WO2022244689A1 - Pyrimidine compound, material for organic electroluminescent element, and organic electroluminescent element - Google Patents

Pyrimidine compound, material for organic electroluminescent element, and organic electroluminescent element Download PDF

Info

Publication number
WO2022244689A1
WO2022244689A1 PCT/JP2022/020179 JP2022020179W WO2022244689A1 WO 2022244689 A1 WO2022244689 A1 WO 2022244689A1 JP 2022020179 W JP2022020179 W JP 2022020179W WO 2022244689 A1 WO2022244689 A1 WO 2022244689A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
pyrimidine compound
electron
organic electroluminescent
Prior art date
Application number
PCT/JP2022/020179
Other languages
French (fr)
Japanese (ja)
Inventor
内田直樹
野村桂甫
上原史成
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2022244689A1 publication Critical patent/WO2022244689A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • the present invention relates to a pyrimidine compound, a material for an organic electroluminescence device containing a pyrimidine compound, and an organic electroluminescence device.
  • Patent Documents 1 and 2 disclose pyrimidine compounds that are materials for organic electroluminescent devices.
  • one aspect of the present invention is directed to providing a new pyrimidine compound that contributes to the formation of an organic electroluminescent device capable of reducing the driving voltage and improving the current efficiency.
  • Still another aspect of the present invention is directed to providing an organic electroluminescence device with reduced driving voltage and improved current efficiency.
  • one of X 1 and X 2 is a nitrogen atom and the other is C—H;
  • Ar 1 and Ar 2 are each independently represents a phenyl group, a biphenylyl group, or a naphthyl group;
  • Ar 3 and Ar 4 are each independently an aryl group having 6 to 20 carbon atoms, or represents a heteroaryl group having 4 to 20 carbon atoms;
  • L 1 and L 2 are each independently represents a direct bond, phenylene, pyridylene or naphthylene;
  • Ring A is pyridine optionally having one or more substituents selected from the group consisting of a phenyl group, a pyridyl group, a naphthyl group, an alkyl group having 1 to 10 carbon atoms, and a CN group, and Ar 3 and L 1 are each attached to two adjacent carbon atoms of the pyridine ring;
  • n is 1 or 2;
  • two L1's may be the same or different
  • Ar 1 and Ar 2 are identical.
  • the pyrimidine compound according to . 3. 1. At least one of Ar 1 and Ar 2 is a 4-biphenylyl group. or 2.
  • the pyrimidine compound according to . 4. 1. represented by formulas (E1) to (E10); ⁇ 3.
  • a new pyrimidine compound that contributes to the formation of an organic electroluminescent device capable of reducing driving voltage and improving current efficiency.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated structure of an organic electroluminescence device according to one aspect of the present disclosure
  • FIG. 3 is a schematic cross-sectional view showing another example of the layered structure of the organic electroluminescence device according to one aspect of the present disclosure (structure of Device Example-1).
  • a pyrimidine compound according to one aspect of the present invention is a pyrimidine compound represented by formula (1).
  • one of X 1 and X 2 is a nitrogen atom and the other is C—H;
  • Ar 1 and Ar 2 are each independently represents a phenyl group, a biphenylyl group, or a naphthyl group;
  • Ar 3 and Ar 4 are each independently an aryl group having 6 to 20 carbon atoms, or represents a heteroaryl group having 4 to 20 carbon atoms;
  • L 1 and L 2 are each independently represents a direct bond, phenylene, pyridylene or naphthylene;
  • Ring A is pyridine optionally having one or more substituents selected from the group consisting of a phenyl group, a pyridyl group, a naphthyl group, an alkyl group having 1 to 10 carbon atoms, and a CN group, and Ar 3 and L 1 are each attached to two adjacent carbon atoms of the pyridine ring;
  • n is 1 or 2;
  • two L1's may be the same or different
  • Ar 1 and Ar 2 are preferably a biphenylyl group or a naphthyl group, more preferably a 4-biphenylyl group.
  • Ar 1 and Ar 2 are preferably the same.
  • Ar 3 and Ar 4 are each independently an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 4 to 20 carbon atoms.
  • aryl groups having 6 to 20 carbon atoms include phenyl group, naphthyl group, phenanthryl group, anthonyl group, pyrenyl group, pyranyl group, fluorenyl group, dimethylfluorenyl group, triphenylenyl group, fluoranthenyl group and chrysenyl. and the like.
  • heteroaryl groups having 4 to 20 carbon atoms include a pyridyl group, a pyrimidyl group, a pyrazyl group, a quinolyl group, an isoquinolyl group, a nadityridinyl group and an acridinyl group.
  • Ar 3 and Ar 4 are preferably a phenyl group, a naphthyl group, a phenanthryl group, or a pyridyl group.
  • Ring A is pyridine optionally having one or more substituents selected from the group consisting of a phenyl group, a pyridyl group, a naphthyl group, an alkyl group having 1 to 10 carbon atoms, and a CN group, and Ar 3 and L 1 are each bonded to two adjacent carbon atoms of the pyridine ring.
  • Ring A is specifically represented by formulas (A-1) and (A-2).
  • each dashed line independently indicates the position where Ar 3 or L 1 is substituted.
  • the pyridine ring is substituted with one or more groups selected from the group consisting of a phenyl group, a pyridyl group, a naphthyl group, an alkyl group having 1 to 10 carbon atoms, and a CN group. good too.
  • a phenyl group, a pyridyl group, a naphthyl group, an alkyl group having 1 to 5 carbon atoms and a CN group are preferable, and a phenyl group, a pyridyl group, a naphthyl group and an alkyl group having 1 to 5 carbon atoms are more preferable, and a phenyl group.
  • pyridyl group, naphthyl group and methyl group are more preferred, and phenyl group, pyridyl group and methyl group are particularly preferred.
  • L 1 and L 2 each independently represent a direct bond, phenylene, pyridylene or naphthylene.
  • L 1 and L 2 are each independently a direct bond, phenylene, or pyridylene.
  • One of X 1 and X 2 is a nitrogen atom and the other is CH.
  • Pyrimidine compounds can be used, for example, in organic electronic devices such as organic electroluminescence devices and photoelectric devices.
  • a material for an organic electroluminescence device according to one aspect of the present invention contains the pyrimidine compound.
  • a pyrimidine compound can be used, for example, as an electron transport material for an organic electroluminescence device.
  • the structural reason why the pyrimidine compound according to one aspect of the present invention exhibits a low driving voltage as, for example, an electron-transporting material for an organic electroluminescence device is presumed to be as follows. ⁇ Structural reasons for low drive voltage>
  • the triazine ring incorporates three highly electronegative nitrogen atoms into the ring structure to increase the electron affinity of the ring itself, thereby having a high electron transport property. Attempts have also been made to increase electron injection properties from the cathode by having a pyridine ring in the molecule of the triazine compound.
  • the high electron affinity of the triazine ring can inhibit electron injection into the widely used light-emitting layer and hole-blocking layer.
  • the pyridine ring further increases the electron affinity of the molecule and can inhibit electron injection into the light-emitting layer and the hole-blocking layer.
  • the pyrimidine ring contains a plurality of nitrogen atoms like the triazine ring, but the number is smaller than that of the triazine ring, and the electron affinity is low, so electron injection into the light-emitting layer or the hole-blocking layer is promoted.
  • the pyrimidine compound according to this aspect has Ar and L 1 bonded to the adjacent carbon atoms of the pyridine ring, thereby increasing the dihedral angle of the aromatic ring adjacent to the pyridine ring and increasing the electron affinity of the molecule. restrains it from rising. This makes it possible to improve the electron injection from the cathode while keeping the electron affinity low. This enhanced electron injection can exhibit high current efficiency.
  • the pyrimidine ring itself has a large dipole moment.
  • organic molecules In an organic thin film, it is known that when organic molecules have a dipole moment, the organic molecules spontaneously orient to form a film having an orderly structure resembling a crystal structure. It is generally known that highly amorphous films are required for organic films used in organic electroluminescence devices because films with high crystallinity cause defects in the film and hinder charge transport.
  • the spontaneous orientation of the organic molecules raises the sublimation temperature. This promotes thermal decomposition during the production of the organic electroluminescence device, and eventually influences deterioration of the durability of the organic electroluminescence device due to contamination of decomposition products.
  • a compound having a pyrimidine ring can promote electron injection into the light-emitting layer or the hole-blocking layer, but has the problem of suppressing electron transport in the film.
  • the pyrimidine compound of one embodiment of the present invention Ar 3 and the ring A in formula (1) form a high steric hindrance, which suppresses the spontaneous orientation of molecules and has a high amorphous property. It is possible. Therefore, the pyrimidine compound, which is one embodiment of the present invention, promotes electron injection into the hole-blocking layer and does not suppress electron transport in the film, so that driving voltage can be reduced.
  • the pyrimidine compound that is one embodiment of the present invention also contributes to lowering the sublimation temperature, it is possible to contribute to suppression of thermal decomposition of the material and suppression of deterioration in durability of the organic electroluminescent element.
  • Organic electroluminescence device (hereinafter sometimes simply referred to as an organic electroluminescence device) according to one aspect of the present invention will be described below.
  • An organic electroluminescent device contains a pyrimidine compound.
  • the configuration of the organic electroluminescent element is not particularly limited, but includes, for example, the configurations (i) to (vi) shown below.
  • anode/light emitting layer/cathode ii: anode/hole transport layer/light emitting layer/cathode (iii): anode/light emitting layer/electron transport layer/cathode (iv): anode/hole transport layer/ Emissive layer/electron transport layer/cathode (v): anode/hole injection layer/hole transport layer/emissive layer/electron transport layer/electron injection layer/cathode (vi): anode/hole injection layer/hole transport Layer/electron-blocking layer/light-emitting layer/hole-blocking layer/electron-transporting layer/electron-injecting layer/cathode
  • the pyrimidine compound may be contained in any of the above layers, but the organic electroluminescent device exhibits excellent light-emitting properties.
  • the pyrimidine compound is contained in one or more layers selected from the group consisting of a light-emitting layer, a hole-blocking layer, an electron-transporting layer, and an electron-injecting layer. is preferred.
  • the organic electroluminescent device shown in FIG. 1 has a so-called bottom emission type device configuration, but the organic electroluminescent device according to one aspect of the present invention is not limited to the bottom emission type device configuration. do not have. That is, the organic electroluminescence device according to one aspect of the present invention may have other known device configurations such as top emission type.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated structure of an organic electroluminescence device according to one aspect of the present invention.
  • the organic electroluminescent device 100 includes a substrate 1, an anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer 7, and a cathode 8 in this order.
  • some of these layers may be omitted, or conversely, other layers may be added.
  • a hole-blocking layer may be provided between the light-emitting layer 5 and the electron-transporting layer 6, the hole-injecting layer 3 may be omitted, and the hole-transporting layer 4 may be provided directly on the anode 2. good too.
  • a single layer having the functions of a plurality of layers such as an electron injection/transport layer having both the function of an electron injection layer and the function of an electron transport layer in a single layer. It may be a configuration provided instead of. Further, for example, each of the single-layer hole transport layer 4 and the single-layer electron transport layer 6 may be composed of a plurality of layers.
  • ⁇ Layer containing pyrimidine compound> In the structural example shown in FIG. 1, the organic electroluminescence device 100 contains the above pyrimidine compound in one or more layers selected from the group consisting of the light-emitting layer 5, the electron transport layer 6 and the electron injection layer .
  • the electron transport layer 6 preferably contains a pyrimidine compound.
  • the pyrimidine compound may be contained in a plurality of layers included in the organic electroluminescence device.
  • An organic electroluminescence device 100 in which the electron transport layer 6 contains a pyrimidine compound will be described below.
  • the substrate 1 is not particularly limited, and substrates that can be used in ordinary organic electroluminescence devices can be used. For example, a glass plate, a quartz plate, a plastic plate and the like can be used.
  • An anode 2 is provided on the substrate 1 (on the hole injection layer 3 side).
  • the material for the anode compounds that can be used in ordinary organic electroluminescence devices can be used. Examples include metals, alloys, electrically conductive compounds, and mixtures thereof with a large work function (eg, 4 eV or more). Specific examples of materials for the anode include metals such as Au; conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO. [Hole injection layer 3, hole transport layer 4] A hole injection layer 3 and a hole transport layer 4 are provided in this order from the anode 2 side between the anode 2 and a light emitting layer 5 to be described later.
  • the material for the hole injection layer and the hole transport layer has at least one of hole injection, hole transport, and electron barrier properties.
  • Materials for the hole injection layer and the hole transport layer may be either organic or inorganic, and compounds that can be used in ordinary organic electroluminescence devices can be used.
  • the hole injection layer and the hole transport layer may have a single structure composed of one or more materials, or may have a laminated structure composed of multiple layers of the same composition or different compositions.
  • the hole-transporting layer 4 may have a laminated structure of two or more layers, and is provided in this order from the anode 2 side with a first hole-transporting layer 41 and a second hole-transporting layer 42 .
  • the transport layer 42 can be used as an electron blocking layer in the configuration (vi) above.
  • a light-emitting layer 5 is provided between the hole-transporting layer 4 and an electron-transporting layer 6, which will be described later.
  • the light emitting layer may consist of a single small molecule material or a single polymer material, but more commonly consists of a host material doped with a guest compound. Emission comes primarily from dopants and can have any color.
  • the light-emitting layer may have a single-layer structure composed of one or more materials, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions.
  • An electron transport layer 6 is provided between the light emitting layer 5 and an electron injection layer 7 which will be described later.
  • the electron transport layer preferably contains a pyrimidine compound.
  • the electron transport layer may further contain one or more selected from conventionally known electron transport materials.
  • the pyrimidine compound When the pyrimidine compound is not contained in the electron-transporting layer but is contained in another layer, one or more selected from conventionally known electron-transporting materials can be used as the electron-transporting material constituting the electron-transporting layer.
  • Alkali metal complexes, alkaline earth metal complexes, and earth metal complexes include, for example, 8-hydroxyquinolinatolithium (Liq), bis(8-hydroxyquinolinato)zinc, and bis(8-hydroxyquinolinato)copper.
  • bis(8-hydroxyquinolinato)manganese tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis (10-hydroxybenzo[h]quinolinate) beryllium, bis(10-hydroxybenzo[h]quinolinate)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinate)(o -cresolato) gallium, bis(2-methyl-8-quinolinato)-1-naphtholato aluminum, bis(2-methyl-8-quinolinato)-2-naphtholato gallium, and the like.
  • the electron-transporting layer may have a single-layer structure composed of one or more materials, or may have a laminated structure composed of multiple layers having the same composition or different compositions.
  • An electron injection layer may be provided in the organic electroluminescence device according to this aspect for the purpose of improving electron injection properties and improving device characteristics (e.g., luminous efficiency, low voltage drive, or high durability).
  • the electron transport layer 6 may have a laminated structure of two or more layers. can be used as the hole blocking layer in the configuration (vi) above.
  • the pyrimidine compound according to one aspect of the present invention can be used in both or either one of the first electron-transporting layer and the second electron-transporting layer.
  • An electron injection layer 7 is provided between the electron transport layer 6 and a cathode 8 which will be described later.
  • compounds that can be used in ordinary organic electroluminescent devices can be used.
  • examples thereof include organic compounds such as fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, and anthrone.
  • Materials for the electron injection layer include various oxides and fluorides such as SiO 2 , AlO, SiN, SiON, AlON, GeO, LiO, LiON, TiO, TiON, TaO, TaON, TaN, LiF, C, and Yb. , nitrides, and oxynitrides. Pyrimidine compounds of the invention can also be used.
  • Cathode 8 A cathode 8 is provided on the electron injection layer 7 .
  • a metal with a small work function is, for example, a metal of 4 eV or less.
  • a mixture of an electron-injecting metal and a second metal that has a higher work function and is more stable such as magnesium/silver mixture, magnesium/aluminum mixture, magnesium/indium mixture, aluminum/aluminum oxide (Al 2 O 3 ) mixtures, lithium/aluminum mixtures, etc. are preferred.
  • Each layer except for the electrodes (anode, cathode) described above is formed by thinning by a known method such as a vacuum deposition method, a spin coating method, a casting method, or a LB (Langmuir-Blodgett method) method. be able to.
  • the material for each layer may be used alone, or if necessary, it may be used together with a material such as a binder resin and a solvent.
  • the film thickness of each layer thus formed is not particularly limited and can be appropriately selected depending on the situation, but is usually in the range of 5 nm to 5 ⁇ m.
  • the film thickness of the anode and cathode is preferably 1 ⁇ m or less, more preferably 10 nm or more and 200 nm or less.
  • the formation of the layer containing the pyrimidine compound may be used in combination with the conventionally known electron-transporting material. Therefore, for example, a pyrimidine compound and a conventionally known electron-transporting material may be co-deposited, or a layer of a conventionally known electron-transporting material may be laminated on a layer of the pyrimidine compound.
  • the organic electroluminescence element may be used as a kind of lamp for illumination or as a light source for exposure, a type of projection device for projecting an image onto a screen or the like, or a type of display for directly viewing still images or moving images. You may use it as a device (display).
  • the driving method may be a simple matrix (passive matrix) method or an active matrix method. Further, by using two or more kinds of organic electroluminescent elements having different emission colors, it is possible to produce a full-color display device.
  • each layer was produced in the following order according to the film forming conditions of each layer.
  • hole injection layer 103 Sublimation-purified HTL-1 and NDP-9 were deposited at a rate of 0.15 nm/sec to a thickness of 10 nm to form a hole injection layer 103 .
  • first hole transport layer 1051 A first hole transport layer 1051 was produced by forming a film of HTL purified by sublimation to a thickness of 85 nm at a rate of 0.15 nm/sec.
  • Second hole transport layer 1052 Sublimation-purified EBL-1 was deposited at a rate of 0.15 nm/second to a thickness of 5 nm to form a second hole transport layer 1052 .
  • Second hole transport layer 106 Sublimation-purified BH-1 and BD-1 were deposited at a ratio of 95:5 (mass ratio) to form a film having a thickness of 20 nm to prepare a light-emitting layer 106 .
  • the deposition rate was 0.18 nm/sec.
  • first electron transport layer 1071 Sublimation-purified HBL-1 was deposited at a rate of 0.05 nm/second to a thickness of 6 nm to prepare a first electron transport layer 1071 .
  • second electron transport layer 1072 Compound E1 and Liq were deposited at a ratio of 50:50 (mass ratio) to a thickness of 25 nm to form a second electron transport layer 1072 .
  • the deposition rate was 0.15 nm/sec.
  • cathode 108 Finally, a metal mask was placed perpendicular to the ITO stripes on the substrate, and a cathode 108 was formed.
  • ytterbium, silver/magnesium (mass ratio 9/1) and silver were deposited in this order to thicknesses of 2 nm, 12 nm and 90 nm, respectively, to form a three-layer structure.
  • the deposition rate of ytterbium was 0.02 nm/second
  • the deposition rate of silver/magnesium was 0.5 nm/second
  • the deposition rate of silver was 0.2 nm/second.
  • an organic electroluminescence device 100 having a light emitting area of 4 mm 2 as shown in FIG. 2 was produced.
  • Each film thickness was measured with a stylus film thickness meter (DEKTAK, manufactured by Bruker).
  • this device was sealed in a nitrogen atmosphere glove box with an oxygen and moisture concentration of 1 ppm or less. Sealing was performed by using a bisphenol F-type epoxy resin (manufactured by Nagase ChemteX Corporation) between the glass sealing cap and the film formation substrate (element).
  • a bisphenol F-type epoxy resin manufactured by Nagase ChemteX Corporation
  • the compound of the present invention can be used for organic electroluminescence devices and the like.

