquisition unit that acquires the trajectory of the laser light; a command waveform correction unit that corrects at least one of the first command waveform and the second command waveform, wherein the command waveform correction unit corrects the first command waveform so as to increase the circularity of the trajectory. and at least one of the second amplitude, which is the amplitude of the second command waveform, and the phase difference between the first command waveform and the second command waveform.
 上記の構成によれば、レーザ光の照射点が描く軌跡の真円度を高めることができる。 According to the above configuration, the roundness of the trajectory drawn by the irradiation point of the laser light can be increased.
 本発明の第2の態様に係る光走査装置においては、第1の態様に係る光走査装置の構成に加えて、前記第1指令波形および前記第2指令波形は、各々の周波数が等しく、かつ、前記第1振幅および前記第2振幅が等しく、かつ、前記位相差が90°である正弦波である、という構成が採用されている。 In the optical scanning device according to the second aspect of the present invention, in addition to the configuration of the optical scanning device according to the first aspect, the first command waveform and the second command waveform have the same frequency, and , the first amplitude and the second amplitude are equal, and the phase difference is a sine wave of 90°.
 上記の構成によれば、レーザ光の照射点が円軌道を描くように描画する事を容易に実現できる。これにより、いずれの走査方向においても加工幅が概ね一定とすることを容易に実現できる。 According to the above configuration, it is possible to easily realize drawing so that the irradiation point of the laser light draws a circular trajectory. As a result, it is possible to easily achieve a substantially constant processing width in any scanning direction.
 本発明の第3の態様に係る光走査装置においては、第1の態様または第2の態様に係る光走査装置の構成に加えて、前記走査部は、ピエゾ素子を用いて前記ミラーの傾きを変化させる2軸チルトステージを更に備え、前記第1指令波形および前記第2指令波形の各々は、ぞれぞれ、前記2軸チルトステージの前記第1方向および前記第2方向に対する傾きを制御する、という構成が採用されている。 In the optical scanning device according to the third aspect of the present invention, in addition to the configuration of the optical scanning device according to the first aspect or the second aspect, the scanning unit uses a piezo element to tilt the mirror. A variable 2-axis tilt stage is further provided, wherein each of the first command waveform and the second command waveform controls tilt of the 2-axis tilt stage with respect to the first direction and the second direction, respectively. , is adopted.
 上記の構成によれば、走査部の一部として2軸チルトステージを採用することによって、軸干渉が生じ得る場合であっても、レーザ光の照射点が描く軌跡の真円度を高めることができる。 According to the above configuration, by adopting the two-axis tilt stage as part of the scanning unit, even if axial interference may occur, the roundness of the trajectory drawn by the irradiation point of the laser beam can be improved. can.
 本発明の第4の態様に係る光走査装置においては、上述した第3の態様に係る光走査装置の構成に加えて、前記ピエゾ素子は、前記第1指令波形に応じて変位する第1ピエゾ素子と、前記第2指令波形に応じて変位する第2ピエゾ素子と、により構成されており、前記第1ピエゾ素子の変位である第1変位を検出する第1変位センサと、前記第2ピエゾ素子の変位である第2変位を検出する第2変位センサと、前記第1変位センサが検出した前記第1変位の振幅中心が第1目標値に近づくように、前記第1指令波形を補正する第1補正値を生成する第1補正値生成部と、前記第2変位センサが検出した前記第2変位の振幅中心が第2目標値に近づくように、前記第2指令波形を補正する第2補正値を生成する第2補正値生成部と、前記第1指令波形と前記第1補正値とを合成することによって第1合成波形を生成する第1合成波形生成部と、前記第2指令波形と前記第2補正値とを合成することによって第2合成波形を生成する第2合成波形生成部と、前記第1合成波形にしたがって前記第1ピエゾ素子を駆動する第1駆動部と、前記第2合成波形にしたがって前記第2ピエゾ素子を駆動する第2駆動部と、を更に備えている、という構成が採用されている。 In the optical scanning device according to the fourth aspect of the present invention, in addition to the configuration of the optical scanning device according to the third aspect, the piezoelectric element is a first piezoelectric element that is displaced according to the first command waveform. and a second piezoelectric element that is displaced according to the second command waveform. A first displacement sensor that detects a first displacement that is the displacement of the first piezoelectric element; A second displacement sensor for detecting a second displacement, which is the displacement of an element, and correcting the first command waveform so that the center of amplitude of the first displacement detected by the first displacement sensor approaches a first target value. a first correction value generation unit that generates a first correction value; and a second correction value generation unit that corrects the second command waveform so that the center of amplitude of the second displacement detected by the second displacement sensor approaches a second target value. a second correction value generator that generates a correction value; a first combined waveform generator that generates a first composite waveform by combining the first command waveform and the first correction value; and the second command waveform. and the second correction value to generate a second composite waveform; a first drive section for driving the first piezo element according to the first composite waveform; and a second driving section for driving the second piezo element according to the two synthesized waveforms.
 上記の構成によれば、前記第1補正値生成部は、前記第1変位の振幅中心を算出したうえで、当該振幅中心を用いて第1補正値を生成し、前記第2補正値生成部は、前記第2変位の振幅中心を算出したうえで、当該振幅中心を用いて第2補正値を生成する。第1変位および第2変位の振幅中心において生じ得る経時的なドリフトは、第1指令波形および第2指令波形の1周期と比較して遅い現象である。そのため、本光走査装置においては、第1補正値生成部が補正値を生成する頻度、および、第2補正値生成部が補正値を生成する頻度を、第1指令波形および第2指令波形の周波数に大きく依存せずに定めることができる。したがって、本光走査装置は、ピエゾ素子の変位に生じ得る経時的なドリフトを抑制することができる。 According to the above configuration, the first correction value generating section calculates the center of amplitude of the first displacement, generates the first correction value using the center of amplitude, and the second correction value generating section calculates the center of amplitude of the second displacement, and then uses the center of amplitude to generate a second correction value. The possible drift over time in the center of amplitude of the first and second displacements is a slow phenomenon compared to one period of the first and second command waveforms. Therefore, in the present optical scanning device, the frequency at which the first correction value generator generates the correction value and the frequency at which the second correction value generator generates the correction value are determined by the first command waveform and the second command waveform. It can be determined without greatly depending on the frequency. Therefore, the present optical scanning device can suppress temporal drift that may occur in the displacement of the piezoelectric element.
 本発明の第5の態様に係る光走査装置においては、上述した第1の態様または第2の態様に係る光走査装置の構成に加えて、前記走査部は、前記ミラーの後段に設けられたガルバノスキャナであって、レーザ光を反射する第1ミラーおよび第2ミラーと、前記第1ミラーの傾きを変化させる第1モータと、前記第2ミラーの傾きを変化させる第2モータと、を備えたガルバノスキャナを更に備え、前記第1指令波形は、前記第1モータを制御することにより前記第1ミラーの前記第1方向における傾きを制御し、前記第2指令波形は、前記第2モータを制御することにより前記第2ミラーの前記第2方向における傾きを制御する、という構成が採用されている。 In the optical scanning device according to the fifth aspect of the present invention, in addition to the configuration of the optical scanning device according to the first aspect or the second aspect, the scanning unit is provided behind the mirror. A galvanometer scanner comprising a first mirror and a second mirror that reflect laser light, a first motor that changes the tilt of the first mirror, and a second motor that changes the tilt of the second mirror. the first command waveform controls the tilt of the first mirror in the first direction by controlling the first motor; and the second command waveform controls the second motor. A configuration is adopted in which the inclination of the second mirror in the second direction is controlled by controlling the tilt.
 上記の構成によれば、走査部としてガルバノスキャナを採用することによって、糸巻き型歪みおよび樽型歪みと呼ばれる歪みが生じ得る場合であっても、レーザ光の照射点が描く軌跡の真円度を高めることができる。 According to the above configuration, by adopting the galvanometer scanner as the scanning unit, even if distortions called pincushion distortion and barrel distortion may occur, the roundness of the trajectory drawn by the irradiation point of the laser light can be corrected. can be enhanced.
 本発明の第6の態様に係る光走査装置は、レーザ光を反射するミラーを備え、当該ミラーの傾きを変えることにより前記レーザ光を走査する走査部と、前記走査部の第1方向における走査を制御するための第1指令波形および前記走査部の第2方向における走査を制御するための第2指令波形を生成する指令波形生成部と、前記レーザ光の軌跡を取得する軌跡取得部と、を備え、前記第1指令波形および前記第2指令波形は、各々に共通する周波数と、各々の振幅である第1振幅および第2振幅と、各々の位相差とにより規定される正弦波であり、指令波形生成部は、(1)前記レーザ光を走査する周波数と、前記軌跡の直径と、前記第1振幅と、前記第2振幅と、前記位相差との関係を表すテーブルを参照し、(2)所望の周波数を有し、かつ、当該所望の周波数および所望の直径に対応する第1振幅、第2振幅、および位相差を有する前記第1指令波形および前記第2指令波形を生成し、前記テーブルは、前記第1振幅と前記第2振幅とが等しく、かつ、前記位相差が90°である場合と比較して、前記軌跡の真円度を高めるように前記第1振幅、前記第2振幅、および前記位相差が定められている。 An optical scanning device according to a sixth aspect of the present invention is provided with a mirror that reflects a laser beam, a scanning unit that scans the laser beam by changing the inclination of the mirror, and a scanning unit that scans the laser beam in a first direction. a command waveform generation unit that generates a first command waveform for controlling the scanning unit and a second command waveform for controlling the scanning in the second direction of the scanning unit; a trajectory acquisition unit that acquires the trajectory of the laser light; wherein the first command waveform and the second command waveform are sine waves defined by a frequency common to each, a first amplitude and a second amplitude that are amplitudes of each, and a phase difference of each , the command waveform generator (1) refers to a table representing the relationship between the laser beam scanning frequency, the trajectory diameter, the first amplitude, the second amplitude, and the phase difference; (2) generating said first command waveform and said second command waveform having a desired frequency and having a first amplitude, a second amplitude and a phase difference corresponding to said desired frequency and desired diameter; , the table includes the first amplitude, the second amplitude, and the A second amplitude and the phase difference are defined.
 第6の態様に係る光走査装置は、第1の態様に係る光走査装置と同様の効果を奏する。さらに、上記の構成によれば、指令波形生成部は、テーブルを参照することによって、所望の周波数および所望の直径に対応する第1振幅、第2振幅、および位相差を有する前記第1指令波形および前記第2指令波形を生成することができる。したがって、本光走査装置は、本発明の第1の態様に係る光走査装置と比較して、レーザ光の照射点が描く軌跡の真円度を容易に高めることができる。 The optical scanning device according to the sixth aspect has the same effect as the optical scanning device according to the first aspect. Furthermore, according to the above configuration, the command waveform generation section refers to the table to generate the first command waveform having the first amplitude, the second amplitude, and the phase difference corresponding to the desired frequency and the desired diameter. and the second command waveform. Therefore, the present optical scanning device can easily improve the circularity of the trajectory drawn by the irradiation point of the laser light, as compared with the optical scanning device according to the first aspect of the present invention.
 本発明の第7の態様に係る光走査装置においては、第6の態様に係る光走査装置の構成に加えて、前記走査部は、ピエゾ素子を用いて前記ミラーの傾きを変化させる2軸チルトステージを更に備え、前記第1指令波形および前記第2指令波形の各々は、ぞれぞれ、前記2軸チルトステージの前記第1方向および前記第2方向に対する傾きを制御し、前記ピエゾ素子は、前記第1指令波形に応じて変位する第1ピエゾ素子と、前記第2指令波形に応じて変位する第2ピエゾ素子と、により構成されており、前記第1ピエゾ素子の変位である第1変位を検出する第1変位センサと、前記第2ピエゾ素子の変位である第2変位を検出する第2変位センサと、前記第1変位センサが検出した前記第1変位の振幅中心が第1目標値に近づくように、前記第1指令波形を補正する第1補正値を生成する第1補正値生成部と、前記第2変位センサが検出した前記第2変位の振幅中心が第2目標値に近づくように、前記第2指令波形を補正する第2補正値を生成する第2補正値生成部と、前記第1指令波形と前記第1補正値とを合成することによって第1合成波形を生成する第1合成波形生成部と、前記第2指令波形と前記第2補正値とを合成することによって第2合成波形を生成する第2合成波形生成部と、前記第1合成波形にしたがって前記第1ピエゾ素子を駆動する第1駆動部と、前記第2合成波形にしたがって前記第2ピエゾ素子を駆動する第2駆動部と、を更に備えている、という構成が採用されている。 In the optical scanning device according to the seventh aspect of the present invention, in addition to the configuration of the optical scanning device according to the sixth aspect, the scanning unit includes a two-axis tilting device that changes the tilt of the mirror using a piezo element. a stage, wherein each of the first command waveform and the second command waveform controls tilts of the two-axis tilt stage with respect to the first direction and the second direction, respectively; , a first piezo element that is displaced according to the first command waveform, and a second piezo element that is displaced according to the second command waveform, and the displacement of the first piezo element is the first a first displacement sensor that detects a displacement; a second displacement sensor that detects a second displacement that is the displacement of the second piezoelectric element; and a center of amplitude of the first displacement detected by the first displacement sensor as a first target. a first correction value generator for generating a first correction value for correcting the first command waveform so that the center of amplitude of the second displacement detected by the second displacement sensor approaches the second target value; A second correction value generation unit that generates a second correction value for correcting the second command waveform so as to approximate the second command waveform, and a first combined waveform that generates a first combined waveform by combining the first command waveform and the first correction value. a first composite waveform generation section that generates a second composite waveform by combining the second command waveform and the second correction value; and a second composite waveform generation section that generates a second composite waveform according to the first composite waveform. A configuration is adopted in which a first driving section for driving one piezoelectric element and a second driving section for driving the second piezoelectric element according to the second synthesized waveform are further provided.
 第7の態様に係る光走査装置は、第4の態様に係る光走査装置と同様の効果を奏する。すなわち、上記の構成によれば、テーブルを参照することによってレーザ光の軌跡の真円度を高める場合であってもピエゾ素子の変位に生じ得る経時的なドリフトを抑制することができる。 The optical scanning device according to the seventh aspect has the same effects as the optical scanning device according to the fourth aspect. That is, according to the above configuration, even when the circularity of the trajectory of the laser beam is increased by referring to the table, it is possible to suppress temporal drift that may occur in the displacement of the piezoelectric element.
 本発明の第8の態様に係る光走査装置においては、上述した第1の態様~第7の態様の何れか一態様に係る光走査装置の構成に加えて、前記軌跡を表す画像を撮像する撮像部を更に備え、前記軌跡取得部は、前記画像に画像処理を施すことによって当該画像から前記軌跡を取得する、という構成が採用されている。 In an optical scanning device according to an eighth aspect of the present invention, in addition to the configuration of the optical scanning device according to any one of the first to seventh aspects, an image representing the locus is captured. A configuration is adopted in which an imaging unit is further provided, and the trajectory acquisition unit acquires the trajectory from the image by performing image processing on the image.
 このように、レーザ光の軌跡は、撮像部が撮像した軌跡を表す画像に画像処理を施すことによって取得することもできる。 In this way, the trajectory of the laser light can also be obtained by performing image processing on the image representing the trajectory captured by the imaging unit.
 本発明の第9の態様に係る光走査方法は、レーザ光を反射するミラーを備え、当該ミラーの傾きを変えることにより前記レーザ光を走査する走査部を用いた光走査方法であって、前記走査部の第1方向における走査を制御するための第1指令波形および前記走査部の第2方向における走査を制御するための第2指令波形を生成する指令波形生成工程と、前記レーザ光の軌跡を取得する軌跡取得工程と、前記第1指令波形および前記第2指令波形の少なくとも何れかを補正する指令波形補正工程と、を含み、前記指令波形補正工程は、前記軌跡の真円度を高めるように、前記第1指令波形の振幅である第1振幅、前記第2指令波形の振幅である第2振幅、および前記第1指令波形と前記第2指令波形との位相差のうち少なくとも何れかを補正する。 An optical scanning method according to a ninth aspect of the present invention is an optical scanning method using a scanning unit that includes a mirror that reflects a laser beam and that scans the laser beam by changing the tilt of the mirror, a command waveform generating step of generating a first command waveform for controlling scanning of the scanning unit in the first direction and a second command waveform for controlling the scanning of the scanning unit in the second direction; and a trajectory of the laser beam. and a command waveform correction step of correcting at least one of the first command waveform and the second command waveform, wherein the command waveform correction step increases the circularity of the trajectory. at least one of a first amplitude that is the amplitude of the first command waveform, a second amplitude that is the amplitude of the second command waveform, and a phase difference between the first command waveform and the second command waveform correct.
 第9の態様に係る光走査方法は、第1の態様に係る光走査装置と同様の効果を奏する。 The optical scanning method according to the ninth aspect has the same effects as the optical scanning device according to the first aspect.
 本発明の第10の態様に係る光走査方法においては、上述した第9の態様に係る光走査方法の構成に加えて、前記指令波形生成工程は、各々の周波数が等しく、かつ、各々の振幅である第1振幅および第2振幅が等しく、かつ、各々の位相差が90°である正弦波である前記第1指令波形および前記第2指令波形を生成する、という構成が採用されている。 In the optical scanning method according to the tenth aspect of the present invention, in addition to the configuration of the optical scanning method according to the ninth aspect described above, the command waveform generating step has equal frequencies and amplitudes and the first and second command waveforms, which are sinusoidal waves having equal first and second amplitudes and a phase difference of 90°, are employed.
 上記の構成によれば、レーザ光の照射点が円軌道を描くように描画する事を容易に実現できる。これにより、いずれの走査方向においても加工幅が概ね一定とすることを容易に実現できる。 According to the above configuration, it is possible to easily realize drawing so that the irradiation point of the laser light draws a circular trajectory. As a result, it is possible to easily achieve a substantially constant processing width in any scanning direction.
 1      光走査装置
 11     ミラー
 12     2軸チルトステージ
 12a    第1変位センサ
 12b    第2変位センサ
 13a    第1補正値生成部
 13a1   ローパスフィルタ(LPF)
 13a2   平均化部
 13a3   比較部
 13a4   PID制御部
 13a5   リミッタ
 13b    第2補正値生成部
 14a    第1合成波形生成部
 14b    第2合成波形生成部
 15     駆動部
 16a    第1指令波形生成部
 16b    第2指令波形生成部
 17     制御部
Reference Signs List 1 optical scanning device 11 mirror 12 2-axis tilt stage 12a first displacement sensor 12b second displacement sensor 13a first correction value generator 13a1 low-pass filter (LPF)
13a2 averaging unit 13a3 comparison unit 13a4 PID control unit 13a5 limiter 13b second correction value generation unit 14a first synthetic waveform generation unit 14b second synthesis waveform generation unit 15 drive unit 16a first command waveform generation unit 16b second command waveform generation Part 17 Control part

Claims (10)

  1.  レーザ光を反射するミラーを備え、当該ミラーの傾きを変えることにより前記レーザ光を走査する走査部と、
     前記走査部の第1方向における走査を制御するための第1指令波形および前記走査部の第2方向における走査を制御するための第2指令波形を生成する指令波形生成部と、
     前記レーザ光の軌跡を取得する軌跡取得部と、
     前記第1指令波形および前記第2指令波形の少なくとも何れかを補正する指令波形補正部と、を備え、
     前記指令波形補正部は、前記軌跡の真円度を高めるように、前記第1指令波形の振幅である第1振幅、および、前記第2指令波形の振幅である第2振幅の少なくとも何れかと、前記第1指令波形と前記第2指令波形との位相差とを補正する、
    ことを特徴とする光走査装置。
    a scanning unit that includes a mirror that reflects a laser beam and that scans the laser beam by changing the tilt of the mirror;
    a command waveform generator that generates a first command waveform for controlling scanning of the scanning unit in a first direction and a second command waveform for controlling scanning of the scanning unit in a second direction;
    a trajectory acquisition unit that acquires the trajectory of the laser light;
    a command waveform correction unit that corrects at least one of the first command waveform and the second command waveform,
    The command waveform correction unit is configured to increase the roundness of the trajectory, at least one of a first amplitude that is the amplitude of the first command waveform and a second amplitude that is the amplitude of the second command waveform, correcting a phase difference between the first command waveform and the second command waveform;
    An optical scanning device characterized by:
  2.  前記第1指令波形および前記第2指令波形は、各々の周波数が等しく、かつ、前記第1振幅および前記第2振幅が等しく、かつ、前記位相差が90°である正弦波である、
    ことを特徴とする請求項1に記載の光走査装置。
    The first command waveform and the second command waveform are sine waves having the same frequency, the same first amplitude and the second amplitude, and the phase difference of 90°.
    2. The optical scanning device according to claim 1, wherein:
  3.  前記走査部は、ピエゾ素子を用いて前記ミラーの傾きを変化させる2軸チルトステージを更に備え、
     前記第1指令波形および前記第2指令波形の各々は、ぞれぞれ、前記2軸チルトステージの前記第1方向および前記第2方向に対する傾きを制御する、
    ことを特徴とする請求項1または2に記載の光走査装置。
    The scanning unit further includes a biaxial tilt stage that changes the tilt of the mirror using a piezo element,
    each of the first command waveform and the second command waveform controls tilts of the two-axis tilt stage with respect to the first direction and the second direction, respectively;
    3. The optical scanning device according to claim 1, wherein:
  4.  前記ピエゾ素子は、前記第1指令波形に応じて変位する第1ピエゾ素子と、前記第2指令波形に応じて変位する第2ピエゾ素子と、により構成されており、
     前記第1ピエゾ素子の変位である第1変位を検出する第1変位センサと、
     前記第2ピエゾ素子の変位である第2変位を検出する第2変位センサと、
     前記第1変位センサが検出した前記第1変位の振幅中心が第1目標値に近づくように、前記第1指令波形を補正する第1補正値を生成する第1補正値生成部と、
     前記第2変位センサが検出した前記第2変位の振幅中心が第2目標値に近づくように、前記第2指令波形を補正する第2補正値を生成する第2補正値生成部と、
     前記第1指令波形と前記第1補正値とを合成することによって第1合成波形を生成する第1合成波形生成部と、
     前記第2指令波形と前記第2補正値とを合成することによって第2合成波形を生成する第2合成波形生成部と、
     前記第1合成波形にしたがって前記第1ピエゾ素子を駆動する第1駆動部と、
     前記第2合成波形にしたがって前記第2ピエゾ素子を駆動する第2駆動部と、を更に備えている、
    ことを特徴とする請求項3に記載の光走査装置。
    The piezo element is composed of a first piezo element displaced according to the first command waveform and a second piezo element displaced according to the second command waveform,
    a first displacement sensor that detects a first displacement that is the displacement of the first piezo element;
    a second displacement sensor that detects a second displacement that is the displacement of the second piezo element;
    a first correction value generator that generates a first correction value for correcting the first command waveform so that the center of amplitude of the first displacement detected by the first displacement sensor approaches a first target value;
    a second correction value generator for generating a second correction value for correcting the second command waveform so that the center of amplitude of the second displacement detected by the second displacement sensor approaches a second target value;
    a first synthesized waveform generation unit that generates a first synthesized waveform by synthesizing the first command waveform and the first correction value;
    a second synthesized waveform generation unit that generates a second synthesized waveform by synthesizing the second command waveform and the second correction value;
    a first drive unit that drives the first piezo element according to the first composite waveform;
    a second driving unit that drives the second piezo element according to the second composite waveform,
    4. The optical scanning device according to claim 3, wherein:
  5.  前記走査部は、前記ミラーの後段に設けられたガルバノスキャナであって、レーザ光を反射する第1ミラーおよび第2ミラーと、前記第1ミラーの傾きを変化させる第1モータと、前記第2ミラーの傾きを変化させる第2モータと、を備えたガルバノスキャナを更に備え、
     前記第1指令波形は、前記第1モータを制御することにより前記第1ミラーの前記第1方向における傾きを制御し、
     前記第2指令波形は、前記第2モータを制御することにより前記第2ミラーの前記第2方向における傾きを制御する、
    ことを特徴とする請求項1または2に記載の光走査装置。
    The scanning unit is a galvanometer scanner provided after the mirror, and includes a first mirror and a second mirror that reflect laser light, a first motor that changes the inclination of the first mirror, and the second mirror. Further comprising a galvanometer scanner comprising a second motor that changes the tilt of the mirror,
    the first command waveform controls the tilt of the first mirror in the first direction by controlling the first motor;
    The second command waveform controls the tilt of the second mirror in the second direction by controlling the second motor.
    3. The optical scanning device according to claim 1, wherein:
  6.  レーザ光を反射するミラーを備え、当該ミラーの傾きを変えることにより前記レーザ光を走査する走査部と、
     前記走査部の第1方向における走査を制御するための第1指令波形および前記走査部の第2方向における走査を制御するための第2指令波形を生成する指令波形生成部と、
     前記レーザ光の軌跡を取得する軌跡取得部と、を備え、
     前記第1指令波形および前記第2指令波形は、各々に共通する周波数と、各々の振幅である第1振幅および第2振幅と、各々の位相差とにより規定される正弦波であり、
     指令波形生成部は、(1)前記レーザ光を走査する周波数と、前記軌跡の直径と、前記第1振幅と、前記第2振幅と、前記位相差との関係を表すテーブルを参照し、(2)所望の周波数を有し、かつ、当該所望の周波数および所望の直径に対応する第1振幅、第2振幅、および位相差を有する前記第1指令波形および前記第2指令波形を生成し、
     前記テーブルは、前記第1振幅と前記第2振幅とが等しく、かつ、前記位相差が90°である場合と比較して、前記軌跡の真円度を高めるように前記第1振幅、前記第2振幅、および前記位相差が定められている、
    ことを特徴とする光走査装置。
    a scanning unit that includes a mirror that reflects a laser beam and that scans the laser beam by changing the tilt of the mirror;
    a command waveform generator that generates a first command waveform for controlling scanning of the scanning unit in a first direction and a second command waveform for controlling scanning of the scanning unit in a second direction;
    a trajectory acquisition unit that acquires the trajectory of the laser light,
    The first command waveform and the second command waveform are sine waves defined by a frequency common to each, a first amplitude and a second amplitude that are amplitudes of each, and a phase difference of each,
    The command waveform generator (1) refers to a table representing the relationship between the frequency of scanning the laser light, the diameter of the trajectory, the first amplitude, the second amplitude, and the phase difference, and ( 2) generating said first command waveform and said second command waveform having a desired frequency and having a first amplitude, a second amplitude and a phase difference corresponding to said desired frequency and desired diameter;
    The table is arranged such that the first amplitude and the second amplitude are equal and the phase difference is 90 degrees, so as to increase the roundness of the trajectory. 2 amplitude and said phase difference are defined;
    An optical scanning device characterized by:
  7.  前記走査部は、ピエゾ素子を用いて前記ミラーの傾きを変化させる2軸チルトステージを更に備え、
     前記第1指令波形および前記第2指令波形の各々は、ぞれぞれ、前記2軸チルトステージの前記第1方向および前記第2方向に対する傾きを制御し、
     前記ピエゾ素子は、前記第1指令波形に応じて変位する第1ピエゾ素子と、前記第2指令波形に応じて変位する第2ピエゾ素子と、により構成されており、
     前記第1ピエゾ素子の変位である第1変位を検出する第1変位センサと、
     前記第2ピエゾ素子の変位である第2変位を検出する第2変位センサと、
     前記第1変位センサが検出した前記第1変位の振幅中心が第1目標値に近づくように、前記第1指令波形を補正する第1補正値を生成する第1補正値生成部と、
     前記第2変位センサが検出した前記第2変位の振幅中心が第2目標値に近づくように、前記第2指令波形を補正する第2補正値を生成する第2補正値生成部と、
     前記第1指令波形と前記第1補正値とを合成することによって第1合成波形を生成する第1合成波形生成部と、
     前記第2指令波形と前記第2補正値とを合成することによって第2合成波形を生成する第2合成波形生成部と、
     前記第1合成波形にしたがって前記第1ピエゾ素子を駆動する第1駆動部と、
     前記第2合成波形にしたがって前記第2ピエゾ素子を駆動する第2駆動部と、を更に備えている、
    ことを特徴とする請求項6に記載の光走査装置。
    The scanning unit further includes a biaxial tilt stage that changes the tilt of the mirror using a piezo element,
    each of the first command waveform and the second command waveform controls the tilt of the two-axis tilt stage with respect to the first direction and the second direction, respectively;
    The piezo element is composed of a first piezo element displaced according to the first command waveform and a second piezo element displaced according to the second command waveform,
    a first displacement sensor that detects a first displacement that is the displacement of the first piezo element;
    a second displacement sensor that detects a second displacement that is the displacement of the second piezo element;
    a first correction value generator that generates a first correction value for correcting the first command waveform so that the center of amplitude of the first displacement detected by the first displacement sensor approaches a first target value;
    a second correction value generator for generating a second correction value for correcting the second command waveform so that the center of amplitude of the second displacement detected by the second displacement sensor approaches a second target value;
    a first synthesized waveform generation unit that generates a first synthesized waveform by synthesizing the first command waveform and the first correction value;
    a second synthesized waveform generation unit that generates a second synthesized waveform by synthesizing the second command waveform and the second correction value;
    a first drive unit that drives the first piezo element according to the first composite waveform;
    a second driving unit that drives the second piezo element according to the second composite waveform,
    7. The optical scanning device according to claim 6, wherein:
  8.  前記軌跡を表す画像を撮像する撮像部を更に備え、
     前記軌跡取得部は、前記画像に画像処理を施すことによって当該画像から前記軌跡を取得する、
    ことを特徴とする請求項1~7の何れか一項に記載の光走査装置。
    Further comprising an imaging unit that captures an image representing the trajectory,
    The trajectory obtaining unit obtains the trajectory from the image by subjecting the image to image processing.
    The optical scanning device according to any one of claims 1 to 7, characterized in that:
  9.  レーザ光を反射するミラーを備え、当該ミラーの傾きを変えることにより前記レーザ光を走査する走査部を用いた光走査方法であって、
     前記走査部の第1方向における走査を制御するための第1指令波形および前記走査部の第2方向における走査を制御するための第2指令波形を生成する指令波形生成工程と、
     前記レーザ光の軌跡を取得する軌跡取得工程と、
     前記第1指令波形および前記第2指令波形の少なくとも何れかを補正する指令波形補正工程と、を含み、
     前記指令波形補正工程は、前記軌跡の真円度を高めるように、前記第1指令波形の振幅である第1振幅、および、前記第2指令波形の振幅である第2振幅の少なくとも何れかと、前記第1指令波形と前記第2指令波形との位相差とを補正する、
    ことを特徴とする光走査方法。
    An optical scanning method using a scanning unit that includes a mirror that reflects a laser beam and that scans the laser beam by changing the tilt of the mirror,
    a command waveform generating step of generating a first command waveform for controlling scanning of the scanning unit in a first direction and a second command waveform for controlling scanning of the scanning unit in a second direction;
    a trajectory acquisition step of acquiring the trajectory of the laser light;
    a command waveform correction step of correcting at least one of the first command waveform and the second command waveform;
    The command waveform correcting step includes at least one of a first amplitude that is the amplitude of the first command waveform and a second amplitude that is the amplitude of the second command waveform so as to increase the circularity of the locus; correcting a phase difference between the first command waveform and the second command waveform;
    An optical scanning method characterized by:
  10.  前記指令波形生成工程は、各々の周波数が等しく、かつ、前記第1振幅および前記第2振幅が等しく、かつ、前記位相差が90°である正弦波である前記第1指令波形および前記第2指令波形を生成する、
    ことを特徴とする請求項9に記載の光走査方法。
    In the command waveform generating step, the first command waveform and the second command waveform are sinusoidal waves having the same frequency, the same first amplitude and the second amplitude, and a phase difference of 90°. generate a command waveform,
    10. The optical scanning method according to claim 9, wherein:
PCT/JP2022/008111 2021-05-24 2022-02-28 Optical scanning device and optical scanning method WO2022249607A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023524006A JP7526889B2 (en) 2021-05-24 2022-02-28 Optical scanning device and optical scanning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021087101 2021-05-24
JP2021-087101 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022249607A1 true WO2022249607A1 (en) 2022-12-01

Family

ID=84228540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008111 WO2022249607A1 (en) 2021-05-24 2022-02-28 Optical scanning device and optical scanning method

Country Status (2)

Country Link
JP (1) JP7526889B2 (en)
WO (1) WO2022249607A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130763A (en) * 1997-07-10 1999-02-02 Nec Corp Image display device
JP2004020873A (en) * 2002-06-14 2004-01-22 Nippon Signal Co Ltd:The Laser irradiation apparatus
JP2004160522A (en) * 2002-11-15 2004-06-10 Mitsubishi Heavy Ind Ltd Laser beam machining method and device therefor
WO2020254444A1 (en) * 2019-06-21 2020-12-24 Qubig Gmbh Projection device and method for directing a light beam to a target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130763A (en) * 1997-07-10 1999-02-02 Nec Corp Image display device
JP2004020873A (en) * 2002-06-14 2004-01-22 Nippon Signal Co Ltd:The Laser irradiation apparatus
JP2004160522A (en) * 2002-11-15 2004-06-10 Mitsubishi Heavy Ind Ltd Laser beam machining method and device therefor
WO2020254444A1 (en) * 2019-06-21 2020-12-24 Qubig Gmbh Projection device and method for directing a light beam to a target

Also Published As

Publication number Publication date
JPWO2022249607A1 (en) 2022-12-01
JP7526889B2 (en) 2024-08-01

Similar Documents

Publication Publication Date Title
JP6324817B2 (en) Optical scanner and optical deflector control method
JP2013513828A (en) Deflection device for projection device, projection device for projecting image, and method for controlling deflection device for projection device
JP2019082634A (en) Movable device, head-up display, laser head lamp, head-mounted display, vehicle, and optical scanning method
JP2018039039A (en) Laser welding system
WO2022249607A1 (en) Optical scanning device and optical scanning method
JP7505004B2 (en) Optical scanning device, driving method thereof, and image drawing system
JP4007854B2 (en) Sampling clock generator
WO2013061570A1 (en) Actuator drive device
EP2188663A1 (en) Oscillator device, optical deflector and image forming apparatus using the same
JP6789704B2 (en) Optical scanning device
JP5152075B2 (en) Drive signal generator, optical scanning device including the same, and image display device
WO2022249606A1 (en) Optical scanner and optical scanning method
JPWO2022025012A5 (en)
JP7027689B2 (en) Light deflector and image projection device
CN115437141A (en) Optical scanning device, method of driving optical scanning device, and image drawing system
JP6189137B2 (en) Optical scanner
US10488641B2 (en) Scanning microscope
JP7489543B2 (en) Optical scanning device and optical scanning method
JPH1010449A (en) Scanner drive unit
JP2010237534A (en) Driving signal generator, optical scanner and image display equipped with driving signal generator
JP4115755B2 (en) Sampling clock generation apparatus and sampling clock generation method
JP5104776B2 (en) Scanning device, two-dimensional scanning device, and two-dimensional optical scanning device
US9398276B2 (en) Projection device and control method thereof
JP2018128514A (en) Optical scanner
EP4099083B1 (en) Optical scanning device, driving method of optical scanning device, and image drawing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810888

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023524006

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810888

Country of ref document: EP

Kind code of ref document: A1