WO2022247615A1 - 降低机器人对安装平台作用力的方法、装置及存储介质 - Google Patents

降低机器人对安装平台作用力的方法、装置及存储介质 Download PDF

Info

Publication number
WO2022247615A1
WO2022247615A1 PCT/CN2022/091478 CN2022091478W WO2022247615A1 WO 2022247615 A1 WO2022247615 A1 WO 2022247615A1 CN 2022091478 W CN2022091478 W CN 2022091478W WO 2022247615 A1 WO2022247615 A1 WO 2022247615A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
force
expected
installation platform
parameters
Prior art date
Application number
PCT/CN2022/091478
Other languages
English (en)
French (fr)
Inventor
孙恺
王珂
Original Assignee
苏州艾利特机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州艾利特机器人有限公司 filed Critical 苏州艾利特机器人有限公司
Publication of WO2022247615A1 publication Critical patent/WO2022247615A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Definitions

  • the invention relates to the field of industrial robots, in particular to a method, device and storage medium for reducing the force applied by a robot to an installation platform.
  • Industrial robots are a type of robot widely used in industrial environments. They can be fixed to the installation platform to perform work. During the operation of the robot, a force is exerted on the installation platform, and the force is a variable force. There is force, and the force on the installation platform is different when the robot performs different tasks. Therefore, the installation platform is required to have better rigidity and strength, so that the robot has higher requirements for the deployment environment. For example, when the robot is installed on an AGV (Automated Guided Vehicle) and other carriers, or when the robot is side-mounted or inverted, it is difficult to meet the rigidity and strength requirements of the installation platform, which increases the difficulty of robot deployment.
  • AGV Automate Guided Vehicle
  • the purpose of the present invention is to provide a method and robot for reducing the force applied by the robot to the installation platform, so as to solve the problem that the robot in the prior art has a large force on the installation platform, which makes the rigidity and strength of the installation platform high and increases the The problem with the difficulty of robot deployment.
  • the present invention can adopt the following technical solutions: a method for reducing the force of the robot on the installation platform, the robot is connected to the installation platform, the robot includes a number of joints to provide driving force, and the robot can generate interpolation according to the working path and motion planning parameters Trajectory operation, the method includes: establishing the force model of the robot on the installation platform; obtaining the force threshold of the robot, and the force threshold represents the maximum allowable force of the robot on the installation platform; obtaining the expected joint of the robot according to the motion planning parameters Operating parameters, according to the expected joint operating parameters and the force model, obtain the expected force of the robot on the installation platform; compare the expected force with the force threshold, when the expected force does not exceed the When the force threshold is reached, the robot generates an interpolation trajectory according to the motion planning parameters.
  • the method includes: when the expected force exceeds the force threshold, adjusting the motion planning parameters to change the expected joint operation parameters, reacquiring the expected force of the robot on the installation platform and combining the action Force threshold comparison, when the expected force does not exceed the force threshold, the robot generates an interpolation trajectory based on the adjusted motion planning parameters.
  • the obtaining the force threshold of the robot includes: obtaining the force threshold through the pre-parameter configuration of the robot, and/or obtaining the force threshold through the interaction between the robot and external equipment.
  • joint operating parameters of the robot include at least part of joint speed, joint acceleration and joint position.
  • the present invention can also adopt the following technical solutions: a device for reducing the force of the robot on the installation platform, which is applied to the robot, and the robot is connected to the installation platform, and the device includes: a modeling unit, used to establish The force model; the preset unit is used to obtain the force threshold of the robot, and the force threshold represents the maximum allowable force of the robot on the installation platform; the acquisition unit is used to obtain the expected joint operation parameters of the robot according to the motion planning parameters , according to the expected joint operation parameters and the force model, to obtain the expected force of the robot on the installation platform; the control unit is used to compare the expected force and the force threshold, when the expected force is not When the force threshold is exceeded, the robot generates an interpolation trajectory according to motion planning parameters.
  • a modeling unit used to establish The force model
  • the preset unit is used to obtain the force threshold of the robot, and the force threshold represents the maximum allowable force of the robot on the installation platform
  • the acquisition unit is used to obtain the expected joint operation parameters of the robot according to the motion planning parameters
  • control unit is also used for: when the expected force exceeds the force threshold, adjust the motion planning parameters to change the expected joint operation parameters, and regain the expected force of the robot on the installation platform And compared with the force threshold, when the expected force does not exceed the force threshold, the robot generates an interpolation trajectory according to the adjusted motion planning parameters.
  • the preset unit is used to obtain the force threshold through the pre-configuration of the robot parameters, and/or obtain the force threshold through the interaction between the robot and external equipment.
  • joint operating parameters of the robot include at least part of joint speed, joint acceleration and joint position.
  • the present application may also adopt the following technical solution: a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the steps of any one of the methods described above are implemented.
  • the beneficial effects of the specific embodiments of the present invention are: by setting the force threshold, for different installation platforms, the force of the robot on the installation platform can be conveniently controlled; by comparing the expected force and Force threshold, only when the expected force meets the force threshold, the robot is controlled to run according to the interpolation trajectory.
  • the motion planning parameters are adjusted in time to make the actual force of the robot on the installation platform Always do not exceed the force threshold, so that the robot can adapt to different types of installation platforms, and the robot is easy to deploy.
  • Fig. 1 is the schematic diagram that the robot of one embodiment of the present invention is fixed to the installation platform;
  • Fig. 2 is a schematic diagram of a method for reducing the robot's force on the installation platform according to an embodiment of the present invention
  • Fig. 3 is a flowchart of reducing the robot's force on the installation platform according to an embodiment of the present invention
  • Fig. 4 is a device block diagram of an embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of a robot 100 connected to an installation platform 200.
  • the robot 100 includes several joints 10 to provide driving force.
  • the robot 100 can
  • the working path and motion planning parameters generate interpolation trajectory operation, wherein the working path of the robot 100 is set by the user, for example, the user can usually set the working path of the robot through the teaching pendant, and the robot 100 performs the working task.
  • the robot is configured as Include the corresponding motion planning parameters, or the robot has default motion planning parameters when performing a specific work task, for example, the motion planning parameters can be generated according to the current work task and the configuration of the robot, and the robot 100 generates the interpolation parameters based on the above-mentioned working path and motion planning parameters. Complementing the trajectory, the robot 100 runs based on the interpolation trajectory. In this embodiment, the force exerted by the robot 100 on the installation platform 200 is reduced by modifying the motion planning parameters of the robot 100 .
  • the installation platform 200 can be formed as a common installation form such as a work table or an AGV trolley.
  • the robot's motion planning parameters include joint speed, acceleration, jerk, running time, fusion radius and other related parameter information of the robot operation.
  • the robot's motion planning parameters are the parameters required for the robot to perform motion planning.
  • the motion planning parameters can be used to know the expected joint operating parameters of the robot. When the motion planning parameters of the robot are modified, the joint operating parameters of the robot will also change accordingly.
  • the method includes:
  • the force model of the robot on the installation platform is established, and the force model can output the force of the robot on the installation platform based on the input joint operating parameters;
  • the robot is usually based on Newton
  • the Euler or Lagrange method is used to establish the dynamic model of the robot, which includes the force parameters of the robot on the installation platform, so the force of the robot on the installation platform can be known according to the joint operating parameters;
  • the robot includes default parameter configurations, or the installation platform includes default parameter configurations to indicate the maximum force that the robot and the installation platform can withstand.
  • the robot can communicate with external
  • the interaction of the device to obtain the force threshold can be configured by the user to operate and input related parameters according to the teaching pendant, smart phone, tablet computer, etc., so that the robot can obtain the force threshold, and the robot is restricted in the working process.
  • the force of the platform so that the force on the installation platform does not exceed the force threshold, as long as the stiffness and strength of the installation platform can meet the requirements of the force threshold, the robot can be easily deployed, or, as long as it is updated in time
  • the force threshold can make the robot adapt to various installation platforms
  • the motion planning parameters of the robot include the joint operation parameters of the robot, and the expected joint operation parameters of the robot are obtained according to the motion planning parameters of the robot.
  • the expected joint operating parameters and the corresponding expected force can be calculated in advance to obtain the force that the robot will generate on the installation platform in advance.
  • the expected joint operating parameters indicate the joint operating parameters of the robot in the future.
  • the robot's expected Action force that is, the force that the robot will exert on the installation platform in the future.
  • the robot judges that the expected force on the installation platform in the future does not exceed the force threshold. At this time, when the robot generates an interpolation trajectory based on the current motion planning parameters, the force on the installation platform during the operation of the robot does not exceed the expected force .
  • the expected force exceeds the force threshold
  • adjust the motion planning parameters and generate an interpolation trajectory operation based on the adjusted motion planning parameters, so that the force of the robot on the installation platform does not exceed the force threshold
  • the expected force is the force that the robot will generate on the installation platform at a future moment according to the original motion planning parameters
  • compare the expected force with the force threshold and based on when the expected force is greater than the force threshold
  • Adjust the motion planning parameters and the robot generates an interpolation trajectory based on the adjusted motion planning parameters, so that the robot’s force on the installation platform does not exceed the force threshold, that is, the actual force of the robot on the installation platform is adjusted through the expected force, Make the robot's actual force on the installation platform not exceed the force threshold.