Abstract

Provided is a novel pyrimidine compound that facilitates the manufacture of an organic electroluminescent element in which driving voltage can be reduced and current efficiency can be increased. Also provided are a material for an organic electroluminescent element and an organic electroluminescent element that include said pyrimidine compound. A pyrimidine compound with a specific structure represented by formula (1), and a material for an organic electroluminescent element and an organic electroluminescent element that include said pyrimidine compound.

Description

ピリミジン化合物、有機電界発光素子用材料および有機電界発光素子Pyrimidine compound, material for organic electroluminescence device, and organic electroluminescence device
 本発明は、ピリミジン化合物、ピリミジン化合物を含む有機電界発光素子用材料および有機電界発光素子に関する。 The present invention relates to a pyrimidine compound, a material for an organic electroluminescence device containing a pyrimidine compound, and an organic electroluminescence device.
 有機電界発光素子は、小型モバイル用途を中心に実用化が始まっている。しかしながら、更なる用途拡大には性能向上が必須であり、高電流効率、低駆動電圧、高い発光効率特性、長寿命特性を有する材料が求められている。特許文献1、2は、有機電界発光素子用の材料である、ピリミジン化合物を開示している。  Organic electroluminescent devices have begun to be put into practical use, mainly for small mobile applications. However, performance improvement is essential for further expansion of applications, and materials with high current efficiency, low driving voltage, high luminous efficiency characteristics, and long life characteristics are required. Patent Documents 1 and 2 disclose pyrimidine compounds that are materials for organic electroluminescent devices.
韓国公開特許2017/0093023号公報Korean Patent Publication No. 2017/0093023 韓国公開特許2017/0113397号公報Korean Patent Publication No. 2017/0113397
 しかしながら、特許文献1~2にかかるピリミジン化合物は駆動電圧特性を十分に満たしているとはいえない。 However, it cannot be said that the pyrimidine compounds according to Patent Documents 1 and 2 sufficiently satisfy the driving voltage characteristics.
 そこで、本発明の一態様は、新たなピリミジン化合物であって、駆動電圧を低減し、電流効率を向上し得る有機電界発光素子の形成に資する、新たなピリミジン化合物を提供することに向けられている。 Therefore, one aspect of the present invention is directed to providing a new pyrimidine compound that contributes to the formation of an organic electroluminescent device capable of reducing the driving voltage and improving the current efficiency. there is
 さらに、本発明のさらに他の態様は、駆動電圧が低減され、電流効率を向上した有機電界発光素子を提供することに向けられている。 Furthermore, still another aspect of the present invention is directed to providing an organic electroluminescence device with reduced driving voltage and improved current efficiency.
 本発明の一態様は、下記のものである。
1.式(1)で表されるピリミジン化合物:
One aspect of the present invention is as follows.
1. A pyrimidine compound represented by formula (1):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
式中、
 X及びXは、いずれか一方が窒素原子であり、他方はC-Hである;
 Ar及びArは、各々独立に、
  フェニル基、ビフェニリル基、又は、ナフチル基を表す;
 Ar及びArは、各々独立に、
  炭素数6~20のアリール基、又は、
  炭素数4~20のヘテロアリール基を表す;
 L及びLは、各々独立に、
  直接結合、フェニレン、ピリジレン、又は、ナフチレンを表す;
 環Aは、
  フェニル基、ピリジル基、ナフチル基、炭素数1~10のアルキル基、及びCN基からなる群よりなる1つ以上の置換基を有していてもよいピリジンであり、かつ、
  Ar及びLは、各々ピリジン環の隣接する2つの炭素原子と結合している;
 nは1又は2である;
 nが2のとき、2つのLは互いに同一又は相異なっていてもよい。
2.ArとArが同一である1.に記載のピリミジン化合物。
3.Ar及びArの少なくとも一方が4-ビフェニリル基である1.または2.に記載のピリミジン化合物。
4.式(E1)~(E10)で表される、1.~3.のいずれかに記載のピリミジン化合物。
During the ceremony,
one of X 1 and X 2 is a nitrogen atom and the other is C—H;
Ar 1 and Ar 2 are each independently
represents a phenyl group, a biphenylyl group, or a naphthyl group;
Ar 3 and Ar 4 are each independently
an aryl group having 6 to 20 carbon atoms, or
represents a heteroaryl group having 4 to 20 carbon atoms;
L 1 and L 2 are each independently
represents a direct bond, phenylene, pyridylene or naphthylene;
Ring A is
pyridine optionally having one or more substituents selected from the group consisting of a phenyl group, a pyridyl group, a naphthyl group, an alkyl group having 1 to 10 carbon atoms, and a CN group, and
Ar 3 and L 1 are each attached to two adjacent carbon atoms of the pyridine ring;
n is 1 or 2;
When n is 2 , two L1's may be the same or different.
2. 1. Ar 1 and Ar 2 are identical. The pyrimidine compound according to .
3. 1. At least one of Ar 1 and Ar 2 is a 4-biphenylyl group. or 2. The pyrimidine compound according to .
4. 1. represented by formulas (E1) to (E10); ~3. The pyrimidine compound according to any one of .
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
5.陽極と、
 陰極と、
 少なくとも発光層を含む1以上の有機薄膜層と、を備え、
 前記有機薄膜層の少なくとも1層が、1.~4.のいずれかに記載のピリミジン化合物を含有する有機電界発光素子
5. an anode;
a cathode;
and one or more organic thin film layers including at least a light-emitting layer,
At least one of the organic thin film layers comprises:1. ~ 4. An organic electroluminescence device containing the pyrimidine compound according to any one of
 本発明の一態様によれば、駆動電圧を低減し、電流効率を向上し得る有機電界発光素子の形成に資する、新たなピリミジン化合物を提供することができる。 According to one aspect of the present invention, it is possible to provide a new pyrimidine compound that contributes to the formation of an organic electroluminescent device capable of reducing driving voltage and improving current efficiency.
 また、本発明の他の態様によれば、上記ピリミジン化合物を含む有機電界発光素子用材料、および有機電界発光素子用電子輸送材料を提供することができる。さらに、本発明のさらに他の態様によれば、駆動電圧が低減された有機電界発光素子を提供することができる。 Further, according to another aspect of the present invention, it is possible to provide a material for organic electroluminescence devices and an electron transport material for organic electroluminescence devices containing the pyrimidine compound. Furthermore, according to still another aspect of the present invention, it is possible to provide an organic electroluminescence device with reduced driving voltage.
本開示の一態様にかかる有機電界発光素子の積層構成の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a laminated structure of an organic electroluminescence device according to one aspect of the present disclosure; FIG. 本開示の一態様にかかる有機電界発光素子の他の積層構成の例(素子実施例-1の構成)を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing another example of the layered structure of the organic electroluminescence device according to one aspect of the present disclosure (structure of Device Example-1).
 以下、本発明の各態様について詳細に説明する。 Each aspect of the present invention will be described in detail below.
 本発明の一態様にかかるピリミジン化合物は、式(1)で表されるピリミジン化合物である。 A pyrimidine compound according to one aspect of the present invention is a pyrimidine compound represented by formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
式中、
 X及びXは、いずれか一方が窒素原子であり、他方はC-Hである;
 Ar及びArは、各々独立に、
  フェニル基、ビフェニリル基、又は、ナフチル基を表す;
 Ar及びArは、各々独立に、
  炭素数6~20のアリール基、又は、
  炭素数4~20のヘテロアリール基を表す;
 L及びLは、各々独立に、
  直接結合、フェニレン、ピリジレン、又は、ナフチレンを表す;
 環Aは、
  フェニル基、ピリジル基、ナフチル基、炭素数1~10のアルキル基、及びCN基からなる群よりなる1つ以上の置換基を有していてもよいピリジンであり、かつ、
  Ar及びLは、各々ピリジン環の隣接する2つの炭素原子と結合している;
 nは1又は2である;
 nが2のとき、2つのLは互いに同一又は相異なっていてもよい。
[Ar及びArについて]
 Ar及びArは、各々独立に、フェニル基、ビフェニリル基、又は、ナフチル基である。
During the ceremony,
one of X 1 and X 2 is a nitrogen atom and the other is C—H;
Ar 1 and Ar 2 are each independently
represents a phenyl group, a biphenylyl group, or a naphthyl group;
Ar 3 and Ar 4 are each independently
an aryl group having 6 to 20 carbon atoms, or
represents a heteroaryl group having 4 to 20 carbon atoms;
L 1 and L 2 are each independently
represents a direct bond, phenylene, pyridylene or naphthylene;
Ring A is
pyridine optionally having one or more substituents selected from the group consisting of a phenyl group, a pyridyl group, a naphthyl group, an alkyl group having 1 to 10 carbon atoms, and a CN group, and
Ar 3 and L 1 are each attached to two adjacent carbon atoms of the pyridine ring;
n is 1 or 2;
When n is 2 , two L1's may be the same or different.
[Regarding Ar 1 and Ar 2 ]
Ar 1 and Ar 2 are each independently a phenyl group, a biphenylyl group, or a naphthyl group.
 Ar及びArは、ビフェニリル基、ナフチル基であることが好ましく、さらに、4-ビフェニリル基であることが好ましい。 Ar 1 and Ar 2 are preferably a biphenylyl group or a naphthyl group, more preferably a 4-biphenylyl group.
 ArとArは同一であることが好ましい。
[Ar及びArについて]
 Ar及びArは、各々独立に、炭素数6~20のアリール基、または炭素数4~20のヘテロアリール基である。
Ar 1 and Ar 2 are preferably the same.
[Regarding Ar 3 and Ar 4 ]
Ar 3 and Ar 4 are each independently an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 4 to 20 carbon atoms.
 炭素数6~20のアリール基の具体例としては、フェニル基、ナフチル基、フェナントリル基、アントニル基、ピレニル基、ピラニル基、フルオレニル基、ジメチルフルオレニル基、トリフェニレニル基、フルオランテニル基、クリセニル基などが挙げられる。 Specific examples of aryl groups having 6 to 20 carbon atoms include phenyl group, naphthyl group, phenanthryl group, anthonyl group, pyrenyl group, pyranyl group, fluorenyl group, dimethylfluorenyl group, triphenylenyl group, fluoranthenyl group and chrysenyl. and the like.
 炭素数4~20のヘテロアリール基の具体例としては、ピリジル基、ピリミジル基、ピラジル基、キノリル基、イソキノリル基、ナジチリジニル基、アクリジニル基などが挙げられる。 Specific examples of heteroaryl groups having 4 to 20 carbon atoms include a pyridyl group, a pyrimidyl group, a pyrazyl group, a quinolyl group, an isoquinolyl group, a nadityridinyl group and an acridinyl group.
 Ar及びArは、フェニル基、ナフチル基、フェナントリル基、又は、ピリジル基が好ましい。
[環Aについて]
 環Aは、
  フェニル基、ピリジル基、ナフチル基、炭素数1~10のアルキル基、及びCN基からなる群よりなる1つ以上の置換基を有していてもよいピリジンであり、かつ、
  Ar及びLは、各々ピリジン環の隣接する2つの炭素原子と結合している。
Ar 3 and Ar 4 are preferably a phenyl group, a naphthyl group, a phenanthryl group, or a pyridyl group.
[About Ring A]
Ring A is
pyridine optionally having one or more substituents selected from the group consisting of a phenyl group, a pyridyl group, a naphthyl group, an alkyl group having 1 to 10 carbon atoms, and a CN group, and
Ar 3 and L 1 are each bonded to two adjacent carbon atoms of the pyridine ring.
 環Aは具体的には、式(A-1)及び(A-2)で表される。 Ring A is specifically represented by formulas (A-1) and (A-2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(A-1)及び(A-2)中、破線は各々独立に、Ar又はLが置換されている位置を示す。ピリジン環はAr及びLの他に、フェニル基、ピリジル基、ナフチル基、炭素数1~10のアルキル基、及びCN基からなる群より選択される1つ以上の基で置換されていてもよい。これらのうち、フェニル基、ピリジル基、ナフチル基、炭素数1~5のアルキル基及びCN基が好ましく、フェニル基、ピリジル基、ナフチル基及び炭素数1~5のアルキル基がより好ましく、フェニル基、ピリジル基、ナフチル基及びメチル基が更に好ましく、フェニル基、ピリジル基、メチル基が特に好ましい。
[L及びLについて]
 L及びLは、各々独立に、直接結合、フェニレン、ピリジレン、ナフチレンを表す。L及びLは、各々独立に、直接結合、フェニレン、ピリジレンであることが好ましい。
[X及びXについて]
 X及びXは、いずれか一方が窒素原子であり、他方はC-Hである。
In formulas (A-1) and (A-2), each dashed line independently indicates the position where Ar 3 or L 1 is substituted. In addition to Ar 3 and L 1 , the pyridine ring is substituted with one or more groups selected from the group consisting of a phenyl group, a pyridyl group, a naphthyl group, an alkyl group having 1 to 10 carbon atoms, and a CN group. good too. Among these, a phenyl group, a pyridyl group, a naphthyl group, an alkyl group having 1 to 5 carbon atoms and a CN group are preferable, and a phenyl group, a pyridyl group, a naphthyl group and an alkyl group having 1 to 5 carbon atoms are more preferable, and a phenyl group. , pyridyl group, naphthyl group and methyl group are more preferred, and phenyl group, pyridyl group and methyl group are particularly preferred.
[Regarding L 1 and L 2 ]
L 1 and L 2 each independently represent a direct bond, phenylene, pyridylene or naphthylene. Preferably, L 1 and L 2 are each independently a direct bond, phenylene, or pyridylene.
[About X 1 and X 2 ]
One of X 1 and X 2 is a nitrogen atom and the other is CH.
 以下、ピリミジン化合物の具体的な例を示す。なお、本発明はこれらに限定されるものではない。 Specific examples of pyrimidine compounds are shown below. In addition, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 また駆動電圧低減の点から、以下に示す構造のものが好ましい。 Also, from the viewpoint of driving voltage reduction, the structure shown below is preferable.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 ピリミジン化合物は、例えば、有機電界発光素子や光電素子等の有機電子素子用途に用いることができる。
<有機電界発光素子用材料>
 本発明の一態様にかかる有機電界発光素子用材料は、上記ピリミジン化合物を含有する。ピリミジン化合物は、例えば、有機電界発光素子用電子輸送材料として用いることができる。
Pyrimidine compounds can be used, for example, in organic electronic devices such as organic electroluminescence devices and photoelectric devices.
<Materials for Organic Electroluminescent Devices>
A material for an organic electroluminescence device according to one aspect of the present invention contains the pyrimidine compound. A pyrimidine compound can be used, for example, as an electron transport material for an organic electroluminescence device.
 本発明の一態様に係るピリミジン化合物が、例えば有機電界発光素子用電子輸送材料として、低い駆動電圧を示す構造的な理由は、以下に挙げるものであると推測される。
<低い駆動電圧を示す構造的な理由>
 トリアジン環は、電子陰性度の高い窒素原子を環構成に3個組み込み、環自体の電子親和力を高くすることで、高い電子輸送性を有する。また、トリアジン化合物の分子内にピリジン環を有することで陰極からの電子注入性を高める試みがなされている。
The structural reason why the pyrimidine compound according to one aspect of the present invention exhibits a low driving voltage as, for example, an electron-transporting material for an organic electroluminescence device is presumed to be as follows.
<Structural reasons for low drive voltage>
The triazine ring incorporates three highly electronegative nitrogen atoms into the ring structure to increase the electron affinity of the ring itself, thereby having a high electron transport property. Attempts have also been made to increase electron injection properties from the cathode by having a pyridine ring in the molecule of the triazine compound.
 しかしながら、トリアジン環の高い電子親和力は一般的に広く用いられている発光層や正孔阻止層への電子注入を阻害し得る。また、ピリジン環は分子の電子親和力をさらに高くするため発光層や正孔阻止層への電子注入を阻害し得る。 However, the high electron affinity of the triazine ring can inhibit electron injection into the widely used light-emitting layer and hole-blocking layer. In addition, the pyridine ring further increases the electron affinity of the molecule and can inhibit electron injection into the light-emitting layer and the hole-blocking layer.
 一方、ピリミジン環は、トリアジン環と同様に窒素原子を複数個含むが、その数がトリアジン環と比べて少なく、電子親和力が低いため、発光層または正孔阻止層への電子注入が促進される。また、本態様に係るピリミジン化合物は、ピリジン環の隣接する炭素上にArおよびLが結合していることで、ピリジン環と隣接する芳香環の二面角を大きくし、分子の電子親和力が高くなることを抑制している。これにより電子親和力を低く保ったまま陰極からの電子注入性を高めることを可能としている。この促進された電子注入により高い電流効率を示すことができる。 On the other hand, the pyrimidine ring contains a plurality of nitrogen atoms like the triazine ring, but the number is smaller than that of the triazine ring, and the electron affinity is low, so electron injection into the light-emitting layer or the hole-blocking layer is promoted. . In addition, the pyrimidine compound according to this aspect has Ar and L 1 bonded to the adjacent carbon atoms of the pyridine ring, thereby increasing the dihedral angle of the aromatic ring adjacent to the pyridine ring and increasing the electron affinity of the molecule. restrains it from rising. This makes it possible to improve the electron injection from the cathode while keeping the electron affinity low. This enhanced electron injection can exhibit high current efficiency.
 一方、ピリミジン環はトリアジン環と異なり、それ自体が大きな双極子モーメントを有する。有機薄膜において、有機分子が双極子モーメントを有する場合、有機分子が自発的に配向し結晶構造に似た秩序性を有する膜になることが知られている。結晶性の高い膜は膜中に欠陥を生じ、電荷輸送の障害になるため、有機電界発光素子に用いられる有機膜においては高いアモルファス性が求められることが一般的に知られている。 On the other hand, unlike the triazine ring, the pyrimidine ring itself has a large dipole moment. In an organic thin film, it is known that when organic molecules have a dipole moment, the organic molecules spontaneously orient to form a film having an orderly structure resembling a crystal structure. It is generally known that highly amorphous films are required for organic films used in organic electroluminescence devices because films with high crystallinity cause defects in the film and hinder charge transport.
 また、有機分子同士が自発配向することによって、昇華温度が高くなる。このことは有機電界発光素子作製時の熱分解を促進させ、ひいては分解物の混入による有機電界発光素子の耐久性低下に影響する。 In addition, the spontaneous orientation of the organic molecules raises the sublimation temperature. This promotes thermal decomposition during the production of the organic electroluminescence device, and eventually influences deterioration of the durability of the organic electroluminescence device due to contamination of decomposition products.
 すなわち、ピリミジン環を有する化合物は、発光層または正孔阻止層への電子注入性を促進させうるが、膜中の電子輸送が抑制されてしまうという課題を有する。 That is, a compound having a pyrimidine ring can promote electron injection into the light-emitting layer or the hole-blocking layer, but has the problem of suppressing electron transport in the film.
 それに対して、本発明の一態様であるピリミジン化合物は、式(1)中のArと環Aが高い立体障害を形成するため、分子の自発配向を抑制し、高いアモルファス性を有することが可能である。したがって、本発明の一態様であるピリミジン化合物は、正孔阻止層への電子注入性を促進しつつ、膜中の電子輸送も抑制されないため、駆動電圧を低減させることが可能である。 On the other hand, in the pyrimidine compound of one embodiment of the present invention, Ar 3 and the ring A in formula (1) form a high steric hindrance, which suppresses the spontaneous orientation of molecules and has a high amorphous property. It is possible. Therefore, the pyrimidine compound, which is one embodiment of the present invention, promotes electron injection into the hole-blocking layer and does not suppress electron transport in the film, so that driving voltage can be reduced.
 また、本発明の一態様であるピリミジン化合物は、昇華温度の低下にも寄与するため、材料の熱分解の抑制、有機電界発光素子の耐久性低下の抑制にも寄与することが可能である。 In addition, since the pyrimidine compound that is one embodiment of the present invention also contributes to lowering the sublimation temperature, it is possible to contribute to suppression of thermal decomposition of the material and suppression of deterioration in durability of the organic electroluminescent element.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
<有機電界発光素子>
 以下、本発明の一態様にかかる有機電界発光素子(以下、単に有機電界発光素子と称することがある)について説明する。
<Organic electroluminescent device>
An organic electroluminescence device (hereinafter sometimes simply referred to as an organic electroluminescence device) according to one aspect of the present invention will be described below.
 本発明の一態様にかかる有機電界発光素子は、ピリミジン化合物を含有する。 An organic electroluminescent device according to one aspect of the present invention contains a pyrimidine compound.
 有機電界発光素子の構成については特に限定されるものではないが、例えば、以下に示す(i)~(vi)の構成が挙げられる。 The configuration of the organic electroluminescent element is not particularly limited, but includes, for example, the configurations (i) to (vi) shown below.
 (i):陽極/発光層/陰極
 (ii):陽極/正孔輸送層/発光層/陰極
 (iii):陽極/発光層/電子輸送層/陰極
 (iv):陽極/正孔輸送層/発光層/電子輸送層/陰極
 (v):陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (vi):陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 ピリミジン化合物は、上記のいずれの層に含まれていてもよいが、有機電界発光素子の発光特性に優れる点で、発光層および該発光層と陰極との間の層からなる群より選ばれる1層以上に含まれることが好ましい。したがって、上記(i)~(vi)に示された構成の場合、ピリミジン化合物が、発光層、正孔阻止層、電子輸送層、および電子注入層からなる群より選ばれる1層以上に含まれることが好ましい。
(i): anode/light emitting layer/cathode (ii): anode/hole transport layer/light emitting layer/cathode (iii): anode/light emitting layer/electron transport layer/cathode (iv): anode/hole transport layer/ Emissive layer/electron transport layer/cathode (v): anode/hole injection layer/hole transport layer/emissive layer/electron transport layer/electron injection layer/cathode (vi): anode/hole injection layer/hole transport Layer/electron-blocking layer/light-emitting layer/hole-blocking layer/electron-transporting layer/electron-injecting layer/cathode The pyrimidine compound may be contained in any of the above layers, but the organic electroluminescent device exhibits excellent light-emitting properties. In that respect, it is preferably contained in one or more layers selected from the group consisting of the light-emitting layer and layers between the light-emitting layer and the cathode. Therefore, in the case of the configurations shown in (i) to (vi) above, the pyrimidine compound is contained in one or more layers selected from the group consisting of a light-emitting layer, a hole-blocking layer, an electron-transporting layer, and an electron-injecting layer. is preferred.
 以下、本発明の一態様にかかる有機電界発光素子を、上記(v)の構成を例に挙げて、図1を参照しながらより詳細に説明する。 Hereinafter, the organic electroluminescence device according to one aspect of the present invention will be described in more detail with reference to FIG. 1, taking the above configuration (v) as an example.
 なお、図1に示す有機電界発光素子は、いわゆるボトムエミッション型の素子構成を有するものであるが、本発明の一態様にかかる有機電界発光素子はボトムエミッション型の素子構成に限定されるものではない。すなわち、本発明の一態様にかかる有機電界発光素子は、トップエミッション型など、他の公知の素子構成であってもよい。 The organic electroluminescent device shown in FIG. 1 has a so-called bottom emission type device configuration, but the organic electroluminescent device according to one aspect of the present invention is not limited to the bottom emission type device configuration. do not have. That is, the organic electroluminescence device according to one aspect of the present invention may have other known device configurations such as top emission type.
 図1は、本発明の一態様にかかる有機電界発光素子の積層構成の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of a laminated structure of an organic electroluminescence device according to one aspect of the present invention.
 有機電界発光素子100は、基板1、陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、および陰極8をこの順で備える。ただし、これらの層のうちの一部の層が省略されていてもよく、また逆に他の層が追加されていてもよい。例えば、発光層5と電子輸送層6との間に正孔阻止層が設けられていてもよく、正孔注入層3が省略され、陽極2上に正孔輸送層4が直接設けられていてもよい。 The organic electroluminescent device 100 includes a substrate 1, an anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer 7, and a cathode 8 in this order. However, some of these layers may be omitted, or conversely, other layers may be added. For example, a hole-blocking layer may be provided between the light-emitting layer 5 and the electron-transporting layer 6, the hole-injecting layer 3 may be omitted, and the hole-transporting layer 4 may be provided directly on the anode 2. good too.
 また、例えば電子注入層の機能と電子輸送層の機能とを単一の層で併せ持つ電子注入・輸送層のような、複数の層が有する機能を併せ持った単一の層を、当該複数の層の代わりに備えた構成であってもよい。さらに、例えば単層の正孔輸送層4、単層の電子輸送層6が、それぞれ複数層からなっていてもよい。
<ピリミジン化合物を含有する層>
 図1に示される構成例において有機電界発光素子100は、発光層5、電子輸送層6および電子注入層7からなる群より選ばれる1層以上に上記ピリミジン化合物を含む。特に、電子輸送層6がピリミジン化合物を含むことが好ましい。なお、ピリミジン化合物は、有機電界発光素子が備える複数の層に含まれていてもよい。
Further, a single layer having the functions of a plurality of layers, such as an electron injection/transport layer having both the function of an electron injection layer and the function of an electron transport layer in a single layer. It may be a configuration provided instead of. Further, for example, each of the single-layer hole transport layer 4 and the single-layer electron transport layer 6 may be composed of a plurality of layers.
