WO2022247845A1 - 一种细胞程序冷冻方法、系统及装置 - Google Patents

一种细胞程序冷冻方法、系统及装置 Download PDF

Info

Publication number
WO2022247845A1
WO2022247845A1 PCT/CN2022/094851 CN2022094851W WO2022247845A1 WO 2022247845 A1 WO2022247845 A1 WO 2022247845A1 CN 2022094851 W CN2022094851 W CN 2022094851W WO 2022247845 A1 WO2022247845 A1 WO 2022247845A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
temperature
cell
control
freezing
Prior art date
Application number
PCT/CN2022/094851
Other languages
English (en)
French (fr)
Inventor
李维杰
申敬
秦延斌
李智新
颜宏利
漆琴
刘宝林
Original Assignee
上海理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海理工大学 filed Critical 上海理工大学
Priority to JP2023573073A priority Critical patent/JP2024520237A/ja
Priority to US18/043,108 priority patent/US20230309552A1/en
Publication of WO2022247845A1 publication Critical patent/WO2022247845A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0278Physical preservation processes
    • A01N1/0284Temperature processes, i.e. using a designated change in temperature over time
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0242Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components
    • A01N1/0252Temperature controlling refrigerating apparatus, i.e. devices used to actively control the temperature of a designated internal volume, e.g. refrigerators, freeze-drying apparatus or liquid nitrogen baths
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0242Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components
    • A01N1/0252Temperature controlling refrigerating apparatus, i.e. devices used to actively control the temperature of a designated internal volume, e.g. refrigerators, freeze-drying apparatus or liquid nitrogen baths
    • A01N1/0257Stationary or portable vessels generating cryogenic temperatures

Definitions

  • the invention belongs to the technical field of cell freezing, in particular to a method, system and device for programmed cell freezing.
  • liquid nitrogen fumigation is widely used due to its simple equipment.
  • the liquid nitrogen is pre-cooled by using different temperatures of different air layers on the surface of the liquid nitrogen. After the pre-cooling is completed, the sample is immersed in the liquid nitrogen to complete the freezing.
  • the object of the present invention is to provide a method, system and device for programmed cell freezing.
  • the step of acquiring the T1 temperature includes:
  • thermophysical properties consistent with the thermophysical properties of the liquid in the cell preservation tube is contained in the control tube, or the same liquid as the cell preservation tube is contained in the control tube;
  • the temperature of the liquid in the control tube collected by the temperature measuring element is the T1 temperature.
  • control of the cell storage tube to reach the preset incubation temperature T0 is achieved through the following steps:
  • the present invention proposes a programmed cell freezing system, the system is used to perform the method as described above, and the system includes:
  • An acquisition module the acquisition module is used to acquire the cooling rate k, the temperature distribution function of the insulation chamber, the temperature T 1 and T 2 inside and outside the cell storage tube at the same time and at the same height, the preset insulation temperature T 0 , the preset temperature The preset temperature difference threshold and the preset holding time;
  • a judging module is used to judge whether the difference ⁇ t between the T1 and the T2 exceeds a preset temperature difference threshold, and is used to judge whether the cell storage tube reaches a preset temperature T0 Location;
  • a lifting control module the lifting control module is used to generate a lifting command according to the judgment result of the judging module, so as to control the lifting device through the lifting command to drive the cell storage tube to lift up and down in the heat preservation chamber.
  • the present invention provides a programmed cell freezing device, comprising:
  • a heat preservation chamber the heat preservation chamber is installed on the base, and liquid nitrogen is contained in the heat preservation chamber;
  • a tube rack, the cell preservation tube is installed on the tube rack;
  • a temperature measuring element at least two temperature measuring elements are configured to measure the temperature at the same height on the inner and outer sides of the cell storage tube at the same time;
  • a lifting device the lifting device is installed on the base, the output end of the lifting device is fixedly connected with the pipe frame, so as to drive the pipe frame to move up and down in the heat preservation chamber;
  • control device includes electronic equipment, and the electronic equipment is electrically connected to the temperature measuring element and the lifting device;
  • the electronic device includes a memory storing executable program codes and a processor coupled to the memory; wherein, the processor invokes the executable program codes stored in the memory to execute the method as described above.
  • a control tube is also included, the control tube is fixedly installed on the tube rack, and the control tube is arranged at the same height as the cell storage tube; wherein, the temperature measurement tube is arranged in the control tube element to indirectly obtain the temperature inside the cell preservation tube.
  • the invention discloses the following technical effects:
  • the invention proposes a method, system and device for programmed cell freezing. During the process of controlling the descent of the cell preservation tube in the heat preservation chamber filled with liquid nitrogen, the temperature of the inner and outer sides of the cell preservation tube is continuously obtained to ensure the descending temperature of the cell preservation tube.
  • the temperature difference between the inner and outer sides of the cell storage tube is always lower than the preset temperature difference threshold, stops falling when the temperature difference exceeds the temperature difference threshold, and continues to drop when the temperature difference is lower than the temperature difference threshold, until it reaches the preset insulation temperature position, Therefore, the cell preservation effect during the programmed freezing process can be effectively improved, and the problem of poor cell preservation effect due to the inconsistency between the cooling rate and the pre-cooling temperature in the cell programmed freezing process existing in the prior art is solved.
  • FIG. 1 is a schematic structural diagram of a programmed cell freezing device provided by an embodiment of the present invention
  • Fig. 2 is a flow chart of a cell programmed freezing method provided by an embodiment of the present invention.
  • FIG. 3 is a flow chart of a method for obtaining the temperature inside a cell storage tube in a programmed cell freezing method provided by an embodiment of the present invention
  • Fig. 4 is a flow chart of another cell programmed freezing method provided by the embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a programmed cell freezing system provided by an embodiment of the present invention.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, or It can be an electrical connection; it can be a direct connection, or an indirect connection through an intermediary, or an internal connection between two structures.
  • This embodiment proposes a programmed cell freezing device, as shown in FIG. 1 , which includes a control device 1 , a heat preservation chamber 3 , a tube rack 4 , a cell storage tube 6 , a temperature measuring element, a lifting device and a base 14 .
  • the base 14 is configured as a platform, which is installed on the desktop when in use.
  • the thermal insulation chamber 3 is configured as a cylindrical structure made of a material with low thermal conductivity (such as foaming material), and an opening is arranged on the top; or, the thermal insulation chamber 3 can also be configured as a vacuum cup. Liquid nitrogen is filled in the heat preservation chamber 3 , and the liquid level of the liquid nitrogen is usually at a certain distance from the upper edge of the heat preservation chamber 3 , such as 10 cm.
  • T is the measured
  • the cell preservation tube 6 is used to load the cells to be frozen, and the cell preservation tube 6 is fixedly installed on the tube rack 4, so that the cell preservation tube 6 is driven up and down in the heat preservation chamber 3 by the tube rack 4, and then the temperature is programmed to cool down.
  • the lifting device is installed on the base 14, and the output end of the lifting device is fixedly connected with the pipe frame 4, so as to drive the pipe frame 4 to lift in the heat preservation chamber 3.
  • the configuration lifting device includes an electric push rod and a curved arm 9, the electric push rod is vertically installed on the base 14, and one end of the curved arm 9 is fixed on the output end of the electric push rod, and the other end is connected to the pipe support. 4 fixed connection. As shown in FIG.
  • the electric push rod includes a slider 10 , a screw 11 , a guide rail 12 and a motor 13 .
  • the guide rail 12 is vertically arranged and fixed on the base 14;
  • the screw rod 11 is parallel to the guide rail 12, and the upper end and the lower end of the screw rod 11 are rotatably connected to the horizontal plate at the top of the guide rail 12 and the base 14 respectively through bearings;
  • the motor 13 is fixed on on the base 14, and the output shaft of the motor 13 is connected to the lower end of the screw rod 11 through a coupling or a gear transmission mechanism;
  • the slider 10 is slidably connected to the guide rail 12, and the slider 10 is provided with threads that match the screw rod 11 hole, so that after the motor 13 starts, it drives the screw rod 11 to rotate, and then the screw rod 11 drives the slide block 10 to lift, and the tube frame 4 and the cell preservation tube 6 installed on it can be lifted in the heat preservation chamber 3 by the curved arm 9 .
  • the lifting device can also be configured as an air cylinder,
  • the temperature on both sides of the cell preservation tube 6 is measured respectively by the temperature measuring element.
  • 7 and the second temperature-measuring element 8 are selected as thermocouples, wherein the probe of the first temperature-measuring element 7 extends into the inside of the cell preservation tube 6 to obtain the temperature inside it, while the probe of the second temperature-measuring element 8 is It is located outside the cell storage tube 6 to obtain the temperature outside it, and the probe of the first temperature measuring element 7 and the probe of the second temperature measuring element 8 are located at the same height.
  • there are at least two temperature measuring elements so as to obtain the temperatures of the inner and outer sides of the cell storage tube 6 at the same time respectively.
  • multiple temperature measuring elements can also be configured. , thereby reducing the error of one-sided single-point measurement.
  • the control device 1 includes an electronic device, which includes a memory storing executable program codes and a processor coupled to the memory, and the processor is also electrically connected to the above-mentioned temperature measuring element and the lifting device; wherein, the processing The controller calls the executable program code stored in the memory, so as to execute the steps of the programmed cell freezing method carried by the executable program code.
  • the setting control device 1 further includes a display screen 2, the display screen 2 is electrically connected to the processor in the control device 1, and preferably the display screen 2 is a touch screen, so that the control parameters can be controlled through the display screen 2 (cooling rate k, temperature difference threshold, etc.) for input and modification.
  • thermophysical properties comprising crystallization enthalpy, thermal conductivity, specific heat capacity etc.
  • a temperature-measuring element i.e., a first temperature-measuring element 7 is arranged in the control tube 5, so that the temperature measured by the first temperature-measuring element 7 is used as the temperature inside the cell preservation tube 6 in an indirect measurement mode, and at the same time , cancel the first temperature measuring element 7 arranged inside the cell protection tube 6 in the first embodiment.
  • Such setting can avoid the influence of temperature measurement on the cells to be frozen, thereby further improving the cell freezing effect.
  • This embodiment proposes a method for programmed cell freezing, which is implemented based on the device of the above-mentioned embodiment 1.
  • the method can be executed by the electronic equipment in the above-mentioned device, and the steps shown in Figure 2 can be realized, and the specific steps include:
  • Step S3 judging whether the difference ⁇ t (absolute value) between T1 and T2 exceeds the preset temperature difference threshold, if yes, enter S4, otherwise continue to execute S2 until the cell storage tube 6 reaches the preset temperature T0 ;
  • Step S4 control the cell storage tube 6 to stop by the lifting device until the difference ⁇ t (absolute value) between T1 and T2 is less than or equal to the temperature difference threshold, then continue to S2.
  • the method provided in this example is applied to sperm freezing: 1. Take 2ml of healthy sperm from three volunteers, and liquefy them naturally in a 37°C incubator; 2. Use a sperm counting board to check the sperm activity under a microscope Repeat the test twice for each sample, count 200 sperm for each test, compare the two test values until the error percentage of the two measurement values is within an acceptable range, otherwise re-prepare the test sample and test again; 3.
  • a control group was set up and frozen by artificial liquid nitrogen fumigation, that is, the cryopreservation tube containing sperm and protective solution was placed at a position 10 cm away from the surface of liquid nitrogen for 10 minutes, and then the cryopreservation tube was immersed in liquid nitrogen and stored for 2 Take it out after a week.
  • Embodiment 4 differs from Embodiment 3 in that in this Embodiment 4, in step S2, the temperature T1 inside the cell storage tube 6 is not obtained directly, but obtained indirectly through the following steps, as shown in FIG. 3 , Specifically include the following steps:
  • Step S21 arranging the control tube 5 at the same height as the cell preservation tube 6;
  • Step S22 put a control solution with the same thermophysical properties as the liquid in the cell preservation tube 6 in the control tube 5, or put the same liquid in the control tube 5 as the cell preservation tube 6; for example, preferably in the control tube 5 Add an equal amount of artificial seminal plasma mixture;
  • Step S23 the temperature of the liquid in the control tube 5 is collected by the temperature measuring element, which is the T1 temperature inside the cell storage tube 6 .
  • step S3 after the cell storage tube 6 reaches the preset temperature T0, step S5 is also included, as shown in Figure 4, specifically as follows:
  • Step S5 after waiting for the preset heat preservation time, control the cell preservation tube 6 to rise in the heat preservation chamber 3 through the lifting device until it is moved out of the heat preservation chamber 3 .
  • This embodiment proposes a programmed cell freezing system, which is used to implement the methods of the above-mentioned embodiments, as shown in Figure 5, the system includes:
  • An acquisition module the acquisition module is used to acquire the cooling rate k, the temperature distribution function of the insulation chamber 3, the temperature T1 inside the cell storage tube 6 and the temperature T2 outside the cell storage tube 6 at the same time and at the same height position, and preset The holding temperature T 0 , the preset temperature difference threshold and the preset holding time;
  • the judging module is used to judge whether the difference ⁇ t between T1 and T2 exceeds the preset temperature difference threshold, and is used to judge whether the cell storage tube 6 has reached the preset temperature T0 ; it is easy to understand that,
  • the difference ⁇ t in each of the above embodiments is an absolute value.
  • the lifting control module is used to generate a lifting command according to the judgment result of the judging module, so as to control the lifting device through the lifting command to drive the cell preservation tube 6 to rise and fall in the heat preservation chamber 3 .
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种细胞程序冷冻方法、系统及装置,属于细胞冷冻技术领域,方法包括:S1、获取降温速率k以及盛放有液氮的保温腔的温度分布函数T=a×h 2+b×h+c;S2、控制细胞保存管按照v=(k-b)/2ah的实时速度在保温腔内下降,并在细胞保存管下降的过程中实时获取在同一时刻、同一高度位置上细胞保存管内、外的温度T 1和T 2;S3、判断T 1与T 2的差值Δt是否超过预设的温差阈值,是则进入S4,否则继续S2,直至细胞保存管到达预设的保温温度T 0的位置;S4、控制细胞保存管停止,直至T 1与T 2的差值Δt小于等于温差阈值时,继续S2。所述方法、系统及装置能够有效提高细胞冷冻效果以及复苏率。

Description

一种细胞程序冷冻方法、系统及装置
本申请要求于2021年05月27日提交中国专利局、申请号为202110584162.4、发明名称为“一种细胞程序冷冻方法、系统、设备、介质及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于细胞冷冻技术领域,特别涉及一种细胞程序冷冻方法、系统及装置。
背景技术
近年来,随着现代生物医学全面迈向分子医学,个体化诊疗时代,对于大规模、高质量的生物标本及相关信息资源的需求也急剧增长。许多发达国家高度重视人类遗传资源的保护与开发,建立各类生物样本库和以人口为基础的生物银行及虚拟生物银行,并将其视为发展生物医药领域核心竞争力的战略举措。建立生物细胞资源库,保存生物细胞(目前多为精细胞、胚胎或卵细胞和干细胞),对于物种资源保存、育种与繁殖等领域具有重要的意义。
程序降温作为一种有效的降温手段被广泛应用于细胞的冷冻保存过程中,其中液氮熏蒸法由于设备简单,被广泛采用。该方法利用液氮表面不同气层温度不同对液氮进行预冷,当预冷完成后,样品浸入液氮完成冷冻。
但是,由于液氮表层温度不固定,所以冷冻过程中,细胞样品的降温速率以及预冷温度不一致,从而造成细胞保存效果千差万别。
发明内容
针对现有技术存在的细胞程序冷冻过程中降温速率与预冷温度不一致的问题,本发明的目的在于提供一种细胞程序冷冻方法、系统及装置。
为实现上述目的,本发明的技术方案为:
第一方面,本发明提供了一种细胞程序冷冻方法,包括以下步骤:
S1、获取降温速率k以及盛放有液氮的保温腔的温度分布函数T=a×h 2+b×h+c,其中,h为测温点到保温腔上边沿的距离,T为所述测温点位置处的温度,a、b、c均为常数;
S2、控制细胞保存管按照v=(k-b)/2ah的实时速度在所述保温腔内下降,并在所述细胞保存管下降的过程中,实时获取在同一时刻、同一高度位置上所述细胞保存管内、外的温度T 1和T 2
S3、判断所述T 1与所述T 2的差值Δt是否超过预设的温差阈值,是则进入S4,否则继续S2,直至控制所述细胞保存管到达预设的保温温度T 0的位置;
S4、控制所述细胞保存管停止,直至所述T 1与所述T 2的差值Δt小于或等于所述温差阈值时,继续S2。
可选地,在S2中,所述T 1温度的获取步骤包括:
在与所述细胞保存管同一高度的位置布置对照管;
在所述对照管内盛放热物理性质与所述细胞保存管内的液体的热物理性质一致的对照溶液,或者在所述对照管内盛放与所述细胞保存管相同的液体;
通过测温元件采集所述对照管内液体的温度为所述T 1温度。
可选地,在S3中,所述预设的保温温度T 0的位置h 0通过所述保温腔的温度分布函数T=a×h 2+b×h+c计算获得。
可选地,在S3中,所述控制所述细胞保存管到达预设的保温温度T 0的位置通过以下步骤实现:
将实时获取到的T 1与T 0对比,判断T 1是否小于T 0,是则控制所述细胞保存管继续下降,否则控制所述细胞保存管停止。
可选地,在S3中控制所述细胞保存管到达预设的保温温度T 0的位置后,还包括S5:
S5、等待预设的保温时长后,控制所述细胞保存管在所述保温腔中上升直至移出所述保温腔。
第二方面,本发明提出了一种细胞程序冷冻系统,所述系统用于执行如上所述的方法,所述系统包括:
获取模块,所述获取模块用于获取降温速率k、保温腔的温度分布函 数、同一时刻、同一高度位置上细胞保存管内、外的温度T 1和T 2、预设的保温温度T 0、预设的温差阈值以及预设的保温时长;
判断模块,所述判断模块用于判断所述T 1与所述T 2的差值Δt是否超过预设的温差阈值,以及用于判断所述细胞保存管是否到达预设的保温温度T 0的位置;
升降控制模块,所述升降控制模块用于根据所述判断模块的判断结果生成升降指令,以便于通过所述升降指令控制升降装置带动所述细胞保存管在所述保温腔内升降。
第三方面,本发明提出了一种细胞程序冷冻装置,包括:
底座;
保温腔,所述保温腔安装在所述底座上,所述保温腔内盛放有液氮;
管架,所述管架上安装有细胞保存管;
测温元件,所述测温元件至少配置有两个,以分别在同一时刻测量所述细胞保存管内、外两侧同一高度位置的温度;
升降装置,所述升降装置安装在所述底座上,所述升降装置的输出端与所述管架固定连接,以带动所述管架在所述保温腔内升降;
控制装置,所述控制装置包括电子设备,且所述电子设备与所述测温元件以及所述升降装置电性连接;
所述电子设备包括存储有可执行程序代码的存储器以及与存储器耦合的处理器;其中,处理器调用存储器中存储的可执行程序代码,执行如上所述的方法。
可选地,还包括对照管,所述对照管固定安装在所述管架上,且所述对照管与所述细胞保存管等高布置;其中,在所述对照管内布置有所述测温元件以间接地获得所述细胞保存管内侧的温度。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提出了一种细胞程序冷冻方法、系统及装置,在控制细胞保存管在盛有液氮的保温腔内下降的过程中,通过不断地获取细胞保存管内、外两侧的温度,确保下降过程中细胞保存管内、外两侧的温差始终低于预设的温差阈值,在温差超过该温差阈值时停止下降,在温差低于该温差阈值时继续下降,直至达到预设的保温温度位置,从而能够有效提高程序冷 冻过程中细胞的保存效果,解决现有技术中存在的由于细胞程序冷冻过程中降温速率与预冷温度不一致造成的细胞保存效果差的问题。
说明书附图
为了更清楚地说明本发明的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种细胞程序冷冻装置的结构示意图;
图2为本发明实施例提供的一种细胞程序冷冻方法的流程图;
图3为本发明实施例提供的一种细胞程序冷冻方法中获取细胞保存管内侧温度的方法流程图;
图4为本发明实施例提供的另一种细胞程序冷冻方法的流程图;
图5为本发明实施例提供的一种细胞程序冷冻系统的结构示意图。
图中标号说明:1-控制装置、2-显示屏、3-保温腔、4-管架、5-对照管、6-细胞保存管、7-第一测温元件、8-第二测温元件、9-弯臂、10-滑块、11-螺杆、12-导轨、13-电机、14-底座。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示对本发明结构的说明,仅是为了便于描述本发明的简便,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
对于本技术方案中的“第一”和“第二”,仅为对相同或相似结构,或者起相似功能的对应结构的称谓区分,不是对这些结构重要性的排列, 也没有排序或比较大小或其他含义。
另外,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,连接可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个结构内部的连通。对于本领域的普通技术人员而言,可以根据本发明的总体思路,联系本方案上下文具体情况理解上述术语在本发明中的具体含义。
实施例一
本实施例提出了一种细胞程序冷冻装置,如图1所示,其包括控制装置1、保温腔3、管架4、细胞保存管6、测温元件、升降装置和底座14。
其中,底座14配置为一平台,使用时安装在桌面上。保温腔3配置为由导热系数低的材料(例如发泡材料)制作而成的筒状结构,其顶部设置有开口;或者,保温腔3还可配置为真空杯。保温腔3内盛放有液氮,液氮的液面通常距保温腔3的上沿具有一定的距离,例如10cm。另外,该保温腔3液面以上的温度分布满足温度分布函数T=a×h 2+b×h+c,其中,h为测温点到保温腔3上边沿的距离,T为所述测温点位置处的温度,a、b、c均为常数并通过实验获得。
其中,所述细胞保存管6用于装载待冷冻的细胞,该细胞保存管6固定安装在管架4上,从而通过管架4带动细胞保存管6在保温腔3内升降,进而进行程序降温。而升降装置则安装在底座14上,该升降装置的输出端与管架4固定连接,以便于带动管架4在保温腔3内升降。本实施例中,配置升降装置包括电动推杆和弯臂9,电动推杆竖直地安装在底座14上,而弯臂9的一端固定在电动推杆的输出端上、另一端与管架4固定连接。如图1所示,电动推杆包括滑块10、螺杆11、导轨12和电机13。其中,导轨12竖直布置并固定在底座14上;螺杆11平行于导轨12,且螺杆11的上端、下端分别通过轴承可转动连接在导轨12顶部的横板以及底座14上;电机13固定在底座14上,且电机13的输出轴与螺杆11的下端通过联轴器或者齿轮传动机构连接;滑块10滑动连接在导轨12上,且滑块10上设置有与螺杆11相适配的螺纹孔,从而使电机13启动后,带动螺杆11转动,再由螺杆11带动滑块10升降,并通过弯臂9带 动管架4及其上安装的细胞保存管6能够在保温腔3内升降。或者在另一个实施例中,升降装置还可以配置为气缸,其缸体固定安装在底座14上,其输出端用于弯臂9的固定。
另外,通过测温元件分别测量细胞保存管6内、外两侧的温度,例如本实施例中,配置测温元件包括第一测温元件7和第二测温元件8,第一测温元件7和第二测温元件8均选择为热电偶,其中,第一测温元件7的探头伸入到细胞保存管6的内部以获取其内侧的温度,而第二测温元件8的探头则位于细胞保存管6的外部以获取其外侧的温度,并且第一测温元件7的探头与第二测温元件8的探头位于同一高度位置。可以理解的是,测温元件至少配置有两个,以便于分别获取同一时刻细胞保存管6内、外两侧的温度,但是,为了提高测温准确率,还可以配置测温元件有多个,从而降低单侧单点位测量的误差。
控制装置1包括一电子设备,该电子设备包括存储有可执行程序代码的存储器以及与该存储器耦合的处理器,另外该处理器还与上述的测温元件以及升降装置电性连接;其中,处理器调用存储器中存储的可执行程序代码,从而执行可执行程序代码所承载的细胞程序冷冻方法的步骤。
使用时,首先根据保温腔3的结构,可事先通过实验获得其温度分布函数T=a×h 2+b×h+c,将待冷冻的细胞以及必要的细胞保护剂一起放置到细胞保存管6中,根据要求的降温速率k获得细胞保护管6的实时下降速度v=(k-b)/2ah,其中,k表示降温速率,h为测温点到保温腔3上边沿的距离,a、b均为常数;再通过控制装置1控制升降装置带动管架4及其上固定安装的细胞保护管6安装该速度下降,其中h可通过电机13的转动角度计算获得,再在下降过程中对比第一测温元件7和第二测温元件8的温度差值,确保该差值低于预设的温差阈值,并当差值达到该温差阈值时,通过控制装置1使细胞保护管6停止下降,如此,直至第一测温元件7测得的温度数据达到冷冻温度为止。可见,本实施例提供的装置,能够使细胞程度冷冻过程得到实时的监控,并能够根据监控结果做出快速的调整,从而使冷冻效果得到提升。
在一个优选实施例中,设置控制装置1还包括显示屏2,显示屏2与控制装置1中的处理器电性连接,并优选为该显示屏2为触摸屏,从而通 过显示屏2对控制参数(降温速率k、温差阈值等)进行输入和修改。
实施例二
实施例二与实施例一的区别在于:本实施例二中,如图1所示,还包括对照管5,该对照管5固定安装在管架4上,且对照管5与细胞保存管6等高布置,使用时,对照管5内填充热物理性质(包括结晶焓、导热系数、比热容等)与细胞保护管6中液体的热物理性质相同的等体积对照溶液,或者直接填充与细胞保护管6相同的等体积液体。另外,在对照管5内布置测温元件(即第一测温元件7),从而以间接测量的方式,将该第一测温元件7测得的温度作为细胞保存管6内侧的温度,同时,取消实施例一中布置在细胞保护管6内侧的第一测温元件7。
如此设置,能够避免测温对待冷冻细胞的影响,从而进一步提高细胞冷冻效果。
实施例三
本实施例提出了一种细胞程序冷冻方法,该方法基于上述实施例一的装置进行实施,该方法可由上述装置中的电子设备执行,并实现如图2所示的步骤,具体步骤包括:
步骤S1、获取降温速率k以及盛放有液氮的保温腔3的温度分布函数T=a×h 2+b×h+c,其中,h为测温点到保温腔3上边沿的距离,T为测温点位置处的温度,a、b、c均为常数;
步骤S2、通过升降装置控制细胞保存管6按照v=(k-b)/2ah的实时速度在保温腔3内下降,并在细胞保存管6下降的过程中,实时获取在同一时刻、同一高度位置上细胞保存管6内、外的温度T 1和T 2
步骤S3、判断T 1与T 2的差值Δt(绝对值)是否超过预设的温差阈值,是则进入S4,否则继续执行S2,直至细胞保存管6到达预设的保温温度T 0的位置;
其中,预设的保温温度T 0的位置h 0可以通过保温腔3的温度分布函数T=a×h 2+b×h+c计算获得;或者,还可以通过以下步骤实现:将实时获取到的T 1与T 0对比,判断T 1是否小于T 0,是则通过升降装置控制细胞保存管6继续下降,否则通过升降装置控制细胞保存管6停止。
步骤S4、通过升降装置控制细胞保存管6停止,直至T 1与T 2的差值 Δt(绝对值)小于等于温差阈值时,则继续S2。
例如,将本实施例提供的方法应用于精子冷冻时:1、取三名志愿者健康的精子各2ml,37℃恒温箱内自然液化;2、再用精子计数板在显微镜下初检精子活动率,每个样本重复两次检测,每次检测计数200个精子,比较两次检测值,直至两次测量值的误差百分比在可以接受的范围内,否则重新制备检测样本,再次检测;3、精子分级方法为a级:快速前进;b级:缓慢前进;c级:原地摆动;d级:不动;通过计算前向运动精子冷冻复苏率(以下简称精子冷冻复苏率),计算方法:精子冷冻复苏率=(冻后a级精子百分率+冻后b级精子百分率)/(冻前a级精子百分率+冻前b级精子百分率);4、与市售精子保护液进行1:1混合,分别装入细胞保护管6中进行冷冻;5、安装第一测温元件7和第二测温元件8,按照上述步骤进行冷冻,具体程序为降温速率采用10K/min,降低到-80℃,持续20min,完成预冷冻,然后继续以10K/min降低到-196℃的液氮中冷冻2周后取出。
另外,设置对照组,采用人工液氮熏蒸法冷冻,即,将装有精子和保护液的冻存管放到距离液氮表面10cm的位置10min,然后把冻存管浸入液氮中,保存2周后取出。
冷冻结束的精子均放入37℃温水中解冻,解冻完成后,再次计算精子冷冻复苏率。结果如表1所示,可以看出,采用本实施例方法进行冷冻的细胞,其复苏率高于采用人工液氮熏蒸法冷冻的细胞。
表1-不同精子冷冻方式复苏率(不同上标代表有显著差异,P<0.05)
Figure PCTCN2022094851-appb-000001
实施例四
实施例四与实施例三的区别在于:本实施例四中,在步骤S2中,细胞保存管6内侧T 1温度并不是直接获取,而是通过以下步骤间接地获得,如图3所示,具体包括以下步骤:
步骤S21、在与细胞保存管6同一高度的位置布置对照管5;
步骤S22、在对照管5内盛放热物理性质与细胞保存管6内的液体一致的对照溶液,或者在对照管5内盛放与细胞保存管6相同的液体;例如,优选在对照管5中加入等量人造精浆混合液;
步骤S23、通过测温元件采集对照管5内液体的温度即为细胞保存管6内侧的T 1温度。
实施例五
实施例五与实施例三的区别在于:本实施例五中,步骤S3中,在细胞保存管6到达预设的保温温度T 0的位置后,还包括步骤S5,如图4所示,具体如下:
步骤S5、等待预设的保温时长后,通过升降装置控制细胞保存管6在保温腔3中上升直至移出保温腔3。
实施例六
本实施例提出了一种细胞程序冷冻系统,该系统用于执行上述各个实施例的方法,如图5所示,系统包括:
获取模块,获取模块用于获取降温速率k、保温腔3的温度分布函数、同一时刻、同一高度位置上细胞保存管6内的温度T 1和细胞保存管6外的温度T 2,以及预设的保温温度T 0、预设的温差阈值和预设的保温时长;
判断模块,判断模块用于判断T 1与T 2的差值Δt是否超过预设的温差阈值,以及用于判断细胞保存管6是否到达预设的保温温度T 0的位置;容易理解的是,上述各个实施例中的差值Δt为一个绝对值。
升降控制模块,升降控制模块用于根据判断模块的判断结果生成升降指令,以便于通过升降指令控制升降装置带动细胞保存管6在保温腔3内升降。
本发明是参照根据本发明实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框 中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上结合附图对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (8)

