WO2023090404A1 - Condensed ring fluorene compound, material for organic electroluminescent element, and organic electroluminescent element - Google Patents

Condensed ring fluorene compound, material for organic electroluminescent element, and organic electroluminescent element Download PDF

Info

Publication number
WO2023090404A1
WO2023090404A1 PCT/JP2022/042770 JP2022042770W WO2023090404A1 WO 2023090404 A1 WO2023090404 A1 WO 2023090404A1 JP 2022042770 W JP2022042770 W JP 2022042770W WO 2023090404 A1 WO2023090404 A1 WO 2023090404A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
layer
carbon atoms
formula
Prior art date
Application number
PCT/JP2022/042770
Other languages
French (fr)
Japanese (ja)
Inventor
内田直樹
上原史成
尾池華奈
高橋泰裕
野村真太朗
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2023090404A1 publication Critical patent/WO2023090404A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/72Spiro hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the present invention relates to a condensed ring fluorene compound, a material for an organic electroluminescence device containing the condensed ring fluorene compound, and an organic electroluminescence device.
  • Patent Documents 1 and 2 disclose fluorene compounds, which are materials for organic electroluminescent devices.
  • one aspect of the present invention is directed to providing a new condensed ring fluorene compound that contributes to the formation of an organic electroluminescent device capable of reducing the driving voltage.
  • Still another aspect of the present invention is directed to providing an organic electroluminescence device with reduced driving voltage.
  • Ring A represents a fluoranthene ring represented by formula (A-1) or an optionally substituted benzofluoranthene ring;
  • R 1 , R 2 and R′ are each independently an optionally substituted alkyl group having 1 to 10 carbon atoms, or (i) an aromatic hydrocarbon group having 6 to 60 carbon atoms, which may be optionally substituted, which is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked; (ii) a heteroaromatic group having 3 to 60 carbon atoms, or (iii) an arylamino group having 6 to 60 carbon atoms, or (iv) a group composed of a combination of any two or more selected from the above (i) to (iii); *1 represents a condensation site; n is an integer from 0 to 6; When R 1 and R 2 are an alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 60 carbon atoms, R 1 and R 2 may be linked together to form a ring; However, when ring A is formula (A-1), R 1 and R 2 are not
  • Ring B is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked, which may be optionally substituted (i) an aromatic hydrocarbon having 6 to 20 carbon atoms base, or (ii) represents a heteroaromatic group having 3 to 20 carbon atoms; [2] The fused ring fluorene compound according to [1], wherein ring A is formula (A-1) or (A-2).
  • an organic electroluminescence device it is possible to provide a material for an organic electroluminescence device and an electron transport material for an organic electroluminescence device containing the fused ring fluorene compound. Furthermore, according to still another aspect of the present invention, it is possible to provide an organic electroluminescence device with reduced driving voltage.
  • FIG. 1 is a schematic cross-sectional view showing an example of a layered structure of an organic electroluminescence element according to one aspect of the present disclosure
  • FIG. FIG. 4 is a schematic cross-sectional view showing another example of the layered structure of the organic electroluminescence element according to one aspect of the present disclosure (structure of Element Example-1).
  • a fused ring fluorene compound according to one aspect of the present invention is a fused ring fluorene compound represented by formula (1).
  • Ring A represents a fluoranthene ring represented by formula (A-1) or an optionally substituted benzofluoranthene ring;
  • R 1 , R 2 and R′ are each independently an optionally substituted alkyl group having 1 to 10 carbon atoms, or (i) an aromatic hydrocarbon group having 6 to 60 carbon atoms, which may be optionally substituted, which is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked; (ii) a heteroaromatic group having 3 to 60 carbon atoms; (iii) an arylamino group having 6 to 60 carbon atoms, or (iv) represents a group composed of any combination of two or more selected from the above (i) to (iii); *1 represents a condensation site; n is an integer from 0 to 6; When R 1 and R 2 are an alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 60 carbon atoms, R 1 and R 2 may be linked together to form a ring; However, when ring A is formula (A-1), R 1 and R 2 are not methyl
  • Ring B is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked, which may be optionally substituted (i) an aromatic hydrocarbon having 6 to 20 carbon atoms base, or (ii) represents a heteroaromatic group having 3 to 20 carbon atoms; [About ring A] Ring A represents a fluoranthene ring represented by formula (A-1) or an optionally substituted benzofluoranthene ring.
  • a benzofluoranthene ring which is one embodiment of ring A, is preferably represented by formula (A-2).
  • ring A is represented by formula (A-2).
  • R 1 , R 2 and R′ are each independently an optionally substituted alkyl group having 1 to 10 carbon atoms, or (i) an aromatic hydrocarbon group having 6 to 60 carbon atoms, which may be optionally substituted, which is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked; (ii) a heteroaromatic group having 3 to 60 carbon atoms, or (iii) an arylamino group having 6 to 60 carbon atoms, or (iv) a group composed of any combination of two or more selected from (i) to (iii) above.
  • R 1 and R 2 are not methyl groups.
  • alkyl groups having 1 to 10 carbon atoms are a methyl group, an ethyl group, or optionally branched or cyclized, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, adamantyl group and the like.
  • aryl group having 6 to 60 carbon atoms include a phenyl group, naphthyl group, phenanthryl group, anthonyl group, pyrenyl group, perylenyl group, fluorenyl group, dimethylfluorenyl group, diphenylfluorenyl group, triphenylenyl group, fluoranthenyl group, benzofluoranthenyl group, chrysenyl group, dibenzochrysenyl group, dinaphthochrysenyl group and the like.
  • heteroaryl groups having 3 to 60 carbon atoms include pyridyl group, pyrimidyl group, pyrazyl group, triazinyl group, quinolyl group, isoquinolyl group, nadityridinyl group, acridinyl group, phenanthrolinyl group and phenanthridinyl group.
  • pyrrolyl group indolyl group, indolidinyl group, carbazolyl group, carbolinyl group, benzocarbazolyl group, benzocarbolinyl group, furanyl group, benzofuranyl group, dibenzofuranyl group, xanthenyl group, spiroxanthenyl group, benzoxanthenyl group group, thienyl group, benzothienyl group, dibenzothienyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group and the like.
  • arylamino group having 6 to 60 carbon atoms include phenylamino group, diphenylamino group, biphenylylamino group, dibiphenylylamino group, naphthylamino group, dinaphthylamino group and the like.
  • R 1 and R 2 are an alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 60 carbon atoms
  • R 1 and R 2 may be linked together to form a ring.
  • R 1 and R 2 are preferably a phenyl group, a fluoranthenyl group, a benzofluoranthenyl group and a triazinylphenyl group.
  • Ring B is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked, which may be optionally substituted (i) an aromatic hydrocarbon having 6 to 20 carbon atoms base, or (ii) represents a heteroaromatic group having 3 to 20 carbon atoms;
  • aromatic hydrocarbon groups having 6 to 20 carbon atoms include phenyl, naphthyl, phenanthryl, anthnyl, pyrenyl, perylenyl, fluorenyl, dimethylfluorenyl, diphenylfluorenyl, triphenylenyl group, fluoranthenyl group and the like.
  • heteroaromatic groups having 3 to 20 carbon atoms include pyridyl, pyrimidyl, pyrazyl, triazinyl, quinolyl, isoquinolyl, nadityridinyl, acridinyl, phenanthrolinyl, and phenanthridinyl.
  • pyrrolyl group indolyl group, indolizinyl group, carbazolyl group, carbolinyl group, benzocarbazolyl group, benzocarbolinyl group, furanyl group, benzofuranyl group, dibenzofuranyl group, xanthenyl group, spiroxanthenyl group, benzoxane a thenyl group, a thienyl group, a benzothienyl group, a dibenzothienyl group, an oxazolyl group, a benzoxazolyl group, a thiazolyl group, a benzothiazolyl group and the like.
  • Ring B is preferably a phenyl group, a naphthyl group, a pyridyl group, a quinolyl group, or an isoquinolyl group.
  • R'' is the same or different in each occurrence and is composed of the group consisting of an alkyl group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, and a heteroaromatic group having 3 to 60 carbon atoms. be done.
  • the condensed fluorene compound can be used, for example, for organic electronic devices such as organic electroluminescence devices and photoelectric devices.
  • organic electronic devices such as organic electroluminescence devices and photoelectric devices.
  • a material for an organic electroluminescence device according to one aspect of the present invention contains a condensed ring fluorene compound.
  • a condensed fluorene compound can be used, for example, as an electron transport material for an organic electroluminescence device.
  • the structural reasons why the condensed ring fluorene compound according to one aspect of the present invention exhibits a low driving voltage as, for example, an electron-transporting material for an organic electroluminescence device are presumed to be as follows. ⁇ Structural reasons for low drive voltage>
  • 9H-fluorene two substituents can be introduced at the 9-position of the structure so as to be perpendicular to the plane of the fluorene ring.
  • a 9,9-disubstituted fluorene ring in which a substituent is introduced at the 9-position inhibits its own ⁇ -stack and suppresses intermolecular interaction, thereby making it possible to improve the efficiency of organic electroluminescence devices.
  • fluorene compounds having a fluoranthene skeleton formed by the condensation of a naphthalene ring and a fluorene ring have been reported. It is a thing. These structures have inappropriate energy levels (HOMO or LUMO levels) involved in charge transport, and are disadvantageous for charge transport from or to adjacent layers.
  • the condensed fluorene compound which is one embodiment of the present application, has a structure condensed with fluoranthene at positions 7 and 8 or with benzofluoranthene.
  • fluoranthene at positions 7 and 8 or with benzofluoranthene.
  • Organic electroluminescent device An organic electroluminescence device (hereinafter sometimes simply referred to as an organic electroluminescence device) according to one aspect of the present invention will be described below.
  • An organic electroluminescent device contains a condensed ring fluorene compound.
  • the configuration of the organic electroluminescent element is not particularly limited, but includes, for example, the configurations (i) to (vii) shown below.
  • the pyrimidine compound is preferably contained in one or more layers selected from the group consisting of a light-emitting layer, an electron-transporting layer, and an electron-injecting layer.
  • the organic electroluminescent device shown in FIG. 1 has a so-called bottom emission type device configuration, but the organic electroluminescent device according to one aspect of the present invention is not limited to the bottom emission type device configuration. do not have. That is, the organic electroluminescence device according to one aspect of the present invention may have other known device configurations such as top emission type.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated structure of an organic electroluminescence device according to one aspect of the present invention.
  • the organic electroluminescent device 100 includes a substrate 1, an anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer 7, and a cathode 8 in this order.
  • some of these layers may be omitted, or conversely, other layers may be added.
  • a hole-blocking layer may be provided between the light-emitting layer 5 and the electron-transporting layer 6, the hole-injecting layer 3 may be omitted, and the hole-transporting layer 4 may be provided directly on the anode 2. good too.
  • a single layer having the functions of a plurality of layers such as an electron injection/transport layer having both the function of an electron injection layer and the function of an electron transport layer in a single layer. It may be a configuration provided instead of.
  • the single-layer hole transport layer 4 and the single-layer electron transport layer 6 may each consist of a plurality of layers.
  • the organic electroluminescent device 100 contains the condensed ring fluorene compound in one or more layers selected from the group consisting of the light-emitting layer 5, the electron transport layer 6 and the electron injection layer .
  • the electron transport layer 6 preferably contains a condensed fluorene compound. Note that the condensed fluorene compound may be contained in a plurality of layers included in the organic electroluminescence device.
  • the substrate 1 is not particularly limited, and substrates that can be used in ordinary organic electroluminescence devices can be used. For example, a glass plate, a quartz plate, a plastic plate and the like can be used.
  • An anode 2 is provided on the substrate 1 (on the hole injection layer 3 side).
  • the material for the anode compounds that can be used in ordinary organic electroluminescence devices can be used. Examples include metals, alloys, electrically conductive compounds, and mixtures thereof with a large work function (eg, 4 eV or more). Specific examples of materials for the anode include metals such as Au; conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO. [Hole injection layer 3, hole transport layer 4] A hole injection layer 3 and a hole transport layer 4 are provided in this order from the anode 2 side between the anode 2 and a light emitting layer 5 to be described later.
  • the material for the hole injection layer and the hole transport layer has at least one of hole injection, hole transport, and electron barrier properties.
  • Materials for the hole injection layer and the hole transport layer may be either organic or inorganic, and compounds that can be used in ordinary organic electroluminescence devices can be used.
  • the hole injection layer and hole transport layer may have a single structure composed of one or more materials, or may have a laminated structure composed of multiple layers of the same composition or different compositions.
  • the hole-transporting layer 4 may have a laminated structure of two or more layers, and is provided in this order from the anode 2 side with a first hole-transporting layer 41 and a second hole-transporting layer 42 .
  • the transport layer 42 can be used as an electron blocking layer in the configuration (vi) above.
  • a light-emitting layer 5 is provided between the hole-transporting layer 4 and an electron-transporting layer 6, which will be described later.
  • light-emitting materials that can be used in ordinary organic electroluminescent devices can be used. Examples thereof include phosphorescent materials, fluorescent materials, and heat-activated delayed fluorescent materials.
  • the light emitting layer may consist of a single small molecule material or a single polymer material, but more commonly consists of a host material doped with a guest compound. Emission comes primarily from dopants and can have any color.
  • the luminescent material is not limited to being contained only in the luminescent layer.
  • the light-emitting material may be contained in a layer adjacent to the light-emitting layer (hole-transporting layer 4 or electron-transporting layer 6). This can further increase the luminous efficiency of the organic electroluminescence device.
  • the light-emitting layer may have a single-layer structure composed of one or more materials, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions.
  • An electron transport layer 6 is provided between the light emitting layer 5 and an electron injection layer 7 which will be described later.
  • the electron transport layer preferably contains a condensed fluorene compound.
  • the electron transport layer may further contain one or more selected from conventionally known electron transport materials.
  • one or more selected from conventionally known electron-transporting materials can be used as the electron-transporting material constituting the electron-transporting layer. can.
  • Alkali metal complexes, alkaline earth metal complexes, and earth metal complexes include, for example, 8-hydroxyquinolinatolithium (Liq), bis(8-hydroxyquinolinato)zinc, and bis(8-hydroxyquinolinato)copper.
  • bis(8-hydroxyquinolinato)manganese tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis (10-hydroxybenzo[h]quinolinate) beryllium, bis(10-hydroxybenzo[h]quinolinate)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinate)(o -cresolato)gallium, bis(2-methyl-8-quinolinato)-1-naphtholatoaluminum, bis(2-methyl-8-quinolinato)-2-naphtholatogallium, and the like.
  • the electron-transporting layer may have a single-layer structure composed of one or more materials, or may have a laminated structure composed of multiple layers having the same composition or different compositions.
  • An electron injection layer may be provided in the organic electroluminescence device according to this aspect for the purpose of improving electron injection properties and improving device characteristics (e.g., luminous efficiency, low voltage drive, or high durability).
  • the electron transport layer 6 may have a laminated structure of two or more layers, and is provided in the order of a first electron transport layer 61 and a second electron transport layer 62 from the light emitting layer 5 side. can be used as the hole blocking layer in the configuration (vi) above.
  • the fused ring fluorene compound according to one aspect of the present invention can be used in both or either one of the first electron-transporting layer and the second electron-transporting layer.
  • An electron injection layer 7 is provided between the electron transport layer 6 and a cathode 8 which will be described later.
  • compounds that can be used in ordinary organic electroluminescent devices can be used.
  • examples thereof include organic compounds such as fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, and anthrone.
  • Materials for the electron injection layer include various oxides and fluorides such as SiO 2 , AlO, SiN, SiON, AlON, GeO, LiO, LiON, TiO, TiON, TaO, TaON, TaN, LiF, C, and Yb. , nitrides, and oxynitrides. Fused ring fluorene compounds of the present invention can also be used.
  • Cathode 8 A cathode 8 is provided on the electron injection layer 7 .
  • a metal with a small work function is, for example, a metal of 4 eV or less.
  • a mixture of an electron-injecting metal and a second metal that has a higher work function and is more stable such as magnesium/silver mixture, magnesium/aluminum mixture, magnesium/indium mixture, aluminum/aluminum oxide (Al 2 O 3 ) mixtures, lithium/aluminum mixtures, etc. are preferred.
  • Each layer except for the electrodes (anode, cathode) described above is formed by thinning by a known method such as a vacuum deposition method, a spin coating method, a casting method, or a LB (Langmuir-Blodgett method) method. be able to.
  • the material for each layer may be used alone, or if necessary, it may be used together with a material such as a binder resin and a solvent.
  • the film thickness of each layer thus formed is not particularly limited and can be appropriately selected depending on the situation, but is usually in the range of 5 nm to 5 ⁇ m.
  • the anode and cathode can be formed by thinning the electrode material by a method such as vapor deposition or sputtering.
  • a pattern may be formed through a mask of a desired shape during vapor deposition or sputtering, or a pattern of a desired shape may be formed by photolithography after forming a thin film by vapor deposition, sputtering, or the like.
  • the film thickness of the anode and cathode is preferably 1 ⁇ m or less, more preferably 10 nm or more and 200 nm or less.
  • the layer containing the condensed ring fluorene compound may be formed in combination with the conventionally known electron-transporting material. Therefore, for example, a condensed ring fluorene compound and a conventionally known electron-transporting material may be co-deposited, or a layer of a conventionally known electron-transporting material may be laminated on a layer of a condensed ring fluorene compound.
  • the organic electroluminescence element may be used as a kind of lamp for illumination or as a light source for exposure, a projection device for projecting an image onto a screen or the like, or a display for directly viewing a still image or a moving image. You may use it as a device (display).
  • the driving method may be a simple matrix (passive matrix) method or an active matrix method. Further, by using two or more kinds of organic electroluminescent elements having different emission colors, it is possible to produce a full-color display device.
  • the glass transition temperature, crystallization temperature, and melting point were measured using DSC7020 (manufactured by Hitachi High-Tech Science, product name).
  • the DSC measurement conditions are as follows. In addition, the measurement was performed in a nitrogen atmosphere (flow rate of 50 mL/min). First heating, first cooling, and second heating were performed in this order, and the glass transition temperature, crystallization temperature, and melting point during the second heating were taken as the glass transition temperature, crystallization temperature, and melting point of the sample, respectively.
  • Synthesis Example-3 (Synthesis of E6) Further, the condensed fluorene compounds used in the following experimental examples were synthesized by the same method as the production method shown in Synthetic Example-1. No glass transition point was detected.
  • Device example-1 (see Fig. 2) (Preparation of substrate 101 and anode 102)
  • a substrate having an anode on its surface a glass substrate with an ITO transparent electrode, in which an indium-tin oxide (ITO) film (thickness: 110 nm) with a width of 2 mm was patterned in stripes, was prepared. Then, after washing the substrate with isopropyl alcohol, the surface was treated by ozone ultraviolet washing. (Preparation for vacuum deposition) Each layer was vacuum-deposited on the surface-treated substrate after cleaning by a vacuum deposition method to laminate each layer.
  • ITO indium-tin oxide
  • each layer was produced in the following order according to the film forming conditions of each layer.
  • hole injection layer 103 A hole injection layer 103 was produced by forming a film of 10 nm from sublimation-purified HTL and NDP-9 at a rate of 0.15 nm/sec.
  • first hole transport layer 1051 A first hole transport layer 1051 was produced by forming a film of HTL purified by sublimation to a thickness of 85 nm at a rate of 0.15 nm/sec.
  • Second hole transport layer 1052 Sublimation-purified EBL-1 was deposited at a rate of 0.15 nm/second to a thickness of 5 nm to form a second hole transport layer 1052 .
  • Second hole transport layer 106 Sublimation-purified BH-1 and BD-1 were deposited at a ratio of 95:5 (mass ratio) to form a film having a thickness of 20 nm to prepare a light-emitting layer 106 .
  • the deposition rate was 0.18 nm/sec.
  • first electron transport layer 1071 Sublimation-purified HBL-1 was deposited at a rate of 0.05 nm/second to a thickness of 6 nm to prepare a first electron transport layer 1071 .
  • second electron transport layer 1072 Compound E1 and Liq were deposited at a ratio of 50:50 (mass ratio) to a thickness of 25 nm to form a second electron transport layer 1072 .
  • the deposition rate was 0.15 nm/sec.
  • cathode 108 Finally, a metal mask was placed perpendicular to the ITO stripes on the substrate, and a cathode 108 was formed.
  • ytterbium, silver/magnesium (mass ratio 9/1) and silver were deposited in this order to thicknesses of 2 nm, 12 nm and 90 nm, respectively, to form a three-layer structure.
  • the deposition rate of ytterbium was 0.02 nm/second
  • the deposition rate of silver/magnesium was 0.5 nm/second
  • the deposition rate of silver was 0.2 nm/second.
  • an organic electroluminescence device 100 having a light emitting area of 4 mm 2 as shown in FIG. 2 was produced.
  • Each film thickness was measured with a stylus film thickness meter (DEKTAK, manufactured by Bruker).
  • this device was sealed in a nitrogen atmosphere glove box with an oxygen and moisture concentration of 1 ppm or less. Sealing was performed by using a bisphenol F type epoxy resin (manufactured by Nagase ChemteX Corporation) between the glass sealing cap and the film formation substrate (element).
  • a bisphenol F type epoxy resin manufactured by Nagase ChemteX Corporation
  • Device example-2 An organic electroluminescence device was produced and evaluated in the same manner as in Device Example-1 except that E2 was used in place of Compound E1 in Device Example-1. Table 1 shows the measurement results obtained.
  • Device Example-3 An organic electroluminescence device was produced and evaluated in the same manner as in Device Example-1 except that E6 was used in place of Compound E1 in Device Example-1. Table 1 shows the measurement results obtained.
  • Device Example-4 An organic electroluminescence device was produced and evaluated in the same manner as in Device Example-1 except that E24 was used in place of Compound E1 in Device Example-1. Table 1 shows the measurement results obtained.
  • Device Example-5 An organic electroluminescence device was produced and evaluated in the same manner as in Device Example-1, except that E26 was used in place of Compound E1 in Device Example-1. Table 1 shows the measurement results obtained.
  • Device comparison example-1 An organic electroluminescence device was fabricated and evaluated in the same manner as in Device Example-1, except that ETL-1 was used in place of Compound E1 in Device Example-1. Table 1 shows the measurement results obtained.

Abstract

Provided are: a novel condensed ring fluorene compound that facilitates the production of an organic electroluminescent element in which driving the voltage can be reduced; a material for an organic electroluminescent element, the material containing said condensed ring fluorene compound; and an organic electroluminescent element. The present invention provides: a condensed ring fluorene compound having a specific structure represented by formula (1); a material for an organic electroluminescent element, the material containing said condensed ring fluorene compound; and an organic electroluminescent element.

Description

縮環フルオレン化合物、有機電界発光素子用材料および有機電界発光素子Fused ring fluorene compound, material for organic electroluminescence device, and organic electroluminescence device
 本発明は、縮環フルオレン化合物、縮環フルオレン化合物を含む有機電界発光素子用材料および有機電界発光素子に関する。 The present invention relates to a condensed ring fluorene compound, a material for an organic electroluminescence device containing the condensed ring fluorene compound, and an organic electroluminescence device.
 有機電界発光素子は、小型モバイル用途を中心に実用化が始まっている。しかしながら、更なる用途拡大には性能向上が必須であり、高電流効率、低駆動電圧、高い発光効率特性、長寿命特性を有する材料が求められている。特許文献1~2は、有機電界発光素子用の材料である、フルオレン化合物を開示している。 Practical use of organic electroluminescent elements has begun, mainly for small mobile applications. However, performance improvement is essential for further expansion of applications, and materials with high current efficiency, low driving voltage, high luminous efficiency characteristics, and long life characteristics are required. Patent Documents 1 and 2 disclose fluorene compounds, which are materials for organic electroluminescent devices.
日本国特開2011-530802公報Japanese Patent Application Publication No. 2011-530802 国際公開特許2017/047993号パンフレットInternational Publication 2017/047993 Pamphlet
 しかしながら、特許文献1~2にかかるフルオレン化合物は駆動電圧特性を十分に満たしているとはいえない。 However, it cannot be said that the fluorene compounds according to Patent Documents 1 and 2 sufficiently satisfy the driving voltage characteristics.
 そこで、本発明の一態様は、新たな縮環フルオレン化合物であって、駆動電圧を低減し得る有機電界発光素子の形成に資する、新たな縮環フルオレン化合物を提供することに向けられている。 Therefore, one aspect of the present invention is directed to providing a new condensed ring fluorene compound that contributes to the formation of an organic electroluminescent device capable of reducing the driving voltage.
 さらに、本発明のさらに他の態様は、駆動電圧が低減された有機電界発光素子を提供することに向けられている。 Furthermore, still another aspect of the present invention is directed to providing an organic electroluminescence device with reduced driving voltage.
 すなわち、本発明は以下の[1]乃至[5]に存する。
[1] 式(1)で表される縮環フルオレン化合物。
That is, the present invention resides in the following [1] to [5].
[1] A condensed fluorene compound represented by formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、
環Aは式(A-1)で表されるフルオランテン環、または置換されていてもよいベンゾフルオランテン環を表す;
In formula (1),
Ring A represents a fluoranthene ring represented by formula (A-1) or an optionally substituted benzofluoranthene ring;
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
、Rおよび及びR’は、各々独立して、
置換されてもよい炭素数1~10のアルキル基、または、
連結していてもよい単環、連結していてもよい縮環、あるいはこれらが連結した構造である、置換されていてもよい
 (i)炭素数6~60の芳香族炭化水素基、
 (ii)炭素数3~60のヘテロ芳香族基、または、
 (iii)炭素数6~60のアリールアミノ基、または
 (iv)前記(i)~(iii)から選ばれる任意の2以上の組み合わせで構成される基を表す;
*1は縮合部位を表す;
nは0~6の整数である;
 RとRが炭素数1~10のアルキル基、または炭素数6~60の芳香族炭化水素基であるとき、RとRは互いに連結して環を形成してもよい;
 ただし、環Aが式(A-1)であるとき、RおよびRはメチル基とならない。
R 1 , R 2 and R′ are each independently
an optionally substituted alkyl group having 1 to 10 carbon atoms, or
(i) an aromatic hydrocarbon group having 6 to 60 carbon atoms, which may be optionally substituted, which is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked;
(ii) a heteroaromatic group having 3 to 60 carbon atoms, or
(iii) an arylamino group having 6 to 60 carbon atoms, or (iv) a group composed of a combination of any two or more selected from the above (i) to (iii);
*1 represents a condensation site;
n is an integer from 0 to 6;
When R 1 and R 2 are an alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 60 carbon atoms, R 1 and R 2 may be linked together to form a ring;
However, when ring A is formula (A-1), R 1 and R 2 are not methyl groups.
 環Bは、連結していてもよい単環、連結していてもよい縮環、あるいはこれらが連結した構造である、置換されていてもよい
 (i)炭素数6~20の芳香族炭化水素基、または、
 (ii)炭素数3~20のヘテロ芳香族基を表す;
[2] 環Aが式(A-1)または(A-2)である[1]に記載の縮環フルオレン化合物。
Ring B is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked, which may be optionally substituted (i) an aromatic hydrocarbon having 6 to 20 carbon atoms base, or
(ii) represents a heteroaromatic group having 3 to 20 carbon atoms;
[2] The fused ring fluorene compound according to [1], wherein ring A is formula (A-1) or (A-2).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
式中、
R’及びnは、[1]と同義である;
mは0~4の整数である;
式(A-2)中、隣接する任意の2つの水素が縮合部位となる。
[3] 環Aが式(A-2)である[1]に記載の縮環フルオレン化合物。
[4] 式(1)で表される化合物が下記で表される、[1]に記載の縮環フルオレン化合物。
During the ceremony,
R' and n are as defined in [1];
m is an integer from 0 to 4;
In formula (A-2), any two adjacent hydrogens are condensation sites.
[3] The fused ring fluorene compound according to [1], wherein ring A is formula (A-2).
[4] The condensed ring fluorene compound according to [1], wherein the compound represented by formula (1) is represented below.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[5] 陽極と、
 陰極と、
 少なくとも発光層を含む1以上の有機薄膜層と、を備え、
 前記有機薄膜層の少なくとも1層が、[1]~[4]のいずれか1項に記載の縮環フルオレン化合物を含有する有機電界発光素子。
[5] an anode;
a cathode;
and one or more organic thin film layers including at least a light-emitting layer,
An organic electroluminescence device, wherein at least one of the organic thin film layers contains the condensed ring fluorene compound according to any one of [1] to [4].
 本発明の一態様によれば、駆動電圧を低減し得る有機電界発光素子の形成に資する、新たな縮環フルオレン化合物を提供することができる。 According to one aspect of the present invention, it is possible to provide a new condensed ring fluorene compound that contributes to the formation of an organic electroluminescent device capable of reducing driving voltage.
 また、本発明の他の態様によれば、上記縮環フルオレン化合物を含む有機電界発光素子用材料、および有機電界発光素子用電子輸送材料を提供することができる。さらに、本発明のさらに他の態様によれば、駆動電圧が低減された有機電界発光素子を提供することができる。 Further, according to another aspect of the present invention, it is possible to provide a material for an organic electroluminescence device and an electron transport material for an organic electroluminescence device containing the fused ring fluorene compound. Furthermore, according to still another aspect of the present invention, it is possible to provide an organic electroluminescence device with reduced driving voltage.
本開示の一態様にかかる有機エレクトロルミネッセンス素子の積層構成の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a layered structure of an organic electroluminescence element according to one aspect of the present disclosure; FIG. 本開示の一態様にかかる有機エレクトロルミネッセンス素子の他の積層構成の例(素子実施例-1の構成)を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing another example of the layered structure of the organic electroluminescence element according to one aspect of the present disclosure (structure of Element Example-1).
 以下、本発明の各態様について詳細に説明する。 Each aspect of the present invention will be described in detail below.
 本発明の一態様にかかる縮環フルオレン化合物は、式(1)で表される縮環フルオレン化合物である。 A fused ring fluorene compound according to one aspect of the present invention is a fused ring fluorene compound represented by formula (1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(1)中、
環Aは式(A-1)で表されるフルオランテン環、または置換されていてもよいベンゾフルオランテン環を表す;
In formula (1),
Ring A represents a fluoranthene ring represented by formula (A-1) or an optionally substituted benzofluoranthene ring;
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 R、Rおよび及びR’は、各々独立して、
置換されてもよい炭素数1~10のアルキル基、または、
連結していてもよい単環、連結していてもよい縮環、あるいはこれらが連結した構造である、置換されていてもよい
 (i)炭素数6~60の芳香族炭化水素基、
 (ii)炭素数3~60のヘテロ芳香族基、
 (iii)炭素数6~60のアリールアミノ基、または、
 (iv)前記(i)~(iii)から選ばれる任意の2以上の組み合わせで構成される基を表す;
*1は縮合部位を表す;
nは0~6の整数である;
 RとRが炭素数1~10のアルキル基、または炭素数6~60の芳香族炭化水素基であるとき、RとRは互いに連結して環を形成してもよい;
 ただし、環Aが式(A-1)であるとき、RおよびRはメチル基とならない。
R 1 , R 2 and R′ are each independently
an optionally substituted alkyl group having 1 to 10 carbon atoms, or
(i) an aromatic hydrocarbon group having 6 to 60 carbon atoms, which may be optionally substituted, which is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked;
(ii) a heteroaromatic group having 3 to 60 carbon atoms;
(iii) an arylamino group having 6 to 60 carbon atoms, or
(iv) represents a group composed of any combination of two or more selected from the above (i) to (iii);
*1 represents a condensation site;
n is an integer from 0 to 6;
When R 1 and R 2 are an alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 60 carbon atoms, R 1 and R 2 may be linked together to form a ring;
However, when ring A is formula (A-1), R 1 and R 2 are not methyl groups.
 環Bは、連結していてもよい単環、連結していてもよい縮環、あるいはこれらが連結した構造である、置換されていてもよい
 (i)炭素数6~20の芳香族炭化水素基、または、
 (ii)炭素数3~20のヘテロ芳香族基を表す;
[環Aについて]
 環Aは式(A-1)で表されるフルオランテン環、または置換されていてもよいベンゾフルオランテン環を表す。
Ring B is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked, which may be optionally substituted (i) an aromatic hydrocarbon having 6 to 20 carbon atoms base, or
(ii) represents a heteroaromatic group having 3 to 20 carbon atoms;
[About ring A]
Ring A represents a fluoranthene ring represented by formula (A-1) or an optionally substituted benzofluoranthene ring.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 環Aの一態様であるベンゾフルオランテン環は式(A-2)であることが好ましい。 A benzofluoranthene ring, which is one embodiment of ring A, is preferably represented by formula (A-2).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
式(A-2)中、隣接する任意の2つの水素が縮合部位となる。 In formula (A-2), any two adjacent hydrogens are condensation sites.
 環Aは式(A-2)であることが更に好ましい。
[R、R及びR’について]
 R、Rおよび及びR’は、各々独立して、
置換されてもよい炭素数1~10のアルキル基、または、
連結していてもよい単環、連結していてもよい縮環、あるいはこれらが連結した構造である、置換されていてもよい
 (i)炭素数6~60の芳香族炭化水素基、
 (ii)炭素数3~60のヘテロ芳香族基、または、
 (iii)炭素数6~60のアリールアミノ基、または
 (iv)前記(i)~(iii)から選ばれる任意の2以上の組み合わせで構成される基を表す。
More preferably, ring A is represented by formula (A-2).
[Regarding R 1 , R 2 and R′]
R 1 , R 2 and R′ are each independently
an optionally substituted alkyl group having 1 to 10 carbon atoms, or
(i) an aromatic hydrocarbon group having 6 to 60 carbon atoms, which may be optionally substituted, which is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked;
(ii) a heteroaromatic group having 3 to 60 carbon atoms, or
(iii) an arylamino group having 6 to 60 carbon atoms, or (iv) a group composed of any combination of two or more selected from (i) to (iii) above.
 ただし、前述の環Aが式(A-1)であるとき、R及びRはメチル基とならない。 However, when the aforementioned ring A has the formula (A-1), R 1 and R 2 are not methyl groups.
 炭素数1~10のアルキル基の具体例としては、
メチル基、エチル基、または分岐又は環化してもよい、
プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、アダマンチル基などが挙げられる。
Specific examples of alkyl groups having 1 to 10 carbon atoms are
a methyl group, an ethyl group, or optionally branched or cyclized,
propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, adamantyl group and the like.
 炭素数6~60のアリール基の具体例としては、フェニル基、ナフチル基、フェナントリル基、アントニル基、ピレニル基、ペリレニル基、フルオレニル基、ジメチルフルオレニル基、ジフェニルフルオレニル基、トリフェニレニル基、フルオランテニル基、ベンゾフルオランテニル基、クリセニル基、ジベンゾクリセニル基、ジナフトクリセニル基などが挙げられる。 Specific examples of the aryl group having 6 to 60 carbon atoms include a phenyl group, naphthyl group, phenanthryl group, anthonyl group, pyrenyl group, perylenyl group, fluorenyl group, dimethylfluorenyl group, diphenylfluorenyl group, triphenylenyl group, fluoranthenyl group, benzofluoranthenyl group, chrysenyl group, dibenzochrysenyl group, dinaphthochrysenyl group and the like.
 炭素数3~60のヘテロアリール基の具体例としては、ピリジル基、ピリミジル基、ピラジル基、トリアジニル基、キノリル基、イソキノリル基、ナジチリジニル基、アクリジニル基、フェナントロリニル基、フェナントリジニル基、ピロリル基、インドリル基、インドリジニル基、カルバゾリル基、カルボリニル基、ベンゾカルバゾリル基、ベンゾカルボリニル基、フラニル基、ベンゾフラニル基、ジベンゾフラニル基、キサンテニル基、スピロキサンテニル基、ベンゾキサンテニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、ベンゾチアザリル基などが挙げられる。 Specific examples of heteroaryl groups having 3 to 60 carbon atoms include pyridyl group, pyrimidyl group, pyrazyl group, triazinyl group, quinolyl group, isoquinolyl group, nadityridinyl group, acridinyl group, phenanthrolinyl group and phenanthridinyl group. , pyrrolyl group, indolyl group, indolidinyl group, carbazolyl group, carbolinyl group, benzocarbazolyl group, benzocarbolinyl group, furanyl group, benzofuranyl group, dibenzofuranyl group, xanthenyl group, spiroxanthenyl group, benzoxanthenyl group group, thienyl group, benzothienyl group, dibenzothienyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group and the like.
 炭素数6~60のアリールアミノ基の具体例としては、フェニルアミノ基、ジフェニルアミノ基、ビフェニリルアミノ基、ジビフェニリルアミノ基、ナフチルアミノ基、ジナフチルアミノ基等が挙げられる。 Specific examples of the arylamino group having 6 to 60 carbon atoms include phenylamino group, diphenylamino group, biphenylylamino group, dibiphenylylamino group, naphthylamino group, dinaphthylamino group and the like.
 RとRが炭素数1~10のアルキル基、または炭素数6~60の芳香族炭化水素基であるとき、RとRは互いに連結して環を形成してもよい。 When R 1 and R 2 are an alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 60 carbon atoms, R 1 and R 2 may be linked together to form a ring.
 R及びRは、フェニル基、フルオランテニル基、ベンゾフルオランテニル基、トリアジニルフェニル基が好ましい。
[環Bについて]
 環Bは、連結していてもよい単環、連結していてもよい縮環、あるいはこれらが連結した構造である、置換されていてもよい
 (i)炭素数6~20の芳香族炭化水素基、または、
 (ii)炭素数3~20のヘテロ芳香族基を表す。
R 1 and R 2 are preferably a phenyl group, a fluoranthenyl group, a benzofluoranthenyl group and a triazinylphenyl group.
[About ring B]
Ring B is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked, which may be optionally substituted (i) an aromatic hydrocarbon having 6 to 20 carbon atoms base, or
(ii) represents a heteroaromatic group having 3 to 20 carbon atoms;
 炭素数6~20の芳香族炭化水素基の具体例としては、フェニル基、ナフチル基、フェナントリル基、アントニル基、ピレニル基、ペリレニル基、フルオレニル基、ジメチルフルオレニル基、ジフェニルフルオレニル基、トリフェニレニル基、フルオランテニル基などが挙げられる。 Specific examples of aromatic hydrocarbon groups having 6 to 20 carbon atoms include phenyl, naphthyl, phenanthryl, anthnyl, pyrenyl, perylenyl, fluorenyl, dimethylfluorenyl, diphenylfluorenyl, triphenylenyl group, fluoranthenyl group and the like.
 炭素数3~20のヘテロ芳香族基の具体例としては、ピリジル基、ピリミジル基、ピラジル基、トリアジニル基、キノリル基、イソキノリル基、ナジチリジニル基、アクリジニル基、フェナントロリニル基、フェナントリジニル基、ピロリル基、インドリル基、インドリジニル基、カルバゾリル基、カルボリニル基、ベンゾカルバゾリル基、ベンゾカルボリニル基、フラニル基、ベンゾフラニル基、ジベンゾフラニル基、キサンテニル基、スピロキサンテニル基、ベンゾキサンテニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、ベンゾチアザリル基などが挙げられる。 Specific examples of heteroaromatic groups having 3 to 20 carbon atoms include pyridyl, pyrimidyl, pyrazyl, triazinyl, quinolyl, isoquinolyl, nadityridinyl, acridinyl, phenanthrolinyl, and phenanthridinyl. pyrrolyl group, indolyl group, indolizinyl group, carbazolyl group, carbolinyl group, benzocarbazolyl group, benzocarbolinyl group, furanyl group, benzofuranyl group, dibenzofuranyl group, xanthenyl group, spiroxanthenyl group, benzoxane a thenyl group, a thienyl group, a benzothienyl group, a dibenzothienyl group, an oxazolyl group, a benzoxazolyl group, a thiazolyl group, a benzothiazolyl group and the like.
 環Bは、フェニル基、ナフチル基、ピリジル基、キノリル基、イソキノリル基が好ましい。
[置換基について]
 環A、環B、R、R及びR’で表される各基は、重水素、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ホルミル基、シアノ基、ニトロ基、分岐または環化してもよい炭素数1~20のアルキル基、分岐または環化してもよい炭素数2~20のアルケニル基、分岐または環化してもよいアルキニル基、炭素数1~20のアルコキシ基、単環又は連結してもよい炭素数6~20の芳香族炭化水素基、単環又は連結してもよい炭素数3~20のヘテロ芳香族基、P(=O)(R’’)、C(=O)R’’、B(R’’)、B(OR’’)、OSOR’’、Si(R’’)からなる群より選択される置換基で1つ以上置換されてもよい。
Ring B is preferably a phenyl group, a naphthyl group, a pyridyl group, a quinolyl group, or an isoquinolyl group.
[About substituents]
Each group represented by ring A, ring B, R 1 , R 2 and R′ is deuterium, fluorine atom, chlorine atom, bromine atom, iodine atom, formyl group, cyano group, nitro group, branched or cyclized an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms which may be branched or cyclic, an alkynyl group which may be branched or cyclic, an alkoxy group having 1 to 20 carbon atoms, a monocyclic or optionally linked aromatic hydrocarbon group having 6 to 20 carbon atoms, monocyclic or optionally linked heteroaromatic group having 3 to 20 carbon atoms, P(=O)(R'') 2 , C( =O) substituted with one or more substituents selected from the group consisting of R'', B(R'') 2 , B(OR'') 2 , OSO2R '', Si(R'') 4 may be
 R’’は、出現ごとに同一であるか異なり、炭素数1~10のアルキル基、炭素数6~60の芳香族炭化水素基、炭素数3~60のヘテロ芳香族基からなる群から構成される。 R'' is the same or different in each occurrence and is composed of the group consisting of an alkyl group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms, and a heteroaromatic group having 3 to 60 carbon atoms. be done.
 以下、縮環フルオレン化合物の具体的な例を示す。なお、本発明はこれらに限定されるものではない。 Specific examples of the condensed fluorene compound are shown below. In addition, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 縮環フルオレン化合物は、例えば、有機電界発光素子や光電素子等の有機電子素子用途に用いることができる。
<有機電界発光素子用材料>
 本発明の一態様にかかる有機電界発光素子用材料は、縮環フルオレン化合物を含有する。
The condensed fluorene compound can be used, for example, for organic electronic devices such as organic electroluminescence devices and photoelectric devices.
<Materials for Organic Electroluminescent Devices>
A material for an organic electroluminescence device according to one aspect of the present invention contains a condensed ring fluorene compound.
 縮環フルオレン化合物は、例えば、有機電界発光素子用電子輸送材料として用いることができる。 A condensed fluorene compound can be used, for example, as an electron transport material for an organic electroluminescence device.
 本発明の一態様に係る縮環フルオレン化合物が、例えば有機電界発光素子用電子輸送材料として、低い駆動電圧を示す構造的な理由としては、以下に挙げるものであると推測している。
<低い駆動電圧を示す構造的な理由>
 9H-フルオレンは構造の9位に、フルオレン環がなす平面に対し直交するように置換基を2つ導入することが可能である。9位に置換基を導入した9,9-二置換フルオレン環は自身のπスタックを阻害し、分子間での相互作用を抑制することで有機電界発光素子の高効率化を可能としてきた。
The structural reasons why the condensed ring fluorene compound according to one aspect of the present invention exhibits a low driving voltage as, for example, an electron-transporting material for an organic electroluminescence device are presumed to be as follows.
<Structural reasons for low drive voltage>
In 9H-fluorene, two substituents can be introduced at the 9-position of the structure so as to be perpendicular to the plane of the fluorene ring. A 9,9-disubstituted fluorene ring in which a substituent is introduced at the 9-position inhibits its own π-stack and suppresses intermolecular interaction, thereby making it possible to improve the efficiency of organic electroluminescence devices.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 しかしながら、分子間のπ-πスタックを抑制される、9,9-二置換フルオレン骨格自体の電荷輸送性は乏しく、これまでフルオレンにトリアジン環やアミノ基などの電荷輸送性を向上させる置換基を導入することで電荷輸送性を補完する施策がなされている。 However, the charge transport property of the 9,9-disubstituted fluorene skeleton itself, which suppresses the π-π stack between molecules, is poor. A measure is taken to complement the charge transport property by introducing it.
 一方、ナフタレン環とフルオレン環が縮合すること形成されるフルオランテン骨格を有するフルオレン化合物が報告されているが、いずれもフルオランテンの2位及び3位で、もしくは8位及び9位でインデン環と縮合したものである。これらの構造は電荷輸送に関わるエネルギー準位(HOMOもしくはLUMO準位)が適切でなく、隣接層からの、もしくは隣接層への電荷輸送に不利となる。 On the other hand, fluorene compounds having a fluoranthene skeleton formed by the condensation of a naphthalene ring and a fluorene ring have been reported. It is a thing. These structures have inappropriate energy levels (HOMO or LUMO levels) involved in charge transport, and are disadvantageous for charge transport from or to adjacent layers.
 それに対し、本願の一態様である縮環フルオレン化合物はフルオランテンの7位及び8位、またはベンゾフルオランテンと縮合した構造をとる。これによりフルオレンの9,9-二置換構造による相互作用抑制による高効率化効果を維持したまま電荷輸送を担うフルオランテン環のπスタックを促し、且つ適切なエネルギー準位を有することが可能となる。
<有機電界発光素子>
 以下、本発明の一態様にかかる有機電界発光素子(以下、単に有機電界発光素子と称することがある)について説明する。
In contrast, the condensed fluorene compound, which is one embodiment of the present application, has a structure condensed with fluoranthene at positions 7 and 8 or with benzofluoranthene. As a result, it is possible to promote π-stacking of the fluoranthene ring responsible for charge transport and to have an appropriate energy level while maintaining the effect of improving efficiency by suppressing the interaction due to the 9,9-disubstituted structure of fluorene.
<Organic electroluminescent device>
An organic electroluminescence device (hereinafter sometimes simply referred to as an organic electroluminescence device) according to one aspect of the present invention will be described below.
 本発明の一態様にかかる有機電界発光素子は、縮環フルオレン化合物を含有する。 An organic electroluminescent device according to one aspect of the present invention contains a condensed ring fluorene compound.
 有機電界発光素子の構成については特に限定されるものではないが、例えば、以下に示す(i)~(vii)の構成が挙げられる。 The configuration of the organic electroluminescent element is not particularly limited, but includes, for example, the configurations (i) to (vii) shown below.
 (i):陽極/発光層/陰極
 (ii):陽極/正孔輸送層/発光層/陰極
 (iii):陽極/発光層/電子輸送層/陰極
 (iv):陽極/正孔輸送層/発光層/電子輸送層/陰極
 (v):陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (vi):陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 (vii):陽極/正孔注入層/第一正孔輸送層/第二正孔輸送層/発光層/第一電子輸送/第二電子輸送層/陰極
 縮環フルオレン化合物は、上記のいずれの層に含まれていてもよいが、有機電界発光素子の発光特性に優れる点で、発光層および該発光層と陰極との間の層からなる群より選ばれる1層以上に含まれることが好ましい。したがって、上記(i)~(vii)に示された構成の場合、ピリミジン化合物が、発光層、電子輸送層、および電子注入層からなる群より選ばれる1層以上に含まれることが好ましい。
(i): anode/light emitting layer/cathode (ii): anode/hole transport layer/light emitting layer/cathode (iii): anode/light emitting layer/electron transport layer/cathode (iv): anode/hole transport layer/ Emissive layer/electron transport layer/cathode (v): anode/hole injection layer/hole transport layer/emissive layer/electron transport layer/electron injection layer/cathode (vi): anode/hole injection layer/hole transport Layer/electron-blocking layer/light-emitting layer/hole-blocking layer/electron-transporting layer/electron-injecting layer/cathode (vii): anode/hole-injecting layer/first hole-transporting layer/second hole-transporting layer/light-emitting layer /First electron-transporting layer/Second electron-transporting layer/Cathode The condensed ring fluorene compound may be contained in any of the above layers. It is preferably contained in one or more layers selected from the group consisting of layers between the layer and the cathode. Therefore, in the structures shown in (i) to (vii) above, the pyrimidine compound is preferably contained in one or more layers selected from the group consisting of a light-emitting layer, an electron-transporting layer, and an electron-injecting layer.
 以下、本発明の一態様にかかる有機電界発光素子を、上記(v)の構成を例に挙げて、図1を参照しながらより詳細に説明する。 Hereinafter, the organic electroluminescence device according to one aspect of the present invention will be described in more detail with reference to FIG. 1, taking the configuration (v) above as an example.
 なお、図1に示す有機電界発光素子は、いわゆるボトムエミッション型の素子構成を有するものであるが、本発明の一態様にかかる有機電界発光素子はボトムエミッション型の素子構成に限定されるものではない。すなわち、本発明の一態様にかかる有機電界発光素子は、トップエミッション型など、他の公知の素子構成であってもよい。 The organic electroluminescent device shown in FIG. 1 has a so-called bottom emission type device configuration, but the organic electroluminescent device according to one aspect of the present invention is not limited to the bottom emission type device configuration. do not have. That is, the organic electroluminescence device according to one aspect of the present invention may have other known device configurations such as top emission type.
 図1は、本発明の一態様にかかる有機電界発光素子の積層構成の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of a laminated structure of an organic electroluminescence device according to one aspect of the present invention.
 有機電界発光素子100は、基板1、陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、および陰極8をこの順で備える。ただし、これらの層のうちの一部の層が省略されていてもよく、また逆に他の層が追加されていてもよい。例えば、発光層5と電子輸送層6との間に正孔阻止層が設けられていてもよく、正孔注入層3が省略され、陽極2上に正孔輸送層4が直接設けられていてもよい。 The organic electroluminescent device 100 includes a substrate 1, an anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, an electron injection layer 7, and a cathode 8 in this order. However, some of these layers may be omitted, or conversely, other layers may be added. For example, a hole-blocking layer may be provided between the light-emitting layer 5 and the electron-transporting layer 6, the hole-injecting layer 3 may be omitted, and the hole-transporting layer 4 may be provided directly on the anode 2. good too.
 また、例えば電子注入層の機能と電子輸送層の機能とを単一の層で併せ持つ電子注入・輸送層のような、複数の層が有する機能を併せ持った単一の層を、当該複数の層の代わりに備えた構成であってもよい。さらに、例えば単層の正孔輸送層4、単層の電子輸送層6が、それぞれ複数層からなっていてもよい。
<縮環フルオレン化合物を含有する層>
 図1に示される構成例において有機電界発光素子100は、発光層5、電子輸送層6および電子注入層7からなる群より選ばれる1層以上に上記縮環フルオレン化合物を含む。特に、電子輸送層6が縮環フルオレン化合物を含むことが好ましい。なお、縮環フルオレン化合物は、有機電界発光素子が備える複数の層に含まれていてもよい。
Further, a single layer having the functions of a plurality of layers, such as an electron injection/transport layer having both the function of an electron injection layer and the function of an electron transport layer in a single layer. It may be a configuration provided instead of. Furthermore, for example, the single-layer hole transport layer 4 and the single-layer electron transport layer 6 may each consist of a plurality of layers.
<Layer containing condensed fluorene compound>
In the structural example shown in FIG. 1, the organic electroluminescent device 100 contains the condensed ring fluorene compound in one or more layers selected from the group consisting of the light-emitting layer 5, the electron transport layer 6 and the electron injection layer . In particular, the electron transport layer 6 preferably contains a condensed fluorene compound. Note that the condensed fluorene compound may be contained in a plurality of layers included in the organic electroluminescence device.
 以下においては、電子輸送層6が縮環フルオレン化合物を含む有機電界発光素子100について説明する。
[基板1]
 基板1としては特に限定はなく、通常の有機電界発光素子に使用できる基板を使用することができる。例えばガラス板、石英板、プラスチック板などが挙げられる。
[陽極2]
 基板1上(正孔注入層3側)には陽極2が設けられている。
An organic electroluminescence device 100 in which the electron transport layer 6 contains a condensed fluorene compound will be described below.
[Substrate 1]
The substrate 1 is not particularly limited, and substrates that can be used in ordinary organic electroluminescence devices can be used. For example, a glass plate, a quartz plate, a plastic plate and the like can be used.
[Anode 2]
An anode 2 is provided on the substrate 1 (on the hole injection layer 3 side).
 陽極の材料としては、通常の有機電界発光素子に使用できる化合物を使用することができる。例えば仕事関数の大きい(例えば4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物が挙げられる。陽極の材料の具体例としては、Auなどの金属;CuI、酸化インジウム-スズ(ITO;Indium Tin Oxide)、SnO、ZnOなどの導電性透明材料が挙げられる。
[正孔注入層3、正孔輸送層4]
 陽極2と後述する発光層5との間には、陽極2側から、正孔注入層3、正孔輸送層4がこの順で設けられている。
As the material for the anode, compounds that can be used in ordinary organic electroluminescence devices can be used. Examples include metals, alloys, electrically conductive compounds, and mixtures thereof with a large work function (eg, 4 eV or more). Specific examples of materials for the anode include metals such as Au; conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
[Hole injection layer 3, hole transport layer 4]
A hole injection layer 3 and a hole transport layer 4 are provided in this order from the anode 2 side between the anode 2 and a light emitting layer 5 to be described later.
 正孔注入層、正孔輸送層の材料としては、正孔注入性、正孔輸送性、電子障壁性の少なくともいずれかを有するものである。正孔注入層、正孔輸送層の材料は、有機物、無機物のいずれであってもよく、通常の有機電界発光素子に使用できる化合物を使用することができる。 The material for the hole injection layer and the hole transport layer has at least one of hole injection, hole transport, and electron barrier properties. Materials for the hole injection layer and the hole transport layer may be either organic or inorganic, and compounds that can be used in ordinary organic electroluminescence devices can be used.
 正孔注入層、正孔輸送層は、一種または二種以上の材料からなる単構造であってもよく、同一組成または異種組成の複数層からなる積層構造であってもよい。 The hole injection layer and hole transport layer may have a single structure composed of one or more materials, or may have a laminated structure composed of multiple layers of the same composition or different compositions.
 正孔輸送層4は、2層以上の積層構造であってもよく、陽極2側から、第一正孔輸送層41、第二正孔輸送層42の順で設けられ、この第二正孔輸送層42は上記(vi)の構成における電子阻止層として使用することができる。
[発光層5]
 正孔輸送層4と後述する電子輸送層6との間には、発光層5が設けられている。
The hole-transporting layer 4 may have a laminated structure of two or more layers, and is provided in this order from the anode 2 side with a first hole-transporting layer 41 and a second hole-transporting layer 42 . The transport layer 42 can be used as an electron blocking layer in the configuration (vi) above.
[Light emitting layer 5]
A light-emitting layer 5 is provided between the hole-transporting layer 4 and an electron-transporting layer 6, which will be described later.
 発光層の材料としては、通常の有機電界発光素子に使用できる発光材料を使用することができる。例えば燐光発光材料、蛍光発光材料、熱活性化遅延蛍光発光材料が挙げられる。 As the material for the light-emitting layer, light-emitting materials that can be used in ordinary organic electroluminescent devices can be used. Examples thereof include phosphorescent materials, fluorescent materials, and heat-activated delayed fluorescent materials.
 発光層は、単一の低分子材料または単一のポリマー材料からなっていてもよいが、より一般的には、ゲスト化合物でドーピングされたホスト材料からなっている。発光は主としてドーパントから生じ、任意の色を有することができる。 The light emitting layer may consist of a single small molecule material or a single polymer material, but more commonly consists of a host material doped with a guest compound. Emission comes primarily from dopants and can have any color.
 また、発光材料は発光層のみに含有されることに限定されるものではない。例えば、発光材料は、発光層に隣接した層(正孔輸送層4、または電子輸送層6)が含有していてもよい。これによってさらに有機電界発光素子の発光効率を高めることができる。 Also, the luminescent material is not limited to being contained only in the luminescent layer. For example, the light-emitting material may be contained in a layer adjacent to the light-emitting layer (hole-transporting layer 4 or electron-transporting layer 6). This can further increase the luminous efficiency of the organic electroluminescence device.
 発光層は、一種または二種以上の材料からなる単層構造であってもよく、同一組成または異種組成の複数層からなる積層構造であってもよい。
[電子輸送層6]
 発光層5と後述する電子注入層7との間には、電子輸送層6が設けられている。
The light-emitting layer may have a single-layer structure composed of one or more materials, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions.
[Electron transport layer 6]
An electron transport layer 6 is provided between the light emitting layer 5 and an electron injection layer 7 which will be described later.
 電子輸送層は、縮環フルオレン化合物を含むことが好ましい。また、電子輸送層は、ピリミジン化合物に加えてさらに従来公知の電子輸送材料から選ばれる1種以上を含んでいてもよい。 The electron transport layer preferably contains a condensed fluorene compound. In addition to the pyrimidine compound, the electron transport layer may further contain one or more selected from conventionally known electron transport materials.
 なお、縮環フルオレン化合物が電子輸送層に含まれず、他の層に含まれる場合は、従来公知の電子輸送材料から選ばれる1種以上を、電子輸送層を構成する電子輸送材料として用いることができる。 When the condensed fluorene compound is not contained in the electron-transporting layer but is contained in another layer, one or more selected from conventionally known electron-transporting materials can be used as the electron-transporting material constituting the electron-transporting layer. can.
 従来公知の電子輸送性材料としては、アルカリ金属錯体、アルカリ土類金属錯体、土類金属錯体等が挙げられる。アルカリ金属錯体、アルカリ土類金属錯体、土類金属錯体としては、例えば、8-ヒドロキシキノリナートリチウム(Liq)、ビス(8-ヒドロキシキノリナート)亜鉛、ビス(8-ヒドロキシキノリナート)銅、ビス(8-ヒドロキシキノリナート)マンガン、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(2-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(8-ヒドロキシキノリナート)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2-メチル-8-キノリナート)クロロガリウム、ビス(2-メチル-8-キノリナート)(o-クレゾラート)ガリウム、ビス(2-メチル-8-キノリナート)-1-ナフトラートアルミニウム、ビス(2-メチル-8-キノリナート)-2-ナフトラートガリウム等が挙げられる。 Conventionally known electron-transporting materials include alkali metal complexes, alkaline earth metal complexes, earth metal complexes, and the like. Alkali metal complexes, alkaline earth metal complexes, and earth metal complexes include, for example, 8-hydroxyquinolinatolithium (Liq), bis(8-hydroxyquinolinato)zinc, and bis(8-hydroxyquinolinato)copper. , bis(8-hydroxyquinolinato)manganese, tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis (10-hydroxybenzo[h]quinolinate) beryllium, bis(10-hydroxybenzo[h]quinolinate)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinate)(o -cresolato)gallium, bis(2-methyl-8-quinolinato)-1-naphtholatoaluminum, bis(2-methyl-8-quinolinato)-2-naphtholatogallium, and the like.
 電子輸送層は、一種または二種以上の材料からなる単層構造であってもよく、同一組成または異種組成の複数層からなる積層構造であってもよい。 The electron-transporting layer may have a single-layer structure composed of one or more materials, or may have a laminated structure composed of multiple layers having the same composition or different compositions.
 本態様にかかる有機電界発光素子においては、電子注入性を向上させ、素子特性(例えば、発光効率、低電圧駆動、または高耐久性)を向上させる目的で、電子注入層を設けてもよい。 An electron injection layer may be provided in the organic electroluminescence device according to this aspect for the purpose of improving electron injection properties and improving device characteristics (e.g., luminous efficiency, low voltage drive, or high durability).
 電子輸送層6は、2層以上の積層構造であってもよく、発光層5側から、第一電子輸送層61、第二電子輸送層62の順で設けられ、この第一電子輸送層61は上記(vi)の構成における正孔阻止層として使用することができる。 The electron transport layer 6 may have a laminated structure of two or more layers, and is provided in the order of a first electron transport layer 61 and a second electron transport layer 62 from the light emitting layer 5 side. can be used as the hole blocking layer in the configuration (vi) above.
 本発明の一態様にかかる縮環フルオレン化合物は第一電子輸送層及び第二電子輸送層の両方、またはいずれか一方に使用することができる。
[電子注入層7]
 電子輸送層6と後述する陰極8との間には、電子注入層7が設けられている。
The fused ring fluorene compound according to one aspect of the present invention can be used in both or either one of the first electron-transporting layer and the second electron-transporting layer.
[Electron injection layer 7]
An electron injection layer 7 is provided between the electron transport layer 6 and a cathode 8 which will be described later.
 電子注入層の材料としては、通常の有機電界発光素子に使用できる化合物を使用することができる。例えば、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等の有機化合物が挙げられる。 As the material for the electron injection layer, compounds that can be used in ordinary organic electroluminescent devices can be used. Examples thereof include organic compounds such as fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, and anthrone.
 また、電子注入層の材料としては、SiO、AlO、SiN、SiON、AlON、GeO、LiO、LiON、TiO、TiON、TaO、TaON、TaN、LiF、C、Ybなどの各種酸化物、フッ化物、窒化物、酸化窒化物等の無機化合物も挙げられる。本発明の縮環フルオレン化合物を使用することもできる。
[陰極8]
 電子注入層7上には陰極8が設けられている。
Materials for the electron injection layer include various oxides and fluorides such as SiO 2 , AlO, SiN, SiON, AlON, GeO, LiO, LiON, TiO, TiON, TaO, TaON, TaN, LiF, C, and Yb. , nitrides, and oxynitrides. Fused ring fluorene compounds of the present invention can also be used.
[Cathode 8]
A cathode 8 is provided on the electron injection layer 7 .
 陰極の材料としては、通常の有機電界発光素子に使用できる化合物を使用することができる。例えば、仕事関数の小さい金属(以下、電子注入性金属とも称する)、合金、電気伝導性化合物、およびこれらの混合物が挙げられる。ここで、仕事関数の小さい金属とは、例えば、4eV以下の金属である。 As the cathode material, compounds that can be used in ordinary organic electroluminescent devices can be used. Examples include metals with a small work function (hereinafter also referred to as electron-injecting metals), alloys, electrically conductive compounds, and mixtures thereof. Here, a metal with a small work function is, for example, a metal of 4 eV or less.
 電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物などが好ましい。
[各層の形成方法]
 以上説明した、電極(陽極、陰極)を除く各層は、例えば、真空蒸着法、スピンコート法、キャスト法、LB(Langmuir-Blodgett method)法などの公知の方法によって薄膜化することにより、形成することができる。各層の材料は、それ単独で用いてもよく、必要に応じて結着樹脂などの材料、溶剤と共に用いてもよい。
A mixture of an electron-injecting metal and a second metal that has a higher work function and is more stable, such as magnesium/silver mixture, magnesium/aluminum mixture, magnesium/indium mixture, aluminum/aluminum oxide (Al 2 O 3 ) mixtures, lithium/aluminum mixtures, etc. are preferred.
[Method of Forming Each Layer]
Each layer except for the electrodes (anode, cathode) described above is formed by thinning by a known method such as a vacuum deposition method, a spin coating method, a casting method, or a LB (Langmuir-Blodgett method) method. be able to. The material for each layer may be used alone, or if necessary, it may be used together with a material such as a binder resin and a solvent.
 このようにして形成された各層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、通常は5nm~5μmの範囲である。 The film thickness of each layer thus formed is not particularly limited and can be appropriately selected depending on the situation, but is usually in the range of 5 nm to 5 μm.
 陽極および陰極は、電極材料を蒸着やスパッタリングなどの方法によって薄膜化することにより、形成することができる。蒸着やスパッタリングの際に所望の形状のマスクを介してパターンを形成してもよく、蒸着やスパッタリングなどによって薄膜を形成した後、フォトリソグラフィーで所望の形状のパターンを形成してもよい。 The anode and cathode can be formed by thinning the electrode material by a method such as vapor deposition or sputtering. A pattern may be formed through a mask of a desired shape during vapor deposition or sputtering, or a pattern of a desired shape may be formed by photolithography after forming a thin film by vapor deposition, sputtering, or the like.
 陽極および陰極の膜厚は、1μm以下であることが好ましく、10nm以上200nm以下であることがより好ましい。 The film thickness of the anode and cathode is preferably 1 μm or less, more preferably 10 nm or more and 200 nm or less.
 なお、縮環フルオレン化合物を含む層を形成するは、上記の従来公知の電子輸送性材料と併用してもよい。したがって、例えば、縮環フルオレン化合物と従来公知の電子輸送性材料とを共蒸着してもよく、縮環フルオレン化合物の層に従来公知の電子輸送性材料の層を積層してもよい。 It should be noted that the layer containing the condensed ring fluorene compound may be formed in combination with the conventionally known electron-transporting material. Therefore, for example, a condensed ring fluorene compound and a conventionally known electron-transporting material may be co-deposited, or a layer of a conventionally known electron-transporting material may be laminated on a layer of a condensed ring fluorene compound.
 有機電界発光素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像をスクリーン等に投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。 The organic electroluminescence element may be used as a kind of lamp for illumination or as a light source for exposure, a projection device for projecting an image onto a screen or the like, or a display for directly viewing a still image or a moving image. You may use it as a device (display).
 動画再生用の表示装置として有機電界発光素子を使用する場合、駆動方式としては、単純マトリクス(パッシブマトリクス)方式であってもよく、アクティブマトリクス方式であってもよい。また、異なる発光色を有する有機電界発光素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 When using an organic electroluminescent element as a display device for reproducing moving images, the driving method may be a simple matrix (passive matrix) method or an active matrix method. Further, by using two or more kinds of organic electroluminescent elements having different emission colors, it is possible to produce a full-color display device.
 以下、本開示を実施例に基づきさらに詳細に説明するが、本開示はこれらの実施例により何ら限定して解釈されるものではない。 Although the present disclosure will be described in more detail below based on examples, the present disclosure should not be construed as being limited by these examples.
 H-NMRスペクトルの測定は、Gemini200(バリアン社製)またはBruker ASCEND 400(400MHz;BRUKER製)を用いて行った。 1 H-NMR spectra were measured using Gemini200 (manufactured by Varian) or Bruker ASCEND 400 (400 MHz; manufactured by BRUKER).
 ガラス転移温度、結晶化温度及び融点の測定は、DSC7020(日立ハイテクサイエンス社製、製品名)を用いて行った。 The glass transition temperature, crystallization temperature, and melting point were measured using DSC7020 (manufactured by Hitachi High-Tech Science, product name).
 DSCの測定条件は以下のとおりである。なお、測定は、窒素雰囲気下(流量50mL/min)にて行った。また、ファーストヒーティング、ファーストクーリング、セカンドヒーティングの順に行い、セカンドヒーティングの際のガラス転移温度、結晶化温度及び融点を、それぞれ試料のガラス転移温度、結晶化温度及び融点とした。 The DSC measurement conditions are as follows. In addition, the measurement was performed in a nitrogen atmosphere (flow rate of 50 mL/min). First heating, first cooling, and second heating were performed in this order, and the glass transition temperature, crystallization temperature, and melting point during the second heating were taken as the glass transition temperature, crystallization temperature, and melting point of the sample, respectively.
 試料量 :5~10mg
 測定条件:
<ファーストヒーティング>
 昇温速度:15℃/min
 測定温度範囲:30℃~360℃
<ファーストクーリング>
 ドライアイスによる急冷
<セカンドヒーティング>
 昇温速度:5℃/min
 測定温度範囲:30℃~360℃
 有機電界発光素子の発光特性は、室温下、作製した素子に直流電流を印加し、輝度計(製品名:BM-9,トプコンテクノハウス社製)を用いて評価した。
Sample amount: 5 to 10 mg
Measurement condition:
<Fast heating>
Heating rate: 15°C/min
Measurement temperature range: 30°C to 360°C
<Fast Cooling>
Rapid cooling with dry ice <second heating>
Heating rate: 5°C/min
Measurement temperature range: 30°C to 360°C
The luminous properties of the organic electroluminescent device were evaluated by applying a direct current to the fabricated device at room temperature and using a luminance meter (product name: BM-9, manufactured by Topcon Technohouse Co., Ltd.).
 合成実施例-1(E1の合成) Synthesis Example-1 (Synthesis of E1)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 アルゴン雰囲気下、2,2’-ジ(フルオランテン-7-イル)ベンゾフェノン(2.48g,4.26mmol)をメタンスルホン酸(95mL)に懸濁させ、120℃で16時間撹拌した。0℃まで冷却後、水及びトルエンを加え、有機層を分液抽出した。得られた有機層を濃縮し、カラムクロマトグラフィーにて精製することで、目的の5,5’-スピロビ(インデノ[3,2-j]フルオランテン)(化合物E1)を得た(収量1.11g,収率46%)。ガラス転移温度は、174℃であった。 Under an argon atmosphere, 2,2'-di(fluoranthene-7-yl)benzophenone (2.48 g, 4.26 mmol) was suspended in methanesulfonic acid (95 mL) and stirred at 120°C for 16 hours. After cooling to 0°C, water and toluene were added, and the organic layer was separated and extracted. The obtained organic layer was concentrated and purified by column chromatography to obtain the target 5,5′-spirobi(indeno[3,2-j]fluoranthene) (compound E1) (yield 1.11 g , yield 46%). The glass transition temperature was 174°C.
 H-NMR(400MHz,CDCl):8.79(d,J=7.2Hz,2H),8.73(d,J=8.0Hz,2H),7.85(dd,J=10.4Hz,8.0Hz,4H),7.92(d,J=8.0Hz,2H),7.85(dd,J=8.4Hz,7.2Hz,2H),7.74(d,J=8.0Hz,2H),7.67(dd,J=8.4Hz,7.2Hz,2H),7.57(brddd,J=15.4Hz,15.4Hz,1.2Hz,2H),7.23(ddd,J=15.4Hz,15.4Hz,1.2Hz,2H),6.92(brd,J=7.6Hz,2H),6.85(d,J=7.2Hz,2H).
 合成実施例-2(E2の合成)
 また、下記実験例で使用した縮環フルオレン化合物については、前記合成実施例-1で示される製造法と同様の手段により合成した。ガラス転移点は、検出されなかった。
1 H-NMR (400 MHz, CDCl 3 ): 8.79 (d, J=7.2 Hz, 2H), 8.73 (d, J=8.0 Hz, 2H), 7.85 (dd, J=10 .4Hz, 8.0Hz, 4H), 7.92 (d, J = 8.0Hz, 2H), 7.85 (dd, J = 8.4Hz, 7.2Hz, 2H), 7.74 (d, J = 8.0Hz, 2H), 7.67 (dd, J = 8.4Hz, 7.2Hz, 2H), 7.57 (brdd, J = 15.4Hz, 15.4Hz, 1.2Hz, 2H) , 7.23 (ddd, J=15.4Hz, 15.4Hz, 1.2Hz, 2H), 6.92 (brd, J=7.6Hz, 2H), 6.85 (d, J=7.2Hz , 2H).
Synthesis Example-2 (Synthesis of E2)
Further, the condensed fluorene compounds used in the following experimental examples were synthesized by the same method as the production method shown in Synthetic Example-1. No glass transition point was detected.
 H-NMR(400MHz,CDCl):9.10(s,2H),8.87(d,J=8.4Hz,2H),8.75(brd,J=7.2Hz,2H),8.55(d,J=7.6Hz,2H),8.30(brdd,J=7.6Hz,1.2Hz,2H),8.00(d,J=7.6Hz,2H),7.73-7.82(m,8H),7.64(brddd,J=15.2Hz,15.2Hz,1.2Hz,2H),7.27-7.31(m,2H),6.96-7.00(m,2H),6.91(d,J=7.6Hz,2H). 1 H-NMR (400 MHz, CDCl 3 ): 9.10 (s, 2H), 8.87 (d, J=8.4 Hz, 2H), 8.75 (brd, J=7.2 Hz, 2H), 8.55 (d, J = 7.6Hz, 2H), 8.30 (brdd, J = 7.6Hz, 1.2Hz, 2H), 8.00 (d, J = 7.6Hz, 2H), 7 .73-7.82 (m, 8H), 7.64 (brddd, J = 15.2Hz, 15.2Hz, 1.2Hz, 2H), 7.27-7.31 (m, 2H), 6. 96-7.00 (m, 2H), 6.91 (d, J=7.6Hz, 2H).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 合成実施例-3(E6の合成)
 また、下記実験例で使用した縮環フルオレン化合物については、前記合成実施例-1で示される製造法と同様の手段により合成した。ガラス転移点は、検出されなかった。
Synthesis Example-3 (Synthesis of E6)
Further, the condensed fluorene compounds used in the following experimental examples were synthesized by the same method as the production method shown in Synthetic Example-1. No glass transition point was detected.
 H-NMR(400MHz,CDCl):9.43(s,2H),8.73(d,J=8.0Hz,2H),8.50(d,J=8.4Hz,2H),8.42(d,J=8.4Hz,2H),8.25-8.29(m,2H),7.98-8.04(m,4H),7.77(dd,J=8.0Hz,1.2Hz,2H),7.62(brddd,J=15.6Hz,15.6Hz,1.2Hz,2H),7.49-7.56(m,4H),7.24(brddd,J=15.2Hz,15.2Hz,2.4Hz,2H),7.07(d,J=8.4Hz,2H),6.91(dd,J=7.2Hz,2.0Hz,2H). 1 H-NMR (400 MHz, CDCl 3 ): 9.43 (s, 2H), 8.73 (d, J=8.0 Hz, 2H), 8.50 (d, J=8.4 Hz, 2H), 8.42 (d, J=8.4Hz, 2H), 8.25-8.29 (m, 2H), 7.98-8.04 (m, 4H), 7.77 (dd, J=8 .0Hz, 1.2Hz, 2H), 7.62 (brddd, J = 15.6Hz, 15.6Hz, 1.2Hz, 2H), 7.49-7.56 (m, 4H), 7.24 ( brddd, J = 15.2Hz, 15.2Hz, 2.4Hz, 2H), 7.07 (d, J = 8.4Hz, 2H), 6.91 (dd, J = 7.2Hz, 2.0Hz, 2H).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 合成実施例-4(E24の合成)  Synthesis Example-4 (Synthesis of E24)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 アルゴン雰囲気下、9-[2-(ベンゾ[b]フルオランテン-7-イル)フェニル],9-ヒドロキシ-9H-フルオレン(1.50g,2.95mmol)をオルト-ジクロロベンゼン(30mL)とメタンスルホン酸(30mL)に懸濁させ、120℃で1時間撹拌した。0℃まで冷却後、水及びトルエンを加え、有機層を分液抽出した。得られた有機層を濃縮し、カラムクロマトグラフィーにて精製することで、目的の化合物E24を得た(収量1.19g,収率56%)。ガラス転移温度は、148℃であった。 Under an argon atmosphere, 9-[2-(benzo[b]fluoranthene-7-yl)phenyl],9-hydroxy-9H-fluorene (1.50 g, 2.95 mmol) was treated with ortho-dichlorobenzene (30 mL) and methanesulfone. Suspended in acid (30 mL) and stirred at 120° C. for 1 hour. After cooling to 0°C, water and toluene were added, and the organic layer was separated and extracted. The obtained organic layer was concentrated and purified by column chromatography to obtain the desired compound E24 (1.19 g, 56% yield). The glass transition temperature was 148°C.
 H-NMR(400MHz,CDCl):9.06(s,1H),8.82(d,J=8.0Hz,1H),8.73(d,J=7.6Hz,1H),8.52(d,J=7.6Hz,1H),8.27(brdd,J=6.4Hz,1.6Hz,1H),7.98(d,J=6.8Hz,1H),7.89(d,J=8.0Hz,2H),7.71-7.80(m,4H),7.61(ddd,J=15.2Hz,15.2Hz,1.2Hz,1H),7.40(ddd,J=15.2Hz,15.2Hz,1.2Hz,2H),7.25(ddd,J=14.8Hz,14.8Hz,0.8Hz,1H),7.14(ddd,J=15.2Hz,15.2Hz,1.6Hz,2H),6.83-6.87(m,3H),6.79(d,J=7.6Hz,1H).
 合成実施例-5(E26の合成)
 また、下記実験例で使用した縮環フルオレン化合物については、前記合成実施例-4で示される製造法と同様の手段により合成した。ガラス転移温度は、118℃であった。
1 H-NMR (400 MHz, CDCl 3 ): 9.06 (s, 1 H), 8.82 (d, J=8.0 Hz, 1 H), 8.73 (d, J=7.6 Hz, 1 H), 8.52 (d, J = 7.6Hz, 1H), 8.27 (brdd, J = 6.4Hz, 1.6Hz, 1H), 7.98 (d, J = 6.8Hz, 1H), 7 .89 (d, J=8.0Hz, 2H), 7.71-7.80 (m, 4H), 7.61 (ddd, J=15.2Hz, 15.2Hz, 1.2Hz, 1H), 7.40 (ddd, J = 15.2Hz, 15.2Hz, 1.2Hz, 2H), 7.25 (ddd, J = 14.8Hz, 14.8Hz, 0.8Hz, 1H), 7.14 ( ddd, J=15.2Hz, 15.2Hz, 1.6Hz, 2H), 6.83-6.87 (m, 3H), 6.79 (d, J=7.6Hz, 1H).
Synthesis Example-5 (Synthesis of E26)
Further, the condensed fluorene compounds used in the following experimental examples were synthesized by the same method as the production method shown in Synthesis Example-4. The glass transition temperature was 118°C.
 H-NMR(400MHz,CDCl):9.01(s,1H),8.90(d,J=5.2Hz,1H),8.69(d,J=7.2Hz,1H),8.50(d,J=7.2Hz,1H),8.28(dd,J=8.0Hz,8.0Hz,2H),8.13(brd,J=6.8Hz,1H),8.03(d,J=7.2Hz,1H),7.88(d,J=8.0Hz,1H),7.79(dd,J=8.4Hz,7.2Hz,1H),7.73(ddd,J=15.2Hz,15.2Hz,1.2Hz,1H),7.67(ddd,J=14.8Hz,14.8Hz,1.6Hz,1H),7.59(brdd,J=14.8Hz,14.8Hz,1H),7.43(brddd,J=15.6Hz,15.6Hz,0.8Hz,1H),3.05(d,J=14.8Hz,4H),2.27(s,2H),2.04(s,2H),1.85(d,J=14.4Hz,4H),1.75(s,2H). 1 H-NMR (400 MHz, CDCl 3 ): 9.01 (s, 1 H), 8.90 (d, J=5.2 Hz, 1 H), 8.69 (d, J=7.2 Hz, 1 H), 8.50 (d, J = 7.2Hz, 1H), 8.28 (dd, J = 8.0Hz, 8.0Hz, 2H), 8.13 (brd, J = 6.8Hz, 1H), 8 .03 (d, J=7.2 Hz, 1 H), 7.88 (d, J=8.0 Hz, 1 H), 7.79 (dd, J=8.4 Hz, 7.2 Hz, 1 H),7. 73 (ddd, J = 15.2Hz, 15.2Hz, 1.2Hz, 1H), 7.67 (ddd, J = 14.8Hz, 14.8Hz, 1.6Hz, 1H), 7.59 (brdd, J = 14.8Hz, 14.8Hz, 1H), 7.43 (brddd, J = 15.6Hz, 15.6Hz, 0.8Hz, 1H), 3.05 (d, J = 14.8Hz, 4H) , 2.27(s, 2H), 2.04(s, 2H), 1.85(d, J=14.4 Hz, 4H), 1.75(s, 2H).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 有機電界発光素子の作製と性能評価に用いる化合物の構造式及びその略称を以下に示した。 The structural formulas and abbreviations of the compounds used for the production and performance evaluation of the organic electroluminescent device are shown below.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 素子実施例-1(図2参照)
(基板101、陽極102の用意)
 陽極をその表面に備えた基板として、2mm幅の酸化インジウム-スズ(ITO)膜(膜厚110nm)がストライプ状にパターンされたITO透明電極付きガラス基板を用意した。ついで、この基板をイソプロピルアルコールで洗浄した後、オゾン紫外線洗浄にて表面処理を行った。
(真空蒸着の準備)
 洗浄後の表面処理が施された基板上に、真空蒸着法で各層の真空蒸着を行い、各層を積層形成した。
Device example-1 (see Fig. 2)
(Preparation of substrate 101 and anode 102)
As a substrate having an anode on its surface, a glass substrate with an ITO transparent electrode, in which an indium-tin oxide (ITO) film (thickness: 110 nm) with a width of 2 mm was patterned in stripes, was prepared. Then, after washing the substrate with isopropyl alcohol, the surface was treated by ozone ultraviolet washing.
(Preparation for vacuum deposition)
Each layer was vacuum-deposited on the surface-treated substrate after cleaning by a vacuum deposition method to laminate each layer.
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。そして、以下の順で、各層の成膜条件に従ってそれぞれ作製した。
(正孔注入層103の作製)
 昇華精製したHTLとNDP-9を0.15nm/秒の速度で10nm成膜し、正孔注入層103を作製した。
(第一正孔輸送層1051の作製)
 昇華精製したHTLを0.15nm/秒の速度で85nm成膜し、第一正孔輸送層1051を作製した。
(第二正孔輸送層1052の作製)
 昇華精製したEBL-1を0.15nm/秒の速度で5nm成膜し、第二正孔輸送層1052を作製した。
(発光層106の作製)
 昇華精製したBH-1とBD-1とを95:5(質量比)の割合で20nm成膜し、発光層106を作製した。成膜速度は0.18nm/秒であった。
(第一電子輸送層1071の作製)
 昇華精製したHBL-1を0.05nm/秒の速度で6nm成膜し、第一電子輸送層1071を作製した。
(第二電子輸送層1072の作製)
 化合物E1およびLiqを50:50(質量比)の割合で25nm成膜し、第二電子輸送層1072を作製した。成膜速度は0.15nm/秒であった。
(陰極108の作製)
 最後に、基板上のITOストライプと直交するようにメタルマスクを配し、陰極108を成膜した。陰極はイッテルビウム、銀/マグネシウム(質量比9/1)と銀とを、この順番で、それぞれ2nm、12nmと90nmとで成膜し、3層構造とした。イッテルビウムの成膜速度は0.02nm/秒、銀/マグネシウムの成膜速度は0.5nm/秒、銀の成膜速度は成膜速度0.2nm/秒であった。
First, the glass substrate was introduced into a vacuum deposition tank, and the pressure was reduced to 1.0×10 −4 Pa. Then, each layer was produced in the following order according to the film forming conditions of each layer.
(Preparation of hole injection layer 103)
A hole injection layer 103 was produced by forming a film of 10 nm from sublimation-purified HTL and NDP-9 at a rate of 0.15 nm/sec.
(Preparation of first hole transport layer 1051)
A first hole transport layer 1051 was produced by forming a film of HTL purified by sublimation to a thickness of 85 nm at a rate of 0.15 nm/sec.
(Preparation of second hole transport layer 1052)
Sublimation-purified EBL-1 was deposited at a rate of 0.15 nm/second to a thickness of 5 nm to form a second hole transport layer 1052 .
(Production of light-emitting layer 106)
Sublimation-purified BH-1 and BD-1 were deposited at a ratio of 95:5 (mass ratio) to form a film having a thickness of 20 nm to prepare a light-emitting layer 106 . The deposition rate was 0.18 nm/sec.
(Preparation of first electron transport layer 1071)
Sublimation-purified HBL-1 was deposited at a rate of 0.05 nm/second to a thickness of 6 nm to prepare a first electron transport layer 1071 .
(Preparation of second electron transport layer 1072)
Compound E1 and Liq were deposited at a ratio of 50:50 (mass ratio) to a thickness of 25 nm to form a second electron transport layer 1072 . The deposition rate was 0.15 nm/sec.
(Preparation of cathode 108)
Finally, a metal mask was placed perpendicular to the ITO stripes on the substrate, and a cathode 108 was formed. For the cathode, ytterbium, silver/magnesium (mass ratio 9/1) and silver were deposited in this order to thicknesses of 2 nm, 12 nm and 90 nm, respectively, to form a three-layer structure. The deposition rate of ytterbium was 0.02 nm/second, the deposition rate of silver/magnesium was 0.5 nm/second, and the deposition rate of silver was 0.2 nm/second.
 以上により、図2に示すような発光面積4mm有機電界発光素子100を作製した。なお、それぞれの膜厚は、触針式膜厚測定計(DEKTAK、Bruker社製)で測定した。 As described above, an organic electroluminescence device 100 having a light emitting area of 4 mm 2 as shown in FIG. 2 was produced. Each film thickness was measured with a stylus film thickness meter (DEKTAK, manufactured by Bruker).
 さらに、この素子を酸素および水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと成膜基板(素子)とを、ビスフェノールF型エポキシ樹脂(ナガセケムテックス社製)を用いて行った。 Furthermore, this device was sealed in a nitrogen atmosphere glove box with an oxygen and moisture concentration of 1 ppm or less. Sealing was performed by using a bisphenol F type epoxy resin (manufactured by Nagase ChemteX Corporation) between the glass sealing cap and the film formation substrate (element).
 上記のようにして作製した有機電界発光素子に直流電流を印加し、電流密度10mA/cmを流した時の駆動電圧(V)を測定した。なお、電流効率は、後述の素子比較例-1における結果を基準値(100)とした相対値である。得られた測定結果を表1に示す。 A direct current was applied to the organic electroluminescence device produced as described above, and the drive voltage (V) was measured when a current density of 10 mA/cm 2 was applied. It should be noted that the current efficiency is a relative value with the result of Device Comparative Example-1 described later as a reference value (100). Table 1 shows the measurement results obtained.
 素子実施例-2
 素子実施例-1において、化合物E1の代わりにE2を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
Device example-2
An organic electroluminescence device was produced and evaluated in the same manner as in Device Example-1 except that E2 was used in place of Compound E1 in Device Example-1. Table 1 shows the measurement results obtained.
 素子実施例-3
 素子実施例-1において、化合物E1の代わりにE6を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
Device Example-3
An organic electroluminescence device was produced and evaluated in the same manner as in Device Example-1 except that E6 was used in place of Compound E1 in Device Example-1. Table 1 shows the measurement results obtained.
 素子実施例-4
 素子実施例-1において、化合物E1の代わりにE24を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
Device Example-4
An organic electroluminescence device was produced and evaluated in the same manner as in Device Example-1 except that E24 was used in place of Compound E1 in Device Example-1. Table 1 shows the measurement results obtained.
 素子実施例-5
 素子実施例-1において、化合物E1の代わりにE26を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
Device Example-5
An organic electroluminescence device was produced and evaluated in the same manner as in Device Example-1, except that E26 was used in place of Compound E1 in Device Example-1. Table 1 shows the measurement results obtained.
 素子比較例-1
 素子実施例-1において、化合物E1の代わりにETL-1を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製し、評価した。得られた測定結果を表1に示す。
Device comparison example-1
An organic electroluminescence device was fabricated and evaluated in the same manner as in Device Example-1, except that ETL-1 was used in place of Compound E1 in Device Example-1. Table 1 shows the measurement results obtained.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
100   有機電界発光素子
  1   基板
  2   陽極
  3   正孔注入層
  4   正孔輸送層
  41  第一正孔輸送層
  42  第二正孔輸送層
  5   発光層
  6   電子輸送層
  7   電子注入層
  8   陰極
101   基板
102   陽極
103   正孔注入層
105   正孔輸送層
1051  第一正孔輸送層
1052  第二正孔輸送層
106   発光層
107   電子輸送層
1071  第一電子輸送層
1072  第二電子輸送層
108   陰極
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
REFERENCE SIGNS LIST 100 Organic Electroluminescent Device 1 Substrate 2 Anode 3 Hole Injection Layer 4 Hole Transport Layer 41 First Hole Transport Layer 42 Second Hole Transport Layer 5 Light Emitting Layer 6 Electron Transport Layer 7 Electron Injection Layer 8 Cathode 101 Substrate 102 Anode 103 hole injection layer 105 hole transport layer 1051 first hole transport layer 1052 second hole transport layer 106 light emitting layer 107 electron transport layer 1071 first electron transport layer 1072 second electron transport layer 108 cathode Although described with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
 なお、2021年11月18日に出願された日本特許出願2021-188229号および2022年10月27日に出願された日本特許出願2022-171919号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The specifications, claims, drawings and abstracts of Japanese Patent Application No. 2021-188229 filed on November 18, 2021 and Japanese Patent Application No. 2022-171919 filed on October 27, 2022 is hereby incorporated by reference in its entirety and incorporated as disclosure in the specification of the present invention.

Claims (5)

  1.  式(1)で表される縮環フルオレン化合物。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、
    環Aは式(A-1)で表されるフルオランテン環、または置換されていてもよいベンゾフルオランテン環を表す;
    Figure JPOXMLDOC01-appb-C000002
    、RおよびR’は、各々独立して、
    置換されてもよい炭素数1~10のアルキル基、または、
    連結していてもよい単環、連結していてもよい縮環、あるいはこれらが連結した構造である、置換されていてもよい
     (i)炭素数6~60の芳香族炭化水素基、
     (ii)炭素数3~60のヘテロ芳香族基、または、
     (iii)炭素数6~60のアリールアミノ基、または
     (iv)前記(i)~(iii)から選ばれる任意の2以上の組み合わせで構成される基を表す;
    *1は縮合部位を表す;
    nは0~6の整数である;
     RとRが炭素数1~10アルキル基、または炭素数6~60の芳香族炭化水素基であるとき、RとRは互いに連結して環を形成してもよい;
     ただし、環Aが式(A-1)であるとき、RおよびRはメチル基とならない。
     環Bは、連結していてもよい単環、連結していてもよい縮環、あるいはこれらが連結した構造である、置換されていてもよい
     (i)炭素数6~20の芳香族炭化水素基、または、
     (ii)炭素数3~20のヘテロ芳香族基を表す;
    A condensed fluorene compound represented by formula (1).
    Figure JPOXMLDOC01-appb-C000001
    In formula (1),
    Ring A represents a fluoranthene ring represented by formula (A-1) or an optionally substituted benzofluoranthene ring;
    Figure JPOXMLDOC01-appb-C000002
    R 1 , R 2 and R′ are each independently
    an optionally substituted alkyl group having 1 to 10 carbon atoms, or
    (i) an aromatic hydrocarbon group having 6 to 60 carbon atoms, which may be optionally substituted, which is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked;
    (ii) a heteroaromatic group having 3 to 60 carbon atoms, or
    (iii) an arylamino group having 6 to 60 carbon atoms, or (iv) a group composed of a combination of any two or more selected from the above (i) to (iii);
    *1 represents a condensation site;
    n is an integer from 0 to 6;
    When R 1 and R 2 are an alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 60 carbon atoms, R 1 and R 2 may be linked together to form a ring;
    However, when ring A is formula (A-1), R 1 and R 2 are not methyl groups.
    Ring B is a monocyclic ring which may be linked, a condensed ring which may be linked, or a structure in which these are linked, which may be optionally substituted (i) an aromatic hydrocarbon having 6 to 20 carbon atoms base, or
    (ii) represents a heteroaromatic group having 3 to 20 carbon atoms;
  2.  環Aが式(A-1)または(A-2)である請求項1に記載の縮環フルオレン化合物。
    Figure JPOXMLDOC01-appb-C000003
    式中、
    R’及びnは、請求項1と同義である;
    mは0~4の整数である;
    式(A-2)中、隣接する任意の2つの水素が縮合部位となる。
    2. The condensed ring fluorene compound according to claim 1, wherein ring A is of formula (A-1) or (A-2).
    Figure JPOXMLDOC01-appb-C000003
    During the ceremony,
    R' and n are as defined in claim 1;
    m is an integer from 0 to 4;
    In formula (A-2), any two adjacent hydrogens are condensation sites.
  3.  環Aが式(A-2)である請求項1に記載の縮環フルオレン化合物。 The condensed fluorene compound according to claim 1, wherein ring A is formula (A-2).
  4.  式(1)で表される化合物が下記で表される、請求項1に記載の縮環フルオレン化合物。
    Figure JPOXMLDOC01-appb-C000004
    2. The condensed ring fluorene compound according to claim 1, wherein the compound represented by formula (1) is represented below.
    Figure JPOXMLDOC01-appb-C000004
  5.  陽極と、
     陰極と、
     少なくとも発光層を含む1以上の有機薄膜層と、を備え、
     前記有機薄膜層の少なくとも1層が、請求項1~4のいずれか1項に記載の縮環フルオレン化合物を含有する有機電界発光素子。
    an anode;
    a cathode;
    and one or more organic thin film layers including at least a light-emitting layer,
    An organic electroluminescence device, wherein at least one of the organic thin film layers contains the condensed ring fluorene compound according to any one of claims 1 to 4.
PCT/JP2022/042770 2021-11-18 2022-11-17 Condensed ring fluorene compound, material for organic electroluminescent element, and organic electroluminescent element WO2023090404A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021188229 2021-11-18
JP2021-188229 2021-11-18
JP2022171919 2022-10-27
JP2022-171919 2022-10-27

Publications (1)

Publication Number Publication Date
WO2023090404A1 true WO2023090404A1 (en) 2023-05-25

Family

ID=86397171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042770 WO2023090404A1 (en) 2021-11-18 2022-11-17 Condensed ring fluorene compound, material for organic electroluminescent element, and organic electroluminescent element

Country Status (2)

Country Link
JP (1) JP2023075069A (en)
WO (1) WO2023090404A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060141287A1 (en) * 2004-08-19 2006-06-29 Eastman Kodak Company OLEDs with improved operational lifetime
JP2011157315A (en) * 2010-02-02 2011-08-18 Canon Inc Novel organic compound and organic light-emitting device having the same
JP2014218435A (en) * 2013-04-30 2014-11-20 キヤノン株式会社 Novel condensed polycyclic compound and organic light-emitting element having the same
KR20180005921A (en) * 2016-07-07 2018-01-17 주식회사 엘지화학 Compound and organic light emitting device containing the same
WO2018088472A1 (en) * 2016-11-09 2018-05-17 出光興産株式会社 Compound, composition, organic electroluminescent element, and electronic appliance
KR20190013191A (en) * 2017-08-01 2019-02-11 성균관대학교산학협력단 Organic luminescent compound, producing method of the same and organic electroluminescent device including the same
WO2019194298A1 (en) * 2018-04-05 2019-10-10 出光興産株式会社 Organic electroluminescence element and electronic device
JP2020094050A (en) * 2018-12-14 2020-06-18 エルジー ディスプレイ カンパニー リミテッド Organic compound, and organic light emitting diode and organic light emitting display device that include the same
KR20210054300A (en) * 2019-11-05 2021-05-13 주식회사 진웅산업 Fluoranthene compound and organic light emitting element comprising the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060141287A1 (en) * 2004-08-19 2006-06-29 Eastman Kodak Company OLEDs with improved operational lifetime
JP2011157315A (en) * 2010-02-02 2011-08-18 Canon Inc Novel organic compound and organic light-emitting device having the same
JP2014218435A (en) * 2013-04-30 2014-11-20 キヤノン株式会社 Novel condensed polycyclic compound and organic light-emitting element having the same
KR20180005921A (en) * 2016-07-07 2018-01-17 주식회사 엘지화학 Compound and organic light emitting device containing the same
WO2018088472A1 (en) * 2016-11-09 2018-05-17 出光興産株式会社 Compound, composition, organic electroluminescent element, and electronic appliance
KR20190013191A (en) * 2017-08-01 2019-02-11 성균관대학교산학협력단 Organic luminescent compound, producing method of the same and organic electroluminescent device including the same
WO2019194298A1 (en) * 2018-04-05 2019-10-10 出光興産株式会社 Organic electroluminescence element and electronic device
JP2020094050A (en) * 2018-12-14 2020-06-18 エルジー ディスプレイ カンパニー リミテッド Organic compound, and organic light emitting diode and organic light emitting display device that include the same
KR20210054300A (en) * 2019-11-05 2021-05-13 주식회사 진웅산업 Fluoranthene compound and organic light emitting element comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RIED W, NEIDHARDT R: "Reactions with cyclopentadienones XVI. Reaction products of 1,1-diaryl-2-propyn-1-ols and 1-methoxy-1,1-diaryl-2-propynes with cyclopentadienones", CHEMISCHE BERICHTE, VCH, DE, vol. 102, no. 6, 1 January 1969 (1969-01-01), DE , pages 1904 - 1916, XP002966001, ISSN: 0009-2940 *

Also Published As

Publication number Publication date
JP2023075069A (en) 2023-05-30

Similar Documents

Publication Publication Date Title
KR101447961B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR101638074B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
US8357821B2 (en) Aromatic amine compound, organic electroluminescent element including the same, and display device including organic electroluminescent element
JP2010511696A (en) Novel fluorene derivative and organic electronic device using the same
TW201638091A (en) Organic electroluminescent element
JP5773638B2 (en) Fused polycyclic compound and organic light emitting device using the same
CN112105615B (en) Polycyclic compound and organic light emitting device including the same
JP7308695B2 (en) Bisazine compound
KR20150022615A (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP2023116540A (en) Triazine compound having ortho structure
US20170040545A1 (en) Novel compound and organic electronic device using the same
TW201512155A (en) Compound for organic electroluminescent device and organic electroluminescent device including the same
KR20110084508A (en) Aromatic derivatives and organic electroluminescent device comprising same
KR20130069431A (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP7361564B2 (en) Triazine compounds containing Group 14 elements
TW202106672A (en) Compound for capping layer and organic electroluminescent device including the same
CN108864124B (en) Cyclic compound and organic light-emitting element comprising same
JP7450432B2 (en) triazine compounds
WO2023090404A1 (en) Condensed ring fluorene compound, material for organic electroluminescent element, and organic electroluminescent element
JP2022132782A (en) Novel adamantane compound and organic electroluminescent element containing that compound
JP2022159065A (en) Cyclic azine compound, material for organic electroluminescent devices, electron transport material for organic electroluminescent devices, and organic electroluminescent device
JP7285663B2 (en) Triazine compound having a 2&#39;-arylbiphenylyl group
CN115521242A (en) Organic compound, electronic element, and electronic device
JP7318302B2 (en) Triazine compound characterized by having a para-substituted pyridyl group, use thereof, and precursor thereof
CN115873025A (en) Condensed heterocyclic compound, application thereof and organic electroluminescent device containing compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895685

Country of ref document: EP

Kind code of ref document: A1