<Layer containing pyrimidine compound>
In the structural example shown in FIG. 1, the organic electroluminescence device 100 contains the above pyrimidine compound in one or more layers selected from the group consisting of the light-emitting layer 5, the electron transport layer 6 and the electron injection layer . In particular, the electron transport layer 6 preferably contains a pyrimidine compound. In addition, the pyrimidine compound may be contained in a plurality of layers included in the organic electroluminescence device.
 以下においては、電子輸送層6がピリミジン化合物を含む有機電界発光素子100について説明する。
[基板1]
 基板1としては特に限定はなく、通常の有機電界発光素子に使用できる基板を使用することができる。例えばガラス板、石英板、プラスチック板などが挙げられる。
[陽極2]
 基板1上(正孔注入層3側)には陽極2が設けられている。
An organic electroluminescence device 100 in which the electron transport layer 6 contains a pyrimidine compound will be described below.
[Substrate 1]
The substrate 1 is not particularly limited, and substrates that can be used in ordinary organic electroluminescence devices can be used. For example, a glass plate, a quartz plate, a plastic plate and the like can be used.
[Anode 2]
An anode 2 is provided on the substrate 1 (on the hole injection layer 3 side).
 陽極の材料としては、通常の有機電界発光素子に使用できる化合物を使用することができる。例えば仕事関数の大きい(例えば4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物が挙げられる。陽極の材料の具体例としては、Auなどの金属;CuI、酸化インジウム-スズ(ITO;Indium Tin Oxide)、SnO、ZnOなどの導電性透明材料が挙げられる。
[正孔注入層3、正孔輸送層4]
 陽極2と後述する発光層5との間には、陽極2側から、正孔注入層3、正孔輸送層4がこの順で設けられている。
As the material for the anode, compounds that can be used in ordinary organic electroluminescence devices can be used. Examples include metals, alloys, electrically conductive compounds, and mixtures thereof with a large work function (eg, 4 eV or more). Specific examples of materials for the anode include metals such as Au; conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
[Hole injection layer 3, hole transport layer 4]
A hole injection layer 3 and a hole transport layer 4 are provided in this order from the anode 2 side between the anode 2 and a light emitting layer 5 to be described later.
 正孔注入層、正孔輸送層の材料としては、正孔注入性、正孔輸送性、電子障壁性の少なくともいずれかを有するものである。正孔注入層、正孔輸送層の材料は、有機物、無機物のいずれであってもよく、通常の有機電界発光素子に使用できる化合物を使用することができる。 The material for the hole injection layer and the hole transport layer has at least one of hole injection, hole transport, and electron barrier properties. Materials for the hole injection layer and the hole transport layer may be either organic or inorganic, and compounds that can be used in ordinary organic electroluminescence devices can be used.
 正孔注入層、正孔輸送層は、一種または二種以上の材料からなる単構造であってもよく、同一組成または異種組成の複数層からなる積層構造であってもよい。 The hole injection layer and the hole transport layer may have a single structure composed of one or more materials, or may have a laminated structure composed of multiple layers of the same composition or different compositions.
 正孔輸送層4は、2層以上の積層構造であってもよく、陽極2側から、第一正孔輸送層41、第二正孔輸送層42の順で設けられ、この第二正孔輸送層42は上記(vi)の構成における電子阻止層として使用することができる。
[発光層5]
 正孔輸送層4と後述する電子輸送層6との間には、発光層5が設けられている。
The hole-transporting layer 4 may have a laminated structure of two or more layers, and is provided in this order from the anode 2 side with a first hole-transporting layer 41 and a second hole-transporting layer 42 . The transport layer 42 can be used as an electron blocking layer in the configuration (vi) above.
[Light emitting layer 5]
A light-emitting layer 5 is provided between the hole-transporting layer 4 and an electron-transporting layer 6, which will be described later.
 発光層の材料としては、通常の有機電界発光素子に使用できる発光材料を使用することができる。例えば燐光発光材料、蛍光発光材料、熱活性化遅延蛍光発光材料が挙げられる。 As the material for the light-emitting layer, light-emitting materials that can be used in ordinary organic electroluminescent devices can be used. Examples thereof include phosphorescent materials, fluorescent materials, and heat-activated delayed fluorescent materials.
 発光層は、単一の低分子材料または単一のポリマー材料からなっていてもよいが、より一般的には、ゲスト化合物でドーピングされたホスト材料からなっている。発光は主としてドーパントから生じ、任意の色を有することができる。 The light emitting layer may consist of a single small molecule material or a single polymer material, but more commonly consists of a host material doped with a guest compound. Emission comes primarily from dopants and can have any color.
 また、発光材料は発光層のみに含有されることに限定されるものではない。例えば、発光材料は、発光層に隣接した層(正孔輸送層4、または電子輸送層6)が含有していてもよい。これによってさらに有機電界発光素子の発光効率を高めることができる。 Also, the luminescent material is not limited to being contained only in the luminescent layer. For example, the light-emitting material may be contained in a layer adjacent to the light-emitting layer (hole-transporting layer 4 or electron-transporting layer 6). This can further increase the luminous efficiency of the organic electroluminescence device.
 発光層は、一種または二種以上の材料からなる単層構造であってもよく、同一組成または異種組成の複数層からなる積層構造であってもよい。
[電子輸送層6]
 発光層5と後述する電子注入層7との間には、電子輸送層6が設けられている。
The light-emitting layer may have a single-layer structure composed of one or more materials, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions.
[Electron transport layer 6]
An electron transport layer 6 is provided between the light emitting layer 5 and an electron injection layer 7 which will be described later.
 電子輸送層は、ピリミジン化合物を含むことが好ましい。また、電子輸送層は、ピリミジン化合物に加えてさらに従来公知の電子輸送材料から選ばれる1種以上を含んでいてもよい。 The electron transport layer preferably contains a pyrimidine compound. In addition to the pyrimidine compound, the electron transport layer may further contain one or more selected from conventionally known electron transport materials.
 なお、ピリミジン化合物が電子輸送層に含まれず、他の層に含まれる場合は、従来公知の電子輸送材料から選ばれる1種以上を、電子輸送層を構成する電子輸送材料として用いることができる。 When the pyrimidine compound is not contained in the electron-transporting layer but is contained in another layer, one or more selected from conventionally known electron-transporting materials can be used as the electron-transporting material constituting the electron-transporting layer.
 従来公知の電子輸送性材料としては、アルカリ金属錯体、アルカリ土類金属錯体、土類金属錯体等が挙げられる。アルカリ金属錯体、アルカリ土類金属錯体、土類金属錯体としては、例えば、8-ヒドロキシキノリナートリチウム(Liq)、ビス(8-ヒドロキシキノリナート)亜鉛、ビス(8-ヒドロキシキノリナート)銅、ビス(8-ヒドロキシキノリナート)マンガン、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(2-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(8-ヒドロキシキノリナート)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2-メチル-8-キノリナート)クロロガリウム、ビス(2-メチル-8-キノリナート)(o-クレゾラート)ガリウム、ビス(2-メチル-8-キノリナート)-1-ナフトラートアルミニウム、ビス(2-メチル-8-キノリナート)-2-ナフトラートガリウム等が挙げられる。 Conventionally known electron-transporting materials include alkali metal complexes, alkaline earth metal complexes, earth metal complexes, and the like. Alkali metal complexes, alkaline earth metal complexes, and earth metal complexes include, for example, 8-hydroxyquinolinatolithium (Liq), bis(8-hydroxyquinolinato)zinc, and bis(8-hydroxyquinolinato)copper. , bis(8-hydroxyquinolinato)manganese, tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis (10-hydroxybenzo[h]quinolinate) beryllium, bis(10-hydroxybenzo[h]quinolinate)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinate)(o -cresolato) gallium, bis(2-methyl-8-quinolinato)-1-naphtholato aluminum, bis(2-methyl-8-quinolinato)-2-naphtholato gallium, and the like.
 電子輸送層は、一種または二種以上の材料からなる単層構造であってもよく、同一組成または異種組成の複数層からなる積層構造であってもよい。 The electron-transporting layer may have a single-layer structure composed of one or more materials, or may have a laminated structure composed of multiple layers having the same composition or different compositions.
 本態様にかかる有機電界発光素子においては、電子注入性を向上させ、素子特性(例えば、発光効率、低電圧駆動、または高耐久性)を向上させる目的で、電子注入層を設けてもよい。 An electron injection layer may be provided in the organic electroluminescence device according to this aspect for the purpose of improving electron injection properties and improving device characteristics (e.g., luminous efficiency, low voltage drive, or high durability).
 電子輸送層6は、2層以上の積層構造であってもよく、発光層5側から、第一電子輸送層61、第二電子輸送層62の順で設けられ、この第一電子輸送層61は上記(vi)の構成における正孔阻止層として使用することができる。 The electron transport layer 6 may have a laminated structure of two or more layers. can be used as the hole blocking layer in the configuration (vi) above.
 本発明の一態様にかかるピリミジン化合物は第一電子輸送層及び第二電子輸送層の両方、またはいずれか一方に使用することができる。
[電子注入層7]
 電子輸送層6と後述する陰極8との間には、電子注入層7が設けられている。
The pyrimidine compound according to one aspect of the present invention can be used in both or either one of the first electron-transporting layer and the second electron-transporting layer.
[Electron injection layer 7]
An electron injection layer 7 is provided between the electron transport layer 6 and a cathode 8 which will be described later.
 電子注入層の材料としては、通常の有機電界発光素子に使用できる化合物を使用することができる。例えば、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等の有機化合物が挙げられる。 As the material for the electron injection layer, compounds that can be used in ordinary organic electroluminescent devices can be used. Examples thereof include organic compounds such as fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, and anthrone.
 また、電子注入層の材料としては、SiO、AlO、SiN、SiON、AlON、GeO、LiO、LiON、TiO、TiON、TaO、TaON、TaN、LiF、C、Ybなどの各種酸化物、フッ化物、窒化物、酸化窒化物等の無機化合物も挙げられる。本発明のピリミジン化合物を使用することもできる。
[陰極8]
 電子注入層7上には陰極8が設けられている。
Materials for the electron injection layer include various oxides and fluorides such as SiO 2 , AlO, SiN, SiON, AlON, GeO, LiO, LiON, TiO, TiON, TaO, TaON, TaN, LiF, C, and Yb. , nitrides, and oxynitrides. Pyrimidine compounds of the invention can also be used.
[Cathode 8]
A cathode 8 is provided on the electron injection layer 7 .
 陰極の材料としては、通常の有機電界発光素子に使用できる化合物を使用することができる。例えば、仕事関数の小さい金属(以下、電子注入性金属とも称する)、合金、電気伝導性化合物、およびこれらの混合物が挙げられる。ここで、仕事関数の小さい金属とは、例えば、4eV以下の金属である。 As the cathode material, compounds that can be used in ordinary organic electroluminescent devices can be used. Examples include metals with a small work function (hereinafter also referred to as electron-injecting metals), alloys, electrically conductive compounds, and mixtures thereof. Here, a metal with a small work function is, for example, a metal of 4 eV or less.
 電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物などが好ましい。
[各層の形成方法]
 以上説明した、電極(陽極、陰極)を除く各層は、例えば、真空蒸着法、スピンコート法、キャスト法、LB(Langmuir-Blodgett method)法などの公知の方法によって薄膜化することにより、形成することができる。各層の材料は、それ単独で用いてもよく、必要に応じて結着樹脂などの材料、溶剤と共に用いてもよい。
A mixture of an electron-injecting metal and a second metal that has a higher work function and is more stable, such as magnesium/silver mixture, magnesium/aluminum mixture, magnesium/indium mixture, aluminum/aluminum oxide (Al 2 O 3 ) mixtures, lithium/aluminum mixtures, etc. are preferred.
[Method of Forming Each Layer]
Each layer except for the electrodes (anode, cathode) described above is formed by thinning by a known method such as a vacuum deposition method, a spin coating method, a casting method, or a LB (Langmuir-Blodgett method) method. be able to. The material for each layer may be used alone, or if necessary, it may be used together with a material such as a binder resin and a solvent.