  1. 一种细胞程序冷冻方法,其特征在于:包括以下步骤:
    S1、获取降温速率k以及盛放有液氮的保温腔的温度分布函数T=a×h 2+b×h+c,其中,h为测温点到保温腔上边沿的距离,T为所述测温点位置处的温度,a、b、c均为常数;
    S2、控制细胞保存管按照v=(k-b)/2ah的实时速度在所述保温腔内下降,并在所述细胞保存管下降的过程中,实时获取在同一时刻、同一高度位置上所述细胞保存管内、外的温度T 1和T 2
    S3、判断所述T 1与所述T 2的差值Δt是否超过预设的温差阈值,是则进入S4,否则继续S2,直至控制所述细胞保存管到达预设的保温温度T 0的位置;
    S4、控制所述细胞保存管停止,直至所述T 1与所述T 2的差值Δt小于或等于所述温差阈值时,继续S2。
  2. 根据权利要求1所述的细胞程序冷冻方法,其特征在于:在S2中,所述T 1温度的获取步骤包括:
    在与所述细胞保存管同一高度的位置布置对照管;
    在所述对照管内盛放热物理性质与所述细胞保存管内的液体的热物理性质一致的对照溶液,或者在所述对照管内盛放与所述细胞保存管相同的液体;
    通过测温元件采集所述对照管内液体的温度为所述T 1温度。
  3. 根据权利要求1所述的细胞程序冷冻方法,其特征在于:在S3中,所述预设的保温温度T 0的位置h 0通过所述保温腔的温度分布函数T=a×h 2+b×h+c计算获得。
  4. 根据权利要求1所述的细胞程序冷冻方法,其特征在于:在S3中,所述控制所述细胞保存管到达预设的保温温度T 0的位置通过以下步骤实现:
    将实时获取到的T 1与T 0对比,判断T 1是否小于T 0,是则控制所述细胞保存管继续下降,否则控制所述细胞保存管停止。
  5. 根据权利要求1所述的细胞程序冷冻方法,其特征在于:在S3中控制所述细胞保存管到达预设的保温温度T 0的位置后,还包括S5:
    S5、等待预设的保温时长后,控制所述细胞保存管在所述保温腔中上升直至移出所述保温腔。
  6. 一种细胞程序冷冻系统,其特征在于:所述系统用于执行如权利要求1-5任一项所述的方法,所述系统包括:
    获取模块,所述获取模块用于获取降温速率k、保温腔的温度分布函数、同一时刻、同一高度位置上细胞保存管内、外的温度T 1和T 2、预设的保温温度T 0、预设的温差阈值以及预设的保温时长;
    判断模块,所述判断模块用于判断所述T 1与所述T 2的差值Δt是否超过预设的温差阈值,以及用于判断所述细胞保存管是否到达预设的保温温度T 0的位置;
    升降控制模块,所述升降控制模块用于根据所述判断模块的判断结果生成升降指令,以便于通过所述升降指令控制升降装置带动所述细胞保存管在所述保温腔内升降。
  7. 一种细胞程序冷冻装置,其特征在于:包括:
    底座;
    保温腔,所述保温腔安装在所述底座上,所述保温腔内盛放有液氮;
    管架,所述管架上安装有细胞保存管;
    测温元件,所述测温元件至少配置有两个,以分别在同一时刻测量所述细胞保存管内、外两侧同一高度位置的温度;
    升降装置,所述升降装置安装在所述底座上,所述升降装置的输出端与所述管架固定连接,以带动所述管架在所述保温腔内升降;
    控制装置,所述控制装置包括电子设备,且所述电子设备与所述测温元件以及所述升降装置电性连接;
    所述电子设备包括存储有可执行程序代码的存储器以及与存储器耦合的处理器;其中,处理器调用存储器中存储的可执行程序代码,执行如权利要求1-5任一项所述的方法。
  8. 根据权利要求7所述的细胞程序冷冻装置,其特征在于:还包括对照管,所述对照管固定安装在所述管架上,且所述对照管与所述细胞保存管等高布置;其中,在所述对照管内布置有所述测温元件以间接地获得所述细胞保存管内侧的温度。
PCT/CN2022/094851 2021-05-27 2022-05-25 一种细胞程序冷冻方法、系统及装置 WO2022247845A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023573073A JP2024520237A (ja) 2021-05-27 2022-05-25 細胞のプログラム凍結方法、そのシステム及びその装置
US18/043,108 US20230309552A1 (en) 2021-05-27 2022-05-25 Method, system and device for programmed cell freezing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110584162.4A CN113142193B (zh) 2021-05-27 2021-05-27 一种细胞程序冷冻方法、系统、设备、介质及装置
CN202110584162.4 2021-05-27

Publications (1)

Publication Number Publication Date
WO2022247845A1 true WO2022247845A1 (zh) 2022-12-01

Family

ID=76877758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094851 WO2022247845A1 (zh) 2021-05-27 2022-05-25 一种细胞程序冷冻方法、系统及装置

Country Status (4)

Country Link
US (1) US20230309552A1 (zh)
JP (1) JP2024520237A (zh)
CN (1) CN113142193B (zh)
WO (1) WO2022247845A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113142193B (zh) * 2021-05-27 2024-01-30 上海理工大学 一种细胞程序冷冻方法、系统、设备、介质及装置
CN113759996B (zh) * 2021-09-07 2022-07-29 上海原能细胞生物低温设备有限公司 样本温度监控方法、装置、电子设备及存储介质
CN113785823B (zh) * 2021-09-14 2022-04-05 山东省海洋科学研究院(青岛国家海洋科学研究中心) 一种使用液氮罐精确降温的实验装置与使用方法
CN115226705B (zh) * 2022-06-20 2024-04-19 浙江师范大学 细胞冻存复苏一体式设备
CN115363017A (zh) * 2022-08-29 2022-11-22 浙江绿蔻生物技术有限公司 一种液氮梯度降温仪
CN117581859B (zh) * 2024-01-18 2024-04-02 山东明洲午马生物科技有限公司 一种马属动物克隆用胚胎冷冻、复苏装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712607A (en) * 1984-11-09 1987-12-15 Freeze Control Pty. Ltd. Cryosystem for biological material
CN102125026A (zh) * 2011-01-26 2011-07-20 沈阳航天新光低温容器制造有限责任公司 程控冷冻仪
CN204377763U (zh) * 2014-12-11 2015-06-10 燕海峰 一种全自动多步程序冷冻仪
CN110476955A (zh) * 2019-09-16 2019-11-22 上海理工大学 一种细胞程序植冰装置
CN113142193A (zh) * 2021-05-27 2021-07-23 上海理工大学 一种细胞程序冷冻方法、系统、设备、介质及装置
CN216164779U (zh) * 2021-05-27 2022-04-05 上海理工大学 一种细胞程序冷冻装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2557870A1 (de) * 1975-12-22 1977-06-23 Linde Ag Verfahren und vorrichtung zum tiefgefrieren von biologischen substanzen
CN205250211U (zh) * 2015-12-24 2016-05-25 陕西干细胞工程有限公司 一种可监控细胞冷冻过程的程序降温盒
CN109275657B (zh) * 2018-09-17 2023-07-04 上海原能细胞生物低温设备有限公司 一种螺旋升降式低温存储装置
CN109708362B (zh) * 2018-09-28 2021-10-29 海尔智家股份有限公司 便携式冷冻装置及便携式冷冻装置制冷控制方法
CN212787180U (zh) * 2020-04-09 2021-03-26 嘉禾弘生(深圳)健康产业集团有限公司 一种免疫细胞储存梯度冷却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712607A (en) * 1984-11-09 1987-12-15 Freeze Control Pty. Ltd. Cryosystem for biological material
CN102125026A (zh) * 2011-01-26 2011-07-20 沈阳航天新光低温容器制造有限责任公司 程控冷冻仪
CN204377763U (zh) * 2014-12-11 2015-06-10 燕海峰 一种全自动多步程序冷冻仪
CN110476955A (zh) * 2019-09-16 2019-11-22 上海理工大学 一种细胞程序植冰装置
CN113142193A (zh) * 2021-05-27 2021-07-23 上海理工大学 一种细胞程序冷冻方法、系统、设备、介质及装置
CN216164779U (zh) * 2021-05-27 2022-04-05 上海理工大学 一种细胞程序冷冻装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENG FUJIN, XING XIAOJUN, WANG HUAQING, LIU ZEQUN: "Study on Freezing Method of Tubules Semen in Style of Intensive Immersion", MODERN JOURNAL OF ANIMAL HUSBANDRY AND VETERINARY MEDICINE, no. 1, 31 January 2013 (2013-01-31), pages 31 - 34, XP093008311, ISSN: 1672-9692 *
LI DUANYANG, ET AL.: "Research on the Method of Rate Cooling in Liquid Nitrogen Tank (with Report of 12 Cases of Cryopreservation of Fetal Brain Cells)", CHINESE JOURNAL OF STEREOTACTIC AND FUNCTIONAL NEUROSURGERY, vol. 8, no. 2, 31 December 1995 (1995-12-31), pages 26 - 27, XP093008308 *

Also Published As

Publication number Publication date
JP2024520237A (ja) 2024-05-23
CN113142193A (zh) 2021-07-23
US20230309552A1 (en) 2023-10-05
CN113142193B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2022247845A1 (zh) 一种细胞程序冷冻方法、系统及装置
CN216164779U (zh) 一种细胞程序冷冻装置
CN107238623B (zh) 一种全自动冻胀仪
CN106644780A (zh) 一种冻融土循环剪切试验装置
CN109387536A (zh) 一种自动化干湿冻融循环试验装置及试验方法
ES2662133T3 (es) Método y aparato para la crioconservación de especímenes biológicos
CN104062201A (zh) 测量真空干燥和真空冷冻干燥过程工艺参数的实验装置
CN208283171U (zh) 一种组合拆卸式材料试验机低温冷冻箱
CN102645450A (zh) 精确测量低温下多物相导热系数的可视化装置
CN105532638A (zh) 一种用于低温保存生物材料的仪器装置
US20150192357A1 (en) Control of freezing and thawing of drug substances using heat flow control
CN206696720U (zh) 一种九孔低温恒温浴装置
CN202562869U (zh) 精确测量低温下多物相导热系数的可视化装置
CN213851258U (zh) 一种细管冻精熏蒸装置
Zhan et al. A study on the relationship between the crystallization characteristics of quenched droplets and the effect of cell cryopreservation with Raman spectroscopy
CN111795909A (zh) 一种筛选控冰材料的方法
CN209311368U (zh) 一种自动化干湿冻融循环试验装置
CN112129615A (zh) 一种低温生物冷热台
CN113406136A (zh) 采用气冻气融法检测材料抗冻性的装置及方法
CN209420746U (zh) 一种人类卵母细胞及胚胎玻璃化冻融装置
CN111189880A (zh) 可考虑对流传热作用的低温裂隙岩体传热试验系统及方法
CN104655675A (zh) 非结合水含量快速测定方法
Vanapalli et al. A tissue snap-freezing apparatus without sacrificial cryogens
CN109374481A (zh) 一种测定器
CN117143722B (zh) 一种多通道冻存细胞同步解冻装置及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810569

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023573073

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810569

Country of ref document: EP

Kind code of ref document: A1