WO2022247654A1 - 纤维复材梁结构及其制备方法、臂节、臂架和机械设备 - Google Patents

纤维复材梁结构及其制备方法、臂节、臂架和机械设备 Download PDF

Info

Publication number
WO2022247654A1
WO2022247654A1 PCT/CN2022/092616 CN2022092616W WO2022247654A1 WO 2022247654 A1 WO2022247654 A1 WO 2022247654A1 CN 2022092616 W CN2022092616 W CN 2022092616W WO 2022247654 A1 WO2022247654 A1 WO 2022247654A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber composite
composite beam
mandrel
main body
angle
Prior art date
Application number
PCT/CN2022/092616
Other languages
English (en)
French (fr)
Inventor
付玲
刘延斌
蒋凯歌
杨吉顺
李佳源
尹莉
徐蔡浩
Original Assignee
中联重科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司 filed Critical 中联重科股份有限公司
Publication of WO2022247654A1 publication Critical patent/WO2022247654A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C27/00Fire-fighting land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/62Constructional features or details
    • B66C23/64Jibs
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/38Cantilever beams, i.e. booms;, e.g. manufacturing processes, forms, geometry or materials used for booms; Dipper-arms, e.g. manufacturing processes, forms, geometry or materials used for dipper-arms; Bucket-arms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing

Definitions

  • the present invention relates to the field of booms of mechanical equipment, in particular to a fiber composite beam structure, and further, the invention also relates to a boom section, a boom, a mechanical equipment and a fiber composite beam structure Manufacturing method.
  • the boom is the key operating part of construction machinery and equipment such as concrete pump trucks, fire trucks, excavators, and cranes, and determines the performance of the entire machine of construction machinery and equipment.
  • Fiber composite materials (hereinafter referred to as “fiber composites”) have the advantages of high specific strength, high specific modulus, good fatigue resistance, good damage safety, good damping and vibration reduction performance, and strong designability. It has been effectively applied in lightweight design and manufacturing, and achieved remarkable results.
  • the purpose of the present invention is to provide a technical solution for improving the anti-fatigue life of the fiber composite jib.
  • the first aspect of the present invention provides a method for fabricating a fiber composite beam structure, the method comprising:
  • Step 1 laying the first fiber composite material on the first mandrel with a slope formed at the end to form a first fiber composite layer, the slope is from one lateral end of the first mandrel to the first core
  • the other lateral end of the mold extends smoothly, and the first fiber composite material layer includes a slope portion corresponding to the slope and a non-slope portion not corresponding to the slope;
  • Step 2 coaxially abutting the second mandrel on the end of the first mandrel formed with the slope, and laying a second fiber composite on the surface of the butted first mandrel and the second mandrel. material to form a second fiber composite layer;
  • the non-slope portion of the first fiber composite layer and the second fiber composite layer form at least a part of a hollow fiber composite beam body, and the slope portion of the first fiber composite layer serves as a
  • the fiber composite reinforced plate of the bending resistance of the fiber composite beam main body the fiber composite reinforced plate is formed in the inner cavity of the fiber composite beam main body, and extends from the transverse direction of the fiber composite beam main body The side extends smoothly and obliquely to the other lateral side of the fiber composite beam main body.
  • the outer surface of the first mandrel is coated with a first release agent; and, before laying the second fiber composite, the second The outer surface of the mandrel is coated with a second release agent.
  • step 2 it also includes:
  • Step 3 pulling out the first mandrel and the second mandrel respectively from both ends of the fiber composite beam body along the longitudinal direction of the fiber composite beam body.
  • step 3 it also includes:
  • Step 4 processing the connecting part on the main body of the fiber composite beam
  • the reinforcing plate is close to the connecting portion of the fiber composite beam main body, and spans the connecting portion along the longitudinal direction of the fiber composite beam main body.
  • the cross-section of the fiber composite beam body is rectangular; on two opposite side walls in the transverse direction of the fiber composite beam body, the laying angle of the fiber composite is a first angle; the fiber composite On the other two opposite side walls in the transverse direction of the beam main body, the laying angle of the fiber composite material is a second angle; wherein, the first angle is smaller than the second angle; the laying angle of the fiber composite material is the fiber The angle between the composite material and the longitudinal direction of the fiber composite beam main body.
  • the first fiber composite material and the second fiber composite material are laid by winding.
  • the second aspect of the present invention provides a fiber composite beam structure, the fiber composite beam structure includes a hollow fiber composite beam body, and a fiber composite reinforcement plate integrally formed with the fiber composite beam body; wherein, The fiber composite reinforced plate extends smoothly and obliquely from one lateral side of the fiber composite beam body to the other lateral side of the fiber composite beam body in the inner cavity of the fiber composite beam body.
  • the fiber composite reinforced plate is close to the connecting portion of the fiber composite beam body, and spans the connecting portion along the longitudinal direction of the fiber composite beam body.
  • the connecting portion is a through hole penetrating through the wall thickness of the fiber composite beam main body.
  • the cross-section of the fiber composite beam body is rectangular, and on two opposite side walls in the transverse direction of the fiber composite beam body, the laying angle of the fiber composite is a first angle; the fiber composite On the other two opposite side walls in the transverse direction of the beam main body, the laying angle of the fiber composite material is a second angle; wherein, the first angle is smaller than the second angle; the laying angle of the fiber composite material is the fiber The angle between the composite material and the longitudinal direction of the fiber composite beam main body.
  • the third aspect of the invention provides a jib section, the jib section includes the fiber composite beam structure according to the second aspect of the invention.
  • the fourth aspect of the present invention provides a boom, the jib including a jib section, and the jib section is the jib section according to the third aspect of the present invention.
  • a fifth aspect of the present invention provides a mechanical device, which includes the boom according to the fourth aspect of the present invention.
  • a fiber composite reinforcement plate integrally formed with the main body of the fiber composite beam is provided, and the fiber composite reinforcement plate is obliquely supported in the inner cavity of the main body of the fiber composite beam.
  • the ends of the fiber composite beam are respectively connected to the lateral sides of the main body of the fiber composite beam, and the reinforcement plate is obliquely supported in the inner cavity of the hollow fiber composite beam main body, which is of great help to significantly improve the bending resistance of the main body of the fiber composite beam. Greatly improved the anti-fatigue life of the fiber composite jib.
  • the fiber composite reinforced plate is integrally formed with the fiber composite beam main body. That is, the fiber composite reinforced plate and the fiber composite beam body are molded in the same manufacturing process, so there is no gap between the fiber composite reinforced plate and the fiber composite beam body and the fiber composite reinforced plate or the fiber composite beam body
  • the cross or vertical bonding interface of fiber composites is the normal bonding interface. Avoid cracking and failure of the fiber composite beam structure due to uneven force on the bonding interface during use, thereby better strengthening the overall structural strength and stiffness of the fiber composite beam structure and improving the fiber composite boom anti-fatigue life.
  • Fig. 1 is a schematic structural view of a fiber composite beam structure provided by an embodiment of the present invention; wherein, 1A is a schematic cross-sectional view of a fiber composite beam structure, and 1B is a schematic longitudinal section view of a fiber composite beam structure.
  • Fig. 2 is a schematic structural view of a fiber composite beam structure provided by another embodiment of the present invention, wherein 2A is a schematic cross-sectional view of a fiber composite beam structure, and 2B is a schematic longitudinal section of a fiber composite beam structure.
  • Fig. 3 is a schematic longitudinal sectional view of the first mandrel provided by an embodiment of the present invention.
  • Fig. 4 is a schematic longitudinal sectional view of a first mandrel wound with a first fiber provided by an embodiment of the present invention.
  • Fig. 5 is a schematic longitudinal sectional view of the second mandrel provided by an embodiment of the present invention after it is docked with the first mandrel wound with the first fiber.
  • Fig. 6 is a schematic structural view of a first mandrel and a second mandrel wound with a second fiber provided by an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of demoulding in the manufacturing method of the fiber composite beam structure provided by an embodiment of the present invention.
  • Fig. 8 is a schematic longitudinal section of a fiber composite beam structure provided by an embodiment of the present invention after demoulding.
  • Fig. 9 is a schematic longitudinal sectional view of the butt joint structure of the first mandrel and the second mandrel provided with a fiber composite reinforced plate provided by another embodiment of the present invention.
  • Fig. 10 is a schematic longitudinal sectional view of the first mandrel and the second mandrel wound with fibers provided by another embodiment of the present invention.
  • Fig. 11 is a schematic demoulding diagram of a manufacturing method of a fiber composite beam structure provided by another embodiment of the present invention.
  • Fig. 12 is a schematic longitudinal sectional view of a demoulded fiber composite beam structure provided by another embodiment of the present invention.
  • orientation words such as “up, down, left, and right” generally refer to up, down, left, and right referred to with reference to the drawings.
  • Inner and outer refer to inner and outer relative to the outline of the part itself.
  • the first aspect of the embodiment of the present invention provides a fiber composite beam structure
  • the fiber composite beam structure includes a hollow fiber composite beam body 5, and a fiber composite beam body 5 integrally formed Fiber composite reinforced plate; wherein, the fiber composite reinforced plate is in the inner cavity of the fiber composite beam main body 5, from the lateral side of the fiber composite beam main body 5 to the fiber composite beam main body The other lateral side of 5 extends smoothly and obliquely.
  • the fiber composite reinforced plate can at least greatly improve the bending resistance of the fiber composite beam main body 5 .
  • the fiber composite beam structure refers to a long structure made of fiber composites, which can be pure fiber composites or composite fiber composites, that is, only part of the fiber composite beam structure is made of fiber composites. material.
  • the fiber composite beam structure is formed by pure fiber composite materials, thereby better realizing the lightweight design requirements of the fiber composite beam structure.
  • the above fiber composite beam structure can be made into the arm of construction machinery equipment.
  • the fiber composite beam structure includes a hollow fiber composite beam body 5, and the cross section of the fiber composite beam body 5 can be any suitable situation, such as circular, elliptical, polygonal, etc.
  • the fiber The cross section of the composite beam main body 5 is rectangular.
  • the hollow fiber composite beam body 5 means that the cavity is inside the fiber composite beam body 5 , extending along the longitudinal direction of the fiber composite beam body 5 , and the extended length is basically equal to the longitudinal length of the fiber composite beam body 5 .
  • the originality of the present invention is that, in the inner cavity of the fiber composite beam main body 5, a fiber composite reinforcement plate integrally formed with the fiber composite beam main body 5 is provided, and the fiber composite reinforcement plate is obliquely supported on the fiber composite beam In the inner cavity of the main body 5 , its two ends are respectively connected to two lateral sides of the fiber composite beam main body 5 , preferably connected to two opposite lateral sides of the fiber composite beam main body 5 .
  • the inventors of the present application have found in the course of practice that during the operation of construction machinery equipment, the boom will be subject to bending moments, torques, etc. generated by the boom's own weight and working load.
  • the fiber composite reinforcement plate is selected as the fiber composite reinforcement plate, and the fiber composite reinforcement plate can be combined with the fiber composite material
  • the beam main body 5 is integrally formed. That is, the fiber composite reinforced plate and the fiber composite beam main body 5 are molded in the same manufacturing process, so there is no connection between the fiber composite reinforced plate and the fiber composite beam main body 5
  • the intersecting or vertical bonding interface of the fiber composite materials of the main body 5 is the normal bonding interface. Avoid cracking and failure of the fiber composite beam structure due to uneven force on the bonded interface during use, thereby better strengthening the overall structural strength and stiffness of the fiber composite beam structure and improving the fiber composite beam structure. bending performance and service life.
  • the reinforcing effect is stronger and can be more Improve the flexural performance of the fiber composite beam structure.
  • a fiber composite reinforcing plate is provided at least at the connecting portion of the fiber composite beam main body 5 .
  • the fiber composite reinforced plate is close to the connecting portion of the fiber composite beam main body 5 and crosses the connecting portion along the longitudinal direction of the fiber composite beam main body 5 , that is, across the connecting portion.
  • the connecting portion is generally a through hole 4 .
  • hinge holes for hinged telescopic cylinders for hinged telescopic cylinders.
  • the strength and stiffness of the connection part of the fiber composite beam main body 5 can be greatly improved, which is beneficial to improve the fatigue life of the fiber composite beam structure.
  • the cross-sectional shape of a fiber composite beam structure can be one of various shapes.
  • the inventors of the present application found in their research that for a fiber composite beam structure with a polygonal cross-sectional shape, the arm During the operation of the boom, the fiber composite beam structure mainly bears the bending moment and torque generated by the self-weight and load of the boom, and the stress state of each side is different.
  • the cross-section of a fiber composite beam structure as an example as a rectangle
  • the upper and lower sides of the fiber composite beam structure mainly bear tensile and compressive loads
  • the left and right sides mainly bear shear loads .
  • the angle of the fiber composite laid on the upper and lower surfaces of the fiber composite beam structure is the first angle; and the angle of the fiber composite laid on the left and right sides of the fiber composite beam structure The angle of the fiber composite is the second angle.
