WO2022247632A1 - 一种固态电解质电解电容器 - Google Patents

一种固态电解质电解电容器 Download PDF

Info

Publication number
WO2022247632A1
WO2022247632A1 PCT/CN2022/092114 CN2022092114W WO2022247632A1 WO 2022247632 A1 WO2022247632 A1 WO 2022247632A1 CN 2022092114 W CN2022092114 W CN 2022092114W WO 2022247632 A1 WO2022247632 A1 WO 2022247632A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeating unit
conductive polymer
electrolytic capacitor
electrolyte
solid electrolyte
Prior art date
Application number
PCT/CN2022/092114
Other languages
English (en)
French (fr)
Inventor
赵大成
付铜权
赖俊依
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2022247632A1 publication Critical patent/WO2022247632A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the invention relates to the field of electrolytic capacitors, in particular to a solid electrolyte electrolytic capacitor.
  • Solid electrolytic capacitors are a new type of capacitors developed from liquid electrolytic capacitors. Compared with electrolytes, solid electrolytes have the advantages of high electrical conductivity, low volatility at high temperatures, nonflammability, and good stability at high and low temperatures. Therefore, solid electrolytic capacitors have the advantages of low equivalent series resistance, long life, high upper limit of operating temperature, and good high and low temperature characteristics. And after years of research and development, poly(3,4-dioxyethylenethiophene) (PEDOT) has become the mainstream electrolyte for solid electrolyte electrolytic capacitors due to its excellent properties such as high conductivity.
  • PEDOT poly(3,4-dioxyethylenethiophene)
  • the breakdown voltage of a capacitor is usually closely related to the materials used in the preparation of the capacitor, such as the withstand voltage of the positive electrode material (anode foil), the insulation of the diaphragm, and the withstand voltage capability of the solid electrolyte.
  • the conversion coefficient (the ratio of the withstand voltage of the anode foil to the breakdown voltage of the capacitor) can be used to evaluate the withstand voltage capability of the electrolyte.
  • the conversion coefficient is less than 1.5, it indicates that the withstand voltage of the electrolyte is relatively excellent.
  • the current use of PEDOT-doped sulfonic acid compounds as electrolytes is often only suitable for capacitors prepared with anode foil withstand voltages less than 30V. Therefore, it is extremely important to provide electrolytes with excellent withstand voltage capabilities and suitable for higher anode foil withstand voltages.
  • the technical problem solved by the present invention is to aim at the defect of poor voltage withstand capacity of solid electrolytes in the prior art, thereby providing an electrolyte suitable for anode foil withstand voltages of 32-85V (including end values) and having high operating voltage, low etc.
  • Solid electrolyte electrolytic capacitors with effective series resistance are provided.
  • a solid electrolyte electrolytic capacitor comprising an anode, a cathode, a separator and an electrolyte;
  • the electrolyte comprises a conductive polymer;
  • the conductive polymer comprises First repeating unit:
  • R is a C1-C4 alkyl group
  • the molar proportion of the first repeating unit is greater than or equal to 28%;
  • the withstand voltage of the anode is 32V-85V.
  • the conductive polymer further includes a second repeating unit, and the second repeating unit has the following general structural formula of a monomer:
  • the molar proportion of the first repeating unit is greater than or equal to 28%.
  • the molar proportion of the first repeating unit is greater than or equal to 45%.
  • the electrolyte further includes an additive, and the additive is selected from at least one sulfonic acid anion compound.
  • the additive is selected from at least one of p-toluenesulfonic acid, dodecylsulfonic acid, naphthalenesulfonic acid, camphorsulfonic acid, styrenesulfonic acid, benzenesulfonic acid and its iron salt and ferrous salt .
  • the mass proportion of the conductive polymer is 20%-40%.
  • the mass proportion of the conductive polymer is 25-35%.
  • the anode is made of valve metal, and the valve metal is selected from at least one of aluminum, tantalum, titanium, niobium, zirconium, hafnium, vanadium, molybdenum, and tungsten.
  • the electrolyte of the present invention has excellent withstand voltage capability by adding the first repeating unit with a content greater than or equal to 28%, and combined with the anode foil with a withstand voltage of 32V to 85V, the prepared electrolytic capacitor has Higher breakdown voltage, low equivalent series resistance.
  • This embodiment discloses a solid electrolyte electrolytic capacitor, including an anode, a cathode, a separator and an electrolyte; the electrolyte includes a conductive polymer; the conductive polymer includes a first repeating unit having the following general structural formula of a monomer:
  • R is a C1-C4 alkyl group
  • the molar proportion of the first repeating unit is greater than or equal to 28%;
  • the withstand voltage of the anode is 32V-85V.
  • the conductive polymer in the electrolyte contains the first repeating unit whose molar number is greater than or equal to 28%. Electrolytic capacitors have a higher breakdown voltage with a conversion factor (the ratio of the withstand voltage of the anode foil to the breakdown voltage of the capacitor) of less than 1.5, while the capacitor has a lower equivalent series resistance.
  • the conductive polymer further includes a second repeating unit, and the second repeating unit has the following monomer structure general formula:
  • the conductive polymer in order to obtain a smaller equivalent series resistance for the electrolytic capacitor, is preferably composed of the first repeating unit and the second repeating unit.
  • the second repeating unit has no side chain group, and the conductive polymer molecular chain it contains is more regular, which is conducive to electron transport. Therefore, the conductive polymer composed of the second repeating unit has higher conductivity and can obtain a smaller equivalent Series resistance.
  • the molar proportion of the first repeating unit is greater than or equal to 28%, when the proportion of the first repeating unit When it is less than 28%, the electrolyte withstand voltage capability cannot be applied to capacitors with an anode foil withstand voltage of 32 to 85V.
  • the molar proportion of the first repeating unit is greater than or equal to 45%.
  • the electrolyte further includes an additive, and the additive is selected from at least one sulfonic acid anion compound.
  • Additives can increase the conductivity of conductive polymers.
  • the additive is selected from at least A sort of.
  • the mass proportion of the conductive polymer is 20%-40%.
  • the relationship between the conductivity of the electrolyte and the content of the additive is a parabolic function.
  • the mass fraction of the conductive polymer composed of the first repeating unit and the second repeating unit in the electrolyte is 20%-40%.
  • the mass proportion of the conductive polymer is 25-35%.
  • the anode is composed of a valve metal selected from at least one of aluminum, tantalum, titanium, niobium, zirconium, hafnium, vanadium, molybdenum, and tungsten.
  • valve metal needs to undergo porous treatment before anodic oxidation, so as to enlarge its specific surface area, so that the subsequent adsorption reaction liquid can be polymerized.
  • a solid aluminum electrolytic capacitor which includes an anode, a cathode, an isolation layer and an electrolyte between the two poles, the anode withstand voltage is 32V, and the electrolyte is composed of a conductive polymer and additives;
  • the conductive polymer is composed of the first repeating unit and the second Composed of two repeating units, R in the general formula of the monomer structure of the first repeating unit is a methyl group, the molar ratio of the first repeating unit in the conductive polymer is 50%, and the mass fraction of the conductive polymer in the electrolyte is 30%
  • the additive is a mixture of iron p-toluenesulfonate and ferrous p-toluenesulfonate.
  • a solid aluminum electrolytic capacitor which includes an anode, a cathode, an isolation layer and an electrolyte between the two poles, the anode withstand voltage is 45V, and the electrolyte is composed of a conductive polymer and additives;
  • the conductive polymer is composed of the first repeating unit and the second Composed of two repeating units, R in the general formula of the monomer structure of the first repeating unit is an ethyl group, the molar ratio of the first repeating unit in the conductive polymer is 35%, and the mass fraction of the conductive polymer in the electrolyte is 40%
  • the additive is a mixture of iron p-toluenesulfonate and ferrous p-toluenesulfonate.
  • a solid aluminum electrolytic capacitor which includes an anode, a cathode, and an isolation layer and an electrolyte between the two poles, the anode withstand voltage is 45V, and the electrolyte is composed of a conductive polymer and an additive;
  • the conductive polymer is composed of the first repeating unit, R in the general formula of the monomer structure of the first repeating unit is a propyl group, the molar ratio of the first repeating unit in the conductive polymer is 80%, the mass fraction of the conductive polymer in the electrolyte is 35%, and the additive is A mixture of ferric p-toluenesulfonate and ferrous p-toluenesulfonate.
  • a solid aluminum electrolytic capacitor which includes an anode, a cathode, and an isolation layer and an electrolyte between the two poles.
  • the anode withstand voltage is 51V
  • the electrolyte is composed of a conductive polymer and additives;
  • the conductive polymer is composed of the first repeating unit and the second Composed of two repeating units, R in the general formula of the monomer structure of the first repeating unit is an ethyl group, the molar ratio of the first repeating unit in the conductive polymer is 50%, and the mass fraction of the conductive polymer in the electrolyte is 30%
  • the additive is a mixture of iron p-toluenesulfonate and ferrous p-toluenesulfonate.
  • a solid aluminum electrolytic capacitor which includes an anode, a cathode, and an isolation layer and an electrolyte between the two poles.
  • the anode withstand voltage is 51V
  • the electrolyte is composed of a conductive polymer and additives;
  • the conductive polymer is composed of the first repeating unit and the second Composed of two repeating units, R in the general formula of the monomer structure of the first repeating unit is an ethyl group, the molar ratio of the first repeating unit in the conductive polymer is 28%, and the mass fraction of the conductive polymer in the electrolyte is 25%
  • the additive is a mixture of iron naphthalenesulfonate, ferrous naphthalenesulfonate, and benzenesulfonic acid.
  • a solid aluminum electrolytic capacitor which includes an anode, a cathode, and an isolation layer between the two poles and an electrolyte.
  • the anode withstand voltage is 65V
  • the electrolyte is composed of a conductive polymer and an additive;
  • the conductive polymer is composed of the first repeating unit and Composition of the second repeating unit, R in the general formula of the monomer structure of the first repeating unit is an ethyl group, the molar ratio of the first repeating unit in the conductive polymer is 100%, and the mass fraction of the conductive polymer accounts for the electrolyte
  • the additive is a mixture of iron p-toluenesulfonate and ferrous p-toluenesulfonate.
  • a solid aluminum electrolytic capacitor which includes an anode, a cathode, and an isolation layer and an electrolyte between the two poles, the anode withstand voltage is 85V, and the electrolyte is composed of a conductive polymer and an additive;
  • the conductive polymer is composed of the first repeating unit, R in the general formula of the monomer structure of the first repeating unit is a butyl group, the molar ratio of the first repeating unit in the conductive polymer is 45%, the mass fraction of the conductive polymer in the electrolyte is 35%
  • the additive is A mixture of ferric benzenesulfonate, ferrous benzenesulfonate, and benzenesulfonic acid.
  • a solid aluminum electrolytic capacitor which includes an anode, a cathode, and an isolation layer and an electrolyte between the two poles.
  • the anode withstand voltage is 51V
  • the electrolyte is composed of a conductive polymer and additives;
  • the conductive polymer is composed of the first repeating unit and the second Composed of two repeating units, R in the general formula of the monomer structure of the first repeating unit is a methyl group, the molar ratio of the first repeating unit in the conductive polymer is 50%, and the mass fraction of the conductive polymer in the electrolyte is 27%
  • the additive is a mixture of ferric naphthalenesulfonate, ferrous naphthalenesulfonate, and benzenesulfonic acid.
  • a solid aluminum electrolytic capacitor which includes an anode, a cathode, and an isolation layer and an electrolyte between the two poles, the anode withstand voltage is 51V, and the electrolyte is composed of a conductive polymer and an additive; the conductive polymer is composed of a second repeating unit, The mass fraction of the conductive polymer in the electrolyte is 35%, and the additive is a mixture of iron p-toluenesulfonate and ferrous p-toluenesulfonate.
  • a solid aluminum electrolytic capacitor which includes an anode, a cathode, and an isolation layer and an electrolyte between the two poles, the anode withstand voltage is 24V, and the electrolyte is composed of a conductive polymer and an additive;
  • the conductive polymer is composed of the first repeating unit, R in the first repeating unit is a butyl group, the mass fraction of the conductive polymer in the electrolyte is 35%, and the additive is a mixture of ferric benzenesulfonate, ferrous benzenesulfonate and benzenesulfonic acid.
  • the above embodiments and comparative examples design a capacitor with a capacity of 100 microfarads, test the capacitor's capacity, loss tangent, equivalent series resistance, leakage current, breakdown voltage and other performances, and compare performance differences.
  • test equipment can use Changzhou Tonghui TH2829C automatic component analyzer to test the following electrical performance parameters:
  • Cap capacity (120Hz frequency)
  • ESR equivalent series resistance (100KHz frequency)
  • Breakdown voltage The capacitor is connected to a DC power supply, and the voltage is boosted until the capacitor breaks down. The highest voltage is the breakdown voltage.
  • the conductive polymers of the capacitors in Examples 1-8 all contain the first repeating unit with a molar ratio greater than or equal to 28%, and the withstand voltage of the anode foil is in the range of 32 to 85V. It is found from the data in Table 1 that in Examples 1-8 The ratio of the withstand voltage of the anode foil of the capacitor to the breakdown voltage is less than 1.5, indicating that the electrolytic capacitor has a high withstand voltage; at the same time, the measured ESR is also within the acceptable range (less than 25m ⁇ ).
  • Comparative Example 1 without adding the first repeating unit, its breakdown voltage is only 19V, which is much lower than that of Examples 1-8, and the ratio of the anode foil withstand voltage to breakdown voltage of Comparative Example 1 is 2.68, which is much higher than that of Examples 1-8. 1.5, it shows that by adding the solid electrolyte of the first repeating unit, it can be applied to the anode foil with a withstand voltage of 32-85V, thereby improving the withstand voltage capability of the electrolytic capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

为克服现有固态电解质耐电压能力差的缺陷,提供了一种固态电解质电解电容器,包括阳极、阴极、隔离层和电解质;电解质包括导电聚合物;导电聚合物包含具有如下单体结构通式的第一重复单元:其中,R为C1~C4的烷基;以导电聚合物的总摩尔数为100%计,第一重复单元的摩尔占比大于或等于28%;阳极的耐电压为32V~85V。提高导电聚合物的电导率,使电解电容器具有高工作电压,低等效串联电阻的优点。

Description

一种固态电解质电解电容器 技术领域
本发明涉及电解电容器领域,尤其涉及一种固态电解质电解电容器。
背景技术
电容器作为一种最常见的电子原件之一,广泛应用于各类电子产品中。固态电解电容器是由液态电解电容器发展而来的一种新型电容器。相对于电解液来说,固态电解质具有电导率高、高温不易挥发、不易燃、高低温稳定性好等优点。因此,固态电解电容器具有低等效串联电阻、长寿命、工作温度上限高、高低温特性好等优点。并且经过多年的研究及发展,聚(3,4-二氧乙烯噻吩)(PEDOT)以其高导电率等优良特性成为当前固态电解质电解电容器的主流电解质。
相比较于液态电解电容器,固态电解电容器因缺少电解液的氧化修复介质层的能力,工作中很容易出现击穿失效的现象,所以固态电解电容器的击穿电压是衡量电容器可靠性的一个重要参数。电容器的击穿电压通常与电容器制备所用材料有很大关系,例如正极材料(阳极箔)耐电压、隔膜的绝缘性、固态电解质的耐电压能力。但为了获得较高击穿电压,通过提高阳极箔的耐电压往往不利于电容器尺寸的小型化、同时也不经济;而提升隔膜的绝缘性会极大增加电容器的等效串联电阻,所以实际生产中很少使用上述两种方法。
制备的电容器,可以使用转换系数(阳极箔的耐电压与电容器的击穿电压的比值)来评价电解质的耐电压能力,当转换系数小于1.5时,说明电解质耐电压比较优秀。现有使用PEDOT掺杂磺酸类化合物组作为电解质,往往只适用于阳极箔耐电压小于30V制备的电容器,所以提供耐电压能力优秀、适用更高阳极箔耐压的电解质极为重要。
发明内容
本发明所解决的技术问题是针对现有技术中固态电解质耐电压能力差的缺陷,从而提供一种适用于阳极箔耐电压32~85V(包括端值)的电解质以及具有 高工作电压,低等效串联电阻的固态电解质电解电容器。
本发明的目的通过下述技术方案实现:一种固态电解质电解电容器,包括阳极、阴极、隔离层和电解质;所述电解质包括导电聚合物;所述导电聚合物包含具有如下单体结构通式的第一重复单元:
Figure PCTCN2022092114-appb-000001
其中,R为C1~C4的烷基;
以所述导电聚合物的总摩尔数为100%计,所述第一重复单元的摩尔占比大于或等于28%;
所述阳极的耐电压为32V~85V。
可选的,所述导电聚合物还包括第二重复单元,所述第二重复单元具有如下单体结构通式:
Figure PCTCN2022092114-appb-000002
可选的,以所述第一重复单元和第二重复单元的总摩尔数为100%计,所述第一重复单元的摩尔占比大于或等于28%。
可选的,以所述第一重复单元和第二重复单元的总摩尔数为100%计,所述第一重复单元的摩尔占比大于或等于45%。
可选的,所述电解质还包括添加剂,所述添加剂选自磺酸阴离子类化合物中的至少一种。
可选的,所述添加剂选自对甲苯磺酸、十二烷基磺酸、萘磺酸、樟脑磺酸、苯乙烯磺酸、苯磺酸及其铁盐和亚铁盐中的至少一种。
可选的,以所述电解质的总质量为100%计,所述导电聚合物的质量占比为20%~40%。
可选的,以所述电解质的总质量为100%计,所述导电聚合物的质量占比为25~35%。
可选的,所述阳极由阀金属构成,所述阀金属选自铝、钽、钛、铌、锆、铪、钒、钼、钨中的至少一种。
与现有技术相比,本发明的电解质通过添加含量大于或等于28%的第一重 复单元,其耐电压能力优秀,同时结合耐电压为32V~85V的阳极箔,使所制备的电解电容器具有更高的击穿电压,低等效串联电阻。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方法不限于此。
本实施例公开了一种固态电解质电解电容器,包括阳极、阴极、隔离层和电解质;所述电解质包括导电聚合物;所述导电聚合物包含具有如下单体结构通式的第一重复单元:
Figure PCTCN2022092114-appb-000003
其中,R为C1~C4的烷基;
以所述导电聚合物的总摩尔数为100%计,所述第一重复单元的摩尔占比大于或等于28%;
所述阳极的耐电压为32V~85V。
本发明的固态电解电容器,其电解质中导电聚合物含有摩尔数大于或等于28%的第一重复单元,电解质耐电压能力优秀,同时结合耐电压为32V-85V的阳极箔,可使所制备的电解电容器具有更高的击穿电压,其转换系数(阳极箔的耐电压与电容器的击穿电压的比值)小于1.5,同时电容器具有较低的等效串联电阻。
在一些实施例中,所述导电聚合物还包括第二重复单元,所述第二重复单元的具有如下单体结构通式:
Figure PCTCN2022092114-appb-000004
在一些实施例中,为了使电解电容器获得更小的等效串联电阻,所述导电聚合物优选由第一重复单元和第二重复单元组成。第二重复单元没有侧链基团,其包含的导电聚合物分子链更规整,有利于电子传输,因此第二重复单元组成的导电聚合物具有更高的电导率,可以获得更小的等效串联电阻。
在一些实施例中,以所述第一重复单元和第二重复单元的总摩尔数为100% 计,所述第一重复单元的摩尔占比大于或等于28%,当第一重复单元占比低于28%时,电解质耐电压能力无法适用于阳极箔耐电压32~85V的电容器。
在更优选的实施例中,以所述第一重复单元和第二重复单元的总摩尔数为100%计,所述第一重复单元的摩尔占比大于或等于45%。
在一些实施例中,所述电解质还包括添加剂,所述添加剂选自磺酸阴离子类化合物中的至少一种。添加剂可以提高导电聚合物的导电性。
在一些实施例中,所述添加剂选自对甲苯磺酸、十二烷基磺酸、萘磺酸、樟脑磺酸、苯乙烯磺酸、苯磺酸及其铁盐和亚铁盐中的至少一种。
在一些实施例中,以所述电解质的总质量为100%计,所述导电聚合物的质量占比为20%~40%。
电解质的电导率与添加剂的含量变化关系是一个抛物线形状的函数,当添加剂含量过低或者过高时,都会导致电解质的电导率降低。因此,本发明涉及的电解质中,由第一重复单元和第二重复单元组成的导电聚合物占电解质的质量分数为20%~40%。
作为优选的,在一些实施例中,所述导电聚合物的质量占比为25~35%。
在一些实施例中,所述阳极由阀金属构成,所述阀金属选自铝、钽、钛、铌、锆、铪、钒、钼、钨中的至少一种。
所述阀金属在阳极氧化前要经过多孔化处理,以扩大其比表面积,以便后续吸附反应液进行聚合反应。
以下通过实施例对本发明进行进一步的说明。
实施例1
一种固态铝电解电容器,它包括阳极、阴极,以及位于两极间的隔离层和电解质,其阳极耐电压为32V,电解质由导电聚合物及添加剂组成;该导电聚合物由第一重复单元和第二重复单元组成,第一重复单元的单体结构通式中的R为甲基基团,第一重复单元在导电聚合物中的摩尔占比为50%,导电聚合物占电解质的质量分数为30%,添加剂是对甲基苯磺酸铁、对甲基苯磺酸亚铁的混合物。
实施例2
一种固态铝电解电容器,它包括阳极、阴极,以及位于两极间的隔离层和电解质,其阳极耐电压为45V,电解质由导电聚合物及添加剂组成;该导电聚 合物由第一重复单元和第二重复单元组成,第一重复单元的单体结构通式中的R为乙基基团,第一重复单元在导电聚合物中的摩尔占比为35%,导电聚合物占电解质的质量分数为40%,添加剂是对甲基苯磺酸铁、对甲基苯磺酸亚铁的混合物。
实施例3
一种固态铝电解电容器,它包括阳极、阴极,以及位于两极间的隔离层和电解质,其阳极耐电压为45V,电解质由导电聚合物及添加剂组成;该导电聚合物由第一重复单元组成,第一重复单元的单体结构通式中的R为丙基基团,第一重复单元在导电聚合物中的摩尔占比为80%,导电聚合物占电解质的质量分数为35%,添加剂是对甲基苯磺酸铁、对甲基苯磺酸亚铁的混合物。
实施例4
一种固态铝电解电容器,它包括阳极、阴极,以及位于两极间的隔离层和电解质,其阳极耐电压为51V,电解质由导电聚合物及添加剂组成;该导电聚合物由第一重复单元和第二重复单元组成,第一重复单元的单体结构通式中的R为乙基基团,第一重复单元在导电聚合物中的摩尔占比为50%,导电聚合物占电解质的质量分数为30%,添加剂是对甲基苯磺酸铁、对甲基苯磺酸亚铁的混合物。
实施例5
一种固态铝电解电容器,它包括阳极、阴极,以及位于两极间的隔离层和电解质,其阳极耐电压为51V,电解质由导电聚合物及添加剂组成;该导电聚合物由第一重复单元和第二重复单元组成,第一重复单元的单体结构通式中的R为乙基基团,第一重复单元在导电聚合物中的摩尔占比为28%,导电聚合物占电解质的质量分数为25%,添加剂是萘磺酸铁、萘磺酸亚铁、苯磺酸的混合物。
实施例6
一种固态铝电解电容器,它包括阳极、阴极,以及位于两极间的隔离层和电解质组成,其阳极耐电压为65V,电解质由导电聚合物及添加剂组成;该导电聚合物由第一重复单元和第二重复单元组成,第一重复单元的单体结构通式中的R为乙基基团,第一重复单元在导电聚合物中的摩尔占比为100%,导电聚合物占电解质的质量分数为35%,添加剂是对甲基苯磺酸铁、对甲基苯磺酸亚铁的混合物。
实施例7
一种固态铝电解电容器,它包括阳极、阴极,以及位于两极间的隔离层和电解质,其阳极耐电压为85V,电解质由导电聚合物及添加剂组成;该导电聚合物由第一重复单元组成,第一重复单元的单体结构通式中的R为丁基基团,第一重复单元在导电聚合物中的摩尔占比为45%,导电聚合物占电解质的质量分数为35%,添加剂是苯磺酸铁、苯磺酸亚铁、苯磺酸的混合物。
实施例8
一种固态铝电解电容器,它包括阳极、阴极,以及位于两极间的隔离层和电解质,其阳极耐电压为51V,电解质由导电聚合物及添加剂组成;该导电聚合物由第一重复单元和第二重复单元组成,第一重复单元的单体结构通式中的R为甲基基团,第一重复单元在导电聚合物中的摩尔占比为50%,导电聚合物占电解质的质量分数为27%,添加剂是萘磺酸铁、萘磺酸亚铁、苯磺酸的混合物。
对比例1
一种固态铝电解电容器,它包括阳极、阴极,以及位于两极间的隔离层和电解质,其阳极耐电压为51V,电解质由导电聚合物及添加剂组成;该导电聚合物由第二重复单元组成,导电聚合物占电解质的质量分数为35%,添加剂是对甲基苯磺酸铁、对甲基苯磺酸亚铁的混合物。
对比例2
一种固态铝电解电容器,它包括阳极、阴极,以及位于两极间的隔离层和电解质,其阳极耐电压为24V,电解质由导电聚合物及添加剂组成;该导电聚合物由第一重复单元组成,第一重复单元中的R为丁基基团,导电聚合物占电解质的质量分数为35%,添加剂是苯磺酸铁、苯磺酸亚铁、苯磺酸的混合物。
以上实施例和对比例设计容量为100微法的电容器,测试电容器的容量、损耗角正切、等效串联电阻、漏电流、击穿电压等性能,比较性能差异。
上述实施例和对比例的实验数据填入表1:
表1
Figure PCTCN2022092114-appb-000005
Figure PCTCN2022092114-appb-000006
性能测试:
测试设备可采用常州同惠TH2829C型号自动元件分析仪,测试以下电性能参数:
Cap:容量(120Hz频率)
DF:损耗角正切(120Hz频率)
ESR:等效串联电阻(100KHz频率)
击穿电压:电容器接直流电源,升压直至电容器击穿,最高电压为击穿电压。
对以上实施例及对比例的电容器进行相关性能测试,数据如表2所示:
表2
Figure PCTCN2022092114-appb-000007
Figure PCTCN2022092114-appb-000008
实施例1-8中电容器的导电聚合物均含有摩尔比大于或等于28%的第一重复单元,同时阳极箔耐电压在32~85V范围内,由表1的数据发现实施例1-8中电容器的阳极箔耐电压与击穿电压的比值均小于1.5,说明电解电容器具有较高的耐电压;同时测得的ESR大小也在可接受范围内(小于25mΩ)。
而不添加第一重复单元的对比例1,其击穿电压只有19V远小于实施例1-8的击穿电压,同时对比例1的阳极箔耐电压与击穿电压的比值为2.68,远大于1.5,说明通过添加第一重复单元的固态电解质可以适用于耐电压在32~85V的阳极箔,从而提高电解电容器的耐压能力。
而阳极箔耐电压只有24V的对比例2,即使添加100%的第一重复单元,其击穿电压也难以提高,且等效串联电阻明显过大,说明本申请的将包含第一重复单元的固态电解质和耐电压为32~85V的阳极箔配合使用,可以显著提高电解电容器的耐电压能力、降低等效串联电阻,拓宽固态电解质的使用范围。
从上述实施例以及对比例的结果来看,采用本发明所描述的制作方法,可以得到高工作电压,低等效串联电阻的固态电解电容器,具有很高的实用价值。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种固态电解质电解电容器,其特征在于,包括阳极、阴极、隔离层和电解质;所述电解质包括导电聚合物;所述导电聚合物包含具有如下单体结构通式的第一重复单元:
    Figure PCTCN2022092114-appb-100001
    其中,R为C1~C4的烷基;
    以所述导电聚合物的总摩尔数为100%计,所述第一重复单元的摩尔占比大于或等于28%;
    所述阳极的耐电压为32V~85V。
  2. 根据权利要求1所述的一种固态电解质电解电容器,其特征在于,所述导电聚合物还包括第二重复单元,所述第二重复单元具有如下单体结构通式:
    Figure PCTCN2022092114-appb-100002
  3. 根据权利要求1或2所述的一种固态电解质电解电容器,其特征在于,以所述第一重复单元和第二重复单元的总摩尔数为100%计,所述第一重复单元的摩尔占比大于或等于28%。
  4. 根据权利要求3所述的一种固态电解质电解电容器,其特征在于,以所述第一重复单元和第二重复单元的总摩尔数为100%计,所述第一重复单元的摩尔占比大于或等于45%。
  5. 根据权利要求1所述的一种固态电解质电解电容器,其特征在于,所述电解质还包括添加剂,所述添加剂选自磺酸阴离子类化合物中的至少一种。
  6. 根据权利要求5所述的一种固态电解质电解电容器,其特征在于,所述添加剂选自对甲苯磺酸、十二烷基磺酸、萘磺酸、樟脑磺酸、苯乙烯磺酸、苯磺酸及其铁盐和亚铁盐中的至少一种。
  7. 根据权利要求1所述的一种固态电解质电解电容器,其特征在于,以所述电解质的总质量为100%计,所述导电聚合物的质量占比为20%~40%。
  8. 根据权利要求7所述的一种固态电解质电解电容器,其特征在于,以所述电解质的总质量为100%计,所述导电聚合物的质量占比为25%~35%。
  9. 根据权利要求1所述的一种固态电解质电解电容器,其特征在于,所述阳极由阀金属构成,所述阀金属选自铝、钽、钛、铌、锆、铪、钒、钼、钨中的至少一种。
PCT/CN2022/092114 2021-05-28 2022-05-11 一种固态电解质电解电容器 WO2022247632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110595169.6A CN115410827A (zh) 2021-05-28 2021-05-28 一种固态电解质电解电容器
CN202110595169.6 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022247632A1 true WO2022247632A1 (zh) 2022-12-01

Family

ID=84155287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092114 WO2022247632A1 (zh) 2021-05-28 2022-05-11 一种固态电解质电解电容器

Country Status (2)

Country Link
CN (1) CN115410827A (zh)
WO (1) WO2022247632A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029580A (ja) * 2009-06-30 2011-02-10 Japan Carlit Co Ltd:The 固体電解コンデンサおよびその製造方法
JP2011258808A (ja) * 2010-06-10 2011-12-22 Japan Carlit Co Ltd 固体電解コンデンサの製造方法
CN104040658A (zh) * 2011-12-19 2014-09-10 帝化株式会社 电解电容器及其制造方法
CN105793939A (zh) * 2014-01-16 2016-07-20 松下知识产权经营株式会社 电解电容器及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029580A (ja) * 2009-06-30 2011-02-10 Japan Carlit Co Ltd:The 固体電解コンデンサおよびその製造方法
JP2011258808A (ja) * 2010-06-10 2011-12-22 Japan Carlit Co Ltd 固体電解コンデンサの製造方法
CN104040658A (zh) * 2011-12-19 2014-09-10 帝化株式会社 电解电容器及其制造方法
CN105793939A (zh) * 2014-01-16 2016-07-20 松下知识产权经营株式会社 电解电容器及其制造方法

Also Published As

Publication number Publication date
CN115410827A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
JP5340872B2 (ja) 固体電解コンデンサの製造方法
US9390863B2 (en) Composite electrode and electrolytic capacitor
TWI393156B (zh) 固體電解電容器
CN109192509A (zh) 一种600v高压耐高温长寿命的铝电解电容器及其制造方法
CN108538591A (zh) 一种耐高温的导电高分子聚合物电解电容器及其制备方法
US7656645B2 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor
WO2011121984A1 (en) Solid electrolytic capacitor
JP6802105B2 (ja) 電解コンデンサの駆動用電解液およびそれを用いた電解コンデンサ
WO2022247632A1 (zh) 一种固态电解质电解电容器
TWI464934B (zh) 電解質材料調配物、由此形成之電解質材料聚合物及其用途
US8197886B2 (en) Method of manufacturing solid electrolytic capacitor
CN107017087B (zh) 电容结构
WO2021121174A1 (zh) 一种组合物、电容器用聚合物及电容器
JP2001176758A (ja) 固体電解コンデンサおよびその製造方法とこれに用いる導電性高分子重合用酸化剤溶液
CN111875934B (zh) 导电聚合物组合物以及固态铝电解电容器
JP2003309041A (ja) 固体電解コンデンサ
WO2020262091A1 (ja) 電解コンデンサ
CN102321341B (zh) 导电高分子材料及包括其的电容器
TWI602206B (zh) 電容結構
JP2008262991A (ja) 導電性高分子コンデンサ電解質用組成物およびこれを用いた導電性高分子コンデンサ電解質の製造方法
TWI597313B (zh) 導電組成與電容器
KR20030034977A (ko) 저전압 알루미늄 전해 콘덴서용 전해액 및 이를 함유하는전해콘덴서
WO2022218130A1 (zh) 一种铝电解电容器用分散体及铝电解电容器
JP2024024775A (ja) 電気二重層キャパシタおよびその製造方法
KR960013845B1 (ko) 알루미늄 전해 콘덴서용 전해액 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810359

Country of ref document: EP

Kind code of ref document: A1