WO2022246675A1 - 一种反向无线充电的电子设备及方法 - Google Patents

一种反向无线充电的电子设备及方法 Download PDF

Info

Publication number
WO2022246675A1
WO2022246675A1 PCT/CN2021/095951 CN2021095951W WO2022246675A1 WO 2022246675 A1 WO2022246675 A1 WO 2022246675A1 CN 2021095951 W CN2021095951 W CN 2021095951W WO 2022246675 A1 WO2022246675 A1 WO 2022246675A1
Authority
WO
WIPO (PCT)
Prior art keywords
charger
state
reverse
power
work
Prior art date
Application number
PCT/CN2021/095951
Other languages
English (en)
French (fr)
Inventor
吴宝善
张成良
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to PCT/CN2021/095951 priority Critical patent/WO2022246675A1/zh
Priority to CN202180007167.9A priority patent/CN115769464A/zh
Publication of WO2022246675A1 publication Critical patent/WO2022246675A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the technical field of terminal equipment, and in particular to an electronic equipment and method for reverse wireless charging.
  • Wireless charging is a new type of energy transmission. Compared with traditional charging methods, wireless charging can solve the above problems well.
  • many electronic devices can support wireless charging, such as mobile phones, smart watches, Bluetooth headsets, electric toothbrushes, etc.
  • wireless charging includes forward wireless charging and reverse wireless charging.
  • Reverse wireless charging can perform wireless energy transmission between different electronic devices. For example, a mobile phone can wirelessly charge another mobile phone.
  • the present application provides an electronic device and method for reverse wireless charging, which can perform reverse wireless charging for other devices and perform flexible control in different charging stages.
  • the reverse wireless charging electronic device includes: a resonant network, a wireless power receiver, a battery and a controller, and a first charger and a second charger connected in series; the first end of the second charger Connect the battery, the second end of the second charger is connected to the first end of the first charger, the second charger converts the voltage of the battery and outputs it to the first charger; the second end of the first charger is connected to the radio The first end of the energy receiver, the first charger performs voltage conversion on the output voltage of the second charger and then outputs it to the wireless energy receiver; the second end of the wireless energy receiver is connected to the resonant network; the resonant network emits the electric energy as Other electronic devices perform reverse wireless charging; the second charger includes at least an open-loop DC/DC converter, and the first charger includes at least a closed-loop DC/DC converter; the controller controls the first charger according to the magnitude of the reverse charging power and the working state of the second charger, the working state includes a reverse boost state and a direct
  • the electronic equipment includes at least two chargers connected in series, one of which is an open-loop DC/DC converter and the other is a closed-loop DC/DC converter.
  • the open-loop DC/DC converter has high power conversion efficiency and is suitable for fast charging; the closed-loop DC/DC converter has good controllability and is suitable for pre-charging and trickle charging stages.
  • the electronic device includes two different chargers, during reverse wireless charging, the working states of the two chargers can be flexibly controlled according to the different charging power required by the electronic device being charged in different charging stages.
  • the controller controls the working state of the first charger and the second charger according to the size of the reverse charging power, wherein the working state includes the reverse boost state and the direct state, so as to adapt to the different charging power of the receiving end in different charging stages. Demand, so as to ensure the charging performance of each charging stage.
  • the closed-loop DC/DC converter included in the first charger is a Buck charger; when the reverse charging power is greater than or equal to the first power threshold and less than the second power threshold, the controller controls the first charging
  • the Buck charger works in the reverse boost state, and the second charger works in the through state; the first power threshold is smaller than the second power threshold.
  • the reverse charging power is relatively small, which corresponds to the pre-charging and trickle charging stages. Therefore, using the Buck charger’s good closed-loop controllability, the Buck charger works in the reverse boost state to perform reverse charging.
  • the second charger can be operated in a straight-through state.
  • the controller controls the first charger, that is, the Buck charger, to work in the through state, and controls the second charger to work in the reverse boost state, this can take advantage of the high open-loop boost efficiency of the second charger to quickly carry out Reverse charging.
  • the electronic device described above includes at least a first charger and a second charger connected in series, and may further include a third charger connected in series. Since the three chargers can correspond to more combinations of working states, the adjustable power level of the electronic device can be increased, for example, from two gears to three gears, and the charging control is better. Therefore, according to the charging demand of the receiving end To more finely adjust the charging power of the transmitter.
  • the closed-loop DC/DC converter of the first charger is a Buck charger; the first end of the third charger is connected to the second end of the second charger, and the second end of the third charger is connected to the battery; the third charger It includes at least an open-loop DC/DC converter; the following describes the working principle of the electronic device provided by the embodiment of the present application when it includes three chargers connected in series.
  • the pre-charging and trickle charging stages when the reverse charging power is greater than or equal to the first power threshold and less than the second power threshold, the controller controls the first charger to work in the reverse boost state, and the second charger works in the through state, the third charger works in the through state; the first power threshold is smaller than the second power threshold.
  • the charging current in the pre-charging and trickle charging stages is small, so the transmitter does not need to provide too much charging power, and the two series chargers at the transmitter can all work in the direct mode, which can save power.
  • fast charging stage 1 When the reverse charging power is greater than or equal to the second power threshold and less than the third power threshold, the controller controls the second charger to work in the reverse boost state, controls the third charger to work in the through state, and controls The first charger works in a through state; the second power threshold is smaller than the third power threshold.
  • fast charging stage 2 the reverse charging power is greater than or equal to the third power threshold, the controller controls the second charger to work in the reverse boost state, controls the third charger to work in the reverse boost state, and controls the first charging The device works in the straight-through state.
  • the first charger described above is a Buck charger, and the following describes the case where the first charger is a linear charger. That is, the closed-loop DC/DC converter is a linear charger; pre-charging and trickle charging stages: when the reverse charging power is greater than or equal to the first power threshold and less than the second power threshold, the controller controls the first charger to work in the through state, and the second The second charger works in a through state; the first power threshold is smaller than the second power threshold.
  • Fast charging stage when the reverse charging power is greater than or equal to the second power threshold, the controller controls the first charger to work in the through state, and controls the second charger to work in the reverse boost state.
  • the electronic device includes the first charger as a linear charger, that is, the closed-loop DC/DC converter is a linear charger; the electronic device may also include three chargers connected in series, that is, it also includes a third charger; because the three A charger can correspond to more combinations of working states, and the adjustable power level of electronic equipment can be increased, for example, from two gears to three gears, and the charging control is better. Therefore, it can be adjusted according to the charging demand of the receiving end. Finely adjust the charging power of the transmitter.
  • the first terminal of the third charger is connected to the second terminal of the second charger, and the second terminal of the third charger is connected to the battery;
  • the third charger includes at least an open-loop DC/DC converter; pre-charging and trickle charging stages :
  • the reverse charging power is greater than or equal to the first power threshold and less than the second power threshold, the controller is specifically used to control the first charger to work in the through state, the second charger to work in the through state, and the third charger to work in the through state ;
  • the first power threshold is smaller than the second power threshold.
  • Fast charging stage 1 When the reverse charging power is greater than or equal to the second power threshold and less than the third power threshold, the controller controls the second charger to work in the reverse boost state, controls the third charger to work in the through state, and controls the first charging The switch works in the through state; the second power threshold is smaller than the third power threshold.
  • Fast charging stage 2 The reverse charging power is greater than or equal to the third power threshold, and the second charger is controlled to work in the reverse boost state. The controller is specifically used to control the third charger to work in the reverse boost state, and controls the second A charger works in a through state.
  • the wireless power receiver RXIC includes a linear voltage regulator.
  • the main function of the linear voltage regulator included in the RXIC is to ensure the stability of the output voltage of the RXIC when the electronic device is used as the receiving end, and to prevent the chip from being subjected to transient high voltage. Because Qi wireless charging uses in-band communication, the closed-loop speed is slow, so the position change of the mobile phone and the load change may cause the voltage after RXIC rectification to be high (much higher than the normal working voltage).
  • the open-loop DC/DC converter is a switched capacitor SC charger, a load switch charger or a flash charger.
  • both the second charger and the third charger may be SC chargers. Whether the boosting ratios of the two SC chargers are consistent, the boosting ratios of the two SC chargers may be consistent or not.
  • the controller is also used to receive the reverse charging power sent by other electronic devices through the amplitude keying ASK method; After the state, the charging voltage corresponding to the reverse charging power is notified to other electronic devices by means of frequency shift keying FSK.
  • the electronic device provided in the embodiment of the present application can also wirelessly power other electronic devices.
  • work settings can be made for other electronic devices as well. For example, when other electronic devices are password locks or password cabinets, reverse wireless charging electronic devices can directly unlock other electronic devices, thereby saving the volume of other electronic devices, eliminating the need to set password keys or touch screens, and reducing costs.
  • the embodiment of the present application also provides a reverse wireless charging method, which is applied to the electronic device as the reverse charging transmitter.
  • a reverse wireless charging method which is applied to the electronic device as the reverse charging transmitter.
  • the electronic device includes: a resonant network, a wireless power receiver, a first charger, a second charger, a battery and a controller; the first end of the second charger is connected to the battery, and the second end of the second charger is connected to the first charger The first end of the charger, the second end of the first charger is connected to the first end of the wireless power receiver, and the second end of the wireless power receiver is connected to the resonant network; the second charger includes at least an open-loop DC/DC converter, The first charger includes at least a closed-loop DC/DC converter; the method includes: controlling the working states of the first charger and the second charger according to the magnitude of reverse charging power, and the working states include a reverse boost state and a straight-through state.
  • the closed-loop DC/DC converter is a Buck charger; the working states of the first charger and the second charger are controlled according to the magnitude of the reverse charging power, specifically including: the reverse charging power is greater than or equal to The first power threshold is less than the second power threshold, the first charger is controlled to work in a reverse boost state, and the second charger is operated in a direct state; the first power threshold is less than the second power threshold.
  • controlling the working states of the first charger and the second charger according to the magnitude of the reverse charging power specifically includes: the reverse charging power is greater than or equal to the second power threshold, and controlling the first charger to work In the straight-through state, the second charger is controlled to work in the reverse boost state.
  • the closed-loop DC/DC converter is a Buck charger; the electronic device further includes: a third charger; the first end of the third charger is connected to the second end of the second charger, and the third The second end of the charger is connected to the battery; the third charger includes at least an open-loop DC/DC converter; the working states of the first charger and the second charger are controlled according to the magnitude of the reverse charging power, specifically including: reverse charging The power is greater than or equal to the first power threshold and less than the second power threshold, the first charger is controlled to work in the reverse boost state, the second charger works in the through state, and the third charger works in the through state; the first power threshold is less than the second Two power thresholds.
  • controlling the working states of the first charger and the second charger according to the magnitude of the reverse charging power specifically includes: the reverse charging power is greater than or equal to the second power threshold and less than the third power threshold, controlling The second charger works in the reverse boost state, controls the third charger to work in the through state, and controls the first charger to work in the through state; the second power threshold is smaller than the third power threshold.
  • controlling the working states of the first charger and the second charger according to the magnitude of the reverse charging power specifically includes: the reverse charging power is greater than or equal to the third power threshold, and controlling the second charger to work In the reverse boost state, the third charger is controlled to work in the reverse boost state, and the first charger is controlled to work in the through state.
  • the closed-loop DC/DC converter is a linear charger; the working states of the first charger and the second charger are controlled according to the magnitude of the reverse charging power, specifically including: the reverse charging power is greater than or equal to The first power threshold is smaller than the second power threshold, the first charger is controlled to work in the through state, and the second charger is operated in the through state; the first power threshold is smaller than the second power threshold.
  • controlling the working states of the first charger and the second charger according to the magnitude of the reverse charging power specifically includes: the reverse charging power is greater than or equal to the second power threshold, and controlling the first charger to work In the straight-through state, the second charger is controlled to work in the reverse boost state.
  • the closed-loop DC/DC converter is a linear charger; it also includes: a third charger; the first end of the third charger is connected to the second end of the second charger, and the third charger The second end of the battery is connected to the battery; the third charger includes at least an open-loop DC/DC converter; the working states of the first charger and the second charger are controlled according to the size of the reverse charging power, specifically including: the reverse charging power is greater than Equal to the first power threshold being less than the second power threshold, the first charger is controlled to work in the through state, the second charger is in the through state, and the third charger is in the through state; the first power threshold is less than the second power threshold.
  • controlling the working states of the first charger and the second charger according to the magnitude of the reverse charging power specifically includes: the reverse charging power is greater than or equal to the second power threshold and less than the third power threshold, controlling The second charger works in the reverse boost state, controls the third charger to work in the through state, and controls the first charger to work in the through state; the second power threshold is smaller than the third power threshold.
  • controlling the working states of the first charger and the second charger according to the magnitude of the reverse charging power specifically includes: the reverse charging power is greater than or equal to the third power threshold, and controlling the second charger to work In the reverse boost state, the third charger is controlled to work in the reverse boost state, and the first charger is controlled to work in the through state.
  • it also includes: receiving the reverse charging power sent by other electronic devices through the amplitude keying ASK method; and after adjusting the working state of the first charger and the second charger
  • the keyed FSK method informs other electronic devices of the charging voltage corresponding to the reverse charging power.
  • the embodiment of the present application also provides a wireless charging system, including the charged electronic device and the reverse wireless charging electronic device introduced in the above embodiments.
  • the reverse wireless charging electronic device can be a mobile terminal such as a mobile phone, and the charged electronic device This can be a mobile device such as a cell phone, phone watch, or bluetooth headset.
  • the reverse wireless charging electronic device can be used as a power supply terminal to wirelessly charge other electronic devices.
  • the electronic device can be a mobile terminal such as a mobile phone. Or Bluetooth headsets, etc. for reverse wireless charging.
  • the electronic equipment includes at least two chargers connected in series, one of which is an open-loop DC/DC converter and the other is a closed-loop DC/DC converter, wherein the open-loop DC/DC converter has high power conversion efficiency and is suitable for Fast charging; the closed-loop DC/DC converter has good controllability and is suitable for pre-charging and trickle charging stages.
  • the electronic device can be flexibly controlled according to the different charging power required by the charged electronic device in different charging stages during reverse wireless charging.
  • the working state of the two chargers that is, the controller controls the working state of the first charger and the second charger according to the size of the reverse charging power, wherein the working state includes the reverse boost state and the direct state, so as to adapt to the Different charging stages have different requirements for charging power, so as to ensure the charging performance of each charging stage, especially the charging efficiency in the fast charging stage of reverse charging is higher, for example, the reverse charging power is above 5W.
  • FIG. 1 is a schematic diagram of a reverse wireless charging electronic device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of another reverse wireless charging electronic device provided by the embodiment of the present application.
  • Fig. 3 is a schematic diagram of another electronic device for reverse wireless charging provided by the embodiment of the present application.
  • Fig. 4 is a schematic diagram of the working principle corresponding to Fig. 2 and Fig. 3;
  • FIG. 5 is a schematic diagram of another reverse wireless charging electronic device provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of another reverse wireless charging electronic device provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of another reverse wireless charging electronic device provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the working principle of the electronic device provided by the embodiment of the present application including three chargers connected in series;
  • FIG. 9 is a schematic diagram of another reverse wireless charging electronic device provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of another electronic device for reverse wireless charging provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the working principle of an electronic device provided in an embodiment of the present application.
  • Fig. 12 is a schematic diagram of another reverse wireless charging electronic device provided by the embodiment of the present application.
  • Fig. 13 is a schematic diagram of another electronic device for reverse wireless charging provided by the embodiment of the present application.
  • Fig. 14 is the working principle when the electronic device provided by the embodiment of the present application includes three chargers connected in series;
  • FIG. 15 is a flow chart of a reverse wireless charging method provided by an embodiment of the present application.
  • FIG. 16 is a flow chart of another reverse wireless charging method provided by the embodiment of the present application.
  • Fig. 17 is a flowchart of another reverse wireless charging method provided by the embodiment of the present application.
  • FIG. 18 is a flow chart of another reverse wireless charging method provided by an embodiment of the present application.
  • Words such as “first” and “second” in the following descriptions are used for description purposes only, and should not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first”, “second”, etc. may expressly or implicitly include one or more of that feature. In the description of the present application, unless otherwise specified, "plurality" means two or more.
  • orientation terms such as “upper” and “lower” may include, but are not limited to, definitions relative to the schematic placement orientations of components in the drawings. It should be understood that these directional terms may be relative concepts, They are used for description and clarification relative to, which may change accordingly according to changes in the orientation in which parts of the figures are placed in the figures.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection, or It can be connected indirectly through an intermediary.
  • the term “coupled” may be an electrical connection for signal transmission.
  • Coupling can be a direct electrical connection, or an indirect electrical connection through an intermediary.
  • the embodiment of the present application relates to an electronic device with reverse wireless charging, which can be used as a power supply terminal to wirelessly charge other electronic devices.
  • reverse wireless charging or power supply for mobile phones, phone watches or Bluetooth headsets for example, reverse wireless charging or power supply for mobile phones, phone watches or Bluetooth headsets.
  • an embodiment of the present application provides an electronic device for reverse wireless charging.
  • the electronic device includes at least two series-connected Two different chargers together can control the two chargers to work in different states in different charging stages, so as to adapt to the different demands of charging power in different charging stages, so as to ensure the charging efficiency of each charging stage.
  • FIG. 1 this figure is a schematic diagram of an electronic device for reverse wireless charging provided by an embodiment of the present application.
  • the electronic device 100 provided in the embodiment of the present application has a reverse charging function, that is, an electronic device that can be used as a transmitter, for example, the electronic device can be a mobile phone.
  • the electronic device 100 can be used not only as a receiving end, but also as a transmitting end.
  • the embodiment of this application mainly introduces the working principle of the electronic device 100 as a transmitting end to wirelessly charge other electronic devices in reverse.
  • the device 100 performs reverse wireless charging or power supply to the electronic device 200 as the receiving end, for example, the mobile phone reversely wirelessly charges or supplies power to the watch.
  • the following mainly uses the electronic device 100 as the transmitting end to wirelessly charge other electronic devices in reverse.
  • the reverse wireless charging electronic device 100 includes: a resonant network (including a first capacitor C1 and a first inductor L1 connected in series), a wireless power receiver RXIC, a first charger W1, and a second charger W2, battery Bat1 and controller (not shown in the figure).
  • the main function of the wireless power receiver RXIC is to control power reception.
  • the main function of the wireless power receiver RXIC is to control power transmission.
  • the wireless power receiver RXIC may include a rectification circuit.
  • the rectification module works forward to realize the function of rectification.
  • the rectifier module works in reverse to realize the function of inverter.
  • the specific working modes of the rectification circuit may include a semi-synchronous rectification mode and a full synchronous rectification mode.
  • the first end of the second charger W2 is connected to the battery Bat1, the second end of the second charger W2 is connected to the first end of the first charger W1, and the second end of the first charger W1 is connected to the first end of the wireless power receiver RXIC.
  • the second end of the wireless power receiver RXIC is connected to the resonant network.
  • the second charger W2 includes at least an open-loop DC/DC converter
  • the first charger W1 includes at least a closed-loop DC/DC converter
  • the closed-loop DC/DC converter can be a Buck charger or a linear charger, wherein linear charging
  • the regulator can be a low dropout linear regulator (LDO, Low Dropout Regulator);
  • the open-loop DC/DC converter can be a switched capacitor (SC, Switched Capacitor) charger, a load switch charger or a flash charger.
  • SC Switched Capacitor
  • the Buck charger can work in a reverse boost mode.
  • the open-loop DC/DC converter is an SC charger
  • the SC acts as a step-down circuit
  • the electronic device 100 acts as a transmitter for reverse wireless charging
  • the SC acts as a boost circuit.
  • the embodiment of the present application does not specifically limit the boost ratio of the SC charger, which can be set according to actual needs, such as 2:1 switched capacitor, 3:1 switched capacitor, 4:1 switched capacitor, and 6:1 switched capacitor.
  • the controller is used to control the working states of the first charger W1 and the second charger W2 according to the magnitude of the reverse charging power, and the working states include the reverse boost state and the through state.
  • the first charger W1 can be controlled to work in the reverse boost state
  • the second charger W2 can be controlled to work in the through state.
  • the first charger W1 is controlled to work in the through state
  • the second charger W2 is controlled to work in the reverse boost state.
  • the controller in the electronic device as the transmitting end of reverse charging is also used to receive the reverse charging power sent by other electronic devices through ASK (ASK, Amplitude Shift Keying) mode; After the working state of the first charger and the second charger, other electronic devices are notified of the charging voltage corresponding to the reverse charging power through frequency shift keying (FSK, Frequency Shift Keying).
  • ASK Amplitude Shift Keying
  • the controller is specifically used to control the second charger W2 to convert the voltage of the battery Bat1 and then output it to the first charger W1, and to control the first charger W1 to convert the output voltage of the second charger W2 and then output it to the radio
  • the wireless power receiver RXIC is used to control the wireless power receiver RXIC to convert the voltage output by the first charger W1 into alternating current and transmit it to the resonant network, so that the resonant network can transmit electric energy, thereby performing reverse wireless charging for the electronic device 200 at the receiving end.
  • the electronic equipment provided by the embodiment of the present application includes at least two different chargers connected in series, one of which is an open-loop DC/DC converter, and the other is a closed-loop DC/DC converter, and the open-loop DC/DC converter can be used.
  • the DC converter and the closed-loop DC/DC converter perform two-stage DC conversion on the voltage of the battery Bat1. Because the closed-loop DC/DC converter has good control characteristics and high working stability, it is suitable for electronic equipment to reverse for receiving The precharge and trickle charge phases are carried out at the end.
  • due to the high power conversion efficiency of the open-loop DC/DC converter it is suitable for electronic devices to reversely perform wireless fast charging for the receiving end, thereby realizing long-term high-power fast wireless charging.
  • the electronic device provided by the embodiment of the present application includes two different DC/DC converters, so it can control the two different DC/DC converters to work in different working states according to different charging stages, and the two DC
  • the respective advantages of /DC converters are effectively combined to achieve higher charging efficiency.
  • the electronic device 100 at the transmitting end may be configured to transmit power to the electronic device 200 at the receiving end, that is, perform reverse wireless charging.
  • the electronic device 200 at the receiving end communicates with the electronic device 100 at the transmitting end in real time, and sends a corresponding voltage/power change signal to the electronic device 100 at the transmitting end according to the actual voltage/power change requirements at each stage in the charging process; After receiving the voltage/power change signal, the electronic device 100 at the end controls the reverse working state of the first charger and the second charger connected in series to meet the voltage/power required by the electronic device 200 at the receiving end in each stage of the charging process. Furthermore, the control of stable charging current or charging voltage at each stage of the wireless charging process is realized.
  • the electronic device 200 at the receiving end and the electronic device 100 at the transmitting end may perform in-band communication or out-of-band communication.
  • In-band communication refers to the simultaneous transmission of energy and information; out-of-band communication refers to the independent transmission of energy and information.
  • WPC Wireless Power Consortium
  • the communication method that modulates energy and information together for transmission belongs to in-band communication.
  • the out-of-band communication may be performed through Bluetooth, for example, which is not specifically limited in this embodiment.
  • the embodiment of the present application does not specifically limit the number of series chargers included in the electronic device, and it may be at least two, may be three, or may be a greater number of chargers.
  • the working principle of the two series connected chargers will be introduced below with reference to the accompanying drawings.
  • the reverse wireless charging electronic device provided by the embodiment of the present application can not only charge other electronic devices, but also directly supply power to other electronic devices.
  • the reverse wireless charging electronic device can also perform work settings or password settings for the receiving end, for example, when the electronic device at the receiving end requires password setting, such as a door lock
  • the receiver is used as a password cabinet or a password cabinet
  • the transmitter can not only supply power or charge the receiver, but also set a password for the door lock or password cabinet.
  • the electronic device used as reverse wireless charging can communicate with the receiver through in-band communication. Enter the password to unlock. This simplifies the key design or touch screen design of the receiving end, such as a door lock or a password cabinet, and saves volume.
  • the APP of the mobile phone can directly unlock the door lock or password cabinet.
  • the electronic device of reverse wireless charging can also directly supply wireless power to the password circuit of the password cabinet.
  • the password can be input to open the password cabinet. This can not only realize unlocking but also save the battery of the password cabinet. , save space and volume, and reduce costs.
  • FIG. 2 this figure is a schematic diagram of another electronic device for reverse wireless charging provided by an embodiment of the present application.
  • the first charger W1 is a Buck charger
  • the second charger W2 is an SC charger as an example for introduction.
  • the wireless power receiver RXIC included in FIG. 3 may include a linear voltage regulator in addition to a bidirectional rectification circuit.
  • the bidirectional rectification circuit in the RXIC works in the rectification mode when the electronic device serves as the receiving end, that is, the AC power received by the resonant network (the resonant network formed by the first inductor L1 and the first capacitor C1 connected in series) is rectified into DC power.
  • the bidirectional rectification circuit works in the inverter mode, which is to invert the direct current into alternating current to transmit the resonant network.
  • the main function of the linear voltage regulator included in the RXIC is to ensure the stability of the output voltage of the RXIC when the electronic device is used as the receiving end, and to prevent the chip from being subjected to transient high voltage. Because Qi wireless charging uses in-band communication, the closed-loop speed is slow, so the position change of the mobile phone and the load change may cause the voltage after RXIC rectification to be high (much higher than the normal working voltage).
  • this figure is a schematic diagram of another electronic device for reverse wireless charging provided by an embodiment of the present application.
  • FIG. 2 and FIG. 3 The working principle of the electronic device shown in FIG. 2 and FIG. 3 is similar in reverse charging, and FIG. 4 is a schematic diagram of the corresponding working principle.
  • the working principle of the electronic device provided by the embodiment of the present application including two different chargers connected in series will be described below with reference to FIGS. 2-4 .
  • the charging phase of the corresponding receiving end can be a pre-charging phase or a trickle current phase
  • the controller controls the first charger (Buck charger) to work at In the reverse boost state, the second charger (SC charger) works in the through state; the first power threshold is smaller than the second power threshold.
  • the buck charger can be used to accurately charge with a small current by taking advantage of its good control characteristics and high stability.
  • the reverse charging power of the receiving end is a request sent by the electronic device of the receiving end to be reverse charged to the mobile phone as the transmitting end through in-band communication. For example, when the mobile phone being charged needs higher reverse charging power, a higher reverse charging power request is sent to the transmitting mobile phone.
  • the mobile phone as the transmitting end After receiving the request, the mobile phone as the transmitting end makes state adjustments (switching to SC reverse boost, the voltage applied to the inverter circuit is higher than the Buck reverse boost voltage), and the RXIC rectified voltage at the receiving end will instantly If the receiving end detects that the rectified voltage rises instantly, it can be judged that the mobile phone as the transmitting end has switched to a higher reverse charging power, and the receiving end will switch the reverse charging power to a higher power.
  • the charging phase of the corresponding receiving end is the fast charging phase
  • the controller controls the first charger (Buck charger) to work in the through state
  • SC Charger controls the second charger (SC Charger) works in the reverse boost state. Since the power conversion efficiency of the SC charger is higher than that of the Buck charger, the advantages of the SC charger can be used to accelerate the charging process during the fast charging stage.
  • the electronic device provided in the embodiment corresponding to Fig. 2-Fig. 4 is introduced by including two chargers connected in series as an example.
  • the implementation of the electronic device provided by the embodiment of the present application including three chargers connected in series will be described below in conjunction with the accompanying drawings. Way. Since the three chargers can correspond to more combinations of working states, the adjustable power level of the electronic device can be increased, for example, from two gears to three gears, and the charging control is better. Therefore, according to the charging demand of the receiving end To more finely adjust the charging power of the transmitter.
  • this figure is a schematic diagram of another electronic device for reverse wireless charging provided by an embodiment of the present application.
  • the electronic device provided in this embodiment includes three chargers connected in series, which are respectively the first charger W1, the second charger W2 and the third charger W3, wherein the first charger W1 is a closed-loop DC/DC converter to The closed-loop DC/DC converter is a Buck charger as an example; both the second charger W2 and the third charger W3 include open-loop DC/DC converters.
  • the first end of the third charger W3 is connected to the second end of the second charger W2, and the second end of the third charger W3 is connected to the battery; the third charger W3 at least includes an open-loop DC/DC converter.
  • the second charger W2 can be an SC charger, that is, the second charger W2 can be a first SC charger, see FIG. 6 , which is another reverse wireless charging electronic device provided by the embodiment of the present application.
  • the third charger W3 can also be an SC charger, that is, the third charger W3 can be a second SC charger.
  • the wireless power receiver RXIC provided in the embodiment of the present application is the same as that in the embodiment provided in FIG.
  • FIG. 7 is a schematic diagram of another electronic device for reverse wireless charging provided by an embodiment of the present application.
  • the wireless power receiver RXIC also includes a linear voltage regulator, which will not be described in detail here, and reference can be made to the introduction of the above embodiments.
  • the controller controls the first charger to work in the reverse boost state, the second charger to work in the through state, and the third charger to work in the through state;
  • the first power threshold is less than the second power threshold. That is, the Buck charger works in the reverse boost state, and both the first SC charger and the second SC charger work in the through state. At this time, the charging power required by the receiving end is small. In order to achieve stable charging with a small current, the Buck charger can be used for charging with the advantages of precise control and good stability, and it is sufficient to control the two SC chargers to work in the through state.
  • the controller When the reverse charging power is greater than or equal to the second power threshold and less than the third power threshold, the controller is also used to control the second charger W2 to work in the reverse boost state, control the third charger W3 to work in the through state, and control the first charging
  • the switch W1 works in the through state; the second power threshold is smaller than the third power threshold.
  • the charging power required by the receiving end increases.
  • the Buck charger can be controlled to work in the direct mode
  • the first SC charger can be controlled to work in the reverse boost state
  • the second SC charger can be controlled to work in the direct state. , so as to utilize the characteristic of high charging efficiency of the first SC charger to realize fast charging.
  • the controller is also used to control the second charger W2 to work in the reverse boost state, control the third charger W3 to work in the reverse boost state, and control the first charger W1 Works in the straight-through state. That is, the Buck charger works in the through state, and both the first SC charger and the second SC charger work in the reverse boost state. At this time, the charging power required by the receiving end is increasing. In order to achieve faster charging, the two SC chargers can be controlled to work in the reverse boost state, and the advantages of high charging efficiency of the SC charger can be used to provide the receiving end Charge it as soon as possible.
  • the embodiment of the present application does not limit whether the boosting ratios of the two SC chargers are the same.
  • the boosting ratios of the two SC chargers may be the same or not, and those skilled in the art can choose according to actual needs.
  • the electronic equipment described in the above embodiments is introduced by taking the closed-loop DC/DC converter in the first charger as a Buck charger as an example.
  • the closed-loop DC/DC converter can also be a linear charger, such as a linear voltage regulator.
  • the first charger is a linear charger
  • the second charger is an open-loop DC/DC converter, such as the first SC charger.
  • FIG. 9 is a schematic diagram of another electronic device for reverse wireless charging provided by an embodiment of the present application.
  • the electronic device 100 includes a linear charger W1 and a first SC charger W2.
  • the first end of the first SC charger W2 is connected to the battery Bat1
  • the first end of the first SC charger W2 is connected to the second end of the linear charger W1
  • the first end of the linear charger W1 is connected to the wireless power receiver RXIC.
  • the wireless power receiver RXIC may also include a linear voltage regulator, see Figure 10, for example, an LDO, for details, please refer to the above implementation The description of the example will not be described in detail here.
  • FIG. 11 this figure is a schematic diagram of the working principle of an electronic device provided in an embodiment of the present application.
  • the controller When the reverse charging power is greater than or equal to the first power threshold and less than the second power threshold, the controller is used to control the first charger to work in the through state, and the second charger to work in the through state, that is, to control the linear charger to work in the through state.
  • the first SC charger works in a straight-through state; the first power threshold is smaller than the second power threshold.
  • the charging power of the receiving end is relatively small, corresponding to the pre-charging stage and the trickle charging stage, the charging current is small, therefore, the transmitting end does not need to provide too much charging power, and the two series chargers at the transmitting end work in the direct mode. Yes, this saves power.
  • the pre-charging and trickle charging stages are mainly to ensure accurate control of the charging current entering the battery.
  • the current in the pre-charging and trickle charging stages of mobile phones is generally between 0.1A and 0.3A.
  • the controller When the reverse charging power is greater than or equal to the second power threshold, the controller is used to control the first charger to work in a straight-through state, and control the second charger to work in a reverse boost state. That is, the charging power of the receiving end increases at this time, corresponding to the fast charging stage.
  • the linear charger In order to meet the fast charging requirements of the receiving end, the linear charger is controlled to work in the through state, and the first SC charger is controlled to work in the reverse boost state.
  • the first SC When the boost ratio of the charger is 1:2, the first SC charger can be controlled to work in a double boost state.
  • the electronic device provided in the embodiment corresponding to Fig. 9-Fig. 11 is introduced as an example including two chargers connected in series.
  • the implementation of the electronic device provided by the embodiment of the present application including three chargers connected in series will be described below in conjunction with the accompanying drawings. Way. Since the three chargers can correspond to more combinations of working states, the adjustable power level of the electronic device can be increased, for example, from two gears to three gears, and the charging control is better. Therefore, according to the charging demand of the receiving end To more finely adjust the charging power of the transmitter.
  • this figure is a schematic diagram of another electronic device for reverse wireless charging provided by an embodiment of the present application.
  • the first charger is a linear charger W1
  • the second charger is a first SC charger W2
  • the third charger is a second SC charger W3.
  • the first end of the linear charger W1 is connected to the wireless power receiver RXIC
  • the second end of the linear charger W1 is connected to the first end of the first SC charger W2
  • the second end of the first SC charger W2 is connected to the second
  • the first end of the SC charger W3 and the second end of the second SC charger W3 are connected to the battery Bat1.
  • the wireless power receiver RXIC in the electronic equipment shown in Figure 12 can also include a linear voltage regulator, and the linear voltage regulator can be an LDO, that is, the RXIC includes a rectifier circuit and an LDO, as shown in Figure 13, which is an implementation of the present application.
  • LDO linear voltage regulator
  • FIG 13 A schematic diagram of yet another electronic device for reverse wireless charging provided as an example.
  • the wireless power receiver RXIC and the linear voltage regulator reference may be made to the descriptions of the above embodiments, and details will not be repeated here.
  • FIG. 14 is a schematic diagram of another electronic device for reverse wireless charging provided by an embodiment of the present application.
  • the controller controls the first charger to work in the through state, the second charger to work in the through state, and the third charger to work in the through state; the first power The threshold is less than the second power threshold. That is, the linear charger works in the through state, and both the first SC charger and the second SC charger also work in the through state. At this time, the charging power required by the receiving end is relatively small. In order to reduce loss, all three chargers connected in series can work in the direct-through state.
  • the controller When the reverse charging power is greater than or equal to the second power threshold and less than the third power threshold, the controller is also used to control the second charger W2 to work in the reverse boost state, control the third charger W3 to work in the through state, and control the first charging
  • the switch W1 works in the through state; the second power threshold is smaller than the third power threshold.
  • the charging power required by the receiving end increases.
  • the linear charger can be controlled to work in the direct mode
  • the first SC charger can be controlled to work in the reverse boost state
  • the second SC charger can be controlled to work in the direct state. , so as to utilize the characteristic of high charging efficiency of the first SC charger to realize fast charging.
  • the controller is also used to control the second charger W2 to work in the reverse boost state, control the third charger W3 to work in the reverse boost state, and control the first charger W1 Works in the straight-through state. That is, the linear charger works in the through state, and both the first SC charger and the second SC charger work in the reverse boost state. At this time, the charging power required by the receiving end is increasing. In order to achieve faster charging, the two SC chargers can be controlled to work in the reverse boost state, and the advantages of high charging efficiency of the SC charger can be used to provide the receiving end Charge it as soon as possible.
  • the embodiment of the present application does not limit whether the boosting ratios of the two SC chargers are the same.
  • the boosting ratios of the two SC chargers may be the same or not, and those skilled in the art can choose according to actual needs.
  • the embodiment of the present application also provides a reverse wireless charging method, which will be described in detail below with reference to the accompanying drawings.
  • the reverse wireless charging method provided in this embodiment is applied to an electronic device as a reverse charging transmitter, and the electronic device includes: a resonant network, a wireless power receiver, a first charger, a second charger, a battery and a controller;
  • the first end of the second charger is connected to the battery, the second end of the second charger is connected to the first end of the first charger, the second end of the first charger is connected to the first end of the wireless power receiver, and the wireless power receiver
  • the second end of the charger is connected to the resonant network;
  • the second charger includes at least an open-loop DC/DC converter, and the first charger includes at least a closed-loop DC/DC converter;
  • the method includes:
  • the operating states of the first charger and the second charger are controlled according to the magnitude of the reverse charging power, and the operating states include a reverse boost state and a through state.
  • the first charger when the charging power required by the receiving end is small, the first charger can be controlled to work in the reverse boost state, and the second charger can be controlled to work in the through state.
  • the first charger is controlled to work in the through state, and the second charger is controlled to work in the reverse boost state.
  • the closed-loop DC/DC converter can be a Buck charger or a linear charger, and the linear charger can be a low dropout linear regulator (LDO, Low Dropout Regulator); the open-loop DC/DC converter can be a switched capacitor ( SC, Switched Capacitor) charger, load switch charger or flash charger.
  • SC Switched Capacitor
  • SC Switched Capacitor
  • the SC when the open-loop DC/DC converter is an SC charger, when the electronic device is charged, the SC acts as a step-down circuit, and when the electronic device acts as a transmitter for reverse wireless charging, the SC acts as a boost circuit.
  • the embodiment of the present application does not specifically limit the boost ratio of the SC charger, which can be set according to actual needs, such as 2:1 switched capacitor, 3:1 switched capacitor, 4:1 switched capacitor, and 6:1 switched capacitor.
  • the wireless charging method provided by the embodiment of the present application is applied to electronic equipment, and the electronic equipment includes at least two different chargers connected in series, one of which is an open-loop DC/DC converter, and the other is a closed-loop DC/DC
  • the converter can use the open-loop DC/DC converter and the closed-loop DC/DC converter to perform two-stage DC conversion on the voltage of the battery. Because the closed-loop DC/DC converter has good control characteristics and high working stability, it is therefore It is suitable for the reverse precharging and trickle charging stages of the receiving end for the electronic equipment.
  • the open-loop DC/DC converter due to the high power conversion efficiency of the open-loop DC/DC converter, it is suitable for electronic devices to reversely perform wireless fast charging for the receiving end, thereby realizing long-term high-power fast wireless charging.
  • the electronic device provided by the embodiment of the present application includes two different DC/DC converters, so it can control the two different DC/DC converters to work in different working states according to different charging stages, and the two DC The respective advantages of /DC converters are effectively combined to achieve higher charging efficiency.
  • the embodiment of the present application does not specifically limit the number of series chargers included in the electronic device, and it may be at least two, may be three, or may be a greater number of chargers.
  • the charging method of two chargers connected in series will be introduced below in conjunction with the accompanying drawings.
  • the following takes the closed-loop DC/DC converter as a Buck charger as an example for introduction.
  • FIG. 15 is a flow chart of a reverse wireless charging method provided by an embodiment of the present application. Specifically include:
  • the reverse charging power is greater than or equal to the first power threshold and less than the second power threshold, controlling the Buck charger to work in the reverse boost state, and the second charger to work in the through state; the first power threshold is less than the second power threshold.
  • the reverse charging power is greater than or equal to the second power threshold, controlling the Buck charger to work in the through state, and controlling the second charger to work in the reverse boost state.
  • the following describes the charging method with different charging stages at the receiving end corresponding to different reverse charging powers.
  • the charging phase of the corresponding receiving end can be the pre-charging phase or the trickle phase, and the Buck charger is controlled to work in the reverse boost state.
  • the charger (SC charger) works in a straight-through state; the first power threshold is smaller than the second power threshold.
  • the advantage of the Buck charger's good control characteristics and high stability can be used to accurately charge with a small current.
  • the charging stage of the corresponding receiving end is the fast charging stage, and the first charger (Buck charger) is controlled to work in the through state, and the second charger (SC charger) is controlled to ) work in the reverse boost state, since the power conversion efficiency of the SC charger is higher than that of the Buck charger, the advantages of the SC charger can be used to accelerate the charging process during the fast charging stage.
  • a charging method for an electronic device provided by an embodiment of the present application including three chargers connected in series will be described below with reference to the accompanying drawings. Since the three chargers can correspond to more combinations of working states, the adjustable power level of the electronic device can be increased, for example, from two gears to three gears, and the charging control is better. Therefore, according to the charging demand of the receiving end To more finely adjust the charging power of the transmitter.
  • the closed-loop DC/DC converter is used as a Buck charger as an example for introduction.
  • the electronic device also includes: a third charger; the first end of the third charger is connected to the second end of the second charger, and the second end of the third charger is connected to the battery; the third charger includes at least an open-loop DC/DC converter;
  • FIG. 16 is a flow chart of another reverse wireless charging method provided by the embodiment of the present application.
  • the reverse charging power is greater than or equal to the first power threshold and less than the second power threshold, control the first charger (Buck charger) to work in the reverse boost state, the second charger to work in the through state, and the third charger to work In the pass-through state; the first power threshold is less than the second power threshold.
  • the reverse charging power is greater than or equal to the second power threshold and less than the third power threshold, control the second charger to work in the reverse boost state, control the third charger to work in the through state, and control the first charger (Buck charger) Working in a straight-through state; the second power threshold is smaller than the third power threshold.
  • the reverse charging power is greater than or equal to the third power threshold, control the second charger to work in the reverse boost state, control the third charger to work in the reverse boost state, and control the first charger (Buck charger) to work in the reverse boost state. Pass-through state.
  • the following describes the charging method with different charging stages at the receiving end corresponding to different reverse charging powers.
  • the controller controls the first charger (Buck charger) to work in the reverse boost state, the second charger to work in the through state, and the third charger Working in a straight-through state; the first power threshold is smaller than the second power threshold. That is, the Buck charger works in the reverse boost state, and both the first SC charger and the second SC charger work in the through state. At this time, the charging power required by the receiving end is small. In order to achieve stable charging with a small current, the Buck charger can be used for charging with the advantages of precise control and good stability, and it is sufficient to control the two SC chargers to work in the through state.
  • the controller When the reverse charging power is greater than or equal to the second power threshold and less than the third power threshold, the controller is also used to control the second charger to work in the reverse boost state, control the third charger to work in the through state, and control the first charger to work In the pass-through state; the second power threshold is less than the third power threshold.
  • the charging power required by the receiving end increases.
  • the Buck charger can be controlled to work in the direct mode
  • the first SC charger can be controlled to work in the reverse boost state
  • the second SC charger can be controlled to work in the direct state. , so as to utilize the characteristic of high charging efficiency of the first SC charger to realize fast charging.
  • the controller When the reverse charging power is greater than or equal to the third power threshold, the controller is also used to control the second charger to work in the reverse boost state, control the third charger to work in the reverse boost state, and control the first charger (Buck charging device) work in the through state. That is, the Buck charger works in the through state, and both the first SC charger and the second SC charger work in the reverse boost state. At this time, the charging power required by the receiving end is increasing. In order to achieve faster charging, the two SC chargers can be controlled to work in the reverse boost state, and the advantages of high charging efficiency of the SC charger can be used to provide the receiving end Charge it as soon as possible.
  • the embodiment of the present application does not limit whether the boosting ratios of the two SC chargers are the same.
  • the boosting ratios of the two SC chargers may be the same or not, and those skilled in the art can choose according to actual needs.
  • the electronic equipment described in the above embodiments is introduced by taking the closed-loop DC/DC converter in the first charger as a Buck charger as an example.
  • the closed-loop DC/DC converter can also be a linear charger, such as a linear voltage regulator.
  • the closed-loop DC/DC converter is used as a linear charger as an example for introduction.
  • FIG. 17 is a flow chart of another reverse wireless charging method provided by the embodiment of the present application. Specifically include:
  • the reverse charging power is greater than or equal to the first power threshold and less than the second power threshold, control the linear charger to work in the through state, and the second charger to work in the through state; the first power threshold is less than the second power threshold.
  • the reverse charging power is greater than or equal to the second power threshold, controlling the first charger to work in a through state, and controlling the second charger to work in a reverse boost state.
  • the controller When the reverse charging power is greater than or equal to the first power threshold and less than the second power threshold, the controller is used to control the linear charger to work in the through state, and the second charger to work in the through state, that is, to control the linear charger to work in the through state, and to control the first An SC charger works in a straight-through state; the first power threshold is smaller than the second power threshold.
  • the charging power of the receiving end is relatively small, corresponding to the pre-charging stage and the trickle charging stage, the charging current is small, therefore, the transmitting end does not need to provide too much charging power, and the two series chargers at the transmitting end work in the direct mode. Yes, this saves power.
  • the controller When the reverse charging power is greater than or equal to the second power threshold, the controller is used to control the linear charger to work in the through state, and control the second charger to work in the reverse boost state. That is, the charging power of the receiving end increases at this time, corresponding to the fast charging stage.
  • the linear charger In order to meet the fast charging requirements of the receiving end, the linear charger is controlled to work in the through state, and the first SC charger is controlled to work in the reverse boost state.
  • the first SC When the boost ratio of the charger is 1:2, the first SC charger can be controlled to work in a double boost state.
  • the method described above is described by taking the electronic device including two chargers connected in series as an example.
  • the implementation manner of the electronic device provided in the embodiment of the present application including three chargers connected in series will be described below with reference to the accompanying drawings. Since the three chargers can correspond to more combinations of working states, the adjustable power level of the electronic device can be increased, for example, from two gears to three gears, and the charging control is better. Therefore, according to the charging demand of the receiving end To more finely adjust the charging power of the transmitter.
  • the first charger is a linear charger
  • the second charger is a first SC charger
  • the third charger is a second SC charger.
  • the first end of the linear charger is connected to the wireless power receiver
  • the second end of the linear charger is connected to the first end of the first SC charger
  • the second end of the first SC charger is connected to the second end of the second SC charger.
  • One end, the second end of the second SC charger is connected to the battery.
  • This embodiment is introduced by taking the closed-loop DC/DC converter as a linear charger as an example; the electronic device also includes: a third charger; the first end of the third charger is connected to the second end of the second charger, and the third charging The second end of the charger is connected to the battery; the third charger includes at least an open-loop DC/DC converter;
  • FIG. 18 is a flow chart of another reverse wireless charging method provided by an embodiment of the present application. Specifically include:
  • the reverse charging power is greater than or equal to the first power threshold and less than the second power threshold, control the linear charger to work in the through state, the second charger to work in the through state, and the third charger to work in the through state; the first power threshold is less than Second power threshold.
  • the reverse charging power is greater than or equal to the second power threshold and less than the third power threshold, controlling the second charger to work in the reverse boost state, controlling the third charger to work in the through state, and controlling the linear charger to work in the through state;
  • the second power threshold is smaller than the third power threshold.
  • the reverse charging power is greater than or equal to the third power threshold, controlling the second charger to work in the reverse boost state, controlling the third charger to work in the reverse boost state, and controlling the linear charger to work in the through state.
  • the following describes the wireless charging method of the transmitter in combination with the different charging stages corresponding to the receiver.
  • the controller controls the linear charger to work in the through state, the second charger works in the through state, and the third charger works in the through state; the first power threshold less than the second power threshold. That is, the linear charger works in the through state, and both the first SC charger and the second SC charger also work in the through state. At this time, the charging power required by the receiving end is relatively small. In order to reduce loss, all three chargers connected in series can work in the direct-through state.
  • the controller When the reverse charging power is greater than or equal to the second power threshold and less than the third power threshold, the controller is also used to control the second charger to work in the reverse boost state, control the third charger to work in the through state, and control the linear charger to work in the A straight-through state; the second power threshold is smaller than the third power threshold. At this time, the charging power required by the receiving end increases.
  • the linear charger can be controlled to work in the direct mode, the first SC charger can be controlled to work in the reverse boost state, and the second SC charger can be controlled to work in the direct state. , so as to utilize the characteristic of high charging efficiency of the first SC charger to realize fast charging.
  • the controller is also used to control the second charger to work in the reverse boost state, control the third charger to work in the reverse boost state, and control the linear charger to work in the through state . That is, the linear charger works in the through state, and both the first SC charger and the second SC charger work in the reverse boost state. At this time, the charging power required by the receiving end is increasing. In order to achieve faster charging, the two SC chargers can be controlled to work in the reverse boost state, and the advantages of high charging efficiency of the SC charger can be used to provide the receiving end Charge it as soon as possible.
  • the controller in the electronic device as the transmitting end of reverse charging is also used to receive the reverse charging power sent by other electronic devices through ASK mode; it is also used to adjust the first charger and the second charger Inform the other electronic devices of the charging voltage corresponding to the reverse charging power through FSK.
  • the reverse wireless charging electronic device provided by the embodiment of the present application can not only charge other electronic devices, but also directly supply power to other electronic devices.
  • the reverse wireless charging electronic device can also perform work settings or password settings for the receiving end, for example, when the electronic device at the receiving end requires password setting, such as a door lock
  • the receiver is used as a password cabinet or a password cabinet
  • the transmitter can not only supply power or charge the receiver, but also set a password for the door lock or password cabinet.
  • the electronic device used as reverse wireless charging can communicate with the receiver through in-band communication. Enter the password to unlock. This simplifies the key design or touch screen design of the receiving end, such as a door lock or a password cabinet, and saves volume.
  • the APP of the mobile phone can directly unlock the door lock or password cabinet.
  • the electronic device of reverse wireless charging can also directly supply wireless power to the password circuit of the password cabinet.
  • the password can be input to open the password cabinet. This can not only realize unlocking but also save the battery of the password cabinet. , save space and volume, and reduce costs.
  • At least one (item) means one or more, and “multiple” means two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time , where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种反向无线充电的电子设备及方法,包括谐振网络、无线电能接收器、电池和控制器;串联的第一充电器和第二充电器,第二充电器将电池的电压进行电压变换后输出给第一充电器;第一充电器的第二端连接无线电能接收器的第一端,第一充电器对第二充电器的输出电压进行电压变换后输出给无线电能接收器;无线电能接收器的第二端连接谐振网络;谐振网络将电能发射出去为其他电子设备进行反向无线充电;第二充电器至少包括开环DC/DC转换器,第一充电器至少包括闭环DC/DC转换器;控制器根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,工作状态包括反向升压状态和直通状态,在不同的充电阶段进行灵活控制。

Description

一种反向无线充电的电子设备及方法 技术领域
本申请涉及终端设备技术领域,尤其涉及一种反向无线充电的电子设备及方法。
背景技术
目前,便携式的电子设备近年来已经得到广泛的应用。传统的对电子设备进行充电的方式往往需要频繁地插拔电源线,但是器件容易在插拔充电的过程中受到磨损,安全性较差,而且也影响电子设备的美观。
无线充电是一种新型的能量传输方式。相比于传统的充电方式,无线充电可以很好地解决上述问题。如今已有很多电子设备能够支持无线充电,例如手机、智能手表、蓝牙耳机、电动牙刷等。目前无线充电包括正向无线充电和反向无线充电,反向无线充电可以在不同电子设备间进行无线能量传输,例如一部手机可以为另一部手机进行无线充电。
但是,目前的电子设备作为能量提供端为其他电子设备进行无线充电时,无法根据不同的充电阶段进行灵活的控制。
发明内容
本申请提供了一种反向无线充电的电子设备及方法,能够为其他设备进行反向无线充电且在不同的充电阶段进行灵活控制。
本申请实施例提供的反向无线充电的电子设备包括:谐振网络、无线电能接收器、电池和控制器,还有串联的第一充电器和第二充电器;第二充电器的第一端连接电池,第二充电器的第二端连接第一充电器的第一端,第二充电器将电池的电压进行电压变换后输出给第一充电器;第一充电器的第二端连接无线电能接收器的第一端,第一充电器对第二充电器的输出电压进行电压变换后输出给无线电能接收器;无线电能接收器的第二端连接谐振网络;谐振网络将电能发射出去为其他电子设备进行反向无线充电;第二充电器至少包括开环DC/DC转换器,第一充电器至少包括闭环DC/DC转换器;控制器根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,工作状态包括反向升压状态和直通状态。
由于电子设备包括至少两个串联的充电器,其中一个为开环DC/DC转换器,另一个为闭环DC/DC转换器。开环DC/DC转换器的电能转换效率高,适用于快速充电;闭环DC/DC转换器的可控性较好,适用于预充和涓流充电阶段。由于该电子设备包括两种不同的充电器,因此,在反向无线充电时,可以根据被充电的电子设备在不同的充电阶段需求的充电功率不同,来灵活控制两个充电器的工作状态,即控制器根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,其中工作状态包括反向升压状态和直通状态,以适应接收端在不同充电阶段对充电功率的不同需求,从而保证各个充电阶段的充电性能。
在一种可能的实现方式中,第一充电器包括的闭环DC/DC转换器为Buck充电器;当反向充电功率大于等于第一功率阈值小于第二功率阈值时,控制器控制第一充电器即Buck充电器工作在反向升压状态,第二充电器工作在直通状态;第一功率阈值小于第二功率阈值。此时,反向充电功率比较小,对应预充和涓流充电阶段,因此,利用Buck充电器的闭环可控性好的特点,利用Buck充电器工作在反向升压状态进行反向充电,另外为了提高电 能转换效率,可以使第二充电器工作在直通状态。
在一种可能的实现方式中,当反向充电功率大于等于第二功率阈值时,即此时反向充电功率较大,对应快充阶段,需要为其他电子设备进行快速反向无线充电,此时控制器控制第一充电器即Buck充电器工作在直通状态,控制第二充电器工作在反向升压状态,这样可以利用第二充电器的开环升压效率较高的特点,快速进行反向充电。
以上介绍的电子设备至少包括串联的第一充电器和第二充电器,另外还可以包括串联的第三充电器。由于三个充电器可以对应的工作状态的组合更多,可以增加电子设备的可调功率档位,例如从两档增加到三档,充电的调控性更好,因此,可以根据接收端的充电需求来更加精细地调整发射端的充电功率。其中第一充电器的闭环DC/DC转换器为Buck充电器;第三充电器的第一端连接第二充电器的第二端,第三充电器的第二端连接电池;第三充电器至少包括开环DC/DC转换器;下面介绍本申请实施例提供的电子设备包括三个串联的充电器时的工作原理。
第一,预充和涓流充电阶段:当反向充电功率大于等于第一功率阈值小于第二功率阈值,控制器控制第一充电器工作在反向升压状态,第二充电器工作在直通状态,第三充电器工作在直通状态;第一功率阈值小于第二功率阈值。预充和涓流充电阶段的充电电流较小,因此,发射端不必提供太大的充电功率,发射端的两个串联的充电器均工作在直通模式即可,这样可以节省电能。
第二,快充阶段1:当反向充电功率大于等于第二功率阈值小于第三功率阈值,控制器控制第二充电器工作反向升压状态,控制第三充电器工作在直通状态,控制第一充电器工作在直通状态;第二功率阈值小于第三功率阈值。
第三,快充阶段2:反向充电功率大于等于第三功率阈值,控制器控制第二充电器工作反向升压状态,控制第三充电器工作在反向升压状态,控制第一充电器工作在直通状态。
以上介绍的第一充电器为Buck充电器,下面介绍第一充电器为线性充电器的情况。即闭环DC/DC转换器为线性充电器;预充和涓流充电阶段:当反向充电功率大于等于第一功率阈值小于第二功率阈值,控制器控制第一充电器工作在直通状态,第二充电器工作在直通状态;第一功率阈值小于第二功率阈值。快充阶段:当反向充电功率大于等于第二功率阈值,控制器控制第一充电器工作在直通状态,控制第二充电器工作在反向升压状态。
下面介绍当电子设备包括第一充电器为线性充电器时,即闭环DC/DC转换器为线性充电器;电子设备也可以包括三个串联的充电器,即还包括第三充电器;由于三个充电器可以对应的工作状态的组合更多,可以增加电子设备的可调功率档位,例如从两档增加到三档,充电的调控性更好,因此,可以根据接收端的充电需求来更加精细地调整发射端的充电功率。第三充电器的第一端连接第二充电器的第二端,第三充电器的第二端连接电池;第三充电器至少包括开环DC/DC转换器;预充和涓流充电阶段:反向充电功率大于等于第一功率阈值小于第二功率阈值,控制器,具体用于控制第一充电器工作在直通状态,第二充电器工作在直通状态,第三充电器工作在直通状态;第一功率阈值小于第二功率阈值。快充阶段1:当反向充电功率大于等于第二功率阈值小于第三功率阈值,控制器控制第二充电器工作反向升压状态,控制第三充电器工作在直通状态,控制第一充电器工作在直通 状态;第二功率阈值小于第三功率阈值。快充阶段2:反向充电功率大于等于第三功率阈值,控制第二充电器工作在反向升压状态,控制器,具体用于控制第三充电器工作在反向升压状态,控制第一充电器工作在直通状态。
在一种可能的实现方式中,无线电能接收器RXIC包括线性稳压器。RXIC中包括线性稳压器的主要作用是在电子设备作为接收端时保证RXIC输出电压的稳定性、避免芯片受到瞬态高压。因为Qi无线充电采用带内通讯,闭环速度慢,所以手机位置变动、负载变动可能导致RXIC整流之后的电压较高(远高于正常工作电压)。
在一种可能的实现方式中,开环DC/DC转换器为开关电容SC充电器、负载开关充电器或闪充充电器。例如第二充电器和第三充电器均可以为SC充电器,两个SC充电器的升压比例是否一致,两个SC充电器的升压比例可以一致,也可以不一致。
在一种可能的实现方式中,控制器,还用于接收其他电子设备通过振幅键控ASK方式发送的反向充电功率大小;还用于在调整完第一充电器和第二充电器的工作状态后通过频移键控FSK方式将与反向充电功率大小对应的充电电压大小告知其他电子设备。
本申请实施例提供的电子设备除了为其他电子设备无线充电以外,还可以为其他电子设备无线供电。另外,还可以为其他电子设备进行工作设置。例如,当其他电子设备为密码锁或密码柜时,反向无线充电的电子设备可以直接解锁其他电子设备,从而节省其他电子设备的体积,不必设置密码按键或者触摸屏,降低成本。
基于以上实施例提供的一种反向无线充电的电子设备,本申请实施例还提供一种反向无线充电的方法,应用于作为反向充电发射端的电子设备,以上电子设备的实施例的各种优点适用于以下的方法,在此不再赘述。电子设备包括:谐振网络、无线电能接收器、第一充电器、第二充电器、电池和控制器;第二充电器的第一端连接电池,第二充电器的第二端连接第一充电器的第一端,第一充电器的第二端连接无线电能接收器的第一端,无线电能接收器的第二端连接谐振网络;第二充电器至少包括开环DC/DC转换器,第一充电器至少包括闭环DC/DC转换器;该方法包括:根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,工作状态包括反向升压状态和直通状态。
在一种可能的实现方式中,闭环DC/DC转换器为Buck充电器;根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,具体包括:反向充电功率大于等于第一功率阈值小于第二功率阈值,控制第一充电器工作在反向升压状态,第二充电器工作在直通状态;第一功率阈值小于第二功率阈值。
在一种可能的实现方式中,根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,具体包括:反向充电功率大于等于第二功率阈值,控制第一充电器工作在直通状态,控制第二充电器工作在反向升压状态。
在一种可能的实现方式中,闭环DC/DC转换器为Buck充电器;电子设备还包括:第三充电器;第三充电器的第一端连接第二充电器的第二端,第三充电器的第二端连接电池;第三充电器至少包括开环DC/DC转换器;根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,具体包括:反向充电功率大于等于第一功率阈值小于第二功率阈值,控制第一充电器工作在反向升压状态,第二充电器工作在直通状态,第三充电器工作在直 通状态;第一功率阈值小于第二功率阈值。
在一种可能的实现方式中,根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,具体包括:反向充电功率大于等于第二功率阈值小于第三功率阈值,控制第二充电器工作反向升压状态,控制第三充电器工作在直通状态,控制第一充电器工作在直通状态;第二功率阈值小于第三功率阈值。
在一种可能的实现方式中,根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,具体包括:反向充电功率大于等于第三功率阈值,控制第二充电器工作反向升压状态,控制第三充电器工作在反向升压状态,控制第一充电器工作在直通状态。
在一种可能的实现方式中,闭环DC/DC转换器为线性充电器;根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,具体包括:反向充电功率大于等于第一功率阈值小于第二功率阈值,控制第一充电器工作在直通状态,第二充电器工作在直通状态;第一功率阈值小于第二功率阈值。
在一种可能的实现方式中,根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,具体包括:反向充电功率大于等于第二功率阈值,控制第一充电器工作在直通状态,控制第二充电器工作在反向升压状态。
在一种可能的实现方式中,闭环DC/DC转换器为线性充电器;还包括:第三充电器;第三充电器的第一端连接第二充电器的第二端,第三充电器的第二端连接电池;第三充电器至少包括开环DC/DC转换器;根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,具体包括:反向充电功率大于等于第一功率阈值小于第二功率阈值,控制第一充电器工作在直通状态,第二充电器工作在直通状态,第三充电器工作在直通状态;第一功率阈值小于第二功率阈值。
在一种可能的实现方式中,根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,具体包括:反向充电功率大于等于第二功率阈值小于第三功率阈值,控制第二充电器工作反向升压状态,控制第三充电器工作在直通状态,控制第一充电器工作在直通状态;第二功率阈值小于第三功率阈值。
在一种可能的实现方式中,根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,具体包括:反向充电功率大于等于第三功率阈值,控制第二充电器工作反向升压状态,控制第三充电器工作在反向升压状态,控制第一充电器工作在直通状态。
在一种可能的实现方式中,还包括:接收其他电子设备通过振幅键控ASK方式发送的反向充电功率大小;以及在调整完第一充电器和第二充电器的工作状态后通过频移键控FSK方式将与反向充电功率大小对应的充电电压大小告知其他电子设备。
本申请实施例还提供一种无线充电系统,包括被充电子设备和以上实施例介绍的反向无线充电的电子设备,反向无线充电的电子设备可以为手机等移动终端,被充的电子设备可以为手机、电话手表或蓝牙耳机等移动设备。
从以上技术方案可以看出,本申请实施例具有以下优点:
该反向无线充电的电子设备,可以作为电源端为其他电子设备进行无线充电,例如该电子设备可以为手机等移动终端,该手机可以利用手机内部的电池可以为其他电子设备例 如手机、电话手表或蓝牙耳机等进行反向无线充电。由于电子设备包括至少两个串联的充电器,其中一个为开环DC/DC转换器,另一个为闭环DC/DC转换器,其中,开环DC/DC转换器的电能转换效率高,适用于快速充电;闭环DC/DC转换器的可控性较好,适用于预充和涓流充电阶段。由于本申请实施例提供的电子设备包括以上两种不同的充电器,因此,电子设备在反向无线充电时,可以根据被充电的电子设备在不同的充电阶段需求的充电功率不同,来灵活控制两个充电器的工作状态,即控制器根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,其中工作状态包括反向升压状态和直通状态,以适应接收端在不同充电阶段对充电功率的不同需求,从而保证各个充电阶段的充电性能,尤其是反向充电的快充阶段充电效率较高,例如反向充电功率在5W以上。
附图说明
图1为本申请实施例提供的一种反向无线充电的电子设备的示意图;
图2为本申请实施例提供的另一种反向无线充电的电子设备的示意图;
图3为本申请实施例提供的又一种反向无线充电的电子设备的示意图;
图4为图2和图3对应的工作原理示意图;
图5为本申请实施例提供的另一种反向无线充电的电子设备的示意图;
图6为本申请实施例提供的再一种反向无线充电的电子设备的示意图;
图7为本申请实施例提供的又一种反向无线充电的电子设备的示意图;
图8为本申请实施例提供的电子设备包括三个串联的充电器的工作原理示意图;
图9为本申请实施例提供的另一种反向无线充电的电子设备的示意图;
图10为本申请实施例提供的又一种反向无线充电的电子设备的示意图;
图11为本申请实施例提供的一种电子设备的工作原理示意图;
图12为本申请实施例提供的又一种反向无线充电的电子设备的示意图;
图13为本申请实施例提供的又一种反向无线充电的电子设备的示意图;
图14为本申请实施例提供的电子设备包括三个串联充电器时的工作原理;
图15为本申请实施例提供的一种反向无线充电的方法的流程图;
图16为本申请实施例提供的又一种反向无线充电的方法的流程图;
图17为本申请实施例提供的再一种反向无线充电的方法的流程图;
图18为本申请实施例提供的另一种反向无线充电的方法的流程图。
具体实施方式
以下说明中的“第一”、“第二”等用词仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请中,“上”、“下”等方位术语可以包括但不限于相对附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语可以是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件附图所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接” 可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。此外,术语“耦接”可以是实现信号传输的电性连接的方式。“耦接”可以是直接的电性连接,也可以通过中间媒介间接电性连接。
电子设备实施例
本申请实施例涉及一种反向无线充电的电子设备,可以作为电源端为其他电子设备进行无线充电,例如该电子设备可以为手机等移动终端,该手机可以利用手机内部的电池为其他电子设备例如手机、电话手表或蓝牙耳机等进行反向无线充电或供电。
电子设备在反向无线充电或供电时,被充电的电子设备在不同的充电阶段需求的充电功率不同,如果电子设备中的充电器仅有一级则不能灵活适应不同充电阶段的需求。因此,为了实现不同的充电阶段对充电功率灵活可控,且快充阶段达到较高的充电效率,本申请实施例提供一种反向无线充电的电子设备,该电子设备内部包括至少两个串联在一起的两个不同的充电器,能够在不同的充电阶段,控制两个充电器工作在不同的状态,以适应不同充电阶段对充电功率的不同需求,从而保证各个充电阶段的充电效率。为了本领域技术人员更好地理解本申请实施例提供的反向无线充电的电子设备,下面结合附图进行详细介绍。
参见图1,该图为本申请实施例提供的一种反向无线充电的电子设备的示意图。
本申请实施例提供的电子设备100具有反向充电功能,即可以作为发射端的一种电子设备,例如该电子设备可以为手机。该电子设备100既可以作为接收端使用,也可以作为发射端使用,本申请实施例中主要介绍该电子设备100作为发射端反向给其他电子设备无线充电时的工作原理,例如作为发射端的电子设备100给作为接收端的电子设备200进行反向无线充电或供电,例如手机反向为手表进行无线充电或供电。下面主要以该电子设备100作为发射端反向给其他电子设备无线充电的工作原理。
本申请实施例提供的反向无线充电的电子设备100,包括:谐振网络(包括串联的第一电容C1和第一电感L1)、无线电能接收器RXIC、第一充电器W1、第二充电器W2、电池Bat1和控制器(图中未示出)。
应该理解,在电子设备100作为接收端时,无线电能接收器RXIC主要功能为控制能量接收。当电子设备100作为发射端时,无线电能接收器RXIC主要功能为控制能量发射。
无线电能接收器RXIC可以包括整流电路,当电子设备100作为接收端被充电时,整流模块正向工作,实现整流的作用。当电子设备100作为发射端为其他电子设备反向充电时,整流模块反向工作,实现逆变的作用。整流电路具体的工作模式可以包括半同步整流模式和全同步整流模式。
第二充电器W2的第一端连接电池Bat1,第二充电器W2的第二端连接第一充电器W1的第一端,第一充电器W1的第二端连接无线电能接收器RXIC的第一端,无线电能接收器RXIC的第二端连接谐振网络。
第二充电器W2至少包括开环DC/DC转换器,第一充电器W1至少包括闭环DC/DC转换器;例如,闭环DC/DC转换器可以为Buck充电器或线性充电器,其中线性充电器可以为低压差线性稳压器(LDO,Low Dropout Regulator);开环DC/DC转换器可以为开关 电容(SC,Switched Capacitor)充电器、负载开关充电器或闪充充电器。例如,当闭环DC/DC转换器为Buck充电器时,电子设备100被充电时,Buck充电器作为降压电路,起到降压作用。但是,当电子设备100作为发射端反向无线充电时,Buck充电器可以工作在反向升压模式。同理,开环DC/DC转换器为SC充电器时,当电子设备100被充电时,SC作为降压电路,当电子设备100作为发射端反向无线充电时,SC作为升压电路。本申请实施例不具体限定SC充电器的升压比例,具体可以根据实际需要来设置,例如2:1开关电容、3:1开关电容,4:1开关电容,6:1开关电容。
控制器,用于根据反向充电功率的大小控制第一充电器W1和第二充电器W2的工作状态,工作状态包括反向升压状态和直通状态。例如,当接收端需要的充电功率较小时,可以控制第一充电器W1工作在反向升压状态,第二充电器W2工作在直通状态。当接收端需要的充电功率较大时,控制第一充电器W1工作在直通状态,控制第二充电器W2工作在反向升压状态。
具体实现时,作为反向充电的发射端的电子设备中的控制器还用于接收其他电子设备通过振幅键控(ASK,Amplitude Shift Keying)方式发送的反向充电功率大小;还用于在调整完第一充电器和第二充电器的工作状态后通过频移键控(FSK,Frequency Shift Keying)方式将与反向充电功率大小对应的充电电压大小告知其他电子设备。
控制器具体用于控制第二充电器W2将电池Bat1的电压进行电压变换后输出给第一充电器W1,控制第一充电器W1对第二充电器W2的输出电压进行电压变换后输出给无线电能接收器RXIC,控制无线电能接收器RXIC将第一充电器W1输出的电压转换为交流电传输给谐振网络,以使谐振网络将电能发射出去,从而为接收端电子设备200进行反向无线充电。
本申请实施例提供的电子设备,包括至少两级串联的不同充电器,其中一个充电器为开环DC/DC转换器,另一个充电器为闭环DC/DC转换器,可以利用开环DC/DC转换器和闭环DC/DC转换器对电池Bat1的电压进行两级直流转换,由于闭环DC/DC转换器的控制特性较好,工作稳定性高的特点,因此适用于电子设备反向为接收端进行预充电和涓流充电阶段。另外,由于开环DC/DC转换器的功率转换效率高,适用于电子设备反向为接收端进行无线快充,从而实现长时间大功率快速无线充电。本申请实施例提供的电子设备,由于包括两个不同的DC/DC转换器,因此可以根据不同的充电阶段来控制两个不同的DC/DC转换器工作在不同的工作状态,将两个DC/DC转换器各自的优势有效结合,实现较高的充电效率。
当接收端的电子设备200靠近发射端的电子设备100时,发射端的电子设备100可被配置为向接收端的电子设备200传输电能,即进行反向无线充电。
接收端的电子设备200与发射端的电子设备100之间实时进行通信,并根据自身充电过程中各阶段实际的电压/功率的变化需求,向发射端的电子设备100发送相应的电压/功率变化信号;发射端的电子设备100接收到电压/功率变化信号后,通过控制串联的第一充电器和第二充电器反向的工作状态,以满足接收端的电子设备200充电过程中各阶段需求的电压/功率,进而实现无线充电过程各个阶段稳定的充电电流或充电电压的控制。
在实际应用中,接收端的电子设备200与发射端的电子设备100之间可以进行带内通信,也可以进行带外通信。带内通信是指能量与信息同时传输;带外通信是指能量与信息各自独立传输。在无线充电联盟(Wireless Power Consortium,WPC)开发的Qi标准中,将能量与信息调制在一起进行传输的通信方式均属于带内通信。带外通信例如可以通过蓝牙进行通信,本实施例中不做具体限定。
本申请实施例不具体限定电子设备包括的串联充电器的数量,至少为两个,也可以为三个,也可以为更多数量的充电器。下面先结合附图介绍两个串联的充电器的工作原理。
另外,还存在一种实现方式,本申请实施例提供的反向无线充电的电子设备不仅可以为其他电子设备充电,还可以直接为其他电子设备供电。
无论电子设备为其他电子无线充电还是供电,本申请实施例提供的反向无线充电的电子设备还可以为接收端进行工作设置或密码设置,例如当接收端的电子设备需要密码设置时,例如门锁或密码柜等作为接收端时,发射端不仅可以为接收端供电或充电,还可以为门锁或密码柜设置密码,另外,作为反向无线充电的电子设备可以通过带内通信的方式向接收端输入密码,进行开锁。这样简化了接收端例如门锁或密码柜的按键设计或触摸屏设计,节省体积。例如电子设备为手机,手机的APP可以直接为门锁或密码柜开锁。
反向无线充电的电子设备也可以直接为密码柜的密码电路无线供电,供电的同时可以输入密码,从而打开密码柜,这样既可以实现开锁又节省了密码柜的电池,密码柜可以不设置电池,节省空间和体积,降低成本。
参见图2,该图为本申请实施例提供的另一种反向无线充电的电子设备的示意图。
本实施例中以第一充电器W1为Buck充电器,以第二充电器W2为SC充电器为例进行介绍。
另外,图3与图2的区别是图3包括的无线电能接收器RXIC除了包括双向整流电路以外,还可以包括线性稳压器。应该理解,RXIC中的双向整流电路,在电子设备作为接收端时,工作在整流模式,即将谐振网络(第一电感L1和第一电容C1串联形成的谐振网络)接收的交流电整流为直流电。但是,在电子设备作为反向充电发射端时,双向整流电路工作在逆变模式,即将直流电逆变为交流电使谐振网络发射出去。其中,RXIC中包括线性稳压器的主要作用是在电子设备作为接收端时保证RXIC输出电压的稳定性、避免芯片受到瞬态高压。因为Qi无线充电采用带内通讯,闭环速度慢,所以手机位置变动、负载变动可能导致RXIC整流之后的电压较高(远高于正常工作电压)。
参见图3,该图为本申请实施例提供的又一种反向无线充电的电子设备的示意图。
图2和图3所示的电子设备在反向充电的工作原理类似,图4为对应的工作原理示意图。下面结合图2-图4介绍本申请实施例提供的电子设备包括两个串联的不同充电器的工作原理。
预充和涓流充电阶段:
当反向充电功率大于等于第一功率阈值小于第二功率阈值时,此时对应的接收端的充电阶段可以为预充阶段或涓流阶段,控制器控制第一充电器(Buck充电器)工作在反向升压状态,第二充电器(SC充电器)工作在直通状态;第一功率阈值小于第二功率阈值。在 预充阶段和涓流阶段,利用Buck充电器控制特性好,稳定性高的优势可以精确进行小电流充电。
接收端的反向充电功率是由被反向充电的接收端电子设备通过带内通讯向作为发射端的手机发出的请求。例如,当被充电的手机需要更高反向充电功率时,向发射端手机发出更高的反向充电功率的请求。
作为发射端的手机接收到请求后,做出状态调整(切到SC反向升压、则加到逆变电路的电压就比Buck反向升压的电压高),则接收端的RXIC整流电压会瞬间升高;接收端检测到该整流电压瞬间升高,则据此判断作为发射端的手机,已经做好更高反向充电功率的切换,则接收端将反向充电功率切换到更高的功率。
快充阶段:
当反向充电功率大于等于第二功率阈值时,此时对应的接收端的充电阶段为快充阶段,控制器控制第一充电器(Buck充电器)工作在直通状态,控制第二充电器(SC充电器)工作在反向升压状态,由于SC充电器的功率转换效率高于Buck充电器,因此,在快充阶段可以利用SC充电器的优势加速充电过程。
图2-图4对应的实施例提供的电子设备是以包括两个串联的充电器为例进行的介绍,下面结合附图介绍本申请实施例提供的电子设备包括三个串联的充电器的实现方式。由于三个充电器可以对应的工作状态的组合更多,可以增加电子设备的可调功率档位,例如从两档增加到三档,充电的调控性更好,因此,可以根据接收端的充电需求来更加精细地调整发射端的充电功率。
参见图5,该图为本申请实施例提供的另一种反向无线充电的电子设备的示意图。
本实施例提供的电子设备包括三个串联的充电器,分别为第一充电器W1、第二充电器W2和第三充电器W3,其中第一充电器W1为闭环DC/DC转换器,以闭环DC/DC转换器为Buck充电器为例;第二充电器W2和第三充电器W3均包括开环DC/DC转换器。
如图5所示,第三充电器W3的第一端连接第二充电器W2的第二端,第三充电器W3的第二端连接电池;第三充电器W3至少包括开环DC/DC转换器。
其中,第二充电器W2可以为SC充电器,即第二充电器W2可以为第一SC充电器,参见图6,该图为本申请实施例提供的再一种反向无线充电的电子设备的示意图。第三充电器W3也可以为SC充电器,即第三充电器W3可以为第二SC充电器。
本申请实施例提供的无线电能接收器RXIC与图2提供的实施例中的相同,在此不再赘述,另外,本申请实施例提供的无线电能接收器RXIC也可以与图3提供的实施例中的相同,具体可以参见图7,该图为本申请实施例提供的又一种反向无线充电的电子设备的示意图。例如无线电能接收器RXIC还包括线性稳压器,在此不再详细赘述,可以参见以上实施例的介绍。
下面介绍图8详细介绍本申请实施例提供的电子设备包括三个串联的充电器的工作原理。
预充和涓流充电阶段:
当反向充电功率大于等于第一功率阈值小于第二功率阈值,控制器控制第一充电器工 作在反向升压状态,第二充电器工作在直通状态,第三充电器工作在直通状态;第一功率阈值小于所述第二功率阈值。即Buck充电器工作在反向升压状态,第一SC充电器和第二SC充电器均工作在直通状态。此时,接收端需求的充电功率较小,为了实现小电流稳定充电,可以利用Buck充电器精确控制、稳定性好的优势进行充电,而控制两个SC充电均工作在直通状态即可。
快充阶段1:
当反向充电功率大于等于第二功率阈值小于第三功率阈值,控制器还用于控制第二充电器W2工作反向升压状态,控制第三充电器W3工作在直通状态,控制第一充电器W1工作在直通状态;第二功率阈值小于第三功率阈值。此时,接收端需求的充电功率升高,为了实现快速充电,可以控制Buck充电器工作在直通模式,控制第一SC充电器工作在反向升压状态,第二SC充电器工作在直通状态,从而利用第一SC充电器充电效率较高的特点来实现快速充电。
快充阶段2:
当反向充电功率大于等于第三功率阈值,控制器还用于控制第二充电器W2工作反向升压状态,控制第三充电器W3工作在反向升压状态,控制第一充电器W1工作在直通状态。即,Buck充电器工作在直通状态,第一SC充电器和第二SC充电器均工作在反向升压状态。此时,接收端需求的充电功率越来越大,为了实现更快速地充电,可以控制两个SC充电器均工作在反向升压状态,利用SC充电器充电效率高的优势,为接收端尽快充电。
应该理解,本申请实施例不限定两个SC充电器的升压比例是否一致,两个SC充电器的升压比例可以一致,也可以不一致,本领域技术人员可以根据实际需求来选择。
以上实施例介绍的电子设备以第一充电器中的闭环DC/DC转换器为Buck充电器为例进行介绍,另外,闭环DC/DC转换器也可以为线性充电器,例如为线性稳压器,下面结合附图介绍具体的实现方式。
首先介绍电子设备包括两个充电器的情况,第一充电器为线性充电器,第二充电器为开环DC/DC转换器,例如为第一SC充电器。
参见图9,该图为本申请实施例提供的另一种反向无线充电的电子设备的示意图。
从图9中可以看出,电子设备100包括线性充电器W1和第一SC充电器W2。第一SC充电器W2的第一端连接电池Bat1,第一SC充电器W2的第一端连接线性充电器W1的第二端,线性充电器W1的第一端连接无线电能接收器RXIC。
本申请实施例提供的另一种实现方式,当第一充电器为线性充电器W1时,无线电能接收器RXIC也可以包括线性稳压器,参见图10,例如LDO,具体介绍可以参见以上实施例的描述,在此不再详细赘述。
下面结合图11介绍图9和图10对应的电子设备的工作原理。
参见图11,该图为本申请实施例提供的一种电子设备的工作原理示意图。
预充和涓流充电阶段:
在反向充电功率大于等于第一功率阈值小于第二功率阈值,控制器用于控制第一充电器工作在直通状态,第二充电器工作在直通状态,即控制线性充电器工作在直通状态,控 制第一SC充电器工作在直通状态;第一功率阈值小于第二功率阈值。此时接收端的充电功率比较小,对应预充电阶段和涓流充电阶段,充电电流较小,因此,发射端不必提供太大的充电功率,发射端的两个串联的充电器均工作在直通模式即可,这样可以节省电能。
预充和涓流充电阶段主要是为了保证对进入电池的充电电流的精确控制,例如手机的预充和涓流充电阶段电流一般介于0.1A~0.3A。
快充阶段:
在反向充电功率大于等于第二功率阈值时,控制器用于控制第一充电器工作在直通状态,控制第二充电器工作在反向升压状态。即此时接收端的充电功率升高,对应快充阶段,为了满足接收端的快速充电需求,控制线性充电器工作在直通状态,控制第一SC充电器工作在反向升压状态,例如第一SC充电器为1:2的升压比例时,可以控制第一SC充电器工作在2倍升压状态。
图9-图11对应的实施例提供的电子设备是以包括两个串联的充电器为例进行的介绍,下面结合附图介绍本申请实施例提供的电子设备包括三个串联的充电器的实现方式。由于三个充电器可以对应的工作状态的组合更多,可以增加电子设备的可调功率档位,例如从两档增加到三档,充电的调控性更好,因此,可以根据接收端的充电需求来更加精细地调整发射端的充电功率。
参见图12,该图为本申请实施例提供的又一种反向无线充电的电子设备的示意图。
本申请实施例中以第一充电器为线性充电器W1,第二充电器为第一SC充电器W2,第三充电器为第二SC充电器W3。其中,线性充电器W1的第一端连接无线电能接收器RXIC,线性充电器W1的第二端连接第一SC充电器W2的第一端,第一SC充电器W2的第二端连接第二SC充电器W3的第一端,第二SC充电器W3的第二端连接电池Bat1。
图12所示的电子设备中的无线电能接收器RXIC还可以包括线性稳压器,线性稳压器可以为LDO,即RXIC包括整流电路和LDO,如图13所示,该图为本申请实施例提供的又一种反向无线充电的电子设备的示意图。无线电能接收器RXIC和线性稳压器的具体介绍可以参见以上实施例的描述,在此不再详细赘述。
下面结合图14介绍本申请实施例提供的电子设备包括三个串联充电器时的工作原理。
参见图14,该图为本申请实施例提供的再一种反向无线充电的电子设备的示意图。
预充和涓流充电阶段:
当反向充电功率大于等于第一功率阈值小于第二功率阈值,控制器控制第一充电器工作在直通状态,第二充电器工作在直通状态,第三充电器工作在直通状态;第一功率阈值小于所述第二功率阈值。即线性充电器工作在直通状态,第一SC充电器和第二SC充电器也均工作在直通状态。此时,接收端需求的充电功率较小,为了降低损耗,三个串联的充电器均工作在直通状态即可。
快充阶段1:
当反向充电功率大于等于第二功率阈值小于第三功率阈值,控制器还用于控制第二充电器W2工作反向升压状态,控制第三充电器W3工作在直通状态,控制第一充电器W1工作在直通状态;第二功率阈值小于第三功率阈值。此时,接收端需求的充电功率升高, 为了实现快速充电,可以控制线性充电器工作在直通模式,控制第一SC充电器工作在反向升压状态,第二SC充电器工作在直通状态,从而利用第一SC充电器充电效率较高的特点来实现快速充电。
快充阶段2:
当反向充电功率大于等于第三功率阈值,控制器还用于控制第二充电器W2工作反向升压状态,控制第三充电器W3工作在反向升压状态,控制第一充电器W1工作在直通状态。即,线性充电器工作在直通状态,第一SC充电器和第二SC充电器均工作在反向升压状态。此时,接收端需求的充电功率越来越大,为了实现更快速地充电,可以控制两个SC充电器均工作在反向升压状态,利用SC充电器充电效率高的优势,为接收端尽快充电。
应该理解,本申请实施例不限定两个SC充电器的升压比例是否一致,两个SC充电器的升压比例可以一致,也可以不一致,本领域技术人员可以根据实际需求来选择。
方法实施例
基于以上实施例提供的一种反向无线充电的电子设备,本申请实施例还提供一种反向无线充电的方法,下面结合附图进行详细介绍。
本实施例提供的反向无线充电的方法,应用于作为反向充电发射端的电子设备,电子设备包括:谐振网络、无线电能接收器、第一充电器、第二充电器、电池和控制器;第二充电器的第一端连接电池,第二充电器的第二端连接第一充电器的第一端,第一充电器的第二端连接无线电能接收器的第一端,无线电能接收器的第二端连接谐振网络;第二充电器至少包括开环DC/DC转换器,第一充电器至少包括闭环DC/DC转换器;
该方法包括:
根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,工作状态包括反向升压状态和直通状态。
例如,当接收端需要的充电功率较小时,可以控制第一充电器工作在反向升压状态,第二充电器工作在直通状态。当接收端需要的充电功率较大时,控制第一充电器工作在直通状态,控制第二充电器工作在反向升压状态。
例如,闭环DC/DC转换器可以为Buck充电器或线性充电器,其中线性充电器可以为低压差线性稳压器(LDO,Low Dropout Regulator);开环DC/DC转换器可以为开关电容(SC,Switched Capacitor)充电器、负载开关充电器或闪充充电器。例如,当闭环DC/DC转换器为Buck充电器时,电子设备被充电时,Buck充电器作为降压电路,起到降压作用。但是,当电子设备作为发射端反向无线充电时,Buck充电器可以工作在反向升压模式。同理,开环DC/DC转换器为SC充电器时,当电子设备被充电时,SC作为降压电路,当电子设备作为发射端反向无线充电时,SC作为升压电路。本申请实施例不具体限定SC充电器的升压比例,具体可以根据实际需要来设置,例如2:1开关电容、3:1开关电容,4:1开关电容,6:1开关电容。
本申请实施例提供的无线充电的方法,应用于电子设备,电子设备包括至少两级串联的不同充电器,其中一个充电器为开环DC/DC转换器,另一个充电器为闭环DC/DC转换器,可以利用开环DC/DC转换器和闭环DC/DC转换器对电池的电压进行两级直流转换, 由于闭环DC/DC转换器的控制特性较好,工作稳定性高的特点,因此适用于电子设备反向为接收端进行预充电和涓流充电阶段。另外,由于开环DC/DC转换器的功率转换效率高,适用于电子设备反向为接收端进行无线快充,从而实现长时间大功率快速无线充电。本申请实施例提供的电子设备,由于包括两个不同的DC/DC转换器,因此可以根据不同的充电阶段来控制两个不同的DC/DC转换器工作在不同的工作状态,将两个DC/DC转换器各自的优势有效结合,实现较高的充电效率。
本申请实施例不具体限定电子设备包括的串联充电器的数量,至少为两个,也可以为三个,也可以为更多数量的充电器。下面先结合附图介绍两个串联的充电器的充电方法。
下面以闭环DC/DC转换器为Buck充电器为例进行介绍。
根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,参见图15,该图为本申请实施例提供的一种反向无线充电的方法的流程图。具体包括:
S1501:反向充电功率大于等于第一功率阈值小于第二功率阈值,控制Buck充电器工作在反向升压状态,第二充电器工作在直通状态;第一功率阈值小于第二功率阈值。
S1502:反向充电功率大于等于第二功率阈值,控制Buck充电器工作在直通状态,控制第二充电器工作在反向升压状态。
下面以接收端不同的充电阶段对应不同的反向充电功率介绍充电方法。
预充和涓流充电阶段:
当反向充电功率大于等于第一功率阈值小于第二功率阈值时,此时对应的接收端的充电阶段可以为预充阶段或涓流阶段,控制Buck充电器工作在反向升压状态,第二充电器(SC充电器)工作在直通状态;第一功率阈值小于第二功率阈值。在预充阶段和涓流阶段,利用Buck充电器控制特性好,稳定性高的优势可以精确进行小电流充电。
快充阶段:
当反向充电功率大于等于第二功率阈值时,此时对应的接收端的充电阶段为快充阶段,控制第一充电器(Buck充电器)工作在直通状态,控制第二充电器(SC充电器)工作在反向升压状态,由于SC充电器的功率转换效率高于Buck充电器,因此,在快充阶段可以利用SC充电器的优势加速充电过程。
下面结合附图介绍本申请实施例提供的电子设备包括三个串联的充电器的充电方法。由于三个充电器可以对应的工作状态的组合更多,可以增加电子设备的可调功率档位,例如从两档增加到三档,充电的调控性更好,因此,可以根据接收端的充电需求来更加精细地调整发射端的充电功率。
本实施例中以闭环DC/DC转换器为Buck充电器为例进行介绍。
电子设备还包括:第三充电器;第三充电器的第一端连接第二充电器的第二端,第三充电器的第二端连接电池;第三充电器至少包括开环DC/DC转换器;
根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,参见图16,该图为本申请实施例提供的又一种反向无线充电的方法的流程图。
具体包括:
S1601:反向充电功率大于等于第一功率阈值小于第二功率阈值,控制第一充电器(Buck 充电器)工作在反向升压状态,第二充电器工作在直通状态,第三充电器工作在直通状态;第一功率阈值小于第二功率阈值。
S1602:反向充电功率大于等于第二功率阈值小于第三功率阈值,控制第二充电器工作反向升压状态,控制第三充电器工作在直通状态,控制第一充电器(Buck充电器)工作在直通状态;第二功率阈值小于第三功率阈值。
S1603:反向充电功率大于等于第三功率阈值,控制第二充电器工作反向升压状态,控制第三充电器工作在反向升压状态,控制第一充电器(Buck充电器)工作在直通状态。
下面以接收端不同的充电阶段对应不同的反向充电功率介绍充电方法。
预充和涓流充电阶段:
当反向充电功率大于等于第一功率阈值小于第二功率阈值,控制器控制第一充电器(Buck充电器)工作在反向升压状态,第二充电器工作在直通状态,第三充电器工作在直通状态;第一功率阈值小于所述第二功率阈值。即Buck充电器工作在反向升压状态,第一SC充电器和第二SC充电器均工作在直通状态。此时,接收端需求的充电功率较小,为了实现小电流稳定充电,可以利用Buck充电器精确控制、稳定性好的优势进行充电,而控制两个SC充电均工作在直通状态即可。
快充阶段1:
当反向充电功率大于等于第二功率阈值小于第三功率阈值,控制器还用于控制第二充电器工作反向升压状态,控制第三充电器工作在直通状态,控制第一充电器工作在直通状态;第二功率阈值小于第三功率阈值。此时,接收端需求的充电功率升高,为了实现快速充电,可以控制Buck充电器工作在直通模式,控制第一SC充电器工作在反向升压状态,第二SC充电器工作在直通状态,从而利用第一SC充电器充电效率较高的特点来实现快速充电。
快充阶段2:
当反向充电功率大于等于第三功率阈值,控制器还用于控制第二充电器工作反向升压状态,控制第三充电器工作在反向升压状态,控制第一充电器(Buck充电器)工作在直通状态。即,Buck充电器工作在直通状态,第一SC充电器和第二SC充电器均工作在反向升压状态。此时,接收端需求的充电功率越来越大,为了实现更快速地充电,可以控制两个SC充电器均工作在反向升压状态,利用SC充电器充电效率高的优势,为接收端尽快充电。
应该理解,本申请实施例不限定两个SC充电器的升压比例是否一致,两个SC充电器的升压比例可以一致,也可以不一致,本领域技术人员可以根据实际需求来选择。
以上实施例介绍的电子设备以第一充电器中的闭环DC/DC转换器为Buck充电器为例进行介绍,另外,闭环DC/DC转换器也可以为线性充电器,例如为线性稳压器,下面结合附图介绍具体的实现方式。
本实施例中以闭环DC/DC转换器为线性充电器为例进行介绍。
根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,参见图17,该图为本申请实施例提供的再一种反向无线充电的方法的流程图。具体包括:
S1701:反向充电功率大于等于第一功率阈值小于第二功率阈值,控制线性充电器工作在直通状态,第二充电器工作在直通状态;第一功率阈值小于第二功率阈值。
S1702:反向充电功率大于等于第二功率阈值,控制第一充电器工作在直通状态,控制第二充电器工作在反向升压状态。
下面结合接收端对应的不同充电阶段来介绍发射端的无线充电方法。预充和涓流充电阶段:
在反向充电功率大于等于第一功率阈值小于第二功率阈值,控制器用于控制线性充电器工作在直通状态,第二充电器工作在直通状态,即控制线性充电器工作在直通状态,控制第一SC充电器工作在直通状态;第一功率阈值小于第二功率阈值。此时接收端的充电功率比较小,对应预充电阶段和涓流充电阶段,充电电流较小,因此,发射端不必提供太大的充电功率,发射端的两个串联的充电器均工作在直通模式即可,这样可以节省电能。
快充阶段:
在反向充电功率大于等于第二功率阈值时,控制器用于控制线性充电器工作在直通状态,控制第二充电器工作在反向升压状态。即此时接收端的充电功率升高,对应快充阶段,为了满足接收端的快速充电需求,控制线性充电器工作在直通状态,控制第一SC充电器工作在反向升压状态,例如第一SC充电器为1:2的升压比例时,可以控制第一SC充电器工作在2倍升压状态。
以上介绍的方法是以电子设备包括两个串联的充电器为例进行的介绍,下面结合附图介绍本申请实施例提供的电子设备包括三个串联的充电器的实现方式。由于三个充电器可以对应的工作状态的组合更多,可以增加电子设备的可调功率档位,例如从两档增加到三档,充电的调控性更好,因此,可以根据接收端的充电需求来更加精细地调整发射端的充电功率。
本申请实施例中以第一充电器为线性充电器,第二充电器为第一SC充电器,第三充电器为第二SC充电器。其中,线性充电器的第一端连接无线电能接收器,线性充电器的第二端连接第一SC充电器的第一端,第一SC充电器的第二端连接第二SC充电器的第一端,第二SC充电器的第二端连接电池。
本实施例以闭环DC/DC转换器为线性充电器为例进行介绍;电子设备还包括:第三充电器;第三充电器的第一端连接第二充电器的第二端,第三充电器的第二端连接电池;第三充电器至少包括开环DC/DC转换器;
根据反向充电功率的大小控制第一充电器和第二充电器的工作状态,参见图18,该图为本申请实施例提供的另一种反向无线充电的方法的流程图。具体包括:
S1801:反向充电功率大于等于第一功率阈值小于第二功率阈值,控制线性充电器工作在直通状态,第二充电器工作在直通状态,第三充电器工作在直通状态;第一功率阈值小于第二功率阈值。
S1802:反向充电功率大于等于第二功率阈值小于第三功率阈值,控制第二充电器工作反向升压状态,控制第三充电器工作在直通状态,控制线性充电器工作在直通状态;第二功率阈值小于第三功率阈值。
S1803:反向充电功率大于等于第三功率阈值,控制第二充电器工作反向升压状态,控制第三充电器工作在反向升压状态,控制线性充电器工作在直通状态。
下面结合接收端对应的不同充电阶段来介绍发射端的无线充电方法。
预充和涓流充电阶段:
当反向充电功率大于等于第一功率阈值小于第二功率阈值,控制器控制线性充电器工作在直通状态,第二充电器工作在直通状态,第三充电器工作在直通状态;第一功率阈值小于所述第二功率阈值。即线性充电器工作在直通状态,第一SC充电器和第二SC充电器也均工作在直通状态。此时,接收端需求的充电功率较小,为了降低损耗,三个串联的充电器均工作在直通状态即可。
快充阶段1:
当反向充电功率大于等于第二功率阈值小于第三功率阈值,控制器还用于控制第二充电器工作反向升压状态,控制第三充电器工作在直通状态,控制线性充电器工作在直通状态;第二功率阈值小于第三功率阈值。此时,接收端需求的充电功率升高,为了实现快速充电,可以控制线性充电器工作在直通模式,控制第一SC充电器工作在反向升压状态,第二SC充电器工作在直通状态,从而利用第一SC充电器充电效率较高的特点来实现快速充电。
快充阶段2:
当反向充电功率大于等于第三功率阈值,控制器还用于控制第二充电器工作反向升压状态,控制第三充电器工作在反向升压状态,控制线性充电器工作在直通状态。即,线性充电器工作在直通状态,第一SC充电器和第二SC充电器均工作在反向升压状态。此时,接收端需求的充电功率越来越大,为了实现更快速地充电,可以控制两个SC充电器均工作在反向升压状态,利用SC充电器充电效率高的优势,为接收端尽快充电。
具体实现时,作为反向充电的发射端的电子设备中的控制器还用于接收其他电子设备通过ASK方式发送的反向充电功率大小;还用于在调整完第一充电器和第二充电器的工作状态后通过FSK方式将与反向充电功率大小对应的充电电压大小告知所述其他电子设备。
另外,还存在一种实现方式,本申请实施例提供的反向无线充电的电子设备不仅可以为其他电子设备充电,还可以直接为其他电子设备供电。
无论电子设备为其他电子无线充电还是供电,本申请实施例提供的反向无线充电的电子设备还可以为接收端进行工作设置或密码设置,例如当接收端的电子设备需要密码设置时,例如门锁或密码柜等作为接收端时,发射端不仅可以为接收端供电或充电,还可以为门锁或密码柜设置密码,另外,作为反向无线充电的电子设备可以通过带内通信的方式向接收端输入密码,进行开锁。这样简化了接收端例如门锁或密码柜的按键设计或触摸屏设计,节省体积。例如电子设备为手机,手机的APP可以直接为门锁或密码柜开锁。
反向无线充电的电子设备也可以直接为密码柜的密码电路无线供电,供电的同时可以输入密码,从而打开密码柜,这样既可以实现开锁又节省了密码柜的电池,密码柜可以不设置电池,节省空间和体积,降低成本。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两 个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (26)

  1. 一种反向无线充电的电子设备,其特征在于,包括:谐振网络、无线电能接收器、第一充电器、第二充电器、电池和控制器;
    所述第二充电器的第一端连接所述电池,所述第二充电器的第二端连接所述第一充电器的第一端,所述第二充电器用于将所述电池的电压进行电压变换后输出给所述第一充电器;所述第一充电器的第二端连接所述无线电能接收器的第一端,所述第一充电器用于对所述第二充电器的输出电压进行电压变换后输出给所述无线电能接收器;所述无线电能接收器的第二端连接所述谐振网络;所述谐振网络用于将电能发射出去为其他电子设备进行反向无线充电;
    所述第二充电器至少包括开环DC/DC转换器,所述第一充电器至少包括闭环DC/DC转换器;
    所述控制器,用于根据反向充电功率的大小控制所述第一充电器和所述第二充电器的工作状态,所述工作状态包括反向升压状态和直通状态。
  2. 根据权利要求1所述的电子设备,其特征在于,所述闭环DC/DC转换器为Buck充电器;所述控制器,具体用于所述反向充电功率大于等于第一功率阈值小于第二功率阈值,控制所述第一充电器工作在反向升压状态,所述第二充电器工作在直通状态;所述第一功率阈值小于所述第二功率阈值。
  3. 根据权利要求2所述的电子设备,其特征在于,所述控制器,具体用于所述反向充电功率大于等于所述第二功率阈值,控制所述第一充电器工作在直通状态,控制所述第二充电器工作在反向升压状态。
  4. 根据权利要求1所述的电子设备,其特征在于,所述闭环DC/DC转换器为Buck充电器;还包括:第三充电器;
    所述第三充电器的第一端连接所述第二充电器的第二端,所述第三充电器的第二端连接所述电池;
    所述第三充电器至少包括开环DC/DC转换器;
    所述控制器,具体用于所述反向充电功率大于等于第一功率阈值小于第二功率阈值,控制所述第一充电器工作在反向升压状态,所述第二充电器工作在直通状态,所述第三充电器工作在直通状态;所述第一功率阈值小于所述第二功率阈值。
  5. 根据权利要求4所述的电子设备,其特征在于,所述控制器,具体用于所述反向充电功率大于等于所述第二功率阈值小于所述第三功率阈值,控制所述第二充电器工作在反向升压状态,控制所述第三充电器工作在直通状态,控制所述第一充电器工作在直通状态;所述第二功率阈值小于所述第三功率阈值。
  6. 根据权利要求5所述的电子设备,其特征在于,所述控制器,具体用于所述反向充电功率大于等于所述第三功率阈值,控制所述第二充电器工作在反向升压状态,控制所述第三充电器工作在反向升压状态,控制所述第一充电器工作在直通状态。
  7. 根据权利要求1所述的电子设备,其特征在于,所述闭环DC/DC转换器为线性充电器;所述控制器,具体用于所述反向充电功率大于等于第一功率阈值小于第二功率阈值, 控制所述第一充电器工作在直通状态,所述第二充电器工作在直通状态;所述第一功率阈值小于所述第二功率阈值。
  8. 根据权利要求7所述的电子设备,其特征在于,所述控制器,具体用于所述反向充电功率大于等于所述第二功率阈值,控制所述第一充电器工作在直通状态,控制所述第二充电器工作在反向升压状态。
  9. 根据权利要求1所述的电子设备,其特征在于,所述闭环DC/DC转换器为线性充电器;还包括:第三充电器;
    所述第三充电器的第一端连接所述第二充电器的第二端,所述第三充电器的第二端连接所述电池;
    所述第三充电器至少包括开环DC/DC转换器;
    所述控制器,具体用于所述反向充电功率大于等于第一功率阈值小于第二功率阈值,控制所述第一充电器工作在直通状态,所述第二充电器工作在直通状态,所述第三充电器工作在直通状态;所述第一功率阈值小于所述第二功率阈值。
  10. 根据权利要求9所述的电子设备,其特征在于,所述控制器,具体用于所述反向充电功率大于等于所述第二功率阈值小于所述第三功率阈值,控制所述第二充电器工作在反向升压状态,控制所述第三充电器工作在直通状态,控制所述第一充电器工作在直通状态;所述第二功率阈值小于所述第三功率阈值。
  11. 根据权利要求10所述的电子设备,其特征在于,所述控制器,具体用于所述反向充电功率大于等于所述第三功率阈值,控制所述第二充电器工作在反向升压状态,控制所述第三充电器工作在反向升压状态,控制所述第一充电器工作在直通状态。
  12. 根据权利要求1-11任一项所述的电子设备,其特征在于,所述无线电能接收器包括线性稳压器。
  13. 根据权利要求1-12任一项所述的电子设备,其特征在于,所述开环DC/DC转换器为开关电容充电器、负载开关充电器或闪充充电器。
  14. 根据权利要求1-13任一项所述的电子设备,其特征在于,所述控制器,还用于接收所述其他电子设备通过振幅键控ASK方式发送的反向充电功率大小;还用于在调整完所述第一充电器和所述第二充电器的工作状态后通过频移键控FSK方式将与所述反向充电功率大小对应的充电电压大小告知所述其他电子设备。
  15. 一种反向无线充电的方法,其特征在于,应用于作为反向充电发射端的电子设备,所述电子设备包括:谐振网络、无线电能接收器、第一充电器、第二充电器、电池和控制器;所述第二充电器的第一端连接所述电池,所述第二充电器的第二端连接所述第一充电器的第一端,所述第一充电器的第二端连接所述无线电能接收器的第一端,所述无线电能接收器的第二端连接所述谐振网络;所述第二充电器至少包括开环DC/DC转换器,所述第一充电器至少包括闭环DC/DC转换器;
    该方法包括:
    根据反向充电功率的大小控制所述第一充电器和所述第二充电器的工作状态,所述工作状态包括反向升压状态和直通状态。
  16. 根据权利要求15所述的方法,其特征在于,所述闭环DC/DC转换器为Buck充电器;所述根据反向充电功率的大小控制所述第一充电器和所述第二充电器的工作状态,具体包括:
    所述反向充电功率大于等于第一功率阈值小于第二功率阈值,控制所述第一充电器工作在反向升压状态,所述第二充电器工作在直通状态;所述第一功率阈值小于所述第二功率阈值。
  17. 根据权利要求16所述的方法,其特征在于,所述根据反向充电功率的大小控制所述第一充电器和所述第二充电器的工作状态,具体包括:
    所述反向充电功率大于等于所述第二功率阈值,控制所述第一充电器工作在直通状态,控制所述第二充电器工作在反向升压状态。
  18. 根据权利要求15所述的方法,其特征在于,所述闭环DC/DC转换器为Buck充电器;所述电子设备还包括:第三充电器;所述第三充电器的第一端连接所述第二充电器的第二端,所述第三充电器的第二端连接所述电池;所述第三充电器至少包括开环DC/DC转换器;
    所述根据反向充电功率的大小控制所述第一充电器和所述第二充电器的工作状态,具体包括:
    所述反向充电功率大于等于第一功率阈值小于第二功率阈值,控制所述第一充电器工作在反向升压状态,所述第二充电器工作在直通状态,所述第三充电器工作在直通状态;所述第一功率阈值小于所述第二功率阈值。
  19. 根据权利要求18所述的方法,其特征在于,所述根据反向充电功率的大小控制所述第一充电器和所述第二充电器的工作状态,具体包括:
    所述反向充电功率大于等于所述第二功率阈值小于所述第三功率阈值,控制所述第二充电器工作在反向升压状态,控制所述第三充电器工作在直通状态,控制所述第一充电器工作在直通状态;所述第二功率阈值小于所述第三功率阈值。
  20. 根据权利要求19所述的方法,其特征在于,所述根据反向充电功率的大小控制所述第一充电器和所述第二充电器的工作状态,具体包括:
    所述反向充电功率大于等于所述第三功率阈值,控制所述第二充电器工作在反向升压状态,控制所述第三充电器工作在反向升压状态,控制所述第一充电器工作在直通状态。
  21. 根据权利要求15所述的方法,其特征在于,所述闭环DC/DC转换器为线性充电器;
    所述根据反向充电功率的大小控制所述第一充电器和所述第二充电器的工作状态,具体包括:
    所述反向充电功率大于等于第一功率阈值小于第二功率阈值,控制所述第一充电器工作在直通状态,所述第二充电器工作在直通状态;所述第一功率阈值小于所述第二功率阈值。
  22. 根据权利要求21所述的方法,其特征在于,所述根据反向充电功率的大小控制所述第一充电器和所述第二充电器的工作状态,具体包括:
    所述反向充电功率大于等于所述第二功率阈值,控制所述第一充电器工作在直通状态,控制所述第二充电器工作在反向升压状态。
  23. 根据权利要求15所述的方法,其特征在于,所述闭环DC/DC转换器为线性充电器;还包括:第三充电器;所述第三充电器的第一端连接所述第二充电器的第二端,所述第三充电器的第二端连接所述电池;所述第三充电器至少包括开环DC/DC转换器;
    所述根据反向充电功率的大小控制所述第一充电器和所述第二充电器的工作状态,具体包括:
    所述反向充电功率大于等于第一功率阈值小于第二功率阈值,控制所述第一充电器工作在直通状态,所述第二充电器工作在直通状态,所述第三充电器工作在直通状态;所述第一功率阈值小于所述第二功率阈值。
  24. 根据权利要求23所述的方法,其特征在于,所述根据反向充电功率的大小控制所述第一充电器和所述第二充电器的工作状态,具体包括:
    所述反向充电功率大于等于所述第二功率阈值小于所述第三功率阈值,控制所述第二充电器工作在反向升压状态,控制所述第三充电器工作在直通状态,控制所述第一充电器工作在直通状态;所述第二功率阈值小于所述第三功率阈值。
  25. 根据权利要求24所述的方法,其特征在于,所述根据反向充电功率的大小控制所述第一充电器和所述第二充电器的工作状态,具体包括:
    所述反向充电功率大于等于所述第三功率阈值,控制所述第二充电器工作在反向升压状态,控制所述第三充电器工作在反向升压状态,控制所述第一充电器工作在直通状态。
  26. 根据权利要求15-25任一项所述的方法,其特征在于,还包括:接收所述其他电子设备通过振幅键控ASK方式发送的反向充电功率大小;以及
    在调整完所述第一充电器和所述第二充电器的工作状态后通过频移键控FSK方式将与所述反向充电功率大小对应的充电电压大小告知所述其他电子设备。
PCT/CN2021/095951 2021-05-26 2021-05-26 一种反向无线充电的电子设备及方法 WO2022246675A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/095951 WO2022246675A1 (zh) 2021-05-26 2021-05-26 一种反向无线充电的电子设备及方法
CN202180007167.9A CN115769464A (zh) 2021-05-26 2021-05-26 一种反向无线充电的电子设备及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/095951 WO2022246675A1 (zh) 2021-05-26 2021-05-26 一种反向无线充电的电子设备及方法

Publications (1)

Publication Number Publication Date
WO2022246675A1 true WO2022246675A1 (zh) 2022-12-01

Family

ID=84229336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095951 WO2022246675A1 (zh) 2021-05-26 2021-05-26 一种反向无线充电的电子设备及方法

Country Status (2)

Country Link
CN (1) CN115769464A (zh)
WO (1) WO2022246675A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377741A (zh) * 2013-08-12 2015-02-25 中兴通讯股份有限公司 移动终端相互间无线充电的方法及移动终端
CN109274147A (zh) * 2018-09-28 2019-01-25 北京小米移动软件有限公司 无线充电接收装置、充电系统及终端
CN110994810A (zh) * 2018-08-29 2020-04-10 华为技术有限公司 一种无线充电的电子设备及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377741A (zh) * 2013-08-12 2015-02-25 中兴通讯股份有限公司 移动终端相互间无线充电的方法及移动终端
CN110994810A (zh) * 2018-08-29 2020-04-10 华为技术有限公司 一种无线充电的电子设备及方法
CN109274147A (zh) * 2018-09-28 2019-01-25 北京小米移动软件有限公司 无线充电接收装置、充电系统及终端

Also Published As

Publication number Publication date
CN115769464A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
US11342799B2 (en) Out-of-band communication during wireless battery charging
CN110994810B (zh) 一种无线充电的电子设备及方法
TWI657637B (zh) 待充電裝置和充電方法
EP3841653B1 (en) In-band communication during wireless battery charging
WO2018152786A1 (zh) 均衡电路、待充电设备和充电控制方法
EP3742576B1 (en) Wireless charging receiving device and mobile terminal
KR20160087870A (ko) 무선 전력 송수신 방법 및 장치
US20220006312A1 (en) Device to be charged, and charging and discharging control method
KR20160036986A (ko) 무선 전력 송신기 및 무선 전력 수신기
WO2020191550A1 (zh) 充放电控制方法及待充电设备
WO2021092870A1 (zh) 电子设备、无线充电装置、系统及方法
CN113036827A (zh) 电子设备
EP3780315A1 (en) Wireless charging receiving device and mobile terminal
WO2018068460A1 (zh) 待充电设备和充电方法
KR20220114647A (ko) 전자 디바이스, 무선 충전 수신 장치, 제어 방법 및 무선 충전 시스템
KR20200084011A (ko) 충전 방법 및 충전 장치
CN204597567U (zh) 一种多功能无线充电设备
TWI633739B (zh) 具有調節迴路之電池充電系統及充電方法
US20200220388A1 (en) Wireless Power Receiver Configurable for LDO or Buck Operation
WO2022246675A1 (zh) 一种反向无线充电的电子设备及方法
CN112366760A (zh) 充电电路、充电方法及无线发射设备
WO2021093708A1 (zh) 无线充电装置、待充电设备、充电系统及方法、存储介质
CN114189061A (zh) 电子设备、无线充电装置、系统及方法
CN113068417B (zh) 一种无线充电的接收端及电子设备、发射端
US20220052546A1 (en) Wireless power architecture with series-coupled power converters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE