WO2022248781A1 - Method of monitoring adaptation values in an engine control device - Google Patents
Method of monitoring adaptation values in an engine control device Download PDFInfo
- Publication number
- WO2022248781A1 WO2022248781A1 PCT/FR2022/050594 FR2022050594W WO2022248781A1 WO 2022248781 A1 WO2022248781 A1 WO 2022248781A1 FR 2022050594 W FR2022050594 W FR 2022050594W WO 2022248781 A1 WO2022248781 A1 WO 2022248781A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- impact
- value
- adaptive
- parameter
- adaptives
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000012544 monitoring process Methods 0.000 title claims abstract description 20
- 230000006978 adaptation Effects 0.000 title abstract 5
- 230000003044 adaptive effect Effects 0.000 claims description 100
- 239000000446 fuel Substances 0.000 claims description 21
- 238000012546 transfer Methods 0.000 claims description 8
- 230000006870 function Effects 0.000 description 14
- 238000012937 correction Methods 0.000 description 9
- 238000003745 diagnosis Methods 0.000 description 9
- 230000006399 behavior Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- RDYMFSUJUZBWLH-UHFFFAOYSA-N endosulfan Chemical compound C12COS(=O)OCC2C2(Cl)C(Cl)=C(Cl)C1(Cl)C2(Cl)Cl RDYMFSUJUZBWLH-UHFFFAOYSA-N 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2454—Learning of the air-fuel ratio control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2477—Methods of calibrating or learning characterised by the method used for learning
- F02D41/248—Methods of calibrating or learning characterised by the method used for learning using a plurality of learned values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0203—Variable control of intake and exhaust valves
- F02D13/0215—Variable control of intake and exhaust valves changing the valve timing only
- F02D13/0219—Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2464—Characteristics of actuators
- F02D41/2467—Characteristics of actuators for injectors
Definitions
- the invention relates to a method, implemented in a heat engine engine control, for monitoring several adaptive devices.
- This heat engine is advantageously but not limited to a controlled ignition engine, in particular a gasoline fuel engine or a mixture containing gasoline and the monitoring is done advantageously but not limited to monitoring the impact of the adaptive on the richness of injected fuel in the heat engine.
- the physical behavior of these actuators may differ from the behavior models integrated into the motor control.
- This shift in the models of the actuators in particular those relating to the air intake branch and the fuel injection branch, can lead to richness drifts, therefore to overconsumption or an increase in polluting emissions and can also have an impact on the driving pleasure felt by the driver.
- the richness of a fuel mixture indicates the proportion value between the air and the fuel of the mixture admitted into the combustion chamber of the engine.
- the quality of the combustion depends mainly on this dosage.
- Engine control will therefore have to correct these richness drifts throughout the life of the vehicle.
- This correction is carried out by a known richness regulation function which permanently corrects the injector control based on the richness measurement supplied by the richness sensor present in the exhaust.
- the regulations relating to on-board OBD diagnostics require that these richness learning systems be monitored in order in particular to alert the driver in the event of the occurrence of a failure that could cause the limits to be exceeded. tolerable thresholds of polluting emissions. This monitoring is generally carried out via the diagnosis of the values taken by the adaptive richness in comparison with limit values.
- This limit value is generally set in such a way as to monitor an overshoot of what the adaptive is supposed to correct: manufacturing dispersions, wear, fouling, or even the quality of representation of the models of the motor actuators. If this limit is exceeded, the system considers that there is an abnormality and that a failure may have occurred, causing an exceptional richness deviation which was learned in part by the adaptive in question. In this case, there is then a potential risk of exceeding the tolerable thresholds of polluting emissions.
- the diagnosis is carried out, for each adaptive, on the value reached by the adaptive from limits based essentially on experience and the classic values that the adaptive should take (typically correction of the manufacturing dispersion, of the wear, or dirt).
- the adaptive should take typically correction of the manufacturing dispersion, of the wear, or dirt.
- the diagnosis is carried out, for each adaptive, on a value reached by the adaptive but without considering its real impact in richness (and therefore in polluting emissions).
- this adaptive is a constant (therefore independent of the engine operating point)
- its impact on richness can vary as a function of the engine operating point. It is possible that an unusual value of the adaptive, beyond the limits, has an impact on the richness only in very specific areas of the engine's operating range that the driver of the diagnosed vehicle does not cover;
- an adaptive can thus reach limits considered to have an impact on the richness but, because of the values of the other adaptives applied to other models of behavior of the engine control actuators, the effects on the overall richness (and therefore on the polluting emissions) of these adaptive devices can be significantly reduced.
- the object of the invention is to overcome the drawbacks of the prior art by proposing a method, implemented in motor control, for monitoring several adaptives of at least one parameter, which is more exhaustive and more precise, and which makes it possible to take into account the possible interactions between adaptive devices while reducing the number of false detections.
- the invention thus relates, in its broadest sense, to a method, implemented in engine control of a vehicle, of monitoring of several adaptives of at least one parameter, the method comprising the following steps:
- the method according to the invention is therefore an engine control function, which assists a known learning function by monitoring it and alerting the driver in the event of the occurrence of a failure that risks causing the tolerable thresholds of polluting emissions.
- the present invention can of course be adapted to motor control learning functions other than a richness correction learning function.
- the method according to the invention makes it possible to monitor the overall impact of all the adaptives on the parameter concerned, in order to refocus the parameter in question.
- the monitoring permitted by the method according to the invention is more exhaustive and more precise, since it takes into account the possible interactions between the adaptives and the estimate made of the impact of all the adaptives on the parameter varies according to the current operating point of the motor.
- the method according to the invention in fact combines the impact of all the adaptives (which may be of a different nature), thus taking into account the influence that the adaptives have on each other; and detects an excessive correction of the parameter by the adaptives (such an excessive correction being directly correlated with excess polluting emissions when the parameter is the fuel richness) and not an excessive value of a given adaptive which is not easily convertible into effects on polluting emissions. This reduces the number of false detections.
- the monitoring permitted by the method according to the invention also contributes to better compliance with the regulations in force, in particular the regulations relating to OBD on-board diagnostics in terms of monitoring pollutant emission levels when the parameter is fuel richness.
- the method in fact detects an excessive correction of the parameter by the combination of the adaptives, which is easily transposed into a probable impact on polluting emissions.
- the predefined global impact threshold value(s) is (are) preferably configurable by a user or by a manufacturer of the vehicle. This makes it possible to calibrate this or these threshold value(s) as close as possible to what the regulatory texts require, in particular in terms of polluting emissions when the parameter is fuel richness.
- said at least one parameter is a fuel richness.
- the step of calculating, for each adaptive, an individual impact value of said adaptive on said at least one parameter consists of multiplying a current value of said adaptive by a predetermined transfer function between said at least one parameter and said adaptive, thereby providing the individual impact value.
- a transfer function represents the sensitivity of the adaptive to the parameter.
- the step of calculating an overall impact value of the set of adaptives on said at least one parameter consists in adding the individual impact values calculated for the set adaptive, thus providing the overall impact value.
- This step of calculating an overall impact value makes it possible to take into account the influence that the adaptives have on each other. For example, two adaptives of a different nature can, depending on the operating point of the engine, compensate each other in terms of richness correction if they have opposite signs.
- the step of comparing the calculated global impact value with at least one predefined global impact threshold value comprises a first phase consisting in comparing the calculated global impact value with a minimum overall impact threshold value, and a second phase of comparing the impact value global impact calculated at a maximum global impact threshold value, and the alert signal is transmitted to a device of the vehicle if the global impact value calculated is lower than the minimum global impact threshold value or higher than the maximum overall impact threshold value.
- the steps of calculating individual impact values, of calculating an overall impact value, of comparing and of emitting a warning signal are repeated for each current operating point of the engine.
- the accuracy in detecting the motor operating point at which a failure occurs is therefore greatly improved, since the diagnosis depends on the current operating point and is no longer limited to monitoring a fixed value varying only during updates of the parameter learning function within the motor control, as is the case in certain methods of the prior art.
- FIG.1 is a flowchart representing a method of monitoring several adaptive at least one parameter according to the present invention.
- the present invention relates to a method, implemented in an engine control of a heat engine, for monitoring several adaptives of at least one parameter.
- Such monitoring of the adaptives makes it possible to carry out a diagnosis of these same adaptives, in particular a diagnosis relating to compliance with the regulations in force for the parameter.
- the parameter can be a richness of injected fuel but this is not limiting in the context of the present invention.
- each adaptive is a fuel richness adaptive.
- the different adaptives are preferably applied directly to the sources of fuel richness errors, i.e. to the modeling of the different elements of the heat engine. These adaptives are applied for example:
- a first adaptive can be an adaptive on the position of an intake camshaft phaser
- a second adaptive can be an adaptive on the position of a camshaft phaser with exhaust cams
- a third adaptive can be an adaptive on the modeling of the static gain of a fuel injector in the heat engine
- a fourth adaptive can be an adaptive on the modeling of the injector control dead time .
- one of the adaptives can also be an adaptive relating to an opening duration of at least one fuel injector in the heat engine.
- the method comprises a first step 10 during which the engine control calculates, for each of the adaptives, an individual impact value of the adaptive on the parameter for a current operating point of the engine.
- this calculation step 10 consists in multiplying, for each adaptive, a current value of the adaptive by a predetermined transfer function between the parameter and the adaptive. This multiplication then provides the individual impact value of the adaptive concerned, on the current operating point of the motor.
- This predetermined transfer function (and stored for example in memory means of the motor control) represents the sensitivity of the adaptive to the parameter.
- the transfer function can be determined beforehand by any known method, for example by mathematical calculations of derivatives of equations of the parameter of the system with respect to the adaptive considered, or by calculation of the local gradient of variation of the parameter for a variation adaptive.
- I ⁇ L KA,R * A (1 ) with KA,R the transfer function between the fuel richness and the first adaptive, which is expressed in %/°CK; the notation °CK designating crankshaft degrees.
- the motor control calculates an overall impact value of all the adaptives on the parameter for the current operating point of the motor.
- this calculation step 12 consists of adding the individual impact values calculated for all of the adaptives during the previous step 10. This addition then provides the overall impact value of the adaptives, on the point of normal engine operation.
- the engine control compares the overall impact value calculated during the previous step 12 with at least one predefined overall impact threshold value.
- the comparison step 14 includes for example a first phase consisting in comparing the calculated global impact value with a minimum global impact threshold value, and a second phase consisting in comparing the calculated global impact value with a threshold value maximum overall impact.
- the first phase can be performed before the second phase, or vice versa. Alternatively, the first and second phases are carried out simultaneously.
- the minimum and maximum overall impact threshold values are regulatory minimum and maximum thresholds on the richness deviation, which correspond to the pollutant emission limits authorized by the regulations.
- the engine control emits, according to the result of the comparison carried out during the previous step 14, an alert signal intended for a device of the vehicle.
- the device may in particular be a display device such as a screen for example, making it possible to visually inform the user of the vehicle upon receipt of the alert signal.
- the device can alternatively be a sound restitution device, making it possible to emit an auditory signal intended for the user, during the receipt of this alert signal.
- the device can more generally be any device making it possible to alert a user of the vehicle.
- the alert signal is transmitted to the device if the global impact value calculated during step 12 is lower than the global impact threshold value minimum or greater than the maximum overall impact threshold value.
- Steps 10, 12, 14 and 16 described above are repeated for each current operating point of the engine.
- the method according to the invention allows a more exhaustive and more precise monitoring of the adaptives, and makes it possible to take into account the possible interactions between adaptives while reducing the number of false detections.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
The invention relates to a method, implemented in an engine control device of a vehicle, of monitoring a plurality of adaptation values of at least one parameter, the method comprising the following steps: - calculating (10), for each adaptation value, an individual impact value indicating the impact of said adaptation value on the at least one parameter for a current operating point of the engine; - calculating (12) an overall impact value of the impact all the adaptation values have on said at least one parameter for the current operating point of the engine; - comparing (14) the calculated overall impact value with at least one predefined overall impact threshold value; and - transmitting (16), depending on the result of the comparison (14), an alert signal to a device of the vehicle.
Description
DESCRIPTION DESCRIPTION
TITRE DE L’INVENTION : PROCEDE DE SURVEILLANCE D’ADAPTATIFS DANSTITLE OF THE INVENTION: METHOD FOR MONITORING ADAPTIVES IN
UN CONTROLE MOTEUR ENGINE CONTROL
La présente invention revendique la priorité de la demande française N°2105495 déposée le 27.05.2021 dont le contenu (texte, dessins et revendications) est ici incorporé par référence. The present invention claims the priority of French application No. 2105495 filed on May 27, 2021, the content of which (text, drawings and claims) is incorporated herein by reference.
L’invention se rapporte à un procédé, mis en œuvre dans un contrôle moteur de moteur thermique, de surveillance de plusieurs adaptatifs. Ce moteur thermique est avantageusement mais non limitativement un moteur à allumage commandé, notamment un moteur à carburant essence ou à mélange contenant de l’essence et la surveillance se fait avantageusement mais non limitativement pour surveiller l’impact des adaptatifs sur la richesse de carburant injecté dans le moteur thermique. The invention relates to a method, implemented in a heat engine engine control, for monitoring several adaptive devices. This heat engine is advantageously but not limited to a controlled ignition engine, in particular a gasoline fuel engine or a mixture containing gasoline and the monitoring is done advantageously but not limited to monitoring the impact of the adaptive on the richness of injected fuel in the heat engine.
Cette application non limitative va être prise comme exemple pour illustrer le procédé de surveillance mais le procédé selon l’invention peut être mis en œuvre pour surveiller des adaptatifs d’un autre paramètre de fonctionnement que la richesse de carburant dans le moteur thermique. This non-limiting application will be taken as an example to illustrate the monitoring method, but the method according to the invention can be implemented to monitor adaptives of an operating parameter other than the richness of fuel in the heat engine.
Du fait des dispersions de fabrication, de l’usure, de l’encrassement et de la qualité de représentation des modèles des actionneurs du moteur, le comportement physique de ces actionneurs peut différer des modèles de comportement intégrés dans le contrôle moteur. Ce décalage des modèles des actionneurs, notamment ceux relatifs à la branche d’admission d’air et à la branche d’injection de carburant, peut amener à des dérives de richesse, donc à une surconsommation ou une augmentation des émissions polluantes et peut aussi avoir des impacts sur l’agrément de conduite ressenti par le conducteur. La richesse d’un mélange carburant indique la valeur de proportion entre l'air et le carburant du mélange admis dans la chambre de combustion du moteur. La qualité de la combustion dépend principalement de ce dosage. Due to manufacturing variations, wear, fouling and the quality of representation of the motor actuator models, the physical behavior of these actuators may differ from the behavior models integrated into the motor control. This shift in the models of the actuators, in particular those relating to the air intake branch and the fuel injection branch, can lead to richness drifts, therefore to overconsumption or an increase in polluting emissions and can also have an impact on the driving pleasure felt by the driver. The richness of a fuel mixture indicates the proportion value between the air and the fuel of the mixture admitted into the combustion chamber of the engine. The quality of the combustion depends mainly on this dosage.
Le contrôle moteur va donc devoir, tout au long de la vie du véhicule, corriger ces dérives de richesse. Cette correction est réalisée par une fonction connue de régulation de richesse qui corrige en permanence le temps de
commande de l’injecteur en se basant sur la mesure de richesse fournie par la sonde de richesse présente à l’échappement. Engine control will therefore have to correct these richness drifts throughout the life of the vehicle. This correction is carried out by a known richness regulation function which permanently corrects the injector control based on the richness measurement supplied by the richness sensor present in the exhaust.
Pour optimiser cette correction, il est connu d’utiliser une stratégie de contrôle moteur de type apprentissage qui va soit mémoriser (via des adaptatifs) la correction de richesse nécessaire pour chaque zone ou point de fonctionnement du moteur et la restituer lorsque le moteur repasse sur une zone apprise donnée, soit identifier les sources de déviation de richesse et corriger ces sources (les modèles actionneurs par exemple) par des adaptatifs. Dans un cas comme dans l’autre la richesse est ainsi automatiquement bien centrée. Une telle stratégie de contrôle moteur par apprentissage, selon la première variante précitée, est par exemple décrite dans le document brevet FR 3 085 721 B1. To optimize this correction, it is known to use a learning-type engine control strategy which will either memorize (via adaptives) the richness correction necessary for each zone or engine operating point and restore it when the engine returns to a given learned zone, or identify the sources of richness deviation and correct these sources (the actuator models for example) by adaptive means. In either case, the wealth is thus automatically well centered. Such a strategy of motor control by learning, according to the aforementioned first variant, is for example described in the patent document FR 3 085 721 B1.
La réglementation relative au diagnostic embarqué OBD (de l’anglais « On- Board Diagnostics ) requiert que ces systèmes d’apprentissage de la richesse soient surveillés pour notamment alerter le conducteur en cas de survenue d’une défaillance risquant d’entraîner un dépassement des seuils tolérables d’émissions polluantes. Cette surveillance est généralement réalisée via le diagnostic des valeurs prises par les adaptatifs de richesse en comparaison de valeurs limites. The regulations relating to on-board OBD diagnostics (from the English “On-Board Diagnostics”) require that these richness learning systems be monitored in order in particular to alert the driver in the event of the occurrence of a failure that could cause the limits to be exceeded. tolerable thresholds of polluting emissions. This monitoring is generally carried out via the diagnosis of the values taken by the adaptive richness in comparison with limit values.
Il est connu d’effectuer le diagnostic des adaptatifs de richesse indépendamment pour chaque adaptatif, par la comparaison des valeurs prises par l’adaptatif au moment de sa mise à jour par rapport à une valeur limite. It is known to carry out the diagnosis of richness adaptives independently for each adaptive, by comparing the values taken by the adaptive at the time of its update with respect to a limit value.
Cette valeur limite est généralement fixée de manière à surveiller un dépassement de ce que l’adaptatif est censé corriger : les dispersions de fabrication, l’usure, l’encrassement, ou encore la qualité de représentation des modèles des actionneurs du moteur. En cas de dépassement de cette limite, le système considère qu’il y a une anormalité et qu’une défaillance a pu survenir, causant une déviation de richesse exceptionnelle qui a été apprise en partie par l’adaptatif en question. Il existe alors dans ce cas un risque potentiel de dépassement des seuils tolérables d’émissions polluantes. This limit value is generally set in such a way as to monitor an overshoot of what the adaptive is supposed to correct: manufacturing dispersions, wear, fouling, or even the quality of representation of the models of the motor actuators. If this limit is exceeded, the system considers that there is an abnormality and that a failure may have occurred, causing an exceptional richness deviation which was learned in part by the adaptive in question. In this case, there is then a potential risk of exceeding the tolerable thresholds of polluting emissions.
Le diagnostic des adaptatifs par un tel procédé est ainsi réalisé indépendamment pour chaque adaptatif en se basant sur une valeur limite que l’adaptatif considéré n’est pas censé atteindre. Toutefois, dans le cas où la stratégie de contrôle moteur fournit plusieurs adaptatifs de nature différente
pour corriger les modèles de comportement des actionneurs (par exemple, modèle injecteur, modèle de remplissage en air des cylindres, modèle de position des arbres à cames...), ce procédé présente les inconvénients suivants : The diagnosis of the adaptives by such a method is thus carried out independently for each adaptive on the basis of a limit value that the adaptive considered is not supposed to reach. However, in the case where the motor control strategy provides several adaptive of different nature to correct the behavior models of the actuators (for example, injector model, cylinder air filling model, camshaft position model, etc.), this process has the following drawbacks:
- le diagnostic est réalisé, pour chaque adaptatif, sur la valeur atteinte par l’adaptatif à partir de limites basées essentiellement sur l’expérience et les valeurs classiques que l’adaptatif devrait prendre (typiquement correction de la dispersion de fabrication, de l’usure, ou encore de l’encrassement). Or c’est le risque de dépassement du niveau des émissions polluantes (ou tout du moins son équivalence en richesse) qui doit être surveillé précisément selon les textes réglementaires ;- the diagnosis is carried out, for each adaptive, on the value reached by the adaptive from limits based essentially on experience and the classic values that the adaptive should take (typically correction of the manufacturing dispersion, of the wear, or dirt). However, it is the risk of exceeding the level of polluting emissions (or at least its equivalence in richness) that must be precisely monitored according to the regulatory texts;
- le diagnostic est réalisé, pour chaque adaptatif, sur une valeur atteinte par l’adaptatif mais sans considérer son impact réel en richesse (et donc en émissions polluantes). Or dans le cas où cet adaptatif est une constante (indépendante du point de fonctionnement du moteur donc), son impact en richesse peut varier en fonction du point de fonctionnement moteur. Il est possible qu’une valeur inhabituelle de l’adaptatif, au-delà des limites, n’ait un impact sur la richesse que sur des zones très précises du champ de fonctionnement du moteur que le conducteur du véhicule diagnostiqué ne parcourt pas ; - the diagnosis is carried out, for each adaptive, on a value reached by the adaptive but without considering its real impact in richness (and therefore in polluting emissions). However, in the case where this adaptive is a constant (therefore independent of the engine operating point), its impact on richness can vary as a function of the engine operating point. It is possible that an unusual value of the adaptive, beyond the limits, has an impact on the richness only in very specific areas of the engine's operating range that the driver of the diagnosed vehicle does not cover;
- l’interaction entre les différents adaptatifs n’est pas prise en compte par le procédé : un adaptatif peut ainsi atteindre des limites considérées comme ayant un impact sur la richesse mais, du fait des valeurs des autres adaptatifs appliquées sur d’autres modèles de comportement des actionneurs du contrôle moteur, les effets sur la richesse globale (et donc sur les émissions polluantes) de ces adaptatifs peuvent être sensiblement amoindris. - the interaction between the different adaptives is not taken into account by the process: an adaptive can thus reach limits considered to have an impact on the richness but, because of the values of the other adaptives applied to other models of behavior of the engine control actuators, the effects on the overall richness (and therefore on the polluting emissions) of these adaptive devices can be significantly reduced.
Le but de l’invention est de pallier les inconvénients de l’art antérieur en proposant un procédé, mis en œuvre dans un contrôle moteur, de surveillance de plusieurs adaptatifs d’au moins un paramètre, qui soit plus exhaustif et plus précis, et qui permette de prendre en compte les possibles interactions entre adaptatifs tout en réduisant le nombre de fausses détections. The object of the invention is to overcome the drawbacks of the prior art by proposing a method, implemented in motor control, for monitoring several adaptives of at least one parameter, which is more exhaustive and more precise, and which makes it possible to take into account the possible interactions between adaptive devices while reducing the number of false detections.
Pour ce faire, l’invention se rapporte ainsi, dans son acceptation la plus large, à un procédé, mis en œuvre dans un contrôle moteur d’un véhicule, de
surveillance de plusieurs adaptatifs d’au moins un paramètre, le procédé comportant les étapes suivantes : To do this, the invention thus relates, in its broadest sense, to a method, implemented in engine control of a vehicle, of monitoring of several adaptives of at least one parameter, the method comprising the following steps:
- un calcul, pour chaque adaptatif, d’une valeur d’impact individuel dudit adaptatif sur ledit au moins un paramètre pour un point de fonctionnement courant du moteur ; - a calculation, for each adaptive, of an individual impact value of said adaptive on said at least one parameter for a current operating point of the engine;
- un calcul d’une valeur d’impact global de l’ensemble des adaptatifs sur ledit au moins un paramètre pour le point de fonctionnement courant du moteur ; - a calculation of an overall impact value of all the adaptives on said at least one parameter for the current operating point of the engine;
- une comparaison de la valeur d’impact global calculée à au moins une valeur seuil d’impact global prédéfinie ; et - a comparison of the calculated global impact value with at least one predefined global impact threshold value; and
- une émission, en fonction du résultat de la comparaison, d’un signal d’alerte à destination d’un dispositif du véhicule. - an emission, according to the result of the comparison, of an alert signal intended for a device of the vehicle.
Le procédé selon l’invention est donc une fonction de contrôle moteur, qui vient seconder une fonction connue d’apprentissage en la surveillant et en alertant le conducteur en cas de survenue d’une défaillance risquant d’entraîner un dépassement des seuils tolérables d’émissions polluantes. La présente invention peut bien entendu être adaptée à des fonctions d’apprentissage du contrôle moteur autres qu’une fonction d’apprentissage de la correction de richesse. Le procédé selon l’invention permet de surveiller l’impact global de l’ensemble des adaptatifs sur le paramètre concerné, afin de recentrer le paramètre en question. La surveillance permise par le procédé selon l’invention est plus exhaustive et plus précise, car elle tient compte des possibles interactions entre les adaptatifs et que l’estimation effectuée de l’impact de l’ensemble des adaptatifs sur le paramètre varie en fonction du point de fonctionnement courant du moteur. Le procédé selon l’invention combine en effet l’impact de tous les adaptatifs (qui peuvent être de nature différente), prenant ainsi en compte l’influence qu’ont les adaptatifs entre eux ; et détecte une correction excessive du paramètre par les adaptatifs (une telle correction excessive étant directement corrélée à des surémissions polluantes lorsque le paramètre est la richesse de carburant) et non pas une valeur excessive d’un adaptatif donné qui n’est pas aisément convertible en effets sur les émissions polluantes. Ceci permet de réduire le nombre de de fausses détections. La surveillance permise par le procédé selon l’invention contribue en outre à un meilleur respect de la réglementation en vigueur,
notamment de la réglementation relative au diagnostic embarqué OBD en matière de surveillance des niveaux d’émissions polluantes lorsque le paramètre est la richesse de carburant. Le procédé détecte en effet une correction excessive du paramètre par la combinaison des adaptatifs, qui est facilement transposable en impact probable sur les émissions polluantes. The method according to the invention is therefore an engine control function, which assists a known learning function by monitoring it and alerting the driver in the event of the occurrence of a failure that risks causing the tolerable thresholds of polluting emissions. The present invention can of course be adapted to motor control learning functions other than a richness correction learning function. The method according to the invention makes it possible to monitor the overall impact of all the adaptives on the parameter concerned, in order to refocus the parameter in question. The monitoring permitted by the method according to the invention is more exhaustive and more precise, since it takes into account the possible interactions between the adaptives and the estimate made of the impact of all the adaptives on the parameter varies according to the current operating point of the motor. The method according to the invention in fact combines the impact of all the adaptives (which may be of a different nature), thus taking into account the influence that the adaptives have on each other; and detects an excessive correction of the parameter by the adaptives (such an excessive correction being directly correlated with excess polluting emissions when the parameter is the fuel richness) and not an excessive value of a given adaptive which is not easily convertible into effects on polluting emissions. This reduces the number of false detections. The monitoring permitted by the method according to the invention also contributes to better compliance with the regulations in force, in particular the regulations relating to OBD on-board diagnostics in terms of monitoring pollutant emission levels when the parameter is fuel richness. The method in fact detects an excessive correction of the parameter by the combination of the adaptives, which is easily transposed into a probable impact on polluting emissions.
La ou les valeur(s) seuil d’impact global prédéfinie(s) est(sont) de préférence paramétrable(s) par un utilisateur ou par un fabriquant du véhicule. Ceci permet de calibrer cette ou ces valeur(s) seuil au plus proche de ce que les textes réglementaires exigent, notamment en termes d’émissions polluantes lorsque le paramètre est la richesse de carburant. The predefined global impact threshold value(s) is (are) preferably configurable by a user or by a manufacturer of the vehicle. This makes it possible to calibrate this or these threshold value(s) as close as possible to what the regulatory texts require, in particular in terms of polluting emissions when the parameter is fuel richness.
De préférence, ledit au moins un paramètre est une richesse de carburant.Preferably, said at least one parameter is a fuel richness.
Selon une caractéristique technique particulière de l’invention, l’étape de calcul, pour chaque adaptatif, d’une valeur d’impact individuel dudit adaptatif sur ledit au moins un paramètre consiste à multiplier une valeur courante dudit adaptatif par une fonction de transfert prédéterminée entre ledit au moins un paramètre et ledit adaptatif, fournissant ainsi la valeur d’impact individuel. Une telle fonction de transfert représente la sensibilité de l’adaptatif au paramètre. Cette étape de calcul d’une valeur d’impact individuel de chaque adaptatif permet d’obtenir l’impact de chaque adaptatif sur le paramètre pour le point de fonctionnement courant du moteur. According to a particular technical characteristic of the invention, the step of calculating, for each adaptive, an individual impact value of said adaptive on said at least one parameter consists of multiplying a current value of said adaptive by a predetermined transfer function between said at least one parameter and said adaptive, thereby providing the individual impact value. Such a transfer function represents the sensitivity of the adaptive to the parameter. This step of calculating an individual impact value of each adaptive makes it possible to obtain the impact of each adaptive on the parameter for the current operating point of the motor.
Selon une autre caractéristique technique particulière de l’invention, l’étape de calcul d’une valeur d’impact global de l’ensemble des adaptatifs sur ledit au moins un paramètre consiste à additionner les valeurs d’impact individuel calculées pour l’ensemble des adaptatifs, fournissant ainsi la valeur d’impact global. Cette étape de calcul d’une valeur d’impact global permet de tenir compte de l’influence qu’ont les adaptatifs entre eux. Par exemple, deux adaptatifs de nature différente peuvent, en fonction du point de fonctionnement du moteur, se compenser en termes de correction de richesse s’ils sont de signes opposés. According to another particular technical characteristic of the invention, the step of calculating an overall impact value of the set of adaptives on said at least one parameter consists in adding the individual impact values calculated for the set adaptive, thus providing the overall impact value. This step of calculating an overall impact value makes it possible to take into account the influence that the adaptives have on each other. For example, two adaptives of a different nature can, depending on the operating point of the engine, compensate each other in terms of richness correction if they have opposite signs.
Selon une autre caractéristique technique particulière de l’invention, l’étape de comparaison de la valeur d’impact global calculée à au moins une valeur seuil d’impact global prédéfinie comporte une première phase consistant à comparer la valeur d’impact global calculée à une valeur seuil d’impact global minimale, et une seconde phase consistant à comparer la valeur d’impact
global calculée à une valeur seuil d’impact global maximale, et le signal d’alerte est émis à destination d’un dispositif du véhicule si la valeur d’impact global calculée est inférieure à la valeur seuil d’impact global minimale ou supérieure à la valeur seuil d’impact global maximale. According to another particular technical characteristic of the invention, the step of comparing the calculated global impact value with at least one predefined global impact threshold value comprises a first phase consisting in comparing the calculated global impact value with a minimum overall impact threshold value, and a second phase of comparing the impact value global impact calculated at a maximum global impact threshold value, and the alert signal is transmitted to a device of the vehicle if the global impact value calculated is lower than the minimum global impact threshold value or higher than the maximum overall impact threshold value.
Avantageusement, les étapes de calcul de valeurs d’impact individuel, de calcul d’une valeur d’impact global, de comparaison et d’émission d’un signal d’alerte sont réeffectuées pour chaque point de fonctionnement courant du moteur. Ceci permet de rendre le diagnostic des adaptatifs dépendant du point de fonctionnement courant du moteur. La précision dans la détection du point de fonctionnement du moteur au cours duquel survient une défaillance est par conséquent grandement améliorée, puisque le diagnostic dépend du point de fonctionnement courant et n’est plus limité à la surveillance d’une valeur fixe variant uniquement lors des mises à jour de la fonction d’apprentissage du paramètre au sein du contrôle moteur, comme c’est le cas dans certains procédés de l’art antérieur. Advantageously, the steps of calculating individual impact values, of calculating an overall impact value, of comparing and of emitting a warning signal are repeated for each current operating point of the engine. This makes it possible to make the diagnosis of the adaptive devices dependent on the current operating point of the motor. The accuracy in detecting the motor operating point at which a failure occurs is therefore greatly improved, since the diagnosis depends on the current operating point and is no longer limited to monitoring a fixed value varying only during updates of the parameter learning function within the motor control, as is the case in certain methods of the prior art.
On décrira ci-après, à titre d’exemples non limitatifs, des formes d’exécution de la présente invention, en référence à la figure annexée unique [Fig.1 ] qui est un organigramme représentant un procédé de surveillance de plusieurs adaptatifs d’au moins un paramètre selon la présente invention. Will be described below, by way of non-limiting examples, embodiments of the present invention, with reference to the single appended figure [Fig.1] which is a flowchart representing a method of monitoring several adaptive at least one parameter according to the present invention.
En se référant à la figure 1 la présente invention concerne un procédé, mis en œuvre dans un contrôle moteur d’un moteur thermique, de surveillance de plusieurs adaptatifs d’au moins un paramètre. Une telle surveillance des adaptatifs permet d’effectuer un diagnostic de ces mêmes adaptatifs, notamment un diagnostic relatif au respect des réglementations en vigueur pour le paramètre. Le paramètre peut être une richesse de carburant injecté mais ceci n’est pas limitatif dans le cadre de la présente invention. Dans ce cas, chaque adaptatif est un adaptatif de richesse de carburant. Les différents adaptatifs sont de préférence appliqués directement sur les sources d’erreurs de la richesse de carburant, c’est-à-dire sur les modélisations des différents éléments du moteur thermique. Ces adaptatifs sont appliqués par exemple : Referring to Figure 1, the present invention relates to a method, implemented in an engine control of a heat engine, for monitoring several adaptives of at least one parameter. Such monitoring of the adaptives makes it possible to carry out a diagnosis of these same adaptives, in particular a diagnosis relating to compliance with the regulations in force for the parameter. The parameter can be a richness of injected fuel but this is not limiting in the context of the present invention. In this case, each adaptive is a fuel richness adaptive. The different adaptives are preferably applied directly to the sources of fuel richness errors, i.e. to the modeling of the different elements of the heat engine. These adaptives are applied for example:
- sur les modèles de position des déphaseurs d’arbres à cames ; et/ou- on the position models of the camshaft phase shifters; and or
- sur le modèle d’estimation de la quantité d’air aspiré par les cylindres ; et/ou
- sur le modèle de comportement d’au moins un injecteur par la correction de la modélisation de paramètres physiques tels que le gain statique de l’injecteur, son temps mort de commande. - on the model for estimating the quantity of air sucked in by the cylinders; and or - on the behavior model of at least one injector by correcting the modeling of physical parameters such as the static gain of the injector, its control dead time.
Par exemple, sans que cela ne soit limitatif, un premier adaptatif peut être un adaptatif sur la position d’un déphaseur d’arbre à cames d’admission, un deuxième adaptatif peut être un adaptatif sur la position d’un déphaseur d’arbre à cames d’échappement, un troisième adaptatif peut être un adaptatif sur la modélisation du gain statique d’un injecteur de carburant dans le moteur thermique, et un quatrième adaptatif peut être un adaptatif sur la modélisation du temps mort de commande de l’injecteur. En variante ou en complément, un des adaptatifs peut également être un adaptatif relatif à une durée d’ouverture d’au moins un injecteur de carburant dans le moteur thermique. For example, without this being limiting, a first adaptive can be an adaptive on the position of an intake camshaft phaser, a second adaptive can be an adaptive on the position of a camshaft phaser with exhaust cams, a third adaptive can be an adaptive on the modeling of the static gain of a fuel injector in the heat engine, and a fourth adaptive can be an adaptive on the modeling of the injector control dead time . As a variant or in addition, one of the adaptives can also be an adaptive relating to an opening duration of at least one fuel injector in the heat engine.
Le procédé comporte une première étape 10 au cours de laquelle le contrôle moteur calcule, pour chacun des adaptatifs, une valeur d’impact individuel de l’adaptatif sur le paramètre pour un point de fonctionnement courant du moteur. De préférence, cette étape de calcul 10 consiste à multiplier, pour chaque adaptatif, une valeur courante de l’adaptatif par une fonction de transfert prédéterminée entre le paramètre et l’adaptatif. Cette multiplication fournit alors la valeur d’impact individuel de l’adaptatif concerné, sur le point de fonctionnement courant du moteur. Cette fonction de transfert prédéterminée (et stockée par exemple dans des moyens mémoire du contrôle moteur) représente la sensibilité de l’adaptatif au paramètre. La fonction de transfert peut être déterminée au préalable par toute méthode connue, par exemple par calculs mathématiques de dérivées d’équations du paramètre du système par rapport à l’adaptatif considéré, ou encore par calcul du gradient local de variation du paramètre pour une variation de l’adaptatif. The method comprises a first step 10 during which the engine control calculates, for each of the adaptives, an individual impact value of the adaptive on the parameter for a current operating point of the engine. Preferably, this calculation step 10 consists in multiplying, for each adaptive, a current value of the adaptive by a predetermined transfer function between the parameter and the adaptive. This multiplication then provides the individual impact value of the adaptive concerned, on the current operating point of the motor. This predetermined transfer function (and stored for example in memory means of the motor control) represents the sensitivity of the adaptive to the parameter. The transfer function can be determined beforehand by any known method, for example by mathematical calculations of derivatives of equations of the parameter of the system with respect to the adaptive considered, or by calculation of the local gradient of variation of the parameter for a variation adaptive.
Par exemple, pour le premier adaptatif de l’exemple précédemment décrit (adaptatif sur la position d’un déphaseur d’arbre à cames d’admission), si on appelle A le premier adaptatif, R le paramètre qui est ici la richesse de carburant, et IA®-R l’impact individuel du premier adaptatif sur la richesse de carburant ; alors cet impact individuel IA®-R s’exprime selon l’équation (1 ) suivante : For example, for the first adaptive of the example previously described (adaptive on the position of an intake camshaft phase shifter), if we call A the first adaptive, R the parameter which is here the fuel richness , and IA®-R the individual impact of the first adaptive on fuel richness; then this individual impact IA®-R is expressed according to the following equation (1):
[Math] [Math]
IΊ L = KA,R * A (1 )
avec KA,R la fonction de transfert entre la richesse de carburant et le premier adaptatif, qui s’exprime en %/°CK ; la notation °CK désignant des degrés vilebrequin. IΊ L = KA,R * A (1 ) with KA,R the transfer function between the fuel richness and the first adaptive, which is expressed in %/°CK; the notation °CK designating crankshaft degrees.
L’impact individuel sur la richesse de carburant de chacun des deuxième, troisième et quatrième adaptatifs de l’exemple précédemment décrit s’exprime selon une équation analogue à celle de l’équation (1 ), avec une fonction de transfert individuelle correspondante. The individual impact on the fuel richness of each of the second, third and fourth adaptives of the example described above is expressed according to an equation analogous to that of equation (1), with a corresponding individual transfer function.
Au cours d’une étape suivante 12, le contrôle moteur calcule une valeur d’impact global de l’ensemble des adaptatifs sur le paramètre pour le point de fonctionnement courant du moteur. De préférence, cette étape de calcul 12 consiste à additionner les valeurs d’impact individuel calculées pour l’ensemble des adaptatifs au cours de l’étape précédente 10. Cette addition fournit alors la valeur d’impact global des adaptatifs, sur le point de fonctionnement courant du moteur. During a following step 12, the motor control calculates an overall impact value of all the adaptives on the parameter for the current operating point of the motor. Preferably, this calculation step 12 consists of adding the individual impact values calculated for all of the adaptives during the previous step 10. This addition then provides the overall impact value of the adaptives, on the point of normal engine operation.
Au cours d’une étape suivante 14, le contrôle moteur compare la valeur d’impact global calculée au cours de l’étape précédente 12 à au moins une valeur seuil d’impact global prédéfinie. L’étape de comparaison 14 comporte par exemple une première phase consistant à comparer la valeur d’impact global calculée à une valeur seuil d’impact global minimale, et une seconde phase consistant à comparer la valeur d’impact global calculée à une valeur seuil d’impact global maximale. La première phase peut être effectuée avant la seconde phase, ou inversement. En variante, les première et seconde phases sont effectuées simultanément. Dans le cas où le paramètre est la richesse de carburant, les valeurs seuil d’impact global minimale et maximale sont des seuils minimal et maximal réglementaires sur la déviation de richesse, qui correspondent aux limites d’émissions polluantes autorisées par la réglementation. During a following step 14, the engine control compares the overall impact value calculated during the previous step 12 with at least one predefined overall impact threshold value. The comparison step 14 includes for example a first phase consisting in comparing the calculated global impact value with a minimum global impact threshold value, and a second phase consisting in comparing the calculated global impact value with a threshold value maximum overall impact. The first phase can be performed before the second phase, or vice versa. Alternatively, the first and second phases are carried out simultaneously. In the case where the parameter is fuel richness, the minimum and maximum overall impact threshold values are regulatory minimum and maximum thresholds on the richness deviation, which correspond to the pollutant emission limits authorized by the regulations.
Au cours d’une étape suivante 16, le contrôle moteur émet, en fonction du résultat de la comparaison effectuée au cours de l’étape précédente 14, un signal d’alerte à destination d’un dispositif du véhicule. Le dispositif peut être notamment un dispositif d’affichage tel qu’un écran par exemple, permettant d’informer visuellement l’utilisateur du véhicule lors de la réception du signal d’alerte. Le dispositif peut en variante être un dispositif de restitution sonore, permettant d’émettre un signal auditif destiné à l’utilisateur, lors de la
réception de ce signal d’alerte. Le dispositif peut être plus généralement tout dispositif permettant d’alerter un utilisateur du véhicule. Lorsque l’étape de comparaison précédente 14 comporte les deux phases précitées, le signal d’alerte est transmis à destination du dispositif si la valeur d’impact global calculée au cours de l’étape 12 est inférieure à la valeur seuil d’impact global minimale ou supérieure à la valeur seuil d’impact global maximale. During a following step 16, the engine control emits, according to the result of the comparison carried out during the previous step 14, an alert signal intended for a device of the vehicle. The device may in particular be a display device such as a screen for example, making it possible to visually inform the user of the vehicle upon receipt of the alert signal. The device can alternatively be a sound restitution device, making it possible to emit an auditory signal intended for the user, during the receipt of this alert signal. The device can more generally be any device making it possible to alert a user of the vehicle. When the previous comparison step 14 comprises the two aforementioned phases, the alert signal is transmitted to the device if the global impact value calculated during step 12 is lower than the global impact threshold value minimum or greater than the maximum overall impact threshold value.
Les étapes 10, 12, 14 et 16 décrites ci-dessus sont réeffectuées pour chaque point de fonctionnement courant du moteur. Steps 10, 12, 14 and 16 described above are repeated for each current operating point of the engine.
Le procédé selon l’invention permet une surveillance plus exhaustive et plus précise des adaptatifs, et permet de prendre en compte les possibles interactions entre adaptatifs tout en réduisant le nombre de fausses détections.
The method according to the invention allows a more exhaustive and more precise monitoring of the adaptives, and makes it possible to take into account the possible interactions between adaptives while reducing the number of false detections.
Claims
1. Procédé, mis en œuvre dans un contrôle moteur d’un véhicule, de surveillance de plusieurs adaptatifs d’au moins un paramètre, caractérisé en ce que le procédé comporte les étapes suivantes : 1. Method, implemented in an engine control of a vehicle, for monitoring several adaptives of at least one parameter, characterized in that the method comprises the following steps:
- un calcul (10), pour chaque adaptatif, d’une valeur d’impact individuel dudit adaptatif sur ledit au moins un paramètre pour un point de fonctionnement courant du moteur ; - a calculation (10), for each adaptive, of an individual impact value of said adaptive on said at least one parameter for a current operating point of the engine;
- un calcul (12) d’une valeur d’impact global de l’ensemble des adaptatifs sur ledit au moins un paramètre pour le point de fonctionnement courant du moteur ; - a calculation (12) of an overall impact value of all the adaptives on said at least one parameter for the current operating point of the engine;
- une comparaison (14) de la valeur d’impact global calculée à au moins une valeur seuil d’impact global prédéfinie ; et - a comparison (14) of the calculated global impact value with at least one predefined global impact threshold value; and
- une émission (16), en fonction du résultat de la comparaison (14), d’un signal d’alerte à destination d’un dispositif du véhicule. - an emission (16), depending on the result of the comparison (14), of an alert signal intended for a device of the vehicle.
2. Procédé selon la revendication 1, caractérisé en ce que ledit au moins un paramètre est une richesse de carburant. 2. Method according to claim 1, characterized in that said at least one parameter is a fuel richness.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l’étape (10) de calcul, pour chaque adaptatif, d’une valeur d’impact individuel dudit adaptatif sur ledit au moins un paramètre consiste à multiplier une valeur courante dudit adaptatif par une fonction de transfert prédéterminée entre ledit au moins un paramètre et ledit adaptatif, fournissant ainsi la valeur d’impact individuel. 3. Method according to claim 1 or 2, characterized in that the step (10) of calculating, for each adaptive, an individual impact value of said adaptive on said at least one parameter consists of multiplying a current value of said adaptive by a predetermined transfer function between said at least one parameter and said adaptive, thus providing the individual impact value.
4. Procédé selon l’une quelconque des revendications 1 à 3, caractérisé en ce que l’étape (12) de calcul d’une valeur d’impact global de l’ensemble des adaptatifs sur ledit au moins un paramètre consiste à additionner les valeurs d’impact individuel calculées pour l’ensemble des adaptatifs, fournissant ainsi la valeur d’impact global. 4. Method according to any one of claims 1 to 3, characterized in that the step (12) of calculating an overall impact value of the set of adaptives on said at least one parameter consists in adding the individual impact values computed for all of the adaptives, thus providing the overall impact value.
5. Procédé selon l’une quelconque des revendications 1 à 4, caractérisé en ce que l’étape (14) de comparaison de la valeur d’impact global calculée à au moins une valeur seuil d’impact global prédéfinie comporte une première phase consistant à comparer la valeur d’impact global calculée à une valeur seuil d’impact global minimale, et une seconde phase consistant à comparer la valeur d’impact global calculée à une valeur seuil d’impact global maximale,
et en ce que le signal d’alerte est émis à destination d’un dispositif du véhicule si la valeur d’impact global calculée est inférieure à la valeur seuil d’impact global minimale ou supérieure à la valeur seuil d’impact global maximale.5. Method according to any one of claims 1 to 4, characterized in that the step (14) of comparing the calculated global impact value with at least one predefined global impact threshold value comprises a first phase consisting comparing the calculated global impact value with a minimum global impact threshold value, and a second phase consisting in comparing the calculated global impact value with a maximum global impact threshold value, and in that the alert signal is sent to a device of the vehicle if the calculated global impact value is lower than the minimum global impact threshold value or higher than the maximum global impact threshold value.
6. Procédé selon l’une quelconque des revendications 1 à 5, caractérisé en ce que les étapes de calcul (10) de valeurs d’impact individuel, de calcul (12) d’une valeur d’impact global, de comparaison (14) et d’émission (16) d’un signal d’alerte sont réeffectuées pour chaque point de fonctionnement courant du moteur.
6. Method according to any one of claims 1 to 5, characterized in that the steps of calculating (10) individual impact values, calculating (12) an overall impact value, comparing (14 ) and emission (16) of a warning signal are repeated for each current operating point of the engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22717871.2A EP4348025A1 (en) | 2021-05-27 | 2022-03-30 | Method of monitoring adaptation values in an engine control device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2105495 | 2021-05-27 | ||
FR2105495A FR3123387B1 (en) | 2021-05-27 | 2021-05-27 | METHOD FOR MONITORING ADAPTIVES IN ENGINE CONTROL |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022248781A1 true WO2022248781A1 (en) | 2022-12-01 |
Family
ID=76523176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2022/050594 WO2022248781A1 (en) | 2021-05-27 | 2022-03-30 | Method of monitoring adaptation values in an engine control device |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4348025A1 (en) |
FR (1) | FR3123387B1 (en) |
WO (1) | WO2022248781A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2105495A5 (en) | 1970-09-09 | 1972-04-28 | Peugeot & Renault | |
EP0275507A2 (en) * | 1987-01-21 | 1988-07-27 | Japan Electronic Control Systems Co., Ltd. | Method and device for learn-controlling the air-fuel ratio of an internal combustion engine |
DE10244539A1 (en) * | 2002-09-25 | 2004-04-08 | Robert Bosch Gmbh | Global-adaptive correction of injection quantities/air mass measurement errors in combustion engine involves polynomial-based recursive learning technique with current engine operating information |
DE102008012607A1 (en) * | 2008-03-05 | 2009-09-10 | Continental Automotive Gmbh | Method for determining adaptation value for adjusting desired air-fuel ratio for fuel injection into internal combustion engine, involves predetermining desired value for air-fuel ratio of fuel injection for operating point |
FR3085721B1 (en) | 2018-09-11 | 2020-09-04 | Psa Automobiles Sa | ADAPTIVE LEARNING PROCESS IN AN ENGINE CONTROL |
-
2021
- 2021-05-27 FR FR2105495A patent/FR3123387B1/en active Active
-
2022
- 2022-03-30 EP EP22717871.2A patent/EP4348025A1/en active Pending
- 2022-03-30 WO PCT/FR2022/050594 patent/WO2022248781A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2105495A5 (en) | 1970-09-09 | 1972-04-28 | Peugeot & Renault | |
EP0275507A2 (en) * | 1987-01-21 | 1988-07-27 | Japan Electronic Control Systems Co., Ltd. | Method and device for learn-controlling the air-fuel ratio of an internal combustion engine |
DE10244539A1 (en) * | 2002-09-25 | 2004-04-08 | Robert Bosch Gmbh | Global-adaptive correction of injection quantities/air mass measurement errors in combustion engine involves polynomial-based recursive learning technique with current engine operating information |
DE102008012607A1 (en) * | 2008-03-05 | 2009-09-10 | Continental Automotive Gmbh | Method for determining adaptation value for adjusting desired air-fuel ratio for fuel injection into internal combustion engine, involves predetermining desired value for air-fuel ratio of fuel injection for operating point |
FR3085721B1 (en) | 2018-09-11 | 2020-09-04 | Psa Automobiles Sa | ADAPTIVE LEARNING PROCESS IN AN ENGINE CONTROL |
Also Published As
Publication number | Publication date |
---|---|
FR3123387B1 (en) | 2023-04-14 |
EP4348025A1 (en) | 2024-04-10 |
FR3123387A1 (en) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2857410A1 (en) | SYSTEM FOR MONITORING COMBUSTION NOISE OF A DIESEL ENGINE OF A MOTOR VEHICLE | |
FR2803877A1 (en) | METHOD AND DEVICE FOR MONITORING THE OPERATION OF A VALVE FOR GAS FLOW, ESPECIALLY OF AN INTERNAL COMBUSTION ENGINE | |
WO2018002550A1 (en) | Method for checking a pressure measurement in a fuel tank | |
WO2017071800A1 (en) | Method for automatically adapting the conditions for establishing a diagnostic by an on-board diagnostic system | |
FR2791396A1 (en) | METHOD AND DEVICE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE | |
EP1058781A1 (en) | Method and device for fast automatic adaptation of richness for internal combustion engine | |
WO2022248781A1 (en) | Method of monitoring adaptation values in an engine control device | |
EP2427643A1 (en) | Method and device for diagnosing the operational state of a fuel supply system of an automobile internal combustion engine | |
EP3201443A1 (en) | Motor vehicle combustion engine with improved mixture strength control | |
EP1760295B1 (en) | Control system for a diesel engine equipped with exhaust recriculation means | |
FR2876743A1 (en) | METHOD FOR CORRECTING THE INJECTION BEHAVIOR OF AN INJECTOR | |
WO2022018332A1 (en) | Method for correcting a richness measurement drift | |
FR2864162A1 (en) | Internal combustion engine e.g. diesel engine, control method, involves correcting real value with corrective value using correction unit, and comparing corrected value with allowed value using comparison unit | |
EP1597468B1 (en) | Method for calculating fuel injector gain | |
EP1693559B1 (en) | Control system for operating a Diesel engine with exhaust gas recirculation means | |
FR2910549A1 (en) | Injector drift correcting method for e.g. diesel engine of vehicle, involves determining drift correction value of injector to be added to nominal set point value by utilizing indicated average torque estimation for cylinders | |
WO2022248782A1 (en) | Method of limiting a parameter correction performed by several adaptation values in an engine control device | |
EP1787020B1 (en) | System for controlling the operation of a diesel engine of a motor vehicle | |
EP3006716B1 (en) | Method for controlling an internal combustion engine provided with a gas-treatment device | |
WO2022214747A1 (en) | Method for validating a diagnosis of richness deviation under similar conditions | |
EP4281662A1 (en) | Method for improving the reliability of a learning function of a model of combustion engine actuators | |
EP2761153B1 (en) | Control of the injection of fuel upon combustion engine start-up | |
FR3049010A1 (en) | ANTI-CLIQUETIS IGNITION CONTROL METHOD FOR A MULTI-FUEL ENGINE | |
EP1400679B1 (en) | Control system for operating a Diesel engine of an automotive vehicle | |
JP2011080480A (en) | Control device of vehicular engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22717871 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022717871 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022717871 Country of ref document: EP Effective date: 20240102 |