 このようにして形成された各層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、通常は5nm~5μmの範囲である。 The film thickness of each layer thus formed is not particularly limited and can be appropriately selected depending on the situation, but is usually in the range of 5 nm to 5 μm.
 陽極および陰極は、電極材料を蒸着やスパッタリングなどの方法によって薄膜化することにより、形成することができる。蒸着やスパッタリングの際に所望の形状のマスクを介してパターンを形成してもよく、蒸着やスパッタリングなどによって薄膜を形成した後、フォトリソグラフィーで所望の形状のパターンを形成してもよい。 The anode and cathode can be formed by thinning the electrode material by a method such as vapor deposition or sputtering. A pattern may be formed through a mask of a desired shape during vapor deposition or sputtering, or a pattern of a desired shape may be formed by photolithography after forming a thin film by vapor deposition, sputtering, or the like.
 陽極および陰極の膜厚は、1μm以下であることが好ましく、10nm以上200nm以下であることがより好ましい。 The film thickness of the anode and cathode is preferably 1 μm or less, more preferably 10 nm or more and 200 nm or less.
 なお、ピリミジン化合物を含む層を形成するは、上記の従来公知の電子輸送性材料と併用してもよい。したがって、例えば、ピリミジン化合物と従来公知の電子輸送性材料とを共蒸着してもよく、ピリミジン化合物の層に従来公知の電子輸送性材料の層を積層してもよい。 It should be noted that the formation of the layer containing the pyrimidine compound may be used in combination with the conventionally known electron-transporting material. Therefore, for example, a pyrimidine compound and a conventionally known electron-transporting material may be co-deposited, or a layer of a conventionally known electron-transporting material may be laminated on a layer of the pyrimidine compound.
 有機電界発光素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像をスクリーン等に投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。 The organic electroluminescence element may be used as a kind of lamp for illumination or as a light source for exposure, a type of projection device for projecting an image onto a screen or the like, or a type of display for directly viewing still images or moving images. You may use it as a device (display).
 動画再生用の表示装置として有機電界発光素を使用する場合、駆動方式としては、単純マトリクス(パッシブマトリクス)方式であってもよく、アクティブマトリクス方式であってもよい。また、異なる発光色を有する有機電界発光素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 When using an organic electroluminescent element as a display device for reproducing moving images, the driving method may be a simple matrix (passive matrix) method or an active matrix method. Further, by using two or more kinds of organic electroluminescent elements having different emission colors, it is possible to produce a full-color display device.
 以下、本開示を実施例に基づきさらに詳細に説明するが、本開示はこれらの実施例により何ら限定して解釈されるものではない。 Although the present disclosure will be described in more detail below based on examples, the present disclosure should not be construed as being limited by these examples.
 H-NMRスペクトルの測定は、Gemini200(バリアン社製)またはBruker ASCEND 400(400MHz;BRUKER製)を用いて行った。 1 H-NMR spectra were measured using Gemini200 (manufactured by Varian) or Bruker ASCEND 400 (400 MHz; manufactured by BRUKER).
 有機電界発光素子の発光特性は、室温下、作製した素子に直流電流を印加し、輝度計(製品名:BM-9,トプコンテクノハウス社製)を用いて評価した。
合成実施例-1(E1の合成)
The luminous properties of the organic electroluminescent device were evaluated by applying a direct current to the fabricated device at room temperature and using a luminance meter (product name: BM-9, manufactured by Topcon Technohouse Co., Ltd.).
Synthesis Example-1 (Synthesis of E1)
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 アルゴン雰囲気下、2-(3-ブロモ-5-クロロフェニル)-4,6-ビス(4-ビフェニリル)ピリミジン(5.74g、10mmol)、フェニルボロン酸(1.34g、11mmol)、2M-リン酸カリウム水溶液(16.5mL)、テトラキス(トリフェニルホスフィン)パラジウム(231mg,0.2mmol)をTHF(200mL)に懸濁し、27時間還流した。反応混合物をろ過し、ろ液を濃縮した。濃縮したろ液をメタノールに添加することで固体を析出させ、これをろ取することで目的の4,6-ビス(4-ビフェニリル)-2-(5-クロロビフェニル-3-イル)-ピリミジンを得た(収量5.11g、収率90%)
 アルゴン雰囲気下、4,6-ビス(4-ビフェニリル)-2-(5-クロロビフェニル-3-イル)-ピリミジン(2.0g,3.5mmol)、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-2-フェニルピリジン(1.18g,4.2mmol)、2M-リン酸カリウム水溶液(6.3mL)、酢酸パラジウム(15.7mg,0.07mmol)および2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(XPhos,67mg,0.14mmol)をTHF(35mL)に懸濁し、17時間還流した。放冷後、反応混合物に水を加えて固体をろ取し、水およびメタノールで洗浄することで2-[5-(2-フェニルピリジン-3-イル)-ビフェニル-3-イル]-4,6-ビス(4-ビフェニリル)ピリミジン(E1)を得た(収量2.38g,収率99%)。
H-NMR(400MHz,CDCl):δ8.88(s,1H),8.77(dd,J=4.8,1.7Hz,1H),8.69(s,1H),8.36(d,J=8.5Hz,4H),8.12(s,1H),8.00(dd,J=7.7,1.7Hz,1H),7.82(d,J=8.5Hz,4H),7.70-7.72(m,4H),7.30-7.55(m,18H).
合成実施例-2(E2の合成)
2-(3-bromo-5-chlorophenyl)-4,6-bis(4-biphenylyl)pyrimidine (5.74 g, 10 mmol), phenylboronic acid (1.34 g, 11 mmol), 2M-phosphoric acid under an argon atmosphere. An aqueous potassium solution (16.5 mL) and tetrakis(triphenylphosphine)palladium (231 mg, 0.2 mmol) were suspended in THF (200 mL) and refluxed for 27 hours. The reaction mixture was filtered and the filtrate was concentrated. The concentrated filtrate is added to methanol to precipitate a solid, which is collected by filtration to give the target 4,6-bis(4-biphenylyl)-2-(5-chlorobiphenyl-3-yl)-pyrimidine. was obtained (yield 5.11 g, yield 90%)
Under an argon atmosphere, 4,6-bis(4-biphenylyl)-2-(5-chlorobiphenyl-3-yl)-pyrimidine (2.0 g, 3.5 mmol), 3-(4,4,5,5- Tetramethyl-1,3,2-dioxaborolan-2-yl)-2-phenylpyridine (1.18 g, 4.2 mmol), 2M-potassium phosphate aqueous solution (6.3 mL), palladium acetate (15.7 mg, 0 .07 mmol) and 2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (XPhos, 67 mg, 0.14 mmol) were suspended in THF (35 mL) and refluxed for 17 h. After allowing to cool, water was added to the reaction mixture, the solid was collected by filtration, and washed with water and methanol to give 2-[5-(2-phenylpyridin-3-yl)-biphenyl-3-yl]-4, 6-bis(4-biphenylyl)pyrimidine (E1) was obtained (yield 2.38 g, yield 99%).
1 H-NMR (400 MHz, CDCl 3 ): δ 8.88 (s, 1H), 8.77 (dd, J = 4.8, 1.7 Hz, 1H), 8.69 (s, 1H), 8. 36 (d, J = 8.5Hz, 4H), 8.12 (s, 1H), 8.00 (dd, J = 7.7, 1.7Hz, 1H), 7.82 (d, J = 8 .5Hz, 4H), 7.70-7.72 (m, 4H), 7.30-7.55 (m, 18H).
Synthesis Example-2 (Synthesis of E2)
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 アルゴン雰囲気下、4-(3-ブロモ-5-クロロフェニル)-2-(4-ブロモフェニル)-6-(4-ビフェニリル)ピリミジン(2.0g、3.47mmol)、フェニルボロン酸(0.93g、7.63mmol)、2M-リン酸カリウム水溶液(10.4mL)、テトラキス(トリフェニルホスフィン)パラジウム(80mg,0.069mmol)をTHF(35mL)に懸濁し、19時間還流した。反応混合物をろ過し、ろ液を濃縮した。濃縮したろ液をメタノールに添加することで固体を析出させ、これをろ取することで目的の2,4-ビス(4-ビフェニリル)-4-(5-クロロビフェニル-3-イル)-ピリミジンを得た(収量1.91g、収率96%)
 アルゴン雰囲気下、2,4-ビス(4-ビフェニリル)-4-(5-クロロビフェニル-3-イル)-ピリミジン(1.81g,3.17mmol)、3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-2-フェニルピリジン(0.982g,3.49mmol)、2M-リン酸カリウム水溶液(4.8mL)、酢酸パラジウム(14mg,0.063mmol)および2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(XPhos,61mg,0.127mmol)をTHF(32mL)に懸濁し、15時間還流した。放冷後、反応混合物に水を加えて固体をろ取し、水およびメタノールで洗浄することで2-[5-(2-フェニルピリジン-3-イル)-ビフェニル-3-イル]-4,6-ビス(4-ビフェニリル)ピリミジン(E2)を得た(収量3.18g,収率92%)。
H-NMR(400MHz,CDCl):δ8.78(d,J=4.7Hz,1H),8.76(d,J=8.8Hz,2H),8.41(s,1H),8.36(d,J=8.6Hz,2H),8.04(s,1H),7.98(d,J=7.7Hz,1H),7.82(d,J=8.6Hz,2H),7.79(d,J=8.6Hz,2H),7.78(s,1H),7.61(s.1H),7.35-7.54(m,17H).
合成実施例-3(E9の合成)
Under an argon atmosphere, 4-(3-bromo-5-chlorophenyl)-2-(4-bromophenyl)-6-(4-biphenylyl)pyrimidine (2.0 g, 3.47 mmol), phenylboronic acid (0.93 g , 7.63 mmol), 2M aqueous potassium phosphate solution (10.4 mL), and tetrakis(triphenylphosphine)palladium (80 mg, 0.069 mmol) were suspended in THF (35 mL) and refluxed for 19 hours. The reaction mixture was filtered and the filtrate was concentrated. The concentrated filtrate is added to methanol to precipitate a solid, which is collected by filtration to give the desired 2,4-bis(4-biphenylyl)-4-(5-chlorobiphenyl-3-yl)-pyrimidine. was obtained (yield 1.91 g, yield 96%)
Under an argon atmosphere, 2,4-bis(4-biphenylyl)-4-(5-chlorobiphenyl-3-yl)-pyrimidine (1.81 g, 3.17 mmol), 3-(4,4,5,5- Tetramethyl-1,3,2-dioxaborolan-2-yl)-2-phenylpyridine (0.982 g, 3.49 mmol), 2M-potassium phosphate aqueous solution (4.8 mL), palladium acetate (14 mg, 0.063 mmol) ) and 2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl (XPhos, 61 mg, 0.127 mmol) were suspended in THF (32 mL) and refluxed for 15 hours. After allowing to cool, water was added to the reaction mixture, the solid was collected by filtration, and washed with water and methanol to give 2-[5-(2-phenylpyridin-3-yl)-biphenyl-3-yl]-4, 6-bis(4-biphenylyl)pyrimidine (E2) was obtained (3.18 g, 92% yield).
1 H-NMR (400 MHz, CDCl 3 ): δ 8.78 (d, J = 4.7 Hz, 1 H), 8.76 (d, J = 8.8 Hz, 2 H), 8.41 (s, 1 H), 8.36 (d, J = 8.6Hz, 2H), 8.04 (s, 1H), 7.98 (d, J = 7.7Hz, 1H), 7.82 (d, J = 8.6Hz , 2H), 7.79 (d, J=8.6Hz, 2H), 7.78 (s, 1H), 7.61 (s.1H), 7.35-7.54 (m, 17H).
Synthesis Example-3 (Synthesis of E9)
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 アルゴン雰囲気下、2-クロロ-4,6-ビス(4-ビフェニリル)ピリミジン(1.40g、3.3mmol)、(5,5-ジメチル-1,3,2-ジオキサボリナン-2-イル)-3,5-ビス(2-フェニルピリジン-3-イル)ベンゼン(1.99g、4.0mmol)、2M-リン酸カリウム水溶液(5.0mL)、テトラキス(トリフェニルホスフィン)パラジウム(77.2mg,0.067mmol)をTHF(17mL)に懸濁し、5時間還流した。反応混合物に水およびメタノールを加えたのちにろ過し、ろ取物を水及びメタノールで洗浄した。得られた固体をトルエンで再結晶することで、目的の4,6-ビス(4-ビフェニリル)-2-[3,5-ビス(2-フェニルピリジン-3-イル)フェニル]-ピリミジン(E9)を得た(収量2.05g、収率80%)。
H-NMR(400MHz,CDCl):δ8.73(d,J=4.7H,2H),8.47(s,2H),8.23(d,J=8.5Hz,4H),8.05(s,1H),7.79(d,J=8.5Hz,4H),7.69-7.72(m,4H),7.61(d,J=7.7Hz,2H),7.40-7.53(m,10H),7.27-7.37(m,8H),7.21(s,1H).
合成実施例-4(E10の合成)
2-chloro-4,6-bis(4-biphenylyl)pyrimidine (1.40 g, 3.3 mmol), (5,5-dimethyl-1,3,2-dioxaboolinan-2-yl)-3 under argon atmosphere , 5-bis(2-phenylpyridin-3-yl)benzene (1.99 g, 4.0 mmol), 2M-potassium phosphate aqueous solution (5.0 mL), tetrakis(triphenylphosphine) palladium (77.2 mg, 0 .067 mmol) was suspended in THF (17 mL) and refluxed for 5 hours. After water and methanol were added to the reaction mixture, the mixture was filtered, and the filtrate was washed with water and methanol. The resulting solid was recrystallized from toluene to give the target 4,6-bis(4-biphenylyl)-2-[3,5-bis(2-phenylpyridin-3-yl)phenyl]-pyrimidine (E9 ) was obtained (2.05 g, 80% yield).
1 H-NMR (400 MHz, CDCl 3 ): δ 8.73 (d, J = 4.7H, 2H), 8.47 (s, 2H), 8.23 (d, J = 8.5Hz, 4H), 8.05 (s, 1H), 7.79 (d, J = 8.5Hz, 4H), 7.69-7.72 (m, 4H), 7.61 (d, J = 7.7Hz, 2H) ), 7.40-7.53 (m, 10H), 7.27-7.37 (m, 8H), 7.21 (s, 1H).
Synthesis Example-4 (Synthesis of E10)
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 アルゴン雰囲気下、4,6-ビス(4-ビフェニリル)-2-[3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-5-クロロビフェニル-3-イル]-ピリミジン(2.00g、3.0mmol)、3-クロロ-5-メチル-2-フェニルピリジン(0.74g、3.6mmol)、2M-リン酸カリウム水溶液(4.5mL)、ビス(トリシクロヘキシルホスフィン)パラジウムジクロライド(44.6mg,0.06mmol)をTHF(30mL)に懸濁し、2時間還流した。反応混合物に水およびメタノールを加えたのちにろ過し、ろ取物を水及びメタノールで洗浄した。得られた固体をトルエンで再結晶することで、目的の2-[5-(5-メチル-2-フェニルピリジン-3-イル)-ビフェニル-3-イル]-4,6-ビス(4-ビフェニリル)ピリミジン(E10)を得た(収量1.25g、収率59%)
H-NMR(400MHz,CDCl):δ8.82(s,1H),8.66(s,1H),8.60(d,J=2.1Hz,1H),8.36(d,J=6.7Hz,4H),8.12(s,1H),7.82(d,J=8.5Hz,4H),7.80(d,J=2.1Hz,1H),7.69-7.72(m,4H),7.27-7.53(m,17H),2.50(s,3H).
 
 また、下記実験例で使用した環状アジン化合物については、前記合成実施例で示される製造法と同様の手段により合成した。
Under an argon atmosphere, 4,6-bis(4-biphenylyl)-2-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-chlorobiphenyl- 3-yl]-pyrimidine (2.00 g, 3.0 mmol), 3-chloro-5-methyl-2-phenylpyridine (0.74 g, 3.6 mmol), 2M aqueous potassium phosphate solution (4.5 mL), Bis(tricyclohexylphosphine)palladium dichloride (44.6 mg, 0.06 mmol) was suspended in THF (30 mL) and refluxed for 2 hours. After water and methanol were added to the reaction mixture, the mixture was filtered, and the filtrate was washed with water and methanol. The obtained solid was recrystallized from toluene to give the target 2-[5-(5-methyl-2-phenylpyridin-3-yl)-biphenyl-3-yl]-4,6-bis(4- Biphenylyl)pyrimidine (E10) was obtained (yield 1.25 g, 59% yield).
1 H-NMR (400 MHz, CDCl 3 ): δ 8.82 (s, 1H), 8.66 (s, 1H), 8.60 (d, J = 2.1Hz, 1H), 8.36 (d, J = 6.7 Hz, 4H), 8.12 (s, 1H), 7.82 (d, J = 8.5Hz, 4H), 7.80 (d, J = 2.1Hz, 1H), 7. 69-7.72 (m, 4H), 7.27-7.53 (m, 17H), 2.50 (s, 3H).

Moreover, the cyclic azine compounds used in the following experimental examples were synthesized by means similar to the production method shown in the synthesis examples.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 有機電界発光素子の作製と性能評価に用いる化合物の構造式及びその略称を以下に示した。 The structural formulas and abbreviations of the compounds used for the production and performance evaluation of the organic electroluminescent device are shown below.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
素子実施例-1(以下の有機電界発光素子の積層構成については、図2を参照されたい。)
(基板101、陽極102の用意)
 陽極をその表面に備えた基板として、2mm幅の酸化インジウム-スズ(ITO)膜(膜厚110nm)がストライプ状にパターンされたITO透明電極付きガラス基板を用意した。ついで、この基板をイソプロピルアルコールで洗浄した後、オゾン紫外線洗浄にて表面処理を行った。
(真空蒸着の準備)
 洗浄後の表面処理が施された基板上に、真空蒸着法で各層の真空蒸着を行い、各層を積層形成した。
Device Example-1 (Refer to FIG. 2 for the layered structure of the following organic electroluminescent device.)
(Preparation of substrate 101 and anode 102)
As a substrate having an anode on its surface, a glass substrate with an ITO transparent electrode, in which an indium-tin oxide (ITO) film (thickness: 110 nm) with a width of 2 mm was patterned in stripes, was prepared. Then, after washing the substrate with isopropyl alcohol, the surface was treated by ozone ultraviolet washing.
(Preparation for vacuum deposition)
Each layer was vacuum-deposited on the surface-treated substrate after cleaning by a vacuum deposition method to laminate each layer.
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。そして、以下の順で、各層の成膜条件に従ってそれぞれ作製した。
(正孔注入層103の作製)
 昇華精製したHTL-1とNDP-9を0.15nm/秒の速度で10nm成膜し、正孔注入層103を作製した。
(第一正孔輸送層1051の作製)
 昇華精製したHTLを0.15nm/秒の速度で85nm成膜し、第一正孔輸送層1051を作製した。
(第二正孔輸送層1052の作製)
 昇華精製したEBL-1を0.15nm/秒の速度で5nm成膜し、第二正孔輸送層1052を作製した。
(発光層106の作製)
 昇華精製したBH-1とBD-1とを95:5(質量比)の割合で20nm成膜し、発光層106を作製した。成膜速度は0.18nm/秒であった。
(第一電子輸送層1071の作製)
 昇華精製したHBL-1を0.05nm/秒の速度で6nm成膜し、第一電子輸送層1071を作製した。
(第二電子輸送層1072の作製)
 化合物E1およびLiqを50:50(質量比)の割合で25nm成膜し、第二電子輸送層1072を作製した。成膜速度は0.15nm/秒であった。
(陰極108の作製)
 最後に、基板上のITOストライプと直交するようにメタルマスクを配し、陰極108を成膜した。陰極はイッテルビウム、銀/マグネシウム(質量比9/1)と銀とを、この順番で、それぞれ2nm、12nmと90nmとで成膜し、3層構造とした。イッテルビウムの成膜速度は0.02nm/秒、銀/マグネシウムの成膜速度は0.5nm/秒、銀の成膜速度は成膜速度0.2nm/秒であった。
First, the glass substrate was introduced into a vacuum deposition tank, and the pressure was reduced to 1.0×10 −4 Pa. Then, each layer was produced in the following order according to the film forming conditions of each layer.
(Preparation of hole injection layer 103)
Sublimation-purified HTL-1 and NDP-9 were deposited at a rate of 0.15 nm/sec to a thickness of 10 nm to form a hole injection layer 103 .
(Preparation of first hole transport layer 1051)
A first hole transport layer 1051 was produced by forming a film of HTL purified by sublimation to a thickness of 85 nm at a rate of 0.15 nm/sec.
(Preparation of second hole transport layer 1052)
Sublimation-purified EBL-1 was deposited at a rate of 0.15 nm/second to a thickness of 5 nm to form a second hole transport layer 1052 .
(Production of light-emitting layer 106)
Sublimation-purified BH-1 and BD-1 were deposited at a ratio of 95:5 (mass ratio) to form a film having a thickness of 20 nm to prepare a light-emitting layer 106 . The deposition rate was 0.18 nm/sec.
(Preparation of first electron transport layer 1071)
Sublimation-purified HBL-1 was deposited at a rate of 0.05 nm/second to a thickness of 6 nm to prepare a first electron transport layer 1071 .
(Preparation of second electron transport layer 1072)
Compound E1 and Liq were deposited at a ratio of 50:50 (mass ratio) to a thickness of 25 nm to form a second electron transport layer 1072 . The deposition rate was 0.15 nm/sec.
(Preparation of cathode 108)
Finally, a metal mask was placed perpendicular to the ITO stripes on the substrate, and a cathode 108 was formed. For the cathode, ytterbium, silver/magnesium (mass ratio 9/1) and silver were deposited in this order to thicknesses of 2 nm, 12 nm and 90 nm, respectively, to form a three-layer structure. The deposition rate of ytterbium was 0.02 nm/second, the deposition rate of silver/magnesium was 0.5 nm/second, and the deposition rate of silver was 0.2 nm/second.
 以上により、図2に示すような発光面積4mm有機電界発光素子100を作製した。なお、それぞれの膜厚は、触針式膜厚測定計(DEKTAK、Bruker社製)で測定した。 As described above, an organic electroluminescence device 100 having a light emitting area of 4 mm 2 as shown in FIG. 2 was produced. Each film thickness was measured with a stylus film thickness meter (DEKTAK, manufactured by Bruker).
 さらに、この素子を酸素および水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと成膜基板(素子)とを、ビスフェノールF型エポキシ樹脂(ナガセケムテックス社製)を用いて行った。 Furthermore, this device was sealed in a nitrogen atmosphere glove box with an oxygen and moisture concentration of 1 ppm or less. Sealing was performed by using a bisphenol F-type epoxy resin (manufactured by Nagase ChemteX Corporation) between the glass sealing cap and the film formation substrate (element).
 上記のようにして作製した有機電界発光素子に直流電流を印加し、電流密度10mA/cmを流した時の駆動電圧(V)、電流効率を測定した。なお、駆動電圧及び電流効率は、後述の素子比較例-1における結果を基準値(100)とした相対値である。得られた測定結果を表1に示す。
(素子実施例-2~10)
 素子実施例-1において、化合物E1の代わりに化合物E2~E10をそれぞれ用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
(素子比較例-1~3)
 素子実施例-1において、化合物E1の代わりにETL-1~ETL-3をそれぞれ用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
A direct current was applied to the organic electroluminescence device produced as described above, and the driving voltage (V) and the current efficiency were measured when a current density of 10 mA/cm 2 was passed. The driving voltage and the current efficiency are relative values with the result of Device Comparative Example-1 described later as a reference value (100). Table 1 shows the measurement results obtained.
(Element Examples-2 to 10)
An organic electroluminescence device was produced and evaluated in the same manner as in Device Example-1, except that Compounds E2 to E10 were used in place of Compound E1 in Device Example-1. Table 1 shows the measurement results obtained.
(Comparative element examples -1 to 3)
An organic electroluminescence device was produced and evaluated in the same manner as in Device Example-1, except that ETL-1 to ETL-3 were used in place of Compound E1 in Device Example-1. Table 1 shows the measurement results obtained.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2021年5月19日に出願された日本国特許出願2021-084236号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 In addition, the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2021-084236 filed on May 19, 2021 are cited here as disclosure of the specification of the present invention. , is to be incorporated.
 本発明の化合物は有機電界発光素子等に使用できる。 The compound of the present invention can be used for organic electroluminescence devices and the like.
100   有機電界発光素子
  1   基板
  2   陽極
  3   正孔注入層
  4   正孔輸送層
  5   発光層
  6   電子輸送層
  7   電子注入層
  8   陰極
101   基板
102   陽極
103   正孔注入層
1051  第一正孔輸送層
1052  第二正孔輸送層
106   発光層
1071  第一電子輸送層
1072  第二電子輸送層
108   陰極
REFERENCE SIGNS LIST 100 Organic Electroluminescent Element 1 Substrate 2 Anode 3 Hole Injection Layer 4 Hole Transport Layer 5 Light Emitting Layer 6 Electron Transport Layer 7 Electron Injection Layer 8 Cathode 101 Substrate 102 Anode 103 Hole Injection Layer 1051 First Hole Transport Layer 1052 Second Two hole-transporting layers 106 Light-emitting layer 1071 First electron-transporting layer 1072 Second electron-transporting layer 108 Cathode

Claims (5)

  1.  式(1)で表されるピリミジン化合物:
    Figure JPOXMLDOC01-appb-C000001
    式中、
     X及びXは、いずれか一方が窒素原子であり、他方はC-Hである;
     Ar及びArは、各々独立に、
      フェニル基、ビフェニリル基、又は、ナフチル基を表す;
     Ar及びArは、各々独立に、
      炭素数6~20のアリール基、又は、
      炭素数4~20のヘテロアリール基を表す;
     L及びLは、各々独立に、
      直接結合、フェニレン、ピリジレン、又は、ナフチレンを表す;
     環Aは、
      フェニル基、ピリジル基、ナフチル基、炭素数1~10のアルキル基、及びCN基からなる群よりなる1つ以上の置換基を有していてもよいピリジンであり、かつ、
      Ar及びLは、各々ピリジン環の隣接する2つの炭素原子と結合している;
     nは1又は2である;
     nが2のとき、2つのLは互いに同一又は相異なっていてもよい。
    A pyrimidine compound represented by formula (1):
    Figure JPOXMLDOC01-appb-C000001
    During the ceremony,
    one of X 1 and X 2 is a nitrogen atom and the other is C—H;
    Ar 1 and Ar 2 are each independently
    represents a phenyl group, a biphenylyl group, or a naphthyl group;
    Ar 3 and Ar 4 are each independently
    an aryl group having 6 to 20 carbon atoms, or
    represents a heteroaryl group having 4 to 20 carbon atoms;
    L 1 and L 2 are each independently
    represents a direct bond, phenylene, pyridylene or naphthylene;
    Ring A is
    pyridine optionally having one or more substituents selected from the group consisting of a phenyl group, a pyridyl group, a naphthyl group, an alkyl group having 1 to 10 carbon atoms, and a CN group, and
    Ar 3 and L 1 are each attached to two adjacent carbon atoms of the pyridine ring;
    n is 1 or 2;
    When n is 2 , two L1's may be the same or different.
  2.  ArとArが同一である請求項1に記載のピリミジン化合物。 2. The pyrimidine compound of claim 1, wherein Ar 1 and Ar 2 are the same.
  3.  Ar及びArの少なくとも一方が4-ビフェニリル基である請求項1に記載のピリミジン化合物。 2. The pyrimidine compound according to claim 1, wherein at least one of Ar 1 and Ar 2 is a 4-biphenylyl group.
  4.  式(E1)~(E10)で表される、請求項1に記載のピリミジン化合物。
    Figure JPOXMLDOC01-appb-C000002
    The pyrimidine compound according to claim 1, represented by formulas (E1) to (E10).
    Figure JPOXMLDOC01-appb-C000002
  5.  陽極と、
     陰極と、
     少なくとも発光層を含む1以上の有機薄膜層と、を備え、
     前記有機薄膜層の少なくとも1層が、請求項1~4のいずれか1項に記載のピリミジン化合物を含有する有機電界発光素子。
    an anode;
    a cathode;
    and one or more organic thin film layers including at least a light-emitting layer,
    An organic electroluminescence device, wherein at least one of the organic thin film layers contains the pyrimidine compound according to any one of claims 1 to 4.
PCT/JP2022/020179 2021-05-19 2022-05-13 Pyrimidine compound, material for organic electroluminescent element, and organic electroluminescent element WO2022244689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-084236 2021-05-19
JP2021084236 2021-05-19

Publications (1)

Publication Number Publication Date
WO2022244689A1 true WO2022244689A1 (en) 2022-11-24

Family

ID=84140431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020179 WO2022244689A1 (en) 2021-05-19 2022-05-13 Pyrimidine compound, material for organic electroluminescent element, and organic electroluminescent element

Country Status (2)

Country Link
JP (1) JP2022179374A (en)
WO (1) WO2022244689A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098043A1 (en) * 2012-12-17 2014-06-26 東ソー株式会社 Pyrimidine compound, and organic electroluminescent element containing same
US20140367656A1 (en) * 2013-06-12 2014-12-18 Samsung Display Co., Ltd. Organic light-emitting diode
KR20170058625A (en) * 2015-11-19 2017-05-29 주식회사 랩토 pyrimidine derivatives substituted with aryl- or heteroaryl-substituted phenyl group, and organic electroluminescent device including the same
WO2017179809A1 (en) * 2016-04-11 2017-10-19 주식회사 두산 Organic light-emitting compound and organic electroluminescent element using same
JP2020164503A (en) * 2019-03-27 2020-10-08 東ソー株式会社 Triazine compound having ortho structure
JP2021070682A (en) * 2019-10-24 2021-05-06 東ソー株式会社 Triazine compound having pyridyl group
JP2021155378A (en) * 2020-03-30 2021-10-07 東ソー株式会社 Triazine compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098043A1 (en) * 2012-12-17 2014-06-26 東ソー株式会社 Pyrimidine compound, and organic electroluminescent element containing same
US20140367656A1 (en) * 2013-06-12 2014-12-18 Samsung Display Co., Ltd. Organic light-emitting diode
KR20170058625A (en) * 2015-11-19 2017-05-29 주식회사 랩토 pyrimidine derivatives substituted with aryl- or heteroaryl-substituted phenyl group, and organic electroluminescent device including the same
WO2017179809A1 (en) * 2016-04-11 2017-10-19 주식회사 두산 Organic light-emitting compound and organic electroluminescent element using same
JP2020164503A (en) * 2019-03-27 2020-10-08 東ソー株式会社 Triazine compound having ortho structure
JP2021070682A (en) * 2019-10-24 2021-05-06 東ソー株式会社 Triazine compound having pyridyl group
JP2021155378A (en) * 2020-03-30 2021-10-07 東ソー株式会社 Triazine compound

Also Published As

Publication number Publication date
JP2022179374A (en) 2022-12-02

Similar Documents

Publication Publication Date Title
US9997726B2 (en) Dibenzothiophene-containing materials in phosphorescent light emitting diodes
KR102213030B1 (en) Novel boron compounds and Organic light emitting diode including the same
US11937495B2 (en) Organic light emitting element, composition and membrane
US8013330B2 (en) Compound for organic electroluminescent device and organic electroluminescent device
US10014480B2 (en) Heterocyclic compounds and organic electroluminescent devices using the same
WO2011105161A1 (en) Organic electroluminescent element
KR101092006B1 (en) Anthracene derivatives and organic light-emitting diode including the same
US11251378B2 (en) Organic light-emitting diode having alleviated luminance reduction in low dynamic range
US10483467B2 (en) Organic light emitting diode
JP2010523648A (en) Material for organic photoelectric device including hole transport unit and electron transport unit, and organic photoelectric device including the same
US20110140044A1 (en) Organosulfur compound, process for producing the same, and organic electroluminescence element using the same
JP7181397B2 (en) Novel boron compound and organic light-emitting device containing the same
JP7308695B2 (en) Bisazine compound
KR101233375B1 (en) Novel compound for organic photoelectric device and organic photoelectric device including the same
JP2020164503A (en) Triazine compound having ortho structure
JP7361564B2 (en) Triazine compounds containing Group 14 elements
WO2022244689A1 (en) Pyrimidine compound, material for organic electroluminescent element, and organic electroluminescent element
JP7450432B2 (en) triazine compounds
KR102149449B1 (en) Novel organic compounds for organic light-emitting diode and organic light-emitting diode including the same
JPWO2004096743A1 (en) Organic electroluminescence device
WO2012005342A1 (en) Novel organic compound and organic light-emitting device including the same
WO2022131135A1 (en) Pyrimidine compound and organic electroluminescent element
WO2023090404A1 (en) Condensed ring fluorene compound, material for organic electroluminescent element, and organic electroluminescent element
JP2018115151A (en) Triazine compound having benzimidazole group
KR20190139492A (en) organic light-emitting diode with High efficiency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE