WO2022244544A1 - Composition employed in producing parental line of epigenome-modified plant/animal and usage thereof - Google Patents

Composition employed in producing parental line of epigenome-modified plant/animal and usage thereof Download PDF

Info

Publication number
WO2022244544A1
WO2022244544A1 PCT/JP2022/017327 JP2022017327W WO2022244544A1 WO 2022244544 A1 WO2022244544 A1 WO 2022244544A1 JP 2022017327 W JP2022017327 W JP 2022017327W WO 2022244544 A1 WO2022244544 A1 WO 2022244544A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
epigenome
acid sequence
animal
recognition module
Prior art date
Application number
PCT/JP2022/017327
Other languages
French (fr)
Japanese (ja)
Inventor
出穂 畑田
拓郎 堀居
純代 森田
Original Assignee
国立大学法人群馬大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人群馬大学 filed Critical 国立大学法人群馬大学
Priority to JP2023522326A priority Critical patent/JPWO2022244544A1/ja
Publication of WO2022244544A1 publication Critical patent/WO2022244544A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)

Definitions

  • the present invention relates to a composition for use in the production of epigenome-modified animal and plant parent strains and uses thereof.
  • Non-Patent Document 1 Gene expression in animals and plants is epigenetically modified.
  • genomic DNA methylation and demethylation histone acetylation, deacetylation, phosphorylation, dephosphorylation, ubiquitination, and sumoylation; , has been shown to regulate gene expression differently (Non-Patent Document 1).
  • mice with modified epigenetic modification of genomic DNA that is, mice with modified epigenome
  • the demethylase TET (ten-eleven translocation) 1 TET1
  • TET1 ten-eleven translocation 1
  • the nucleic acid encoding dCas9 and TET1 was introduced into genomic DNA, and the expression of dCas9 and TET1 was induced systemically, and the epigenome of the target region was modified.
  • the resulting epigenome-modified mice had poor growth, died before sexual maturity, and the like, making maintenance by breeding difficult.
  • the object of the present invention is to provide a composition for producing parent line animals and plants that enable the production and maintenance of epigenome-modified animals and plants.
  • the composition of the present invention is a composition for use in producing epigenome-modified animals and plants or producing parent line animals and plants for maintenance, the composition comprises a nucleic acid;
  • the nucleic acid is a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA; an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and modifying the epigenome; comprising a nucleic acid encoding
  • the nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis. configured, In the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of the target region in the genomic DNA of the forming gamete.
  • the production method of the present invention (hereinafter also referred to as the "first production method") is a method for producing parent lines of animals and plants with modified epigenomes, The step of introducing the composition of the present invention into the animal or plant of interest.
  • the parental line of animals and plants of the present invention is a parental line of animals and plants used for the production or maintenance of epigenome-modified animals and plants,
  • the animals and plants contain exogenous nucleic acids
  • the nucleic acid is a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA; an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and modifying the epigenome; comprising a nucleic acid encoding
  • the nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis. configured, In the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of the target region in the genomic DNA of the forming
  • the gamete of the present invention is a gamete used in the production of parent line animals and plants used in the production or maintenance of epigenome-modified animals and plants, It is isolated from plants and animals of the parent line of the present invention.
  • the production method of the present invention (hereinafter also referred to as "second production method") is a method for producing animals and plants in which the epigenome of the target region is modified, crossing the first parent and the second parent and obtaining an epigenome-altered individual from the resulting progeny individual; Said first parent and/or said second parent are plants and animals of the parent strain of the present invention.
  • the animals and plants of the present invention are animals and plants in which the epigenome of the target region is modified,
  • the animals and plants are
  • the target region comprises a target region in which the epigenome derived from the gamete of the present invention is modified, It does not contain said exogenous nucleic acid.
  • the animals and plants of the present invention are animals and plants in which the epigenome of the target region is modified,
  • the animals and plants contain exogenous nucleic acids
  • the nucleic acid is a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA; an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and modifying the epigenome; comprising a nucleic acid encoding
  • the nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis.
  • the animal or plant is derived from a gamete in which the epigenome of the target region is modified by forming a complex between the nucleic acid sequence recognition module whose expression is induced in the gametogenesis and the epigenome modifying enzyme as the target region. Contains the target region.
  • composition of the present invention it is possible to produce parent line animals and plants that are capable of producing and maintaining epigenome-modified animals and plants.
  • FIG. 1 is a schematic diagram showing an example of epigenomic alterations in parental lines produced using the composition of the present invention.
  • FIG. 2 is a schematic diagram showing other examples of epigenomic alterations in parental lines generated using the compositions of the present invention.
  • 3 is a schematic diagram showing the structure of the epigenome editing vector in Example 1.
  • FIG. 4 is a graph showing the methylation rate in sperm derived from subline mice in Example 1.
  • FIG. 5 is a graph showing body weights of F1 progeny individuals derived from the male parent line in Example 1.
  • FIG. 6 is a graph showing body weights of F1 progeny individuals derived from male or female parental lines in Example 1.
  • FIG. 7 is a graph showing the methylation rate of the target region of F1 progeny individuals derived from the male or female parent line in Example 1.
  • FIG. 8 is a graph showing the methylation rate and body weight with and without insertion of an epigenome editing vector in Example 1.
  • epigenome refers to a state of chemical modification of DNA and/or histone proteins in the genome without alteration of the nucleic acid sequence (base sequence). Said epigenome can also be referred to as epigenetic modification or genomic modification, for example.
  • epigenome modification or "epigenome modification” means changing the chemical modification of DNA and/or histone proteins in the genome.
  • the change in modification is preferably a change that does not involve a change in the nucleic acid sequence (base sequence). Examples of the modification include addition or removal of modification, change in modification type, increase or decrease in modification frequency, and the like.
  • the above-mentioned “epigenome modification” or “epigenome modification” can also be referred to as, for example, “epigenetic modification modification” or "genome modification modification”.
  • epidermatitis modifying enzyme means a protein that alters the chemical modification of DNA and/or histone proteins in the genome.
  • genomic DNA means genomic DNA within the cell nucleus of eukaryotic cells.
  • nucleic acid means a polymer of deoxyribonucleotides (DNA), ribonucleotides (RNA), and/or modified nucleotides.
  • the nucleic acid may be a single-stranded nucleic acid or a double-stranded nucleic acid. Said nucleic acid can also be referred to, for example, as a “nucleic acid molecule”.
  • hybridize means annealing with complementary polynucleotides resulting from complementarity of nucleotides, specifically complementarity of bases at the nucleotides, i.e., two polynucleotides undergo hydrogen bonding. It means that it can non-covalently pair via.
  • complementarity means that a polynucleotide and another polynucleotide can form a nucleotide pair, that is, a base pair.
  • protein or “peptide” means a polymer composed of unmodified amino acids (natural amino acids), modified amino acids, and/or artificial amino acids.
  • polypeptide means a polymer composed of unmodified amino acids (natural amino acids), modified amino acids, and/or artificial amino acids. Said polypeptide is a peptide having a length of 10 amino acids or more.
  • domain means a three-dimensionally or functionally integrated region in a protein, polypeptide, and/or peptide.
  • antibody means a protein comprising one or more polypeptides substantially or partially encoded by immunoglobulin genes or fragments of immunoglobulin genes.
  • Immunoglobulin genes include, for example, genes encoding constant regions such as ⁇ , ⁇ , ⁇ (including ⁇ 1 and ⁇ 2), ⁇ (including ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4), ⁇ , ⁇ and ⁇ ; , D regions, J regions, and genes that can encode a myriad of immunoglobulin variable regions.
  • Said antibody for example, comprises a heavy chain and a light chain. Said light chains comprise kappa and lambda, constituting kappa and lambda chains, respectively.
  • the heavy chains can be gamma, mu, alpha, delta, or epsilon and constitute the immunoglobulin classes IgG, IgM, IgA, IgD and IgE, respectively.
  • the antibody may be a typical immunoglobulin (antibody) structural unit composed of a tetramer. In this case, the antibody is composed of two identical pairs of polypeptide chains, each pair composed of one light chain (about 25 kDa) and one heavy chain (about 50-70 kDa). The N-terminus of each chain also defines a variable region of about 100-110 or more amino acids primarily responsible for antigen recognition.
  • the antibody may be a full-length immunoglobulin or an antigen-binding fragment thereof.
  • an "antigen-binding fragment” is a polypeptide comprising a portion of an antibody, more specifically a polypeptide comprising the variable region.
  • the antigen-binding fragments can be produced, for example, by digestion of the full-length immunoglobulin with various peptidases.
  • the antigen-binding fragment include F(ab') 2 , Fab', Fab, Fv (variable fragment of antibody), disulfide-bonded Fv, single-chain antibody (scFv), and polymers thereof.
  • gamete means a germ cell, a cell that can generate a new individual by mating or fertilization. Said gametes can also be referred to, for example, as “gametes” or “gametes”.
  • the gametes are, for example, heterogametes, and specific examples thereof include spermatozoa and eggs in animals and pollen and embryo sacs in plants.
  • imprinted gene means a gene whose gene expression is regulated by genomic imprinting.
  • regulatory region means a region that controls gene expression in genomic DNA.
  • the control regions of the imprinted genes are generally controlled by methylation. Therefore, the control region of the imprinting gene is also called DMR (differentially methylated region) or ICR (imprinting control region).
  • promoter or “promoter region” is a region that exists upstream of a DNA region encoding a gene or polynucleotide and contains a nucleic acid sequence (base sequence) to which a transcription factor binds. It means a region that regulates the amount of transcription of the polynucleotide.
  • the "promoter” or “promoter region” can also be referred to as, for example, a “transcriptional regulatory region.”
  • an "expression vector” or “vector” is a recombinant plasmid, virus, or virus-like particle (VLP) containing a nucleic acid that is delivered to a host cell in vitro or in vivo . means.
  • animal and plant means taxonomic animals and plants.
  • the animals and plants include any animals and plants that form gametes.
  • Said animal means, for example, human and non-human animals.
  • non-human animals include mammals such as mice, rats, rabbits, dogs, cats, cows, horses, pigs, monkeys, dolphins, and sea lions.
  • Examples of the plant include angiosperms.
  • exogenous means introduced into cells from outside the cells that constitute animals and plants.
  • isolated means the state of being identified and separated, and/or the state of being recovered from components in their natural state. Said “isolation” can be carried out, for example, by obtaining at least one purification step.
  • target region means a region in genomic DNA that aims to induce a desired effect.
  • Said desired effect is, for example, modification of said epigenome.
  • targeting means binding or accumulating in a target region to induce a desired effect.
  • Said desired effect is, for example, modification of said epigenome.
  • the present invention provides a nucleic acid or a composition comprising said nucleic acid for use in the production of parental line animals and plants that can be used to produce and/or maintain epigenome-modified animals and plants.
  • the present invention provides a nucleic acid or composition for use in the production of epigenome-modified animals and plants or in the production of parent line animals and plants for maintenance, wherein the composition comprises a nucleic acid, wherein the nucleic acid is epigenome-modified in genomic DNA. and an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and capable of modifying the epigenome.
  • nucleic acid is configured such that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis, and in the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome A modifying enzyme forms a complex and modifies the epigenome of a target region in the genomic DNA of the forming gamete.
  • parent line animals and plants that can be used for the production and/or maintenance of epigenome-modified animals and plants can be produced as follows.
  • the animal or plant is a mouse
  • the gamete in which epigenome modification occurs is a male parental gamete, that is, a sperm
  • the nucleic acid is introduced into one chromosome (genomic DNA) in the mouse genomic DNA.
  • the nucleic acid is a transgene will be described with reference to FIG.
  • the present invention is not limited in any way by the following description. First, the male parent line will be explained.
  • the male parent line has a chromosome (TG1) containing the nucleic acid and a chromosome (WT1) not containing the nucleic acid.
  • sperm are formed from primordial germ cells. The spermatogenesis induces the expression of the sequence recognition module and the epigenome modifying enzyme in the nucleic acid so that they form a complex and are targeted to the target region in the genomic DNA. Then, since the epigenome of the target region in the complex is modified, the epigenome is modified, the chromosome (TG2) containing the nucleic acid or the epigenome is modified, and a sperm containing the chromosome (WT2) not containing the nucleic acid is formed. be done.
  • an epigenome-modified mouse By fertilizing the epigenome-modified sperm with a non-epigenome-modified egg, an epigenome-modified mouse can be produced in which one chromosome is an epigenome-modified chromosome and the other is a non-epigenome-modified chromosome.
  • an epigenome-modified sperm and an epigenome-modified egg By combining an epigenome-modified sperm and an epigenome-modified egg, it is possible to obtain an epigenome-modified mouse in which both chromosomes are epigenome-modified chromosomes.
  • the female parent strain has a chromosome (TG1) containing the nucleic acid and a chromosome (WT1) not containing the nucleic acid.
  • TG1 chromosome
  • WT1 chromosome
  • ovary of the female parent line ova are formed from primordial germ cells.
  • said oogenesis the expression of said sequence recognition module and said epigenome modifying enzyme, which are induced in spermatogenesis in said nucleic acid, are not induced.
  • the target regions of the chromosome containing said nucleic acid (TG1) and the chromosome without said nucleic acid (WT1) are not epigenome modified, the chromosome containing said nucleic acid (TG1) or epigenome modified, An ovum is formed that contains a chromosome (WT1) that does not contain said nucleic acid.
  • a mouse containing a chromosome (TG1) containing the nucleic acid and a chromosome (WT1) not containing the nucleic acid, and two nucleic acids A chromosome (WT1) that does not contain The former mouse has the same genomic DNA as the male parent strain and the female parent strain, and therefore can be used as a mouse for strain maintenance. Therefore, according to the composition of the present invention, it is possible to generate parental lines of animals and plants that can be used for the production and/or maintenance of epigenome-modified animals and plants. Also, as shown in FIGS.
  • the epigenome of the target region is modified by using the composition of the present invention, the chromosome (WT2) that does not contain the nucleic acid, and the non-modified epigenome, the Epigenomic mice can be generated that contain a chromosome (WT1) that does not contain nucleic acid.
  • the epigenome-modified mouse is the same as a mouse containing two sets of chromosomes that do not contain the nucleic acid except that the epigenome has not been modified, except that the epigenome of the target region has been modified.
  • An epigenome-modified mouse can be generated that is excluded and only the effects of the epigenome modification can be studied.
  • the gamete in which the epigenome modification occurs is a sperm is explained as an example, but as shown in FIG.
  • parental strains of animals and plants can be generated that can be used for the production and/or maintenance of epigenome-modified animals and plants.
  • mouse animals are used as the animals and plants, the present invention can also be applied to plants that form gametes (eg, pollen and embryo sacs).
  • the target region is an arbitrary region in genomic DNA and can be set appropriately according to the purpose.
  • Examples of the target region include control regions or promoter regions of imprinted genes.
  • the imprinting gene for example, the gene described in IMPRINTED GENE DATABASES (https://www.geneimprint.com/site/home) can be referred to.
  • the atypical imprinted genes include, for example, Igf2 gene, Gab1 (GRB2-associated-binding protein 1) gene, Gm32885 gene, Jade1/Phf17 (Plant Homeo-domain- 17) gene, Platr20 gene, Sfmbt2 (Scm-like with four MBT domains protein 2) gene, Slc38a4 gene, Smoc1 gene, Xist gene and the like.
  • the imprinted gene is the Igf2 gene
  • the regulatory region is, for example, H19-DMR.
  • the length of the target region is not particularly limited, and can be set appropriately according to the purpose of epigenome modification, for example.
  • the nucleic acid sequence recognition module is a molecule that specifically binds to the nucleic acid sequence of the target region that modifies the epigenome in genomic DNA.
  • the nucleic acid sequence recognition module can form a complex with the epigenome modifying enzyme. Therefore, the nucleic acid sequence recognition module can recruit (accumulate) the epigenome modifying enzyme to the target region by binding to the nucleic acid sequence of the target region. Thereby, the epigenome modifying enzyme modifies the epigenetic modification of the genome of the target region to modify the epigenome.
  • nucleic acid sequence recognition module can recruit the epigenome-modifying enzyme to a target region, by combining with the epigenome-modifying enzyme according to the type of modification to be performed on the epigenome, the desired of the epigenome can be performed.
  • the nucleic acid sequence recognition module is, for example, a protein that recognizes the nucleic acid sequence of DNA, or a complex of protein and nucleic acid.
  • the nucleic acid sequence recognition module includes, for example, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas system, Zinc finger motif, transcription activator-like (TAL) effector, PRR (Pentatricopeptide repeat) motif, restriction enzyme, transcription Factors, RNA polymerase, DNA polymerase, and other proteins that specifically bind to DNA or their DNA-binding domains, preferably CRISPR-Cas system, Zinc finger motif, TAL effector, or PRR motif, or their DNA-binding is a domain.
  • the nucleic acid sequence recognition module preferably does not cut both strands of the double-stranded DNA in order to suppress the occurrence of changes in the nucleic acid sequence of the genome, and the nuclease activity for the double-stranded DNA is inactivated. It is more preferable to be
  • the CRISPR-Cas system is composed of a Cas protein with nuclease activity and a guide strand (guide RNA) that forms a complex with the Cas protein and hybridizes with the target nucleic acid sequence.
  • the Cas protein is not particularly limited, and examples thereof include types IV Cas proteins.
  • the Cas proteins include, for example, Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Cas12, Cas14, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2 , Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf2 , Csf3, Csf4, and the like.
  • the origin of the Cas protein is not particularly limited.
  • the Cas9 protein is, for example, Cas9 (SaCas9) derived from Staphylococcus aureus ( Staphylococcus aureus ), Cas9 derived from Streptococcus pyogenes ( Streptococcus pyogenes ) (SpCas9), Streptococcus thermophilus ( Streptococcus thermophilus )-derived Cas9 (StCas9) and the like.
  • the Cas protein preferably has inactivated nuclease activity (DNA cleaving ability) in at least one of the DNA cleavage domains (cleavage sites) of the Cas protein.
  • the Cas9 protein has HNH and RuvC domains as DNA cleavage domains. Therefore, in the Cas9 protein, at least one of the HNH domain and the RuvC domain is preferably inactivated, more preferably both are inactivated. Inactivation of the nuclease activity can be performed, for example, by introducing an amino acid substitution into the nucleic acid sequence encoding the DNA cleavage domain in the DNA encoding the Cas protein.
  • the HNH domain of the SpCas9 for example, the 836th asparagine (Asn) and / or 840th histidine residue (His) to alanine residue (Ala) to replace
  • the ability to cleave the complementary strand with the guide RNA can be inactivated.
  • the RuvC domain of the SpCas9 can be inactivated by replacing the 10th aspartic acid residue (Asp) with an alanine residue (Ala), i.e., on the opposite side of the complementary strand with the guide RNA
  • the cleavability of the strand (reverse complementary strand) can be inactivated.
  • the SpCas9 protein for example, the 840th histidine residue (His) is substituted with an alanine residue (Ala), the 10th aspartic acid residue (Asp) is substituted with an alanine residue (Ala) , the nuclease activity is inactivated (dCas9 protein).
  • the SpCas9 protein for example, the 836th asparagine (Asn) is substituted with an alanine residue (Ala), and the 10th aspartic acid residue (Asp) is substituted with an alanine residue (Ala) , the nuclease activity is inactivated (dCas9 protein).
  • the guide RNA comprises a polynucleotide having a nucleic acid sequence complementary to a target nucleic acid sequence existing in the target region or in the vicinity of the target region, and is hybridizable with the target nucleic acid sequence by the polynucleotide.
  • the guide RNA is, for example, an RNA molecule containing a nucleic acid sequence that specifically binds to the nucleic acid sequence of the target region, that is, the nucleic acid sequence of the target region.
  • a RNA molecule comprising a complementary polynucleotide.
  • the guide RNA can be appropriately set according to the type of the Cas protein.
  • the guide RNA may contain only crRNA (CRISPR RNA), or may contain crRNA (CRISPR RNA) and tracrRNA (trans-activating CRISPR RNA).
  • CRISPR RNA crRNA
  • CRISPR RNA crRNA
  • tracrRNA trans-activating CRISPR RNA
  • the guide RNA may consist of two RNAs or a single RNA (sgRNA).
  • the guide RNA is composed of crRNA and tracrRNA, and crRNA and tracrRNA hybridize with complementary polynucleotides to form a complex and function as guide RNA.
  • the sgRNA is crRNA and tracrRNA, or these are linked via a linker.
  • the crRNA preferably contains, for example, a polynucleotide complementary to the target nucleic acid sequence at the 5' end.
  • the crRNA can recruit (accumulate) the Cas protein in the nucleic acid sequence of the target region, thereby allowing the nucleic acid sequence of the target region to , can recruit (accumulate) the epigenome-modifying enzyme.
  • the length of the complementary polynucleotide is, for example, 15 to 25 nucleotides, 18 to 22 nucleotides.
  • the length of the guide RNA can be appropriately set, for example, according to the length of the target nucleic acid sequence.
  • the nucleic acid sequences targeted by the guide RNA may be one type or two or more types.
  • the number of types of guide RNA can be set, for example, according to the length of the target region.
  • the nucleic acid of the present invention is specific to a nucleic acid sequence at a different site in the target region based on the length of the modifiable region of the epigenome modifying enzyme.
  • the epigenome can be modified throughout the target region.
  • the vicinity of the target region can be set, for example, according to the length of the modifiable region of the epigenome-modifying enzyme. Alternatively, it is within 1 kbp, preferably within 1 kbp.
  • the zinc finger motif is formed by linking a plurality of different C 2 H 2 (Cys 2 His 2 ) type zinc finger units.
  • One zinc finger unit recognizes a nucleic acid sequence of about 3 bases.
  • the plurality can be appropriately set according to the nucleic acid sequence of the target region, but generally it is 3 to 6.
  • the zinc finger motif can recognize, for example, a nucleic acid sequence of about 9-18 bases.
  • the Zinc finger motif for example, modular assembly method (Nat Biotechnol (2002) 20: 135-141), OPEN method (Mol Cell (2008) 31: 294-301), CoDA method (Nat Methods (2011) 8: 67 -69), Escherichia coli one-hybrid method (Nat Biotechnol (2008) 26:695-701).
  • the zinc finger motif can be produced, for example, by the method described in WO03/087341.
  • the TAL effector has a repeating structure of modules with about 34 amino acids as a unit, and the 12th and 13th amino acid residues (repeat variable diresidues: RVD) of one module determine Specificity is determined.
  • Each module is highly independent, and by arranging the modules consecutively, it is possible to create a TAL effector specific to the target nucleic acid sequence.
  • the TAL effector for the target nucleic acid sequence is, for example, the REAL method (Curr Protoc Mol Biol (2012) Chapter 12: Unit 12.15), the FLASH method (Nat Biotechnol (2012) 30: 460-465), the Golden Gate method (Nucleic Acids Res (2011) 39: e82) and other open resources can be used for design.
  • the TAL effector can be produced, for example, by the method described in WO2011/072246.
  • the PPR motif is configured to recognize a specific nucleic acid sequence by continuously arranging PPR motifs consisting of 35 amino acids and recognizing one nucleic acid (base).
  • the PPR motif recognizes a target nucleic acid (base) at the 1st, 4th, and 2nd (ii(-2)th) amino acids from the C-terminus of each motif.
  • base a target nucleic acid
  • ii(-2)th a target nucleic acid sequence
  • PPR motif can be produced, for example, by the method described in WO2014/175284.
  • the DNA binding domain of the restriction enzyme When using the DNA binding domain of the restriction enzyme, the transcription factor, the RNA polymerase, or the DNA polymerase, the DNA binding domain of these proteins is known and the DNA binding domain is used as the nucleic acid sequence recognition module. can.
  • the nucleic acid sequence recognition module may be, for example, one type, or two or more types.
  • the nucleic acid of the present invention encodes multiple types of nucleic acid sequence recognition modules that specifically bind to nucleic acid sequences at different sites in the target region, thereby recognizing the epigenome of the entire target region. can be modified.
  • the modification target of the epigenome modifying enzyme may be chemical modification of genomic DNA or chemical modification of histone protein.
  • Examples of the epigenome-modifying enzyme include methylase, demethylase, acetylase, deacetylase, phosphorylation enzyme, dephosphorylation enzyme, ubiquitinase, and sumoylation enzyme.
  • the epigenome modification enzyme includes, for example, a methylation enzyme or a demethylation enzyme.
  • the methyltransferase methylates, for example, cytosine nucleotides at CpG sites in the genomic DNA.
  • the methyltransferase includes, for example, DNMT (DNA Methyltransferase) 3A, DNMT3B, and DNMT3L.
  • DNMT3A or DNMT3B is used as the epigenome-modifying enzyme, these methyltransferases are preferably used in combination with DNMT3L.
  • the methyltransferase methylates, for example, cytosine nucleotides at CpG, CpHpG, or CpHpH sites (H is a nucleotide other than guanine) in the genomic DNA.
  • examples of the methyltransferase include DRMa (DRM-type cytosine DNA-methyltransferase), DRM2, CMT (chromomethylase) 2, and the like.
  • the demethylase demethylates, for example, the methyl group of the cytosine nucleotide at the CpG site in the genomic DNA.
  • the demethylase includes, for example, TET (ten-eleven translocation) 1, TET2, and TET3.
  • the demethylase demethylates, for example, a methyl group of a cytosine nucleotide at a CpG, CpHpG, or CpHpH site (H is a nucleotide other than guanine) in the genomic DNA.
  • examples of the demethylase include DME (DEMETER), ROS (SILENCING) 1, and the like.
  • the epigenome modifying enzyme includes, for example, methylase, demethylase, acetylase, deacetylase, kinase, dephosphorylation, and ubiquitination. Enzymes, SUMOylation enzymes, and the like can be mentioned.
  • the methyltransferase methylates, for example, lysine residues and/or arginine residues in the histone proteins.
  • Examples of the methyltransferase include EZH2 (enhancer of zeste homolog 2) classified as PRC2, G9, SUV39H1, and the like.
  • the demethylase demethylates, for example, methyl groups of lysine and/or arginine residues in the histone protein.
  • Examples of the demethylase include LSD1 (Lysine-specific demethylase 1), KDM4D (Lysine-specific demethylase 4D), KDM6B (Lysine Demethylase 6B) and the like.
  • the acetylating enzyme acetylates, for example, lysine residues in the histone protein.
  • the acetylating enzyme includes, for example, Gcn5, P300/CBP (CREB-binding protein), and the like.
  • the deacetylase deacetylates, for example, the acetyl group of a lysine residue in the histone protein. Examples of the deacetylase include histone deacetylase (HDAC), SIRT (Sirtuin) 1, SIRT2 and the like.
  • the kinase phosphorylates, for example, serine and/or threonine residues in the histone protein.
  • examples of the kinase include Haspin (GSG2), Aurora B, ChK1 (Checkpoint kinase 1) and the like.
  • the dephosphorylation enzyme dephosphorylates, for example, the phosphate groups of serine and/or threonine residues in the histone protein.
  • examples of the phosphatase include PP1 ⁇ (Protein phosphatase 1 ⁇ ), PP4C (Protein Phosphatase 4 Catalytic Subunit), DUSP1 (Dual specificity protein phosphatase 1) and the like.
  • the ubiquitinase for example, ubiquitinates lysine residues in the histone protein.
  • the ubiquitination enzymes include, for example, Ring1, RNF8, UBC13, UHRF1 and the like.
  • the sumoylation enzyme for example, sumoylates a lysine residue in the histone protein.
  • the SUMOylation enzyme includes, for example, UBC9.
  • the origin of the epigenome-modifying enzyme may be the same as that of the animal or plant using the composition of the present invention, ie, the same species, or different, ie, heterologous.
  • the epigenome-modifying enzyme may be all or part of the enzyme protein.
  • the epigenome-modifying enzyme should retain the enzymatic activity of the enzyme protein.
  • the nucleic acid sequence recognition module and the epigenome modifying enzyme are capable of forming a complex.
  • the formation of the complex may be formation of a complex by linkage via a covalent bond, or formation of a complex utilizing intermolecular interaction.
  • the nucleic acid sequence recognition module and the epigenome modifying enzyme are directly or indirectly ligated, i.e., the fusion protein and By doing so, a complex may be formed.
  • the nucleic acid sequence recognition module may form a complex with one epigenome modifying enzyme, or may form a complex with multiple epigenome modifying enzymes.
  • the epigenome-modifying enzyme may form a complex with one nucleic acid sequence recognition module, or may form a complex with a plurality of nucleic acid sequence recognition modules.
  • the resulting complex can perform epigenome modification more efficiently than a complex formed with one epigenome modifying enzyme. and the epigenome at locations more distant from the target nucleic acid sequence within the target region can also be modified.
  • the number of epigenome-modifying enzymes forming a complex with one nucleic acid sequence recognition module is one or more, preferably two or more (plurality), 3-10, 3-7, or 3-5.
  • the epigenome modifying enzymes may be of one type or multiple types.
  • the complex can modify, for example, a plurality of types of epigenomes in the target region.
  • the N-terminal or C-terminal amino acid of the protein in the nucleic acid sequence recognition module is the C-terminal or N-terminal amino acid in the epigenome modifying enzyme. forms a covalent bond with
  • the order of the nucleic acid sequence recognition module and the epigenome modifying enzyme is not particularly limited, and can be any order.
  • the nucleic acid sequence recognition module and the epigenome modifying enzyme may be arranged in this order from the N-terminal side.
  • the epigenome modifying enzyme and the nucleic acid sequence recognition module may be arranged in this order.
  • the order of the nucleic acid sequence recognition module and the plurality of epigenome modifying enzymes is not particularly limited, but the epigenome modifying enzymes are preferably arranged consecutively.
  • the nucleic acid is a nucleic acid encoding a fusion protein in which the amino acid sequences of the nucleic acid sequence recognition module and the epigenome modifying enzyme are integrated. .
  • the amino acid at the N-terminus or C-terminus of the protein in the nucleic acid sequence recognition module is linked via a linker to the C-terminus or C-terminus of the epigenome modifying enzyme. It binds to the N-terminal amino acid.
  • the nucleic acid sequence recognition module is indirectly linked to a plurality of epigenome modifying enzymes, only the nucleic acid sequence recognition module and the epigenome modifying enzyme are linked via the linker, and the epigenome modifying enzyme may be directly linked, or both between the nucleic acid sequence recognition module and the epigenome modifying enzyme and between the epigenome modifying enzymes may be linked via the linker.
  • the order of the nucleic acid sequence recognition module and the plurality of epigenome modifying enzymes is not particularly limited, but the epigenome modifying enzymes are preferably arranged consecutively.
  • the nucleic acid is a nucleic acid encoding a fusion protein in which the amino acid sequences of the nucleic acid sequence recognition module and the epigenome modifying enzyme are integrated. .
  • any sequence can be selected for the linker as long as it does not interfere with the functions of the nucleic acid sequence recognition module and the epigenome modifying enzyme.
  • the linker include a repeating sequence of glycine and serine.
  • the length of the linker is, for example, 5-100 amino acids, 5-50 amino acids, 10-50 amino acids, 15-50 amino acids, 15-40 amino acids, 17-30 amino acids, or 22 amino acids.
  • the linker may be, for example, GSGSG (SEQ ID NO: 1), GSGGS (SEQ ID NO: 2), SGSGS (SEQ ID NO: 3), or GGGGS (SEQ ID NO: 4), or 2-3 repeat sequences thereof; ); GSGSGGSGSGGSGSGGSGSGGSGGSGSGGSGSGGGSGSGGSGSG (SEQ ID NO: 6);
  • the nucleic acid sequence recognition module and the epigenome modifying enzyme are composed of a tag domain and a tag domain capable of binding to the tag domain.
  • a binding partner may be used to form a complex through interaction of the tag domain with the binding partner.
  • the nucleic acid sequence recognition module may be linked to the tag domain
  • the epigenome modifying enzyme may be linked to the binding partner
  • the nucleic acid sequence recognition module may be linked to the binding partner
  • the epigenome modifying enzyme is linked to the binding partner.
  • nucleic acid sequence recognition module and the epigenome modifying enzyme form a complex through interaction between the tag domain and the binding partner
  • the nucleic acid sequence recognition module and the tag domain are, for example, directly or indirectly linked, ie forming a fusion protein.
  • the epigenome-modifying enzyme and the binding partner are, for example, directly or indirectly linked, ie, form a fusion protein.
  • the nucleic acid sequence recognition module may be linked with one tag domain, or may be linked with a plurality of tag domains.
  • the tag domain may be linked to one nucleic acid sequence recognition module, or may be linked to a plurality of nucleic acid sequence recognition modules.
  • the resulting complex is more efficient in epigenome modification compared to complexes formed with nucleic acid sequence recognition modules having one tag domain. It is well-performed and can also modify the epigenome at locations more distant from the target nucleic acid sequence within the target region.
  • the number of tag domains linked to one nucleic acid sequence recognition module is 1 or more, preferably 2 or more (plurality), 3-10, 3-7, or 3-5.
  • the epigenome-modifying enzyme may be ligated with one binding partner, or may be ligated with a plurality of binding partners.
  • the binding partner may be linked to one epigenome-modifying enzyme, or may be linked to a plurality of epigenome-modifying enzymes.
  • the resulting complex is more efficient in performing epigenome modification compared to a complex comprising binding partners with one epigenome modifying enzyme;
  • the epigenome at more distant locations from the target nucleic acid sequence within the target region can also be modified.
  • the number of epigenome-modifying enzymes linked to one binding partner is 1 or more, preferably 2 or more (plurality), 3-10, 3-7, or 3-5.
  • the nucleic acid sequence recognition module and the epigenome modifying enzyme are configured such that one nucleic acid sequence recognition module and a plurality of epigenome modifying enzymes form a complex.
  • Epigenome modification can be performed more efficiently and the epigenome can be modified more distantly from the target nucleic acid sequence within the target region than when the enzyme forms a complex.
  • the nucleic acid sequence recognition module may, for example, be linked with multiple tag domains and one binding partner may be linked with multiple epigenome modifying enzymes.
  • the N-terminal or C-terminal amino acid of the protein in the nucleic acid sequence recognition module is shared with the C-terminal or N-terminal amino acid in the tag domain. forming a bond.
  • the order of the nucleic acid sequence recognition module and the tag domain is not particularly limited, and can be any order.
  • the nucleic acid sequence recognition module and the tag domain may be arranged in this order from the N-terminal side.
  • said tag domain and said nucleic acid sequence recognition module may be arranged in this order.
  • the order of the nucleic acid sequence recognition module and the plurality of tag domains is not particularly limited, but the tag domains are preferably arranged consecutively.
  • the nucleic acid is a first nucleic acid encoding a fusion protein in which the amino acid sequences of the nucleic acid sequence recognition module and the tag domain are integrated.
  • the amino acid at the N-terminus or C-terminus of the protein in the nucleic acid sequence recognition module is linked via a linker to the C-terminus or N-terminus of the tag domain. is bound to the amino acid of
  • the nucleic acid sequence recognition module is indirectly linked to a plurality of tag domains, only the nucleic acid sequence recognition module and the tag domain are linked via the linker, and the tag domains are linked directly.
  • both the nucleic acid sequence recognition module and the tag domain and between the tag domains may be linked via the linker.
  • the order of the nucleic acid sequence recognition module and the plurality of tag domains is not particularly limited, but the tag domains are preferably arranged consecutively.
  • the nucleic acid is a first nucleic acid encoding a fusion protein in which the amino acid sequences of the nucleic acid sequence recognition module and the tag domain are integrated.
  • the linker the description of the linker between the nucleic acid sequence recognition module and the epigenome modifying enzyme can be used.
  • the linker the description of the linker between the nucleic acid sequence recognition module and the epigenome modifying enzyme can be used.
  • the GCN4 peptide epitope described below is used as the tag domain and the GCN4 peptide epitope antibody is used as the binding partner
  • the length of the linker is preferably 17 to 30 amino acids, or 22 amino acids.
  • the N-terminal or C-terminal amino acid of the protein in the epigenome-modifying enzyme forms a covalent bond with the C-terminal or N-terminal amino acid in the binding partner.
  • the order of the epigenome-modifying enzyme and the binding partner is not particularly limited and can be any order.
  • the epigenome-modifying enzyme and the binding partner may be arranged in this order from the N-terminal side, A binding partner and said epigenome modifying enzyme may be arranged in this order.
  • the order of the epigenome-modifying enzyme and the plurality of binding partners is not particularly limited, but the binding partners are preferably arranged consecutively.
  • the nucleic acid constitutes a second nucleic acid encoding a fusion protein in which the amino acid sequences of the epigenome-modifying enzyme and the binding partner are integrated. .
  • the N-terminal or C-terminal amino acid of the protein in the epigenome-modifying enzyme is linked via a linker to the C-terminal or N-terminal amino acid in the binding partner. is connected with
  • the binding partner is indirectly linked to a plurality of epigenome-modifying enzymes, only the epigenome-modifying enzyme and the binding partner are linked via the linker, and the binding partners are directly linked Alternatively, both the epigenome-modifying enzyme and the binding partner and the epigenome-modifying enzyme may be connected via the linker.
  • the order of the binding partner and the plurality of epigenome-modifying enzymes is not particularly limited, but the epigenome-modifying enzymes are preferably arranged consecutively.
  • the nucleic acid constitutes a second nucleic acid encoding a fusion protein in which the amino acid sequences of the epigenome-modifying enzyme and the binding partner are integrated.
  • the linker the description of the linker between the nucleic acid sequence recognition module and the epigenome modifying enzyme can be used.
  • the GCN4 peptide epitope described below is used as the tag domain and the GCN4 peptide epitope antibody is used as the binding partner
  • the length of the linker is preferably 17 to 30 amino acids, or 22 amino acids.
  • the tag domain and the binding partner are specifically Any combination that binds can be used.
  • the combination of the tag domain and the binding partner include a combination of a peptide epitope and an antibody or aptamer that recognizes it, a combination of a split protein small fragment and a large fragment having self-assembly ability, and the like.
  • the tag domain is composed of a peptide
  • the tag domain can also be called a peptide tag.
  • Combinations of the peptide epitope and an antibody that recognizes it include, for example, GCN (General Control Non-derepressible) 4 peptide epitope and anti-GCN4 peptide epitope antibody; His tag and anti-His tag antibody; EE hexapeptide and anti-EE hexapeptide; Peptide antibody; c-Myc tag and anti-c-Myc tag antibody; HA tag and anti-HA tag antibody; S tag and anti-S tag antibody; FLAG tag and anti-FLAG tag antibody; ; vol.24 (5): pp.419-428 (2011)).
  • the GCN4 peptide may be an epitope contained in GCN4, and a specific example thereof is the amino acid sequence represented by ELLSKNYHLENEVARLKK (SEQ ID NO: 7).
  • a split protein that has the ability to self-assemble is a protein that can form the same structure as the original protein by reorganizing the two protein fragments when a protein is split into two.
  • a short peptide (small fragment) obtained by dividing the original protein into two may be used as the tag domain (peptide tag) and a long peptide (large fragment) may be used as the binding partner, or vice versa.
  • the split protein having the ability to self-assemble include GFP (Green Fluorescent Protein).
  • GFP Green Fluorescent Protein
  • the tag domain and the binding partner for example, a combination of a peptide and a protein domain that binds to the peptide may be used.
  • the combination of the peptide and the protein domain can be obtained, for example, from databases (PepBDB: http://huanglab.phys.hust.edu.cn/pepbdb/, PiSITE: https://pisite.sb.ecei.tohoku.ac. jp/cgi-bin/top.cgi, STRING: https://string-db.org/).
  • the PDZ Alpha-Syntrophin PDZ protein interaction domain can bind to GVKESLV (SEQ ID NO: 8).
  • GVKESLV can be used as the tag domain and the PDZ domain as the binding partner.
  • the binding strength of the pair of the peptide and the protein domain is such that another inert domain is linked to the linker. It may be strengthened by connecting via and improving with evolutionary engineering. Epigenome modification can be controlled more efficiently by using the pair obtained by the above improvement as the tag domain and the binding partner (Proc. Natl. Acad. Sci. USA, 2008, vol. 105 no. 18, 6578- 6583).
  • the nucleic acid sequence recognition module is a CRISPR-Cas system
  • the nucleic acid sequence recognition module and the epigenome modifying enzyme form a complex via the tag domain and the binding partner
  • the nucleic acid sequence recognition module Preferably, the Cas protein is linked to said tag domain.
  • Sequence information of the proteins, fusion proteins, or nucleic acids (eg, DNA or RNA) encoding them described herein can be obtained from Protein Data Bank, UniPort, GenBank, or the like.
  • the nucleic acid sequence of RNA can also be obtained from the corresponding DNA nucleic acid sequence by using sequence conversion software or the like as appropriate.
  • the DNA encoding the nucleic acid sequence recognition module and the DNA encoding the epigenome modifying enzyme described herein may be obtained by cloning from mRNA by molecular biological methods, or based on the sequence information, It may be obtained by chemically synthesizing DNA. In obtaining the DNA, codon optimization may be performed according to the animal or plant (host) into which the nucleic acid is to be introduced.
  • the nucleic acid can be expected to, for example, increase the protein expression level in the host.
  • Data on the frequency of codon usage in the host to be used can be obtained, for example, from the genetic code usage frequency database (http://www.kazusa.or.jp/codon/index. html), or refer to the literature describing the codon usage in each host.
  • the nucleic acids encoding the nucleic acid sequence recognition module and the epigenome modifying enzyme are configured such that the nucleic acid sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis.
  • the nucleic acid sequence recognition module and the epigenome modifying enzyme form a complex, bind to the nucleic acid sequence of the target region in the genomic DNA of the forming gamete, and form the epigenome of the target region. can be modified.
  • the nucleic acid is preferably constructed so that the expression-inducing timing of the nucleic acid sequence recognition module and the expression-inducing timing of the epigenome-modifying enzyme overlap in the gametogenesis.
  • the nucleic acid may be configured such that both the nucleic acid sequence recognition module and the epigenome-modifying enzyme are expressed at overlapping times during gametogenesis. Further, the nucleic acid is configured such that one of the nucleic acid sequence recognition module and the epigenome modifying enzyme is expressed during the gametogenesis and at a stage other than the gametogenesis, and the other is expressed during the gametogenesis. It may be configured as In addition, the nucleic acid encoding the nucleic acid sequence recognition module and the epigenome modifying enzyme is constantly expressed, and suppresses the expression of the nucleic acid sequence recognition module and/or the epigenome modifying enzyme at a time other than the gametogenesis. It may be configured to induce expression in gametogenesis by inducing the expression of a molecule (eg, siRNA, miRNA, shRNA, etc.).
  • a molecule eg, siRNA, miRNA, shRNA, etc.
  • the timing of the expression induction in the gametogenesis can be, for example, any timing until the precursor cells of the gametes differentiate into gametes.
  • the time of expression induction in the gametogenesis is, for example, the time from primordial germ cells to spermatogonia and spermatocytes to differentiate into sperm.
  • the time of expression induction in the gametogenesis is, for example, the time from primordial germ cells to oogonia and oocyte differentiation to ova.
  • the time of expression induction in gametogenesis is, for example, the time from pollen oocytes to differentiation into pollen.
  • the time of expression induction in the gametogenesis is, for example, the time from the embryo sac oocyte to the embryo sac.
  • the expression timing of the nucleic acid sequence recognition module and the epigenome modifying enzyme can be regulated, for example, by functionally linking a timing-specific promoter to the nucleic acids encoding them.
  • a timing-specific promoter to the nucleic acids encoding them.
  • the control of the expression time activates a gametogenesis-specific promoter that is activated in the gametogenesis.
  • the gametogenesis-specific promoters include spermatogenesis-specific promoters, oogenesis-specific promoters, pollen formation-specific promoters, germ sac formation-specific promoters, and the like.
  • the gametogenesis-specific promoter includes spermatogenesis-specific promoters, and specific examples thereof include STRA8 promoter, Pgk2 promoter, Dazl promoter, Gsg2 promoter and the like. Each promoter means the promoter sequence of each gene, and as a specific example, the STRA8 promoter is the promoter of the STRA8 gene.
  • the gametogenesis-specific promoter includes oogenesis-specific promoters, and specific examples thereof include Gdf-9 promoter, Zp3 promoter, Msx2 promoter and the like.
  • ⁇ Sperm-specific promoter Stra8 Patricia I Sadate-Ngatchou et.al., “Cre recombinase activity specific to postnatal, premeiotic male germ cells in transgenic mice”, Genesis, 2008 Dec;46(12):738-42
  • Pgk2 Tatsuo Kido et.al., "The testicular fatty acid binding protein PERF15 regulates the fate of germ cells in PERF15 transgenic mice", Dev Growth Differ, 2005 Jan;47(1):15-24.
  • Dazl Cory R Nicholas et.al., “Characterization of a Dazl-GFP germ cell-specific reporter”, Genesis, 2009 Feb;47(2):74-84 GSG2(haspin): Keizo Tokuhiro et al., “The 193-base pair Gsg2 (haspin) promoter region regulates germ cell-specific expression bidirectionally and synchronously”, Biol Reprod, 2007 Mar;76(3):407-14 ⁇ Egg-specific promoter Gdf-9: Zi-Jian Lan et.al., "Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice", Biol Reprod, 2004 Nov;71(5):1469 -74 Zp3: M Lewandoski et.al., "Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line
  • the expression stage can be regulated using, for example, a promoter whose expression is constantly induced.
  • a promoter whose expression is constantly induced.
  • the promoter include CAG promoter, SR ⁇ promoter, SV50 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcoma virus) promoter, MoMuLV (Moloney murine leukemia virus) promoter, HSV-TK. (herpes simplex virus thymidine kinase) promoter and the like.
  • the nucleic acid is preferably inserted into an expression vector.
  • the nucleic acid encoding the nucleic acid sequence recognition module and the nucleic acid encoding the epigenome modifying enzyme are respectively linked to the expression vector so that the nucleic acid sequence recognition module and the epigenome modifying enzyme can be expressed.
  • the expression vector can be prepared, for example, by inserting a nucleic acid encoding the nucleic acid sequence recognition module and/or a nucleic acid encoding the epigenome modifying enzyme into a backbone vector (hereinafter also referred to as a "basic vector"). .
  • the nucleic acid encoding the nucleic acid sequence recognition module and the nucleic acid encoding the epigenome modifying enzyme may be linked to the same expression vector or may be linked to different vectors.
  • the expression vector is the first expression vector.
  • a second expression vector wherein the first expression vector is operably linked to the first nucleic acid so that the nucleic acid sequence recognition module can be expressed, and the second expression vector comprises:
  • the second nucleic acid is operably linked so that the epigenome modifying enzyme can be expressed.
  • the nucleic acid sequence recognition module is composed of a plurality of elements, for example, when using the CRISPR-Cas system, part or all of each element may be linked to different expression vectors.
  • the basic vector can be appropriately selected according to the animal or plant that uses the composition of the present invention, that is, the host.
  • the expression vector include non-viral vectors such as plasmid vectors and viral vectors.
  • Plasmid vectors for animals include, for example, pCDM8, pMT2PC, pA1-11, pXT1, pRc/CMV, pRc/RSV, pcDNAI/Neo and the like.
  • Examples of plasmid vectors for plants include vectors containing T-DNA, and specific examples thereof include pGEM-T and the like.
  • the viral vectors include viral vectors such as retroviruses, vaccinia viruses, and adenoviruses.
  • the expression vector preferably has regulatory sequences that regulate the expression of the nucleic acid sequence recognition module and the epigenome modifying enzyme.
  • the regulatory sequences include, for example, promoters, terminators, enhancers, polyadenylation signal sequences, replication origin sequences (ori) and the like. Arrangement of the regulatory sequence in the expression vector is not particularly limited as long as it is arranged so that the expression of the nucleic acid sequence recognition module and/or the epigenome modifying enzyme can be functionally regulated. can be placed
  • the regulatory sequence for example, a sequence provided in advance in the basic vector may be used, the regulatory sequence may be further inserted into the basic vector, or the regulatory sequence provided in the basic vector may be may be replaced by the regulatory sequences of
  • the expression vector may, for example, further have a coding sequence for a selectable marker.
  • selectable marker include drug resistance markers, fluorescent protein markers, enzyme markers, cell surface receptor markers and the like.
  • Insertion of nucleic acid (DNA), insertion of the regulatory sequence, and/or insertion of the coding sequence of the selectable marker into the expression vector may be performed by, for example, a method using restriction enzymes and ligase, A commercially available kit or the like may be used.
  • composition of the present invention contains multiple expression vectors
  • the composition of the present invention can also be called, for example, a nucleic acid kit or an expression vector kit.
  • the kit may further include an instruction manual and the like, for example.
  • the present invention provides methods for producing parental line animals and plants that can be used to produce and/or maintain epigenome-modified animals and plants.
  • the production method of the present invention is a method of producing a parent line of an animal or plant with modified epigenome, and includes a step of introducing the composition of the present invention into a target animal or plant (introduction step). According to the first production method of the present invention, it is possible to produce parent line animals and plants that can be used for the production and/or maintenance of epigenome-modified animals and plants.
  • the introduction step by introducing the composition of the present invention, that is, the nucleic acid or an expression vector containing the same, into the target animal or plant, for example, the nucleic acid in the composition of the present invention, that is, the nucleic acid sequence recognition module and a step of producing a parent line animal or plant containing a nucleic acid encoding the epigenome-modifying enzyme.
  • the target animals and plants are, for example, plant cells that form callus and the like and can develop into plant individuals; animal cells that can develop into animal individuals such as fertilized eggs and animal embryos (embryos, blastocysts); etc.
  • the animals and plants exclude, for example, humans.
  • the introduction method in the introduction step can be implemented, for example, by a known method for producing transformants or genetically modified animals and plants.
  • the target animals and plants when introducing into cells such as plant cells such as plant callus; animal cells such as ES cells, fertilized eggs, and animal embryos (embryos, blastocysts); , for example, introduction methods using gene guns such as particle guns, calcium phosphate methods, polyethylene glycol methods, lipofection methods using liposomes, electroporation methods, ultrasonic nucleic acid introduction methods, DEAE-dextran methods, direct methods using micro glass tubes, etc.
  • gene guns such as particle guns, calcium phosphate methods, polyethylene glycol methods, lipofection methods using liposomes, electroporation methods, ultrasonic nucleic acid introduction methods, DEAE-dextran methods, direct methods using micro glass tubes, etc.
  • Examples thereof include an injection method, a microinjection method, a hydrodynamic method, a cationic liposome method, a method using an introduction aid, and a method via Agrobacterium.
  • Examples of the liposome include lipofectamine and cationic liposome, and examples of the introduction aid include atelocollagen, nanoparticles, and polymers.
  • the composition of the present invention may be introduced into the plant using the Agrobacterium method.
  • the introduction step is preferably carried out by an introduction method in which the nucleic acid in the composition of the present invention is integrated into the genomic DNA of the target animal or plant.
  • the nucleic acid of the composition of the present invention is introduced (inserted) into the genomic DNA of the target animal or plant by introducing the composition of the present invention into the target animal or plant. into (insert) a nucleic acid encoding the nucleic acid sequence recognition module and a nucleic acid encoding the epigenome modifying enzyme.
  • the introduction method for integration into the genomic DNA a method combining the aforementioned introduction method into cells with a method using homologous recombination or a method using genome editing technology can be used.
  • the introduction method may be performed by introducing the composition of the present invention into germ cells.
  • the introduction method for example, a method of introducing exogenous DNA into germ cells of mammals can be used (eg, Gordon, et al., PNAS, 77: 7380-84 (1980); Gordon and Ruddle , Science, 214:1244-46 (1981); Palmiter and Brinster, Cell, 41:343-45 (1985); Brinster, et al., PNAS, 82:4438-42 (1985), etc.).
  • a method of introducing exogenous DNA into germ cells of mammals can be used (eg, Gordon, et al., PNAS, 77: 7380-84 (1980); Gordon and Ruddle , Science, 214:1244-46 (1981); Palmiter and Brinster, Cell, 41:343-45 (1985); Brinster, et al., PNAS, 82:4438-42 (1985), etc.).
  • RNA encoding Cas protein such as Cas9 RNA or Cas protein such as Cas9 protein and guide RNA are introduced into germ cells together with foreign DNA.
  • Cas protein such as Cas9 RNA
  • Cas protein such as Cas9 protein and guide RNA
  • the first production method of the present invention includes, after the introducing step, the plant cell or the animal It is preferable to include the step of generating plant or animal individuals from cells.
  • the method for generating the plant individual can be carried out, for example, by a known method of forming shoots from callus and regenerating the plant individual.
  • the animal individual in the method for generating the animal individual, for example, the animal individual can be obtained as a litter by transplanting the animal cell into a pseudopregnant mother to develop and give birth.
  • the first production method of the present invention may include, after the introducing step, the step of selecting animals and plants in which the nucleic acid encoding the nucleic acid sequence recognition module and the nucleic acid encoding the epigenome modifying enzyme have been integrated into their genomic DNA. .
  • the selection is performed, for example, by decoding the genomic DNA of the animal or plant after the introduction step, examining whether the nucleic acid encoding the nucleic acid sequence recognition module and the nucleic acid encoding the epigenome modifying enzyme is included, and selecting.
  • the genomic DNA of animals and plants after the introduction step may be detected and selected using primers and/or probes for the nucleic acid encoding the nucleic acid sequence recognition module and the nucleic acid encoding the epigenome modifying enzyme. and may be selected using selectable markers.
  • the present invention provides parental strains of animals and plants that can be used for the production and/or maintenance of epigenome-modified animals and plants.
  • the parental line of animals and plants of the present invention is a parental line of animals and plants for production or maintenance of epigenome-modified animals and plants, wherein the animals and plants contain exogenous nucleic acids, and the nucleic acids modify the epigenome in genomic DNA.
  • a nucleic acid encoding a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region, and an epigenome-modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and capable of modifying the epigenome
  • the nucleic acid is configured such that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis, and the nucleic acid sequence recognition module and the epigenome modifying enzyme whose expression is induced in the gametogenesis form a complex to modify the epigenome of target regions in the genomic DNA of forming gametes.
  • the parent line used for producing the animal or plant in which the epigenome of the target region is modified and the epigenome of the target region are used according to the type of gamete whose epigenome is modified. can produce a parental line used for maintenance as a parental line of animals and plants that have been modified.
  • Said exogenous nucleic acid is, for example, derived from the nucleic acid of said composition of the invention.
  • the exogenous nucleic acid is preferably inserted into the genomic DNA of the parent strain because it allows the parent strain to be stably maintained.
  • the gamete whose epigenome is modified is a sperm
  • modification of the epigenome of the target region occurs in spermatogenesis of the male parent line. Therefore, when the gamete whose epigenome is modified is a sperm, the parent line used for producing the epigenome-modified animal or plant is a male parent line, and the line used for maintaining the parent line as an animal or plant is Female parent line.
  • the epigenome of the target region is modified in cells at the stage of differentiation from primordial germ cells to sperm, but differentiation from the primordial germ cell to sperm constituting the male parent line
  • the epigenome of the target region is not modified in cells other than the staged cells.
  • the cells that make up the female parental line are not epigenome-modified in the target region.
  • the exogenous nucleic acid is preferably operably linked to a spermatogenesis-specific promoter.
  • the parent line used for producing the animal or plant with the epigenome modified is a female parent line, and the line used for maintaining the parent line as an animal or plant is It is the male parent line.
  • the female parent line for example, in cells at the stage of differentiation from primordial germ cells to eggs, the epigenome of the target region is modified.
  • the epigenome of the target region is not modified in cells other than cells at the stage of differentiation.
  • the cells that make up the male parental line are not epigenome modified in the target region.
  • the exogenous nucleic acid is preferably operably linked to a spermatogenesis-specific promoter.
  • the parent line of animals and plants includes a chromosome into which the exogenous nucleic acid is integrated and the exogenous nucleic acid into which the exogenous nucleic acid is integrated. It is preferred to have a wild-type chromosome with no
  • the present invention provides gametes that can be used to produce epigenome-modified animals and plants and/or to produce parental lines for maintenance.
  • Gametes of the present invention are gametes isolated from plants and animals of the parent line of the present invention. According to the gamete of the present invention, it is possible to produce animals and plants in which the epigenome of the target region is modified, and animals and plants of the parent line for production or maintenance of animals and plants in which the epigenome is modified.
  • the gametes can be isolated, for example, from plants and animals of the parent line.
  • the isolation method can be appropriately set according to, for example, the type of gamete.
  • Said gametes may, for example, be stored after isolation from said parent line of animals or plants.
  • the method of preservation can be appropriately selected according to the type of gamete, and examples thereof include preservation under liquid nitrogen.
  • the gamete preferably has a modified epigenome in the target region.
  • the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex in the gamete formation, and the epigenome of the target region in the genomic DNA of the gamete being formed. can be isolated from the modified parental line of plants and animals.
  • the gamete When the gamete is used to produce an animal or plant in which the epigenome of the target region is modified, the gamete may or may not contain the exogenous nucleic acid, but preferably does not contain it. In addition, when the gametes are used for the production of the epigenome-modified animals and plants or the production of the maintenance parent line animals and plants, the gametes contain the exogenous nucleic acid.
  • the present invention provides a method for producing an animal or plant in which the epigenome of the target region is modified.
  • the production method of the present invention is a method for producing an animal or plant in which the epigenome of the target region is modified, wherein the first parent and the second parent are crossed, and the obtained progeny individual is an individual whose epigenome is modified. (crossbreeding step), wherein the first parent and/or the second parent are plants and animals of the parent line of the present invention.
  • animals and plants in which the epigenome of the target region is modified can be produced.
  • one of the first parent and the second parent may be the animal or plant of the parent line of the present invention, or both may be the animal or plant of the parent line of the present invention.
  • the one parent an animal or plant of the parent line of the present invention
  • in the second production method of the present invention in the genomic DNA, the epigenome of the target region in one chromosome of the set of chromosomes is modified. plants or animals in which the epigenome of the target region of one chromosome (eg, the Y chromosome) has been modified.
  • the epigenome of the target region in both chromosomes of one set of chromosomes is modified in the genomic DNA. animals and plants can be obtained.
  • gametes of the first parent and/or the second parent may be used instead of the animal or plant individual.
  • the crossbreeding of the first parent and the second parent can be carried out by a known method.
  • the second production method of the present invention individuals that do not contain the exogenous nucleic acid may be selected from the progeny individuals.
  • the second production method of the present invention is similar to animals and plants in which the epigenome of the target region is not modified except that the epigenome of the target region is modified, and which does not have the exogenous nucleic acid. individual can be obtained.
  • the exogenous nucleic acid can be detected, for example, by detecting the nucleic acid encoding the nucleic acid sequence recognition module and/or the nucleic acid encoding the epigenome modifying enzyme.
  • the invention provides plants and animals in which the epigenome of the target region is modified.
  • the first animal or plant of the present invention is an animal or plant in which the epigenome of the target region is modified, and the animal or plant contains, as the target region, the target region in which the epigenome derived from the gamete of the present invention is modified, It does not contain said exogenous nucleic acid.
  • the first animals and plants of the present invention are animals and plants in which the epigenome of the target region is not modified except that the epigenome of the target region is modified and which does not have the exogenous nucleic acid (wild-type animals and plants). They are similar individuals. Therefore, according to the first animal and plant of the present invention, for example, by comparing with the wild-type animal and plant, it can be suitably used for functional analysis of the epigenome in the target region.
  • the first animal or plant of the present invention is such that the epigenome of the target region in the cells constituting the first animal or plant is the epigenome of a wild-type animal or plant. different.
  • the second animal or plant of the present invention is an animal or plant in which the epigenome of the target region is modified, the animal or plant contains an exogenous nucleic acid, the nucleic acid is the nucleic acid sequence of the target region in which the epigenome is modified in the genomic DNA.
  • the sequence recognition module and the epigenome modifying enzyme are configured to be induced to be expressed in the gametogenesis by being functionally linked to a gametogenesis-specific promoter that is activated in the animal and plant
  • the target region includes a target region derived from a gamete in which the epigenome of the target region is modified by forming a complex between the nucleic acid sequence recognition module whose expression is induced in the gametogenesis and the epigenome modifying enzyme.
  • the second animal or plant of the present invention is an individual similar to the animal or plant having the exogenous nucleic acid, in which the epigenome of the target region is not modified except that the epigenome of the target region is modified. Therefore, according to the second animal or plant of the present invention, for example, it can be suitably used for the functional analysis of the epigenome in the target region by comparing with the animal or plant of the parent line used for the maintenance.
  • Example 1 Using the composition of the present invention, it is possible to produce a parent line of animals and plants that can be used for the production and maintenance of animals and plants with modified epigenomes, and to obtain offspring lines in which the target region of the epigenome is modified from the parent line. confirmed.
  • Target region Igf2 gene is an imprinting gene, and in chromosomes derived from male parents, the DMR region (H19-DMR) of the Igf2 gene is methylated, whereas in chromosomes derived from female parents is unmethylated in the DMR region (H19-DMR) of the Igf2 gene.
  • systemic demethylation of H19-DMR causes abnormal methylation of the DMR region of the mouse Igf2 gene, that is, H19-DMR in male parent-derived chromosomes. It has been separately confirmed that demethylation of the DMR renders the mice stunted and unable to reproduce, symptoms of Silver-Russell syndrome. Therefore, the DMR region of the Igf2 gene was selected as a model for the target region.
  • Example 2 Vector construction The expression vector used in Example 1 was constructed from the all-in-one epigenome editing vector (pPlatTET-gRNA2-H19DMRx9) of Reference 1 below.
  • the epigenome editing vector of Reference Document 1 5 copies of the GCN4 peptide (ELLSKNYHLENEVARLKK (SEQ ID NO: 9)) are linked between each peptide via a 22 amino acid linker (GSGSGGGSGSGSGGGSGSGGSGSG: SEQ ID NO: 10) to form a tag domain (SunTag). and the tag domain is linked to dCas9 to form a fusion protein.
  • an anti-GCN4 single-chain antibody (scFv) is linked to the catalytic site (TET1CD) of the TET1 protein via sfGFP (superfolder green fluorescent protein) to form a fusion protein.
  • scFv anti-GCN4 single-chain antibody
  • TET1CD catalytic site of the TET1 protein
  • sfGFP superfolder green fluorescent protein
  • Example 3(B) the nucleic acid encoding these fusion proteins and the nucleic acid encoding sgRNA are arranged consecutively downstream of the CAG promoter. Therefore, in Example 1, the CAG promoter was replaced with the promoter of the Stra8 gene, which is specifically expressed during spermatogenesis, and used as the epigenome editing vector (pStrPlATTET-gRNA2-H19DMRx9) of the Examples.
  • the epigenome-editing vectors of the above Examples were used after being linearized with a restriction enzyme (ApaLI) prior to microinjection, which will be described later.
  • the recovered zygotes were treated with M2 medium (manufactured by Sigma-Aldrich) containing 0.1% hyaluronidase (manufactured by Sigma-Aldrich) for several minutes, and then the obtained zygotes were washed with the M2 medium.
  • the washed fertilized eggs were transferred into drops of M16 medium containing penicillin and streptomycin (manufactured by Sigma-Aldrich) at 37°C.
  • the linearized epigenome editing vector of the example was introduced into the fertilized egg. Specifically, by microinjection, the linearized epigenome editing vector (35 ng/ ⁇ l) of Example 1 (2) was injected into the pronucleus of a fertilized egg in the M16 medium of Example 1 (3). injected into. The injected embryos were cultured in air at 37° C., 5% CO 2 using M16 medium. The next day, the embryos that had developed to the 2-cell stage were transplanted into the oviduct ampulla of pseudopregnant female ICR mice (purchased from CLEA Japan). The number of embryos transferred was 20 to 25 per oviduct.
  • genomic DNA was extracted from the tip of the tail of the mouse using a genomic DNA extraction kit (DirectPCR Lysis Reagent, Mouse Tail, manufactured by Viagenbiotech). The obtained genomic DNA was subjected to PCR using the primer sets shown in Table 2 below, and it was examined whether an amplified fragment derived from the epigenome editing vector of the above example could be obtained. As a result, it was confirmed that the epigenome editing vector of the above example was inserted into the genomic DNA in 9 of the 41 individuals.
  • a genomic DNA extraction kit DirectPCR Lysis Reagent, Mouse Tail, manufactured by Viagenbiotech
  • mice in which the insertion of the epigenome editing vector of the above example was confirmed By backcrossing the mice in which the insertion of the epigenome editing vector of the above example was confirmed to B6 mice, three fertile recombinant mouse strains (441-2, 445-7, 445-14) and their sublines was established. Newborn mice of each subline were weighed. In addition, mouse-derived sperm from the subline was collected and frozen at -80°C until DNA extraction.
  • the frozen sperm pellet was treated with an RSB solution containing sodium dodecyl sulfate (final concentration 2%), 2-mercaptoethanol (final concentration 2%) and proteinase K (final concentration 1 mg/ml). was suspended using The composition of the RSB solution was 10 mmol/l NaCl, 10 mmol/l Tris (pH 7.5), and 25 mmol/l EDTA. After the suspension, the suspension was incubated at 56° C. overnight (about 8 hours), extracted with phenol/chloroform, and precipitated with ethanol to isolate DNA.
  • the isolated DNA was treated using a bisulfite treatment kit (Epitect Plus DNA Bisulfite Kit, manufactured by QIAGEN). Then, the treated DNA was amplified by PCR using the primer set shown in Table 3 below. Demethylation rate of CpG sites was determined by combined bisulfite restriction analysis (COBRA). Specifically, the amplified fragments obtained by PCR were cleaved with the restriction enzymes shown in Table 3 below. The sites (CpG sites) recognized by each restriction enzyme are shown in Table 3 below. Separation and quantification of the PCR-amplified fragments were performed using a capillary microchip electrophoresis device (MCE-202 MultiNA, manufactured by Shimadzu Corporation). The methylation rate was calculated by the following formula (1).
  • FIG. 4 is a graph showing the methylation rate in mouse-derived sperm of the subline.
  • the horizontal axis indicates the mouse strain, and the vertical axis indicates the methylation rate.
  • sperm-specific epigenome-altered mice had significantly reduced methylation in sperm compared to wild-type mice. Therefore, it was confirmed that introduction of the composition of the present invention enables gamete-specific modification of the epigenome of the target region.
  • mice of the above sublines were used as male parent strains and crossed with wild-type B6 mice to obtain F1 progeny individuals.
  • the female mouse of the subline was used as a female parent strain, and crossed with a wild-type B6 mouse to obtain an F1 progeny individual.
  • the epigenome editing vector was inserted into the genomic DNA.
  • genomic DNA was extracted using the F1 progeny newborn mouse and a DNA extraction kit (AllPrep DNA/RNA Mini Kit, manufactured by QIAGEN).
  • the methylation rate was measured in the same manner as in Example 1 (5) above, except that the genomic DNA was used instead of the isolated DNA. These results are shown in FIGS. 5-8.
  • Fig. 5 is a graph showing the body weight of F1 progeny individuals derived from the male parent line.
  • the horizontal axis indicates the mouse strain, and the vertical axis indicates the body weight.
  • progeny individuals of sperm-specifically modified epigenome mice lost weight compared to wild-type mice. That is, it was presumed that the modification of the epigenome causes developmental delay, similar to Silver-Russell syndrome.
  • FIG. 6 is a graph showing the body weight of the F1 progeny individuals derived from the male parent line or the female parent line.
  • the horizontal axis indicates the mouse strain
  • the vertical axis indicates the body weight.
  • F1 progeny individuals from the female parental line exhibited similar body weights to wild-type mice.
  • F1 progeny derived from male parental strains had significantly decreased body weight compared to F1 progeny derived from wild-type mice and female parental strains. That is, in the female parent line, the spermatogenesis-specific promoter does not operate, the epigenome is not modified, and weight loss does not occur, whereas in the male parent line, the spermatogenesis-specific promoter operates. However, it was presumed that the epigenome was altered and developmental delay occurred as in Silver-Russell syndrome.
  • FIG. 7 is a graph showing the methylation rate of the target region of F1 progeny individuals derived from the male or female parent line.
  • (A) shows the results for the CpG site (m2)
  • (B) shows the results for the CpG site (m3).
  • the horizontal axis indicates the mouse strain
  • the vertical axis indicates the methylation rate.
  • F1 progeny individuals derived from the female parental line showed a methylation rate comparable to that of wild-type mice.
  • the F1 progeny derived from the male parent strain had a significantly decreased methylation rate compared to the F1 progeny derived from the wild-type mouse and the female parent strain. That is, in the female parent line, the spermatogenesis-specific promoter does not operate, the epigenome is not modified, and methylation does not change, whereas in the male parent line, the spermatogenesis-specific promoter operates. However, it was confirmed that the epigenome of the target region was modified by being targeted after demethylating enzyme was induced.
  • FIG. 8 is a graph showing the methylation rate and body weight with and without epigenome editing vector insertion.
  • (A) shows the results of the methylation rate of the CpG site (m3)
  • (B) shows the results of the body weight of the newborn.
  • the horizontal axis indicates the presence or absence of insertion of the mouse strain or epigenome editing vector into the genomic DNA
  • the vertical axis indicates the methylation rate.
  • the horizontal axis indicates the presence or absence of insertion of the mouse strain or epigenome editing vector into the genomic DNA
  • the vertical axis indicates body weight. As shown in FIG.
  • the F1 progeny strain of the male parent strain has a lower methylation rate than the wild-type mouse. rice field.
  • the F1 progeny strain of the male parent strain has decreased body weight compared to the wild-type mouse. rice field. From these results, if epigenome modification occurs during gametogenesis, then even if there is no epigenome editing vector, that is, the sequence recognition module dCas9 and sgRNA, and the epigenome modification enzyme TET1CD It was found that epigenome modifications were maintained even without induction.
  • the epigenome editing vector can be passaged by backcrossing to B6 mice, it can be said that the mouse in which the epigenome editing vector has been introduced into the genomic DNA can also be used as a parental strain for strain maintenance. .
  • composition of the present invention can be used to produce a parent line of animals and plants that can be used for the production and maintenance of epigenome-modified animals and plants, and a offspring line in which the target region of the epigenome is modified from the parent line. was found to be obtained.
  • the nucleic acid is a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA; an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and modifying the epigenome; comprising a nucleic acid encoding
  • the nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis.
  • the nucleic acid comprises a first nucleic acid and a second nucleic acid;
  • the first nucleic acid is a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA; a tag domain linked to the nucleic acid sequence recognition module; comprising a nucleic acid encoding
  • the second nucleic acid is an epigenome-modifying enzyme capable of modifying the epigenome; a tag domain binding partner linked to the epigenome modifying enzyme and capable of binding to the tag domain; comprising a nucleic acid encoding
  • the first nucleic acid and/or the second nucleic acid are operably linked to a gametogenesis-specific promoter that is activated in gametogenesis
  • the nucleic acid sequence recognition module is the CRISPR-Cas system;
  • the CRISPR-Cas system is a guide strand comprising a nucleic acid sequence that specifically binds to a nucleic acid sequence in the target region; a Cas protein; including 5.
  • the nucleic acid sequence recognition module is the CRISPR-Cas system;
  • the CRISPR-Cas system is a guide strand comprising a nucleic acid sequence that specifically binds to a nucleic acid sequence in the target region; a Cas protein; 5.
  • (Appendix 8) 8.
  • a composition according to any one of Appendices 1 to 7, wherein said target region is the control region and/or the promoter region of an imprinted gene. (Appendix 9) 9.
  • Appendix 10 Appendices 1 to 9, wherein the epigenome-modifying enzyme is a methylase, demethylase, acetylase, deacetylase, phosphorylation enzyme, dephosphorylation enzyme, ubiquitinase, and/or sumoylation enzyme
  • composition according to any one of Appendices 1 to 10 wherein the epigenome-modifying enzyme is TET (ten-eleven translocation) 1, TET2, TET3, DNMT (DNA Methyltransferase) 1, DNMT3A, and/or DNMT3B.
  • TET ten-eleven translocation
  • DNMT DNA Methyltransferase
  • Appendix 12 12.
  • Appendix 13 13.
  • (Appendix 14) 13 The composition according to any one of paragraphs 1 to 12, wherein said gametogenesis-specific promoter is Gdf-9 promoter, Zp3 promoter and/or Msx2 promoter.
  • (Appendix 15) comprising an expression vector; 15.
  • (Appendix 16) comprising a first expression vector and a second expression vector; The first expression vector is functionally linked to the nucleic acid so that the nucleic acid sequence recognition module can be expressed, 16.
  • ⁇ Production method of parent line> (Appendix 17) A method for producing an epigenome-modified animal or plant parent line, comprising: 17. A production method, comprising the step of introducing the composition according to any one of Appendixes 1 to 16 into a target animal or plant. (Appendix 18) 18. The production method according to Appendix 17, wherein the animal or plant is a non-human animal.
  • the nucleic acid is a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA; an epigenome-modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and capable of modifying the epigenome; comprising a nucleic acid encoding
  • the nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis.
  • the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of the target region in the genomic DNA of the gamete being formed.
  • the nucleic acid comprises a first nucleic acid and a second nucleic acid;
  • the first nucleic acid is a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA; a tag domain linked to the nucleic acid sequence recognition module; comprising a nucleic acid encoding
  • the second nucleic acid is an epigenome-modifying enzyme capable of modifying the epigenome; a tag domain binding partner linked to the epigenome modifying enzyme and capable of binding to the tag domain; comprising a nucleic acid encoding
  • the first nucleic acid and/or the second nucleic acid are operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the nucleic acid sequence recognition module and the epigenome modifying enzyme are , configured to be induced to be expressed in gametogenesis, In the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome
  • the nucleic acid sequence recognition module is the CRISPR-Cas system;
  • the CRISPR-Cas system is a guide strand comprising a nucleic acid sequence that specifically binds to a nucleic acid sequence in the target region; a Cas protein; including 23.
  • the nucleic acid sequence recognition module is the CRISPR-Cas system;
  • the CRISPR-Cas system is a guide strand comprising a nucleic acid sequence that specifically binds to a nucleic acid sequence in the target region; a Cas protein; 24.
  • (Appendix 27) 27 The animal or plant according to any one of Appendices 19 to 26, wherein the epigenome-modifying enzyme is a base-modifying enzyme.
  • Appendix 28 Appendices 19 to 27, wherein the epigenome-modifying enzyme is a methylase, demethylase, acetylase, deacetylase, phosphorylation enzyme, dephosphorylation enzyme, ubiquitinase, and/or sumoylation enzyme Animals and plants according to any one of (Appendix 29) 29.
  • the epigenome-modifying enzyme is TET (ten-eleven translocation) 1, TET2, TET3, DNMT (DNA Methyltransferase) 1, DNMT3A, and/or DNMT3B.
  • the gametogenesis-specific promoter is a spermatogenesis-specific promoter or an oogenesis-specific promoter.
  • Appendix 33 comprising an expression vector; 33.
  • Appendix 34 comprising a first expression vector and a second expression vector;
  • the first expression vector is functionally linked to the nucleic acid so that the nucleic acid sequence recognition module can be expressed, 34.
  • Appendix 35 35.
  • Appendix 36 36.
  • the gametogenesis-specific promoter is a spermatogenesis-specific promoter;
  • the parent line used for the production is a male parent line, 37.
  • the animal or plant according to any one of Appendices 19 to 36, wherein the parental line used for maintenance is a female parental line.
  • the gametogenesis-specific promoter is an oogenesis-specific promoter,
  • the parent line used for the production is a female parent line, 37.
  • the animal or plant according to any one of Appendices 19 to 36, wherein the parental line used for maintenance is a male parental line.
  • Gametes used for the production of epigenome-modified animals and plants or the production of parent line animals and plants for maintenance, 40.
  • Appendix 41 41.
  • Appendix 42 42.
  • Appendix 44 A method for producing an animal or plant in which the epigenome of the target region is modified, crossing the first parent and the second parent and obtaining an epigenome-altered individual from the resulting progeny individual; The production method, wherein the first parent and/or the second parent are plants and animals of the parent line according to any one of Appendices 19 to 39. (Appendix 45) 45.
  • the production method according to Appendix 44 comprising the step of selecting individuals that do not contain the nucleic acid from the progeny individuals.
  • Appendix 46 An animal or plant in which the epigenome of the target region is modified, The animals and plants are The target region comprises a target region in which the gamete-derived epigenome according to any one of Appendices 40 to 42 is modified, does not contain the exogenous nucleic acid; flora and fauna.
  • Appendix 47 The animal or plant according to appendix 46, which is obtained by the production method according to appendix 44 or 45.
  • Appendix 48 48.
  • the animal or plant according to Appendix 46 or 47 wherein the animal or plant is a non-human animal.
  • the nucleic acid is a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA; an epigenome-modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and capable of modifying the epigenome; comprising a nucleic acid encoding
  • the nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis.
  • the animal or plant is derived from a gamete in which the epigenome of the target region is modified by forming a complex between the nucleic acid sequence recognition module whose expression is induced in the gametogenesis and the epigenome modifying enzyme as the target region. Animals and plants, including target areas.
  • the first nucleic acid is a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence in a target region to modify the epigenome in the genome; a tag domain linked to the nucleic acid sequence recognition module; comprising a nucleic acid encoding
  • the second nucleic acid is an epigenome-modifying enzyme capable of modifying the epigenome; a tag domain binding partner linked to the epigenome modifying enzyme and capable of binding to the tag domain; comprising a nucleic acid encoding said first nucleic acid and/or said second nucleic acid is operably linked to a gamete-specific promoter that is activated in gametogenesis;
  • the animal or plant is derived from a gamete in which the epigenome of the target region is modified by forming a complex between the nucleic acid sequence recognition module whose expression is induced in the gametogenesis and the epigenome modifying enzyme as the target region.
  • composition of the present invention it is possible to produce parent line animals and plants that are capable of producing and maintaining epigenome-modified animals and plants. Therefore, according to the present invention, it can be suitably used for analysis of diseases caused by changes in the epigenome. Therefore, the present invention is extremely useful in, for example, the fields of life science and medicine.

Abstract

Provided is a composition for producing a parental-line animal/plant capable of producing and maintaining an epigenome-modified animal/plant. A composition according to the present invention is employed in producing a parental-line animal/plant employed in producing or maintaining an epigenome-modified animal/plant, wherein: the composition contains nucleic acids; the nucleic acids contain nucleic acids coding for a nucleic-acid-sequence recognition module that specifically binds to a nucleic acid sequence in a target region, in which an epigenome modification is performed in a genomic DNA, and an epigenome modifying enzyme that is capable of modifying an epigenome; the sequence recognition module and the epigenome modifying enzyme can form a complex; the nucleic acids are configured so that, as a result of being functionally joined with a gametogenesis-specific promoter activated in a gametogenesis, the expressions of the sequence recognition module and the epigenome modifying enzyme are induced in the gametogenesis; and, in the gametogenesis, the nucleic-acid-sequence recognition module and the epigenome modifying enzyme, the expressions of which have been induced, form a complex and modify an epigenome in the target region in the genomic DNA of a gamete in the process of the gametogenesis.

Description

エピゲノムが改変された動植物の親系統の製造に用いるための組成物およびその用途COMPOSITION FOR PRODUCTION OF ANIMAL AND PLANT PARENT LINES HAVING EPIGENOME MODIFIED AND USE THEREOF
 本発明は、エピゲノムが改変された動植物の親系統の製造に用いるための組成物およびその用途に関する。 The present invention relates to a composition for use in the production of epigenome-modified animal and plant parent strains and uses thereof.
 動植物の遺伝子発現は、エピジェネティックに修飾されている。前記エピジェネティック修飾としては、ゲノムDNAのメチル化および脱メチル化;ヒストンのアセチル化、脱アセチル化、リン酸化、脱リン酸化、ユビキチン化、およびSUMO化;等が知られており、各修飾により、遺伝子発現に対して異なる制御が行なわれていることが明らかとなっている(非特許文献1)。 Gene expression in animals and plants is epigenetically modified. As the epigenetic modification, genomic DNA methylation and demethylation; histone acetylation, deacetylation, phosphorylation, dephosphorylation, ubiquitination, and sumoylation; , has been shown to regulate gene expression differently (Non-Patent Document 1).
 近年、様々な疾患において、遺伝子改変技術を用い、遺伝子改変マウスを作製することにより、原因遺伝子が特定されている。他方、前記エピジェネティック修飾の変化が、疾患の原因となることも示唆されている。 In recent years, the causative genes of various diseases have been identified by creating genetically modified mice using genetic modification technology. On the other hand, it has also been suggested that changes in said epigenetic modifications cause diseases.
 本発明者らは、各種疾患におけるエピジェネティック修飾の役割を検討するため、以下の方法により、ゲノムDNAのエピジェネティック修飾が改変されたマウス、すなわち、エピゲノムが改変されたマウスを作製した。具体的には、CRISPR/Cas9法で用いられるCas9タンパク質のヌクレアーゼ活性を不活化したdCas9を用いて、脱メチル化酵素であるTET(ten-eleven translocation)1(TET1)を、標的領域に標的化し、前記標的領域のエピゲノムの改変を行なった。しかしながら、一般的な遺伝子改変マウスと同様に、ゲノムDNAにdCas9およびTET1をコードする核酸を導入し、全身性にdCas9およびTET1の発現を誘導させたところ、前記標的領域のエピゲノムが改変されたマウスは得られたものの、前記標的領域によっては、得られたエピゲノムマウス改変マウスの成長不良、性成熟前の死亡等により、繁殖による維持が困難になるという問題が生じた。 In order to investigate the role of epigenetic modification in various diseases, the present inventors produced mice with modified epigenetic modification of genomic DNA, that is, mice with modified epigenome, by the following method. Specifically, using dCas9 that inactivates the nuclease activity of the Cas9 protein used in the CRISPR / Cas9 method, the demethylase TET (ten-eleven translocation) 1 (TET1) is targeted to the target region. , performed epigenome modifications of the target region. However, similar to general genetically modified mice, the nucleic acid encoding dCas9 and TET1 was introduced into genomic DNA, and the expression of dCas9 and TET1 was induced systemically, and the epigenome of the target region was modified. However, depending on the target region, the resulting epigenome-modified mice had poor growth, died before sexual maturity, and the like, making maintenance by breeding difficult.
 そこで、本発明は、エピゲノムが改変された動植物の製造および維持が可能な親系統の動植物を製造するための組成物の提供を目的とする。 Therefore, the object of the present invention is to provide a composition for producing parent line animals and plants that enable the production and maintenance of epigenome-modified animals and plants.
 前記目的を達成するため、本発明の組成物は、エピゲノムが改変された動植物の製造または維持用親系統の動植物の製造に用いるための組成物であって、
前記組成物は、核酸を含み、
前記核酸は、
 ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
 前記核酸配列認識モジュールと複合体を形成可能であり、かつエピゲノムを改変可能なエピゲノム改変酵素と、
をコードする核酸を含み、
前記核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変する。
In order to achieve the above object, the composition of the present invention is a composition for use in producing epigenome-modified animals and plants or producing parent line animals and plants for maintenance,
the composition comprises a nucleic acid;
The nucleic acid is
a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and modifying the epigenome;
comprising a nucleic acid encoding
The nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis. configured,
In the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of the target region in the genomic DNA of the forming gamete.
 本発明の製造方法(以下、「第1の製造方法」ともいう)は、エピゲノムが改変された動植物の親系統の製造方法であって、
対象の動植物に、前記本発明の組成物を導入する工程を含む。
The production method of the present invention (hereinafter also referred to as the "first production method") is a method for producing parent lines of animals and plants with modified epigenomes,
The step of introducing the composition of the present invention into the animal or plant of interest.
 本発明の親系統の動植物(以下、「親系統」ともいう)は、エピゲノムが改変された動植物の製造または維持に用いる親系統の動植物であって、
前記動植物は、外来性の核酸を含み、
前記核酸は、
 ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
 前記核酸配列認識モジュールと複合体を形成可能であり、かつエピゲノムを改変可能なエピゲノム改変酵素と、
をコードする核酸を含み、
前記核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変する。
The parental line of animals and plants of the present invention (hereinafter also referred to as "parental line") is a parental line of animals and plants used for the production or maintenance of epigenome-modified animals and plants,
The animals and plants contain exogenous nucleic acids,
The nucleic acid is
a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and modifying the epigenome;
comprising a nucleic acid encoding
The nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis. configured,
In the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of the target region in the genomic DNA of the forming gamete.
 本発明の配偶子は、エピゲノムが改変された動植物の製造または維持に用いる親系統の動植物の製造に用いる配偶子であって、
前記本発明の親系統の動植物から単離されている。
The gamete of the present invention is a gamete used in the production of parent line animals and plants used in the production or maintenance of epigenome-modified animals and plants,
It is isolated from plants and animals of the parent line of the present invention.
 本発明の製造方法(以下、「第2の製造方法」ともいう)は、標的領域のエピゲノムが改変された動植物の製造方法であって、
第1の親と、第2の親とを交雑し、得られた後代個体からエピゲノムが改変された個体を得る工程を含み、
前記第1の親および/または前記第2の親は、前記本発明の親系統の動植物である。
The production method of the present invention (hereinafter also referred to as "second production method") is a method for producing animals and plants in which the epigenome of the target region is modified,
crossing the first parent and the second parent and obtaining an epigenome-altered individual from the resulting progeny individual;
Said first parent and/or said second parent are plants and animals of the parent strain of the present invention.
 本発明の動植物(以下、「第1の動植物」ともいう)は、標的領域のエピゲノムが改変された動植物であって、
前記動植物は、
 前記標的領域として、前記本発明の配偶子に由来するエピゲノムが改変された標的領域を含み、
 前記外来性の核酸を含まない。
The animals and plants of the present invention (hereinafter also referred to as "first animals and plants") are animals and plants in which the epigenome of the target region is modified,
The animals and plants are
The target region comprises a target region in which the epigenome derived from the gamete of the present invention is modified,
It does not contain said exogenous nucleic acid.
 本発明の動植物(以下、「第2の動植物」ともいう)は、標的領域のエピゲノムが改変された動植物であって、
前記動植物は、外来性の核酸を含み、
前記核酸は、
 ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
 前記核酸配列認識モジュールと複合体を形成可能であり、かつエピゲノムを改変可能なエピゲノム改変酵素と、
をコードする核酸を含み、
前記核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
前記動植物は、前記標的領域として、前記配偶子形成において発現誘導された前記核酸配列認識モジュールと前記エピゲノム改変酵素とが複合体を形成し、前記標的領域のエピゲノムが改変された配偶子に由来する標的領域を含む。
The animals and plants of the present invention (hereinafter also referred to as "second animals and plants") are animals and plants in which the epigenome of the target region is modified,
The animals and plants contain exogenous nucleic acids,
The nucleic acid is
a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and modifying the epigenome;
comprising a nucleic acid encoding
The nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis. configured,
The animal or plant is derived from a gamete in which the epigenome of the target region is modified by forming a complex between the nucleic acid sequence recognition module whose expression is induced in the gametogenesis and the epigenome modifying enzyme as the target region. Contains the target region.
 本発明の組成物によれば、エピゲノムが改変された動植物の製造および維持が可能な親系統の動植物の製造ができる。 According to the composition of the present invention, it is possible to produce parent line animals and plants that are capable of producing and maintaining epigenome-modified animals and plants.
図1は、本発明の組成物を用いて作製された親系統におけるエピゲノム変化の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of epigenomic alterations in parental lines produced using the composition of the present invention. 図2は、本発明の組成物を用いて作製された親系統におけるエピゲノム変化の他の例を示す模式図である。FIG. 2 is a schematic diagram showing other examples of epigenomic alterations in parental lines generated using the compositions of the present invention. 図3は、実施例1におけるエピゲノム編集ベクターの構造を示す模式図である。3 is a schematic diagram showing the structure of the epigenome editing vector in Example 1. FIG. 図4は、実施例1におけるサブラインのマウス由来の精子におけるメチル化率を示すグラフである。4 is a graph showing the methylation rate in sperm derived from subline mice in Example 1. FIG. 図5は、実施例1における雄親系統由来のF1後代個体の体重を示すグラフである。5 is a graph showing body weights of F1 progeny individuals derived from the male parent line in Example 1. FIG. 図6は、実施例1における雄親系統または雌親系統由来のF1後代個体の体重を示すグラフである。6 is a graph showing body weights of F1 progeny individuals derived from male or female parental lines in Example 1. FIG. 図7は、実施例1における雄親系統または雌親系統由来のF1後代個体の標的領域のメチル化率を示すグラフである。7 is a graph showing the methylation rate of the target region of F1 progeny individuals derived from the male or female parent line in Example 1. FIG. 図8は、実施例1におけるエピゲノム編集ベクターの挿入の有無におけるメチル化率および体重を示すグラフである。8 is a graph showing the methylation rate and body weight with and without insertion of an epigenome editing vector in Example 1. FIG.
<定義>
 本明細書において、「エピゲノム」は、核酸配列(塩基配列)の変化を伴わない、ゲノムにおけるDNAおよび/またはヒストンタンパク質の化学的修飾の状態を意味する。前記エピゲノムは、例えば、エピジェネティック修飾またはゲノム修飾ということもできる。
<Definition>
As used herein, "epigenomic" refers to a state of chemical modification of DNA and/or histone proteins in the genome without alteration of the nucleic acid sequence (base sequence). Said epigenome can also be referred to as epigenetic modification or genomic modification, for example.
 本明細書において、「エピゲノムの改変」または「エピゲノム改変」は、ゲノムにおけるDNAおよび/またはヒストンタンパク質の化学的修飾を変化させることを意味する。前記修飾の変化は、核酸配列(塩基配列)の変化を伴わない変化であることが好ましい。前記改変は、例えば、修飾の付加もしくは除去、修飾の種類の変更、修飾の頻度の増加もしくは減少等があげられる。前記「エピゲノムの改変」または「エピゲノム改変」は、例えば、「エピジェネティック修飾の改変」または「ゲノム修飾の改変」ということもできる。 As used herein, "epigenome modification" or "epigenome modification" means changing the chemical modification of DNA and/or histone proteins in the genome. The change in modification is preferably a change that does not involve a change in the nucleic acid sequence (base sequence). Examples of the modification include addition or removal of modification, change in modification type, increase or decrease in modification frequency, and the like. The above-mentioned "epigenome modification" or "epigenome modification" can also be referred to as, for example, "epigenetic modification modification" or "genome modification modification".
 本明細書において、「エピゲノム改変酵素」は、ゲノムにおけるDNAおよび/またはヒストンタンパク質の化学的修飾を変化させるタンパク質を意味する。 As used herein, "epigenomic modifying enzyme" means a protein that alters the chemical modification of DNA and/or histone proteins in the genome.
 本明細書において、「ゲノムDNA」は、真核細胞の細胞核内のゲノムDNAを意味する。 As used herein, "genomic DNA" means genomic DNA within the cell nucleus of eukaryotic cells.
 本明細書において、「核酸」は、デオキシリボヌクレオチド(DNA)、リボヌクレオチド(RNA)、および/または改変ヌクレオチドのポリマーを意味する。前記核酸は、一本鎖核酸でもよいし、二本鎖核酸でもよい。前記核酸は、例えば、「核酸分子」ということもできる。 As used herein, "nucleic acid" means a polymer of deoxyribonucleotides (DNA), ribonucleotides (RNA), and/or modified nucleotides. The nucleic acid may be a single-stranded nucleic acid or a double-stranded nucleic acid. Said nucleic acid can also be referred to, for example, as a "nucleic acid molecule".
 本明細書において、「ハイブリダイズ」は、ヌクレオチドの相補性、具体的には、ヌクレオチドにおける塩基の相補性により生じる相補的ポリヌクレオチドとのアニーリングを意味する、すなわち、2つのポリヌクレオチドが水素結合を介して非共有結合的に対を形成可能であることを意味する。 As used herein, "hybridize" means annealing with complementary polynucleotides resulting from complementarity of nucleotides, specifically complementarity of bases at the nucleotides, i.e., two polynucleotides undergo hydrogen bonding. It means that it can non-covalently pair via.
 本明細書において、「相補性」または「相補的」は、あるポリヌクレオチドと、別のポリヌクレオチドとの間で、ヌクレオチド対、すなわち、塩基対を形成可能であることを意味する。 As used herein, "complementarity" or "complementary" means that a polynucleotide and another polynucleotide can form a nucleotide pair, that is, a base pair.
 本明細書において、「タンパク質」または「ペプチド」は、未修飾アミノ酸(天然のアミノ酸)、修飾アミノ酸、および/または人工アミノ酸から構成されるポリマーを意味する。 As used herein, "protein" or "peptide" means a polymer composed of unmodified amino acids (natural amino acids), modified amino acids, and/or artificial amino acids.
 本明細書において、「ポリペプチド」は、未修飾アミノ酸(天然のアミノ酸)、修飾アミノ酸、および/または人工アミノ酸から構成されるポリマーを意味する。前記ポリペプチドは、10アミノ酸以上の長さを有するペプチドである。 As used herein, "polypeptide" means a polymer composed of unmodified amino acids (natural amino acids), modified amino acids, and/or artificial amino acids. Said polypeptide is a peptide having a length of 10 amino acids or more.
 本明細書において、「ドメイン」は、タンパク質、ポリペプチド、および/またはペプチドにおいて、立体構造または機能的にまとまった領域を意味する。 As used herein, "domain" means a three-dimensionally or functionally integrated region in a protein, polypeptide, and/or peptide.
 本明細書において、「抗体」は、免疫グロブリン遺伝子または免疫グロブリン遺伝子の断片により実質的または部分的にコードされる、1または複数のポリペプチドを含むタンパク質を意味する。免疫グロブリン遺伝子は、例えば、κ、λ、α(α1、α2を含む)、γ(γ1、γ2、γ3、γ4を含む)、δ、εおよびμ等の定常領域をコードする遺伝子と、V領域、D領域、J領域等の無数の免疫グロブリン可変領域をコードしうる遺伝子とを含む。前記抗体は、例えば、重鎖および軽鎖を含む。前記軽鎖は、κおよびλを含み、それぞれ、κ鎖およびλ鎖を構成する。前記重鎖は、γ、μ、α、δ、またはεを含み、それぞれ、免疫グロブリンのクラスであるIgG、IgM、IgA、IgDおよびIgEを構成する。前記抗体は、四量体から構成される典型的な免疫グロブリン(抗体)の構造単位であってもよい。この場合、前記抗体は、2つの同一のポリペプチド鎖の対から構成され、各対は、1つの軽鎖(約25kDa)と1つの重鎖(約50~70kDa)とから構成される。また、各鎖のN末端は、主に抗原認識に関与する約100~110個またはそれ以上のアミノ酸から構成される可変領域を規定する。前記抗体は、全長の免疫グロブリンでもよいし、その抗原結合断片でもよい。 As used herein, "antibody" means a protein comprising one or more polypeptides substantially or partially encoded by immunoglobulin genes or fragments of immunoglobulin genes. Immunoglobulin genes include, for example, genes encoding constant regions such as κ, λ, α (including α1 and α2), γ (including γ1, γ2, γ3 and γ4), δ, ε and μ; , D regions, J regions, and genes that can encode a myriad of immunoglobulin variable regions. Said antibody, for example, comprises a heavy chain and a light chain. Said light chains comprise kappa and lambda, constituting kappa and lambda chains, respectively. The heavy chains can be gamma, mu, alpha, delta, or epsilon and constitute the immunoglobulin classes IgG, IgM, IgA, IgD and IgE, respectively. The antibody may be a typical immunoglobulin (antibody) structural unit composed of a tetramer. In this case, the antibody is composed of two identical pairs of polypeptide chains, each pair composed of one light chain (about 25 kDa) and one heavy chain (about 50-70 kDa). The N-terminus of each chain also defines a variable region of about 100-110 or more amino acids primarily responsible for antigen recognition. The antibody may be a full-length immunoglobulin or an antigen-binding fragment thereof.
 本明細書において、「抗原結合断片」は、抗体の一部を含むポリペプチドであり、より具体的には、前記可変領域を含むポリペプチドである。前記抗原結合断片は、例えば、前記全長の免疫グロブリンに対して、様々なペプチダーゼによる消化によって産生することができる。前記抗原結合断片は、例えば、F(ab')2、Fab'、Fab、Fv(variable fragment of antibody)、ジスルフィド結合Fv、一本鎖抗体(scFv)、およびこれらの重合体等があげられる。 As used herein, an "antigen-binding fragment" is a polypeptide comprising a portion of an antibody, more specifically a polypeptide comprising the variable region. The antigen-binding fragments can be produced, for example, by digestion of the full-length immunoglobulin with various peptidases. Examples of the antigen-binding fragment include F(ab') 2 , Fab', Fab, Fv (variable fragment of antibody), disulfide-bonded Fv, single-chain antibody (scFv), and polymers thereof.
 本明細書において、「配偶子」は、生殖細胞であり、接合または受精により新たな個体を発生できる細胞を意味する。前記配偶子は、例えば、「配子」または「生殖体」ということもできる。前記配偶子は、例えば、異形配偶子であり、具体例として、動物における精子および卵子、植物における花粉および胚嚢があげられる。 As used herein, the term "gamete" means a germ cell, a cell that can generate a new individual by mating or fertilization. Said gametes can also be referred to, for example, as "gametes" or "gametes". The gametes are, for example, heterogametes, and specific examples thereof include spermatozoa and eggs in animals and pollen and embryo sacs in plants.
 本明細書において、「インプリンティング遺伝子」は、ゲノムインプリンティングにより、その遺伝子発現が制御されている遺伝子を意味する。 As used herein, "imprinted gene" means a gene whose gene expression is regulated by genomic imprinting.
 本明細書において、「制御領域」は、ゲノムDNAにおいて遺伝子発現を制御する領域を意味する。前記インプリンティング遺伝子の制御領域は、一般的に、メチル化により制御される。このため、前記インプリンティング遺伝子の制御領域は、DMR(differentially methylated region)またはICR(imprinting control region)ともいう。 As used herein, the term "regulatory region" means a region that controls gene expression in genomic DNA. The control regions of the imprinted genes are generally controlled by methylation. Therefore, the control region of the imprinting gene is also called DMR (differentially methylated region) or ICR (imprinting control region).
 本明細書において、「プロモーター」または「プロモーター領域」は、遺伝子またはポリヌクレオチドをコードするDNA領域の上流に存在し、転写因子が結合する核酸配列(塩基配列)を含む領域であり、前記遺伝子または前記ポリヌクレオチドの転写量を調節する領域を意味する。前記「プロモーター」または「プロモーター領域」は、例えば、「転写調節領域」ということもできる。 As used herein, "promoter" or "promoter region" is a region that exists upstream of a DNA region encoding a gene or polynucleotide and contains a nucleic acid sequence (base sequence) to which a transcription factor binds. It means a region that regulates the amount of transcription of the polynucleotide. The "promoter" or "promoter region" can also be referred to as, for example, a "transcriptional regulatory region."
 本明細書において、「発現ベクター」または「ベクター」は、in vitroまたはin vivoにおいて、宿主細胞に送達される核酸を含む組換えプラスミド、ウイルス、またはウイルス様粒子(Virus-like particle: VLP)を意味する。 As used herein, an "expression vector" or "vector" is a recombinant plasmid, virus, or virus-like particle (VLP) containing a nucleic acid that is delivered to a host cell in vitro or in vivo . means.
 本明細書において、「動植物」は、分類学上の動物および植物を意味する。前記動植物は、配偶子を形成する、任意の動物および植物を含む。前記動物は、例えば、ヒトおよび非ヒト動物を意味する。前記非ヒト動物は、例えば、マウス、ラット、ウサギ、イヌ、ネコ、ウシ、ウマ、ブタ、サル、イルカ、アシカ等の哺乳類動物があげられる。前記植物は、例えば、被子植物等があげられる。 As used herein, "animal and plant" means taxonomic animals and plants. The animals and plants include any animals and plants that form gametes. Said animal means, for example, human and non-human animals. Examples of non-human animals include mammals such as mice, rats, rabbits, dogs, cats, cows, horses, pigs, monkeys, dolphins, and sea lions. Examples of the plant include angiosperms.
 本明細書において、「外来性」は、動植物を構成する細胞外から細胞内に導入されたことを意味する。 As used herein, "exogenous" means introduced into cells from outside the cells that constitute animals and plants.
 本明細書において、「単離」は、同定され、かつ分離された状態、および/または自然状態での成分から回収された状態を意味する。前記「単離」は、例えば、少なくとも1つの精製工程を得ることにより実施できる。 As used herein, "isolated" means the state of being identified and separated, and/or the state of being recovered from components in their natural state. Said "isolation" can be carried out, for example, by obtaining at least one purification step.
 本明細書において、「標的領域」は、ゲノムDNAにおいて、所望の効果を誘導することを目的とする領域を意味する。前記所望の効果は、例えば、前記エピゲノムの改変である。 As used herein, "target region" means a region in genomic DNA that aims to induce a desired effect. Said desired effect is, for example, modification of said epigenome.
 本明細書において、「標的化」は、標的領域に結合または集積し、所望の効果を誘導することを意味する。前記所望の効果は、例えば、前記エピゲノムの改変である。 As used herein, "targeting" means binding or accumulating in a target region to induce a desired effect. Said desired effect is, for example, modification of said epigenome.
 以下、本発明について例をあげて説明するが、本発明は以下の例等に限定されるものではなく、任意に変更して実施できる。また、本発明における各説明は、特に言及がない限り、互いに援用可能である。なお、本明細書において、「~」という表現を用いた場合、その前後の数値または物理値を含む意味で用いる。また、本明細書において、「Aおよび/またはB」という表現には、「Aのみ」、「Bのみ」、「AおよびBの双方」が含まれる。 Although the present invention will be described below with examples, the present invention is not limited to the following examples, etc., and can be arbitrarily changed and implemented. Also, each description in the present invention can be used with each other unless otherwise specified. In this specification, when the expression "~" is used, it is used in the sense of including numerical values or physical values before and after it. Also, as used herein, the expression "A and/or B" includes "only A," "only B," and "both A and B."
<親系統の動植物の製造に用いる核酸または組成物>
 ある態様において、本発明は、エピゲノムが改変された動植物の製造および/または維持に利用できる親系統の動植物の製造に用いる核酸または前記核酸を含む組成物を提供する。本発明は、エピゲノムが改変された動植物の製造または維持用親系統の動植物の製造に用いるための核酸または組成物であって、前記組成物は、核酸を含み、前記核酸は、ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、前記核酸配列認識モジュールと複合体を形成可能であり、かつエピゲノムを改変可能なエピゲノム改変酵素と、をコードする核酸を含み、前記核酸は、前記配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変する。
<Nucleic acid or composition used for production of parent strain animals and plants>
In one aspect, the present invention provides a nucleic acid or a composition comprising said nucleic acid for use in the production of parental line animals and plants that can be used to produce and/or maintain epigenome-modified animals and plants. The present invention provides a nucleic acid or composition for use in the production of epigenome-modified animals and plants or in the production of parent line animals and plants for maintenance, wherein the composition comprises a nucleic acid, wherein the nucleic acid is epigenome-modified in genomic DNA. and an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and capable of modifying the epigenome. wherein the nucleic acid is configured such that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis, and in the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome A modifying enzyme forms a complex and modifies the epigenome of a target region in the genomic DNA of the forming gamete.
 本発明の組成物によれば、以下のように、エピゲノムが改変された動植物の製造および/または維持に利用できる親系統の動植物を作製できる。具体例として、前記動植物がマウスであり、エピゲノム改変が生じる配偶子が雄親系統の配偶子、すなわち、精子であり、前記マウスのゲノムDNAにおいて、一方の染色体(ゲノムDNA)に前記核酸が導入されている場合、すなわち、前記核酸がトランスジーンである場合を例として、図1を用いて説明する。なお、本発明は、以下の説明により、何ら制限されない。まず、雄親系統について説明する。前記雄親系統では、前記核酸を含む染色体(TG1)と、前記核酸を含まない染色体(WT1)とを有する。前記雄親系統の精巣では、始原生殖細胞から精子が形成される。前記精子形成では、前記核酸中の前記配列認識モジュールおよび前記エピゲノム改変酵素の発現が誘導されるため、これらが複合体を形成し、前記ゲノムDNAにおける標的領域に標的化される。そして、前記複合体における前記標的領域のエピゲノムが改変されるため、エピゲノムが改変され、前記核酸を含む染色体(TG2)またはエピゲノムが改変され、前記核酸を含まない染色体(WT2)を含む精子が形成される。前記エピゲノム改変された精子と、エピゲノム改変されていない卵子とを受精させると、一方の染色体がエピゲノム改変された染色体であり、他方がエピゲノム改変されていない染色体である、エピゲノム改変マウスを作製できる。なお、エピゲノム改変された精子と、エピゲノム改変された卵子と組合わせることにより、両染色体がエピゲノム改変された染色体であるエピゲノム改変マウスを取得することも可能である。 According to the composition of the present invention, parent line animals and plants that can be used for the production and/or maintenance of epigenome-modified animals and plants can be produced as follows. As a specific example, the animal or plant is a mouse, the gamete in which epigenome modification occurs is a male parental gamete, that is, a sperm, and the nucleic acid is introduced into one chromosome (genomic DNA) in the mouse genomic DNA. A case where the nucleic acid is a transgene will be described with reference to FIG. In addition, the present invention is not limited in any way by the following description. First, the male parent line will be explained. The male parent line has a chromosome (TG1) containing the nucleic acid and a chromosome (WT1) not containing the nucleic acid. In the testis of the male parent strain, sperm are formed from primordial germ cells. The spermatogenesis induces the expression of the sequence recognition module and the epigenome modifying enzyme in the nucleic acid so that they form a complex and are targeted to the target region in the genomic DNA. Then, since the epigenome of the target region in the complex is modified, the epigenome is modified, the chromosome (TG2) containing the nucleic acid or the epigenome is modified, and a sperm containing the chromosome (WT2) not containing the nucleic acid is formed. be done. By fertilizing the epigenome-modified sperm with a non-epigenome-modified egg, an epigenome-modified mouse can be produced in which one chromosome is an epigenome-modified chromosome and the other is a non-epigenome-modified chromosome. By combining an epigenome-modified sperm and an epigenome-modified egg, it is possible to obtain an epigenome-modified mouse in which both chromosomes are epigenome-modified chromosomes.
 つぎに、雌親系統について説明する。前記雌親系統では、前記核酸を含む染色体(TG1)と、前記核酸を含まない染色体(WT1)とを有する。前記雌親系統の卵巣では、始原生殖細胞から卵子が形成される。前記卵子形成では、前記核酸中の精子形成において発現誘導される前記配列認識モジュールおよび前記エピゲノム改変酵素の発現は誘導されない。このため、前記核酸を含む染色体(TG1)と、前記核酸を含まない染色体(WT1)の標的領域は、エピゲノム改変されておらず、前記核酸を含む染色体(TG1)またはエピゲノム改変されておらず、前記核酸を含まない染色体(WT1)を含む卵子が形成される。そして、前記エピゲノム改変されていない卵子と、エピゲノム改変されていない精子とを受精させると、前記核酸を含む染色体(TG1)と前記核酸を含まない染色体(WT1)とを含むマウスと、2つの核酸を含まない染色体(WT1)とを作製できる。前者のマウスは、前記雄親系統および前記雌親系統と同様のゲノムDNAを有するため、系統維持に用いるマウスとして使用できる。したがって、本発明の組成物によれば、エピゲノムが改変された動植物の製造および/または維持に利用できる親系統の動植物を作製できる。また、図1および図2に示すように、本発明の組成物を用いれば、前記標的領域のエピゲノムが改変され、前記核酸を含まない染色体(WT2)と、前記エピゲノム改変されておらず、前記核酸を含まない染色体(WT1)とを含むエピゲノムマウスを作製できる。前記エピゲノム改変マウスは、前記標的領域のエピゲノムが改変された以外は、エピゲノムが改変されておらず、前記核酸を含まない染色体を2セット含むマウスと同じであるため、外来性の核酸の影響が除外され、前記エピゲノム改変の影響のみを検討可能なエピゲノム改変マウスを作製できる。なお、エピゲノム改変が生じる配偶子が精子である場合を例にあげて説明したが、図2に示すように、エピゲノム改変が生じる配偶子が雌親系統の配偶子、すなわち、卵子である場合も、同様に、エピゲノムが改変された動植物の製造および/または維持に利用できる親系統の動植物を作製できる。また、前記動植物として、動物のマウスを用いたが、配偶子(例えば、花粉および胚嚢)を形成する植物においても同様に適用できる。 Next, I will explain the female parent line. The female parent strain has a chromosome (TG1) containing the nucleic acid and a chromosome (WT1) not containing the nucleic acid. In the ovary of the female parent line, ova are formed from primordial germ cells. In said oogenesis, the expression of said sequence recognition module and said epigenome modifying enzyme, which are induced in spermatogenesis in said nucleic acid, are not induced. Thus, the target regions of the chromosome containing said nucleic acid (TG1) and the chromosome without said nucleic acid (WT1) are not epigenome modified, the chromosome containing said nucleic acid (TG1) or epigenome modified, An ovum is formed that contains a chromosome (WT1) that does not contain said nucleic acid. Then, when the egg that has not been epigenome-modified and the sperm that has not been epigenome-modified are fertilized, a mouse containing a chromosome (TG1) containing the nucleic acid and a chromosome (WT1) not containing the nucleic acid, and two nucleic acids A chromosome (WT1) that does not contain The former mouse has the same genomic DNA as the male parent strain and the female parent strain, and therefore can be used as a mouse for strain maintenance. Therefore, according to the composition of the present invention, it is possible to generate parental lines of animals and plants that can be used for the production and/or maintenance of epigenome-modified animals and plants. Also, as shown in FIGS. 1 and 2, the epigenome of the target region is modified by using the composition of the present invention, the chromosome (WT2) that does not contain the nucleic acid, and the non-modified epigenome, the Epigenomic mice can be generated that contain a chromosome (WT1) that does not contain nucleic acid. The epigenome-modified mouse is the same as a mouse containing two sets of chromosomes that do not contain the nucleic acid except that the epigenome has not been modified, except that the epigenome of the target region has been modified. An epigenome-modified mouse can be generated that is excluded and only the effects of the epigenome modification can be studied. The case where the gamete in which the epigenome modification occurs is a sperm is explained as an example, but as shown in FIG. Similarly, parental strains of animals and plants can be generated that can be used for the production and/or maintenance of epigenome-modified animals and plants. In addition, although mouse animals are used as the animals and plants, the present invention can also be applied to plants that form gametes (eg, pollen and embryo sacs).
 前記標的領域は、ゲノムDNAにおける任意の領域であり、目的に応じて適宜設定できる。前記標的領域は、例えば、インプリンティング遺伝子の制御領域またはプロモーター領域等があげられる。前記インプリンティング遺伝子は、例えば、IMPRINTED GENE DATABASES(https://www.geneimprint.com/site/home)に記載の遺伝子を参照できる。具体例として、前記動植物がマウスの場合、前記非典型的なインプリンティング遺伝子は、例えば、Igf2遺伝子、Gab1(GRB2-associated-binding protein 1)遺伝子、Gm32885遺伝子、Jade1/Phf17(Plant Homeo-domain-17)遺伝子、Platr20遺伝子、Sfmbt2(Scm-like with four MBT domains protein 2)遺伝子、Slc38a4遺伝子、Smoc1遺伝子、Xist遺伝子等があげられる。前記インプリンティング遺伝子がIgf2遺伝子の場合、前記制御領域は、例えば、H19-DMRがあげられる。 The target region is an arbitrary region in genomic DNA and can be set appropriately according to the purpose. Examples of the target region include control regions or promoter regions of imprinted genes. For the imprinting gene, for example, the gene described in IMPRINTED GENE DATABASES (https://www.geneimprint.com/site/home) can be referred to. As a specific example, when the animals and plants are mice, the atypical imprinted genes include, for example, Igf2 gene, Gab1 (GRB2-associated-binding protein 1) gene, Gm32885 gene, Jade1/Phf17 (Plant Homeo-domain- 17) gene, Platr20 gene, Sfmbt2 (Scm-like with four MBT domains protein 2) gene, Slc38a4 gene, Smoc1 gene, Xist gene and the like. When the imprinted gene is the Igf2 gene, the regulatory region is, for example, H19-DMR.
 前記標的領域の長さは、特に制限されず、例えば、エピゲノムの改変の目的に応じて適宜設定できる。 The length of the target region is not particularly limited, and can be set appropriately according to the purpose of epigenome modification, for example.
 前記核酸配列認識モジュールは、ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する分子である。前記核酸配列認識モジュールは、前記エピゲノム改変酵素と複合体を形成できる。このため、前記核酸配列認識モジュールが、前記標的領域の核酸配列に結合することにより、前記標的領域に前記エピゲノム改変酵素をリクルート(集積)できる。これにより、前記エピゲノム改変酵素が前記標的領域のゲノムのエピジェネティック修飾を改変し、エピゲノムが改変される。また、前記核酸配列認識モジュールは、前記エピゲノム改変酵素を標的領域にリクルートできるため、エピゲノムに対して実施する改変の種類に応じた前記エピゲノム改変酵素と組合せることにより、前記標的領域に対して所望のエピゲノムの改変を実施できる。 The nucleic acid sequence recognition module is a molecule that specifically binds to the nucleic acid sequence of the target region that modifies the epigenome in genomic DNA. The nucleic acid sequence recognition module can form a complex with the epigenome modifying enzyme. Therefore, the nucleic acid sequence recognition module can recruit (accumulate) the epigenome modifying enzyme to the target region by binding to the nucleic acid sequence of the target region. Thereby, the epigenome modifying enzyme modifies the epigenetic modification of the genome of the target region to modify the epigenome. In addition, since the nucleic acid sequence recognition module can recruit the epigenome-modifying enzyme to a target region, by combining with the epigenome-modifying enzyme according to the type of modification to be performed on the epigenome, the desired of the epigenome can be performed.
 前記核酸配列認識モジュールは、例えば、DNAの核酸配列を認識するタンパク質、またはタンパク質および核酸の複合体等があげられる。具体例として、前記核酸配列認識モジュールは、例えば、CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)-Casシステム、Zincフィンガーモチーフ、転写アクチベーター様(TAL)エフェクター、PRR(Pentatricopeptide repeat)モチーフ、制限酵素、転写因子、RNAポリメラーゼ、DNAポリメラーゼ等のDNAと特異的に結合するタンパク質またはそのDNA結合ドメイン等があげられ、好ましくは、CRISPR-Casシステム、Zincフィンガーモチーフ、TALエフェクター、またはPRRモチーフ、またはそのDNA結合ドメインである。前記核酸配列認識モジュールは、例えば、ゲノムの核酸配列の変化の発生を抑制するため、二本鎖DNAの両方の鎖を切断しないことが好ましく、二本鎖DNAに対するヌクレアーゼ活性が不活性化されていることがより好ましい。 The nucleic acid sequence recognition module is, for example, a protein that recognizes the nucleic acid sequence of DNA, or a complex of protein and nucleic acid. As a specific example, the nucleic acid sequence recognition module includes, for example, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas system, Zinc finger motif, transcription activator-like (TAL) effector, PRR (Pentatricopeptide repeat) motif, restriction enzyme, transcription Factors, RNA polymerase, DNA polymerase, and other proteins that specifically bind to DNA or their DNA-binding domains, preferably CRISPR-Cas system, Zinc finger motif, TAL effector, or PRR motif, or their DNA-binding is a domain. For example, the nucleic acid sequence recognition module preferably does not cut both strands of the double-stranded DNA in order to suppress the occurrence of changes in the nucleic acid sequence of the genome, and the nuclease activity for the double-stranded DNA is inactivated. It is more preferable to be
 前記CRISPR-Casシステムは、ヌクレアーゼ活性を有するCasタンパク質と、前記Casタンパク質と複合体を形成し、標的の核酸配列とハイブリダイズするガイド鎖(ガイドRNA)とから構成される。前記Casタンパク質は、特に制限されず、例えば、タイプI~VのCasタンパク質があげられる。具体例として、前記Casタンパク質は、例えば、Cas1、Cas1B、Cas2、Cas3、Cas4、Cas5、Cas6、Cas7、Cas8、Cas9、Cas10、Cas12、Cas14、Csy1、Csy2、Csy3、Cse1、Cse2、Csc1、Csc2、Csa5、Csn2、Csm2、Csm3、Csm4、Csm5、Csm6、Cmr1、Cmr3、Cmr4、Cmr5、Cmr6、Csb1、Csb2、Csb3、Csx17、Csx14、Csx10、Csx16、CsaX、Csx3、Csx1、Csx15、Csf1、Csf2、Csf3、Csf4等があげられる。 The CRISPR-Cas system is composed of a Cas protein with nuclease activity and a guide strand (guide RNA) that forms a complex with the Cas protein and hybridizes with the target nucleic acid sequence. The Cas protein is not particularly limited, and examples thereof include types IV Cas proteins. As specific examples, the Cas proteins include, for example, Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Cas12, Cas14, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2 , Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf2 , Csf3, Csf4, and the like.
 前記Casタンパク質の由来は、特に制限されない。前記Casタンパク質としてCas9を用いる場合、前記Cas9タンパク質は、例えば、黄色ブドウ球菌(Staphylococcus aureus)由来のCas9(SaCas9)、化膿レンサ球菌(Streptococcus pyogenes)由来のCas9(SpCas9)、ストレプトコッカス・サーモフィルス(Streptococcus thermophilus)由来のCas9(StCas9)等があげられる。 The origin of the Cas protein is not particularly limited. When Cas9 is used as the Cas protein, the Cas9 protein is, for example, Cas9 (SaCas9) derived from Staphylococcus aureus ( Staphylococcus aureus ), Cas9 derived from Streptococcus pyogenes ( Streptococcus pyogenes ) (SpCas9), Streptococcus thermophilus ( Streptococcus thermophilus )-derived Cas9 (StCas9) and the like.
 前記Casタンパク質は、Casタンパク質のDNA切断ドメイン(切断部位)のうち、少なくとも1つのドメインのヌクレアーゼ活性(DNA切断能)が不活性化されていることが好ましい。具体例として、Cas9タンパク質は、DNA切断ドメインとして、HNHドメインおよびRuvCドメインを有する。このため、前記Cas9タンパク質は、HNHドメインおよびRuvCドメインの少なくとも一方が不活性化されていることが好ましく、両者が不活性化されていることがより好ましい。前記ヌクレアーゼ活性の不活性化は、例えば、前記Casタンパク質をコードするDNAにおいて、前記DNA切断ドメインをコードする核酸配列に対して、アミノ酸置換を導入することにより実施できる。具体例として、前記Cas9タンパク質がSpCas9の場合、前記SpCas9のHNHドメインは、例えば、836番目のアスパラギン(Asn)および/または840番目のヒスチジン残基(His)をアラニン残基(Ala)に置換することにより不活性化できる、すなわち、ガイドRNAとの相補鎖の切断能を不活性化できる。また、前記SpCas9のRuvCドメインは、例えば、10番目のアスパラギン酸残基(Asp)をアラニン残基(Ala)に置換することにより不活性化できる、すなわち、ガイドRNAとの相補鎖の反対側の鎖(逆相補鎖)の切断能を不活性化できる。前記SpCas9タンパク質は、例えば、840番目のヒスチジン残基(His)がアラニン残基(Ala)に置換され、10番目のアスパラギン酸残基(Asp)をアラニン残基(Ala)に置換されることにより、ヌクレアーゼ活性が不活性化する(dCas9タンパク質)。また、前記SpCas9タンパク質は、例えば、836番目のアスパラギン(Asn)がアラニン残基(Ala)に置換され、10番目のアスパラギン酸残基(Asp)をアラニン残基(Ala)に置換されることにより、ヌクレアーゼ活性が不活性化する(dCas9タンパク質)。 The Cas protein preferably has inactivated nuclease activity (DNA cleaving ability) in at least one of the DNA cleavage domains (cleavage sites) of the Cas protein. As a specific example, the Cas9 protein has HNH and RuvC domains as DNA cleavage domains. Therefore, in the Cas9 protein, at least one of the HNH domain and the RuvC domain is preferably inactivated, more preferably both are inactivated. Inactivation of the nuclease activity can be performed, for example, by introducing an amino acid substitution into the nucleic acid sequence encoding the DNA cleavage domain in the DNA encoding the Cas protein. As a specific example, when the Cas9 protein is SpCas9, the HNH domain of the SpCas9, for example, the 836th asparagine (Asn) and / or 840th histidine residue (His) to alanine residue (Ala) to replace In other words, the ability to cleave the complementary strand with the guide RNA can be inactivated. In addition, the RuvC domain of the SpCas9, for example, can be inactivated by replacing the 10th aspartic acid residue (Asp) with an alanine residue (Ala), i.e., on the opposite side of the complementary strand with the guide RNA The cleavability of the strand (reverse complementary strand) can be inactivated. The SpCas9 protein, for example, the 840th histidine residue (His) is substituted with an alanine residue (Ala), the 10th aspartic acid residue (Asp) is substituted with an alanine residue (Ala) , the nuclease activity is inactivated (dCas9 protein). Further, the SpCas9 protein, for example, the 836th asparagine (Asn) is substituted with an alanine residue (Ala), and the 10th aspartic acid residue (Asp) is substituted with an alanine residue (Ala) , the nuclease activity is inactivated (dCas9 protein).
 前記ガイドRNAは、前記標的領域または前記標的領域近傍に存在する標的の核酸配列に対して相補的な核酸配列を有するポリヌクレオチドを含み、前記ポリヌクレオチドにより、標的の核酸配列とハイブリダイズ可能なRNAである。前記核酸配列認識モジュールとして前記CRISPR-Casシステムを用いる場合、前記ガイドRNAは、例えば、前記標的領域の核酸配列に特異的に結合する核酸配列を含むRNA分子、すなわち、前記標的領域の核酸配列と相補的なポリヌクレオチドを含むRNA分子である。 The guide RNA comprises a polynucleotide having a nucleic acid sequence complementary to a target nucleic acid sequence existing in the target region or in the vicinity of the target region, and is hybridizable with the target nucleic acid sequence by the polynucleotide. is. When the CRISPR-Cas system is used as the nucleic acid sequence recognition module, the guide RNA is, for example, an RNA molecule containing a nucleic acid sequence that specifically binds to the nucleic acid sequence of the target region, that is, the nucleic acid sequence of the target region. A RNA molecule comprising a complementary polynucleotide.
 前記ガイドRNAは、前記Casタンパク質の種類に応じて適宜設定できる。前記ガイドRNAは、crRNA(CRISPR RNA)のみを含んでもよいし、crRNA(CRISPR RNA)およびtracrRNA(trans-activating CRISPR RNA)を含んでもよい。前記Casタンパク質がCas9タンパク質の場合、前記ガイドRNAは、二本のRNAから構成されてもよいし、一本のRNA(sgRNA)から構成されてもよい。前者の場合、ガイドRNAは、crRNAおよびtracrRNAから構成され、crRNAとtracrRNAとが相補的なポリヌクレオチドでハイブリダイズすることにより複合体を形成し、ガイドRNAとして機能する。また、後者の場合、sgRNAは、crRNAおよびtracrRNA、またはこれらがリンカーを介して連結されている。 The guide RNA can be appropriately set according to the type of the Cas protein. The guide RNA may contain only crRNA (CRISPR RNA), or may contain crRNA (CRISPR RNA) and tracrRNA (trans-activating CRISPR RNA). When the Cas protein is a Cas9 protein, the guide RNA may consist of two RNAs or a single RNA (sgRNA). In the former case, the guide RNA is composed of crRNA and tracrRNA, and crRNA and tracrRNA hybridize with complementary polynucleotides to form a complex and function as guide RNA. In the latter case, the sgRNA is crRNA and tracrRNA, or these are linked via a linker.
 前記crRNAは、例えば、5’末端に、前記標的の核酸配列に対して相補的なポリヌクレオチドを含むことが好ましい。前記標的の核酸配列を、前記標的領域における核酸配列とすることにより、前記crRNAは、前記標的領域の核酸配列に、前記Casタンパク質をリクルート(集積)でき、これにより、前記標的領域の核酸配列に、前記エピゲノム改変酵素をリクルート(集積)できる。前記相補的なポリヌクレオチドの長さは、例えば、15~25塩基長、18~22塩基長である。 The crRNA preferably contains, for example, a polynucleotide complementary to the target nucleic acid sequence at the 5' end. By setting the nucleic acid sequence of the target to be the nucleic acid sequence in the target region, the crRNA can recruit (accumulate) the Cas protein in the nucleic acid sequence of the target region, thereby allowing the nucleic acid sequence of the target region to , can recruit (accumulate) the epigenome-modifying enzyme. The length of the complementary polynucleotide is, for example, 15 to 25 nucleotides, 18 to 22 nucleotides.
 前記ガイドRNAの長さは、例えば、前記標的の核酸配列の長さに応じて適宜設定できる。 The length of the guide RNA can be appropriately set, for example, according to the length of the target nucleic acid sequence.
 前記ガイドRNAが標的とする核酸配列は、1種類でもよいし、2種類以上でもよい。前記ガイドRNAの種類数は、例えば、前記標的領域の長さに応じて設定できる。具体例として、前記標的領域が相対的に長い領域の場合、本発明の核酸は、前記エピゲノム改変酵素の改変可能な領域の長さに基づき、前記標的領域において異なる部位の核酸配列と特異的に結合する複数種類のガイドRNAをコードすることにより、前記標的領域全体のエピゲノムを改変できる。前記標的領域の近傍は、例えば、前記エピゲノム改変酵素の改変可能な領域の長さに応じて設定でき、具体例として、前記標的領域の末端の核酸残基を基準として、3kbp以内、2kbp以内、または1kbp以内であり、好ましくは、1kbp以内である。 The nucleic acid sequences targeted by the guide RNA may be one type or two or more types. The number of types of guide RNA can be set, for example, according to the length of the target region. As a specific example, when the target region is a relatively long region, the nucleic acid of the present invention is specific to a nucleic acid sequence at a different site in the target region based on the length of the modifiable region of the epigenome modifying enzyme. By encoding multiple guide RNAs that bind, the epigenome can be modified throughout the target region. The vicinity of the target region can be set, for example, according to the length of the modifiable region of the epigenome-modifying enzyme. Alternatively, it is within 1 kbp, preferably within 1 kbp.
 前記Zincフィンガーモチーフは、C(CysHis)型の異なるZincフィンガーユニットを複数連結させたものである。1つのZincフィンガーユニットは、約3塩基の核酸配列を認識する。前記複数個は、前記標的領域の核酸配列に応じて適宜設定できるが、一般的には、3~6個である。この場合、前記Zincフィンガーモチーフは、例えば、約9~18塩基の核酸配列を認識できる。前記Zincフィンガーモチーフは、例えば、Modular assembly法(Nat Biotechnol (2002) 20: 135-141)、OPEN法(Mol Cell (2008) 31: 294-301)、CoDA法(Nat Methods (2011) 8: 67-69)、大腸菌one-hybrid法(Nat Biotechnol (2008) 26:695-701)等の公知の手法により作製することができる。前記Zincフィンガーモチーフは、例えば、国際公開第03/087341号公報に記載の方法により作製できる。 The zinc finger motif is formed by linking a plurality of different C 2 H 2 (Cys 2 His 2 ) type zinc finger units. One zinc finger unit recognizes a nucleic acid sequence of about 3 bases. The plurality can be appropriately set according to the nucleic acid sequence of the target region, but generally it is 3 to 6. In this case, the zinc finger motif can recognize, for example, a nucleic acid sequence of about 9-18 bases. The Zinc finger motif, for example, modular assembly method (Nat Biotechnol (2002) 20: 135-141), OPEN method (Mol Cell (2008) 31: 294-301), CoDA method (Nat Methods (2011) 8: 67 -69), Escherichia coli one-hybrid method (Nat Biotechnol (2008) 26:695-701). The zinc finger motif can be produced, for example, by the method described in WO03/087341.
 TALエフェクターは、約34アミノ酸を単位としたモジュールの繰り返し構造を有しており、1つのモジュールの12および13番目のアミノ酸残基(repeat variable diresidues :RVD)によって、結合安定性と核酸(塩基)特異性が決定される。各モジュールの独立性は高く、モジュールを連続して配置することにより、標的の核酸配列に特異的なTALエフェクターを作製することが可能である。前記標的の核酸配列に対するTALエフェクターは、例えば、REAL法(Curr Protoc Mol Biol (2012) Chapter 12: Unit 12.15)、FLASH法(Nat Biotechnol (2012) 30: 460-465)、Golden Gate法(Nucleic Acids Res (2011) 39: e82)等のオープンリソースを利用して設計できる。前記TALエフェクターは、例えば、国際公開第2011/072246号公報に記載の方法により作製できる。 The TAL effector has a repeating structure of modules with about 34 amino acids as a unit, and the 12th and 13th amino acid residues (repeat variable diresidues: RVD) of one module determine Specificity is determined. Each module is highly independent, and by arranging the modules consecutively, it is possible to create a TAL effector specific to the target nucleic acid sequence. The TAL effector for the target nucleic acid sequence is, for example, the REAL method (Curr Protoc Mol Biol (2012) Chapter 12: Unit 12.15), the FLASH method (Nat Biotechnol (2012) 30: 460-465), the Golden Gate method (Nucleic Acids Res (2011) 39: e82) and other open resources can be used for design. The TAL effector can be produced, for example, by the method described in WO2011/072246.
 PPRモチーフは、35アミノ酸からなり1つの核酸(塩基)を認識するPPRモチーフの連続して配置することにより、特定の核酸配列を認識するように構成される。前記PPRモチーフでは、各モチーフの1、4、および各モチーフのC末端から2番目(ii(-2)番目)のアミノ酸で標的核酸(塩基)を認識する。また、各モチーフの構成に依存性はなく、C末端側またはN末端側のPRRモチーフからの干渉が生じないため、PPRモチーフを連続して配置することにより、標的の核酸配列に特異的なPPRタンパク質を作製できる。前記PPRモチーフは、例えば、国際公開第2014/175284号公報に記載の方法により作製できる。 The PPR motif is configured to recognize a specific nucleic acid sequence by continuously arranging PPR motifs consisting of 35 amino acids and recognizing one nucleic acid (base). The PPR motif recognizes a target nucleic acid (base) at the 1st, 4th, and 2nd (ii(-2)th) amino acids from the C-terminus of each motif. In addition, since there is no dependence on the configuration of each motif and interference from the PRR motif on the C-terminal side or N-terminal side does not occur, by arranging the PPR motifs continuously, PPR specific to the target nucleic acid sequence Can produce proteins. The PPR motif can be produced, for example, by the method described in WO2014/175284.
 前記制限酵素、前記転写因子、前記RNAポリメラーゼ、または前記DNAポリメラーゼのDNA結合ドメインを用いる場合、これらのタンパク質のDNA結合ドメインは、公知であり、前記DNA結合ドメインを、前記核酸配列認識モジュールとして利用できる。 When using the DNA binding domain of the restriction enzyme, the transcription factor, the RNA polymerase, or the DNA polymerase, the DNA binding domain of these proteins is known and the DNA binding domain is used as the nucleic acid sequence recognition module. can.
 前記核酸配列認識モジュールは、例えば、1種類でもよいし、2種類以上でもよい。前記標的領域が長い領域の場合、本発明の核酸は、前記標的領域において異なる部位の核酸配列に特異的に結合する複数種類の核酸配列認識モジュールをコードすることにより、前記標的領域全体のエピゲノムを改変できる。 The nucleic acid sequence recognition module may be, for example, one type, or two or more types. When the target region is a long region, the nucleic acid of the present invention encodes multiple types of nucleic acid sequence recognition modules that specifically bind to nucleic acid sequences at different sites in the target region, thereby recognizing the epigenome of the entire target region. can be modified.
 前記エピゲノム改変酵素の改変対象は、ゲノムDNAの化学的修飾でもよいし、ヒストンタンパク質の化学的修飾でもよい。前記エピゲノム改変酵素は、例えば、メチル化酵素、脱メチル化酵素、アセチル化酵素、脱アセチル化酵素、リン酸化酵素、脱リン酸化酵素、ユビキチン化酵素、SUMO化酵素等があげられる。 The modification target of the epigenome modifying enzyme may be chemical modification of genomic DNA or chemical modification of histone protein. Examples of the epigenome-modifying enzyme include methylase, demethylase, acetylase, deacetylase, phosphorylation enzyme, dephosphorylation enzyme, ubiquitinase, and sumoylation enzyme.
 前記改変対象がゲノムDNAの化学的修飾の場合、前記エピゲノム改変酵素は、例えば、メチル化酵素または脱メチル化酵素があげられる。前記動植物が動物である場合、前記メチル化酵素は、例えば、前記ゲノムDNAにおけるCpG部位のシトシンヌクレオチドをメチル化する。この場合、前記メチル化酵素は、例えば、DNMT(DNA Methyltransferase)3A、DNMT3B、およびDNMT3Lがあげられる。前記エピゲノム改変酵素として、DNMT3AまたはDNMT3Bを用いる場合、これらのメチル化酵素は、DNMT3Lと組合わせて用いることが好ましい。前記動植物が植物である場合、前記メチル化酵素は、例えば、前記ゲノムDNAにおけるCpG、CpHpG、またはCpHpH部位(Hは、グアニン以外のヌクレオチド)のシトシンヌクレオチドをメチル化する。この場合、前記メチル化酵素は、例えば、DRMa(DRM-type cytosine DNA-methyltransferase)、DRM2、CMT(chromomethylase)2等があげられる。 When the modification target is chemical modification of genomic DNA, the epigenome modification enzyme includes, for example, a methylation enzyme or a demethylation enzyme. When the animals and plants are animals, the methyltransferase methylates, for example, cytosine nucleotides at CpG sites in the genomic DNA. In this case, the methyltransferase includes, for example, DNMT (DNA Methyltransferase) 3A, DNMT3B, and DNMT3L. When DNMT3A or DNMT3B is used as the epigenome-modifying enzyme, these methyltransferases are preferably used in combination with DNMT3L. When the animal or plant is a plant, the methyltransferase methylates, for example, cytosine nucleotides at CpG, CpHpG, or CpHpH sites (H is a nucleotide other than guanine) in the genomic DNA. In this case, examples of the methyltransferase include DRMa (DRM-type cytosine DNA-methyltransferase), DRM2, CMT (chromomethylase) 2, and the like.
 前記動植物が動物である場合、前記脱メチル化酵素は、例えば、前記ゲノムDNAにおけるCpG部位のシトシンヌクレオチドのメチル基を脱メチル化する。この場合、前記脱メチル化酵素は、例えば、TET(ten-eleven translocation)1、TET2、およびTET3があげられる。前記動植物が植物である場合、前記脱メチル化酵素は、例えば、前記ゲノムDNAにおけるCpG、CpHpG、またはCpHpH部位(Hは、グアニン以外のヌクレオチド)のシトシンヌクレオチドのメチル基を脱メチル化する。この場合、前記脱メチル化酵素は、例えば、DME(DEMETER)、ROS(SILENCING)1等があげられる。 When the animal or plant is an animal, the demethylase demethylates, for example, the methyl group of the cytosine nucleotide at the CpG site in the genomic DNA. In this case, the demethylase includes, for example, TET (ten-eleven translocation) 1, TET2, and TET3. When the animal or plant is a plant, the demethylase demethylates, for example, a methyl group of a cytosine nucleotide at a CpG, CpHpG, or CpHpH site (H is a nucleotide other than guanine) in the genomic DNA. In this case, examples of the demethylase include DME (DEMETER), ROS (SILENCING) 1, and the like.
 前記改変対象がヒストンタンパク質の化学的修飾の場合、前記エピゲノム改変酵素は、例えば、メチル化酵素、脱メチル化酵素、アセチル化酵素、脱アセチル化酵素、リン酸化酵素、脱リン酸化酵素、ユビキチン化酵素、SUMO化酵素等があげられる。 When the modification target is chemical modification of a histone protein, the epigenome modifying enzyme includes, for example, methylase, demethylase, acetylase, deacetylase, kinase, dephosphorylation, and ubiquitination. Enzymes, SUMOylation enzymes, and the like can be mentioned.
 前記メチル化酵素は、例えば、前記ヒストンタンパク質におけるリジン残基および/またはアルギニン残基をメチル化する。前記メチル化酵素は、例えば、PRC2に分類されるEZH2(enhancer of zeste homolog 2)、G9、SUV39H1等があげられる。前記脱メチル化酵素は、例えば、前記ヒストンタンパク質におけるリジン残基および/またはアルギニン残基のメチル基を脱メチル化する。前記脱メチル化酵素は、例えば、LSD1(Lysine-specific demethylase 1)、KDM4D(Lysine-specific demethylase 4D)、KDM6B(Lysine Demethylase 6B)等があげられる。前記アセチル化酵素は、例えば、前記ヒストンタンパク質におけるリジン残基をアセチル化する。この場合、前記アセチル化酵素は、例えば、Gcn5、P300/CBP(CREB-binding protein)等があげられる。前記脱アセチル化酵素は、例えば、前記ヒストンタンパク質におけるリジン残基のアセチル基を脱アセチル化する。前記脱アセチル化酵素は、例えば、ヒストン脱アセチル化酵素(HDAC)、SIRT(Sirtuin)1、SIRT2等があげられる。前記リン酸化酵素は、例えば、前記ヒストンタンパク質におけるセリン残基および/またはスレオニン残基をリン酸化する。この場合、前記リン酸化酵素は、例えば、Haspin(GSG2)、Aurora B、ChK1(Checkpoint kinase 1)等があげられる。前記脱リン酸化酵素は、例えば、前記ヒストンタンパク質におけるセリン残基および/またはスレオニン残基のリン酸基を脱リン酸化する。前記脱リン酸化酵素は、例えば、PP1γ(Protein phosphatase 1γ)、PP4C(Protein Phosphatase 4 Catalytic Subunit)、DUSP1(Dual specificity protein phosphatase 1)等があげられる。前記ユビキチン化酵素は、例えば、前記ヒストンタンパク質におけるリジン残基をユビキチン化する。この場合、前記ユビキチン化酵素は、例えば、Ring1、RNF8、UBC13、UHRF1等があげられる。前記SUMO化酵素は、例えば、前記ヒストンタンパク質におけるリジン残基をSUMO化する。この場合、前記SUMO化酵素は、例えば、UBC9等があげられる。 The methyltransferase methylates, for example, lysine residues and/or arginine residues in the histone proteins. Examples of the methyltransferase include EZH2 (enhancer of zeste homolog 2) classified as PRC2, G9, SUV39H1, and the like. The demethylase demethylates, for example, methyl groups of lysine and/or arginine residues in the histone protein. Examples of the demethylase include LSD1 (Lysine-specific demethylase 1), KDM4D (Lysine-specific demethylase 4D), KDM6B (Lysine Demethylase 6B) and the like. The acetylating enzyme acetylates, for example, lysine residues in the histone protein. In this case, the acetylating enzyme includes, for example, Gcn5, P300/CBP (CREB-binding protein), and the like. The deacetylase deacetylates, for example, the acetyl group of a lysine residue in the histone protein. Examples of the deacetylase include histone deacetylase (HDAC), SIRT (Sirtuin) 1, SIRT2 and the like. The kinase phosphorylates, for example, serine and/or threonine residues in the histone protein. In this case, examples of the kinase include Haspin (GSG2), Aurora B, ChK1 (Checkpoint kinase 1) and the like. The dephosphorylation enzyme dephosphorylates, for example, the phosphate groups of serine and/or threonine residues in the histone protein. Examples of the phosphatase include PP1γ (Protein phosphatase 1γ), PP4C (Protein Phosphatase 4 Catalytic Subunit), DUSP1 (Dual specificity protein phosphatase 1) and the like. The ubiquitinase, for example, ubiquitinates lysine residues in the histone protein. In this case, the ubiquitination enzymes include, for example, Ring1, RNF8, UBC13, UHRF1 and the like. The sumoylation enzyme, for example, sumoylates a lysine residue in the histone protein. In this case, the SUMOylation enzyme includes, for example, UBC9.
 前記エピゲノム改変酵素の由来は、本発明の組成物を使用する動植物と、同じ、すなわち、同種でもよいし、異なる、すなわち、異種でもよい。 The origin of the epigenome-modifying enzyme may be the same as that of the animal or plant using the composition of the present invention, ie, the same species, or different, ie, heterologous.
 前記エピゲノム改変酵素は、酵素タンパク質の全部であってもよいし、その一部であってもよい。前記エピゲノム改変酵素が酵素タンパク質の一部の場合、前記エピゲノム改変酵素は、前記酵素タンパク質の酵素活性が保持されていればよく、具合例として、酵素触媒部位(触媒部位)が使用できる。 The epigenome-modifying enzyme may be all or part of the enzyme protein. When the epigenome-modifying enzyme is a part of an enzyme protein, the epigenome-modifying enzyme should retain the enzymatic activity of the enzyme protein.
 前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成可能である。前記複合体の形成は、共有結合を介した連結による複合体の形成でもよいし、分子間の相互作用を利用した複合体の形成でもよい。 The nucleic acid sequence recognition module and the epigenome modifying enzyme are capable of forming a complex. The formation of the complex may be formation of a complex by linkage via a covalent bond, or formation of a complex utilizing intermolecular interaction.
 前記複合体の形成が、共有結合を介した連結による複合体の形成である場合、前記核酸配列認識モジュールと前記エピゲノム改変酵素とは、直接または間接的に連結されること、すなわち、融合タンパク質とすることにより、複合体を形成してもよい。 When the formation of the complex is formation of a complex by ligation via covalent bonds, the nucleic acid sequence recognition module and the epigenome modifying enzyme are directly or indirectly ligated, i.e., the fusion protein and By doing so, a complex may be formed.
 前記核酸配列認識モジュールは、1つのエピゲノム改変酵素と複合体を形成してもよいし、複数のエピゲノム改変酵素と複合体を形成してもよい。また、前記エピゲノム改変酵素は、1つの核酸配列認識モジュールと複合体を形成してもよいし、複数の核酸配列認識モジュールと複合体を形成してもよい。1つの核酸配列認識モジュールが複数のエピゲノム改変酵素と複合体を形成すると、得られた複合体は、1つのエピゲノム改変酵素と形成された複合体と比較して、エピゲノム改変をより効率よく実施でき、かつ前記標的領域内の標的の核酸配列からより遠い位置のエピゲノムも改変できる。1つの核酸配列認識モジュールと複合体を形成するエピゲノム改変酵素の数は、1以上であり、好ましくは、2以上(複数)、3~10、3~7、または3~5である。また、前記核酸配列認識モジュールが複数のエピゲノム改変酵素と複合体を形成する場合、前記エピゲノム改変酵素は、1種類でもよいし、複数種類でもよい。前記エピゲノム改変酵素を複数種類とすることにより、前記複合体は、例えば、前記標的領域において、複数種類のエピゲノムの改変を実施できる。 The nucleic acid sequence recognition module may form a complex with one epigenome modifying enzyme, or may form a complex with multiple epigenome modifying enzymes. Moreover, the epigenome-modifying enzyme may form a complex with one nucleic acid sequence recognition module, or may form a complex with a plurality of nucleic acid sequence recognition modules. When one nucleic acid sequence recognition module forms a complex with multiple epigenome modifying enzymes, the resulting complex can perform epigenome modification more efficiently than a complex formed with one epigenome modifying enzyme. and the epigenome at locations more distant from the target nucleic acid sequence within the target region can also be modified. The number of epigenome-modifying enzymes forming a complex with one nucleic acid sequence recognition module is one or more, preferably two or more (plurality), 3-10, 3-7, or 3-5. When the nucleic acid sequence recognition module forms a complex with multiple epigenome modifying enzymes, the epigenome modifying enzymes may be of one type or multiple types. By using a plurality of types of epigenome-modifying enzymes, the complex can modify, for example, a plurality of types of epigenomes in the target region.
 前記核酸配列認識モジュールと前記エピゲノム改変酵素とが直接的に連結している場合、前記核酸配列認識モジュールにおけるタンパク質のN末端またはC末端のアミノ酸が、前記エピゲノム改変酵素におけるC末端またはN末端のアミノ酸と共有結合を形成している。前記核酸配列認識モジュールおよび前記エピゲノム改変酵素の順序は、特に制限されず、任意の順序とでき、例えば、N末端側から、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素がこの順序で配置されてもよいし、前記エピゲノム改変酵素および前記核酸配列認識モジュールがこの順序で配置されてもよい。前記核酸配列認識モジュールと前記複数のエピゲノム改変酵素との順序は、特に制限されないが、前記エピゲノム改変酵素は、連続して配置されていることが好ましい。前記核酸配列認識モジュールと前記エピゲノム改変酵素とが直接的に連結している場合、前記核酸は、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素のアミノ酸配列が一体化した融合タンパク質をコードする核酸である。 When the nucleic acid sequence recognition module and the epigenome modifying enzyme are directly linked, the N-terminal or C-terminal amino acid of the protein in the nucleic acid sequence recognition module is the C-terminal or N-terminal amino acid in the epigenome modifying enzyme. forms a covalent bond with The order of the nucleic acid sequence recognition module and the epigenome modifying enzyme is not particularly limited, and can be any order. For example, the nucleic acid sequence recognition module and the epigenome modifying enzyme may be arranged in this order from the N-terminal side. Alternatively, the epigenome modifying enzyme and the nucleic acid sequence recognition module may be arranged in this order. The order of the nucleic acid sequence recognition module and the plurality of epigenome modifying enzymes is not particularly limited, but the epigenome modifying enzymes are preferably arranged consecutively. When the nucleic acid sequence recognition module and the epigenome modifying enzyme are directly linked, the nucleic acid is a nucleic acid encoding a fusion protein in which the amino acid sequences of the nucleic acid sequence recognition module and the epigenome modifying enzyme are integrated. .
 前記核酸配列認識モジュールと前記エピゲノム改変酵素とが間接的に連結している場合、前記核酸配列認識モジュールにおけるタンパク質のN末端またはC末端のアミノ酸が、リンカーを介して前記エピゲノム改変酵素におけるC末端またはN末端のアミノ酸と結合している。前記核酸配列認識モジュールが複数のエピゲノム改変酵素と間接的に連結している場合、前記核酸配列認識モジュールと前記エピゲノム改変酵素との間のみが、前記リンカーを介して連結し、前記エピゲノム改変酵素間は、直接的に連結してもよいし、前記核酸配列認識モジュールと前記エピゲノム改変酵素との間および前記エピゲノム改変酵素間の両者が前記リンカーを介して連結してもよい。前記核酸配列認識モジュールと前記複数のエピゲノム改変酵素との順序は、特に制限されないが、前記エピゲノム改変酵素は、連続して配置されていることが好ましい。前記核酸配列認識モジュールと前記エピゲノム改変酵素とが間接的に連結している場合、前記核酸は、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素のアミノ酸配列が一体化した融合タンパク質をコードする核酸である。 When the nucleic acid sequence recognition module and the epigenome modifying enzyme are indirectly linked, the amino acid at the N-terminus or C-terminus of the protein in the nucleic acid sequence recognition module is linked via a linker to the C-terminus or C-terminus of the epigenome modifying enzyme. It binds to the N-terminal amino acid. When the nucleic acid sequence recognition module is indirectly linked to a plurality of epigenome modifying enzymes, only the nucleic acid sequence recognition module and the epigenome modifying enzyme are linked via the linker, and the epigenome modifying enzyme may be directly linked, or both between the nucleic acid sequence recognition module and the epigenome modifying enzyme and between the epigenome modifying enzymes may be linked via the linker. The order of the nucleic acid sequence recognition module and the plurality of epigenome modifying enzymes is not particularly limited, but the epigenome modifying enzymes are preferably arranged consecutively. When the nucleic acid sequence recognition module and the epigenome modifying enzyme are indirectly linked, the nucleic acid is a nucleic acid encoding a fusion protein in which the amino acid sequences of the nucleic acid sequence recognition module and the epigenome modifying enzyme are integrated. .
 前記リンカーは、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素の機能を妨げないものであれば、任意の配列を選択できる。前記リンカーは、例えば、グリシンとセリンとの繰り返し配列があげられる。前記リンカーの長さは、例えば、5~100アミノ酸、5~50アミノ酸、10~50アミノ酸、15~50アミノ酸、15~40アミノ酸、17~30アミノ酸、または22アミノ酸である。前記リンカーの長さを相対的に長くすると、得られた複合体は、例えば、前記標的領域内の標的の核酸配列からより遠い位置のエピゲノムも改変できる。前記リンカーは、例えば、GSGSG(配列番号1)、GSGGS(配列番号2)、SGSGS(配列番号3)、もしくはGGGGS(配列番号4)、またはこれらの2~3回繰り返し配列;GSGSGGSGSGSGGSGSGGSGSG(配列番号5);GSGSGGSGSGGSGSGGSGSGGSGGSGSGGSGSGGSGSGGSGSG(配列番号6);等があげられる。 Any sequence can be selected for the linker as long as it does not interfere with the functions of the nucleic acid sequence recognition module and the epigenome modifying enzyme. Examples of the linker include a repeating sequence of glycine and serine. The length of the linker is, for example, 5-100 amino acids, 5-50 amino acids, 10-50 amino acids, 15-50 amino acids, 15-40 amino acids, 17-30 amino acids, or 22 amino acids. By increasing the length of the linker relatively, the resulting conjugate can also modify the epigenome, for example, at a position farther from the target nucleic acid sequence within the target region. The linker may be, for example, GSGSG (SEQ ID NO: 1), GSGGS (SEQ ID NO: 2), SGSGS (SEQ ID NO: 3), or GGGGS (SEQ ID NO: 4), or 2-3 repeat sequences thereof; ); GSGSGGSGSGGSGSGGSGSGGSGGSGSGGSGSGGGSGSGGSGSG (SEQ ID NO: 6);
 前記複合体の形成が分子間の相互作用を利用した複合体の形成である場合、前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、タグドメインと、前記タグドメインに結合可能なタグドメインの結合パートナーとを用い、前記タグドメインと、前記結合パートナーとの相互作用を介して、複合体を形成してもよい。この場合、前記核酸配列認識モジュールは、前記タグドメインと連結され、前記エピゲノム改変酵素は、前記結合パートナーとが連結されてもよいし、前記核酸配列認識モジュールは、前記結合パートナーと連結され、前記エピゲノム改変酵素は、前記タグドメインとが連結されてもよい。なお、以下の説明において、前記核酸配列認識モジュールは、前記タグドメインと連結され、前記エピゲノム改変酵素は、前記結合パートナーとが連結されている場合を例にあげて説明するが、前記核酸配列認識モジュールは、前記結合パートナーと連結され、前記エピゲノム改変酵素は、前記タグドメインとが連結されている場合は、前記「タグドメイン」と前記「結合パートナー」とを相互に読み替えてその説明を援用できる。 When the complex is formed using intermolecular interaction, the nucleic acid sequence recognition module and the epigenome modifying enzyme are composed of a tag domain and a tag domain capable of binding to the tag domain. A binding partner may be used to form a complex through interaction of the tag domain with the binding partner. In this case, the nucleic acid sequence recognition module may be linked to the tag domain, the epigenome modifying enzyme may be linked to the binding partner, or the nucleic acid sequence recognition module may be linked to the binding partner, and the An epigenome modifying enzyme may be linked to the tag domain. In the following description, the nucleic acid sequence recognition module is linked to the tag domain, and the epigenome modifying enzyme is linked to the binding partner. When the module is linked to the binding partner, and the epigenome-modifying enzyme is linked to the tag domain, the "tag domain" and the "binding partner" can be read interchangeably and the description thereof can be used. .
 前記核酸配列認識モジュールと前記エピゲノム改変酵素とが、前記タグドメインと前記結合パートナーとの相互作用を介して、複合体を形成する場合、前記核酸配列認識モジュールと前記タグドメインとは、例えば、直接または間接的に連結されている、すなわち、融合タンパク質を形成している。また、前記エピゲノム改変酵素と前記結合パートナーとは、例えば、直接または間接的に連結されている、すなわち、融合タンパク質を形成している。 When the nucleic acid sequence recognition module and the epigenome modifying enzyme form a complex through interaction between the tag domain and the binding partner, the nucleic acid sequence recognition module and the tag domain are, for example, directly or indirectly linked, ie forming a fusion protein. Also, the epigenome-modifying enzyme and the binding partner are, for example, directly or indirectly linked, ie, form a fusion protein.
 前記核酸配列認識モジュールは、1つのタグドメインと連結されてもよいし、複数のタグドメインと連結されてもよい。また、前記タグドメインは、1つの核酸配列認識モジュールと連結されてもよいし、複数の核酸配列認識モジュールと連結されてもよい。1つの核酸配列認識モジュールが複数のタグドメインと連結されると、得られた複合体は、1つのタグドメインを有する核酸配列認識モジュールと形成された複合体と比較して、エピゲノム改変をより効率よく実施でき、かつ前記標的領域内の標的の核酸配列からより遠い位置のエピゲノムも改変できる。1つの核酸配列認識モジュールに連結されるタグドメインの数は、1以上であり、好ましくは、2以上(複数)、3~10、3~7、または3~5である。 The nucleic acid sequence recognition module may be linked with one tag domain, or may be linked with a plurality of tag domains. Also, the tag domain may be linked to one nucleic acid sequence recognition module, or may be linked to a plurality of nucleic acid sequence recognition modules. When one nucleic acid sequence recognition module is linked with multiple tag domains, the resulting complex is more efficient in epigenome modification compared to complexes formed with nucleic acid sequence recognition modules having one tag domain. It is well-performed and can also modify the epigenome at locations more distant from the target nucleic acid sequence within the target region. The number of tag domains linked to one nucleic acid sequence recognition module is 1 or more, preferably 2 or more (plurality), 3-10, 3-7, or 3-5.
 前記エピゲノム改変酵素は、1つの結合パートナーと連結されてもよいし、複数の結合パートナーと連結されてもよい。また、前記結合パートナーは、1つのエピゲノム改変酵素と連結されてもよいし、複数のエピゲノム改変酵素と連結されてもよい。1つの結合パートナーが複数のエピゲノム改変酵素と連結されると、得られた複合体は、1つのエピゲノム改変酵素を有する結合パートナーを含む複合体と比較して、エピゲノム改変をより効率よく実施でき、かつ前記標的領域内の標的の核酸配列からより遠い位置のエピゲノムも改変できる。1つの結合パートナーに連結されるエピゲノム改変酵素の数は、1以上であり、好ましくは、2以上(複数)、3~10、3~7、または3~5である。 The epigenome-modifying enzyme may be ligated with one binding partner, or may be ligated with a plurality of binding partners. Also, the binding partner may be linked to one epigenome-modifying enzyme, or may be linked to a plurality of epigenome-modifying enzymes. when one binding partner is linked to multiple epigenome modifying enzymes, the resulting complex is more efficient in performing epigenome modification compared to a complex comprising binding partners with one epigenome modifying enzyme; And the epigenome at more distant locations from the target nucleic acid sequence within the target region can also be modified. The number of epigenome-modifying enzymes linked to one binding partner is 1 or more, preferably 2 or more (plurality), 3-10, 3-7, or 3-5.
 前記核酸配列認識モジュールと前記エピゲノム改変酵素とは、1つの核酸配列認識モジュールと複数のエピゲノム改変酵素とが複合体を形成するように構成することにより、1つの核酸配列認識モジュールと1つのエピゲノム改変酵素とが複合体を形成する場合と比較して、エピゲノム改変をより効率よく実施でき、かつ前記標的領域内の標的の核酸配列からより遠い位置のエピゲノムも改変できる。このため、本発明において、前記核酸配列認識モジュールは、例えば、複数のタグドメインと連結され、かつ1つの結合パートナーは、複数のエピゲノム改変酵素と連結されてもよい。 The nucleic acid sequence recognition module and the epigenome modifying enzyme are configured such that one nucleic acid sequence recognition module and a plurality of epigenome modifying enzymes form a complex. Epigenome modification can be performed more efficiently and the epigenome can be modified more distantly from the target nucleic acid sequence within the target region than when the enzyme forms a complex. Thus, in the present invention, the nucleic acid sequence recognition module may, for example, be linked with multiple tag domains and one binding partner may be linked with multiple epigenome modifying enzymes.
 前記核酸配列認識モジュールと前記タグドメインとが直接的に連結している場合、前記核酸配列認識モジュールにおけるタンパク質のN末端またはC末端のアミノ酸が、前記タグドメインにおけるC末端またはN末端のアミノ酸と共有結合を形成している。前記核酸配列認識モジュールおよび前記タグドメインの順序は、特に制限されず、任意の順序とでき、例えば、N末端側から、前記核酸配列認識モジュールおよび前記タグドメインがこの順序で配置されてもよいし、前記タグドメインおよび前記核酸配列認識モジュールがこの順序で配置されてもよい。前記核酸配列認識モジュールと前記複数のタグドメインとの順序は、特に制限されないが、前記タグドメインは、連続して配置されていることが好ましい。前記核酸配列認識モジュールと前記タグドメインとが直接的に連結している場合、前記核酸は、前記核酸配列認識モジュールおよび前記タグドメインのアミノ酸配列が一体化した融合タンパク質をコードする第1の核酸を構成する。 When the nucleic acid sequence recognition module and the tag domain are directly linked, the N-terminal or C-terminal amino acid of the protein in the nucleic acid sequence recognition module is shared with the C-terminal or N-terminal amino acid in the tag domain. forming a bond. The order of the nucleic acid sequence recognition module and the tag domain is not particularly limited, and can be any order. For example, the nucleic acid sequence recognition module and the tag domain may be arranged in this order from the N-terminal side. , said tag domain and said nucleic acid sequence recognition module may be arranged in this order. The order of the nucleic acid sequence recognition module and the plurality of tag domains is not particularly limited, but the tag domains are preferably arranged consecutively. When the nucleic acid sequence recognition module and the tag domain are directly linked, the nucleic acid is a first nucleic acid encoding a fusion protein in which the amino acid sequences of the nucleic acid sequence recognition module and the tag domain are integrated. Configure.
 前記核酸配列認識モジュールと前記タグドメインとが間接的に連結している場合、前記核酸配列認識モジュールにおけるタンパク質のN末端またはC末端のアミノ酸が、リンカーを介して前記タグドメインにおけるC末端またはN末端のアミノ酸と結合している。前記核酸配列認識モジュールが複数のタグドメインと間接的に連結している場合、前記核酸配列認識モジュールと前記タグドメインとの間のみが、前記リンカーを介して連結し、前記タグドメイン間は、直接的に連結してもよいし、前記核酸配列認識モジュールと前記タグドメインとの間および前記タグドメイン間の両者が前記リンカーを介して連結してもよい。前記核酸配列認識モジュールと前記複数のタグドメインとの順序は、特に制限されないが、前記タグドメインは、連続して配置されていることが好ましい。前記核酸配列認識モジュールと前記タグドメインとが間接的に連結している場合、前記核酸は、前記核酸配列認識モジュールおよび前記タグドメインのアミノ酸配列が一体化した融合タンパク質をコードする第1の核酸を構成する。前記リンカーは、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素との間のリンカーの説明を援用できる。前記リンカーは、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素との間のリンカーの説明を援用できる。前記タグドメインとして、後述のGCN4ペプチドエピトープを用い、前記結合パートナーとして、前記GCN4ペプチドエピトープ抗体を用いる場合、前記リンカーの長さは、好ましくは、17~30アミノ酸、または22アミノ酸である。 When the nucleic acid sequence recognition module and the tag domain are indirectly linked, the amino acid at the N-terminus or C-terminus of the protein in the nucleic acid sequence recognition module is linked via a linker to the C-terminus or N-terminus of the tag domain. is bound to the amino acid of When the nucleic acid sequence recognition module is indirectly linked to a plurality of tag domains, only the nucleic acid sequence recognition module and the tag domain are linked via the linker, and the tag domains are linked directly. Alternatively, both the nucleic acid sequence recognition module and the tag domain and between the tag domains may be linked via the linker. The order of the nucleic acid sequence recognition module and the plurality of tag domains is not particularly limited, but the tag domains are preferably arranged consecutively. When the nucleic acid sequence recognition module and the tag domain are indirectly linked, the nucleic acid is a first nucleic acid encoding a fusion protein in which the amino acid sequences of the nucleic acid sequence recognition module and the tag domain are integrated. Configure. For the linker, the description of the linker between the nucleic acid sequence recognition module and the epigenome modifying enzyme can be used. For the linker, the description of the linker between the nucleic acid sequence recognition module and the epigenome modifying enzyme can be used. When the GCN4 peptide epitope described below is used as the tag domain and the GCN4 peptide epitope antibody is used as the binding partner, the length of the linker is preferably 17 to 30 amino acids, or 22 amino acids.
 前記エピゲノム改変酵素と前記結合パートナーとが直接的に連結している場合、前記エピゲノム改変酵素におけるタンパク質のN末端またはC末端のアミノ酸が、前記結合パートナーにおけるC末端またはN末端のアミノ酸と共有結合を形成している。前記エピゲノム改変酵素および前記結合パートナーの順序は、特に制限されず、任意の順序とでき、例えば、N末端側から、前記エピゲノム改変酵素および前記結合パートナーがこの順序で配置されてもよいし、前記結合パートナーおよび前記エピゲノム改変酵素がこの順序で配置されてもよい。前記エピゲノム改変酵素と前記複数の結合パートナーとの順序は、特に制限されないが、前記結合パートナーは、連続して配置されていることが好ましい。前記エピゲノム改変酵素と前記結合パートナーとが直接的に連結している場合、前記核酸は、前記エピゲノム改変酵素および前記結合パートナーのアミノ酸配列が一体化した融合タンパク質をコードする第2の核酸を構成する。 When the epigenome-modifying enzyme and the binding partner are directly linked, the N-terminal or C-terminal amino acid of the protein in the epigenome-modifying enzyme forms a covalent bond with the C-terminal or N-terminal amino acid in the binding partner. forming. The order of the epigenome-modifying enzyme and the binding partner is not particularly limited and can be any order. For example, the epigenome-modifying enzyme and the binding partner may be arranged in this order from the N-terminal side, A binding partner and said epigenome modifying enzyme may be arranged in this order. The order of the epigenome-modifying enzyme and the plurality of binding partners is not particularly limited, but the binding partners are preferably arranged consecutively. When the epigenome-modifying enzyme and the binding partner are directly linked, the nucleic acid constitutes a second nucleic acid encoding a fusion protein in which the amino acid sequences of the epigenome-modifying enzyme and the binding partner are integrated. .
 前記エピゲノム改変酵素と前記結合パートナーとが間接的に連結している場合、前記エピゲノム改変酵素におけるタンパク質のN末端またはC末端のアミノ酸が、リンカーを介して前記結合パートナーにおけるC末端またはN末端のアミノ酸と結合している。前記結合パートナーが複数のエピゲノム改変酵素と間接的に連結している場合、前記エピゲノム改変酵素と前記結合パートナーとの間のみが、前記リンカーを介して連結し、前記結合パートナー間は、直接的に連結してもよいし、前記エピゲノム改変酵素と前記結合パートナーとの間および前記エピゲノム改変酵素間の両者が前記リンカーを介して連結してもよい。前記結合パートナーと前記複数のエピゲノム改変酵素との順序は、特に制限されないが、前記エピゲノム改変酵素は、連続して配置されていることが好ましい。前記エピゲノム改変酵素と前記結合パートナーとが間接的に連結している場合、前記核酸は、前記エピゲノム改変酵素および前記結合パートナーのアミノ酸配列が一体化した融合タンパク質をコードする第2の核酸を構成する。前記リンカーは、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素との間のリンカーの説明を援用できる。前記タグドメインとして、後述のGCN4ペプチドエピトープを用い、前記結合パートナーとして、前記GCN4ペプチドエピトープ抗体を用いる場合、前記リンカーの長さは、好ましくは、17~30アミノ酸、または22アミノ酸である。 When the epigenome-modifying enzyme and the binding partner are indirectly linked, the N-terminal or C-terminal amino acid of the protein in the epigenome-modifying enzyme is linked via a linker to the C-terminal or N-terminal amino acid in the binding partner. is connected with When the binding partner is indirectly linked to a plurality of epigenome-modifying enzymes, only the epigenome-modifying enzyme and the binding partner are linked via the linker, and the binding partners are directly linked Alternatively, both the epigenome-modifying enzyme and the binding partner and the epigenome-modifying enzyme may be connected via the linker. The order of the binding partner and the plurality of epigenome-modifying enzymes is not particularly limited, but the epigenome-modifying enzymes are preferably arranged consecutively. When the epigenome-modifying enzyme and the binding partner are indirectly linked, the nucleic acid constitutes a second nucleic acid encoding a fusion protein in which the amino acid sequences of the epigenome-modifying enzyme and the binding partner are integrated. . For the linker, the description of the linker between the nucleic acid sequence recognition module and the epigenome modifying enzyme can be used. When the GCN4 peptide epitope described below is used as the tag domain and the GCN4 peptide epitope antibody is used as the binding partner, the length of the linker is preferably 17 to 30 amino acids, or 22 amino acids.
 前記核酸配列認識モジュールと前記エピゲノム改変酵素とが前記タグドメインと、前記結合パートナーとの相互作用を介して、複合体を形成する場合、前記タグドメインと、前記結合パートナーとは、互いに特異的に結合する組み合わせであれば任意の組み合わせを利用することができる。前記タグドメインと、前記結合パートナーとの組合せとしては、例えば、ペプチドエピトープとそれを認識する抗体またはアプタマーとの組合せ、自己組織化能を有するスプリットタンパク質のスモールフラグメントとラージフラグメントの組み合わせ等があげられる。前記タグドメインがペプチドから構成される場合、前記タグドメインは、ペプチドタグということもできる。 When the nucleic acid sequence recognition module and the epigenome modifying enzyme form a complex through interaction between the tag domain and the binding partner, the tag domain and the binding partner are specifically Any combination that binds can be used. Examples of the combination of the tag domain and the binding partner include a combination of a peptide epitope and an antibody or aptamer that recognizes it, a combination of a split protein small fragment and a large fragment having self-assembly ability, and the like. . When the tag domain is composed of a peptide, the tag domain can also be called a peptide tag.
 前記ペプチドエピトープとそれを認識する抗体の組合せとしては、例えば、GCN(General Control Non-derepressible)4ペプチドエピトープと、抗GCN4ペプチドエピトープ抗体;Hisタグと抗Hisタグ抗体;EEヘキサペプチドと抗EEヘキサペプチド抗体;c-Mycタグと抗c-Mycタグ抗体;HAタグと抗HAタグ抗体;Sタグと抗Sタグ抗体;FLAGタグと抗FLAGタグ抗体;等があげられる(Protein Engineering, Design & Selection; vol.24 (5):pp.419-428 (2011))。前記GCN4ペプチドは、GCN4に含まれるエピトープであればよく、具体例として、ELLSKNYHLENEVARLKK(配列番号7)で表されるアミノ酸配列があげられる。 Combinations of the peptide epitope and an antibody that recognizes it include, for example, GCN (General Control Non-derepressible) 4 peptide epitope and anti-GCN4 peptide epitope antibody; His tag and anti-His tag antibody; EE hexapeptide and anti-EE hexapeptide; Peptide antibody; c-Myc tag and anti-c-Myc tag antibody; HA tag and anti-HA tag antibody; S tag and anti-S tag antibody; FLAG tag and anti-FLAG tag antibody; ; vol.24 (5): pp.419-428 (2011)). The GCN4 peptide may be an epitope contained in GCN4, and a specific example thereof is the amino acid sequence represented by ELLSKNYHLENEVARLKK (SEQ ID NO: 7).
 自己組織化能を有するスプリットタンパク質は、あるタンパク質を2分したときに、分れた2つのタンパク質断片が再組織化して元のタンパク質と同じ構造を形成可能なタンパク質である。この場合、元のタンパク質を2分して得られる短いペプチド(スモールフラグメント)をタグドメイン(ペプチドタグ)として用い、長いペプチド(ラージフラグメント)を前記結合パートナーとして用いてもよいし、その逆の組合せで用いてもよい(Current Opinion in Chemical Biology(2011)15: pp. 789-797、国際公開第2005/074436号公報)。前記自己組織化能を有するスプリットタンパク質は、例えば、GFP(Green Fluorescent Protein)があげられ、GPFのスモールフラグメントをタグドメインとして用い、GFPのラージフラグメントを前記結合パートナーとして用いることができる。 A split protein that has the ability to self-assemble is a protein that can form the same structure as the original protein by reorganizing the two protein fragments when a protein is split into two. In this case, a short peptide (small fragment) obtained by dividing the original protein into two may be used as the tag domain (peptide tag) and a long peptide (large fragment) may be used as the binding partner, or vice versa. (Current Opinion in Chemical Biology (2011) 15: pp. 789-797, WO 2005/074436). Examples of the split protein having the ability to self-assemble include GFP (Green Fluorescent Protein). A small fragment of GPF can be used as the tag domain, and a large fragment of GFP can be used as the binding partner.
 前記タグドメインと前記結合パートナーとしては、例えば、ペプチドと前記ペプチドに結合するタンパク質ドメインとの組合せを用いてもよい。前記ペプチドと前記タンパク質ドメインとの組合せは、例えば、データベース(PepBDB:http://huanglab.phys.hust.edu.cn/pepbdb/、PiSITE:https://pisite.sb.ecei.tohoku.ac.jp/cgi-bin/top.cgi、STRING:https://string-db.org/)を参照できる。具体例として、PDZ Alpha-Syntrophin PDZ protein interaction domainは、GVKESLV(配列番号8)と結合できる。このため、前記タグドメインとして、GVKESLVを用い、PDZ domainを前記結合パートナーとして用いることができる。 As the tag domain and the binding partner, for example, a combination of a peptide and a protein domain that binds to the peptide may be used. The combination of the peptide and the protein domain can be obtained, for example, from databases (PepBDB: http://huanglab.phys.hust.edu.cn/pepbdb/, PiSITE: https://pisite.sb.ecei.tohoku.ac. jp/cgi-bin/top.cgi, STRING: https://string-db.org/). As a specific example, the PDZ Alpha-Syntrophin PDZ protein interaction domain can bind to GVKESLV (SEQ ID NO: 8). Thus, GVKESLV can be used as the tag domain and the PDZ domain as the binding partner.
 前記タグドメインおよび前記結合パートナーとして、前記ペプチドと、前記ペプチドに結合するタンパク質ドメインとの組合せを用いる場合、前記ペプチドと前記タンパク質ドメインとのペアの結合力は、別の不活性なドメインを、リンカー介して結合させ、進化工学で改良することにより強くしてもよい。前記タグドメインおよび前記結合パートナーとして、前記改良で得られたペアを用いれば、さらに効率よくエピゲノム改変を制御できる(Proc. Natl. Acad. Sci. USA, 2008, vol. 105 no. 18, 6578-6583)。 When a combination of the peptide and a protein domain that binds to the peptide is used as the tag domain and the binding partner, the binding strength of the pair of the peptide and the protein domain is such that another inert domain is linked to the linker. It may be strengthened by connecting via and improving with evolutionary engineering. Epigenome modification can be controlled more efficiently by using the pair obtained by the above improvement as the tag domain and the binding partner (Proc. Natl. Acad. Sci. USA, 2008, vol. 105 no. 18, 6578- 6583).
 前記核酸配列認識モジュールがCRISPR-Casシステムであり、前記核酸配列認識モジュールと前記エピゲノム改変酵素とが、前記タグドメインおよび前記結合パートナーとを介して複合体を形成する場合、前記核酸配列認識モジュールにおけるCasタンパク質が、前記タグドメインと連結されていることが好ましい。 When the nucleic acid sequence recognition module is a CRISPR-Cas system, and the nucleic acid sequence recognition module and the epigenome modifying enzyme form a complex via the tag domain and the binding partner, the nucleic acid sequence recognition module Preferably, the Cas protein is linked to said tag domain.
 本明細書に記載のタンパク質、融合タンパク質、またはそれをコードする核酸(例えば、DNAまたはRNA)の配列情報は、Protein Data Bank、UniPort、またはGenBank等から入手可能である。また、RNAの核酸配列は、適宜配列変換ソフト等を用い、対応するDNAの核酸配列からも入手可能である。本明細書に記載の核酸配列認識モジュールをコードするDNAおよびエピゲノム改変酵素をコードするDNAは、分子生物学的方法により、mRNAからクローニングすることにより取得してもよいし、前記配列情報に基づき、化学的にDNAを合成することにより、取得してもよい。また、前記DNAの取得に当たっては、前記核酸を導入する動植物(宿主)にあわせて、コドン最適化を実施してもよい。これにより、前記核酸は、例えば、宿主におけるタンパク質発現量の増大が期待できる。使用する宿主におけるコドン使用頻度のデータは、例えば、(公財)かずさDNA研究所のホームページに公開されている遺伝暗号使用頻度データベース(http://www.kazusa.or.jp/codon/index.html)を用いてもよいし、各宿主におけるコドン使用頻度を記した文献を参照してもよい。 Sequence information of the proteins, fusion proteins, or nucleic acids (eg, DNA or RNA) encoding them described herein can be obtained from Protein Data Bank, UniPort, GenBank, or the like. The nucleic acid sequence of RNA can also be obtained from the corresponding DNA nucleic acid sequence by using sequence conversion software or the like as appropriate. The DNA encoding the nucleic acid sequence recognition module and the DNA encoding the epigenome modifying enzyme described herein may be obtained by cloning from mRNA by molecular biological methods, or based on the sequence information, It may be obtained by chemically synthesizing DNA. In obtaining the DNA, codon optimization may be performed according to the animal or plant (host) into which the nucleic acid is to be introduced. Accordingly, the nucleic acid can be expected to, for example, increase the protein expression level in the host. Data on the frequency of codon usage in the host to be used can be obtained, for example, from the genetic code usage frequency database (http://www.kazusa.or.jp/codon/index. html), or refer to the literature describing the codon usage in each host.
 前記核酸配列認識モジュールおよび前記エピゲノム改変酵素をコードする核酸は、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成されている。これにより、前述のように、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素は、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域の核酸配列に結合して、前記標的領域のエピゲノムを改変できる。このため、前記核酸は、前記配偶子形成において、前記核酸配列認識モジュールの発現誘導時期と、および前記エピゲノム改変酵素の発現誘導時期とが重複するように構成されることが好ましい。具体例として、前記核酸は、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素の両者が、前記配偶子形成において発現時期が重複するように発現するように構成されてもよい。また、前記核酸は、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素の一方が、前記配偶子形成および前記配偶子形成以外の時期に発現するように構成され、他方が、前記配偶子形成において発現するように構成されてもよい。また、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素をコードする核酸は、恒常的に発現し、前記配偶子形成以外の時期に、前記核酸配列認識モジュールおよび/または前記エピゲノム改変酵素の発現を抑制する分子(例えば、siRNA、miRNA、shRNA等)の発現が誘導されることにより、前記配偶子形成において発現誘導されるように構成されていてもよい。 The nucleic acids encoding the nucleic acid sequence recognition module and the epigenome modifying enzyme are configured such that the nucleic acid sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis. Thereby, as described above, the nucleic acid sequence recognition module and the epigenome modifying enzyme form a complex, bind to the nucleic acid sequence of the target region in the genomic DNA of the forming gamete, and form the epigenome of the target region. can be modified. For this reason, the nucleic acid is preferably constructed so that the expression-inducing timing of the nucleic acid sequence recognition module and the expression-inducing timing of the epigenome-modifying enzyme overlap in the gametogenesis. As a specific example, the nucleic acid may be configured such that both the nucleic acid sequence recognition module and the epigenome-modifying enzyme are expressed at overlapping times during gametogenesis. Further, the nucleic acid is configured such that one of the nucleic acid sequence recognition module and the epigenome modifying enzyme is expressed during the gametogenesis and at a stage other than the gametogenesis, and the other is expressed during the gametogenesis. It may be configured as In addition, the nucleic acid encoding the nucleic acid sequence recognition module and the epigenome modifying enzyme is constantly expressed, and suppresses the expression of the nucleic acid sequence recognition module and/or the epigenome modifying enzyme at a time other than the gametogenesis. It may be configured to induce expression in gametogenesis by inducing the expression of a molecule (eg, siRNA, miRNA, shRNA, etc.).
 前記配偶子形成における発現誘導の時期は、例えば、前記配偶子の前駆細胞が配偶子に分化するまでの任意の時期とできる。具体例として、前記配偶子が精子の場合、前記配偶子形成における発現誘導の時期は、例えば、始原生殖細胞から精原細胞、精母細胞を経て、精子に分化するまでの時期である。前記配偶子が卵子の場合、前記配偶子形成における発現誘導の時期は、例えば、始原生殖細胞から卵原細胞、卵母細胞を経て、卵子に分化するまでの時期である。前記配偶子が花粉の場合、前記配偶子形成における発現誘導の時期は、例えば、花粉卵母細胞から花粉に分化するまでの時期である。前記配偶子が胚嚢の場合、前記配偶子形成における発現誘導の時期は、例えば、胚嚢卵母細胞から胚嚢に分化するまでの時期である。 The timing of the expression induction in the gametogenesis can be, for example, any timing until the precursor cells of the gametes differentiate into gametes. As a specific example, when the gamete is a sperm, the time of expression induction in the gametogenesis is, for example, the time from primordial germ cells to spermatogonia and spermatocytes to differentiate into sperm. When the gamete is an ovum, the time of expression induction in the gametogenesis is, for example, the time from primordial germ cells to oogonia and oocyte differentiation to ova. When the gamete is pollen, the time of expression induction in gametogenesis is, for example, the time from pollen oocytes to differentiation into pollen. When the gamete is an embryo sac, the time of expression induction in the gametogenesis is, for example, the time from the embryo sac oocyte to the embryo sac.
 前記核酸配列認識モジュールおよび前記エピゲノム改変酵素の発現時期の制御は、例えば、これらをコードする核酸に、時期特異的なプロモーターを機能的に連結することにより実施できる。具体的には、前記配偶子形成において、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素の発現を誘導する場合、前記発現時期の制御は、配偶子形成において活性化する配偶子形成特異的なプロモーターを用いて実施できる。前記配偶子形成特異的なプロモーターは、例えば、精子形成特異的プロモーター、卵子形成特異的プロモーター、花粉形成特異的プロモーター、胚嚢形成特異的プロモーター等があげられる。前記配偶子形成特異的プロモーターとしては、精子形成特異的プロモーターがあげられ、具体例として、STRA8プロモーター、Pgk2プロモーター、Dazlプロモーター、Gsg2プロモーター等があげられる。各プロモーターは、各遺伝子のプロモーター配列を意味し、具体例として、STRA8プロモーターは、STRA8遺伝子のプロモーターである。前記配偶子形成特異的プロモーターとしては、卵子形成特異的プロモーターがあげられ、具体例として、Gdf-9プロモーター、Zp3プロモーター、Msx2プロモーター等があげられる。 The expression timing of the nucleic acid sequence recognition module and the epigenome modifying enzyme can be regulated, for example, by functionally linking a timing-specific promoter to the nucleic acids encoding them. Specifically, when the expression of the nucleic acid sequence recognition module and the epigenome-modifying enzyme is induced in the gametogenesis, the control of the expression time activates a gametogenesis-specific promoter that is activated in the gametogenesis. can be implemented using Examples of the gametogenesis-specific promoters include spermatogenesis-specific promoters, oogenesis-specific promoters, pollen formation-specific promoters, germ sac formation-specific promoters, and the like. The gametogenesis-specific promoter includes spermatogenesis-specific promoters, and specific examples thereof include STRA8 promoter, Pgk2 promoter, Dazl promoter, Gsg2 promoter and the like. Each promoter means the promoter sequence of each gene, and as a specific example, the STRA8 promoter is the promoter of the STRA8 gene. The gametogenesis-specific promoter includes oogenesis-specific promoters, and specific examples thereof include Gdf-9 promoter, Zp3 promoter, Msx2 promoter and the like.
・精子特異的プロモーター
Stra8:Patricia I Sadate-Ngatchou et.al., “Cre recombinase activity specific to postnatal, premeiotic male germ cells in transgenic mice”, Genesis, 2008 Dec;46(12):738-42
Pgk2:Tatsuo Kido et.al., “The testicular fatty acid binding protein PERF15 regulates the fate of germ cells in PERF15 transgenic mice”, Dev Growth Differ, 2005 Jan;47(1):15-24.
Dazl:Cory R Nicholas et.al., “Characterization of a Dazl-GFP germ cell-specific reporter”, Genesis, 2009 Feb;47(2):74-84
GSG2(haspin):Keizo Tokuhiro et.al., “The 193-base pair Gsg2 (haspin) promoter region regulates germ cell-specific expression bidirectionally and synchronously”, Biol Reprod, 2007 Mar;76(3):407-14
・卵子特異的プロモーター
Gdf-9:Zi-Jian Lan et.al., “Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice”, Biol Reprod, 2004 Nov;71(5):1469-74
Zp3:M Lewandoski et.al., “Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line”, Curr Biol, 1997 Feb 1;7(2):148-51
Msx2:Zi-Jian Lan et.al., “Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice”, Biol Reprod, 2004 Nov;71(5):1469-74
・Sperm-specific promoter
Stra8: Patricia I Sadate-Ngatchou et.al., “Cre recombinase activity specific to postnatal, premeiotic male germ cells in transgenic mice”, Genesis, 2008 Dec;46(12):738-42
Pgk2: Tatsuo Kido et.al., "The testicular fatty acid binding protein PERF15 regulates the fate of germ cells in PERF15 transgenic mice", Dev Growth Differ, 2005 Jan;47(1):15-24.
Dazl: Cory R Nicholas et.al., “Characterization of a Dazl-GFP germ cell-specific reporter”, Genesis, 2009 Feb;47(2):74-84
GSG2(haspin): Keizo Tokuhiro et al., “The 193-base pair Gsg2 (haspin) promoter region regulates germ cell-specific expression bidirectionally and synchronously”, Biol Reprod, 2007 Mar;76(3):407-14
・Egg-specific promoter
Gdf-9: Zi-Jian Lan et.al., "Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice", Biol Reprod, 2004 Nov;71(5):1469 -74
Zp3: M Lewandoski et.al., "Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line", Curr Biol, 1997 Feb 1;7(2):148 -51
Msx2: Zi-Jian Lan et.al., "Differential oocyte-specific expression of Cre recombinase activity in GDF-9-iCre, Zp3cre, and Msx2Cre transgenic mice", Biol Reprod, 2004 Nov;71(5):1469-74
 前記配偶子形成および前記配偶子形成以外の時期に発現を誘導する場合、前記発現時期の制御は、例えば、恒常的に発現が誘導されるプロモーター等を用いて実施できる。具体例として、前記プロモーターは、例えば、CAGプロモーター、SRαプロモーター、SV50プロモーター、LTRプロモーター、CMV(サイトメガロウイルス)プロモーター、RSV(ラウス肉腫ウイルス)プロモーター、MoMuLV(モロニーマウス白血病ウイルス)プロモーター、HSV-TK(単純ヘルペスウイルスチミジンキナーゼ)プロモーター等あげられる。 When the expression is induced at the gametogenesis stage or at a stage other than the gametogenesis stage, the expression stage can be regulated using, for example, a promoter whose expression is constantly induced. Specific examples of the promoter include CAG promoter, SRα promoter, SV50 promoter, LTR promoter, CMV (cytomegalovirus) promoter, RSV (Rous sarcoma virus) promoter, MoMuLV (Moloney murine leukemia virus) promoter, HSV-TK. (herpes simplex virus thymidine kinase) promoter and the like.
 本発明において、前記核酸は、発現ベクターに挿入されていることが好ましい。この場合、前記核酸配列認識モジュールをコードする核酸と、前記エピゲノム改変酵素をコードする核酸とは、それぞれ、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素が発現可能に、前記発現ベクターに連結されている。前記発現ベクターは、例えば、骨格となるベクター(以下、「基本ベクター」ともいう)に、前記核酸配列認識モジュールをコードする核酸および/または前記エピゲノム改変酵素をコードする核酸を挿入することで作製できる。 In the present invention, the nucleic acid is preferably inserted into an expression vector. In this case, the nucleic acid encoding the nucleic acid sequence recognition module and the nucleic acid encoding the epigenome modifying enzyme are respectively linked to the expression vector so that the nucleic acid sequence recognition module and the epigenome modifying enzyme can be expressed. . The expression vector can be prepared, for example, by inserting a nucleic acid encoding the nucleic acid sequence recognition module and/or a nucleic acid encoding the epigenome modifying enzyme into a backbone vector (hereinafter also referred to as a "basic vector"). .
 前記核酸配列認識モジュールをコードする核酸と、前記エピゲノム改変酵素をコードする核酸とは、同じ発現ベクターに連結してもよいし、異なるベクターに連結してもよい。前記核酸配列認識モジュールをコードする核酸(第1の核酸)と、前記エピゲノム改変酵素をコードする核酸(第2の核酸)とを異なるベクターに連結する場合、前記発現ベクターは、第1の発現ベクターと第2の発現ベクターとを含み、前記第1の発現ベクターは、前記核酸配列認識モジュールが発現可能なように、前記第1の核酸が機能的に連結され、前記第2の発現ベクターは、前記エピゲノム改変酵素が発現可能なように、前記第2の核酸が機能的に連結されている。また、前記核酸配列認識モジュールが複数の要素から構成される場合、例えば、CRISPR-Casシステムを用いる場合、各要素の一部または全部を、異なる発現ベクターに連結してもよい。 The nucleic acid encoding the nucleic acid sequence recognition module and the nucleic acid encoding the epigenome modifying enzyme may be linked to the same expression vector or may be linked to different vectors. When the nucleic acid (first nucleic acid) encoding the nucleic acid sequence recognition module and the nucleic acid (second nucleic acid) encoding the epigenome modifying enzyme are linked to different vectors, the expression vector is the first expression vector. and a second expression vector, wherein the first expression vector is operably linked to the first nucleic acid so that the nucleic acid sequence recognition module can be expressed, and the second expression vector comprises: The second nucleic acid is operably linked so that the epigenome modifying enzyme can be expressed. Moreover, when the nucleic acid sequence recognition module is composed of a plurality of elements, for example, when using the CRISPR-Cas system, part or all of each element may be linked to different expression vectors.
 前記基本ベクターは、本発明の組成物を使用する動植物、すなわち、宿主に応じて適宜選択できる。前記発現ベクターは、例えば、プラスミドベクター等の非ウイルスベクターまたはウイルスベクターがあげられる。前記動物に対するプラスミドベクターとしては、例えば、pCDM8、pMT2PC、pA1-11、pXT1、pRc/CMV、pRc/RSV、pcDNAI/Neo等があげられる。前記植物に対するプラスミドベクターとしては、T-DNAを含むベクターがあげられ、具体例として、pGEM-T等があげられる。前記ウイルスベクターは、例えば、レトロウイルス、ワクシニアウイルス、アデノウイルス等のウイルスベクターがあげられる。 The basic vector can be appropriately selected according to the animal or plant that uses the composition of the present invention, that is, the host. Examples of the expression vector include non-viral vectors such as plasmid vectors and viral vectors. Plasmid vectors for animals include, for example, pCDM8, pMT2PC, pA1-11, pXT1, pRc/CMV, pRc/RSV, pcDNAI/Neo and the like. Examples of plasmid vectors for plants include vectors containing T-DNA, and specific examples thereof include pGEM-T and the like. Examples of the viral vectors include viral vectors such as retroviruses, vaccinia viruses, and adenoviruses.
 前記発現ベクターは、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素の発現を調節する、調節配列を有することが好ましい。前記調節配列は、例えば、プロモーター、ターミネーター、エンハンサー、ポリアデニル化シグナル配列、複製起点配列(ori)等があげられる。前記発現ベクターにおける前記調節配列の配置は、特に制限されず、前記核酸配列認識モジュールおよび/または前記エピゲノム改変酵素の発現を機能的に調節できるように配置されていればよく、公知の方法に基づいて配置できる。前記調節配列は、例えば、前記基本ベクターが予め備える配列を利用してもよいし、前記基本ベクターに、さらに、前記調節配列を挿入してもよいし、前記基本ベクターが備える調節配列を、他の調節配列に置き換えてもよい。 The expression vector preferably has regulatory sequences that regulate the expression of the nucleic acid sequence recognition module and the epigenome modifying enzyme. The regulatory sequences include, for example, promoters, terminators, enhancers, polyadenylation signal sequences, replication origin sequences (ori) and the like. Arrangement of the regulatory sequence in the expression vector is not particularly limited as long as it is arranged so that the expression of the nucleic acid sequence recognition module and/or the epigenome modifying enzyme can be functionally regulated. can be placed For the regulatory sequence, for example, a sequence provided in advance in the basic vector may be used, the regulatory sequence may be further inserted into the basic vector, or the regulatory sequence provided in the basic vector may be may be replaced by the regulatory sequences of
 前記発現ベクターは、例えば、さらに、選択マーカーのコード配列を有してもよい。前記選択マーカーは、例えば、薬剤耐性マーカー、蛍光タンパク質マーカー、酵素マーカー、細胞表面レセプターマーカー等があげられる。 The expression vector may, for example, further have a coding sequence for a selectable marker. Examples of the selectable marker include drug resistance markers, fluorescent protein markers, enzyme markers, cell surface receptor markers and the like.
 前記発現ベクターへの、核酸(DNA)の挿入、前記調節配列の挿入、および/または前記選択マーカーのコード配列の挿入は、例えば、制限酵素およびリガーゼを用いた方法で実施してもよいし、市販のキット等を用いてもよい。 Insertion of nucleic acid (DNA), insertion of the regulatory sequence, and/or insertion of the coding sequence of the selectable marker into the expression vector may be performed by, for example, a method using restriction enzymes and ligase, A commercially available kit or the like may be used.
 本発明の組成物が、複数の発現ベクターを含む場合、本発明の組成物は、例えば、核酸キット、発現ベクターキットということもできる。この場合、前記キットは、例えば、さらに、取扱説明書等を含んでもよい。 When the composition of the present invention contains multiple expression vectors, the composition of the present invention can also be called, for example, a nucleic acid kit or an expression vector kit. In this case, the kit may further include an instruction manual and the like, for example.
<エピゲノムが改変された動植物の製造または維持用親系統の動植物の製造方法>
 別の態様において、本発明は、エピゲノムが改変された動植物の製造および/または維持に利用できる親系統の動植物の製造方法を提供する。本発明の製造方法は、エピゲノムが改変された動植物の親系統の製造方法であって、対象の動植物に、本発明の組成物を導入する工程(導入工程)を含む。本発明の第1の製造方法によれば、エピゲノムが改変された動植物の製造および/または維持に利用できる親系統の動植物を製造できる。
<Method for Producing Animals and Plants with Modified Epigenomes or Producing Parent Line Animals and Plants for Maintenance>
In another aspect, the present invention provides methods for producing parental line animals and plants that can be used to produce and/or maintain epigenome-modified animals and plants. The production method of the present invention is a method of producing a parent line of an animal or plant with modified epigenome, and includes a step of introducing the composition of the present invention into a target animal or plant (introduction step). According to the first production method of the present invention, it is possible to produce parent line animals and plants that can be used for the production and/or maintenance of epigenome-modified animals and plants.
 前記導入工程では、前記対象の動植物への本発明の組成物、すなわち、前記核酸またはそれを含む発現ベクターを導入することにより、例えば、本発明の組成物における核酸、すなわち、前記核酸配列認識モジュールをコードする核酸および前記エピゲノム改変酵素をコードする核酸を含む親系統の動植物を作製する工程である。 In the introduction step, by introducing the composition of the present invention, that is, the nucleic acid or an expression vector containing the same, into the target animal or plant, for example, the nucleic acid in the composition of the present invention, that is, the nucleic acid sequence recognition module and a step of producing a parent line animal or plant containing a nucleic acid encoding the epigenome-modifying enzyme.
 前記対象の動植物は、例えば、カルス等を形成しており、植物個体へと発生しうる植物細胞;受精卵、動物胚(胚、胚盤胞)等の動物個体へと発生しうる動物細胞;等があげられる。前記動植物は、例えば、ヒトを除く。 The target animals and plants are, for example, plant cells that form callus and the like and can develop into plant individuals; animal cells that can develop into animal individuals such as fertilized eggs and animal embryos (embryos, blastocysts); etc. The animals and plants exclude, for example, humans.
 前記導入工程における導入方法は、例えば、形質転換体または遺伝子組換え動植物を製造するための公知の方法により実施できる。具体例として、前記対象の動植物として、植物のカルス等の植物細胞;ES細胞、受精卵、動物胚(胚、胚盤胞)等の動物細胞;等の細胞に導入する場合、前記導入方法は、例えば、パーティクルガン等の遺伝子銃による導入法、リン酸カルシウム法、ポリエチレングリコール法、リポソームを用いるリポフェクション法、エレクトロポレーション法、超音波核酸導入法、DEAE-デキストラン法、微小ガラス管等を用いた直接注入法、マイクロインジェクション法、ハイドロダイナミック法、カチオニックリポソーム法、導入補助剤を用いる方法、アグロバクテリウムを介する方法等があげられる。前記リポソームは、例えば、リポフェクタミンおよびカチオニックリポソーム等があげられ、前記導入補助剤は、例えば、アテロコラーゲン、ナノ粒子およびポリマー等があげられる。前記対象の動植物が植物細胞の場合、前記本発明の組成物は、アグロバクテリウム法を用いて、前記植物に導入してもよい。 The introduction method in the introduction step can be implemented, for example, by a known method for producing transformants or genetically modified animals and plants. As a specific example, as the target animals and plants, when introducing into cells such as plant cells such as plant callus; animal cells such as ES cells, fertilized eggs, and animal embryos (embryos, blastocysts); , for example, introduction methods using gene guns such as particle guns, calcium phosphate methods, polyethylene glycol methods, lipofection methods using liposomes, electroporation methods, ultrasonic nucleic acid introduction methods, DEAE-dextran methods, direct methods using micro glass tubes, etc. Examples thereof include an injection method, a microinjection method, a hydrodynamic method, a cationic liposome method, a method using an introduction aid, and a method via Agrobacterium. Examples of the liposome include lipofectamine and cationic liposome, and examples of the introduction aid include atelocollagen, nanoparticles, and polymers. When the target animal or plant is a plant cell, the composition of the present invention may be introduced into the plant using the Agrobacterium method.
 前記導入工程では、前記本発明の組成物における核酸が、前記対象の動植物のゲノムDNAに組込まれる導入方法により実施されることが好ましい。この場合、前記導入工程では、対象の動植物に、本発明の組成物を導入することにより、前記対象の動植物のゲノムDNAに前記本発明の組成物の核酸を導入(挿入)し、より具体的には、前記核酸配列認識モジュールをコードする核酸および前記エピゲノム改変酵素をコードする核酸を導入(挿入)する。前記ゲノムDNAに組込まれる導入方法としては、前述の細胞への導入方法に、相同組換えを用いる方法またはゲノム編集技術を用いる方法を組合わせた方法が利用できる。 The introduction step is preferably carried out by an introduction method in which the nucleic acid in the composition of the present invention is integrated into the genomic DNA of the target animal or plant. In this case, in the introduction step, the nucleic acid of the composition of the present invention is introduced (inserted) into the genomic DNA of the target animal or plant by introducing the composition of the present invention into the target animal or plant. into (insert) a nucleic acid encoding the nucleic acid sequence recognition module and a nucleic acid encoding the epigenome modifying enzyme. As the introduction method for integration into the genomic DNA, a method combining the aforementioned introduction method into cells with a method using homologous recombination or a method using genome editing technology can be used.
 前記相同組換えを用いた遺伝子組み換え動物の作製方法としては、例えば、Hogan,et al.,Manipulating the Mouse Embryo:A Laboratory Manual,Cold Spring Harbor Laboratory,1986等を参照できる。また、前記導入方法としては、本発明の組成物を生殖細胞に導入することにより実施してもよい。この場合、前記導入方法としては、例えば、哺乳類動物の生殖細胞に、外来DNAを導入する方法が利用できる(例えば、Gordon,et al.,PNAS,77:7380-84(1980);Gordon and Ruddle,Science,214:1244-46(1981);Palmiter and Brinster,Cell,41:343-45(1985);Brinster,et al.,PNAS,82:4438-42(1985)等)。 As a method for producing genetically modified animals using the homologous recombination, for example, Hogan, et al. , Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory, 1986, etc. Alternatively, the introduction method may be performed by introducing the composition of the present invention into germ cells. In this case, as the introduction method, for example, a method of introducing exogenous DNA into germ cells of mammals can be used (eg, Gordon, et al., PNAS, 77: 7380-84 (1980); Gordon and Ruddle , Science, 214:1244-46 (1981); Palmiter and Brinster, Cell, 41:343-45 (1985); Brinster, et al., PNAS, 82:4438-42 (1985), etc.).
 前記ゲノム編集を用いた組換え動植物の作製方法としては、外来DNAと一緒に、Cas9 RNA等のCasタンパク質をコードするRNAまたはCas9タンパク質等のCasタンパク質と、ガイドRNAとを生殖細胞に導入することができる(例えば、Yang et al., Cell, 154:1370-9 (2013);Quadros et al., Genome Biol, 18:92 (2018)等)。 As a method for producing recombinant animals and plants using genome editing, RNA encoding Cas protein such as Cas9 RNA or Cas protein such as Cas9 protein and guide RNA are introduced into germ cells together with foreign DNA. (For example, Yang et al., Cell, 154: 1370-9 (2013); Quadros et al., Genome Biol, 18: 92 (2018), etc.).
 前記対象の動植物として、植物個体へと発生しうる植物細胞または動物個体へと発生しうる動物細胞を用いる場合、本発明の第1の製造方法は、前記導入工程後、前記植物細胞または前記動物細胞から、植物個体または動物個体を発生させる工程を含むことが好ましい。前記植物個体の発生方法は、例えば、カルスからシュートを形成させ、植物個体を再生させる公知の方法により実施できる。また、前記動物個体の発生方法は、例えば、前記動物細胞を偽妊娠母体に移植して発生および出産させることより、産仔として動物の個体を得ることができる。 When a plant cell that can develop into a plant individual or an animal cell that can develop into an animal individual is used as the target animal or plant, the first production method of the present invention includes, after the introducing step, the plant cell or the animal It is preferable to include the step of generating plant or animal individuals from cells. The method for generating the plant individual can be carried out, for example, by a known method of forming shoots from callus and regenerating the plant individual. In addition, in the method for generating the animal individual, for example, the animal individual can be obtained as a litter by transplanting the animal cell into a pseudopregnant mother to develop and give birth.
 本発明の第1の製造方法は、前記導入工程後に、前記核酸配列認識モジュールをコードする核酸および前記エピゲノム改変酵素をコードする核酸が、ゲノムDNAに組込まれた動植物を選抜する工程を含んでもよい。前記選抜は、例えば、前記導入工程後の動植物のゲノムDNAを解読し、前記核酸配列認識モジュールをコードする核酸および前記エピゲノム改変酵素をコードする核酸が含まれているかを検討して、選抜してもよいし、前記導入工程後の動植物のゲノムDNAについて、前記核酸配列認識モジュールをコードする核酸および前記エピゲノム改変酵素をコードする核酸に対するプライマーおよび/またはプローブ等により検出して、選抜してもよいし、選択マーカーを用いて選抜してもよい。 The first production method of the present invention may include, after the introducing step, the step of selecting animals and plants in which the nucleic acid encoding the nucleic acid sequence recognition module and the nucleic acid encoding the epigenome modifying enzyme have been integrated into their genomic DNA. . The selection is performed, for example, by decoding the genomic DNA of the animal or plant after the introduction step, examining whether the nucleic acid encoding the nucleic acid sequence recognition module and the nucleic acid encoding the epigenome modifying enzyme is included, and selecting. Alternatively, the genomic DNA of animals and plants after the introduction step may be detected and selected using primers and/or probes for the nucleic acid encoding the nucleic acid sequence recognition module and the nucleic acid encoding the epigenome modifying enzyme. and may be selected using selectable markers.
<エピゲノムが改変された動植物の製造または維持用親系統の動植物>
 別の態様において、本発明は、エピゲノムが改変された動植物の製造および/または維持に利用できる親系統の動植物を提供する。本発明の親系統の動植物は、エピゲノムが改変された動植物の製造または維持用親系統の動植物であって、前記動植物は、外来性の核酸を含み、前記核酸は、ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、前記核酸配列認識モジュールと複合体を形成可能であり、かつエピゲノムを改変可能なエピゲノム改変酵素と、をコードする核酸を含み、前前記核酸は、前記配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変する。本発明の親系統の動植物によれば、エピゲノムが改変された動植物の製造と、エピゲノムが改変された動植物の維持とを実施できる。
<Parent line animals and plants for production or maintenance of animals and plants with modified epigenome>
In another aspect, the present invention provides parental strains of animals and plants that can be used for the production and/or maintenance of epigenome-modified animals and plants. The parental line of animals and plants of the present invention is a parental line of animals and plants for production or maintenance of epigenome-modified animals and plants, wherein the animals and plants contain exogenous nucleic acids, and the nucleic acids modify the epigenome in genomic DNA. A nucleic acid encoding a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region, and an epigenome-modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and capable of modifying the epigenome, The nucleic acid is configured such that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis, and the nucleic acid sequence recognition module and the epigenome modifying enzyme whose expression is induced in the gametogenesis form a complex to modify the epigenome of target regions in the genomic DNA of forming gametes. According to the parent line animals and plants of the present invention, production of epigenome-modified animals and plants and maintenance of epigenome-modified animals and plants can be carried out.
 本発明の親系統の動植物では、前述のように、エピゲノムが改変される配偶子の種類に応じて、前記標的領域のエピゲノムが改変された動植物の製造に用いる親系統と、前記標的領域のエピゲノムが改変された動植物の親系統として維持に用いる親系統とを生産できる。前記外来性の核酸は、例えば、前記本発明の組成物の核酸に由来する。前記外来性の核酸は、前記親系統を安定的に維持できることから、前記親系統のゲノムDNAに挿入されていることが好ましい。 As described above, in the parent line animals and plants of the present invention, the parent line used for producing the animal or plant in which the epigenome of the target region is modified and the epigenome of the target region are used according to the type of gamete whose epigenome is modified. can produce a parental line used for maintenance as a parental line of animals and plants that have been modified. Said exogenous nucleic acid is, for example, derived from the nucleic acid of said composition of the invention. The exogenous nucleic acid is preferably inserted into the genomic DNA of the parent strain because it allows the parent strain to be stably maintained.
 前記エピゲノムが改変される配偶子が精子の場合、前記雄親系統の精子形成において、前記標的領域のエピゲノムの改変が生じる。このため、前記エピゲノムが改変される配偶子が精子の場合、前記エピゲノムが改変された動植物の製造に用いる親系統は、雄親系統であり、前記親系統の動植物としての維持に用いる系統は、雌親系統である。また、前記雄親系統では、始原生殖細胞から精子までの分化段階の細胞において、前記標的領域のエピゲノムが改変されているが、前記雄親系統を構成する、前記始原生殖細胞から精子までの分化段階の細胞以外の細胞において、前記標的領域のエピゲノムが改変されない。他方、前記雌親系統では、前記雌親系統を構成する細胞は、前記標的領域のエピゲノムが改変されていない。前記エピゲノムが改変される配偶子が精子の場合、前記外来性の核酸は、精子形成特異的プロモーターに機能的に連結されていることが好ましい。 When the gamete whose epigenome is modified is a sperm, modification of the epigenome of the target region occurs in spermatogenesis of the male parent line. Therefore, when the gamete whose epigenome is modified is a sperm, the parent line used for producing the epigenome-modified animal or plant is a male parent line, and the line used for maintaining the parent line as an animal or plant is Female parent line. In addition, in the male parent line, the epigenome of the target region is modified in cells at the stage of differentiation from primordial germ cells to sperm, but differentiation from the primordial germ cell to sperm constituting the male parent line The epigenome of the target region is not modified in cells other than the staged cells. On the other hand, in the female parental line, the cells that make up the female parental line are not epigenome-modified in the target region. When the gamete whose epigenome is modified is a sperm, the exogenous nucleic acid is preferably operably linked to a spermatogenesis-specific promoter.
 前記エピゲノムが改変される配偶子が卵子の場合、前記雌親系統の卵子形成において、前記標的領域のエピゲノムの改変が生じる。このため、前記エピゲノムが改変される配偶子が卵子の場合、前記エピゲノムが改変された動植物の製造に用いる親系統は、雌親系統であり、前記親系統の動植物としての維持に用いる系統は、雄親系統である。また、前記雌親系統では、例えば、始原生殖細胞から卵子までの分化段階の細胞において、前記標的領域のエピゲノムが改変されているが、前記雌親系統を構成する、前記始原生殖細胞から卵子までの分化段階の細胞以外の細胞において、前記標的領域のエピゲノムが改変されない。他方、前記雄親系統では、前記雄親系統を構成する細胞は、前記標的領域のエピゲノムが改変されない。前記エピゲノムが改変される配偶子が精子の場合、前記外来性の核酸は、精子形成特異的プロモーターに機能的に連結されていることが好ましい。 When the gamete whose epigenome is modified is an ovum, modification of the epigenome of the target region occurs during oogenesis of the female parent line. Therefore, when the gamete whose epigenome is modified is an ovum, the parent line used for producing the animal or plant with the epigenome modified is a female parent line, and the line used for maintaining the parent line as an animal or plant is It is the male parent line. In addition, in the female parent line, for example, in cells at the stage of differentiation from primordial germ cells to eggs, the epigenome of the target region is modified. The epigenome of the target region is not modified in cells other than cells at the stage of differentiation. On the other hand, in the male parental line, the cells that make up the male parental line are not epigenome modified in the target region. When the gamete whose epigenome is modified is a sperm, the exogenous nucleic acid is preferably operably linked to a spermatogenesis-specific promoter.
 前記親系統の動植物において、前記外来性の核酸がゲノムDNAに組込まれている場合、前記親系統の動植物は、前記外来性の核酸が組込まれた染色体と、前記外来性の核酸が組込まれていない野生型の染色体とを有することが好ましい。 When the exogenous nucleic acid is integrated into genomic DNA in the parent line of animals and plants, the parent line of animals and plants includes a chromosome into which the exogenous nucleic acid is integrated and the exogenous nucleic acid into which the exogenous nucleic acid is integrated. It is preferred to have a wild-type chromosome with no
<エピゲノムが改変された動植物の製造または維持用親系統の動植物>
 別の態様において、本発明は、エピゲノムが改変された動植物の製造および/または維持用親系統の製造に利用可能な配偶子を提供する。本発明の配偶子は、前記本発明の親系統の動植物から単離された配偶子である。本発明の配偶子によれば、前記標的領域のエピゲノムが改変された動植物、およびエピゲノムが改変された動植物の製造または維持用親系統の動植物を製造できる。
<Parent line animals and plants for production or maintenance of animals and plants with modified epigenome>
In another aspect, the present invention provides gametes that can be used to produce epigenome-modified animals and plants and/or to produce parental lines for maintenance. Gametes of the present invention are gametes isolated from plants and animals of the parent line of the present invention. According to the gamete of the present invention, it is possible to produce animals and plants in which the epigenome of the target region is modified, and animals and plants of the parent line for production or maintenance of animals and plants in which the epigenome is modified.
 前記配偶子は、例えば、前記親系統の動植物から単離できる。前記単離方法は、例えば、前記配偶子の種類により適宜設定できる。前記配偶子は、例えば、前記親系統の動植物からの単離後、保存してもよい。前記保存は、前記配偶子の種類に応じて適宜選択でき、例えば、液体窒素下での保存等があげられる。 The gametes can be isolated, for example, from plants and animals of the parent line. The isolation method can be appropriately set according to, for example, the type of gamete. Said gametes may, for example, be stored after isolation from said parent line of animals or plants. The method of preservation can be appropriately selected according to the type of gamete, and examples thereof include preservation under liquid nitrogen.
 前記配偶子は、前記標的領域のエピゲノムが改変されていることが好ましい。この場合、前記配偶子は、前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とが複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変された、親系統の動植物から単離できる。 The gamete preferably has a modified epigenome in the target region. In this case, in the gamete, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex in the gamete formation, and the epigenome of the target region in the genomic DNA of the gamete being formed. can be isolated from the modified parental line of plants and animals.
 前記配偶子を前記標的領域のエピゲノムが改変された動植物の製造に用いる場合、前記配偶子は、前記外来性の核酸を含んでも、含まなくてもよいが、含まないことが好ましい。また、前記配偶子を前記エピゲノムが改変された動植物の製造または維持用親系統の動植物の製造に用いる場合、前記配偶子は、前記外来性の核酸を含む。 When the gamete is used to produce an animal or plant in which the epigenome of the target region is modified, the gamete may or may not contain the exogenous nucleic acid, but preferably does not contain it. In addition, when the gametes are used for the production of the epigenome-modified animals and plants or the production of the maintenance parent line animals and plants, the gametes contain the exogenous nucleic acid.
<エピゲノムが改変された動植物の製造方法>
 別の態様において、本発明は、標的領域のエピゲノムが改変された動植物の製造方法を提供する。本発明の製造方法は、標的領域のエピゲノムが改変された動植物の製造方法であって、第1の親と、第2の親とを交雑し、得られた後代個体からエピゲノムが改変された個体を得る工程(交雑工程)を含み、前記第1の親および/または前記第2の親は、前記本発明の親系統の動植物である。本発明の第2の製造方法によれば、前記標的領域のエピゲノムが改変された動植物を製造できる。
<Method for Producing Animals and Plants with Modified Epigenomes>
In another aspect, the present invention provides a method for producing an animal or plant in which the epigenome of the target region is modified. The production method of the present invention is a method for producing an animal or plant in which the epigenome of the target region is modified, wherein the first parent and the second parent are crossed, and the obtained progeny individual is an individual whose epigenome is modified. (crossbreeding step), wherein the first parent and/or the second parent are plants and animals of the parent line of the present invention. According to the second production method of the present invention, animals and plants in which the epigenome of the target region is modified can be produced.
 前記交雑工程において、前記第1の親および前記第2の親の一方を、前記本発明の親系統の動植物としてもよいし、両者を、前記本発明の親系統の動植物としてもよい。前記一方の親を前記本発明の親系統の動植物とすることにより、本発明の第2の製造方法では、前記ゲノムDNAにおいて、1セットの染色体のうち、一方の染色体における標的領域のエピゲノムが改変された動植物、または1つの染色体(例えば、Y染色体)の標的領域のエピゲノムが改変された動植物を得ることができる。他方、前記両方の親を前記本発明の親系統の動植物とすることにより、本発明の第2の製造方法では、前記ゲノムDNAにおいて、1セットの染色体の両染色体における標的領域のエピゲノムが改変された動植物を得ることができる。 In the crossbreeding step, one of the first parent and the second parent may be the animal or plant of the parent line of the present invention, or both may be the animal or plant of the parent line of the present invention. By making the one parent an animal or plant of the parent line of the present invention, in the second production method of the present invention, in the genomic DNA, the epigenome of the target region in one chromosome of the set of chromosomes is modified. plants or animals in which the epigenome of the target region of one chromosome (eg, the Y chromosome) has been modified. On the other hand, in the second production method of the present invention, by making both the parents animals and plants of the parent line of the present invention, the epigenome of the target region in both chromosomes of one set of chromosomes is modified in the genomic DNA. animals and plants can be obtained.
 前記交雑工程においては、前記第1の親および/または前記第2の親として、前記動植物の個体に代えて、前記第1の親および/または前記第2の親の配偶子を用いてもよい。 In the crossbreeding step, as the first parent and/or the second parent, gametes of the first parent and/or the second parent may be used instead of the animal or plant individual. .
 前記交雑工程において、前記第1の親と前記第2の親との交雑は、公知の方法により実施できる。 In the crossbreeding step, the crossbreeding of the first parent and the second parent can be carried out by a known method.
 本発明の第2の製造方法は、前記後代個体から前記外来性の核酸を含まない個体を選抜してもよい。これにより、本発明の第2の製造方法は、前記標的領域のエピゲノムが改変された以外は、前記標的領域のエピゲノムが改変されておらず、前記外来性の核酸を有さない動植物と同様の個体を得ることができる。前記外来性の核酸は、例えば、前記核酸配列認識モジュールをコードする核酸および/または前記エピゲノム改変酵素をコードする核酸を検出することにより実施できる。 In the second production method of the present invention, individuals that do not contain the exogenous nucleic acid may be selected from the progeny individuals. As a result, the second production method of the present invention is similar to animals and plants in which the epigenome of the target region is not modified except that the epigenome of the target region is modified, and which does not have the exogenous nucleic acid. individual can be obtained. The exogenous nucleic acid can be detected, for example, by detecting the nucleic acid encoding the nucleic acid sequence recognition module and/or the nucleic acid encoding the epigenome modifying enzyme.
<エピゲノムが改変された動植物>
 別の態様において、本発明は、標的領域のエピゲノムが改変された動植物を提供する。本発明の第1の動植物は、標的領域のエピゲノムが改変された動植物であって、前記動植物は、前記標的領域として、前記本発明の配偶子に由来するエピゲノムが改変された標的領域を含み、前記外来性の核酸を含まない。本発明の第1の動植物は、前記標的領域のエピゲノムが改変された以外は、前記標的領域のエピゲノムが改変されておらず、前記外来性の核酸を有さない動植物(野生型の動植物)と同様の個体である。このため、本発明の第1の動植物によれば、例えば、前記野生型の動植物と比較することにより、前記標的領域におけるエピゲノムの機能解析に好適に利用できる。
<Animals and plants with modified epigenomes>
In another aspect, the invention provides plants and animals in which the epigenome of the target region is modified. The first animal or plant of the present invention is an animal or plant in which the epigenome of the target region is modified, and the animal or plant contains, as the target region, the target region in which the epigenome derived from the gamete of the present invention is modified, It does not contain said exogenous nucleic acid. The first animals and plants of the present invention are animals and plants in which the epigenome of the target region is not modified except that the epigenome of the target region is modified and which does not have the exogenous nucleic acid (wild-type animals and plants). They are similar individuals. Therefore, according to the first animal and plant of the present invention, for example, by comparing with the wild-type animal and plant, it can be suitably used for functional analysis of the epigenome in the target region.
 前記標的領域がインプリンティング遺伝子の制御領域および/またはプロモーター領域の場合、本発明の第1の動植物は、前記第1の動植物を構成する細胞における標的領域のエピゲノムが、野生型の動植物のエピゲノムと異なる。 When the target region is the control region and/or promoter region of an imprinting gene, the first animal or plant of the present invention is such that the epigenome of the target region in the cells constituting the first animal or plant is the epigenome of a wild-type animal or plant. different.
 本発明の第2の動植物は、標的領域のエピゲノムが改変された動植物であって、前記動植物は、外来性の核酸を含み、前記核酸は、ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、前記核酸配列認識モジュールと複合体を形成可能であり、かつエピゲノムを改変可能なエピゲノム改変酵素と、をコードする核酸を含み、前記核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、前記動植物は、前記標的領域として、前記配偶子形成において発現誘導された前記核酸配列認識モジュールと前記エピゲノム改変酵素とが複合体を形成し、前記標的領域のエピゲノムが改変された配偶子に由来する標的領域を含む。本発明の第2の動植物は、前記標的領域のエピゲノムが改変された以外は、前記標的領域のエピゲノムが改変されておらず、前記外来性の核酸を有する動植物と同様の個体である。このため、本発明の第2の動植物によれば、例えば、前記維持にもちいる親系統の動植物と比較することにより、前記標的領域におけるエピゲノムの機能解析に好適に利用できる。 The second animal or plant of the present invention is an animal or plant in which the epigenome of the target region is modified, the animal or plant contains an exogenous nucleic acid, the nucleic acid is the nucleic acid sequence of the target region in which the epigenome is modified in the genomic DNA. A nucleic acid encoding a nucleic acid sequence recognition module that specifically binds and an epigenome-modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and capable of modifying the epigenome, wherein the nucleic acid is a gametogenesis The sequence recognition module and the epigenome modifying enzyme are configured to be induced to be expressed in the gametogenesis by being functionally linked to a gametogenesis-specific promoter that is activated in the animal and plant, The target region includes a target region derived from a gamete in which the epigenome of the target region is modified by forming a complex between the nucleic acid sequence recognition module whose expression is induced in the gametogenesis and the epigenome modifying enzyme. . The second animal or plant of the present invention is an individual similar to the animal or plant having the exogenous nucleic acid, in which the epigenome of the target region is not modified except that the epigenome of the target region is modified. Therefore, according to the second animal or plant of the present invention, for example, it can be suitably used for the functional analysis of the epigenome in the target region by comparing with the animal or plant of the parent line used for the maintenance.
 以下、実施例を用いて本発明を詳細に説明するが、本発明は実施例に記載された態様に限定されるものではない。なお、特に示さない限り、市販の試薬およびキット等は、そのプロトコルに従い使用した。 The present invention will be described in detail below using examples, but the present invention is not limited to the embodiments described in the examples. Unless otherwise indicated, commercially available reagents, kits, etc. were used according to their protocols.
[実施例1]
 本発明の組成物を用いて、エピゲノムが改変された動植物の製造および維持に利用できる親系統の動植物の製造ができ、前記親系統から標的領域のエピゲノムが改変された子系統が得られることを確認した。
[Example 1]
Using the composition of the present invention, it is possible to produce a parent line of animals and plants that can be used for the production and maintenance of animals and plants with modified epigenomes, and to obtain offspring lines in which the target region of the epigenome is modified from the parent line. confirmed.
(1)標的領域
 Igf2遺伝子は、インプリンティング遺伝子であり、雄親由来の染色体においては、Igf2遺伝子のDMR領域(H19-DMR)がメチル化されているのに対して、雌親由来の染色体においては、Igf2遺伝子のDMR領域(H19-DMR)がメチル化されていない。また、本発明者らは、全身性にH19-DMRを脱メチル化することにより、マウスのIgf2遺伝子のDMR領域のメチル化の異常を生じさせると、すなわち、雄親由来の染色体において、H19-DMRが脱メチル化すると、前記マウスは、シルバーラッセル(Silver-Russell)症候群の症状である成育障害を示し、繁殖できなくなることを、別途確認している。そこで、前記標的領域のモデルとして、Igf2遺伝子のDMR領域を選定した。
(1) Target region Igf2 gene is an imprinting gene, and in chromosomes derived from male parents, the DMR region (H19-DMR) of the Igf2 gene is methylated, whereas in chromosomes derived from female parents is unmethylated in the DMR region (H19-DMR) of the Igf2 gene. In addition, the present inventors have found that systemic demethylation of H19-DMR causes abnormal methylation of the DMR region of the mouse Igf2 gene, that is, H19-DMR in male parent-derived chromosomes. It has been separately confirmed that demethylation of the DMR renders the mice stunted and unable to reproduce, symptoms of Silver-Russell syndrome. Therefore, the DMR region of the Igf2 gene was selected as a model for the target region.
(2)ベクター構築
 実施例1で用いる発現ベクターは、下記参考文献1のオールインワンエピゲノム編集ベクター(pPlatTET-gRNA2-H19DMRx9)から構築した。下記参考文献1のエピゲノム編集ベクターでは、5コピーのGCN4ペプチド(ELLSKNYHLENEVARLKK(配列番号9))が、各ペプチド間で22アミノ酸リンカー(GSGSGGSGSGSGGSGSGGSGSG:配列番号10)を介して連結されてタグドメイン(SunTag)を形成し、前記タグドメインがdCas9と連結し、融合タンパク質を形成している。また、参考文献1のエピゲノム編集ベクターには、抗GCN4 一本鎖抗体(scFv)がsfGFP(superfolder green fluorescent protein)を介して、TET1タンパク質の触媒部位(TET1CD)と連結し、融合タンパク質を形成している。さらに、参考文献1のエピゲノム編集ベクターには、図3(A)および下記表1に示す、H19-DMRにおける9箇所の核酸配列(標的の核酸配列)に対してハイブリダイズ可能なsgRNAが搭載されている。前記エピゲノム編集ベクターでは、図3(B)に示すように、これら融合タンパク質をコードする核酸およびsgRNAをコードする核酸が、CAGプロモーターの下流に連続して配置されている。そこで、実施例1では、前記CAGプロモーターを、精子形成中に特異的に発現するStra8遺伝子のプロモーターに置換し、実施例のエピゲノム編集ベクター(pStrPlATTET-gRNA2-H19DMRx9)として用いた。なお、前記実施例のエピゲノム編集ベクターは、後述のマイクロインジェクションの前に、制限酵素(ApaLI)により線形化して用いた。
参考文献1:Horii T et.al., “Successful generation of epigenetic disease model mice by targeted demethylation of the epigenome.”. Genome Biol., 2020 Apr 1;21(1):77.
(2) Vector construction The expression vector used in Example 1 was constructed from the all-in-one epigenome editing vector (pPlatTET-gRNA2-H19DMRx9) of Reference 1 below. In the epigenome editing vector of Reference Document 1 below, 5 copies of the GCN4 peptide (ELLSKNYHLENEVARLKK (SEQ ID NO: 9)) are linked between each peptide via a 22 amino acid linker (GSGSGGGSGSGSGGGSGSGGSGSG: SEQ ID NO: 10) to form a tag domain (SunTag). and the tag domain is linked to dCas9 to form a fusion protein. In addition, in the epigenome-editing vector of Reference 1, an anti-GCN4 single-chain antibody (scFv) is linked to the catalytic site (TET1CD) of the TET1 protein via sfGFP (superfolder green fluorescent protein) to form a fusion protein. ing. Furthermore, the epigenome editing vector of Reference 1 is equipped with sgRNAs that can hybridize to nine nucleic acid sequences (target nucleic acid sequences) in H19-DMR shown in FIG. 3(A) and Table 1 below. ing. In the epigenome editing vector, as shown in FIG. 3(B), the nucleic acid encoding these fusion proteins and the nucleic acid encoding sgRNA are arranged consecutively downstream of the CAG promoter. Therefore, in Example 1, the CAG promoter was replaced with the promoter of the Stra8 gene, which is specifically expressed during spermatogenesis, and used as the epigenome editing vector (pStrPlATTET-gRNA2-H19DMRx9) of the Examples. The epigenome-editing vectors of the above Examples were used after being linearized with a restriction enzyme (ApaLI) prior to microinjection, which will be described later.
Reference 1: Horii T et.al., “Successful generation of epigenetic disease model mice by targeted demethylation of the epigenome.” Genome Biol., 2020 Apr 1;21(1):77.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(3)胚の調製
 B6D2F1雌マウス(8~10週齢、日本クレア社から購入)は、7.5ユニットの排卵誘導剤(SEROTROPIN、ASKA Pharmaceutical社製)を投与し、さらに48時間後に7.5ユニットのヒト絨毛性ゴナドトロピン(hCG; GONATROPIN、ASKA Pharmaceutical社製)を投与することにより、過排卵を誘導した。前記hCGの投与後、B6D2F1雄マウスと交配した。そして、前記交配後21時間において、前記雌マウスの卵管から接合体(zygotes)を回収した。前記回収した接合体は、0.1%ヒアルロニダーゼ(Sigma-Aldrich社製)含有M2培地(Sigma-Aldrich社製)で数分間処理し、ついで、得られた受精卵を前記M2培地で洗浄した。前記洗浄後の受精卵を、37℃のペニシリンおよびストレプトマイシン含有M16培地(Sigma-Aldrich社製)の滴内に移動した。
(3) Preparation of embryos B6D2F1 female mice (8 to 10 weeks old, purchased from Clea Japan, Inc.) were administered 7.5 units of an ovulation inducer (SEROTROPIN, manufactured by ASKA Pharmaceutical), and after 48 hours, 7. Superovulation was induced by administering 5 units of human chorionic gonadotropin (hCG; GONATROPIN, manufactured by ASKA Pharmaceutical). After administration of the hCG, they were mated with B6D2F1 male mice. Twenty-one hours after mating, zygotes were collected from the oviduct of the female mouse. The recovered zygotes were treated with M2 medium (manufactured by Sigma-Aldrich) containing 0.1% hyaluronidase (manufactured by Sigma-Aldrich) for several minutes, and then the obtained zygotes were washed with the M2 medium. The washed fertilized eggs were transferred into drops of M16 medium containing penicillin and streptomycin (manufactured by Sigma-Aldrich) at 37°C.
(4)マイクロインジェクション
 前記hCG処理後24~72時間に、線形化した実施例のエピゲノム編集ベクターを前記受精卵に導入した。具体的には、マイクロインジェクションにより、前記実施例1(2)の線形化した実施例のエピゲノム編集ベクター(35ng/μl)を、前記実施例1(3)のM16培地内の受精卵の前核に注入した。前記注入後の胚は、M16培地を用い、37℃、5%COの条件下、空気中で培養した。翌日、2細胞段階に発達した胚を、疑似妊娠させた雌のICRマウス(日本クレア社から購入)の卵管の膨大部に移植した。前記胚の移植数は、1つの卵管あたり、20~25個とした。前記ICRマウスから得られたマウスへの実施例のエピゲノム編集ベクターの挿入は、ゲノムDNAを調べることにより実施した。具体的には、前記マウスの尾の先端からゲノムDNA抽出キット(DirectPCR Lysis Reagent, Mouse Tail、 Viagenbiotech社製)を用いて、ゲノムDNAを抽出した。得られたゲノムDNAについて、下記表2のプライマーセットを用いてPCRを実施し、前記実施例のエピゲノム編集ベクター由来の増幅断片が得られるかを検討した。その結果、41個体の内、9個体において、前記実施例のエピゲノム編集ベクターがゲノムDNAに挿入されていることを確認した。前記実施例のエピゲノム編集ベクターの挿入が確認されたマウスをB6マウスに戻し交雑することにより、3系統の繁殖可能な組換えマウス系統(441-2、445-7、445-14)およびそのサブラインを樹立した。各サブラインの新生児マウスの体重を測定した。また、前記サブラインのマウス由来の精子を回収し、DNAの抽出まで-80℃で凍結保存した。
(4) Microinjection Twenty-four to seventy-two hours after the hCG treatment, the linearized epigenome editing vector of the example was introduced into the fertilized egg. Specifically, by microinjection, the linearized epigenome editing vector (35 ng/μl) of Example 1 (2) was injected into the pronucleus of a fertilized egg in the M16 medium of Example 1 (3). injected into. The injected embryos were cultured in air at 37° C., 5% CO 2 using M16 medium. The next day, the embryos that had developed to the 2-cell stage were transplanted into the oviduct ampulla of pseudopregnant female ICR mice (purchased from CLEA Japan). The number of embryos transferred was 20 to 25 per oviduct. Insertion of the epigenome editing vectors of the Examples into mice derived from the ICR mice was performed by examining genomic DNA. Specifically, genomic DNA was extracted from the tip of the tail of the mouse using a genomic DNA extraction kit (DirectPCR Lysis Reagent, Mouse Tail, manufactured by Viagenbiotech). The obtained genomic DNA was subjected to PCR using the primer sets shown in Table 2 below, and it was examined whether an amplified fragment derived from the epigenome editing vector of the above example could be obtained. As a result, it was confirmed that the epigenome editing vector of the above example was inserted into the genomic DNA in 9 of the 41 individuals. By backcrossing the mice in which the insertion of the epigenome editing vector of the above example was confirmed to B6 mice, three fertile recombinant mouse strains (441-2, 445-7, 445-14) and their sublines was established. Newborn mice of each subline were weighed. In addition, mouse-derived sperm from the subline was collected and frozen at -80°C until DNA extraction.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(5)メチル化の分析
 前記凍結した精子のペレットを、ドデシル硫酸ナトリウム(終濃度2%)および2-メルカプトエタノール(終濃度2%)およびProteinase K(終濃度1mg/ml)を含むRSB液を用いて懸濁した。RSB液の組成は、10mmol/l NaCl、10mmol/l Tris(pH7.5)、および25mmol/l EDTAとした。前記懸濁後、56℃で終夜(約8時間)インキュベートし、フェノール/クロロホルム抽出後、エタノール沈殿させることにより、DNAを単離した。
(5) Methylation Analysis The frozen sperm pellet was treated with an RSB solution containing sodium dodecyl sulfate (final concentration 2%), 2-mercaptoethanol (final concentration 2%) and proteinase K (final concentration 1 mg/ml). was suspended using The composition of the RSB solution was 10 mmol/l NaCl, 10 mmol/l Tris (pH 7.5), and 25 mmol/l EDTA. After the suspension, the suspension was incubated at 56° C. overnight (about 8 hours), extracted with phenol/chloroform, and precipitated with ethanol to isolate DNA.
 前記単離されたDNAについては、バイサルファイト処理キット(Epitect Plus DNA Bisulfite Kit、QIAGEN社製)を用いて処理した。そして、処理後のDNAについて、下記表3のプライマーセットを用いて、PCRにより増幅した。CpG部位の脱メチル化の割合は、combined bisulfite restriction analysis(COBRA)により行なった。具体的には、PCRで得られた増幅断片を、下記表3に示す制限酵素で切断した。なお、下記表3に、各制限酵素が認識する部位(CpG部位)を示している。前記PCRの増幅断片の分離および定量は、キャピラリーマイクロチップ電気泳動装置(MCE-202 MultiNA、島津製作所社製)を用いて実施した。メチル化率は、下記式(1)により算出した。コントロールは、野生型のB6マウスを用いた以外は同様にして実施した。これらの結果を図4に示す。
 
 M=Dd/Dt×100(%) ・・・(1)
  M:メチル化率
  Dd:制限酵素により切断されたDNAの量(mV・μm)
  Dt:総DNAの量(mV・μm)
The isolated DNA was treated using a bisulfite treatment kit (Epitect Plus DNA Bisulfite Kit, manufactured by QIAGEN). Then, the treated DNA was amplified by PCR using the primer set shown in Table 3 below. Demethylation rate of CpG sites was determined by combined bisulfite restriction analysis (COBRA). Specifically, the amplified fragments obtained by PCR were cleaved with the restriction enzymes shown in Table 3 below. The sites (CpG sites) recognized by each restriction enzyme are shown in Table 3 below. Separation and quantification of the PCR-amplified fragments were performed using a capillary microchip electrophoresis device (MCE-202 MultiNA, manufactured by Shimadzu Corporation). The methylation rate was calculated by the following formula (1). Controls were performed in the same manner, except that wild-type B6 mice were used. These results are shown in FIG.

M=Dd/Dt×100 (%) (1)
M: methylation rate Dd: amount of DNA cleaved by restriction enzyme (mV·μm)
Dt: amount of total DNA (mV/μm)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図4は、前記サブラインのマウス由来の精子におけるメチル化率を示すグラフである。図4において、横軸は、マウスの系統を示し、縦軸は、メチル化率を示す。図4に示すように、精子特異的にエピゲノムが改変されたマウスでは、野生型マウスと比較して、精子におけるメチル化が顕著に低減していた。このため、本発明の組成物を導入することにより、配偶子特異的に、標的領域のエピゲノムの改変ができることが確認された。 FIG. 4 is a graph showing the methylation rate in mouse-derived sperm of the subline. In FIG. 4, the horizontal axis indicates the mouse strain, and the vertical axis indicates the methylation rate. As shown in FIG. 4, sperm-specific epigenome-altered mice had significantly reduced methylation in sperm compared to wild-type mice. Therefore, it was confirmed that introduction of the composition of the present invention enables gamete-specific modification of the epigenome of the target region.
(6)エピゲノム改変マウスの解析
 前記サブラインの雄マウスについて、雄親系統とし、野生型のB6マウスと交配し、F1後代個体を得た。また、前記サブラインの雌マウスについて、雌親系統とし、野生型のB6マウスと交配し、F1後代個体を得た。前記F1後代の各個体について、前記表2に示すプライマーを用いてPCRにより、エピゲノム編集ベクターがゲノムDNAに挿入されていることを確認した。
(6) Analysis of Epigenome-Modified Mice Male mice of the above sublines were used as male parent strains and crossed with wild-type B6 mice to obtain F1 progeny individuals. In addition, the female mouse of the subline was used as a female parent strain, and crossed with a wild-type B6 mouse to obtain an F1 progeny individual. For each individual of the F1 progeny, it was confirmed by PCR using the primers shown in Table 2 that the epigenome editing vector was inserted into the genomic DNA.
 つぎに、前記F1後代個体の新生児について、体重を測定後、前記F1後代個体の新生児のマウスおよびDNA抽出キット(AllPrep DNA/RNA Mini Kit、QIAGEN社製)を用いて、ゲノムDNAを抽出した。 Next, after weighing the F1 progeny newborn, genomic DNA was extracted using the F1 progeny newborn mouse and a DNA extraction kit (AllPrep DNA/RNA Mini Kit, manufactured by QIAGEN).
 前記単離したDNAに代えて、前記ゲノムDNAを用いた以外は、前記実施例1(5)と同様にして、メチル化率を測定した。これらの結果を図5~図8に示す。 The methylation rate was measured in the same manner as in Example 1 (5) above, except that the genomic DNA was used instead of the isolated DNA. These results are shown in FIGS. 5-8.
 図5は、前記雄親系統由来のF1後代個体の体重を示すグラフである。図5において、横軸は、マウスの系統を示し、縦軸は、体重を示す。図5に示すように、精子特異的にエピゲノムが改変されたマウスの後代個体では、野生型マウスと比較して、体重が減少していた。すなわち、前記エピゲノムの改変により、シルバーラッセル症候群と同様に、発育遅延が生じていると推定された。 Fig. 5 is a graph showing the body weight of F1 progeny individuals derived from the male parent line. In FIG. 5, the horizontal axis indicates the mouse strain, and the vertical axis indicates the body weight. As shown in FIG. 5, progeny individuals of sperm-specifically modified epigenome mice lost weight compared to wild-type mice. That is, it was presumed that the modification of the epigenome causes developmental delay, similar to Silver-Russell syndrome.
 つぎに、図6は、前記雄親系統または雌親系統由来のF1後代個体の体重を示すグラフである。図6において、横軸は、マウスの系統を示し、縦軸は、体重を示す。図6に示すように、雌親系統由来のF1後代個体は、野生型マウスと同程度の体重を示した。これに対して、雄親系統由来のF1後代個体は、野生型マウスおよび雌親系統由来のF1後代個体と比較して、有意に体重が減少していた。すなわち、前記雌親系統では、精子形成特異的なプロモーターが作動せずに、エピゲノムが改変されず、体重減少が生じないのに対して、前記雄親系統では、精子形成特異的なプロモーターが作動し、前記エピゲノムが改変され、シルバーラッセル症候群と同様に、発育遅延が生じていると推定された。 Next, FIG. 6 is a graph showing the body weight of the F1 progeny individuals derived from the male parent line or the female parent line. In FIG. 6, the horizontal axis indicates the mouse strain, and the vertical axis indicates the body weight. As shown in FIG. 6, F1 progeny individuals from the female parental line exhibited similar body weights to wild-type mice. In contrast, F1 progeny derived from male parental strains had significantly decreased body weight compared to F1 progeny derived from wild-type mice and female parental strains. That is, in the female parent line, the spermatogenesis-specific promoter does not operate, the epigenome is not modified, and weight loss does not occur, whereas in the male parent line, the spermatogenesis-specific promoter operates. However, it was presumed that the epigenome was altered and developmental delay occurred as in Silver-Russell syndrome.
 図7は、前記雄親系統または雌親系統由来のF1後代個体の標的領域のメチル化率を示すグラフである。図7において、(A)は、CpGサイト(m2)の結果を示し、(B)は、CpGサイト(m3)の結果を示す。図7(A)および(B)において、横軸は、マウスの系統を示し、縦軸は、メチル化率を示す。図7(A)および(B)に示すように、雌親系統由来のF1後代個体は、野生型マウスと同程度のメチル化率を示した。これに対して、雄親系統由来のF1後代個体は、野生型マウスおよび雌親系統由来のF1後代個体と比較して、有意にメチル化率が減少していた。すなわち、前記雌親系統では、精子形成特異的なプロモーターが作動せずに、エピゲノムが改変されず、メチル化が変化しないのに対して、前記雄親系統では、精子形成特異的なプロモーターが作動し、脱メチル化酵素が誘導後、標的化されることにより、前記標的領域のエピゲノムが改変されていることが確認された。 FIG. 7 is a graph showing the methylation rate of the target region of F1 progeny individuals derived from the male or female parent line. In FIG. 7, (A) shows the results for the CpG site (m2), and (B) shows the results for the CpG site (m3). In FIGS. 7A and 7B, the horizontal axis indicates the mouse strain, and the vertical axis indicates the methylation rate. As shown in FIGS. 7(A) and (B), F1 progeny individuals derived from the female parental line showed a methylation rate comparable to that of wild-type mice. In contrast, the F1 progeny derived from the male parent strain had a significantly decreased methylation rate compared to the F1 progeny derived from the wild-type mouse and the female parent strain. That is, in the female parent line, the spermatogenesis-specific promoter does not operate, the epigenome is not modified, and methylation does not change, whereas in the male parent line, the spermatogenesis-specific promoter operates. However, it was confirmed that the epigenome of the target region was modified by being targeted after demethylating enzyme was induced.
 図8は、エピゲノム編集ベクターの挿入の有無におけるメチル化率および体重を示すグラフである。図8において、(A)は、CpGサイト(m3)のメチル化率の結果を示し、(B)は、新生児の体重の結果を示す。図8(A)において、横軸は、マウスの系統またはエピゲノム編集ベクターのゲノムDNAへの挿入の有無を示し、縦軸は、メチル化率を示す。また、図8(B)において、横軸は、マウスの系統またはエピゲノム編集ベクターのゲノムDNAへの挿入の有無を示し、縦軸は、体重を示す。図8(A)に示すように、エピゲノム編集ベクターのゲノムDNAへの挿入の有無に関わらず、前記雄親系統のF1後代系統では、野生型マウスと比較して、メチル化率が低下していた。また、図8(B)に示すように、エピゲノム編集ベクターのゲノムDNAへの挿入の有無に関わらず、前記雄親系統のF1後代系統では、野生型マウスと比較して、体重が減少していた。これらの結果から、配偶子形成時にエピゲノムの改変が生じれば、その後エピゲノム編集ベクターが存在しなくても、すなわち、前記配列認識モジュールであるdCas9およびsgRNAと、前記エピゲノム改変酵素であるTET1CDとが誘導されなくても、エピゲノムの改変が維持されることがわかった。 FIG. 8 is a graph showing the methylation rate and body weight with and without epigenome editing vector insertion. In FIG. 8, (A) shows the results of the methylation rate of the CpG site (m3), and (B) shows the results of the body weight of the newborn. In FIG. 8(A), the horizontal axis indicates the presence or absence of insertion of the mouse strain or epigenome editing vector into the genomic DNA, and the vertical axis indicates the methylation rate. In FIG. 8(B), the horizontal axis indicates the presence or absence of insertion of the mouse strain or epigenome editing vector into the genomic DNA, and the vertical axis indicates body weight. As shown in FIG. 8(A), regardless of the presence or absence of insertion of the epigenome editing vector into the genomic DNA, the F1 progeny strain of the male parent strain has a lower methylation rate than the wild-type mouse. rice field. In addition, as shown in FIG. 8(B), regardless of the presence or absence of insertion of the epigenome editing vector into the genomic DNA, the F1 progeny strain of the male parent strain has decreased body weight compared to the wild-type mouse. rice field. From these results, if epigenome modification occurs during gametogenesis, then even if there is no epigenome editing vector, that is, the sequence recognition module dCas9 and sgRNA, and the epigenome modification enzyme TET1CD It was found that epigenome modifications were maintained even without induction.
 また、前述のように、エピゲノム編集ベクターをB6マウスに戻し交雑することにより継代できることから、前記エピゲノム編集ベクターがゲノムDNAに導入されたマウスは、系統維持用の親系統としても使用できるといえる。 In addition, as described above, since the epigenome editing vector can be passaged by backcrossing to B6 mice, it can be said that the mouse in which the epigenome editing vector has been introduced into the genomic DNA can also be used as a parental strain for strain maintenance. .
 以上のことから、本発明の組成物を用いて、エピゲノムが改変された動植物の製造および維持に利用できる親系統の動植物の製造ができ、前記親系統から標的領域のエピゲノムが改変された子系統が得られることがわかった。 Based on the above, the composition of the present invention can be used to produce a parent line of animals and plants that can be used for the production and maintenance of epigenome-modified animals and plants, and a offspring line in which the target region of the epigenome is modified from the parent line. was found to be obtained.
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は、上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2021年5月20日に出願された日本出願特願2021-85099を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-85099 filed on May 20, 2021, and the entire disclosure thereof is incorporated herein.
<付記>
 上記の実施形態および実施例の一部または全部は、以下の付記のように記載されうるが、以下には限られない。
<核酸>
(付記1)
エピゲノムが改変された動植物の製造または維持用親系統の動植物の製造に用いるための組成物であって、
前記組成物は、核酸を含み、
前記核酸は、
 ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
 前記核酸配列認識モジュールと複合体を形成可能であり、かつエピゲノムを改変可能なエピゲノム改変酵素と、
をコードする核酸を含み、
前記核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変する、組成物。
(付記2)
前記核酸は、第1の核酸と、第2の核酸とを含み、
前記第1の核酸は、
 ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
 前記核酸配列認識モジュールと連結されたタグドメインと、
をコードする核酸を含み、
前記第2の核酸は、
 エピゲノムを改変可能なエピゲノム改変酵素と、
 前記エピゲノム改変酵素に連結され、前記タグドメインに結合可能なタグドメインの結合パートナーと、
をコードする核酸を含み、
前記第1の核酸および/または前記第2の核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変する、付記1に記載の組成物。
(付記3)
前記タグドメインを複数含む、付記2に記載の組成物。
(付記4)
前記タグドメインは、ペプチドエピトープであり、
前記結合パートナーは、前記ペプチドエピトープに対する抗体である、付記2または3に記載の組成物。
(付記5)
前記核酸配列認識モジュールは、CRISPR-Casシステムであり、
前記CRISPR-Casシステムは、
 前記標的領域の核酸配列に特異的に結合する核酸配列を含むガイド鎖と、
 Casタンパク質と、
を含み、
前記Casタンパク質は、前記タグドメインと連結されている、付記2から4のいずれかに記載の組成物。
(付記6)
前記核酸配列認識モジュールは、CRISPR-Casシステムであり、
前記CRISPR-Casシステムは、
 前記標的領域の核酸配列に特異的に結合する核酸配列を含むガイド鎖と、
 Casタンパク質と、
を含む、付記1から4のいずれかに記載の組成物。
(付記7)
前記核酸配列認識モジュールは、前記ゲノムDNAの二本鎖の両方の鎖を切断しない、付記1から6のいずれかに記載の組成物。
(付記8)
前記標的領域は、インプリンティング遺伝子の制御領域および/またはプロモーター領域である、付記1から7のいずれかに記載の組成物。
(付記9)
前記エピゲノム改変酵素は、塩基修飾酵素である、付記1から8のいずれかに記載の組成物。
(付記10)
前記エピゲノム改変酵素は、メチル化酵素、脱メチル化酵素、アセチル化酵素、脱アセチル化酵素、リン酸化酵素、脱リン酸化酵素、ユビキチン化酵素、および/またはSUMO化酵素である、付記1から9のいずれかに記載の組成物。
(付記11)
前記エピゲノム改変酵素は、TET(ten-eleven translocation)1、TET2、TET3、DNMT(DNA Methyltransferase)1、DNMT3A、および/またはDNMT3Bである、付記1から10のいずれかに記載の組成物。
(付記12)
前記配偶子形成特異的プロモーターは、精子形成特異的プロモーターまたは卵子形成特異的プロモーターである、付記1から11のいずれかに記載の組成物。
(付記13)
前記配偶子形成特異的プロモーターは、STRA8プロモーター、Pgk2プロモーター、Dazlプロモーター、および/またはGsg2プロモーターである、付記1から12のいずれかに記載の組成物。
(付記14)
前記配偶子形成特異的プロモーターは、Gdf-9プロモーター、Zp3プロモーター、および/またはMsx2プロモーターである、付記1から12のいずれかに記載の組成物。
(付記15)
発現ベクターを含み、
前記発現ベクターは、前記核酸配列認識モジュールと、前記エピゲノム改変酵素が発現可能なように、前記核酸が機能的に連結されている、付記1から14のいずれかに記載の組成物。
(付記16)
第1の発現ベクターと、第2の発現ベクターとを含み、
前記第1の発現ベクターは、前記核酸配列認識モジュールが発現可能なように、前記核酸が機能的に連結され、
前記第2の発現ベクターは、前記エピゲノム改変酵素が発現可能なように、前記核酸が機能的に連結されている、付記1から15のいずれかに記載の組成物。
<親系統の製造方法>
(付記17)
エピゲノムが改変された動植物の親系統の製造方法であって、
対象の動植物に、付記1から16のいずれかに記載の組成物を導入する工程を含む、製造方法。
(付記18)
前記動植物は、非ヒト動物である、付記17に記載の製造方法。
<親系統の動植物>
(付記19)
エピゲノムが改変された動植物の製造または維持用親系統の動植物であって、
前記動植物は、外来性の核酸を含み、
前記核酸は、
 ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
 前記核酸配列認識モジュールと複合体を形成可能であり、エピゲノムを改変可能なエピゲノム改変酵素と、
をコードする核酸を含み、
前記核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変する、動植物。
(付記20)
前記核酸は、第1の核酸と、第2の核酸とを含み、
前記第1の核酸は、
 ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
 前記核酸配列認識モジュールと連結されたタグドメインと、
をコードする核酸を含み、
前記第2の核酸は、
 エピゲノムを改変可能なエピゲノム改変酵素と、
 前記エピゲノム改変酵素に連結され、前記タグドメインに結合可能なタグドメインの結合パートナーと、
をコードする核酸を含み、
前記第1の核酸および/または前記第2の核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変する、付記19に記載の動植物。
(付記21)
前記タグドメインを複数含む、付記20に記載の動植物。
(付記22)
前記タグドメインは、ペプチドエピトープであり、
前記結合パートナーは、前記ペプチドエピトープに対する抗体である、付記20または21に記載の動植物。
(付記23)
前記核酸配列認識モジュールは、CRISPR-Casシステムであり、
前記CRISPR-Casシステムは、
 前記標的領域の核酸配列に特異的に結合する核酸配列を含むガイド鎖と、
 Casタンパク質と、
を含み、
前記Casタンパク質は、前記タグドメインと連結されている、付記19から22のいずれかに記載の動植物。
(付記24)
前記核酸配列認識モジュールは、CRISPR-Casシステムであり、
前記CRISPR-Casシステムは、
 前記標的領域の核酸配列に特異的に結合する核酸配列を含むガイド鎖と、
 Casタンパク質と、
を含む、付記19から23のいずれかに記載の動植物。
(付記25)
前記核酸配列認識モジュールは、前記ゲノムDNAの二本鎖の両方の鎖を切断しない、付記19から24のいずれかに記載の動植物。
(付記26)
前記標的領域は、インプリンティング遺伝子の制御領域および/またはプロモーター領域である、付記19から25のいずれかに記載の動植物。
(付記27)
前記エピゲノム改変酵素は、塩基修飾酵素である、付記19から26のいずれかに記載の動植物。
(付記28)
前記エピゲノム改変酵素は、メチル化酵素、脱メチル化酵素、アセチル化酵素、脱アセチル化酵素、リン酸化酵素、脱リン酸化酵素、ユビキチン化酵素、および/またはSUMO化酵素である、付記19から27のいずれかに記載の動植物。
(付記29)
前記エピゲノム改変酵素は、TET(ten-eleven translocation)1、TET2、TET3、DNMT(DNA Methyltransferase)1、DNMT3A、および/またはDNMT3Bである、付記19から28のいずれかに記載の動植物。
(付記30)
前記配偶子形成特異的プロモーターは、精子形成特異的プロモーターまたは卵子形成特異的プロモーターである、付記19から29のいずれかに記載の動植物。
(付記31)
前記配偶子形成特異的プロモーターは、STRA8プロモーター、Pgk2プロモーター、Dazlプロモーター、および/またはGsg2プロモーターである、付記19から30のいずれかに記載の動植物。
(付記32)
前記配偶子形成特異的プロモーターは、Gdf-9プロモーター、Zp3プロモーター、および/またはMsx2プロモーターである、付記19から30のいずれかに記載の動植物。
(付記33)
発現ベクターを含み、
前記発現ベクターは、前記核酸配列認識モジュールと、前記エピゲノム改変酵素が発現可能なように、前記核酸が機能的に連結されている、付記19から32のいずれかに記載の動植物。
(付記34)
第1の発現ベクターと、第2の発現ベクターとを含み、
前記第1の発現ベクターは、前記核酸配列認識モジュールが発現可能なように、前記核酸が機能的に連結され、
前記第2の発現ベクターは、前記エピゲノム改変酵素が発現可能なように、前記核酸が機能的に連結されている、付記19から33のいずれかに記載の動植物。
(付記35)
前記動物は、非ヒト動物である、付記19から34のいずれかに記載の動植物。
(付記36)
前記核酸は、ゲノムDNAに挿入されている、付記19から35のいずれかに記載の動植物。
(付記37)
前記配偶子形成特異的プロモーターは、精子形成特異的プロモーターであり、
前記製造に用いる親系統は、雄親系統であり、
前記維持に用いる親系統は、雌親系統である、付記19から36のいずれかに記載の動植物。
(付記38)
前記配偶子形成特異的プロモーターは、卵子形成特異的プロモーターであり、
前記製造に用いる親系統は、雌親系統であり、
前記維持に用いる親系統は、雄親系統である、付記19から36のいずれかに記載の動植物。
(付記39)
前記親系統は、前記配偶子以外の細胞において、前記標的領域のエピゲノムが改変されていない、付記19から38のいずれかに記載の動植物。
<配偶子>
(付記40)
エピゲノムが改変された動植物の製造または維持用親系統の動植物の製造に用いる配偶子であって、
付記19から39のいずれかに記載の親系統の動植物から単離された、配偶子。
(付記41)
前記配偶子は、精子および/または卵子である、付記40に記載の配偶子。
(付記42)
前記配偶子形成において発現誘導された前記核酸配列認識モジュールと前記エピゲノム改変酵素とが複合体を形成し、前記標的領域のエピゲノムが改変されている、付記40または41に記載の配偶子。
(付記43)
前記外来性の核酸を含む、付記40から42のいずれかに記載の配偶子。
<エピゲノムが改変された動植物の製造方法>
(付記44)
標的領域のエピゲノムが改変された動植物の製造方法であって、
第1の親と、第2の親とを交雑し、得られた後代個体からエピゲノムが改変された個体を得る工程を含み、
前記第1の親および/または前記第2の親は、付記19から39のいずれかに記載の親系統の動植物である、製造方法。
(付記45)
前記後代個体から、前記核酸を含まない個体を選抜する工程を含む、付記44に記載の製造方法。
<エピゲノムが改変された動植物>
(付記46)
標的領域のエピゲノムが改変された動植物であって、
前記動植物は、
 前記標的領域として、付記40から42のいずれかに記載の配偶子に由来するエピゲノムが改変された標的領域を含み、
 前記外来性の核酸を含まない、
動植物。
(付記47)
付記44または45に記載の製造方法により得られる、付記46に記載の動植物。
(付記48)
前記動植物は、非ヒト動物である、付記46または47に記載の動植物。
<エピゲノムが改変された動植物>
(付記49)
標的領域のエピゲノムが改変された動植物であって、
前記動植物は、外来性の核酸を含み、
前記核酸は、
 ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
 前記核酸配列認識モジュールと複合体を形成可能であり、エピゲノムを改変可能なエピゲノム改変酵素と、
をコードする核酸を含み、
前記核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
前記動植物は、前記標的領域として、前記配偶子形成において発現誘導された前記核酸配列認識モジュールと前記エピゲノム改変酵素とが複合体を形成し、前記標的領域のエピゲノムが改変された配偶子に由来する標的領域を含む、動植物。
(付記50)
第1の核酸と、第2の核酸とを含み、
前記第1の核酸は、
 ゲノムにおけるエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
 前記核酸配列認識モジュールと連結されたタグドメインと、
をコードする核酸を含み、
前記第2の核酸は、
 エピゲノムを改変可能なエピゲノム改変酵素と、
 前記エピゲノム改変酵素に連結され、前記タグドメインに結合可能なタグドメインの結合パートナーと、
をコードする核酸を含み、
前記第1の核酸および/または前記第2の核酸は、配偶子形成において活性化する配偶子特異的なプロモーターに機能的に連結され、
前記動植物は、前記標的領域として、前記配偶子形成において発現誘導された前記核酸配列認識モジュールと前記エピゲノム改変酵素とが複合体を形成し、前記標的領域のエピゲノムが改変された配偶子に由来する標的領域を含む、付記49に記載の動植物。
(付記51)
前記動植物は、非ヒト動物である、付記49または50に記載の動植物。
<Appendix>
Some or all of the above-described embodiments and examples can be described as in the following appendices, but are not limited to the following.
<Nucleic acid>
(Appendix 1)
A composition for use in the production of epigenome-modified animals and plants or in the production of parent line animals and plants for maintenance,
the composition comprises a nucleic acid;
The nucleic acid is
a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and modifying the epigenome;
comprising a nucleic acid encoding
The nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis. configured,
The composition, wherein in the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of a target region in the genomic DNA of the forming gamete.
(Appendix 2)
the nucleic acid comprises a first nucleic acid and a second nucleic acid;
The first nucleic acid is
a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
a tag domain linked to the nucleic acid sequence recognition module;
comprising a nucleic acid encoding
The second nucleic acid is
an epigenome-modifying enzyme capable of modifying the epigenome;
a tag domain binding partner linked to the epigenome modifying enzyme and capable of binding to the tag domain;
comprising a nucleic acid encoding
The first nucleic acid and/or the second nucleic acid are operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the nucleic acid sequence recognition module and the epigenome modifying enzyme are , configured to be induced to be expressed in gametogenesis,
In the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of the target region in the genomic DNA of the gamete being formed. The described composition.
(Appendix 3)
3. The composition of clause 2, comprising a plurality of said tag domains.
(Appendix 4)
said tag domain is a peptide epitope,
4. The composition of paragraphs 2 or 3, wherein said binding partner is an antibody against said peptide epitope.
(Appendix 5)
the nucleic acid sequence recognition module is the CRISPR-Cas system;
The CRISPR-Cas system is
a guide strand comprising a nucleic acid sequence that specifically binds to a nucleic acid sequence in the target region;
a Cas protein;
including
5. The composition of any of clauses 2-4, wherein said Cas protein is linked to said tag domain.
(Appendix 6)
the nucleic acid sequence recognition module is the CRISPR-Cas system;
The CRISPR-Cas system is
a guide strand comprising a nucleic acid sequence that specifically binds to a nucleic acid sequence in the target region;
a Cas protein;
5. The composition of any one of Appendixes 1 to 4, comprising:
(Appendix 7)
7. The composition of any one of Appendices 1 to 6, wherein said nucleic acid sequence recognition module does not cleave both strands of said genomic DNA double strand.
(Appendix 8)
8. A composition according to any one of Appendices 1 to 7, wherein said target region is the control region and/or the promoter region of an imprinted gene.
(Appendix 9)
9. The composition according to any one of Appendices 1 to 8, wherein the epigenome-modifying enzyme is a base-modifying enzyme.
(Appendix 10)
Appendices 1 to 9, wherein the epigenome-modifying enzyme is a methylase, demethylase, acetylase, deacetylase, phosphorylation enzyme, dephosphorylation enzyme, ubiquitinase, and/or sumoylation enzyme The composition according to any one of
(Appendix 11)
11. The composition according to any one of Appendices 1 to 10, wherein the epigenome-modifying enzyme is TET (ten-eleven translocation) 1, TET2, TET3, DNMT (DNA Methyltransferase) 1, DNMT3A, and/or DNMT3B.
(Appendix 12)
12. A composition according to any one of Appendices 1 to 11, wherein said gametogenesis-specific promoter is a spermatogenesis-specific promoter or an oogenesis-specific promoter.
(Appendix 13)
13. The composition according to any of the appendices 1 to 12, wherein said gametogenesis-specific promoter is STRA8 promoter, Pgk2 promoter, Dazl promoter and/or Gsg2 promoter.
(Appendix 14)
13. The composition according to any one of paragraphs 1 to 12, wherein said gametogenesis-specific promoter is Gdf-9 promoter, Zp3 promoter and/or Msx2 promoter.
(Appendix 15)
comprising an expression vector;
15. The composition according to any one of Appendices 1 to 14, wherein the nucleic acid is operatively linked to the expression vector so that the nucleic acid sequence recognition module and the epigenome modifying enzyme can be expressed.
(Appendix 16)
comprising a first expression vector and a second expression vector;
The first expression vector is functionally linked to the nucleic acid so that the nucleic acid sequence recognition module can be expressed,
16. The composition according to any one of Appendices 1 to 15, wherein the nucleic acid is operatively linked to the second expression vector so that the epigenome-modifying enzyme can be expressed.
<Production method of parent line>
(Appendix 17)
A method for producing an epigenome-modified animal or plant parent line, comprising:
17. A production method, comprising the step of introducing the composition according to any one of Appendixes 1 to 16 into a target animal or plant.
(Appendix 18)
18. The production method according to Appendix 17, wherein the animal or plant is a non-human animal.
<Animals and plants of the parent line>
(Appendix 19)
An animal or plant of a parent line for production or maintenance of an epigenome-modified animal or plant,
The animals and plants contain exogenous nucleic acids,
The nucleic acid is
a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
an epigenome-modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and capable of modifying the epigenome;
comprising a nucleic acid encoding
The nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis. configured,
The animal or plant, wherein, in the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of the target region in the genomic DNA of the gamete being formed.
(Appendix 20)
the nucleic acid comprises a first nucleic acid and a second nucleic acid;
The first nucleic acid is
a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
a tag domain linked to the nucleic acid sequence recognition module;
comprising a nucleic acid encoding
The second nucleic acid is
an epigenome-modifying enzyme capable of modifying the epigenome;
a tag domain binding partner linked to the epigenome modifying enzyme and capable of binding to the tag domain;
comprising a nucleic acid encoding
The first nucleic acid and/or the second nucleic acid are operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the nucleic acid sequence recognition module and the epigenome modifying enzyme are , configured to be induced to be expressed in gametogenesis,
In the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of the target region in the genomic DNA of the gamete being formed. Animals and plants mentioned.
(Appendix 21)
21. The animal or plant according to appendix 20, comprising a plurality of said tag domains.
(Appendix 22)
said tag domain is a peptide epitope,
22. The animal or plant according to appendix 20 or 21, wherein said binding partner is an antibody against said peptide epitope.
(Appendix 23)
the nucleic acid sequence recognition module is the CRISPR-Cas system;
The CRISPR-Cas system is
a guide strand comprising a nucleic acid sequence that specifically binds to a nucleic acid sequence in the target region;
a Cas protein;
including
23. The animal or plant according to any one of Appendices 19 to 22, wherein the Cas protein is linked to the tag domain.
(Appendix 24)
the nucleic acid sequence recognition module is the CRISPR-Cas system;
The CRISPR-Cas system is
a guide strand comprising a nucleic acid sequence that specifically binds to a nucleic acid sequence in the target region;
a Cas protein;
24. The animal or plant according to any one of appendices 19 to 23, comprising
(Appendix 25)
25. The animal or plant according to any one of Appendices 19 to 24, wherein the nucleic acid sequence recognition module does not cut both strands of the double strand of the genomic DNA.
(Appendix 26)
26. The animal or plant according to any one of Appendices 19 to 25, wherein said target region is a control region and/or promoter region of an imprinted gene.
(Appendix 27)
27. The animal or plant according to any one of Appendices 19 to 26, wherein the epigenome-modifying enzyme is a base-modifying enzyme.
(Appendix 28)
Appendices 19 to 27, wherein the epigenome-modifying enzyme is a methylase, demethylase, acetylase, deacetylase, phosphorylation enzyme, dephosphorylation enzyme, ubiquitinase, and/or sumoylation enzyme Animals and plants according to any one of
(Appendix 29)
29. The animal or plant according to any one of appendices 19 to 28, wherein the epigenome-modifying enzyme is TET (ten-eleven translocation) 1, TET2, TET3, DNMT (DNA Methyltransferase) 1, DNMT3A, and/or DNMT3B.
(Appendix 30)
30. The animal or plant according to any one of appendices 19 to 29, wherein the gametogenesis-specific promoter is a spermatogenesis-specific promoter or an oogenesis-specific promoter.
(Appendix 31)
31. The animal or plant according to any one of appendices 19 to 30, wherein said gametogenesis-specific promoter is STRA8 promoter, Pgk2 promoter, Dazl promoter and/or Gsg2 promoter.
(Appendix 32)
31. The animal or plant according to any one of appendices 19 to 30, wherein said gametogenesis-specific promoter is Gdf-9 promoter, Zp3 promoter and/or Msx2 promoter.
(Appendix 33)
comprising an expression vector;
33. The animal or plant according to any one of appendices 19 to 32, wherein the expression vector comprises the nucleic acid sequence recognition module and the nucleic acid functionally linked so that the epigenome modifying enzyme can be expressed.
(Appendix 34)
comprising a first expression vector and a second expression vector;
The first expression vector is functionally linked to the nucleic acid so that the nucleic acid sequence recognition module can be expressed,
34. The animal or plant according to any one of appendices 19 to 33, wherein the nucleic acid is functionally linked to the second expression vector so that the epigenome modifying enzyme can be expressed.
(Appendix 35)
35. The animal or plant according to any one of Appendices 19 to 34, wherein the animal is a non-human animal.
(Appendix 36)
36. The animal or plant according to any one of Appendices 19 to 35, wherein the nucleic acid is inserted into genomic DNA.
(Appendix 37)
the gametogenesis-specific promoter is a spermatogenesis-specific promoter;
The parent line used for the production is a male parent line,
37. The animal or plant according to any one of Appendices 19 to 36, wherein the parental line used for maintenance is a female parental line.
(Appendix 38)
The gametogenesis-specific promoter is an oogenesis-specific promoter,
The parent line used for the production is a female parent line,
37. The animal or plant according to any one of Appendices 19 to 36, wherein the parental line used for maintenance is a male parental line.
(Appendix 39)
39. The animal or plant according to any one of appendices 19 to 38, wherein the epigenome of the target region is not modified in cells other than the gametes in the parental line.
<Gametes>
(Appendix 40)
Gametes used for the production of epigenome-modified animals and plants or the production of parent line animals and plants for maintenance,
40. A gamete isolated from the parental strain of the animal or plant according to any one of Appendices 19 to 39.
(Appendix 41)
41. The gamete of clause 40, wherein said gamete is a sperm and/or egg.
(Appendix 42)
42. The gamete according to appendix 40 or 41, wherein the nucleic acid sequence recognition module whose expression is induced in the gametogenesis and the epigenome modifying enzyme form a complex to modify the epigenome of the target region.
(Appendix 43)
43. A gamete according to any of clauses 40-42, comprising said exogenous nucleic acid.
<Method for Producing Animals and Plants with Modified Epigenomes>
(Appendix 44)
A method for producing an animal or plant in which the epigenome of the target region is modified,
crossing the first parent and the second parent and obtaining an epigenome-altered individual from the resulting progeny individual;
The production method, wherein the first parent and/or the second parent are plants and animals of the parent line according to any one of Appendices 19 to 39.
(Appendix 45)
45. The production method according to Appendix 44, comprising the step of selecting individuals that do not contain the nucleic acid from the progeny individuals.
<Animals and plants with modified epigenomes>
(Appendix 46)
An animal or plant in which the epigenome of the target region is modified,
The animals and plants are
The target region comprises a target region in which the gamete-derived epigenome according to any one of Appendices 40 to 42 is modified,
does not contain the exogenous nucleic acid;
flora and fauna.
(Appendix 47)
The animal or plant according to appendix 46, which is obtained by the production method according to appendix 44 or 45.
(Appendix 48)
48. The animal or plant according to Appendix 46 or 47, wherein the animal or plant is a non-human animal.
<Animals and plants with modified epigenomes>
(Appendix 49)
An animal or plant in which the epigenome of the target region is modified,
The animals and plants contain exogenous nucleic acids,
The nucleic acid is
a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
an epigenome-modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and capable of modifying the epigenome;
comprising a nucleic acid encoding
The nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis. configured,
The animal or plant is derived from a gamete in which the epigenome of the target region is modified by forming a complex between the nucleic acid sequence recognition module whose expression is induced in the gametogenesis and the epigenome modifying enzyme as the target region. Animals and plants, including target areas.
(Appendix 50)
comprising a first nucleic acid and a second nucleic acid;
The first nucleic acid is
a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence in a target region to modify the epigenome in the genome;
a tag domain linked to the nucleic acid sequence recognition module;
comprising a nucleic acid encoding
The second nucleic acid is
an epigenome-modifying enzyme capable of modifying the epigenome;
a tag domain binding partner linked to the epigenome modifying enzyme and capable of binding to the tag domain;
comprising a nucleic acid encoding
said first nucleic acid and/or said second nucleic acid is operably linked to a gamete-specific promoter that is activated in gametogenesis;
The animal or plant is derived from a gamete in which the epigenome of the target region is modified by forming a complex between the nucleic acid sequence recognition module whose expression is induced in the gametogenesis and the epigenome modifying enzyme as the target region. 49. The animal or plant according to Supplementary Note 49, comprising the target region.
(Appendix 51)
51. The animal or plant according to Appendix 49 or 50, wherein the animal or plant is a non-human animal.
 以上のように、本発明の組成物によれば、エピゲノムが改変された動植物の製造および維持が可能な親系統の動植物の製造できる。このため、本発明によれば、エピゲノムの変化により生じる疾患の解析等に好適に使用できる。このため、本発明は、例えば、生命科学分野および医薬分野等において極めて有用である。 As described above, according to the composition of the present invention, it is possible to produce parent line animals and plants that are capable of producing and maintaining epigenome-modified animals and plants. Therefore, according to the present invention, it can be suitably used for analysis of diseases caused by changes in the epigenome. Therefore, the present invention is extremely useful in, for example, the fields of life science and medicine.

Claims (49)

  1. エピゲノムが改変された動植物の製造または維持用親系統の動植物の製造に用いるための組成物であって、
    前記組成物は、核酸を含み、
    前記核酸は、
     ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
     前記核酸配列認識モジュールと複合体を形成可能であり、かつエピゲノムを改変可能なエピゲノム改変酵素と、
    をコードする核酸を含み、
    前記核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
    前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変する、組成物。
    A composition for use in the production of epigenome-modified animals and plants or in the production of parent line animals and plants for maintenance,
    the composition comprises a nucleic acid;
    The nucleic acid is
    a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
    an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and modifying the epigenome;
    comprising a nucleic acid encoding
    The nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis. configured,
    The composition, wherein in the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of a target region in the genomic DNA of the forming gamete.
  2. 前記核酸は、第1の核酸と、第2の核酸とを含み、
    前記第1の核酸は、
     ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
     前記核酸配列認識モジュールと連結されたタグドメインと、
    をコードする核酸を含み、
    前記第2の核酸は、
     エピゲノムを改変可能なエピゲノム改変酵素と、
     前記エピゲノム改変酵素に連結され、前記タグドメインに結合可能なタグドメインの結合パートナーと、
    をコードする核酸を含み、
    前記第1の核酸および/または前記第2の核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
    前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変する、請求項1に記載の組成物。
    the nucleic acid comprises a first nucleic acid and a second nucleic acid;
    The first nucleic acid is
    a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
    a tag domain linked to the nucleic acid sequence recognition module;
    comprising a nucleic acid encoding
    The second nucleic acid is
    an epigenome-modifying enzyme capable of modifying the epigenome;
    a tag domain binding partner linked to the epigenome modifying enzyme and capable of binding to the tag domain;
    comprising a nucleic acid encoding
    The first nucleic acid and/or the second nucleic acid are operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the nucleic acid sequence recognition module and the epigenome modifying enzyme are , configured to be induced to be expressed in gametogenesis,
    2. In the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of the target region in the genomic DNA of the gamete being formed. The composition according to .
  3. 前記タグドメインを複数含む、請求項2に記載の組成物。 3. The composition of claim 2, comprising a plurality of said tag domains.
  4. 前記タグドメインは、ペプチドエピトープであり、
    前記結合パートナーは、前記ペプチドエピトープに対する抗体である、請求項2または3に記載の組成物。
    said tag domain is a peptide epitope,
    4. The composition of claim 2 or 3, wherein said binding partner is an antibody against said peptide epitope.
  5. 前記核酸配列認識モジュールは、CRISPR-Casシステムであり、
    前記CRISPR-Casシステムは、
     前記標的領域の核酸配列に特異的に結合する核酸配列を含むガイド鎖と、
     Casタンパク質と、
    を含み、
    前記Casタンパク質は、前記タグドメインと連結されている、請求項2から4のいずれか一項に記載の組成物。
    the nucleic acid sequence recognition module is the CRISPR-Cas system;
    The CRISPR-Cas system is
    a guide strand comprising a nucleic acid sequence that specifically binds to a nucleic acid sequence in the target region;
    a Cas protein;
    including
    5. The composition of any one of claims 2-4, wherein the Cas protein is linked to the tag domain.
  6. 前記核酸配列認識モジュールは、前記ゲノムDNAの二本鎖の両方の鎖を切断しない、請求項1から5のいずれか一項に記載の組成物。 6. The composition of any one of claims 1-5, wherein the nucleic acid sequence recognition module does not cut both strands of the double strand of the genomic DNA.
  7. 前記標的領域は、インプリンティング遺伝子の制御領域および/またはプロモーター領域である、請求項1から6のいずれか一項に記載の組成物。 7. The composition according to any one of claims 1 to 6, wherein said target region is the control region and/or promoter region of an imprinted gene.
  8. 前記エピゲノム改変酵素は、塩基修飾酵素である、請求項1から7のいずれか一項に記載の組成物。 8. The composition of any one of claims 1-7, wherein the epigenome modifying enzyme is a base modifying enzyme.
  9. 前記エピゲノム改変酵素は、メチル化酵素、脱メチル化酵素、アセチル化酵素、脱アセチル化酵素、リン酸化酵素、脱リン酸化酵素、ユビキチン化酵素、および/またはSUMO化酵素である、請求項1から8のいずれか一項に記載の組成物。 2. From claim 1, wherein the epigenome-modifying enzyme is a methylase, demethylase, acetylase, deacetylase, kinase, dephosphorylation enzyme, ubiquitinase, and/or sumoylation enzyme. 9. The composition according to any one of 8.
  10. 前記エピゲノム改変酵素は、TET(ten-eleven translocation)1、TET2、TET3、DNMT(DNA Methyltransferase)1、DNMT3A、および/またはDNMT3Bである、請求項1から9のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 9, wherein the epigenome modifying enzyme is TET (ten-eleven translocation) 1, TET2, TET3, DNMT (DNA Methyltransferase) 1, DNMT3A, and/or DNMT3B. .
  11. 前記配偶子形成特異的プロモーターは、精子形成特異的プロモーターまたは卵子形成特異的プロモーターである、請求項1から10のいずれか一項に記載の組成物。 11. The composition of any one of claims 1-10, wherein the gametogenesis-specific promoter is a spermatogenesis-specific promoter or an oogenesis-specific promoter.
  12. 前記配偶子形成特異的プロモーターは、STRA8プロモーター、Pgk2プロモーター、Dazlプロモーター、および/またはGsg2プロモーターである、請求項1から11のいずれか一項に記載の組成物。 12. The composition according to any one of claims 1 to 11, wherein said gametogenesis-specific promoter is STRA8 promoter, Pgk2 promoter, Dazl promoter and/or Gsg2 promoter.
  13. 前記配偶子形成特異的プロモーターは、Gdf-9プロモーター、Zp3プロモーター、および/またはMsx2プロモーターである、請求項1から11のいずれか一項に記載の組成物。 12. The composition according to any one of claims 1 to 11, wherein said gametogenesis-specific promoter is Gdf-9 promoter, Zp3 promoter and/or Msx2 promoter.
  14. 発現ベクターを含み、
    前記発現ベクターは、前記核酸配列認識モジュールと、前記エピゲノム改変酵素が発現可能なように、前記核酸が機能的に連結されている、請求項1から13のいずれか一項に記載の組成物。
    comprising an expression vector;
    14. The composition according to any one of claims 1 to 13, wherein the nucleic acid is functionally linked to the expression vector so that the nucleic acid sequence recognition module and the epigenome modifying enzyme can be expressed.
  15. 第1の発現ベクターと、第2の発現ベクターとを含み、
    前記第1の発現ベクターは、前記核酸配列認識モジュールが発現可能なように、前記核酸が機能的に連結され、
    前記第2の発現ベクターは、前記エピゲノム改変酵素が発現可能なように、前記核酸が機能的に連結されている、請求項1から13のいずれか一項に記載の組成物。
    comprising a first expression vector and a second expression vector;
    The first expression vector is functionally linked to the nucleic acid so that the nucleic acid sequence recognition module can be expressed,
    14. The composition according to any one of claims 1 to 13, wherein the nucleic acid is operatively linked to the second expression vector so that the epigenome modifying enzyme can be expressed.
  16. エピゲノムが改変された動植物の親系統の製造方法であって、
    対象の動植物に、請求項1から15のいずれか一項に記載の組成物を導入する工程を含む、製造方法。
    A method for producing an epigenome-modified animal or plant parent line, comprising:
    16. A method of manufacture comprising the step of introducing a composition according to any one of claims 1 to 15 into an animal or plant of interest.
  17. 前記動植物は、非ヒト動物である、請求項16に記載の製造方法。 The production method according to claim 16, wherein the animals and plants are non-human animals.
  18. エピゲノムが改変された動植物の製造または維持用親系統の動植物であって、
    前記動植物は、外来性の核酸を含み、
    前記核酸は、
     ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
     前記核酸配列認識モジュールと複合体を形成可能であり、かつエピゲノムを改変可能なエピゲノム改変酵素と、
    をコードする核酸を含み、
    前記核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
    前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変する、動植物。
    An animal or plant of a parent line for production or maintenance of an epigenome-modified animal or plant,
    The animals and plants contain exogenous nucleic acids,
    The nucleic acid is
    a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
    an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and modifying the epigenome;
    comprising a nucleic acid encoding
    The nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis. configured,
    The animal or plant, wherein, in the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of the target region in the genomic DNA of the gamete being formed.
  19. 前記核酸は、第1の核酸と、第2の核酸とを含み、
    前記第1の核酸は、
     ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
     前記核酸配列認識モジュールと連結されたタグドメインと、
    をコードする核酸を含み、
    前記第2の核酸は、
     エピゲノムを改変可能なエピゲノム改変酵素と、
     前記エピゲノム改変酵素に連結され、前記タグドメインに結合可能なタグドメインの結合パートナーと、
    をコードする核酸を含み、
    前記第1の核酸および/または前記第2の核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記核酸配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
    前記配偶子形成において、発現誘導された前記核酸配列認識モジュールと、前記エピゲノム改変酵素とは、複合体を形成し、形成中の配偶子のゲノムDNAにおける標的領域のエピゲノムを改変する、請求項18に記載の動植物。
    the nucleic acid comprises a first nucleic acid and a second nucleic acid;
    The first nucleic acid is
    a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
    a tag domain linked to the nucleic acid sequence recognition module;
    comprising a nucleic acid encoding
    The second nucleic acid is
    an epigenome-modifying enzyme capable of modifying the epigenome;
    a tag domain binding partner linked to the epigenome modifying enzyme and capable of binding to the tag domain;
    comprising a nucleic acid encoding
    The first nucleic acid and/or the second nucleic acid are operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the nucleic acid sequence recognition module and the epigenome modifying enzyme are , configured to be induced to be expressed in gametogenesis,
    18. In the gametogenesis, the nucleic acid sequence recognition module whose expression is induced and the epigenome modifying enzyme form a complex to modify the epigenome of the target region in the genomic DNA of the gamete being formed. flora and fauna described in .
  20. 前記タグドメインを複数含む、請求項19に記載の動植物。 20. The animal or plant of claim 19, comprising a plurality of said tag domains.
  21. 前記タグドメインは、ペプチドエピトープであり、
    前記結合パートナーは、前記ペプチドエピトープに対する抗体である、請求項19または20に記載の動植物。
    said tag domain is a peptide epitope,
    21. The animal or plant according to claim 19 or 20, wherein said binding partner is an antibody against said peptide epitope.
  22. 前記核酸配列認識モジュールは、CRISPR-Casシステムであり、
    前記CRISPR-Casシステムは、
     前記標的領域の核酸配列に特異的に結合する核酸配列を含むガイド鎖と、
     Casタンパク質と、
    を含み、
    前記Casタンパク質は、前記タグドメインと連結されている、請求項19から21のいずれか一項に記載の動植物。
    the nucleic acid sequence recognition module is the CRISPR-Cas system;
    The CRISPR-Cas system is
    a guide strand comprising a nucleic acid sequence that specifically binds to a nucleic acid sequence in the target region;
    a Cas protein;
    including
    22. The plant or animal of any one of claims 19-21, wherein the Cas protein is linked to the tag domain.
  23. 前記核酸配列認識モジュールは、前記ゲノムDNAの二本鎖の両方の鎖を切断しない、請求項18から22のいずれか一項に記載の動植物。 23. The animal or plant according to any one of claims 18 to 22, wherein said nucleic acid sequence recognition module does not cut both strands of said genomic DNA double strand.
  24. 前記標的領域は、インプリンティング遺伝子の制御領域および/またはプロモーター領域である、請求項18から23のいずれか一項に記載の動植物。 24. The animal or plant according to any one of claims 18 to 23, wherein said target region is the control region and/or promoter region of an imprinted gene.
  25. 前記エピゲノム改変酵素は、塩基修飾酵素である、請求項18から24のいずれか一項に記載の動植物。 25. The animal or plant according to any one of claims 18 to 24, wherein said epigenome modifying enzyme is a base modifying enzyme.
  26. 前記エピゲノム改変酵素は、メチル化酵素、脱メチル化酵素、アセチル化酵素、脱アセチル化酵素、リン酸化酵素、脱リン酸化酵素、ユビキチン化酵素、および/またはSUMO化酵素である、請求項18から25のいずれか一項に記載の動植物。 19. from claim 18, wherein the epigenome modifying enzyme is a methylase, demethylase, acetylase, deacetylase, phosphorylation enzyme, dephosphorylation enzyme, ubiquitinase, and/or sumoylation enzyme 26. The animal and plant according to any one of 25.
  27. 前記エピゲノム改変酵素は、TET(ten-eleven translocation)1、TET2、TET3、DNMT(DNA Methyltransferase)1、DNMT3A、および/またはDNMT3Bである、請求項18から26のいずれか一項に記載の動植物。 The animal or plant according to any one of claims 18 to 26, wherein the epigenome-modifying enzyme is TET (ten-eleven translocation) 1, TET2, TET3, DNMT (DNA Methyltransferase) 1, DNMT3A, and/or DNMT3B.
  28. 前記配偶子形成特異的プロモーターは、精子形成特異的プロモーターまたは卵子形成特異的プロモーターである、請求項18から27のいずれか一項に記載の動植物。 28. The animal or plant according to any one of claims 18 to 27, wherein the gametogenesis-specific promoter is a spermatogenesis-specific promoter or an oogenesis-specific promoter.
  29. 前記配偶子形成特異的プロモーターは、STRA8プロモーター、Pgk2プロモーター、Dazlプロモーター、および/またはGsg2プロモーターである、請求項18から28のいずれか一項に記載の動植物。 29. The animal or plant according to any one of claims 18 to 28, wherein said gametogenesis-specific promoter is STRA8 promoter, Pgk2 promoter, Dazl promoter and/or Gsg2 promoter.
  30. 前記配偶子形成特異的プロモーターは、Gdf-9プロモーター、Zp3プロモーター、および/またはMsx2プロモーターである、請求項18から29のいずれか一項に記載の動植物。 30. The animal or plant according to any one of claims 18 to 29, wherein said gametogenesis-specific promoter is Gdf-9 promoter, Zp3 promoter and/or Msx2 promoter.
  31. 発現ベクターを含み、
    前記発現ベクターは、前記核酸配列認識モジュールと、前記エピゲノム改変酵素が発現可能なように、前記核酸が機能的に連結されている、請求項18から30のいずれか一項に記載の動植物。
    comprising an expression vector;
    31. The animal or plant according to any one of claims 18 to 30, wherein the nucleic acid is functionally linked to the nucleic acid sequence recognition module in the expression vector so that the epigenome modifying enzyme can be expressed.
  32. 第1の発現ベクターと、第2の発現ベクターとを含み、
    前記第1の発現ベクターは、前記核酸配列認識モジュールが発現可能なように、前記核酸が機能的に連結され、
    前記第2の発現ベクターは、前記エピゲノム改変酵素が発現可能なように、前記核酸が機能的に連結されている、請求項18から31のいずれか一項に記載の動植物。
    comprising a first expression vector and a second expression vector;
    The first expression vector is functionally linked to the nucleic acid so that the nucleic acid sequence recognition module can be expressed,
    32. The animal or plant according to any one of claims 18 to 31, wherein the nucleic acid is functionally linked to the second expression vector so that the epigenome modifying enzyme can be expressed.
  33. 前記動物は、非ヒト動物である、請求項18から32のいずれか一項に記載の動植物。 33. The animal or plant according to any one of claims 18-32, wherein said animal is a non-human animal.
  34. 前記核酸は、ゲノムDNAに挿入されている、請求項18から33のいずれか一項に記載の動植物。 34. An animal or plant according to any one of claims 18 to 33, wherein said nucleic acid is inserted into genomic DNA.
  35. 前記配偶子形成特異的プロモーターは、精子形成特異的プロモーターであり、
    前記製造に用いる親系統は、雄親系統であり、
    前記維持に用いる親系統は、雌親系統である、請求項18から34のいずれか一項に記載の動植物。
    the gametogenesis-specific promoter is a spermatogenesis-specific promoter;
    The parent line used for the production is a male parent line,
    35. The animal or plant according to any one of claims 18 to 34, wherein the parental line used for maintenance is a female parental line.
  36. 前記配偶子形成特異的プロモーターは、卵子形成特異的プロモーターであり、
    前記製造に用いる親系統は、雌親系統であり、
    前記維持に用いる親系統は、雄親系統である、請求項18から34のいずれか一項に記載の動植物。
    The gametogenesis-specific promoter is an oogenesis-specific promoter,
    The parent line used for the production is a female parent line,
    35. The animal or plant according to any one of claims 18 to 34, wherein the parental line used for maintenance is a male parental line.
  37. 前記親系統は、前記配偶子以外の細胞において、前記標的領域のエピゲノムが改変されていない、請求項18から36のいずれか一項に記載の動植物。 37. The animal or plant according to any one of claims 18 to 36, wherein said parent line has no epigenome modification of said target region in cells other than said gametes.
  38. エピゲノムが改変された動植物の製造または維持用親系統の動植物の製造に用いる配偶子であって、
    請求項18から37のいずれか一項に記載の親系統の動植物から単離された、配偶子。
    Gametes used for the production of epigenome-modified animals and plants or the production of parent line animals and plants for maintenance,
    38. A gamete isolated from the parental strain of the plant or animal according to any one of claims 18-37.
  39. 前記配偶子は、精子および/または卵子である、請求項38に記載の配偶子。 39. A gamete according to claim 38, wherein said gamete is a sperm and/or egg.
  40. 前記配偶子形成において発現誘導された前記核酸配列認識モジュールと前記エピゲノム改変酵素とが複合体を形成し、前記標的領域のエピゲノムが改変されている、請求項38または39に記載の配偶子。 40. The gamete according to claim 38 or 39, wherein the nucleic acid sequence recognition module whose expression is induced in the gametogenesis and the epigenome modifying enzyme form a complex, and the epigenome of the target region is modified.
  41. 前記外来性の核酸を含む、請求項38から40のいずれか一項に記載の配偶子。 41. The gamete of any one of claims 38-40, comprising said exogenous nucleic acid.
  42. 標的領域のエピゲノムが改変された動植物の製造方法であって、
    第1の親と、第2の親とを交雑し、得られた後代個体からエピゲノムが改変された個体を得る工程を含み、
    前記第1の親および/または前記第2の親は、請求項18から37のいずれか一項に記載の親系統の動植物である、製造方法。
    A method for producing an animal or plant in which the epigenome of the target region is modified,
    crossing the first parent and the second parent and obtaining an epigenome-altered individual from the resulting progeny individual;
    38. A method of production, wherein said first parent and/or said second parent is a plant or animal of the parent line according to any one of claims 18-37.
  43. 前記後代個体から、前記核酸を含まない個体を選抜する工程を含む、請求項42に記載の製造方法。 43. The production method according to claim 42, comprising the step of selecting individuals that do not contain said nucleic acid from said progeny individuals.
  44. 標的領域のエピゲノムが改変された動植物であって、
    前記動植物は、
     前記標的領域として、請求項38から40のいずれか一項に記載の配偶子に由来するエピゲノムが改変された標的領域を含み、
     前記外来性の核酸を含まない、
    動植物。
    An animal or plant in which the epigenome of the target region is modified,
    The animals and plants are
    comprising as the target region an epigenome-modified target region derived from the gamete according to any one of claims 38 to 40,
    does not contain the exogenous nucleic acid;
    flora and fauna.
  45. 請求項42または43に記載の製造方法により得られる、請求項44に記載の動植物。 45. The animal or plant according to claim 44, obtained by the production method according to claim 42 or 43.
  46. 前記動植物は、非ヒト動物である、請求項44または45に記載の動植物。 46. The animal or plant according to claim 44 or 45, wherein said animal or plant is a non-human animal.
  47. 標的領域のエピゲノムが改変された動植物であって、
    前記動植物は、外来性の核酸を含み、
    前記核酸は、
     ゲノムDNAにおいてエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
     前記核酸配列認識モジュールと複合体を形成可能であり、かつエピゲノムを改変可能なエピゲノム改変酵素と、
    をコードする核酸を含み、
    前記核酸は、配偶子形成において活性化する配偶子形成特異的なプロモーターに機能的に連結されることにより、前記配列認識モジュールおよび前記エピゲノム改変酵素が、前記配偶子形成において発現誘導されるように構成され、
    前記動植物は、前記標的領域として、前記配偶子形成において発現誘導された前記核酸配列認識モジュールと前記エピゲノム改変酵素とが複合体を形成し、前記標的領域のエピゲノムが改変された配偶子に由来する標的領域を含む、動植物。
    An animal or plant in which the epigenome of the target region is modified,
    The animals and plants contain exogenous nucleic acids,
    The nucleic acid is
    a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence of a target region that modifies the epigenome in genomic DNA;
    an epigenome modifying enzyme capable of forming a complex with the nucleic acid sequence recognition module and modifying the epigenome;
    comprising a nucleic acid encoding
    The nucleic acid is operably linked to a gametogenesis-specific promoter that is activated in gametogenesis so that the sequence recognition module and the epigenome modifying enzyme are induced to be expressed in the gametogenesis. configured,
    The animal or plant is derived from a gamete in which the epigenome of the target region is modified by forming a complex between the nucleic acid sequence recognition module whose expression is induced in the gametogenesis and the epigenome modifying enzyme as the target region. Animals and plants, including target areas.
  48. 第1の核酸と、第2の核酸とを含み、
    前記第1の核酸は、
     ゲノムにおけるエピゲノムを改変する標的領域の核酸配列に特異的に結合する核酸配列認識モジュールと、
     前記核酸配列認識モジュールと連結されたタグドメインと、
    をコードする核酸を含み、
    前記第2の核酸は、
     エピゲノムを改変可能なエピゲノム改変酵素と、
     前記エピゲノム改変酵素に連結され、前記タグドメインに結合可能なタグドメインの結合パートナーと、
    をコードする核酸を含み、
    前記第1の核酸および/または前記第2の核酸は、配偶子形成において活性化する配偶子特異的なプロモーターに機能的に連結され、
    前記動植物は、前記標的領域として、前記配偶子形成において発現誘導された前記核酸配列認識モジュールと前記エピゲノム改変酵素とが複合体を形成し、前記標的領域のエピゲノムが改変された配偶子に由来する標的領域を含む、請求項47に記載の動植物。
    comprising a first nucleic acid and a second nucleic acid;
    The first nucleic acid is
    a nucleic acid sequence recognition module that specifically binds to a nucleic acid sequence in a target region to modify the epigenome in the genome;
    a tag domain linked to the nucleic acid sequence recognition module;
    comprising a nucleic acid encoding
    The second nucleic acid is
    an epigenome-modifying enzyme capable of modifying the epigenome;
    a tag domain binding partner linked to the epigenome modifying enzyme and capable of binding to the tag domain;
    comprising a nucleic acid encoding
    said first nucleic acid and/or said second nucleic acid is operably linked to a gamete-specific promoter that is activated in gametogenesis;
    The animal or plant is derived from a gamete in which the epigenome of the target region is modified by forming a complex between the nucleic acid sequence recognition module whose expression is induced in the gametogenesis and the epigenome modifying enzyme as the target region. 48. The animal or plant of claim 47, comprising a target region.
  49. 前記動植物は、非ヒト動物である、請求項47または48に記載の動植物。

     
    49. The animal or plant according to claim 47 or 48, wherein said animal or plant is a non-human animal.

PCT/JP2022/017327 2021-05-20 2022-04-08 Composition employed in producing parental line of epigenome-modified plant/animal and usage thereof WO2022244544A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023522326A JPWO2022244544A1 (en) 2021-05-20 2022-04-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-085099 2021-05-20
JP2021085099 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022244544A1 true WO2022244544A1 (en) 2022-11-24

Family

ID=84141295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017327 WO2022244544A1 (en) 2021-05-20 2022-04-08 Composition employed in producing parental line of epigenome-modified plant/animal and usage thereof

Country Status (2)

Country Link
JP (1) JPWO2022244544A1 (en)
WO (1) WO2022244544A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532053A (en) * 2006-04-07 2009-09-10 セルセントリック・リミテッド Compositions and methods for epigenetic modification of nucleic acid sequences in vivo
WO2017090724A1 (en) * 2015-11-25 2017-06-01 国立大学法人 群馬大学 Dna methylation editing kit and dna methylation editing method
JP2020132584A (en) * 2019-02-21 2020-08-31 株式会社豊田中央研究所 Fusion protein controlling epigenome status and use thereof
WO2021167101A1 (en) * 2020-02-21 2021-08-26 国立大学法人群馬大学 Method for inducing synergistic expression of specific gene using demethylase and transcription-associated factor or chromatin-associated factor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532053A (en) * 2006-04-07 2009-09-10 セルセントリック・リミテッド Compositions and methods for epigenetic modification of nucleic acid sequences in vivo
WO2017090724A1 (en) * 2015-11-25 2017-06-01 国立大学法人 群馬大学 Dna methylation editing kit and dna methylation editing method
JP2020132584A (en) * 2019-02-21 2020-08-31 株式会社豊田中央研究所 Fusion protein controlling epigenome status and use thereof
WO2021167101A1 (en) * 2020-02-21 2021-08-26 国立大学法人群馬大学 Method for inducing synergistic expression of specific gene using demethylase and transcription-associated factor or chromatin-associated factor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PRATIKSHA I THAKORE, JOSHUA B BLACK, ISAAC B HILTON, CHARLES A GERSBACH: "Editing the epigenome: technologies for programmable transcription and epigenetic modulation", NATURE METHODS, NATURE PUBLISHING GROUP US, NEW YORK, vol. 13, no. 2, 1 February 2016 (2016-02-01), New York, pages 127 - 137, XP055623879, ISSN: 1548-7091, DOI: 10.1038/nmeth.3733 *

Also Published As

Publication number Publication date
JPWO2022244544A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
JP7280312B2 (en) Novel CRISPR enzymes and systems
JP7280905B2 (en) Crystal structure of CRISPRCPF1
JP7013406B2 (en) Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
JP7107683B2 (en) CRISPR enzyme mutations that reduce off-target effects
JP6700306B2 (en) Pre-fertilization egg cell, fertilized egg, and method for modifying target gene
JP2023052236A (en) Novel type vi crispr orthologs and systems
KR20210148187A (en) Introduction of silencing activity into a dysfunctional RNA molecule and modification of specificity for a gene of interest
JP2020534826A (en) Modification of specificity of non-coding RNA molecules for silencing gene expression in eukaryotic cells
CN110114461A (en) Novel C RISPR enzyme and system
CN110312799A (en) Novel C RISPR enzyme and system
CN110959039A (en) Novel CAS13B ortholog CRISPR enzymes and systems
KR20010071227A (en) Cell-free chimeraplasty and eukaryotic use of heteroduplex mutational vectors
CN110804628B (en) High-specificity off-target-free single-base gene editing tool
WO2018117746A1 (en) Composition for base editing for animal embryo and base editing method
US20220403357A1 (en) Small type ii cas proteins and methods of use thereof
WO2021175289A1 (en) Multiplex genome editing method and system
CN109452229B (en) Preparation method and application of caninized PD-1 gene modified animal model
CN111793647B (en) Construction method and application of CD226 gene humanized non-human animal
CN116096879A (en) RNA-guided nucleases and active fragments and variants thereof and methods of use
CN109790551A (en) Improved gene editing
CN107955817B (en) Preparation method and application of humanized gene modified animal model
WO2022244544A1 (en) Composition employed in producing parental line of epigenome-modified plant/animal and usage thereof
CN111787791A (en) Materials and methods for preventing the spread of specific chromosomes
CN114786479B (en) IL-15 humanized mouse model and application thereof
CN117384960B (en) TL1A gene humanized non-human animal and construction method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22802872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023522326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE