WO2022247350A1 - 气态污染物的去除结构、放电结构及气体净化装置 - Google Patents

气态污染物的去除结构、放电结构及气体净化装置 Download PDF

Info

Publication number
WO2022247350A1
WO2022247350A1 PCT/CN2022/076049 CN2022076049W WO2022247350A1 WO 2022247350 A1 WO2022247350 A1 WO 2022247350A1 CN 2022076049 W CN2022076049 W CN 2022076049W WO 2022247350 A1 WO2022247350 A1 WO 2022247350A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulating tube
carbon fiber
tube
gaseous pollutants
Prior art date
Application number
PCT/CN2022/076049
Other languages
English (en)
French (fr)
Inventor
肖德玲
王墅
封宗瑜
赵琛
王铭昭
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110573286.2A external-priority patent/CN113117468A/zh
Priority claimed from CN202110573284.3A external-priority patent/CN113145307A/zh
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022247350A1 publication Critical patent/WO2022247350A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/60Use of special materials other than liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/86Electrode-carrying means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present application relates to the technical field of air purifiers, in particular to a structure for removing gaseous pollutants, a discharge structure and a gas purification device.
  • Air purification technology is mainly divided into two categories: consumable type and non-consumable type.
  • Consumable type air purification technology needs to constantly replace the consumables of the purification parts.
  • the price is cheap in the early stage, but the cost in the use process is high;
  • the cost is high, but there is no need to invest in it later.
  • the cost of air purification technology without consumables is lower, and it is also energy-saving and environmentally friendly.
  • Plasma air sterilization and purification technology as a kind of air purification technology without consumables, is a promising high-tech technology in the field of environmental pollution control.
  • Plasma air sterilization and purification technology is to generate high-voltage discharge in the gas phase environment to break down the air to form a plasma environment, and use the electrons and ions in the plasma to collide with the gas molecules in the air to produce a chain chemical reaction, so that the pollutants in the gas Processes such as migration, transformation and harmlessness occur.
  • the plasma is mainly generated on the outer surface of the gaseous pollutant removal structure, and the plasma is easy to diffuse, and the air with pollutants flows through the outer surface of the gaseous pollutant removal structure During the process, the contact time with the plasma is short, the contact area is also small, the sterilization and purification efficiency is low, and it is not suitable for the purification needs of removing organic pollutants such as automobile exhaust and smoke.
  • the technical problem to be solved in this application is to overcome the defects of short contact time and small contact area between air with pollutants and plasma in the prior art, thereby providing a kind of air and plasma with pollutants
  • the removal structure, discharge structure and gas purification device of gaseous pollutants with long contact time and large contact area is to overcome the defects of short contact time and small contact area between air with pollutants and plasma in the prior art, thereby providing a kind of air and plasma with pollutants
  • the present application provides a structure for removing gaseous pollutants, including:
  • An insulating pipe including a lumen, an air inlet and an air outlet connected to the lumen;
  • the first electrode is arranged inside the insulating tube, is electrically connected to the first end of the power supply, and obtains an ionization voltage through the first end;
  • the second electrode is arranged on the outer surface of the insulating tube and is electrically connected to the second end of the power supply.
  • the structure for removing gaseous pollutants provided by this application also includes:
  • the ozone adsorption structure is arranged in the lumen, and the first electrode is arranged between the insulating tube and the ozone adsorption structure.
  • the ozone adsorption structure is a carbon fiber bundle.
  • the ozone adsorption structure further includes a conductive mesh or a conductive pipe for fixing the carbon fiber bundle, and the conductive mesh or conductive pipe is arranged between the carbon fiber bundle and the first electrode.
  • the ozone adsorption structure extends along the axial direction of the lumen.
  • the first electrode is spirally arranged on the inner surface of the insulating tube;
  • the second electrode is helically wound on the outer surface of the insulating tube.
  • the pitch of the first electrode and/or the second electrode arranged in a helical shape is equal.
  • the first electrode is arranged on the inner surface of the insulating tube in a mesh shape
  • the second electrode is arranged on the outer surface of the insulating tube in a mesh shape.
  • the first electrode is etched on the inner surface of the insulating tube; and/or the second electrode is etched on the outer surface of the insulating tube.
  • the first electrode and/or the second electrode are made of nanoscale conductive materials.
  • the nanoscale conductive material includes carbon fiber bundles or nanoscale metal wires.
  • the first electrode is etched on the inner surface of the insulating tube; and/or the second electrode is etched on the outer surface of the insulating tube.
  • the insulating tube is a cylindrical tube or a polygonal column tube.
  • the length of the insulating tube is at least 5 times the inner diameter of the insulating tube.
  • the present application also provides a discharge structure, including:
  • a plurality of gaseous pollutant removal structures mentioned above are connected as a whole through a fixed structure.
  • multiple gaseous pollutant removal structures are arranged horizontally or vertically through the fixed structure.
  • the discharge structure provided by this application, the fixed structure includes:
  • the first fixing frame is provided with a plurality of first fixing connection holes
  • the second fixed frame, the second fixed frame is vertically opposite to the first fixed frame, and the second fixed frame is provided with a plurality of second fixed connection holes, and each second connection hole is respectively connected to the corresponding first fixed connection hole.
  • each gaseous pollutant removal structure is connected in the first fixed connection hole, and the other end is connected in the second fixed connection hole corresponding to the first fixed connection hole.
  • the present application also provides a gas purification device, comprising:
  • the collection unit is arranged at the air outlet of the gaseous pollutant removal structure of the discharge structure.
  • the gas purification device mentioned above is an air purifier.
  • the gaseous pollutant removal structure includes an insulating tube, a first electrode and a second electrode.
  • the insulating tube includes a lumen, an air inlet and an air outlet communicating with the lumen;
  • the first electrode is arranged inside the insulating tube, It is electrically connected to the first end of the power supply, and the ionization voltage is obtained through the first end;
  • the second electrode is arranged on the outer surface of the insulating tube, and is electrically connected to the second end of the power supply;
  • the ozone adsorption structure is arranged in the lumen, and the second electrode
  • An electrode is arranged between the insulating tube and the ozone adsorption structure.
  • the removal structure of gaseous pollutants realizes the discharge in the insulating tube.
  • the gas with pollutants enters the insulating tube through the air inlet, and the pollutants fully contact with the plasma in the insulating tube, which increases the effective discharge area and prolongs the time between plasma and pollution.
  • the contact time of substances is high, and the efficiency of removing organic pollutants is high, which is suitable for the purification needs of removing organic pollutants such as automobile exhaust and smoke.
  • the first electrode and the second electrode are respectively arranged inside and outside the insulating tube, high-density plasma can be generated under the conditions of small volume and low power consumption, and the efficiency of removing organic pollutants is high.
  • the cavity of the insulating tube is equipped with an ozone adsorption structure, which can absorb and decompose the ozone generated by the ionization discharge, and avoid excessive ozone generated by the discharge;
  • the efficiency of organic pollutants; and the cavity of the insulating tube is equipped with an ozone adsorption structure, which increases the resistance of polluted air flowing through the interior of the insulating tube, increases the residence time of polluted air, prolongs the contact time between plasma and pollutants, and enhances the The efficiency of removing organic pollutants; meet the purification needs of organic pollutants such as automobile exhaust and smoke; and because the first electrode and the second electrode are respectively arranged inside and outside the insulating tube, under the condition of small volume and low power consumption , can produce high-density plasma, and will not produce high-density ozone, high efficiency in removing organic pollutants and is safe and healthy.
  • Fig. 1 is the axial sectional view of the removal structure of gaseous pollutant of the present application
  • Fig. 2 is a circumferential cross-sectional view of the removal structure of gaseous pollutants of the present application
  • Fig. 3 is the schematic diagram of the discharge structure of the present application.
  • FIG. 4 is a top view of the discharge structure of Embodiment 1 of the present application.
  • Fig. 5 is the sectional view of the discharge structure of the present application.
  • Fig. 6 is an enlarged view of part A of Fig. 5;
  • FIG. 7 is a top view of the discharge structure of Embodiment 2 of the present application.
  • FIG. 8 is a top view of the discharge structure of Embodiment 3 of the present application.
  • Fig. 9 is an axial sectional view of the structure for removing gaseous pollutants of the present application.
  • Figure 10 is a circumferential cross-sectional view of the gaseous pollutant removal structure of the present application.
  • FIG 11 is a schematic diagram of the discharge structure of the present application.
  • FIG. 12 is a top view of the discharge structure of Embodiment 4 of the present application.
  • Figure 13 is a cross-sectional view of the discharge structure of the present application.
  • Fig. 14 is an enlarged view of part B of Fig. 13;
  • FIG. 15 is a top view of the discharge structure of Embodiment 5 of the present application.
  • FIG. 16 is a top view of the discharge structure of Embodiment 6 of the present application.
  • 1-removal structure of gaseous pollutants 11-first electrode; 12-insulating tube; 121-air inlet; 122-air outlet; 13-second electrode; 14-ozone adsorption structure; 2-fixed structure; A fixed frame; 22-the second fixed frame.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • the gaseous pollutant removal structure 1 includes a first electrode 11, an insulating tube 12 and a second electrode 13.
  • the insulating tube 12 includes a lumen, and an inlet communicating with the lumen.
  • the first electrode 11 is arranged inside the insulating tube 12, is electrically connected with the first end of the power supply, and obtains an ionization voltage through the first end;
  • the second electrode 13 is arranged on the outer surface of the insulating tube 12 , and is suitable for electrical connection with the second end of the power supply.
  • the gaseous pollutant removal structure 1 realizes the discharge in the insulating pipe 12, the gas with pollutants enters the insulating pipe 12 through the air inlet 121, and the pollutants fully contact with the plasma in the insulating pipe 12, which increases the effective discharge area , prolongs the contact time between plasma and pollutants, and has high efficiency in removing organic pollutants. It is suitable for the purification needs of removing organic pollutants such as automobile exhaust and smoke. And because the first electrode 11 and the second electrode 13 are respectively arranged inside and outside the insulating tube 12, high-density plasma can be generated under the condition of small volume and low power consumption, and the efficiency of removing organic pollutants is high.
  • the first electrode is disposed on the inner surface of the insulating tube 12 .
  • the first electrode is disposed inside the insulating tube and does not contact the inner surface of the insulating tube 12 , or at least partly contacts the inner surface of the insulating tube 12 .
  • the first end of the power supply is a high voltage end
  • the second end is a low voltage end
  • the second end is a ground end.
  • the discharge voltage at the high voltage end is in the range of 300V-2000V
  • the frequency is in the range of 5khz-35khz.
  • the first electrode 11 is arranged on the inner surface of the insulating tube 12 in a spiral shape. Without covering the inner surface of the insulating tube 12 with the first electrodes 11 , a higher density plasma can be obtained in the insulating tube 12 and occupies less space in the insulating tube 12 .
  • the pitches of the helically arranged first electrodes 11 are equal. Uniform plasma is generated in the insulating tube 12 to uniformly remove organic pollutants.
  • the second electrode 13 is helically wound on the outer surface of the insulating tube 12 .
  • Higher density plasma can be obtained in the insulating tube 12 without covering the outer surface of the insulating tube 12 with the second electrodes 13 .
  • the helical second electrodes 13 have equal pitches. Uniform plasma is generated in the insulating tube 12 to uniformly remove organic pollutants.
  • the first electrode 11 is arranged on the inner surface of the insulating tube 12 in a spiral shape; the second electrode 13 is wound on the outer surface of the insulating tube 12 in a helical shape. It is not necessary to cover the inner surface of the insulating tube 12 with the first electrodes 11 and the outer surface of the insulating tube 12 to be covered with the second electrodes 13, so that a higher density plasma can be obtained in the insulating tube 12, and it takes up
  • the space in the insulating tube 12 is relatively small.
  • the first electrode 11 and the second electrode 13 are arranged at corresponding positions.
  • the helical first electrode 11 and the second electrode 13 have the same pitch. Uniform plasma is generated in the insulating tube 12 to uniformly remove organic pollutants.
  • the first electrodes 11 are arranged on the inner surface of the insulating tube 12 in a mesh shape, and there is no need to cover the inner surface of the insulating tube 12 with the first electrodes 11 , which occupies less space in the insulating tube 12 .
  • the second electrodes 13 are arranged on the outer surface of the insulating tube 12 in a mesh shape. It is not necessary to cover the outer surface of the insulating tube 12 with the second electrodes 13 .
  • the first electrode 11 is arranged on the inner surface of the insulating tube 12 in a mesh shape; the second electrode 13 is arranged on the outer surface of the insulating tube 12 in a mesh shape. It is not necessary to cover the inner surface of the insulating tube 12 with the first electrodes 11 and the outer surface of the insulating tube 12 to be covered with the second electrodes 13, so that a higher density plasma can be obtained in the insulating tube 12, and it takes up
  • the space in the insulating tube 12 is relatively small.
  • the first electrode 11 and the second electrode 13 are arranged at corresponding positions.
  • the first electrode 11 is a film-like structure attached to the inner surface of the insulating tube 12 . Uniform plasma is generated in the insulating tube 12 to uniformly remove organic pollutants.
  • the second electrode 13 is a film-like structure attached to the inner surface of the insulating tube 12 . Uniform plasma is generated in the insulating tube 12 to uniformly remove organic pollutants.
  • the first electrode 11 is a film-like structure attached to the inner surface of the insulating tube 12
  • the second electrode 13 is a film-like structure attached to the inner surface of the insulating tube 12 .
  • Uniform plasma is generated in the insulating tube 12 to uniformly remove organic pollutants.
  • the first electrode 11 is etched on the inner surface of the insulating tube 12 .
  • the structure is compact and takes up little space.
  • the second electrode 13 is etched on the outer surface of the insulating tube 12 .
  • the structure is compact and takes up little space.
  • the first electrode 11 is etched on the inner surface of the insulating tube 12
  • the second electrode 13 is etched on the outer surface of the insulating tube 12 .
  • the structure is compact and takes up little space.
  • the first electrode 11 is made of nanoscale conductive material.
  • the first electrode 11 is made of nanoscale conductive metal wires or nanoscale carbon fiber bundles, and is arranged spirally inside the insulating tube 12 or in a mesh shape inside the insulating tube 12 .
  • the second electrode 13 is made of nanoscale conductive material.
  • the second electrode 13 is made of nano-scale conductive metal wire or nano-scale carbon fiber bundle, and is arranged in the inside of the insulating tube 12 in a spiral or in a mesh shape.
  • each bundle of carbon fiber bundles consists of 100 carbon fiber filaments.
  • the first electrode 11 is made of nanoscale conductive material
  • the second electrode 13 is made of nanoscale conductive material.
  • Both the first electrode 11 and the second electrode 13 are made of nanoscale conductive metal wires or nanoscale carbon fiber bundles, and are arranged spirally or in a mesh shape inside the insulating tube 12 .
  • the nanoscale conductive material includes semiconductor materials such as carbon fiber bundles or nanoscale metal wires.
  • the first electrode 11 is made of carbon fiber bundles.
  • it is a carbon fiber bundle structure composed of carbon fiber filaments with a single diameter between 0.06nm and 0.08nm, and the single bundle of carbon fiber bundles contains 50-1000 carbon fiber filaments.
  • the second electrode 13 is made of carbon fiber bundles.
  • it is a carbon fiber bundle structure composed of carbon fiber filaments with a single diameter between 0.06nm and 0.08nm, and the single bundle of carbon fiber bundles contains 50-1000 carbon fiber filaments.
  • both the first electrode 11 and the second electrode 13 are made of carbon fiber bundles.
  • it is a carbon fiber bundle structure composed of carbon fiber filaments with a single diameter between 0.06nm and 0.08nm, and the single bundle of carbon fiber bundles contains 50-1000 carbon fiber filaments.
  • the first electrode 11 is made of nanoscale metal wires.
  • the second electrode 13 is made of nanoscale metal wires.
  • both the first electrode 11 and the second electrode 13 are made of nanoscale metal wires.
  • the insulating tube 12 in this embodiment is a cylindrical tube or other hollow tubes.
  • the structure is simple and easy to shape.
  • the insulating tube 12 is a pentagonal prism tube.
  • the insulating tube 12 can also be other hollow structures such as square prism tubes.
  • the insulating tube 12 in this embodiment is a polygonal column tube. As shown in FIG. 8, the insulating tube 12 is a triangular prism tube.
  • the length of the insulating tube 12 is at least 5 times the inner diameter of the insulating tube 12 . It ensures sufficient contact time between plasma and gas pollutants to ensure better removal efficiency of organic pollutants.
  • This embodiment also provides a discharge structure, including a fixed structure 2 and a plurality of gaseous pollutant removal structures 1 mentioned above, and the plurality of gaseous pollutant removal structures 1 are connected as a whole through the fixed structure 2 .
  • gaseous pollutant removal structures 1 are arranged horizontally or vertically through the fixing structure 2 . form an overall structure.
  • the number and arrangement of gaseous pollutant removal structures 1 are selected according to specific purification requirements.
  • the fixing structure 2 includes a first fixing frame 21 and a second fixing frame 22 .
  • the first fixing frame 21 and the second fixing frame 22 are respectively used for fixedly connecting two ends of the structure 1 for removing gaseous pollutants.
  • the first fixing frame 21 is adapted to be electrically connected to the first end of the power supply; one end of the first electrode 11 is connected to the first fixing frame 21, and is electrically connected to the first end of the power supply through the first fixing frame 21.
  • the other end of an electrode 11 is insulated from the second fixed frame 22; the second fixed frame 22 is suitable for being electrically connected to the second end of the power supply; one end of the second electrode 13 is connected to the second fixed frame 22, and passed through the second fixed frame
  • the second fixing frame 22 is electrically connected to the second end of the power supply; the other end of the second electrode 13 is insulated from the first fixing frame 21 .
  • the first fixed frame 21 is provided with a plurality of first fixed connection holes; the second fixed frame 22 is vertically opposite to the first fixed frame 21, and the second fixed frame 22 is provided with a plurality of second fixed connection holes, each The second fixed connection holes are arranged longitudinally opposite to the corresponding first fixed connection holes.
  • One end of each gaseous pollutant removal structure 1 is connected in the first fixed connection hole, and the other end is connected to the corresponding first fixed connection hole. In the second fixed connection hole.
  • the first fixed frame 21 is provided with a plurality of first fixed connection holes; A plurality of second fixed connection holes are provided, and each second fixed connection hole is arranged laterally opposite to the corresponding first fixed connection hole, and one end of each gaseous pollutant removal structure 1 is connected in the first fixed connection hole, and the other end It is connected in the second fixed connection hole corresponding to the first fixed connection hole.
  • first fixing bracket 21 is provided with a plurality of first fixing slots
  • second fixing bracket 22 is correspondingly provided with a plurality of second fixing slots.
  • One end of the gaseous pollutant removal structure 1 is connected in the first fixing groove, and the other end is connected in the second fixing groove.
  • one end of the gaseous pollutant removal structure 1 is provided with a first fixing buckle, and the other end is provided with a second fixing buckle, and the gaseous pollutant removal structure 1 is connected to the first fixing bracket 21 through the first fixing buckle.
  • the connection is connected with the second fixing frame 22 through the second fixing buckle.
  • This embodiment also provides a gas purification device, including a collection unit and the above-mentioned discharge structure, and the collection unit is arranged at the air outlet 122 of the gaseous pollutant removal structure 1 of the discharge structure.
  • the collection unit is used to collect the particles charged by the discharge structure.
  • the gas purification device is suitable for indoor air purification, and is also suitable for the purification needs of organic pollutants such as automobile exhaust and smoke.
  • the above-mentioned gas purification device is an air purifier, preferably a vehicle-mounted air purifier and an air purifier for flue gas purification.
  • the gaseous pollutant removal structure 1 includes a first electrode 11, an insulating tube 12, a second electrode 13 and an ozone adsorption structure 14.
  • the insulating tube 12 includes a lumen, and The air inlet 121 and the air outlet 122 connected by the lumen; the first electrode 11 is arranged on the inner surface of the insulating tube 12, is electrically connected with the first end of the power supply, and obtains an ionization voltage through the first end; the second electrode 13 is arranged on the The outer surface of the insulating tube 12 is electrically connected to the second end of the power supply; the ozone adsorption structure 14 is arranged in the lumen, and the first electrode is arranged between the insulating tube and the ozone adsorption structure.
  • the gaseous pollutant removal structure 1 realizes the discharge in the insulating pipe 12, the gas with pollutants enters the insulating pipe 12 through the air inlet 121, and the pollutants fully contact with the plasma in the insulating pipe 12, which increases the effective discharge area
  • the cavity of the insulating tube is provided with an ozone adsorption structure 14, which can absorb and decompose the ozone generated by the ionization discharge, and avoid excessive ozone generated by the discharge;
  • the ozone adsorption structure 14 can also adsorb and decompose the gaseous pollutants that cannot be completely decomposed by the plasma , to enhance the efficiency of removing organic pollutants;
  • the cavity of the insulating tube is provided with an ozone adsorption structure 14, which increases the resistance of polluted air flowing through the interior of the insulating tube, increases the residence time of polluted air, and prolongs the interaction between plasma and pollutants The contact time can enhance the efficiency of removing organic pollutants; meet the purification requirements of organic pollutants such as automobile exhaust
  • the first end of the power supply is a high voltage end
  • the second end is a low voltage end
  • the second end is a ground end.
  • the discharge voltage at the high voltage end is in the range of 300V-2000V
  • the frequency is in the range of 5khz-35khz.
  • the ozone adsorption structure 14 is a carbon fiber bundle.
  • the first electrode 11 is disposed between the carbon fiber bundle and the insulating tube 12 .
  • the carbon fiber material has many micropores, which can decompose gaseous pollutants that cannot be completely decomposed by plasma, and can increase the resistance of polluted air flowing through the insulating tube 12, prolong the residence time of polluted air, and further decompose ozone generated by ionization discharge , to avoid excessive ozone generated by discharge.
  • the adsorbed carbon fibers can be further activated by plasma without replacing the ozone adsorption structure 14 .
  • the ozone adsorption structure 14 also includes a conductive net for fixing the carbon fiber bundles, and the carbon fiber bundles are fixedly connected in the conductive net, so that the ozone adsorption structure 14 is conveniently arranged inside the insulating tube.
  • the ozone adsorption structure 14 is filled in the insulating tube and located inside the first electrode 11 .
  • the conductive mesh is arranged between the carbon fiber bundle and the first electrode 11 .
  • the ozone adsorption structure 14 also includes a conductive tube for fixing the carbon fiber bundle, and the carbon fiber bundle is fixedly connected in the conductive tube, so that the ozone adsorption structure 14 is conveniently arranged inside the insulating tube.
  • the conductive pipe is arranged between the carbon fiber bundle and the first electrode 11 .
  • the ozone adsorption structure 14 also includes conductive wires that are helically wound around the carbon fiber bundles, so as to facilitate the fixed connection of the carbon fiber bundles and facilitate the arrangement of the ozone adsorption structure 14 inside the insulating tube.
  • the ozone adsorption structure 14 extends along the axial direction of the lumen, and the adsorption effect is good.
  • the second electrode 13 is helically wound on the outer surface of the insulating tube 12 .
  • Higher density plasma can be obtained in the insulating tube 12 without covering the outer surface of the insulating tube 12 with the second electrodes 13 .
  • the helical second electrodes 13 have equal pitches. Uniform plasma is generated in the insulating tube 12 to uniformly remove organic pollutants.
  • the first electrode 11 is arranged on the inner surface of the insulating tube 12 in a spiral shape. Without covering the inner surface of the insulating tube 12 with the first electrodes 11 , a higher density plasma can be obtained in the insulating tube 12 , occupying less space in the insulating tube 12 .
  • the first electrode 11 is a plate-shaped structure, and at least two ends of the plate-shaped structure are connected to the inner surface of the insulating tube 12 .
  • Carbon fiber bundles are arranged between the plate-like structure and the insulating tube.
  • the pitches of the first electrodes 11 arranged in a helical shape are equal. Uniform plasma is generated in the insulating tube 12 to uniformly remove organic pollutants.
  • the first electrode 11 is arranged on the inner surface of the insulating tube 12 in a spiral shape; the second electrode 13 is wound on the outer surface of the insulating tube 12 in a helical shape. It is not necessary to cover the inner surface of the insulating tube 12 with the first electrodes 11 and the outer surface of the insulating tube 12 to be covered with the second electrodes 13, so that a higher density plasma can be obtained in the insulating tube 12, occupying the insulation The space inside the tube 12 is small.
  • the first electrode 11 and the second electrode 13 are arranged at corresponding positions.
  • the helical first electrode 11 and the second electrode 13 have the same pitch. Uniform plasma is generated in the insulating tube 12 to uniformly remove organic pollutants.
  • the first electrodes 11 are arranged on the inner surface of the insulating tube 12 in a mesh shape, and there is no need to cover the inner surface of the insulating tube 12 with the first electrodes 11 , which occupies less space in the insulating tube 12 .
  • the second electrodes 13 are arranged on the outer surface of the insulating tube 12 in a mesh shape. It is not necessary to cover the outer surface of the insulating tube 12 with the second electrodes 13 .
  • the first electrode 11 is arranged on the inner surface of the insulating tube 12 in a mesh shape; the second electrode 13 is arranged on the outer surface of the insulating tube 12 in a mesh shape. It is not necessary to cover the inner surface of the insulating tube 12 with the first electrodes 11 and the outer surface of the insulating tube 12 to be covered with the second electrodes 13, so that a higher density plasma can be obtained in the insulating tube 12, occupying the insulation The space inside the tube 12 is small.
  • the first electrode 11 and the second electrode 13 are arranged at corresponding positions.
  • the first electrode 11 is a film-like structure attached to the inner surface of the insulating tube 12 . Uniform plasma is generated in the insulating tube 12 to uniformly remove organic pollutants.
  • the second electrode 13 is a film-like structure attached to the inner surface of the insulating tube 12 . Uniform plasma is generated in the insulating tube 12 to uniformly remove organic pollutants.
  • the first electrode 11 is a film-like structure attached to the inner surface of the insulating tube 12
  • the second electrode 13 is a film-like structure attached to the inner surface of the insulating tube 12 .
  • Uniform plasma is generated in the insulating tube 12 to uniformly remove organic pollutants.
  • the first electrode 11 is etched on the inner surface of the insulating tube 12 .
  • the structure is compact and takes up little space.
  • the second electrode 13 is etched on the outer surface of the insulating tube 12 .
  • the structure is compact and takes up little space.
  • the first electrode 11 is etched on the inner surface of the insulating tube 12
  • the second electrode 13 is etched on the outer surface of the insulating tube 12 .
  • the structure is compact and takes up little space.
  • the first electrode 11 is made of nanoscale conductive material.
  • the first electrode 11 is made of semiconductor materials such as nanoscale conductive metal wires or nanoscale carbon fiber bundles, and is spirally arranged inside the insulating tube 12 or arranged in a mesh shape inside the insulating tube 12 .
  • the second electrode 13 is made of nanoscale conductive material.
  • the second electrode 13 is made of semiconductor materials such as nanoscale conductive metal wires or nanoscale carbon fiber bundles, and is spirally arranged inside the insulating tube 12 or arranged in a mesh shape inside the insulating tube 12 .
  • each bundle of carbon fiber bundles consists of 100 carbon fiber filaments.
  • the first electrode 11 is made of nanoscale conductive material
  • the second electrode 13 is made of nanoscale conductive material.
  • Both the first electrode 11 and the second electrode 13 are made of semiconductor materials such as nanoscale conductive metal wire or nanoscale carbon fiber bundle, and are arranged spirally inside the insulating tube 12 or arranged in a mesh shape inside the insulating tube 12 .
  • the nanoscale conductive material includes semiconductor materials such as carbon fiber bundles or nanoscale metal wires.
  • the first electrode 11 is made of carbon fiber bundles.
  • the first electrode 11 is a carbon fiber bundle structure composed of carbon fiber filaments with a single diameter between 0.06 nm and 0.08 nm, and the single carbon fiber bundle contains 50-1000 carbon fiber filaments.
  • the second electrode 13 is made of carbon fiber bundles.
  • it is a carbon fiber bundle structure composed of carbon fiber filaments with a single diameter between 0.06nm and 0.08nm, and the single bundle of carbon fiber bundles contains 50-1000 carbon fiber filaments.
  • both the first electrode 11 and the second electrode 13 are made of carbon fiber bundles.
  • it is a carbon fiber bundle structure composed of carbon fiber filaments with a single diameter between 0.06nm and 0.08nm, and the single bundle of carbon fiber bundles contains 50-1000 carbon fiber filaments.
  • the first electrode 11 is made of nanoscale metal wires.
  • the second electrode 13 is made of nanoscale metal wires.
  • both the first electrode 11 and the second electrode 13 are made of nanoscale metal wires.
  • the insulating tube 12 is a cylindrical tube.
  • the structure is simple and easy to shape.
  • This embodiment also provides a discharge structure, including a fixed structure 2 and a plurality of gaseous pollutant removal structures 1 mentioned above, and the plurality of gaseous pollutant removal structures 1 are connected through the fixed structure 2 .
  • gaseous pollutant removal structures 1 are arranged horizontally or vertically through the fixing structure 2 . form an overall structure.
  • the number and arrangement of gaseous pollutant removal structures 1 are selected according to specific purification requirements.
  • the fixing structure 2 includes a first fixing frame 21 and a second fixing frame 22 .
  • the first fixing frame 21 and the second fixing frame 22 are respectively used for fixedly connecting two ends of the structure 1 for removing gaseous pollutants.
  • the first fixing frame 21 is adapted to be electrically connected to the first end of the power supply; one end of the first electrode 11 is connected to the first fixing frame 21, and is electrically connected to the first end of the power supply through the first fixing frame 21.
  • the other end of an electrode 11 is insulated from the second fixed frame 22; the second fixed frame 22 is suitable for being electrically connected to the second end of the power supply; one end of the second electrode 13 is connected to the second fixed frame 22, and passed through the second fixed frame
  • the second fixing frame 22 is electrically connected to the second end of the power supply; the other end of the second electrode 13 is insulated from the first fixing frame 21 .
  • the first fixed frame 21 is provided with a plurality of first fixed connection holes; the second fixed frame 22 is vertically opposite to the first fixed frame 21, and the second fixed frame 22 is provided with a plurality of second fixed connection holes, each The second fixed connection holes are arranged longitudinally opposite to the corresponding first fixed connection holes.
  • One end of each gaseous pollutant removal structure 1 is connected in the first fixed connection hole, and the other end is connected to the corresponding first fixed connection hole. In the second fixed connection hole.
  • the first fixed frame 21 is provided with a plurality of first fixed connection holes; A plurality of second fixed connection holes are provided, and each second fixed connection hole is arranged laterally opposite to the corresponding first fixed connection hole, and one end of each gaseous pollutant removal structure 1 is connected in the first fixed connection hole, and the other end It is connected in the second fixed connection hole corresponding to the first fixed connection hole.
  • first fixing bracket 21 is provided with a plurality of first fixing slots
  • second fixing bracket 22 is correspondingly provided with a plurality of second fixing slots.
  • One end of the gaseous pollutant removal structure 1 is connected in the first fixing groove, and the other end is connected in the second fixing groove.
  • one end of the gaseous pollutant removal structure 1 is provided with a first fixing buckle, and the other end is provided with a second fixing buckle, and the gaseous pollutant removal structure 1 is connected to the first fixing bracket 21 through the first fixing buckle.
  • the connection is connected with the second fixing frame 22 through the second fixing buckle.
  • This embodiment also provides a gas purification device, including a collection unit and the above-mentioned discharge structure, and the collection unit is arranged at the air outlet 122 of the gaseous pollutant removal structure 1 of the discharge structure.
  • the collection unit is used to collect the particles charged by the discharge structure.
  • the gas purification device is suitable for indoor air purification, and is also suitable for the purification needs of organic pollutants such as automobile exhaust and smoke.
  • the above-mentioned gas purification device is an air purifier, preferably a vehicle-mounted air purifier and an air purifier for flue gas purification.
  • the insulating tube 12 in this embodiment is a polygonal column tube or other hollow tubes. As shown in FIG. 15, the insulating tube 12 is a pentagonal column tube.
  • the insulating tube 12 in this embodiment is a triangular prism tube.
  • the insulating tube 12 can also be other hollow tubes such as square prism tubes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种气态污染物的去除结构(1)、放电结构及气体净化装置。气态污染物的去除结构(1)包括绝缘管(12)、第一电极(11)和第二电极(13),绝缘管(12)包括管腔、与管腔连通的进风口(121)及出风口(122);第一电极(11)设置在绝缘管(12)的内部,与电源的第一端电连接,并通过第一端获得电离电压;第二电极(13)设置在绝缘管(12)的外表面上,与电源的第二端电连接。气态污染物的去除结构(1),实现绝缘管(12)的管内放电,增大了放电有效面积,延长了等离子体与污染物的接触时间。

Description

气态污染物的去除结构、放电结构及气体净化装置
本申请要求于2021年05月25日提交至中国国家知识产权局、申请号为202110573286.2、申请名称为“气态污染物的去除结构、放电结构及气体净化装置”的专利申请的优先权,以及于2021年05月25日提交至中国国家知识产权局、申请号为202110573284.3、申请名称为“气态污染物的去除结构、放电结构及气体净化装置”的专利申请的优先权。
技术领域
本申请涉及空气净化器技术领域,具体涉及一种气态污染物的去除结构、放电结构及气体净化装置。
背景技术
随着环境问题日益严重,空气中的污染物悄无声息的威胁着人们的健康,各种空气净化技术应运而生。
空气净化技术主要分为耗材型和无耗材型两大类,耗材型空气净化技术需要不断更换净化部件的耗材,前期价格便宜,但使用过程中的费用较高;无耗材型空气净化技术虽然前期成本高,但后期不需要再投入费用。总体来说,无耗材型空气净化技术的成本更低,还节能环保。
等离子体空气杀菌净化技术作为无耗材型空气净化技术的一种,是环境污染治理领域中有发展前途的一项高科技技术。等离子体空气杀菌净化技术是在气相环境下产生高压放电击穿空气,形成等离子体环境,利用等离子体中的电子和离子与空气中的气体分子碰撞发生链式化学反应,使气体中的污染物发生迁移、转化和无害化等过程。
相关技术中的一些等离子体气体净化装置,通常等离子体主要产生在气态污染物的去除结构的外表面,等离子体易扩散,带有污染物的空气在流经气态污染物的去除结构的外表面的过程中,与等离子体的接触时间较短,接触面积也较小,杀菌净化效率低,不适用于去除汽车尾气、烟气等有机污染物的净化需求。
申请内容
因此,本申请要解决的技术问题在于克服现有技术中带有污染物的空气与等离子体的接触时间较短、接触面积也较小的缺陷,从而提供一种带有污染物的空气与等离子体的接触时间长、接触面积大的气态污染物的去除结构、放电结构及气体净化装置。
为解决上述技术问题,本申请提供一种气态污染物的去除结构,包括:
绝缘管,包括管腔、与管腔连通的进风口及出风口;
第一电极,设置在绝缘管的内部,与电源的第一端电连接,并通过第一端获得电离电压;
第二电极,设置在绝缘管的外表面上,与电源的第二端电连接。
本申请提供的气态污染物的去除结构,还包括:
臭氧吸附结构,设置在管腔内,第一电极设置在绝缘管与臭氧吸附结构之间。
本申请提供的气态污染物的去除结构,臭氧吸附结构为碳纤维束。
本申请提供的气态污染物的去除结构,臭氧吸附结构还包括固定碳纤维束的导电网或导电管,导电网或导电管设置在碳纤维束与第一电极之间。
本申请提供的气态污染物的去除结构,臭氧吸附结构沿管腔的轴向延伸。
本申请提供的气态污染物的去除结构,第一电极呈螺旋状设置在绝缘管的内表面上;
和/或,第二电极呈螺旋状缠绕在绝缘管的外表面上。
本申请提供的气态污染物的去除结构,呈螺旋状设置的第一电极和/或第二电极的螺距相等。
本申请提供的气态污染物的去除结构,第一电极呈网状设置在绝缘管的内表面上;
和/或,第二电极呈网状设置在绝缘管的外表面上。
本申请提供的气态污染物的去除结构,第一电极刻蚀在绝缘管的内表面上;和/或第二电极刻蚀在绝缘管的外表面上。
本申请提供的气态污染物的去除结构,第一电极和/或第二电极由纳米级导电材料制成。
本申请提供的气态污染物的去除结构,纳米级导电材料包括碳纤维束或纳米级金属丝。
本申请提供的气态污染物的去除结构,第一电极刻蚀在绝缘管的内表面上;和/或第二电极刻蚀在绝缘管的外表面上。
本申请提供的气态污染物的去除结构,绝缘管为圆柱管或者为多棱柱管。
本申请提供的气态污染物的去除结构,绝缘管的长度是绝缘管的内径的至少5倍。
本申请还提供一种放电结构,包括:
固定结构;
多个上述的气态污染物的去除结构,多个气态污染物的去除结构通过固定结构连接为一体。
本申请提供的放电结构,多个气态污染物的去除结构通过固定结构横向或纵向排列。
本申请提供的放电结构,固定结构包括:
第一固定架,设有多个第一固定连接孔;
第二固定架,第二固定架与第一固定架在纵向上相对设置,在第二固定架上设有多个第二固定连接孔,各个第二连接孔分别与对应的第一固定连接孔纵向相对设置,各个气态污染物的去除结构的一端连接在第一固定连接孔内,另一端连接在与第一固定连接孔对应设置的第二固定连接孔内。
本申请还提供一种气体净化装置,包括:
上述的放电结构;
收集单元,设置在放电结构的气态污染物的去除结构的出风口处。
上述的气体净化装置为空气净化器。
本申请技术方案,具有如下优点:
本申请提供的气态污染物的去除结构,包括绝缘管、第一电极和第二电极,绝缘管包括管腔、与管腔连通的进风口及出风口;第一电极设置在绝缘管的内部,与电源的第一端电连接,并通过第一端获得电离电压;第二电极设置在绝缘管的外表面上,并与电源的第二端电连接;臭氧吸附结构设置在管腔内,第一电极设置在绝缘管与臭氧吸附结构之间。
气态污染物的去除结构实现绝缘管的管内放电,带有污染物的气体通过进风口进入绝缘管内,污染物在绝缘管内与等离子体充分接触,增大了放电有效面积,延长了等离子体与污染物的接触时间,去除有机污染物的效率高,适用于去除汽车尾气、烟气等有机污染物的净化需求。且由于第一电极和第二电极分别设置在绝缘管的内部和外部,在小体积和低功耗的条件下,就可产生高密度的等离子体,去除有机污染物的效率高。
绝缘管的管腔内设有臭氧吸附结构,能够吸附并分解电离放电产生的臭氧,避免放电产生过多的臭氧;臭氧吸附结构还可吸附并分解等离子体分解不完的气态污染物,增强去除有机污染物的效率;且绝缘管的管腔内设有臭氧吸附结构,增大污染空气流经绝缘管内部的阻力,增加污染空气的滞留时间,延长了等离子体与污染物的接触时间,增强去除有机污染物的效率;满足汽车尾气、烟气等有机污染物的净化需求;且由于第一电极和第二电极分别设置在绝缘管的内部和外部,在小体积和低功耗的条件下,就可产生高密度的等离子体,并且不会产生高密度的臭氧,去除有机污染物的效率高且安全健康。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请气态污染物的去除结构的轴向剖视图;
图2为本申请气态污染物的去除结构的周向剖视图;
图3为本申请放电结构的示意图;
图4为本申请实施例一的放电结构的俯视图;
图5为本申请放电结构的剖视图;
图6为图5的A部放大图;
图7为本申请实施例二的放电结构的俯视图;
图8为本申请实施例三的放电结构的俯视图;
图9为本申请气态污染物的去除结构的轴向剖视图;
图10为本申请气态污染物的去除结构的周向剖视图;
图11为本申请放电结构的示意图;
图12为本申请实施例四的放电结构的俯视图;
图13为本申请放电结构的剖视图;
图14为图13的B部放大图;
图15为本申请实施例五的放电结构的俯视图;
图16为本申请实施例六的放电结构的俯视图。
附图标记说明:
1-气态污染物的去除结构;11-第一电极;12-绝缘管;121-进风口;122-出风口;13-第二电极;14-臭氧吸附结构;2-固定结构;21-第一固定架;22-第二固定架。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“垂直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例一:
结合图1-图6所示,本实施例提供的气态污染物的去除结构1,包括第一电极11、绝缘管12和第二电极13,绝缘管12包括管腔、与管腔连通的进风口121及出风口122;第一电极11设置在绝缘管12的内部,与电源的第一端电连接,并通过第一端获得电离电压;第二电极13设置在绝缘管12的外表面上,并适于与电源的第二端电连接。
气态污染物的去除结构1实现绝缘管12的管内放电,带有污染物的气体通过进风口121进入绝缘管12内,污染物在绝缘管12内与等离子体充分接触,增大了放电有效面积,延长了等离子体与污染物的接触时间,去除有机污染物的效率高,适用于去除汽车尾气、烟气等有机污染物的净化需求。且由于第一电极11和第二电极13分别设置在绝缘管12的内部和外部,在小体积和低功耗的条件下,就可产生高密度的等离子体,去除有机污染物的效率高。
本实施例的一种实施方式中,第一电极设置在绝缘管12的内表面上。
本实施例的另一种实施方式中,第一电极设置在绝缘管的内部,与绝缘管12的内表面不接触,或者,至少部分与绝缘管12的内表面接触。
优选地,电源的第一端为高压端,第二端为低压端,优选第二端为接地端。高压端的放电电压在300V-2000V范围内,频率在5khz-35khz的范围内。
本实施例中,第一电极11呈螺旋状设置在绝缘管12的内表面上。无需在绝缘管12的内表面上布满第一电极11,就可以在绝缘管12内获得较高密度的等离子体,且占用绝缘管12内的空间较小。
优选地,呈螺旋状设置的第一电极11的螺距相等。在绝缘管12内产生均匀的等离子体,均匀去除有机污染物。
或者,第二电极13呈螺旋状缠绕在绝缘管12的外表面上。无需在绝缘管12的外表面上布满第二电极13,就可以在绝缘管12内获得较高密度的等离子体。
且优选地,呈螺旋状设置的第二电极13的螺距相等。在绝缘管12内产生均匀的等离子体,均匀去除有机污染物。
或者,第一电极11呈螺旋状设置在绝缘管12的内表面上;第二电极13呈螺旋状缠绕在绝缘管12的外表面上。无需在绝缘管12的内表面上布满第一电极11,且无需在绝缘管12的外表面上布满第二电极13,就可以在绝缘管12内获得较高密度的等离子体,且占用绝缘管12内的空间较小。优选地,第一电极11和第二电极13设置在相应的位置上。
本实施例中,呈螺旋状设置的第一电极11和第二电极13的螺距相等。在绝缘管12内产生均匀的等离子体,均匀去除有机污染物。
本实施例中,第一电极11呈网状设置在绝缘管12的内表面上,无需在绝缘管12的内表面上布满第一电极11,占用绝缘管12内的空间较小。
或者,第二电极13呈网状设置在绝缘管12的外表面上。无需在绝缘管12的外表面上布满第二电极13。
或者,第一电极11呈网状设置在绝缘管12的内表面上;第二电极13呈网状设置在绝缘管12的外表面上。无需在绝缘管12的内表面上布满第一电极11,且无需在绝缘管12的外表面上布满第二电极13,就可以在绝缘管12内获得较高密度的等离子体,且占用绝缘管12内的空间较小。优选地,第一电极11和第二电极13设置在相应的位置上。
作为可变换的实施方式,也可以为,第一电极11为贴附在绝缘管12的内表面上的薄膜状结构。在绝缘管12内产生均匀的等离子体,可均匀去除有机污染物。
或者,第二电极13为贴附在绝缘管12的内表面上的薄膜状结构。在绝缘管12内产生均匀的等离子体,可均匀去除有机污染物。
或者,第一电极11为贴附在绝缘管12的内表面上的薄膜状结构,第二电极13为贴附在绝缘管12的内表面上的薄膜状结构。在绝缘管12内产生均匀的等离子体,可均匀去除有机污染物。
本实施例中,第一电极11刻蚀在绝缘管12的内表面上。结构小巧,占用空间小。
或者,第二电极13刻蚀在绝缘管12的外表面上。结构小巧,占用空间小。
或者,第一电极11刻蚀在绝缘管12的内表面上,第二电极13刻蚀在绝缘管12的外表面上。结构小巧,占用空间小。
本实施例中,第一电极11由纳米级导电材料制成。第一电极11由纳米级导电金属丝或者纳米级碳纤维束制成,螺旋设置在绝缘管12内部或者呈网状设置在绝缘管12内部。
或者,第二电极13由纳米级导电材料制成。第二电极13由纳米级导电金属丝或者纳米级碳纤维束制成,螺旋设置在绝缘管12内部或者呈网状设置在绝缘管12内部。优选地,每束碳纤维束由100根碳纤维丝组成。
或者,第一电极11由纳米级导电材料制成,第二电极13由纳米级导电材料制成。第一电极11和第二电极13均由纳米级导电金属丝或者纳米级碳纤维束制成,螺旋设置在绝缘管12内部或者呈网状设置在绝缘管12内部。
本实施例中,纳米级导电材料包括碳纤维束或纳米级金属丝等半导体材料。
本实施例中,第一电极11由碳纤维束制成。优选地,为单根直径为0.06nm到0.08nm之间的碳纤维丝组成的碳纤维束状结构,单束该碳纤维束包含50-1000根碳纤维丝。
或者,第二电极13由碳纤维束制成。优选地,为单根直径为0.06nm到0.08nm之间的碳纤维丝组成的碳纤维束状结构,单束该碳纤维束包含50-1000根碳纤维丝。
或者,第一电极11和第二电极13均由碳纤维束制成。优选地,为单根直径为0.06nm到0.08nm之间的碳纤维丝组成的碳纤维束状结构,单束该碳纤维束包含50-1000根碳纤维丝。
或者,第一电极11由纳米级金属丝制成。
或者,第二电极13由纳米级金属丝制成。
或者,第一电极11和第二电极13均由纳米级金属丝制成。
实施例二:
与实施例一不同的是,本实施例中的绝缘管12为圆柱管或其他中空管。结构简单,易于成型。如图7所示,绝缘管12为五棱柱管。绝缘管12还可为四棱柱管等其他中空结构。
实施例三:
与实施例一不同的是,本实施例中的绝缘管12为多棱柱管。如图8所示,绝缘管12为三棱柱管。
本实施例中,绝缘管12的长度是绝缘管12的内径的至少5倍。保证了等离子体与气体污染物有足够的接触时间,以保证更好的去除有机污染物的效率。
本实施例还提供一种放电结构,包括固定结构2和多个上述的气态污染物的去除结构1,多个气态污染物的去除结构1通过固定结构2连接为一体。
本实施例中,多个气态污染物的去除结构1通过固定结构2横向或纵向排列。形成一个整体结构。根据具体的净化要求选择气态污染物的去除结构1的数量及排列方式。
本实施例中,固定结构2包括第一固定架21和第二固定架22。第一固定架21和第二固定架22分别用于固定连接气态污染物的去除结构1的两端。优选地,第一固定架21适于与电源的第一端电连接;第一电极11的一端与第一固定架21连接,并通过第一固定架21与电源的第一端电连接,第一电极11的另一端与第二固定架22之间绝缘设置;第二固定架22适于与电源的第二端电连接;第二电极13的一端与第二固定架22连接,并通过第二固定架22与电源的第二端电连接;第二电极13的另一端与第一固定架21之间绝缘设置。
第一固定架21设有多个第一固定连接孔;第二固定架22与第一固定架21在纵向上相对设置,在第二固定架22上设有多个第二固定连接孔,各个第二固定连接孔分别与对应的第一固定连接孔纵向相对设置,各个气态污染物的去除结构1的一端连接在第一固定连接孔内,另一端连接在与第一固定连接孔对应设置的第二固定连接孔内。
作为可变换的实施方式,也可以为,第一固定架21设有多个第一固定连接孔;第二固定架22与第一固定架21在横向上相对设置,在第二固定架22上设有多个第二固定连接孔,各个第二固定连接孔分别与对应的第一固定连接孔横向相对设置,各个气态污染物的去除结构1的一端连接在第一固定连接孔内,另一端连接在与第一固定连接孔对应设置的第二固定连接孔内。
作为可变换的实施方式,也可以为,第一固定架21设有多个第一固定卡槽,第二固定架22相应的设有多个第二固定卡槽。气态污染物的去除结构1的一端连接在第一固定卡槽内,另一端连接在第二固定卡槽内。
或者,也可以为,气态污染物的去除结构1的一端设置第一固定卡扣,另一端设置第二固定卡扣,气态污染物的去除结构1通过第一固定卡扣与第一固定架21连接,通过第二固定卡扣与第二固定架22连接。
本实施例中还提供一种气体净化装置,包括收集单元和上述的放电结构,收集单元设置在放电结构的气态污染物的去除结构1的出风口122处。收集单元用于收集放电结构荷电的颗粒物。气体净化装置适用于室内空气净化,同时适用于汽车尾气和烟气等有机污染物的净化需求。
上述的气体净化装置为空气净化器,优选车载空气净化器和用于烟气净化的空气净化器。
实施例四:
结合图8-图14所示,本实施例提供的气态污染物的去除结构1,包括第一电极11、绝缘管12、第二电极13和臭氧吸附结构14,绝缘管12包括管腔、与管腔连通的进风口121及出风口122;第一电极11设置在绝缘管12的内表面上,与电源的第一端电连接,并通过第一端获得电离电压;第二电极13设置在绝缘管12的外表面上,并与电源的第二端电连接;臭氧吸附结构14设置在管腔内,第一电极设置在绝缘管与臭氧吸附结构之间。
气态污染物的去除结构1实现绝缘管12的管内放电,带有污染物的气体通过进风口121进入绝缘管12内,污染物在绝缘管12内与等离子体充分接触,增大了放电有效面积,绝缘管的管腔内设有臭氧吸附结构14,能够吸附并分解电离放电产生的臭氧,避免放电产生过多的臭氧;臭氧吸附结构14还可吸附并分解等离子体分解不完的气态污染物,增强去除有机污染物的效率;且绝缘管的管腔内设有臭氧吸附结构14,增大污染空气流经绝缘管内部的阻力,增加污染空气的滞留时间,延长了等离子体与污染物的接触时间,增强去除有机污染物的效率;满足汽车尾气、烟气等有机污染物的净化需求;且由于第一电极11和第二电极13分别设 置在绝缘管12的内部和外部,在小体积和低功耗的条件下,就可产生高密度的等离子体,并且不会产生高密度的臭氧,去除有机污染物的效率高且安全健康。
优选地,电源的第一端为高压端,第二端为低压端,优选第二端为接地端。高压端的放电电压在300V-2000V范围内,频率在5khz-35khz的范围内。
本实施例中,臭氧吸附结构14为碳纤维束。第一电极11设置在碳纤维束与绝缘管12之间。碳纤维材料有很多微孔,能够分解等离子体分解不完的气态污染物,且可增大污染空气流经绝缘管12内的阻力,延长污染空气的滞留时间,还可进一步分解电离放电产生的臭氧,避免放电产生过多的臭氧。且吸附后的碳纤维可以被等离子体进一步激活,无需替换臭氧吸附结构14。
本实施例中,臭氧吸附结构14还包括固定碳纤维束的导电网,将碳纤维束固定连接在导电网内,方便将臭氧吸附结构14设置在绝缘管内部。优选地,臭氧吸附结构14填充在绝缘管内,并位于第一电极11的内部。导电网设置在碳纤维束与第一电极11之间。
或者,臭氧吸附结构14还包括固定碳纤维束的导电管,将碳纤维束固定连接在导电管内,方便将臭氧吸附结构14设置在绝缘管内部。导电管设置在碳纤维束与第一电极11之间。
作为可变换的实施方式,也可以为,臭氧吸附结构14还包括螺旋缠绕碳纤维束的导电线,便于将碳纤维束进行固定连接,方便将臭氧吸附结构14设置在绝缘管内部。
本实施例中,臭氧吸附结构14沿管腔的轴向延伸,吸附效果好。
本实施例中,第二电极13呈螺旋状缠绕在绝缘管12的外表面上。无需在绝缘管12的外表面上布满第二电极13,就可以在绝缘管12内获得较高密度的等离子体。
本实施例中,呈螺旋状设置的第二电极13的螺距相等。在绝缘管12内产生均匀的等离子体,均匀去除有机污染物。
本实施例中,第一电极11呈螺旋状设置在绝缘管12的内表面上。无需在绝缘管12的内表面上布满第一电极11,就可以在绝缘管12内获得较高密度的等离子体,占用绝缘管12内的空间较小。
作为可变换的实施方式,也可以为,第一电极11为板状结构,板状结构的至少两端连接在绝缘管12的内表面上。碳纤维束设置在板状结构与绝缘管之间。
或者,呈螺旋状设置的第一电极11的螺距相等。在绝缘管12内产生均匀的等离子体,均匀去除有机污染物。
或者,第一电极11呈螺旋状设置在绝缘管12的内表面上;第二电极13呈螺旋状缠绕在绝缘管12的外表面上。无需在绝缘管12的内表面上布满第一电极11,且无需在绝缘管12的外表面上布满第二电极13,就可以在绝缘管12内获得较高密度的等离子体,占用绝缘管12内的空间较小。优选地,第一电极11和第二电极13设置在相应的位置上。
本实施例中,呈螺旋状设置的第一电极11和第二电极13的螺距相等。在绝缘管12内产生均匀的等离子体,均匀去除有机污染物。
本实施例中,第一电极11呈网状设置在绝缘管12的内表面上,无需在绝缘管12的内表面上布满第一电极11,占用绝缘管12内的空间较小。
或者,第二电极13呈网状设置在绝缘管12的外表面上。无需在绝缘管12的外表面上布满第二电极13。
或者,第一电极11呈网状设置在绝缘管12的内表面上;第二电极13呈网状设置在绝缘管12的外表面上。无需在绝缘管12的内表面上布满第一电极11,且无需在绝缘管12的外表面上布满第二电极13,就可以在绝缘管12内获得较高密度的等离子体,占用绝缘管12内的空间较小。优选地,第一电极11和第二电极13设置在相应的位置上。
作为可变换的实施方式,也可以为,第一电极11为贴附在绝缘管12的内表面上的薄膜状结构。在绝缘管12内产生均匀的等离子体,可均匀去除有机污染物。
或者,第二电极13为贴附在绝缘管12的内表面上的薄膜状结构。在绝缘管12内产生均匀的等离子体,可均匀去除有机污染物。
或者,第一电极11为贴附在绝缘管12的内表面上的薄膜状结构,第二电极13为贴附在绝缘管12的内表面上的薄膜状结构。在绝缘管12内产生均匀的等离子体,可均匀去除有机污染物。
本实施例中,第一电极11刻蚀在绝缘管12的内表面上。结构小巧,占用空间小。
或者,第二电极13刻蚀在绝缘管12的外表面上。结构小巧,占用空间小。
或者,第一电极11刻蚀在绝缘管12的内表面上,第二电极13刻蚀在绝缘管12的外表面上。结构小巧,占用空间小。
本实施例中,第一电极11由纳米级导电材料制成。第一电极11由纳米级导电金属丝或者纳米级碳纤维束等半导体材料制成,螺旋设置在绝缘管12内部或者呈网状设置在绝缘管12内部。
或者,第二电极13由纳米级导电材料制成。第二电极13由纳米级导电金属丝或者纳米级碳纤维束等半导体材料制成,螺旋设置在绝缘管12内部或者呈网状设置在绝缘管12内部。优选地,每束碳纤维束由100根碳纤维丝组成。
或者,第一电极11由纳米级导电材料制成,第二电极13由纳米级导电材料制成。第一电极11和第二电极13均由纳米级导电金属丝或者纳米级碳纤维束等半导体材料制成,螺旋设置在绝缘管12内部或者呈网状设置在绝缘管12内部。
本实施例中,纳米级导电材料包括碳纤维束或纳米级金属丝等半导体材料。
本实施例中,第一电极11由碳纤维束制成。优选地,第一电极11为单根直径为0.06nm到008nm之间的碳纤维丝组成的碳纤维束状结构,单束该碳纤维束包含50-1000根碳纤维丝。
或者,第二电极13由碳纤维束制成。优选地,为单根直径为0.06nm到008nm之间的碳纤维丝组成的碳纤维束状结构,单束该碳纤维束包含50-1000根碳纤维丝。
或者,第一电极11和第二电极13均由碳纤维束制成。优选地,为单根直径为0.06nm到008nm之间的碳纤维丝组成的碳纤维束状结构,单束该碳纤维束包含50-1000根碳纤维丝。
或者,第一电极11由纳米级金属丝制成。
或者,第二电极13由纳米级金属丝制成。
或者,第一电极11和第二电极13均由纳米级金属丝制成。
本实施例中,绝缘管12为圆柱管。结构简单,易于成型。
本实施例还提供一种放电结构,包括固定结构2和多个上述的气态污染物的去除结构1,多个气态污染物的去除结构1通过固定结构2连接。
本实施例中,多个气态污染物的去除结构1通过固定结构2横向或纵向排列。形成一个整体结构。根据具体的净化要求选择气态污染物的去除结构1的数量及排列方式。
本实施例中,固定结构2包括第一固定架21和第二固定架22。第一固定架21和第二固定架22分别用于固定连接气态污染物的去除结构1的两端。优选地,第一固定架21适于与电源的第一端电连接;第一电极11的一端与第一固定架21连接,并通过第一固定架21与电源的第一端电连接,第一电极11的另一端与第二固定架22之间绝缘设置;第二固定架22适于与电源的第二端电连接;第二电极13的一端与第二固定架22连接,并通过第二固定架22与电源的第二端电连接;第二电极13的另一端与第一固定架21之间绝缘设置。
第一固定架21设有多个第一固定连接孔;第二固定架22与第一固定架21在纵向上相对设置,在第二固定架22上设有多个第二固定连接孔,各个第二固定连接孔分别与对应的第一固定连接孔纵向相对设置,各个气态污染物的去除结构1的一端连接在第一固定连接孔内,另一端连接在与第一固定连接孔对应设置的第二固定连接孔内。
作为可变换的实施方式,也可以为,第一固定架21设有多个第一固定连接孔;第二固定架22与第一固定架21在横向上相对设置,在第二固定架22上设有多个第二固定连接孔,各个第二固定连接孔分别与对应的第一固定连接孔横向相对设置,各个气态污染物的去除结构1的一端连接在第一固定连接孔内,另一端连接在与第一固定连接孔对应设置的第二固定连接孔内。
作为可变换的实施方式,也可以为,第一固定架21设有多个第一固定卡槽,第二固定架22相应的设有多个第二固定卡槽。气态污染物的去除结构1的一端连接在第一固定卡槽内,另一端连接在第二固定卡槽内。
或者,也可以为,气态污染物的去除结构1的一端设置第一固定卡扣,另一端设置第二固定卡扣,气态污染物的去除结构1通过第一固定卡扣与第一固定架21连接,通过第二固定卡扣与第二固定架22连接。
本实施例中还提供一种气体净化装置,包括收集单元和上述的放电结构,收集单元设置在放电结构的气态污染物的去除结构1的出风口122处。收集单元用于收集放电结构荷电的颗粒物。气体净化装置适用于室内空气净化,同时适用于汽车尾气和烟气等有机污染物的净化需求。
上述的气体净化装置为空气净化器,优选车载空气净化器和用于烟气净化的空气净化器。
实施例五:
与实施例四不同的是,本实施例中的绝缘管12为多棱柱管或其他中空管。如图15所示,绝缘管12为五棱柱管。
实施例六:
如图16所示,与实施例四不同的是,本实施例中的绝缘管12为三棱柱管。绝缘管12还可为四棱柱管等其他中空管。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (16)

  1. 一种气态污染物的去除结构,其特征在于,包括:
    绝缘管(12),包括管腔、与所述管腔连通的进风口(121)及出风口(122);
    第一电极(11),设置在所述绝缘管(12)的内部,与电源的第一端电连接,并通过所述第一端获得电离电压;
    第二电极(13),设置在所述绝缘管(12)的外表面上,与电源的第二端电连接。
  2. 根据权利要求1所述的气态污染物的去除结构,其特征在于,所述气态污染物的去除结构还包括:
    臭氧吸附结构(14),设置在所述管腔内,所述第一电极(11)设置在所述绝缘管(12)与所述臭氧吸附结构(14)之间。
  3. 根据权利要求2所述的气态污染物的去除结构,其特征在于,所述臭氧吸附结构(14)包括碳纤维束。
  4. 根据权利要求3所述的气态污染物的去除结构,其特征在于,所述臭氧吸附结构(14)还包括固定所述碳纤维束的导电网或导电管,所述导电网或导电管设置在所述碳纤维束与所述第一电极之间。
  5. 根据权利要求1至4中任一项所述的气态污染物的去除结构,其特征在于,所述第一电极(11)呈螺旋状设置在所述绝缘管(12)的内表面上;
    和/或,所述第二电极(13)呈螺旋状缠绕在所述绝缘管(12)的外表面上。
  6. 根据权利要求5所述的气态污染物的去除结构,其特征在于,呈螺旋状设置的所述第一电极(11)和/或所述第二电极(13)的螺距相等。
  7. 根据权利要求1至4中任一项所述的气态污染物的去除结构,其特征在于,所述第一电极(11)呈网状设置在所述绝缘管(12)的内表面上;
    和/或,所述第二电极(13)呈网状设置在所述绝缘管(12)的外表面上。
  8. 根据权利要求1-4、6中任一项所述的气态污染物的去除结构,其特征在于,所述第一电极(11)和/或所述第二电极(13)由纳米级导电材料制成。
  9. 根据权利要求8所述的气态污染物的去除结构,其特征在于,所述纳米级导电材料包括碳纤维束或纳米级金属丝。
  10. 根据权利要求1-4、6、9中任一项所述的气态污染物的去除结构,其特征在于,所述第一电极(11)刻蚀在所述绝缘管(12)的内表面上;和/或所述第二电极(13)刻蚀在所述绝缘管(12)的外表面上。
  11. 根据权利要求1-4、6、9中任一项所述的气态污染物的去除结构,其特征在于,所述绝缘管(12)为圆柱管或者为多棱柱管。
  12. 根据权利要求11所述的气态污染物的去除结构,其特征在于,所述绝缘管(12)的长度是所述绝缘管(12)的内径的至少5倍。
  13. 一种放电结构,其特征在于,包括:
    固定结构(2);
    多个如权利要求1-12任一项所述的气态污染物的去除结构(1),多个所述气态污染物的去除结构(1)通过所述固定结构(2)连接为一体。
  14. 根据权利要求13所述的放电结构,其特征在于,多个所述气态污染物的去除结构(1)通过所述固定结构(2)横向或纵向排列。
  15. 根据权利要求13或14所述的放电结构,其特征在于,所述固定结构(2)包括:
    第一固定架(21),设有多个第一固定连接孔;
    第二固定架(22),所述第二固定架(22)与所述第一固定架(21)在纵向上相对设置,在所述第二固定架(22)上设有多个第二固定连接孔,各个所述第二固定连接孔分别与对应的所述第一固定连接孔纵向相对设置,各个所述气态污染物的去除结构(1)的一端连接在所述第一固定连接孔内,另一端连接在与所述第一固定连接孔对应设置的所述第二固定连接孔内。
  16. 一种气体净化装置,其特征在于,包括:
    如权利要求13-15任一项所述的放电结构;
    收集单元,设置在所述放电结构的气态污染物的去除结构(1)的出风口(122)处。
PCT/CN2022/076049 2021-05-25 2022-02-11 气态污染物的去除结构、放电结构及气体净化装置 WO2022247350A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110573286.2 2021-05-25
CN202110573286.2A CN113117468A (zh) 2021-05-25 2021-05-25 气态污染物的去除结构、放电结构及气体净化装置
CN202110573284.3 2021-05-25
CN202110573284.3A CN113145307A (zh) 2021-05-25 2021-05-25 气态污染物的去除结构、放电结构以及气体净化装置

Publications (1)

Publication Number Publication Date
WO2022247350A1 true WO2022247350A1 (zh) 2022-12-01

Family

ID=84228293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076049 WO2022247350A1 (zh) 2021-05-25 2022-02-11 气态污染物的去除结构、放电结构及气体净化装置

Country Status (1)

Country Link
WO (1) WO2022247350A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654111A (zh) * 2003-10-24 2005-08-17 雅马哈株式会社 使用非平衡等离子体的气体处理方法和装置
CN104162348A (zh) * 2013-05-20 2014-11-26 孙红梅 设有核壳结构多孔球过滤填料的等离子体净化器
CN105833675A (zh) * 2016-05-20 2016-08-10 泸州市聚源电力设备有限公司 一种集成管式气体净化系统
CN106378258A (zh) * 2016-09-18 2017-02-08 北京大学 低温等离子体增强的离心式静电场空气净化设备和方法
WO2020158967A1 (ko) * 2019-01-29 2020-08-06 (주)신영에어텍 유전체 장벽 방전을 이용한 플라즈마 발생장치 및 이를 포함하는 공기정화 장치
CN112344502A (zh) * 2020-11-19 2021-02-09 珠海格力电器股份有限公司 一种极板结构及杀菌装置及空气净化器
CN112696777A (zh) * 2020-12-31 2021-04-23 重庆中电大宇卫星应用技术研究所 一种等离子体空气净化机
CN113117468A (zh) * 2021-05-25 2021-07-16 珠海格力电器股份有限公司 气态污染物的去除结构、放电结构及气体净化装置
CN113145307A (zh) * 2021-05-25 2021-07-23 珠海格力电器股份有限公司 气态污染物的去除结构、放电结构以及气体净化装置
CN215086058U (zh) * 2021-05-25 2021-12-10 珠海格力电器股份有限公司 气态污染物的去除结构、放电结构及气体净化装置
CN215507292U (zh) * 2021-05-25 2022-01-14 珠海格力电器股份有限公司 气态污染物的去除结构、放电结构以及气体净化装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654111A (zh) * 2003-10-24 2005-08-17 雅马哈株式会社 使用非平衡等离子体的气体处理方法和装置
CN104162348A (zh) * 2013-05-20 2014-11-26 孙红梅 设有核壳结构多孔球过滤填料的等离子体净化器
CN105833675A (zh) * 2016-05-20 2016-08-10 泸州市聚源电力设备有限公司 一种集成管式气体净化系统
CN106378258A (zh) * 2016-09-18 2017-02-08 北京大学 低温等离子体增强的离心式静电场空气净化设备和方法
WO2020158967A1 (ko) * 2019-01-29 2020-08-06 (주)신영에어텍 유전체 장벽 방전을 이용한 플라즈마 발생장치 및 이를 포함하는 공기정화 장치
CN112344502A (zh) * 2020-11-19 2021-02-09 珠海格力电器股份有限公司 一种极板结构及杀菌装置及空气净化器
CN112696777A (zh) * 2020-12-31 2021-04-23 重庆中电大宇卫星应用技术研究所 一种等离子体空气净化机
CN113117468A (zh) * 2021-05-25 2021-07-16 珠海格力电器股份有限公司 气态污染物的去除结构、放电结构及气体净化装置
CN113145307A (zh) * 2021-05-25 2021-07-23 珠海格力电器股份有限公司 气态污染物的去除结构、放电结构以及气体净化装置
CN215086058U (zh) * 2021-05-25 2021-12-10 珠海格力电器股份有限公司 气态污染物的去除结构、放电结构及气体净化装置
CN215507292U (zh) * 2021-05-25 2022-01-14 珠海格力电器股份有限公司 气态污染物的去除结构、放电结构以及气体净化装置

Similar Documents

Publication Publication Date Title
CN113145307A (zh) 气态污染物的去除结构、放电结构以及气体净化装置
US5409673A (en) Ozone generator having an electrode formed of a mass of helical windings and associated method
CN203264554U (zh) 风轮电极放电装置
CN215507292U (zh) 气态污染物的去除结构、放电结构以及气体净化装置
CN202762288U (zh) 多管并联式低温等离子体有害气体净化装置
CN203264866U (zh) 设有风轮电极放电装置的净化器
CN215086058U (zh) 气态污染物的去除结构、放电结构及气体净化装置
CN104138712B (zh) 风轮电极放电装置
WO2023207140A1 (zh) 碳纤维螺旋电极、等离子体发生装置及空气净化器
CN206625882U (zh) 一种汽车尾气净化装置
CN108392951B (zh) 一种低温等离子气体净化装置
CN114364113A (zh) 一种放电电极结构和等离子体发生装置
WO2022247350A1 (zh) 气态污染物的去除结构、放电结构及气体净化装置
CN113117468A (zh) 气态污染物的去除结构、放电结构及气体净化装置
TWI579052B (zh) Electrostatic dust collector and air cleaning equipment to prevent contamination of the electrode
CN217216983U (zh) 一种等离子体发生装置和空气净化器
CN217216982U (zh) 一种等离子体发生装置和空气净化器
CN217216980U (zh) 一种螺旋电极及等离子体发生装置及空气净化器
CN214791366U (zh) 一种螺旋型静电油烟净化器电场结构及油烟净化器
CN114900945A (zh) 一种等离子体发生装置和空气净化器
CN101642666A (zh) 一种室内空气中甲醛的净化装置
DE102005056726A1 (de) Verfahren zur oxidativen Behandlung von Gasinhaltsstoffen, das nach dem Prinzip der nichtthermischen, plasmachemischen Umsetzung arbeitet
CN210632287U (zh) 空气净化用电极结构及空气净化器
CN114900944A (zh) 一种等离子体发生装置和空气净化器
CN114698220A (zh) 一种螺旋电极及等离子体发生装置及空气净化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810085

Country of ref document: EP

Kind code of ref document: A1