  • the angle of the fiber composite indicates the angle between the fiber composite and the longitudinal direction of the fiber composite beam structure.
  • the first angle is smaller than the second angle.
  • the inventors of the present application found in the research that the first angle ⁇ 1 of fiber composite laying is selected to be 0° ⁇ 1 ⁇ 45°, and the second angle ⁇ 2 is selected to be 45° ⁇ 2 ⁇ 90°, which can better improve the fiber composite. Mechanical properties and service life of beam structures. More preferably, the effect is best when the first angle ⁇ 1 is 0° and the second angle ⁇ 2 is 45°.
  • the fibers in the above-mentioned fiber composites can be of various kinds, such as carbon fibers, glass fibers and aramid fibers, etc., preferably carbon fibers.
  • a fiber composite material is formed, and the fiber composite material is laid according to a certain thickness and number of layers to form a fiber composite material layer, and the multi-layer fiber composite material layers together form a fiber composite material beam structure.
  • resins such as epoxy resins, unsaturated resins and phenolic resins, etc., and epoxy resins are preferred.
  • the upper and lower sides of the above-mentioned fiber composite beam structure refer to the two sides along the horizontal direction when the fiber composite beam structure is in a horizontal state during operation; the left side of the fiber composite beam structure , The two right sides refer to the two sides along the vertical direction when the fiber composite beam structure is in a horizontal state during operation.
  • the through hole 4 of the fiber composite beam main body 5 for connecting the telescopic oil cylinder is opened on the lower side of the fiber composite beam main body 5, and the lower side corresponds to the fiber composite beam structure the lower side of the .
  • the two ends of the fiber composite reinforcement plate need to be respectively connected to the upper and lower sides of the fiber composite beam body 5 .
  • fiber composite laying method manual laying can also be used, and winding laying can also be used, that is, the fiber composite beam main body 5 and the fiber composite reinforcement plate are formed by automatic winding by an automatic winding machine.
  • fiber composite materials can be laid by automatic winding Beam body 5 and fiber composite reinforcement board.
  • the second aspect of the embodiment of the present invention provides a jib section
  • the jib section includes the fiber composite beam structure according to the first aspect of the embodiment of the present invention .
  • a shaft sleeve or the like is installed at the hinge hole of the telescopic oil cylinder of the fiber composite beam main body 5 .
  • the third aspect of the embodiment of the present invention provides a boom, the boom includes a boom section, and the boom section is according to the second aspect of the embodiment of the present invention.
  • arm section For general construction machinery equipment, its jib is usually composed of multiple jib sections connected in series in sequence, and the jib sections connected in series form a foldable jib.
  • the adjacent boom sections are hingedly connected, and the folding action of the boom can be driven by a telescopic oil cylinder.
  • the fourth aspect of the embodiment of the present invention provides a mechanical device, and the mechanical device includes the boom according to the third aspect of the embodiment of the present invention.
  • the mechanical equipment may be, for example, a fire truck, a concrete pump truck, an excavator, a crane, and the like.
  • the fifth aspect of the embodiment of the present invention provides a fiber composite beam structure, which is different from the fiber composite beam structure provided by the first aspect of the embodiment of the present invention, the reinforcing plate is made independently of the fiber composite beam main body 5 .
  • the material of the reinforcing plate can be the same as that of the fiber composite beam main body 5, both of which are made of fiber composite materials, or it can be different from the material of the fiber composite beam main body 5, for example, a metal material is used as the fiber composite reinforcing plate.
  • the reinforcing plate extends smoothly and obliquely from one lateral side of the fiber composite beam body 5 to the other lateral side of the fiber composite beam body 5, thereby lifting the The flexural performance of the fiber composite beam main body 5 is described.
  • the sixth aspect of the embodiment of the present invention provides a method for fabricating a fiber composite beam structure, the method comprising:
  • Step 1 laying the first fiber composite material on the first mandrel 6 with a slope 7 formed at the end to form the first fiber composite layer 1, the slope 7 is from one end of the first mandrel 6 in the transverse direction to The other lateral end of the first mandrel 6 extends smoothly, and the first fiber composite layer 1 includes a sloped portion corresponding to the sloped surface 7 and a non-slope portion not corresponding to the sloped surface 7;
  • Step 2 the second core mold 8 is coaxially connected to the end of the first core mold 6 formed with the slope 7, and the surfaces of the first core mold 6 and the second core mold 8 after the butt joint Laying the second fiber composite material to form the second fiber composite material layer 2;
  • first core film can be hollow or solid, and the slope formed at the end of the first core mold can be a hollow slope defined by the outer contour of the end of the first core mold, or it can be Solid bevel.
  • the slope part of the first fiber composite layer 1 refers to the part of the first fiber composite layer 1 laid on the slope of the first core film 6;
  • the slope part refers to the part of the first fiber composite material layer 1 that is laid on the outer peripheral surface of the first core film 6, and the outer peripheral surface does not include the two end faces of the first core film 6, as shown in Fig. 3-Fig.
  • one end surface of the first core film 6 is a plane perpendicular to the longitudinal direction of the first core film, and the other end surface is a slope inclined to the longitudinal direction of the first core film 6 .
  • the non-slope portion of the first fiber composite layer 1 and the second fiber composite layer 2 constitute at least a part of a hollow fiber composite beam body 5, and the slope portion of the first fiber composite layer 1 is formed on In the inner cavity of the fiber composite beam main body 5, it extends smoothly and obliquely from one lateral side of the fiber composite beam main body 5 to the other lateral side of the fiber composite beam main body 5 to form a The fiber composite reinforced plate for the flexural performance of the fiber composite beam main body 5 . It should be noted that the transverse direction of the fiber composite beam body 5 is perpendicular to the longitudinal extension direction of the fiber composite beam body 5.
  • the fiber The transverse direction of the composite beam body 5 is the radial direction of the fiber composite beam body 5
  • the longitudinal direction is the axial direction of the fiber composite beam body 5 .
  • first fiber composite material and the second fiber composite material can be laid in the direction of manual laying, or can be laid in the way of automatic winding by a winding machine.
  • both the first fiber composite material and the second fiber composite material are laid by winding, so that the production efficiency of the fiber composite material beam structure can be improved and the production cost can be reduced.
  • the first mandrel 6 is fixed, for example, the first mandrel 6 can be fixed on the winding equipment through a jig.
  • the first mandrel 6 has a strip-shaped part, the length of which is less than the length of the second mandrel 8, and in a preferred embodiment, the first mandrel is a strip with a shorter length, and its cross-sectional shape is The shape of a fiber composite beam structure.
  • an inclined surface 7 is formed at the right end of the first mandrel 6 , and the included angle between the inclined plane 7 and the longitudinal direction of the first mandrel 6 is 30°-60°.
  • the upper end and the lower end of the inclined plane 7 are respectively connected to the upper side of the first mandrel 6 and the lower side of the first mandrel 6, and the connection position at the upper end of the inclined plane 7 is preferably Arc transition.
  • the first fiber composite can be laid on the surface of the first mandrel 6 .
  • multiple layers of first fiber composite material are sequentially laid on the entire outer peripheral surface of the first mandrel 6 and the inclined surface 7 from inside to outside to form a first fiber composite material layer 1 .
  • an automatic winding machine can automatically wind multiple layers of the first fiber composite material back and forth on the surface of the first mandrel 6 to form the first fiber composite material layer 1 .
  • the winding angle may be, for example, 0° to 90°.
  • the second core mold 8 is connected to the left end of the first core mold 6, and the second core mold 8 is coaxially arranged with the first core mold 6, and the second core mold 8 is arranged coaxially with the first core mold 6.
  • the outer peripheral surface of the second mandrel 8 is preferably longitudinally flush with the outer peripheral surface of the first fiber composite material layer 1 . It can be understood that, in order to be able to butt the first mandrel 6, the end of the second mandrel 8 facing the first mandrel 6 is also formed as a bevel 7, which is in line with the corresponding bevel 7 of the first fiber composite material layer 1. fit, so that the inclined surface 7 part of the first fiber composite material layer 1 can be clamped between the first core mold 6 and the second core mold 8 .
  • the second fiber composite material layer 2 is laid on the surfaces of the butted first core mold 6 and the second core mold 8 .
  • multiple layers of the second fiber composite can be wound back and forth on the surfaces of the first mandrel 6 and the second mandrel 8 by an automatic winding machine, thereby forming the second fiber composite layer 2 .
  • the first fiber composite layer 1 is laid on the surface of the first mandrel 6 prior to the surface of the second mandrel 8, it can be seen from FIG. 5 that the outer peripheral surface of the first mandrel 6 The thickness of the fiber composite material is greater than the thickness of the fiber composite material on the outer peripheral surface of the second mandrel 8 .
  • the automatic winding machine can be controlled to wind different layers of fiber composites at different positions in the longitudinal direction of the first mandrel 6 and the second mandrel 8 as required, thereby controlling the fiber composite beam body 5 The wall thickness of different parts of the longitudinal direction.
  • the first mandrel 6 and the second mandrel 8 wrapped with fiber composite materials can be put into a curing furnace for heating and curing. It can also be cured by heating methods such as microwave heating and infrared heating.
  • demoulding treatment is required. Specifically, fix the first mandrel 6 and the second mandrel 8 wound with the fiber composite material on the demoulding tool, from both ends of the fiber composite material beam main body 5, along the longitudinal direction of the fiber composite material beam main body 5, respectively Pull out the first core mold 6 and the second core mold 8 .
  • the outer surface of the first mandrel 6 is coated with a first mold release agent and, before winding the second fiber composite material, coat the second release agent on the outer surface of the second mandrel 8 .
  • the surface of the demoulded fiber composite beam main body 5 is polished and beautified, and a connecting part is processed on the fiber composite beam main body 5 , and the connecting part is generally a through hole 4 .
  • the reinforcing plate is close to the connecting portion of the fiber composite beam body 5 and spans the connecting portion along the longitudinal direction of the fiber composite beam body 5 .
  • the included angle between the processed fiber composite reinforced plate and the longitudinal direction of the fiber composite beam main body 5 is 30°-60°.
  • one fiber composite reinforced plate is formed in the main body of the fiber composite beam.
  • Each has a beveled core membrane forming a plurality of fiber composite reinforced panels.
  • the middle mandrel cannot be demoulded, it can be made of a lightweight material, such as a foam material.
  • the seventh aspect of the embodiment of the present invention provides another method for manufacturing a fiber composite reinforced plate, the method comprising:
  • step 1 install a reinforcing plate between the first core mold 6 and the second core mold 8 that are docked with each other, the shapes of the first core mold 6 and the second core mold 8 are the same as those provided by the sixth aspect of the embodiment of the present invention
  • the shapes of the first core mold 6 and the second core mold 8 are the same.
  • the reinforcement board may be, for example, a fiber composite reinforcement board.
  • step 2 fiber composites are laid on the outer peripheral surfaces of the first mandrel 6 and the second mandrel 8 installed with reinforcing plates, so as to form the fiber composite beam body 5 .
  • the multi-layer fiber composite material in a way of automatic winding back and forth by an automatic winding machine, so as to form the fiber composite material beam main body 5 .
  • the winding angle can be 0°-90°, and fiber composites with different angles can also be wound on different sides of the first mandrel 6 and the second mandrel 8 with rectangular cross-sections as required.
  • the fiber composite beam structure provided in the first aspect of the embodiment of the present invention, which will not be repeated here.
  • Step 3 heating and curing the first mandrel 6 and the second mandrel 8 wrapped with the fiber composite material, for example, putting the first mandrel 6 and the second mandrel 8 wrapped with the fiber composite material into a curing furnace Heat curing, or use microwave, infrared and other methods to cure.
  • step 4 fix the first mandrel 6 and the second mandrel 8 wound with fiber composite material on the demoulding tooling, from both ends of the fiber composite beam main body 5, along the fiber composite beam main body 5 and pull out the first mandrel 6 and the second mandrel 8 respectively in the longitudinal direction.
  • the surface of the demoulded fiber composite beam main body 5 is polished and beautified, and the connection part is processed on the fiber composite beam main body 5 , and the connection part is generally a through hole 4 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本发明涉及机械设备的臂架领域,公开了一种纤维复材梁结构及其制备方法、臂节、臂架和机械设备。其中,所述纤维复材梁结构的制作方法包括:步骤1,在端部形成有斜面的第一芯模上敷设第一纤维复材,以形成第一纤维复材层,所述斜面自所述第一芯模的横向一端向所述第一芯模的横向另一端平滑延伸,所述第一纤维复材层包括对应所述斜面的斜面部分以及未对应所述斜面的非斜面部分;步骤2,在所述第一芯模的形成有所述斜面的端部同轴对接第二芯模,并在对接后的第一芯模和所述第二芯模的表面敷设第二纤维复材,以形成第二纤维复材层。本发明提供的技术方案有利于提升纤维复材臂架的抗疲劳寿命。

Description

纤维复材梁结构及其制备方法、臂节、臂架和机械设备
相关申请的交叉引用
本申请要求2021年05月24日提交的中国专利申请202110567218.5的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及机械设备的臂架领域,具体地涉及一种纤维复材梁结构,进一步,本发明还涉及一种臂节、一种臂架、一种机械设备以及一种纤维复材梁结构的制造方法。
背景技术
臂架是混凝土泵车、消防车、挖掘机、起重机等工程机械设备的关键作业部件,决定着工程机械设备的整机的使用性能。
随着经济建设的飞速发展,越来越多的作业场合需要臂架更长的工程机械设备。随着臂架长度的增加,臂架重量以及工作力矩增加,这不仅对底盘结构提出了更高的要求,而且臂架疲劳开裂问题变得更加突出。为了解决这些问题,有必要加强臂架轻量化设计。
纤维复合材料(以下简称“纤维复材”)由于具有高比强度、高比模量,耐疲劳性能好,破损安全性好,阻尼减振性能好,可设计性强等优点,而在臂架轻量化设计与制造中得到有效应用,并取得明显成效。
现有的纤维复材臂架在使用过程中,存在抗疲劳寿命低,可靠性不足的问题。因此,有必要提供一种新的技术方案,以提高纤维复材臂架的抗疲劳寿命。
发明内容
本发明的目的是提供一种技术方案,用于提升纤维复材臂架的抗疲劳寿命。
为了实现上述目的,本发明第一方面提供一种纤维复材梁结构的制作方法,所述方法包括:
步骤1,在端部形成有斜面的第一芯模上敷设第一纤维复材,以形成第一纤维复材层,所述斜面自所述第一芯模的横向一端向所述第一芯模的横向另一端平滑延伸,所述第一纤维复材层包括对应所述斜面的斜面部分以及未对应所述斜面的非斜面部分;
步骤2,在所述第一芯模的形成有所述斜面的端部同轴对接第二芯模,并在对接后的第一芯模和所述第二芯模的表面敷设第二纤维复材,以形成第二纤维复材层;
其中,所述第一纤维复材层的非斜面部分以及所述第二纤维复材层形成中空的纤维复材梁主体的至少一部分,所述第一纤维复材层的斜面部分作为用于提升所述纤维复材梁主体的抗弯性能的纤维复材加强板,该纤维复材加强板形成在所述纤维复材梁主体的内腔中,且自所述纤维复材梁主体的横向一侧向所述纤维复材梁主体的横向另一侧平滑倾斜延伸。
优选地,在敷设所述第一纤维复材之前,在所述第一芯模的外表面涂覆第一脱模剂;并且,在敷设所述第二纤维复材之前,在所述第二芯模的外表面涂覆第二脱模剂。
优选地,所述步骤2之后还包括:
步骤3,将所述第一芯模和所述第二芯模分别自所述纤维复材梁主体的两端沿着所述纤维复材梁主体的纵向向外拔出。
优选地,所述步骤3之后还包括:
步骤4,在所述纤维复材梁主体上加工连接部位;
其中,所述加强板靠近所述纤维复材梁主体的连接部位,并且沿着所述纤维复材梁主体的纵向跨越所述连接部位。
优选地,所述纤维复材梁主体的横截面为矩形;所述纤维复材梁主体的横向的其中两相对侧的侧壁上,纤维复材的敷设角度为第一角度;所述纤维复材梁主体的横向的另外两相对侧的侧壁上,纤维复材的敷设角度为第二角度;其中,所述第一角度小于所述第二角度;所述纤维复材的敷设角度为纤维复材与所述纤维复材梁主体的纵向之间的夹角。
优选地,所述第一纤维复材以及所述第二纤维复材通过缠绕方式敷设。
本发明第二方面提供一种纤维复材梁结构,所述纤维复材梁结构包括中空的纤维复材梁主体,以及与所述纤维复材梁主体一体成型的纤维复材加强板;其中,所述纤维复材加强板在所述纤维复材梁主体的内腔中,自所述纤维复材梁主体的横向一侧向所述纤维复材梁主体 的横向另一侧平滑倾斜延伸。
优选地,所述纤维复材加强板靠近所述纤维复材梁主体的连接部位,并且沿着所述纤维复材梁主体的纵向跨越所述连接部位。
优选地,所述连接部位为贯穿所述纤维复材梁主体的壁厚的通孔。
优选地,所述纤维复材梁主体的横截面为矩形,所述纤维复材梁主体的横向的其中两相对侧的侧壁上,纤维复材的敷设角度为第一角度;所述纤维复材梁主体的横向的另外两相对侧的侧壁上,纤维复材的敷设角度为第二角度;其中,所述第一角度小于所述第二角度;所述纤维复材的敷设角度为纤维复材与所述纤维复材梁主体的纵向之间的夹角。
基于本发明第二方面提供的纤维复材梁结构,本发明第三方面提供一种臂节,所述臂节包括根据本发明第二方面所述的纤维复材梁结构。
基于本发明第三方面提供的臂节,本发明第四方面提供一种臂架,所述臂架包括臂节,所述臂节为根据本发明第三方面所述的臂节。
基于本发明第四方面提供的臂架,本发明第五方面提供一种机械设备,所述机械设备包括根据本发明第四方面所述的臂架。
本发明提供的技术方案具有如下有益效果:
本发明在纤维复材梁主体的内腔中,设置有与纤维复材梁主体一体成型的纤维复材加强板,纤维复材加强板倾斜支撑在纤维复材梁主体的内腔中,其两端分别与纤维复材梁主体的横向两侧相连,在中空的纤维复材梁主体的内腔中倾斜支撑加强板,对显著提升纤维复材梁 主体的抗弯性能具有极大帮助,进而极大提升了纤维复材臂架的抗疲劳寿命。
并且,纤维复材加强板与纤维复材梁主体一体成型。即,纤维复材加强板和纤维复材梁主体在同一制作工序中成型,由此纤维复材加强板与纤维复材梁主体之间不存在与纤维复材加强板或纤维复材梁主体的纤维复材交叉或垂直的胶接界面,即法向胶接界面。避免纤维复材梁结构在使用过程中,由于胶接界面受力不均而产生的开裂失效,从而更好地强化了纤维复材梁结构的整体结构强度和刚度,提高了纤维复材臂架的抗疲劳寿命。
本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明一实施例提供的纤维复材梁结构的结构示意图;其中,1A为纤维复材梁结构的横截面示意图,1B为纤维复材梁结构的纵截面示意图。
图2是本发明另一实施例提供的纤维复材梁结构的结构示意图,其中,2A为纤维复材梁结构的横截示意图,2B为纤维复材梁结构的纵截面示意图。
图3是本发明一实施例提供的第一芯模的纵截面示意图。
图4是本发明一实施例提供的缠绕有第一纤维的第一芯模的纵截面示意图。
图5是本发明一实施例提供的第二芯模与缠绕有第一纤维的第一芯模对接后的纵截面示意图。
图6是本发明一实施例提供的缠绕有第二纤维的第一芯模和第二芯模的结构示意图。
图7是本发明一实施例提供的纤维复材梁结构的制作方法中的脱模示意图。
图8是本发明一实施例提供的脱模后的纤维复材梁结构的纵截面示意图。
图9是本发明另一实施例提供的安装有纤维复材加强板的第一芯模和第二芯模的对接结构的纵截面示意图。
图10是本发明另一实施例提供的缠绕有纤维的第一芯模和第二芯模的纵截面示意图。
图11是本发明另一实施例提供的纤维复材梁结构的制作方法的脱模示意图。
图12是本发明另一实施例提供的脱模后的纤维复材梁结构的纵截面示意图。
附图标记说明
1-第一纤维复材层;2-第二纤维复材层;3-纤维加强板;4-通孔;5-纤维复材梁主体;6-第一芯模;7-斜面;8-第二芯模。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、左、右”通常是指参考附图所指的上、下、左、右。“内、外”是指相对于部件本身轮廓的内、外。
参阅图1,本发明实施例第一方面提供一种纤维复材梁结构,所述纤维复材梁结构包括中空的纤维复材梁主体5,以及与所述纤维复材梁主体5一体成型的纤维复材加强板;其中,所述纤维复材加强板在所述纤维复材梁主体5的内腔中,自所述纤维复材梁主体5的横向一侧向所述纤维复材梁主体5的横向另一侧平滑倾斜延伸。该纤维复材加强板至少能够较大程度上提高所述纤维复材梁主体5的抗弯性能。
其中,纤维复材梁结构指的是用纤维复材制成的长条结构,可以是纯纤维复材,也可以是复合型纤维复材,即纤维复材梁结构的仅部分材料为纤维复材。在本发明优选实施例中,通过纯纤维复材形成纤维复材梁结构,由此可以更好地实现纤维复材梁结构的轻量化设计需求。以上纤维复材梁结构可以制成工程机械设备的臂。
纤维复材梁结构包括中空的纤维复材梁主体5,纤维复材梁主体5的横截面可以是任意合适的情况,例如圆形、椭圆形、多边形等, 在本发明优选实施例中,纤维复材梁主体5的横截面为矩形。中空的纤维复材梁主体5指的是空腔在纤维复材梁主体5内部,沿着纤维复材梁主体5的纵向延伸,延伸的长度基本等于纤维复材梁主体5的纵向长度。
本发明的独创之处在于,在纤维复材梁主体5的内腔中,设置有与纤维复材梁主体5一体成型的纤维复材加强板,纤维复材加强板倾斜支撑在纤维复材梁主体5的内腔中,其两端分别与纤维复材梁主体5的横向两侧相连,优选是与纤维复材梁主体5的横向两相对侧相连。本申请的发明人在实践过程中发现,工程机械设备在作业过程中,臂架会受到由臂架自重及工作载荷等产生的弯矩、扭矩等。为了提高臂架的使用寿命,有必要针对性地提升纤维复材梁结构的抗弯性能。进一步,本申请的发明人在实践中发现,在中空的纤维复材梁主体5的内腔中倾斜支撑加强板,对显著提升纤维复材梁主体5的抗弯性能具有极大帮助,从而极大提升了纤维复材梁主体5的耐疲劳性能和使用寿命。
此外,为了使得倾斜支撑的加强板能够更加可靠地提升纤维复材梁主体5的抗弯性能,在本发明实施例中,加强板选用纤维复材加强板,纤维复材加强板可以与纤维复材梁主体5一体成型。即,纤维复材加强板和纤维复材梁主体5在同一制作工序中成型,由此纤维复材加强板与纤维复材梁主体5之间不存在与纤维复材加强板或纤维复材梁主体5的纤维复材交叉或垂直的胶接界面,即法向胶接界面。避免纤维复材梁结构在使用过程中,由于胶接界面受力不均而产生的开 裂失效,从而更好地强化了纤维复材梁结构的整体结构强度和刚度,提高了纤维复材梁结构的抗弯性能和使用寿命。
在本发明的优选实施例中,当倾斜设置的纤维复材加强板同纤维复材梁主体5的纵向之间的夹角为30°~60°时,其加强的作用效果更强,可以更好地提升纤维复材梁结构的抗弯性能。
以上倾斜支撑的纤维复材加强板的更细节的形状、尺寸和分布方式可以根据实际需要设置。由于纤维复材梁主体5在使用过程中,其连接部位的受力更复杂,受力强度相对更大。因此,在本发明优选实施例中,至少在纤维复材梁主体5的连接部位设置有纤维复材加强板。
具体地,参阅图1,纤维复材加强板靠近所述纤维复材梁主体5的连接部位,并且沿着所述纤维复材梁主体5的纵向跨越所述连接部位,即横跨连接部位。所述连接部位一般为通孔4。例如,用于铰接伸缩油缸的铰接孔。
通过使得纤维复材加强板横跨连接部位,从而可以极大提升纤维复材梁主体5的连接部位的强度和刚度,从而有利于提升纤维复材梁结构的耐疲劳寿命。
如前文所述,纤维复材梁结构的横截面形状可以是多种形状中的一种,本申请的发明人在研究中发现,对于横截面形状为多边形的纤维复材梁结构而言,臂架在作业过程中,纤维复材梁结构主要承担臂架自重及负载产生的弯矩和扭矩,且每个侧面的受力状态不同。以纤维复材梁结构的横截面为矩形为例,在作业过程中,纤维复材梁结构的上、下两个侧面主要承受拉伸和压缩载荷,左、右两个面主要承受 剪切载荷。
为了适应纤维复材梁结构在不同侧面的受力情况,以提高纤维复材梁结构的力学性能和使用寿命。本发明优选实施例中,在纤维复材梁结构的上、下两个面上敷设的纤维复材的角度为第一角度;而在纤维复材梁结构的左、右两个面上敷设的纤维复材的角度为第二角度。其中,纤维复材的角度指示纤维复材与纤维复材梁结构的纵向之间的夹角。
其中,第一角度小于第二角度。本申请的发明人在研究中发现,纤维复材敷设的第一角度α1选择为0°≤α1<45°,第二角度α2选择为45°≤α2≤90°,可以更好地提升纤维复材梁结构的力学性能和使用寿命。更优选地,第一角度α1为0°,第二角度α2为45°时,效果最佳。
上述纤维复材中的纤维可以有多种,例如碳纤维、玻璃纤维以及芳纶纤维等,优选碳纤维。纤维浸泡树脂后形成纤维复材,纤维复材按照一定的厚度和层数铺设形成纤维复材层,多层纤维复材层共同组成纤维复材梁结构。其中,树脂的种类可以有多种,例如环氧树脂、不饱和树脂以及酚醛树脂等,优选环氧树脂。
需要说明的是,上述纤维复材梁结构的上、下两个侧面指的是纤维复材梁结构在作业过程中处于水平状态时,沿水平方向的两个侧面;纤维复材梁结构的左、右两个侧面指的是纤维复材梁结构在作业过程中处于水平状态时,沿竖直方向的两个侧面。
进一步,需要说明的是,一般而言,纤维复材梁主体5的用于连 接伸缩油缸的通孔4,开设在纤维复材梁主体5的下侧面上,该下侧面对应纤维复材梁结构的下侧面。针对这种情况,如果需要加强纤维复材梁主体5的通孔4周围的轻度和刚度,则纤维复材加强板的两端需要分别连接纤维复材梁主体5的上、下两个侧面。
另外,对于纤维复材敷设方式而言,可以采用手动铺设,也可以采用缠绕方式敷设,即,通过自动缠绕机自动缠绕形成纤维复材梁主体5和纤维复材加强板。在本发明优选实施例中,为了提高生产效率,降低制作成本,并进一步实现纤维复材梁结构的轻量化、成本、性能和可靠性的最佳匹配,可通过自动缠绕方式敷设形成纤维复材梁主体5和纤维复材加强板。
基于本发明实施例第一方面提供的纤维复材梁结构,本发明实施例第二方面提供一种臂节,所述臂节包括根据本发明实施例第一方面所述的纤维复材梁结构。为了制作所述臂节,需要在纤维复材梁结构上安装连接部件。例如在纤维复材梁主体5的伸缩油缸铰接孔处安装轴套等。
基于本发明实施例第二方面提供的臂节,本发明实施例第三方面提供一种臂架,所述臂架包括臂节,所述臂节为根据本发明实施例第二方面所述的臂节。对于一般的工程机械设备而言,其臂架通常是由多根臂节依次串联组成,串联相连的臂节组成可折叠的臂架。相邻臂节之间铰接相连,并且臂架的折叠动作可以通过伸缩油缸驱动完成。
基于本发明实施例第三方面提供的臂架,本发明实施例第四方面提供一种机械设备,所述机械设备包括根据本发明实施例第三方面所 述的臂架。所述机械设备例如可以为消防车、混凝土泵车、挖掘机、起重机等。
参阅图2,本发明实施例第五方面提供一种纤维复材梁结构,与本发明实施例第一方面提供的纤维复材梁结构不同,加强板独立于纤维复材梁主体5制作而成。此时,加强板的材质可以与纤维复材梁主体5的材质相同,均通过纤维复材制作,也可以不同于纤维复材梁主体5的材质,例如采用金属材料作为纤维复材加强板。加强板在所述纤维复材梁主体5的内腔中,自所述纤维复材梁主体5的横向一侧向所述纤维复材梁主体5的横向另一侧平滑倾斜延伸,从而提升所述纤维复材梁主体5的抗弯性能。
参阅图3-图8,本发明实施例第六方面提供一种纤维复材梁结构的制作方法,所述方法包括:
步骤1,在端部形成有斜面7的第一芯模6上敷设第一纤维复材,以形成第一纤维复材层1,所述斜面7自所述第一芯模6的横向一端向所述第一芯模6的横向另一端平滑延伸,所述第一纤维复材层1包括对应所述斜面7的斜面部分以及未对应所述斜面7的非斜面部分;
步骤2,在所述第一芯模6的形成有所述斜面7的端部同轴对接第二芯模8,并在对接后的第一芯模6和所述第二芯模8的表面敷设第二纤维复材,以形成第二纤维复材层2;
需要说明的是,第一芯膜可以是空心的,也可以是实心的,第一芯模的端部形成的斜面可以是第一芯模的端部的外轮廓限定的空心斜面,也可以是实体斜面。
其中,所述第一纤维复材层1的斜面部分指的是,第一纤维复材层1的敷设在第一芯膜6的斜面上的部分;所述第一纤维复材层1的非斜面部分指的是,第一纤维复材层1的敷设在第一芯膜6的外周面上的部分,该外周面不包括第一芯膜6的两端端面,在图3-图8所示出的实施例中,第一芯膜6的一端端面为垂直于第一芯膜的纵向的平面,另一端端面为与第一芯膜6的纵向呈倾斜角度的斜面。
所述第一纤维复材层1的非斜面部分以及所述第二纤维复材层2构成中空的纤维复材梁主体5的至少一部分,所述第一纤维复材层1的斜面部分形成在所述纤维复材梁主体5的内腔中,且自所述纤维复材梁主体5的横向一侧向所述纤维复材梁主体5的横向另一侧平滑倾斜延伸,以形成用于提升所述纤维复材梁主体5的抗弯性能的纤维复材加强板。需要说明的是,所述纤维复材梁主体5的横向垂直于所述纤维复材梁主体5的纵向延伸方向,在纤维复材梁主体5的横截面为圆形或等边多边形时,纤维复材梁主体5的横向即为纤维复材梁主体5的径向,纵向即为纤维复材梁主体5的轴向。
其中,第一纤维复材和第二纤维复材可以通过手动铺设的方向敷设,也可以通过缠绕机自动缠绕的方式敷设。在本发明优选实施例中,第一纤维复材和第二纤维复材均通过缠绕方式敷设,由此可以提高纤维复材梁结构的产生效率,降低生产成本。
如图3所示,首先固定第一芯模6,例如可以通过工装夹具将第一芯模6固定在缠绕设备上。第一芯模6具有条状部分,该条状部分的长度小于第二芯模8的长度,在一优选实施例中,第一芯膜为长度 较短的条状,其横截面形状即为纤维复材梁结构的形状。为了形成纤维复材加强板,在第一芯模6的右端形成有斜面7,该斜面7与第一芯模6的纵向之间的夹角为30°~60°。以第一芯模6的横截面为矩形为例,该斜面7的上端和下端分别连接第一芯模6的上侧面和第一芯模6的下侧面,且斜面7上端的连接部位优选为圆弧过渡。
如图4所示,在固定好第一芯模6的位置后,即可在第一芯模6的表面敷设第一纤维复材。具体地,在第一芯模6的整个外周面以及斜面7上由内至外依次敷设多层第一纤维复材,形成第一纤维复材层1。在本发明优选实施里中,可以自动缠绕机在第一芯模6表面自动来回缠绕多层第一纤维复材,以形成第一纤维复材层1。缠绕的角度例如可以为0°~90°。当第一芯模6的横截面为矩形时,还可以根据本发明实施例第一方面所述的纤维复材的敷设角度的需求,在不同的侧面缠绕不同角度的纤维复材。
如图5所示,在第一纤维复材层1敷设好后,在第一芯模6的左端对接第二芯模8,第二芯模8与第一芯模6同轴设置,且第二芯模8的周外面优选为,与第一纤维复材层1的外周面纵向平齐。可以理解的是,为了能够对接第一芯模6,第二芯模8的朝向第一芯模6的一端也形成为斜面7,该斜面7与第一纤维复材层1的对应斜面7相贴合,从而能够将第一纤维复材层1的斜面7部分夹持在第一芯模6和第二芯模8之间。
参阅图6,然后,在对接后的第一芯模6和第二芯模8的表面敷设第二纤维复材层2。优选地,可以通过自动缠绕机在第一芯模6和 第二芯模8的表面来回缠绕多层第二纤维复材,由此构成第二纤维复材层2。需要说明的是,由于第一芯模6的表面先于第二芯模8的表面敷设了第一纤维复材层1,因此,从图5中可以看出,第一芯模6外周面上的纤维复材的厚度大于第二芯模8外周面上的纤维复材的厚度。事实上,在实际操作过程中,可以根据需要控制自动缠绕机在第一芯模6和第二芯模8的纵向的不同部位缠绕不同层数的纤维复材,从而控制纤维复材梁主体5的纵向的不同部位的壁厚。
在纤维复材缠绕完成后,第一纤维复材层1的位于第一芯模6的外周面的部分以及第二纤维复材层2共同构成纤维复材梁主体5,而第一纤维复材层1的位于第一芯模6的斜面7的部分构成纤维复材加强板。
在纤维复材缠绕完成后,还需要进行加热处理,以固化纤维复材梁结构。为此,可以将缠绕有纤维复材的第一芯模6和第二芯模8放入固化炉中加热固化。也可以利用微波加热、红外线加热等加热方式进行固化。
参阅图7,加热固化完成后,需要进行脱模处理。具体地,将缠绕有纤维复材的第一芯模6和第二芯模8固定在脱模工装上,自纤维复材梁主体5的两端,沿着纤维复材梁主体5的纵向分别拔出第一芯模6和第二芯模8。
需要说明的是,为了便于后续的脱模处理,在本发明优选实施例中,在缠绕所述第一纤维复材之前,在所述第一芯模6的外表面涂覆第一脱模剂;并且,在缠绕所述第二纤维复材之前,在所述第二芯模 8的外表面涂覆第二脱模剂。
然后,参阅图8,对脱模后的纤维复材梁主体5的表面进行打磨和美化,并在所述纤维复材梁主体5上加工连接部位,该连接部位一般为通孔4。如图8所示,加强板靠近所述纤维复材梁主体5的连接部位,并且沿着所述纤维复材梁主体5的纵向跨越所述连接部位。
加工完成后的纤维复材加强板与纤维复材梁主体5的纵向之间的夹角为30°~60°。
以上实施例描述了纤维复材梁主体内形成有一个纤维复材加强板的情形。事实上,纤维复材梁主体5内可以具有多个纤维复材加强板。这可以通过在第一芯模6的左端对接两端均具有斜面的第二芯模8来实现。先在第一芯模6的左端斜面上形成第一纤维复材加强板,然后在第二芯模8的左端斜面上形成第二纤维复材加强板,以此类推,依次对接多个两端均具有斜面的芯膜,从而形成多个纤维复材加强板。在这种情况下,由于中间的芯模无法脱模,因此,可以采用轻质材料来制作中间的芯模,例如泡沫材质。
参阅图9-图12,本发明实施例第七方面提供另一种纤维复材加强板的制作方法,所述方法包括:
参阅图9,步骤1,在相互对接的第一芯模6和第二芯模8之间安装加强板,第一芯模6和第二芯模8的形状与本发明实施例第六方面提供的第一芯模6和第二芯模8的形状相同。所述加强板例如可以为纤维复材加强板。
参阅图10,步骤2,在安装有加强板的第一芯模6和第二芯模8 的外周面上敷设纤维复材,以形成纤维复材梁主体5。
其中,优选为通过自动缠绕机来回自动缠绕的方式敷设多层纤维复材,从而形成纤维复材梁主体5。缠绕角度可以为0°~90°,也可以根据需要在横截面为矩形的第一芯模6和第二芯模8的不同侧面缠绕不同角度的纤维复材。具体参阅本发明实施例第一方面提供的纤维复材梁结构,此处不再赘述。
步骤3,对缠绕有纤维复材的第一芯模6和第二芯模8进行加热固化,例如,将缠绕有纤维复材的第一芯模6和第二芯模8放入固化炉中加热固化,或者利用微波、红外线等方式固化。
参阅图11,步骤4,将缠绕有纤维复材的第一芯模6和第二芯模8固定在脱模工装上,自纤维复材梁主体5的两端,沿着纤维复材梁主体5的纵向分别拔出第一芯模6和第二芯模8。
参阅图12,对脱模后的纤维复材梁主体5的表面进行打磨和美化,并在所述纤维复材梁主体5上加工连接部位,该连接部位一般为通孔4。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (13)

  1. 一种纤维复材梁结构的制作方法,其特征在于,所述方法包括:
    步骤1,在端部形成有斜面的第一芯模上敷设第一纤维复材,以形成第一纤维复材层,所述斜面自所述第一芯模的横向一端向所述第一芯模的横向另一端平滑延伸,所述第一纤维复材层包括对应所述斜面的斜面部分以及未对应所述斜面的非斜面部分;
    步骤2,在所述第一芯模的形成有所述斜面的端部同轴对接第二芯模,并在对接后的第一芯模和所述第二芯模的表面敷设第二纤维复材,以形成第二纤维复材层;
    其中,所述第一纤维复材层的非斜面部分以及所述第二纤维复材层形成中空的纤维复材梁主体的至少一部分,所述第一纤维复材层的斜面部分作为用于提升所述纤维复材梁主体的抗弯性能的纤维复材加强板,该纤维复材加强板形成在所述纤维复材梁主体的内腔中,且自所述纤维复材梁主体的横向一侧向所述纤维复材梁主体的横向另一侧平滑倾斜延伸。
  2. 根据权利要求1所述的纤维复材梁结构的制作方法,其特征在于,在敷设所述第一纤维复材之前,在所述第一芯模的外表面涂覆第一脱模剂;并且,在敷设所述第二纤维复材之前,在所述第二芯模的外表面涂覆第二脱模剂。
  3. 根据权利要求1所述的纤维复材梁结构的制作方法,其特征在于,所述步骤2之后还包括:
    步骤3,将所述第一芯模和所述第二芯模分别自所述纤维复材梁主体的两端沿着所述纤维复材梁主体的纵向向外拔出。
  4. 根据权利要求3所述的纤维复材梁结构的制作方法,其特征在于,所述步骤3之后还包括:
    步骤4,在所述纤维复材梁主体上加工连接部位;
    其中,所述加强板靠近所述纤维复材梁主体的连接部位,并且沿着所述纤维复材梁主体的纵向跨越所述连接部位。
  5. 根据权利要求1所述的纤维复材梁结构的制作方法,其特征在于,所述纤维复材梁主体的横截面为矩形;所述纤维复材梁主体的横向的其中两相对侧的侧壁上,纤维复材的敷设角度为第一角度;所述纤维复材梁主体的横向的另外两相对侧的侧壁上,纤维复材的敷设角度为第二角度;其中,所述第一角度小于所述第二角度;所述纤维复材的敷设角度为纤维复材与所述纤维复材梁主体的纵向之间的夹角。
  6. 根据权利要求1所述的纤维复材梁结构的制作方法,其特征在于,所述第一纤维复材以及所述第二纤维复材通过缠绕方式敷设。
  7. 一种纤维复材梁结构,其特征在于,所述纤维复材梁结构包括中空的纤维复材梁主体,以及与所述纤维复材梁主体一体成型的纤维复材加强板;其中,所述纤维复材加强板在所述纤维复材梁主体的内腔中,自所述纤维复材梁主体的横向一侧向所述纤维复材梁主体的横向另一侧平滑倾斜延伸。
  8. 根据权利要求7所述的纤维复材梁结构,其特征在于,所述纤维复材加强板靠近所述纤维复材梁主体的连接部位,并且沿着所述纤维复材梁主体的纵向跨越所述连接部位。
  9. 根据权利要求8所述的纤维复材梁结构,其特征在于,所述连接部位为贯穿所述纤维复材梁主体的壁厚的通孔。
  10. 根据权利要求7所述的纤维复材梁结构,其特征在于,所述纤维复材梁主体的横截面为矩形,所述纤维复材梁主体的横向的其中两相对侧的侧壁上,纤维复材的敷设角度为第一角度;所述纤维复材梁主体的横向的另外两相对侧的侧壁上,纤维复材的敷设角度为第二角度;其中,所述第一角度小于所述第二角度;所述纤维复材的敷设角度为纤维复材与所述纤维复材梁主体的纵向之间的夹角。
  11. 一种臂节,其特征在于,所述臂节包括根据权利要求7-10中任意一项所述的纤维复材梁结构。
  12. 一种臂架,其特征在于,所述臂架包括臂节,所述臂节为根据权利要求11所述的臂节。
  13. 一种机械设备,其特征在于,所述机械设备包括根据权利要求12所述的臂架。
PCT/CN2022/092616 2021-05-24 2022-05-13 纤维复材梁结构及其制备方法、臂节、臂架和机械设备 WO2022247654A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110567218.5A CN115387613A (zh) 2021-05-24 2021-05-24 纤维复材梁结构及其制备方法、臂节、臂架和机械设备
CN202110567218.5 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022247654A1 true WO2022247654A1 (zh) 2022-12-01

Family

ID=84114711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092616 WO2022247654A1 (zh) 2021-05-24 2022-05-13 纤维复材梁结构及其制备方法、臂节、臂架和机械设备

Country Status (2)

Country Link
CN (1) CN115387613A (zh)
WO (1) WO2022247654A1 (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1267943A (en) * 1968-05-29 1972-03-22 Litewate Transp Equipment Corp Improvements in or relating to a hollow reinforced plastics container and a process and an apparatus for making the same
JPS4974289A (zh) * 1972-10-16 1974-07-17
US4308700A (en) * 1979-10-10 1982-01-05 Romig Jr Byron A Fiberglass structural member of layer construction and method of making same
JP2000291203A (ja) * 1999-04-08 2000-10-17 Nippon Steel Corp 断面リブをもつ繊維強化複合材横梁とその製造方法
EP2047971A1 (en) * 2007-10-09 2009-04-15 Saab Ab Method for manufacturing beams of fiber-reinforced composite material
CN101970215A (zh) * 2008-03-12 2011-02-09 空中客车营运有限公司 用于制造一体成型的纤维复合部件的方法
CN201771696U (zh) * 2010-07-12 2011-03-23 内蒙古航天亿久科技发展有限责任公司 一种大型风力发电机组整体叶片
WO2012114190A1 (en) * 2011-02-23 2012-08-30 Cifa Spa Method to make arms in a composite material for the distribution of concrete and arm thus obtained
CN103306044A (zh) * 2013-06-13 2013-09-18 宜兴市华恒高性能纤维织造有限公司 一种用于加固t形截面梁的三维整体预制体
CN104085120A (zh) * 2014-06-30 2014-10-08 江苏恒神纤维材料有限公司 复合材料臂架的制作工艺
CN104494160A (zh) * 2014-11-25 2015-04-08 中联重科股份有限公司 折叠臂架、纤维增强树脂基复合材料臂节及其制造方法
CN206145409U (zh) * 2016-09-03 2017-05-03 厦门市豪尔新材料股份有限公司 一种轻质高强的纤维复材
JP2018024983A (ja) * 2016-08-08 2018-02-15 三井住友建設株式会社 中間定着具及び中間定着具の装着方法
CN108262984A (zh) * 2016-12-31 2018-07-10 郑州吉田专利运营有限公司 一种纤维织物复合材料结构件及其制备方法
CN109664524A (zh) * 2018-12-11 2019-04-23 北京新能源汽车股份有限公司 纤维增强复合材料加强梁的成型工艺及使用该工艺的车辆
CN212400409U (zh) * 2020-05-20 2021-01-26 南京工程学院 一种变截面纤维增强复合材料管
CN216836882U (zh) * 2021-05-24 2022-06-28 中联重科股份有限公司 纤维复材梁结构、臂节、臂架和机械设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5799722B2 (ja) * 2011-09-30 2015-10-28 コベルコ建機株式会社 作業機械
CN202391131U (zh) * 2011-12-01 2012-08-22 中联重科股份有限公司 臂架连接结构、臂架和工程机械
CN203781700U (zh) * 2014-01-14 2014-08-20 徐工集团工程机械股份有限公司 折臂随车起重机主臂
CN204265321U (zh) * 2014-09-15 2015-04-15 中联重科股份有限公司 箱型臂及具有其的起重机械
CN204212434U (zh) * 2014-10-30 2015-03-18 山推工程机械股份有限公司 一种组合式臂架泵
DE102017223230A1 (de) * 2017-12-19 2019-06-19 Putzmeister Engineering Gmbh Mastarm-Segment mit mehrdimensionalem Formteil und Verfahren zum Herstellen eines Mastarm-Segments
CN211530882U (zh) * 2020-04-01 2020-09-18 江苏恒神股份有限公司 一种碳纤维复合材料电机支架
CN112081382B (zh) * 2020-09-23 2021-09-03 中联重科股份有限公司 臂节、臂架以及机械设备

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1267943A (en) * 1968-05-29 1972-03-22 Litewate Transp Equipment Corp Improvements in or relating to a hollow reinforced plastics container and a process and an apparatus for making the same
JPS4974289A (zh) * 1972-10-16 1974-07-17
US4308700A (en) * 1979-10-10 1982-01-05 Romig Jr Byron A Fiberglass structural member of layer construction and method of making same
JP2000291203A (ja) * 1999-04-08 2000-10-17 Nippon Steel Corp 断面リブをもつ繊維強化複合材横梁とその製造方法
EP2047971A1 (en) * 2007-10-09 2009-04-15 Saab Ab Method for manufacturing beams of fiber-reinforced composite material
CN101970215A (zh) * 2008-03-12 2011-02-09 空中客车营运有限公司 用于制造一体成型的纤维复合部件的方法
CN201771696U (zh) * 2010-07-12 2011-03-23 内蒙古航天亿久科技发展有限责任公司 一种大型风力发电机组整体叶片
WO2012114190A1 (en) * 2011-02-23 2012-08-30 Cifa Spa Method to make arms in a composite material for the distribution of concrete and arm thus obtained
CN103306044A (zh) * 2013-06-13 2013-09-18 宜兴市华恒高性能纤维织造有限公司 一种用于加固t形截面梁的三维整体预制体
CN104085120A (zh) * 2014-06-30 2014-10-08 江苏恒神纤维材料有限公司 复合材料臂架的制作工艺
CN104494160A (zh) * 2014-11-25 2015-04-08 中联重科股份有限公司 折叠臂架、纤维增强树脂基复合材料臂节及其制造方法
JP2018024983A (ja) * 2016-08-08 2018-02-15 三井住友建設株式会社 中間定着具及び中間定着具の装着方法
CN206145409U (zh) * 2016-09-03 2017-05-03 厦门市豪尔新材料股份有限公司 一种轻质高强的纤维复材
CN108262984A (zh) * 2016-12-31 2018-07-10 郑州吉田专利运营有限公司 一种纤维织物复合材料结构件及其制备方法
CN109664524A (zh) * 2018-12-11 2019-04-23 北京新能源汽车股份有限公司 纤维增强复合材料加强梁的成型工艺及使用该工艺的车辆
CN212400409U (zh) * 2020-05-20 2021-01-26 南京工程学院 一种变截面纤维增强复合材料管
CN216836882U (zh) * 2021-05-24 2022-06-28 中联重科股份有限公司 纤维复材梁结构、臂节、臂架和机械设备

Also Published As

Publication number Publication date
CN115387613A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
AU2017363223B2 (en) Bolt sleeve connector, blade and manufacturing method thereof and wind turbine generator system
CN101666162A (zh) 一种布料臂架的节臂及其制作方法、混凝土输送机械
US20120074265A1 (en) Nano-reinforced radius filler for an aircraft structure and a method of producing an aircraft structure comprising such filler
KR100715427B1 (ko) 복합재료와 금속으로 이루어진 경량 붐 어셈블리
CN102493651A (zh) 混凝土设备及其臂架
CN216836882U (zh) 纤维复材梁结构、臂节、臂架和机械设备
CN112081382B (zh) 臂节、臂架以及机械设备
JP4554845B2 (ja) 構造物の補強方法
CN111231442A (zh) 以拉挤型材为夹芯的大尺寸多轴向复合材料承重板材及制备方法
WO2022228416A1 (zh) 斗杆及斗杆的生产方法
CN212021859U (zh) 以拉挤型材为夹芯的大尺寸多轴向复合材料承重板材
WO2022247654A1 (zh) 纤维复材梁结构及其制备方法、臂节、臂架和机械设备
US20120129669A1 (en) Composite material roller
CN106703288B (zh) 碳纤维网格复合板材混凝土连续梁制作方法
CN110984578B (zh) 臂架、工程机械和臂架的制造方法
CN211288359U (zh) 用于臂架的连接件、臂架和工程机械
JP2002046993A (ja) 高所作業車のブーム構造
CN214570175U (zh) 副起重臂的臂筒、起重机及其副起重臂
US20210229779A1 (en) Toggle
CN215479347U (zh) 纤维复材梁结构、臂节、臂架和机械设备
CN213477677U (zh) 臂节、臂架以及机械设备
CN213477675U (zh) 纤维复材梁结构、臂节、臂架以及机械设备
CN213477676U (zh) 梁结构、臂节、臂架以及机械设备
CN113685034A (zh) 一种碳纤维复合材料泵车臂架及其制备方法
CN210660120U (zh) 便于加固的盾构隧道管片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810381

Country of ref document: EP

Kind code of ref document: A1