  • the force to be generated by the robot is calculated, and the motion planning parameters are adjusted in time when it exceeds the force threshold, so that the robot's force on the installation platform does not exceed the force threshold in actual operation. , making the robot easy to deploy.
  • the adjustment of the motion planning parameters exemplarily includes, according to the magnitude of the expected force greater than the force threshold, appropriately reducing the corresponding part of the motion planning parameters.
  • the robot can interact through the human-computer interaction interface.
  • the robot can control and interact with the robot through the teach pendant, smart phone or tablet computer.
  • the human-computer interaction interface can display the motion planning parameters during the operation of the robot.
  • Example It includes joint speed, joint acceleration, joint position and other parameters.
  • the user can adjust at least part of the motion planning parameters according to the human-computer interaction interface, so that the robot can control the installation platform.
  • the expected force does not exceed the force threshold, and the force during the actual operation of the robot never exceeds the force threshold.
  • FIG. 3 shows a schematic flow chart of reducing the force of the robot on the installation platform according to an embodiment of the present invention.
  • the force model of the robot 100 on the installation platform 200 is established, the force threshold of the robot is obtained, Obtain the expected force of the robot on the installation platform according to the motion planning parameters and the force model, compare the expected force with the force threshold, and when the expected force does not exceed the force threshold, according to the motion planning parameters and the working path to generate an interpolation trajectory; when the expected force exceeds the force threshold, adjust the motion planning parameters, generate an interpolation trajectory based on the adjusted motion planning parameters and the working path, and run accordingly.
  • the adjustment of the motion planning parameters includes reducing various joint operating parameters of the robot.
  • the joint operating parameters include at least part of joint speed, joint acceleration, and joint position.
  • the expected action force is a function known from the action force model
  • the predicted value determines whether to adjust the motion planning parameters based on the size of the expected force, and based on the adjustment of the motion planning parameters, the actual force of the robot on the installation platform does not exceed the force threshold.
  • the robot calculates the expected force and adjusts the motion planning parameters according to when the expected force is greater than the force threshold, so that the actual force on the installation platform during the operation of the robot does not exceed the force threshold, thereby The requirements of the robot on the rigidity and strength of the installation platform are reduced, making the robot easy to deploy.
  • the specific embodiment of the present application also provides a device for reducing the force applied by the robot to the installation platform, which is applied to the robot, and the robot is connected to the installation platform.
  • the robot is fixed to the installation platform, and the robot includes several joints to provide driving Force, the robot generates an interpolation trajectory operation according to the working path and motion planning parameters.
  • the preset unit 40 is used to obtain the force threshold of the robot 100, and the force threshold represents the maximum allowable force of the robot 100 on the installation platform 200 , by determining the threshold value of the force, the rigidity and strength level required by the robot for the installation platform is determined, and by setting and adjusting the threshold value of the force, the robot can be applied to installation platforms with different stiffnesses and strengths;
  • the acquisition unit 50 It is used to obtain the expected joint operation parameters of the robot according to the motion planning parameters of the robot, and obtain the expected force of the robot on the installation platform according to the expected joint operation parameters and the force model;
  • the control unit 60 is used to compare the expected Action force and the action force threshold.
  • the robot When the expected action force does not exceed the action force threshold, the robot generates an interpolation trajectory according to the motion planning parameters. Further, the control unit 60 is also used to, when the expected force exceeds the force threshold, adjust the motion planning parameters to change the expected joint operation parameters, and regain the expected action of the robot on the installation platform The force is compared with the force threshold. When the expected force does not exceed the force threshold, the robot generates an interpolation trajectory according to the adjusted motion planning parameters.
  • the preset unit 40 is used to interact with an external device to set the force threshold of the robot 100.
  • the external device can be in various forms such as a smart phone, a teaching pendant, etc., and the preset unit communicates with the external device Interactively obtain the force threshold set by the user; or, the preset unit 40 can obtain the default setting parameters of the robot, and the default setting parameters include the force threshold of the robot.
  • the force threshold can be set in various ways to ensure the adaptability and easy deployment of the robot to different installation platforms.
  • the joint operation parameters include at least part of joint velocity, joint acceleration and joint position.
  • the user can adjust the motion planning parameters of the robot through the human-computer interaction interface, and then So that the expected force of the robot does not exceed the force threshold, and the actual force of the robot during the interpolation trajectory always does not exceed the force threshold.
  • the present application also provides a computer-readable storage medium storing a computer program, such as a memory storing a computer program, and the computer program can be executed by a processor to complete any one of the above-mentioned A method to reduce the force exerted by the robot on the installation platform.
  • the storage medium may be a non-transitory computer readable storage medium such as ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, and optical data storage medium. equipment etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种降低机器人对安装平台作用力的方法、装置及存储介质,该方法包括:建立机器人对安装平台的作用力模型;获取机器人的作用力阈值,作用力阈值表示机器人对安装平台的最大允许作用力;根据运动规划参数获取机器人的预期关节运行参数,根据预期关节运行参数和作用力模型,获取机器人对安装平台的预期作用力;比较预期作用力和作用力阈值,当预期作用力不超过作用力阈值时,机器人根据运动规划参数生成插补轨迹运行。该方法能够降低机器人对安装平台的刚度和强度要求,使得机器人易于部署。

Description

降低机器人对安装平台作用力的方法、装置及存储介质 技术领域
本发明涉及工业机器人领域,特别是涉及一种降低机器人对安装平台作用力的方法、装置及存储介质。
背景技术
工业机器人是在工业环境中广泛使用的一类机器人,能够被固定至安装平台以执行工作,机器人运行过程中对安装平台产生作用力,且该作用力为变化的作用力,由于机器人对安装平台存在作用力,且机器人执行不同工作时对安装平台的作用力存在差异,因此要求安装平台具有较好的刚度及强度,使得机器人对部署环境的要求较高,例如当机器人安装于AGV(Automated Guided Vehicle)等载体上执行工作时,或者当机器人侧装、倒装时,要满足安装平台的刚度和强度要求难度较高,从而增加了机器人的部署难度。
因此,有必要设计一种降低机器人对安装平台作用力的方法、装置及存储介质,使得机器人易于部署。
发明内容
鉴于此,本发明的目的在于提供一种降低机器人对安装平台作用力的方法及机器人,以解决现有技术中的机器人对安装平台作用力较大从而使得对安装平台刚度和强度要求高,增加机器人部署难度的问题。
本发明可采用如下技术方案:一种降低机器人对安装平台作用力的方法,所述机器人被连接至安装平台,机器人包括若干关节以提供驱动力,机器人能够根据工作路径与运动规划参数生成插补轨迹运行,所述方法包括:建立机器人对安装平台的作用力模型;获取机器人的作用力阈值,所述作用力阈值表示机器人对安装平台的最大允许作用力;根据运动规划参数获取机器人的预期关节运行参数,根据所述预期关节运行参数和所述作用力模型,获取机器人对安装平台的预期作用力;比较所述预期作用力和所述作用力阈值,当所述预期作用力不超过所述作用力阈值时,机器人根据运动规划参数生成插补轨迹运行。
进一步的,所述方法包括:当所述预期作用力超过所述作用力阈值时,调整所述运动规划参数以改变所述预期关节运行参数,重新获取机器人对安装平台的预期作用力并与作用力阈值比较,当预期作用力不超过作用力阈值 时,机器人根据调整后的运动规划参数生成插补轨迹运行。
进一步的,所述获取机器人的作用力阈值包括:通过机器人的预先参数配置获取作用力阈值,和/或通过机器人与外部设备交互获取作用力阈值。
进一步的,机器人的关节运行参数包括关节速度、关节加速度和关节位置中的至少部分。
本发明还可采用如下技术方案:一种降低机器人对安装平台作用力的装置,应用于机器人,所述机器人被连接至安装平台,所述装置包括:建模单元,用于建立机器人对安装平台的作用力模型;预设单元,用于获取机器人的作用力阈值,所述作用力阈值表示机器人对安装平台的最大允许作用力;获取单元,用于根据运动规划参数获取机器人的预期关节运行参数,根据所述预期关节运行参数和所述作用力模型,获取机器人对安装平台的预期作用力;控制单元,用于比较所述预期作用力和所述作用力阈值,当所述预期作用力不超过所述作用力阈值时,机器人根据运动规划参数生成插补轨迹运行。
进一步的,所述控制单元还用于:当所述预期作用力超过所述作用力阈值时,调整所述运动规划参数以改变所述预期关节运行参数,重新获取机器人对安装平台的预期作用力并与作用力阈值比较,当预期作用力不超过作用力阈值时,机器人根据调整后的运动规划参数生成插补轨迹运行。
进一步的,所述预设单元用于通过机器人的预先参数配置获取作用力阈值,和/或通过机器人与外部设备交互获取作用力阈值。
进一步的,所述机器人的关节运行参数包括关节速度、关节加速度和关节位置中的至少部分。
本申请还可采用如下技术方案:一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现前文中任意一项所述的方法的步骤。
与现有技术相比,本发明具体实施方式的有益效果为:通过设定作用力阈值的方式,针对不同的安装平台,能够便利的控制机器人对安装平台的作用力;通过比较预期作用力和作用力阈值,仅在预期作用力满足作用力阈值时,控制机器人根据插补轨迹运行,在预期作用力不满足作用力阈值时,及时的调整运动规划参数以使得机器人对安装平台的实际作用力始终不超过作用力阈值,以使得机器人能够适应不同类型的安装平台,机器人易于部署。
附图说明
以上所述的本发明的目的、技术方案以及有益效果可以通过下面附图实 现:
图1是本发明一个实施例的机器人固定至安装平台的示意图;
图2是本发明一个实施例的降低机器人对安装平台作用力的方法示意图;
图3是本发明一个实施例的降低机器人对安装平台作用力的流程图;
图4是本发明一个实施例的装置模块图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明保护一种降低机器人对安装平台作用力的方法,参图1,图1示出了机器人100被连接至安装平台200的示意图,机器人100包括若干关节10以提供驱动力,机器人100能够根据工作路径与运动规划参数生成插补轨迹运行,其中,机器人100的工作路径由用户进行设定,例如,用户通常能够通过示教器设定机器人的工作路径,机器人100执行工作任务机器人被配置为包括对应的运动规划参数,或者机器人执行特定工作任务时具有默认的运动规划参数,例如根据当前的工作任务和机器人的配置可生成运动规划参数,机器人100基于上述的工作路径和运动规划参数生成插补轨迹,机器人100基于插补轨迹运行,本实施例中,通过对机器人100的运动规划参数进行修改,使得机器人100对安装平台200的作用力减小。其中,所述安装平台200可以形成为工作桌面、AGV小车等常见安装形式。
其中,机器人的运动规划参数包括关节速度、加速度、加加速度、运行时间、交融半径等机器人运行的相关参数信息,机器人的运动规划参数即机器人执行运动规划时所需的各项参数,通过机器人的运动规划参数可以获知机器人的预期关节运行参数,当修改机器人的运动规划参数后,机器人的关节运行参数也随之发生变化。
本发明的一个实施例中,参图2,所述方法包括:
S1、建立机器人对安装平台的作用力模型;
即根据对机器人的运行参数进行处理和分析,建立机器人的对安装平台的作用力模型,所述作用力模型能够基于输入关节运行参数而输出机器人对 安装平台的作用力;其中,机器人通常根据牛顿欧拉或者拉格朗日方法建立机器人的动力学模型,建立机器人的动力学模型时包括机器人对安装平台的作用力参数,因此根据关节运行参数可以获知机器人对安装平台的作用力;
S2、获取机器人的作用力阈值,所述作用力阈值表示机器人对安装平台的最大允许作用力;
其中,获取机器人作用力的阈值方式有多种,例如机器人包括默认的参数配置,或者安装平台包括默认的参数配置,以指示机器人以及安装平台能够承受的最大作用力,或者,可以通过机器人与外部设备的交互获取作用力阈值,例如,可以根据示教器、智能手机、平板电脑等方式,由用户进行操作输入相关的参数配置,进而机器人能够获取作用力阈值,机器人在工作过程中限制对安装平台的作用力,从而使得安装平台所受到的作用力不超过作用力阈值,只要使得安装平台的刚度和强度能够满足作用力阈值的要求,即能够容易的对机器人进行部署,或者,只要及时更新作用力阈值,便能够使得机器人能够适应各种安装平台;
S3、根据运动规划参数获取机器人的预期关节运行参数,根据所述预期关节运行参数和所述作用力模型,获取机器人对安装平台的预期作用力;
具体的,机器人运动规划参数包括机器人的关节运行参数,根据机器人的运动规划参数获取机器人的预期关节运行参数,所述预期关节运行参数是机器人即将据此运行的关节运行参数,通过机器人即将运行的预期关节运行参数,计算其对应的预期作用力,能够预先获得机器人即将产生的对安装平台的作用力,预期关节运行参数指示机器人未来时刻的关节运行参数,根据预期关节运行参数可以获知机器人的预期作用力,即机器人未来时刻对安装平台的作用力,通过调节预期作用力满足作用力阈值要求,能够使得机器人执行插补轨迹过程中的实时作用力满足作用力阈值要求。
S4、比较所述预期作用力和所述作用力阈值,当所述预期作用力不超过所述作用力阈值时,机器人根据运动规划参数生成插补轨迹运行。
即,机器人判断未来时刻对安装平台的预期作用力不超过作用力阈值,此时机器人根据目前的运动规划参数生成插补轨迹运行时,机器人运行过程中对安装平台的作用力不超过预期作用力。当所述预期作用力超过所述作用力阈值时,调整所述运动规划参数,基于调整后的运动规划参数生成插补轨迹运行,以使得机器人对安装平台的作用力不超过作用力阈值,具体的,所述预期作用力是机器人根据原有的运动规划参数在未来时刻对安装平台产生 的作用力,比较所述预期作用力和作用力阈值,并基于预期作用力大于所述作用力阈值时调整运动规划参数,机器人基于调整后的运动规划参数生成插补轨迹运行,从而使得机器人对安装平台的作用力不超过作用力阈值,也即通过预期作用力调整机器人对安装平台的实际作用力,使得机器人对安装平台的实际作用力不超过作用力阈值。通过根据机器人的作用力模型,对机器人即将产生的作用力进行计算,并在其超过作用力阈值时及时调整运动规划参数,使得机器人在实际运行中,对安装平台的作用力不超过作用力阈值,使得机器人易于部署。具体的,对运动规划参数的调整示例性的包括,根据预期作用力大于作用力阈值的幅度,适当的减小运动规划参数的相应部分。
可理解的,机器人可通过人机交互界面进行交互,例如机器人可以通过示教器、智能手机或平板电脑对机器人进行控制与交互,人机交互界面可以显示机器人运行过程中的运动规划参数,示例性的包括关节速度、关节加速度、关节位置等其他参数,当机器人的预期作用力超过作用力阈值时,用户可以根据人机交互界面调整运动规划参数中的至少部分,以使得机器人对安装平台的预期作用力不超过作用力阈值,机器人实际运行过程中的作用力始终不超过作用力阈值。
参图3,图3示出了本发明一个实施例的降低机器人对安装平台作用力的流程示意图,如前文所述,建立机器人100对安装平台200的作用力模型、获取机器人的作用力阈值、根据运动规划参数和作用力模型获取机器人对安装平台的预期作用力,比较所述预期作用力和作用力阈值,当所述预期作用力不超过所述作用力阈值时,根据所述运动规划参数和工作路径生成插补轨迹运行;当所述预期作用力超过所述作用力阈值时,调整所述运动规划参数,基于调整后的运动规划参数和工作路径生成插补轨迹并据此运行。示例性的,对所述运动规划参数的调整包括减小机器人的各项关节运行参数,具体的,关节运行参数包括关节速度、关节加速度、关节位置中的至少部分,调整所述运动规划参数后,根据调整后的运动规划参数判断预期作用力不超过作用力阈值时,机器人根据调整后的运动规划参数和工作路径生成插补轨迹并据此运行,从而使得机器人运行过程中对安装平台的作用力不超过作用力阈值。也即,通过根据机器人运动规划参数,得知机器人即将运行的未来时刻的预期关节运行参数,根据预期关节运行参数匹配与之对应的预期作用力,该预期作用力是一个根据作用力模型获知的预测值,通过该预期作用力的大小,确定是否对运动规划参数进行调整,以及基于对运动规划参数的调整,使得 机器人对安装平台的实际作用力不超过作用力阈值。
以上优选实施例的有益效果是:机器人通过计算预期作用力,并根据预期作用力大于作用力阈值时调整运动规划参数,使得机器人运行过程中对安装平台的实际作用力不超过作用力阈值,从而减小了机器人对安装平台的刚度和强度的要求,使得机器人易于部署。
本申请具体实施例还提供一种降低机器人对安装平台作用力的装置,应用于机器人,所述机器人被连接至安装平台,参图1,机器人被固定至安装平台,机器人包括若干关节以提供驱动力,机器人根据工作路径与运动规划参数生成插补轨迹运行,参图4,所述装置包括:建模单元30,用于建立机器人100对安装平台200的作用力模型,所述作用力模型能够根据输入的运动规划参数输出机器人100对安装平台200的预期作用力;预设单元40,用于获取机器人100的作用力阈值,所述作用力阈值表示机器人100对安装平台200的最大允许作用力,通过确定所述作用力阈值,机器人对安装平台所需的刚度和强度水平得以确定,通过对作用力阈值的设定和调整,机器人能够适用于不同刚度和强度的安装平台;获取单元50,用于根据机器人的运动规划参数获取机器人的预期关节运行参数,根据所述预期关节运行参数和所述作用力模型,获取机器人对安装平台的预期作用力;控制单元60,用于比较所述预期作用力和所述作用力阈值,当所述预期作用力不超过作用力阈值时,机器人根据运动规划参数生成插补轨迹运行。进一步的,所述控制单元60还用于,当所述预期作用力超过所述作用力阈值时,调整所述运动规划参数以改变所述预期关节运行参数,重新获取机器人对安装平台的预期作用力并与作用力阈值比较,当预期作用力不超过作用力阈值时,机器人根据调整后的运动规划参数生成插补轨迹运行。
进一步的,所述预设单元40用于与外部设备交互设定机器人100的作用力阈值,例如,所述外部设备可以是智能手机、示教器等多种形式,预设单元通过与外部设备交互获取用户设定的作用力阈值;或者,所述预设单元40能够获取机器人的默认设置参数,所述默认设置参数中包括机器人的作用力阈值。所述作用力阈值可通过多种方式设定,以确保机器人对不同安装平台的适应性和易部署性。示例性的,所述关节运行参数包括关节速度、关节加速度和关节位置中的至少部分,当机器人的预期作用力超过作用力阈值时,用户可通过人机交互界面调整机器人的运动规划参数,进而使得机器人的预期作用力不超过作用力阈值,机器人实际根据插补轨迹运行过程中的作用力 始终不超过作用力阈值。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
在示例性实施例中,本申请还提供了一种存储有计算机程序的计算机可读存储介质,例如存储有计算机程序的存储器,所述计算机程序可由处理器执行以完成前文中所述的任意一项降低机器人对安装平台作用力的方法。可选地,存储介质可以是非临时性计算机可读存储介质,例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种降低机器人对安装平台作用力的方法,所述机器人被连接至安装平台,机器人包括若干关节以提供驱动力,机器人能够根据工作路径与运动规划参数生成插补轨迹运行,其特征在于,所述方法包括:
    建立机器人对安装平台的作用力模型;
    获取机器人的作用力阈值,所述作用力阈值表示机器人对安装平台的最大允许作用力;
    根据运动规划参数获取机器人的预期关节运行参数,根据所述预期关节运行参数和所述作用力模型,获取机器人对安装平台的预期作用力;
    比较所述预期作用力和所述作用力阈值,当所述预期作用力不超过所述作用力阈值时,机器人根据运动规划参数生成插补轨迹运行。
  2. 根据权利要求1所述的方法,其特征在于,所述方法包括:
    当所述预期作用力超过所述作用力阈值时,调整所述运动规划参数以改变所述预期关节运行参数,重新获取机器人对安装平台的预期作用力并与作用力阈值比较,当预期作用力不超过作用力阈值时,机器人根据调整后的运动规划参数生成插补轨迹运行。
  3. 根据权利要求1所述的方法,其特征在于,所述获取机器人的作用力阈值包括:通过机器人的预先参数配置获取作用力阈值,和/或通过机器人与外部设备交互获取作用力阈值。
  4. 根据权利要求1所述的方法,其特征在于,机器人的关节运行参数包括关节速度、关节加速度和关节位置中的至少部分。
  5. 一种降低机器人对安装平台作用力的装置,应用于机器人,所述机器人被连接至安装平台,其特征在于,所述装置包括:
    建模单元,用于建立机器人对安装平台的作用力模型;
    预设单元,用于获取机器人的作用力阈值,所述作用力阈值表示机器人对安装平台的最大允许作用力;
    获取单元,用于根据机器人的运动规划参数获取机器人的预期关节运行参数,根据所述预期关节运行参数和所述作用力模型,获取机器人对安装平台的预期作用力;
    控制单元,用于比较所述预期作用力和所述作用力阈值,当所述预期作用力不超过所述作用力阈值时,机器人根据运动规划参数生成插补轨迹运行。
  6. 根据权利要求5所述的装置,其特征在于,所述控制单元还用于:当所述 预期作用力超过所述作用力阈值时,调整所述运动规划参数以改变所述预期关节运行参数,重新获取机器人对安装平台的预期作用力并与作用力阈值比较,当预期作用力不超过作用力阈值时,机器人根据调整后的运动规划参数生成插补轨迹运行。
  7. 根据权利要求5所述的装置,其特征在于,所述预设单元用于通过机器人的预先参数配置获取作用力阈值,和/或通过机器人与外部设备交互获取作用力阈值。
  8. 根据权利要求5所述的装置,其特征在于,所述机器人的关节运行参数包括关节速度、关节加速度和关节位置中的至少部分。
  9. 一种计算机可读存储介质,存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-4中任意一项所述的方法的步骤。
PCT/CN2022/091478 2021-05-28 2022-05-07 降低机器人对安装平台作用力的方法、装置及存储介质 WO2022247615A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110588470.4A CN113021360B (zh) 2021-05-28 2021-05-28 一种降低机器人对安装平台作用力的方法
CN202110588470.4 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022247615A1 true WO2022247615A1 (zh) 2022-12-01

Family

ID=76456154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091478 WO2022247615A1 (zh) 2021-05-28 2022-05-07 降低机器人对安装平台作用力的方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN113021360B (zh)
WO (1) WO2022247615A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113021360B (zh) * 2021-05-28 2021-08-03 苏州艾利特机器人有限公司 一种降低机器人对安装平台作用力的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214749A (en) * 1991-06-12 1993-05-25 Massachusetts Institute Of Technology Dynamic control of a robot with its center of mass decoupled from an end effector by a redundant linkage
CN103869704A (zh) * 2014-04-08 2014-06-18 哈尔滨工业大学 基于扩展雅克比矩阵的空间机器人星臂协调控制方法
CN107436605A (zh) * 2017-07-26 2017-12-05 西北工业大学 考虑多体耦合的水下机器人控制方法
CN108326852A (zh) * 2018-01-16 2018-07-27 西北工业大学 一种多目标优化的空间机械臂轨迹规划方法
CN113021360A (zh) * 2021-05-28 2021-06-25 苏州艾利特机器人有限公司 一种降低机器人对安装平台作用力的方法及机器人

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017209034A1 (de) * 2017-05-30 2018-12-06 Kuka Deutschland Gmbh Manipulatorsystem mit eingabemittel zur kraftreduktion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214749A (en) * 1991-06-12 1993-05-25 Massachusetts Institute Of Technology Dynamic control of a robot with its center of mass decoupled from an end effector by a redundant linkage
CN103869704A (zh) * 2014-04-08 2014-06-18 哈尔滨工业大学 基于扩展雅克比矩阵的空间机器人星臂协调控制方法
CN107436605A (zh) * 2017-07-26 2017-12-05 西北工业大学 考虑多体耦合的水下机器人控制方法
CN108326852A (zh) * 2018-01-16 2018-07-27 西北工业大学 一种多目标优化的空间机械臂轨迹规划方法
CN113021360A (zh) * 2021-05-28 2021-06-25 苏州艾利特机器人有限公司 一种降低机器人对安装平台作用力的方法及机器人

Also Published As

Publication number Publication date
CN113021360B (zh) 2021-08-03
CN113021360A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
KR102517457B1 (ko) 로봇 행동 보정에 기초한 로컬 피쳐 모델의 업데이트
US11000949B2 (en) Robot for controlling learning in view of operation in production line, and method of controlling the same
Kimmel et al. Invariance control for safe human–robot interaction in dynamic environments
WO2022247615A1 (zh) 降低机器人对安装平台作用力的方法、装置及存储介质
CN113568313B (zh) 基于操作意图识别的变导纳辅助大部件装配方法及系统
CN108687767B (zh) 离线编程装置以及离线编程方法
CN109249394A (zh) 基于导纳控制算法的机器人控制方法及系统
WO2021139373A1 (zh) 一种机械臂混杂控制方法、装置及系统
CN111867788B (zh) 控制机器人的方法和系统
JP2018062026A (ja) ロボットの速度や加速度を制限する機能を備えたロボット制御装置
EP3731994B1 (en) Method and apparatus for robotic machining
US9969085B2 (en) Robot control device and method of controlling same
CN113134840A (zh) 一种实时设置力控参数的工业机器人及方法
CN109934155B (zh) 一种基于深度视觉的协作机器人手势识别方法及装置
Chang et al. Nonlinear adaptive control of a flexible manipulator for automated deburring
Lemmerz et al. Human body simulation within a hybrid operating method for a safe and efficient human-robot collaboration
CN114918924B (zh) 机器人牵引示教方法、装置、电子设备及存储介质
JP2021074788A (ja) ロボットシステム
US20140297034A1 (en) System and method for generating teaching command to control robot
US20230294292A1 (en) Robot control apparatus, robot control system, and method for controlling robot
WO2024050729A1 (en) Robot teleoperation system and method
CN112462765B (zh) 机器人及其控制方法、装置以及计算机可读存储介质
CN116175543A (zh) 一种协作机器人控制系统及方法
US20230141048A1 (en) Learning assistance system, learning assistance method, and learning assistance storage medium
US20220410384A1 (en) Force Control Parameter Adjustment Method And Force Control Parameter Adjustment Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE