WO2022244471A1 - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
WO2022244471A1
WO2022244471A1 PCT/JP2022/014504 JP2022014504W WO2022244471A1 WO 2022244471 A1 WO2022244471 A1 WO 2022244471A1 JP 2022014504 W JP2022014504 W JP 2022014504W WO 2022244471 A1 WO2022244471 A1 WO 2022244471A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
rotor
axial direction
sensing
adjacent
Prior art date
Application number
PCT/JP2022/014504
Other languages
French (fr)
Japanese (ja)
Inventor
清隆 古賀
裕章 柴田
智矢 枡谷
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2022244471A1 publication Critical patent/WO2022244471A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/12Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using detecting coils using the machine windings as detecting coil

Definitions

  • the present disclosure relates to rotating electric machines.
  • a rotation detector that uses eddy currents generated in the sensor rotor by the magnetic field generated by the coil of the sensing unit to generate an electric signal in the sensing unit that corresponds to the value of a parameter (e.g., rotation angle) related to the rotation of the rotor. It has been known.
  • an object of the present disclosure is to reduce the influence of a rotor on the detection result of a sensor that uses eddy currents in a rotating electric machine.
  • a rotor a non-rotating portion that rotatably supports the rotor; a sensor rotor that rotates integrally with the rotor; a sensing unit having a coil axially facing the sensor rotor;
  • the sensor rotor has radial protrusions and radial recesses at predetermined angles on an outer peripheral portion,
  • the rotor has a sensor adjacent portion axially adjacent to the sensor rotor from a side opposite to the sensing portion,
  • the sensor-adjacent portion includes a base portion and a specific portion that is axially uneven with respect to the base portion,
  • the sensor rotor has a magnetic shielding property that blocks magnetic flux that can pass from the side facing the sensing portion in the axial direction to the side facing the sensor adjacent portion in the axial direction, When viewed in the axial direction from the coil of the sensing unit, among the recesses of the sensor rotor at the predetermined angles, the recesses overlap the recesses at the predetermined angle
  • FIG. 4 is a perspective view showing a sensor rotor and a sensing section in the rotation sensor according to the embodiment; It is a figure which shows the relationship between the sensing part of a rotation sensor by a present Example, and a sensor rotor.
  • FIG. 4 is a diagram showing a portion of the sensor rotor according to the present embodiment, which is axially opposed to the sensing section, viewed in the axial direction;
  • FIG. 4 is a schematic diagram illustrating waveforms of sensor outputs generated by the sensing unit according to the embodiment;
  • FIG. 2 is an explanatory diagram conceptually explaining the features of the configuration of the present embodiment, and is a perspective view of a sensor rotor and a part of its periphery (a part of the rotor) viewed from the X1 side.
  • FIG. 7 is a perspective view of FIG. 6 with the sensor rotor removed;
  • FIG. 7 is a plan view of FIG. 6 with the sensor rotor removed;
  • FIG. 7 is a plan view of FIG. 6 viewed in the axial direction, showing only a half above the rotation axis;
  • FIG. 10 is an explanatory diagram of the influence of the sensor adjacent portion of the rotor on the sensor output;
  • FIG. 4 is a waveform of a sensor output generated by a sensing section, showing a waveform of a sensor output affected by a sensor adjacent section
  • FIG. 6 is an axial plan view schematically showing a sensor adjacent portion and a sensor rotor according to a comparative example
  • FIG. 10 is a waveform of a sensor output generated by a sensing unit, showing a waveform of a sensor output affected by a sensor adjacent portion according to a comparative example; It is explanatory drawing of the further effect of a present Example.
  • FIG. 11 is an axial plan view schematically showing a sensor adjacent portion and a sensor rotor in the motor according to Example 2;
  • FIG. 11 is an axial plan view schematically showing a sensor adjacent portion and a sensor rotor in a motor according to Example 3;
  • FIG. 11 is a perspective view of a sensor rotor according to Example 3;
  • FIG. 10 is a waveform of the sensor output generated by the sensing unit in Example 3, and shows the waveform of the sensor output affected by the sensor adjacent portion.
  • FIG. 1A is a cross-sectional view schematically showing the cross-sectional structure of the motor 1 according to this embodiment.
  • FIG. 1B is an enlarged view of the Q1 portion of FIG. 1A.
  • the rotating shaft 12 of the motor 1 is illustrated in FIG. 1A.
  • the axial direction refers to the direction in which the rotation shaft (rotation center) 12 of the motor 1 extends
  • the radial direction refers to the radial direction around the rotation shaft 12 . Therefore, the radially outer side refers to the side away from the rotating shaft 12 , and the radially inner side refers to the side toward the rotating shaft 12 .
  • the circumferential direction corresponds to the direction of rotation about the rotating shaft 12 .
  • the X1 side and the X2 side along the X direction parallel to the direction of the rotating shaft 12 are defined.
  • the terms X1 side and X2 side may be used to express relative positional relationships.
  • the motor 1 may be a vehicle drive motor used in, for example, a hybrid vehicle or an electric vehicle. However, the motor 1 may be used for any other purpose.
  • the motor 1 is of the inner rotor type, and the stator 21 is provided so as to surround the radially outer side of the rotor 30 .
  • the radially outer side of the stator 21 is fixed to the motor housing 10 .
  • the stator 21 includes a stator core 211 made of, for example, an annular laminated magnetic steel plate, and a plurality of slots (not shown) around which the coils 22 are wound are formed radially inside the stator core 211 .
  • the rotor 30 is arranged radially inside the stator 21 .
  • the rotor 30 has a rotor core 32 and a rotor shaft 34 .
  • the rotor core 32 is fixed to the radially outer surface of the rotor shaft 34 and rotates together with the rotor shaft 34 .
  • Rotor core 32 may be secured to rotor shaft 34 by shrink fitting or the like.
  • the rotor shaft 34 is rotatably supported by the motor housing 10 via bearings 14a and 14b. It should be noted that the rotor shaft 34 defines the rotating shaft 12 of the motor 1 .
  • the rotor core 32 is made of, for example, an annular magnetic layered steel plate. Permanent magnets 321 are embedded in the magnet holes 324 of the rotor core 32 . Alternatively, a permanent magnet such as permanent magnet 321 may be embedded in the outer peripheral surface of rotor core 32 . Note that the arrangement of the permanent magnets 321 and the like are arbitrary.
  • End plates 35A and 35B are attached to both sides of the rotor core 32 in the axial direction. End plates 35A and 35B cover axial end faces of rotor core 32 .
  • the end plates 35A and 35B have a detachment prevention function to prevent the permanent magnets 321 from detaching from the rotor core 32, as well as a function to adjust the imbalance of the rotor 30 (a function to eliminate the imbalance by cutting or the like). good.
  • the end plates 35A, 35B are made of a non-magnetic material.
  • the end plates 35A, 35B are preferably made of aluminum. In this case, cutting becomes easier, and the function of adjusting the imbalance of the rotor 30 by the end plates 35A, 35B can be effectively realized.
  • the end plates 35A and 35B may be made of stainless steel or the like.
  • the rotor shaft 34 has a hollow portion 34A as shown in FIG. 1A.
  • the hollow portion 34A extends over the entire length of the rotor shaft 34 in the axial direction.
  • the hollow portion 34A may be axially open on both sides in the axial direction.
  • the hollow portion 34A may function as an oil passage 801 through which cooling oil passes.
  • the magnetic pole configuration of the rotor core 32 is arbitrary.
  • the number of magnetic poles may be 8 or other than 8, and instead of or in addition to the permanent magnet 321, the pair of permanent magnets forming each magnetic pole may be arranged so that the distance in the circumferential direction increases toward the outer side in the radial direction. It may be arranged in a spreading manner.
  • the rotor core 32 may be formed with a flux barrier, an oil passage, and the like.
  • the rotor shaft 34 has a hollow portion 34A in this embodiment, it may be solid. Alternatively, the rotor shaft 34 may be formed by joining two or more parts. Also, the motor 1 may be cooled by cooling water (for example, lifelong coolant) instead of or in addition to oil. Further, although the motor 1 is of the inner rotor type in this embodiment, it may be of the outer rotor type.
  • the motor 1 has a rotation sensor 80 that detects parameter values relating to the rotation of the rotor 30 .
  • the parameters related to the rotation of the rotor 30 are arbitrary, and may be, for example, the presence or absence of rotation of the rotor 30, the rotation angle of the rotor 30 from a predetermined reference angle, the rotation speed, the magnetic pole position, and the like.
  • the rotation sensor 80 detects the rotation angle of the rotor 30 below.
  • the rotation sensor 80 is provided on one end side of the rotor shaft 34 .
  • the rotation sensor 80 is provided at the X1 side end of the rotor shaft 34 as shown in FIG. 1A, but may be provided at the X2 side end.
  • FIG. 2 is a perspective view showing the sensor rotor 81 and the sensing section 82 of the rotation sensor 80 as viewed from the X1 side. It should be noted that illustration of the sensor support portion 84 is omitted in FIG. 2 (as well as FIG. 3 described later).
  • the rotation sensor 80 includes a sensor rotor 81 , a sensing section 82 and a sensor support section 84 .
  • the sensor rotor 81 is made of a conductor, for example, and rotates integrally with the rotor 30 .
  • the sensor rotor 81 has an annular shape with a circular central hole 811 centered on the rotating shaft 12 .
  • the sensor rotor 81 may be attached so as to rotate together with the rotor shaft 34 by passing the rotor shaft 34 through the center hole 811 thereof.
  • the sensor rotor 81 has a radial concave portion or convex portion formed in the rotor shaft 34 , and a diameter that fits into the radial concave portion or convex portion of the rotor shaft 34 on the inner peripheral edge of the center hole 811 of the sensor rotor 81 .
  • Directional protrusions or recesses may be formed.
  • the sensor rotor 81 has an outer diameter that changes periodically.
  • the outer diameter of the sensor rotor 81 at the circumferential position facing the sensing portion 82 in the axial direction changes periodically each time the rotation angle of the rotor 30 changes by a predetermined angle.
  • the predetermined angle may be appropriately determined according to the number of magnetic poles and the like at the time of design.
  • the sensor rotor 81 has eight radial protrusions and recesses alternately per turn.
  • the outer diameter of the sensor rotor 81 at the circumferential position facing the sensing portion 82 in the axial direction changes periodically every time the rotation angle of the rotor 30 changes by 45 degrees.
  • the sensor rotor 81 is preferably permeable from the side (X1 side) facing the sensing section 82 in the axial direction to the side (X2 side) facing the rotor core 32 (or the sensor adjacent section 300 described later) in the axial direction. It has a magnetic shielding property that blocks magnetic flux.
  • the sensor rotor 81 may achieve such a magnetic shielding property by having a relatively large thickness, or by having a layer of shielding material on the surface on the X2 side.
  • the sensor rotor 81 may have a periodically changing thickness (axial thickness) instead of or in addition to the periodically changing outer diameter.
  • the thickness of the sensor rotor 81 at the circumferential position facing the sensing portion 82 in the axial direction changes periodically every time the rotation angle of the rotor 30 changes by a predetermined angle.
  • the sensing part 82 is in the form of a substrate 820 and is arranged so as to face the sensor rotor 81 in the axial direction and be close to it. As shown in FIG. 2, the substrate 820 may have an arcuate shape when viewed in the axial direction, and may extend only along a partial circumferential section of the entire circumference. Moreover, the substrate 820 may extend not only in an arc shape but also in the entire circumference.
  • the sensing portion 82 is supported by a non-rotating portion (motor housing 10 in this embodiment) of the motor 1 by a sensor support portion 84 (see FIG. 1B).
  • the sensing section 82 detects the rotation angle of the rotor 30 using eddy currents.
  • 3 to 5 are explanatory diagrams of the principle of detection by the sensing section 82.
  • FIG. 3 shows the relationship between the sensing portion 82 of the rotation sensor 80 and the sensor rotor 81
  • FIG. 4 shows a portion of the sensor rotor 81 axially facing the sensing portion 82 as viewed in the axial direction. It is a diagram.
  • FIG. 5 is a schematic diagram illustrating the waveform of the sensor output (electrical signal) generated by the sensing section 82. As shown in FIG. In FIG. In FIG.
  • FIG. 5 schematically shows time-series waveforms for a predetermined angle (45 degrees in this embodiment) in the rotation angle of the rotor 30 .
  • the sensing section 82 may be in the form of a substrate 820 on which a sensor coil 821 and a processing circuit section 822 are mounted, as shown in FIG. Some or all of the functions of the processing circuit section 822 may be realized by an external control device (not shown).
  • the sensor coils 821 may be formed on both surfaces of the substrate 820 as shown in FIG. 3, for example. Note that, in a modification, the sensor coils 821 may be formed in the inner layer of the substrate 820 instead of or in addition to the surfaces on both sides of the substrate 820 .
  • the sensor coil 821 may be formed by printed conductors, for example.
  • the sensor coil 821 is wound around a central axis O parallel to the X direction.
  • the processing circuit unit 822 causes the sensor rotor 81 to generate an eddy current by energizing the sensor coil 821 .
  • a magnetic flux B1 passing through the sensor coil 821 is generated.
  • an eddy current is generated on the surface of the sensor rotor 81 .
  • FIG. 4 the manner in which eddy currents are generated is schematically indicated by an arrow Ie.
  • the direction of the eddy currents is determined according to the direction of the current flowing through the sensor coil 821 .
  • the eddy currents are oriented to generate a magnetic flux that reduces the magnetic flux B1. Therefore, due to the eddy currents, a magnetic flux B2 (not shown) is generated which reduces the magnetic flux B1.
  • the magnitude of the magnetic flux B2 is proportional to the magnitude of the eddy current.
  • the magnitude of the eddy current increases as the surface area of the portion of the sensor rotor 81 facing the sensor coil 821 in the axial direction increases.
  • the sensor rotor 81 has an outer diameter that changes periodically. Then it changes.
  • the surface area of the portion of the sensor rotor 81 axially facing the sensor coil 821 changes sinusoidally as the rotation angle of the rotor 30 changes. Therefore, in the present embodiment, the time-series waveform of the sensor output (electrical signal) generated by the sensing unit 82 has one cycle of Draw a sine wave. Therefore, the rotation angle of the rotor 30 can be detected based on such sensor output (electrical signal).
  • the sensor support portion 84 is fixed to the non-rotating portion (motor housing 10 in this embodiment) of the motor 1 (schematically shown in FIGS. 1A and 1B) and supports the sensing portion 82 .
  • the sensor support portion 84 may support the sensing portion 82 by any means such as adhesives, fasteners, or fitting.
  • the sensor support section 84 supports the sensing section 82 via a potting resin section 86 for sealing, for example.
  • the potting resin portion 86 is joined to the sensing portion 82 and the sensor support portion 84 to integrate the sensing portion 82 and the sensor support portion 84 .
  • the number of parts can be reduced compared to the case where the sensing section 82 and the sensor support section 84 are separate parts.
  • the sensing portion 82 is assembled by assembling the sensor support portion 84 to the motor housing 10, the assembly is easier than when the sensing portion 82 and the sensor support portion 84 are separate components. is.
  • the potting resin portion 86 may be filled from the opening of the sensor support portion 84 on the X2 side.
  • the sensor support portion 84 preferably supports the sensing portion 82 so that the sensing portion 82 is axially close to the sensor rotor 81 .
  • the sensor support portion 84 is such that the axial positional relationship between the sensor rotor 81 and the sensing portion 82 is such that the axial gap between the sensor rotor 81 and the sensing portion 82 is between the movable portion and the fixed portion.
  • a positional relationship may be achieved that corresponds to the minimum clearance required between.
  • FIG. 6 is a diagrammatic representation of the configuration of this embodiment.
  • FIG. 6 shows the sensor rotor 81 and a portion of its periphery (a portion of the rotor 30) viewed from the X1 side.
  • 7 is a perspective view with the sensor rotor 81 removed from FIG. 6
  • FIG. 8 is a plan view (plan view viewed in the axial direction) with the sensor rotor 81 removed from FIG. .
  • 9 is a plan view of FIG. 6 viewed in the axial direction, showing only the upper half of the rotating shaft 12.
  • FIG. 6 to 9 are conceptual diagrams, and in particular the configuration of the rotor 30 is shown very schematically.
  • FIG. 6 to 9 are conceptual diagrams, and in particular the configuration of the rotor 30 is shown very schematically.
  • FIG. 6 to 9 are conceptual diagrams, and in particular the configuration of the rotor 30 is shown very schematically.
  • FIG. 6 to 9 are conceptual diagrams, and in particular the configuration of the rotor 30 is shown very schematically.
  • FIG. 6 to 9 are conceptual diagrams,
  • FIG. 10 is an explanatory diagram of the influence of the sensor adjacent portion 300 of the rotor 30 on the sensor output, and is a diagram schematically showing the flow of magnetic flux. Note that the flow of magnetic flux shown in FIG. 10 is schematically shown in a state before being affected by the sensor adjacent portion 300 and the sensor rotor 81 .
  • FIG. 11 is a diagram showing the waveform of the sensor output (electrical signal) generated by the sensing section 82 in this embodiment, and showing the waveform of the sensor output affected by the sensor adjacent section 300. As shown in FIG. In FIG.
  • the horizontal axis represents the rotation angle of the rotor 30 and the vertical axis represents the magnitude of the sensor output
  • the time-series waveform of the sensor output (electrical signal) generated by the sensing unit 82 is schematically shown.
  • FIG. 11 the same applies to FIGS. 12B and 17 described later
  • time-series waveforms for twice (for two cycles) a predetermined angle (45 degrees in this embodiment) in the rotation angle of the rotor 30 are shown schematically. are shown.
  • the rotor 30 has a sensor adjacent portion 300 axially adjacent to the sensor rotor 81 from the side opposite to the sensing portion 82 (the X2 side in this embodiment).
  • the sensor adjacent portion 300 may be realized by any one or more components of the rotor 30 (components that rotate together with the rotor shaft 34), for example, in the example shown in FIG. It may be the X1 side end of the rotor core 32, the end plate 35A, the washer 39, or the like.
  • the washer 39 is provided between the flange portion 346 (a portion of the rotor shaft 34 on the X1 side) and the rotor core 32 in the axial direction. 32) may have the function of reducing the stress that may occur in the rotor core 32 due to the axial force applied to the rotor core 32).
  • the sensor adjoining portion 300 is arranged on the opposite side of the sensor rotor 81 from the sensing portion 82 (the X2 side in this embodiment), but is arranged near the sensor rotor 81 and has a larger diameter than the sensor rotor 81. Since it extends in the outward direction, it may affect the magnetic flux B1 passing through the sensor coil 821 (see magnetic flux B1-1 in FIG. 10). That is, there is a possibility that an eddy current is generated in the sensor adjacent portion 300 due to the magnetic flux B1 penetrating the sensor coil 821 . Such eddy currents, like the eddy currents in the sensor rotor 81, generate a magnetic flux B3 (not shown) in a direction that reduces the magnetic flux B1.
  • the sensor adjacent portion 300 is such that the magnitude of the eddy current generated by the magnetic flux B1 in the sensor adjacent portion 300 changes every time the rotation angle of the rotor 30 changes by a predetermined angle (45 degrees in this embodiment). is configured to periodically change to
  • the sensor adjacent portion 300 includes a first portion 301 having a constant outer diameter and a second portion 302 having a significantly larger outer diameter than the first portion 301. It has periodically along the circumferential direction. That is, the sensor adjacent portion 300 has the same phase and period as the sensor rotor 81 and has an outer diameter that changes periodically.
  • the sensor rotor 81 has a small diameter portion 810 at a circumferential position corresponding to the first portion 301 , and a large diameter portion 812 at a circumferential position corresponding to the second portion 302 . have.
  • the outer diameter of the large diameter portion 812 is significantly smaller than the outer diameter of the second portion 302 (see FIG. 9).
  • the outer diameter of the sensor adjacent portion 300 at the circumferential position facing the sensing portion 82 in the axial direction changes the rotation angle of the rotor 30 by a predetermined angle (45 degrees in this embodiment). It changes periodically each time.
  • the outer diameter of one of the two parts is significantly larger or smaller than that of the other. means that when one part faces the sensor coil 821 in the axial direction and when the other part faces the sensor coil 821 It refers to a mode that produces a significant difference in sensor output (for example, a difference that exceeds the minimum resolution of the sensor output) between when it is axially opposed to .
  • the magnitude of the eddy current in the sensor adjacent portion 300 increases as the surface area of the portion of the sensor adjacent portion 300 that directly faces the sensor coil 821 in the axial direction increases, as in the case of the sensor rotor 81 described above. .
  • the expression that the sensor adjacent portion 300 directly faces the sensor coil 821 in the axial direction indicates a positional relationship in which the magnetic flux B1 from the sensor coil 821 can reach without being blocked by the sensor rotor 81 .
  • the sensor adjacent portion 300 has an outer diameter that changes periodically. It changes when the rotation angle changes. More specifically, the surface area of the portion of the sensor adjacent portion 300 that axially faces the sensor coil 821 is changed by one cycle of a sine wave, rectangular wave, triangular wave, Or it changes in a change mode corresponding to the class.
  • the eddy current generated in the sensor-adjacent portion 300 due to the magnetic flux B1 draws one cycle of a sine wave, a square wave, or a triangular wave every time the rotation angle of the rotor 30 changes by 45 degrees. cyclically change in mode. Therefore, the magnetic flux B3 generated due to the eddy currents generated in the sensor adjacent portion 300 also has one cycle of a sine wave, rectangular wave, triangular wave, or the like every time the rotation angle of the rotor 30 changes by 45 degrees. changes periodically in the manner of drawing
  • the sensor rotor 81 has a portion ( It has a small diameter portion 810 and a large diameter portion 812).
  • the time-series waveform of the sensor output (electrical signal) generated by the sensing section 82 is different from the basic waveform caused by the small-diameter portion 810 and the large-diameter portion 812 of the sensor rotor 81.
  • the waveform has a substantially constant offset due to the portion 300 (the portion extending radially outward from the sensor rotor 81 when viewed in the axial direction).
  • the portion 300 the portion extending radially outward from the sensor rotor 81 when viewed in the axial direction.
  • the time-series waveform of the sensor output (electrical signal) generated by the sensing unit 82 is different from the ideal waveform 500 shown in FIG.
  • the waveform 501 is offset by a constant offset amount (see ⁇ 1 in FIG. 11) corresponding to the magnetic flux B3.
  • the magnetic flux B3 changes periodically each time the rotation angle of the rotor 30 changes by a predetermined angle (45 degrees in this embodiment). Every time the angle changes by 45 degrees, it changes periodically (in FIG. 11, it changes periodically in a manner that draws a sine wave). Therefore, the rotation angle of the rotor 30 can be accurately detected based on such sensor output (electrical signal).
  • the second portion 302 is a radial protrusion with respect to the first portion 301, and the first portion 301 is a radial recess with respect to the second portion 302.
  • one of the first part 301 and the second part 302 is an example of the "base part” in the claims, and the other is an example of the "specific part” in the claims. be.
  • the second portion 302 is a radial projection with respect to the first portion 301, and the first portion 301 is a radial recess with respect to the second portion 302. , alternatively or additionally, may be axial unevenness.
  • the first portion 301 is a flat portion that does not have unevenness in the axial direction as a base
  • the second portion 302 is a portion that is uneven in the axial direction with respect to the flat portion. be. This also applies to the second and third embodiments, which will be described later.
  • the protrusions and recesses related to the sensor adjacent portion 300 include oil grooves (including forms such as oil holes and oil passages) formed in the end plate 35A. ) or a balance adjustment hole (a hole for adjusting the imbalance of the rotor 30).
  • the sensor adjacent portion 300 may include the end portion of the rotor core 32 on the X1 side.
  • the protrusions and recesses may be realized by an oil groove, a flux barrier, a crimped portion, or the like that may be formed at the X1-side end of the rotor core 32 .
  • the crimping portion may be a crimping portion for fixing the rotor shaft 34 to the rotor shaft 34 .
  • the protrusions and recesses may be realized by oil grooves, welded portions, or the like that may be formed in the rotor shaft 34 .
  • FIG. 12A is an axial plan view schematically showing a sensor adjacent portion 300 ′ and a sensor rotor 81 according to a comparative example, showing only the upper half of the rotating shaft 12 as in FIG. 9 .
  • FIG. 12B is a waveform of the sensor output (electrical signal) generated by the sensing unit 82 in the comparative example, showing the waveform of the sensor output influenced by the sensor adjacent portion 300' according to the comparative example.
  • the horizontal axis represents the rotation angle of the rotor 30, and the vertical axis represents the sensor output magnitude.
  • the sensor adjacent portion 300' includes a first portion 301' having a constant outer diameter and a second portion 302' having a significantly larger outer diameter than the first portion 301'. and irregularly along the circumferential direction.
  • the second portion 302'-1 has a wider circumferential extension range than the second portion 302'-2 and continuously extends over an angle of 45 degrees or more.
  • the time-series waveform of the sensor output (electrical signal) generated by the sensing section 82 becomes irregular.
  • the sensor output does not have the regularity of drawing a sine wave of one cycle each time the rotation angle of the rotor 30 changes by 45 degrees.
  • the center value of the sensor output is the ideal median value indicated by the dotted line 1300 in FIG. 12B (for example, the ideal waveform 500 shown in FIG.
  • the central value of the sensor output is offset upward (see arrow R1301) with respect to the central value of the amplitude), while the central value of the sensor output is lower than the ideal central value in the angle range A2 for one subsequent cycle. (see arrow R1302), the amount of offset is not constant. In such a case, the rotation angle of the rotor 30 cannot be accurately detected based on such sensor output (electrical signal). For example, it is difficult to correct the offset of the sensor output, and the reliability of the sensor information from the rotation sensor 80 may decrease.
  • the magnitude of the eddy current generated by the magnetic flux B1 in the sensor adjacent portion 300 is such that the rotation angle of the rotor 30 is a predetermined angle (45 degrees in this embodiment). ) is configured to change periodically each time it changes, but is not limited to this.
  • the sensor adjacent portion 300 is configured so that the magnitude of the eddy current generated by the magnetic flux B1 in the sensor adjacent portion 300 changes every time the rotation angle of the rotor 30 changes by an integral multiple of a predetermined angle (for example, 90 degrees). may be configured to change periodically to .
  • the offset amount see ⁇ 1 in FIG.
  • FIG. 13 is an explanatory diagram of further effects of this embodiment, and is a plan view showing the same portion as in FIG. FIG. 13 shows a projection area R130 of the sensor coil 821 of the sensing unit 82 and a trajectory area R131 (a trajectory area viewed in the axial direction) when the projection area R13 is rotated 360 degrees around the rotation axis 12.
  • the portion of the sensor adjacent portion 300 that overlaps the trajectory region R131 when viewed in the axial direction substantially affects the sensor information from the rotation sensor 80 . Therefore, according to the present embodiment, it is possible to increase the degree of design freedom in the area of the sensor adjacent portion 300 other than the portion overlapping the trajectory area R131 when viewed in the axial direction.
  • FIG. 14 is an axial plan view schematically showing the sensor adjacent portion 300 and the sensor rotor 81A in the motor 1A according to the second embodiment. be.
  • a motor 1A according to the second embodiment differs from the motor 1 according to the first embodiment described above in that the sensor rotor 81 is replaced with a sensor rotor 81A.
  • the magnitude of the eddy current generated in the sensor adjacent portion 300 due to the magnetic flux B1 from the sensing portion 82 is defined as the magnitude of the eddy current generated in the sensor rotor 81 due to the magnetic flux B1 from the sensing portion 82.
  • it is periodically changed each time the rotation angle of the rotor 30 changes by a predetermined angle.
  • the magnitude of the eddy current that may occur in the sensor adjacent portion 300 due to the magnetic flux B1 from the sensing portion 82 is controlled by the structure of the sensor rotor 81A regardless of the rotation angle of the rotor 30.
  • a similar effect can be obtained by maintaining a substantially constant value.
  • the sensor rotor 81A is arranged so as to overlap the first portion 301 and the second portion 302 of the sensor adjacent portion 300 when viewed in the axial direction, as shown in FIG.
  • the sensor rotor 81A has a small diameter portion 810A at a circumferential position corresponding to the first portion 301, and a large diameter portion 812A at a circumferential position corresponding to the second portion 302.
  • the outer diameter of the portion 810A may be equal to or greater than the outer diameter of the first portion 301, and the outer diameter of the large diameter portion 812A may be equal to or greater than the outer diameter of the second portion 302.
  • a portion 304 radially outward of the second portion 302 in the sensor adjacent portion 300 is a portion that does not have unevenness or holes, and an eddy current that may be caused by the magnetic flux B1 from the sensing portion 82 is substantially reduced. This is a constant part.
  • the magnetic flux B1 from the sensing portion 82 causes the sensor adjacent portion 300 to
  • the magnitude of the eddy current generated in the sensor-adjacent portion 300 has a substantially constant value due to the portion 304 (the portion having no irregularities, holes, etc.) radially outside the second portion 302 .
  • the magnitude of the eddy current that may occur in the sensor adjacent portion 300 due to the magnetic flux B1 from the sensing portion 82 can be maintained at a substantially constant value regardless of the rotation angle of the rotor 30.
  • the substantially constant value is a concept that includes a mode in which the amount of variation is within about 10%.
  • the sensor rotor 81A has a portion ( It has a small diameter portion 810A and a large diameter portion 812B).
  • the time-series waveform of the sensor output (electrical signal) generated by the sensing section 82 is the second The waveform has a substantially constant amount of offset due to a portion 304 (a portion having no irregularities or holes) located radially outside the portion 302 .
  • the time-series waveform of the sensor output (electrical signal) generated by the sensing section 82 is similar to the waveform 501 shown in FIG. Therefore, the rotation angle of the rotor 30 can be accurately detected based on such sensor output (electrical signal).
  • the sensor rotor 81A covers the second portion 302, which has a larger outer diameter than the first portion 301, in the axial direction. It extends radially outward beyond the sensor rotor 81 that is not axially covered. That is, the small-diameter portion 810A and the large-diameter portion 812A of the sensor rotor 81A according to this embodiment have larger outer diameters than the small-diameter portion 810 and the large-diameter portion 812 of the sensor rotor 81 according to the first embodiment, respectively.
  • the sensing unit 82 may be arranged radially outside the mounting position (see FIGS. 1A and 1B) of the first embodiment described above.
  • the sensor rotor 81A according to this embodiment covers the second portion 302 in the axial direction, the sensor output of the sensing portion 82 is not substantially affected by the second portion 302. Therefore, the sensor rotor 81A according to this embodiment may be applied to a sensor adjacent portion that does not periodically have the second portion 302 instead of the sensor adjacent portion 300.
  • the sensor adjacent portion may have seven second portions 302 instead of eight, in which case each of the seven second portions 302 corresponds to the large diameter portion 812A of the sensor rotor 81A. may be arranged at one radial position where Also, at least one of the one or more second parts 302 may have a shape different from the others, increasing the degree of freedom in shape. For example, each of the one or more second portions 302 may have a different axial relief configuration than the others.
  • FIG. 15 is an axial plan view schematically showing the sensor adjacent portion 300 and the sensor rotor 81B in the motor 1B according to the third embodiment, showing only the upper half of the rotating shaft 12 as in FIG. be.
  • FIG. 16 is a perspective view of the sensor rotor 81B according to this embodiment
  • FIG. 17 shows the waveform of the sensor output (electrical signal) generated by the sensing section 82 in this embodiment, which is affected by the sensor adjacent section 300.
  • FIG. 10 is a diagram showing waveforms of sensor outputs subjected to .
  • the horizontal axis represents the rotation angle of the rotor 30 and the vertical axis represents the magnitude of the sensor output
  • the time-series waveform of the sensor output (electrical signal) generated by the sensing unit 82 is schematically shown.
  • the motor 1B according to the third embodiment differs from the motor 1 according to the first embodiment described above in that the sensor rotor 81 is replaced with a sensor rotor 81B.
  • the magnitude of the eddy current generated in the sensor adjacent portion 300 due to the magnetic flux B1 from the sensing portion 82 is defined as the magnitude of the eddy current generated in the sensor rotor 81 due to the magnetic flux B1 from the sensing portion 82.
  • it is periodically changed each time the rotation angle of the rotor 30 changes by a predetermined angle.
  • the magnitude of the eddy current that can be generated in the sensor adjacent portion 300 due to the magnetic flux B1 from the sensing portion 82 is controlled by the structure of the sensor rotor 81B regardless of the rotation angle of the rotor 30. A similar effect can be obtained by maintaining a substantially constant value.
  • the sensor rotor 81B has a cover portion 813B on the radially outer side of each of the small diameter portion 810 and the large diameter portion 812, as shown in FIGS.
  • the cover portion 813B may be formed thinner than each of the small diameter portion 810 and the large diameter portion 812 .
  • the cover portion 813B is made of the same material as the small-diameter portion 810 and the large-diameter portion 812, but in a modification, it may be made of a material different from that of the small-diameter portion 810 and the large-diameter portion 812 (for example, a high magnetic permeability material). good.
  • the cover portion 813B is continuous from the radially outer edge portions of the small diameter portion 810 and the large diameter portion 812, and extends radially across the entire sensor rotor 81B so as to have a constant outer diameter.
  • the outer diameter of the sensor rotor 81B is determined by the radial outer edge of the cover portion 813B.
  • the cover portion 813B extends radially so as to overlap the second portion 302 of the sensor adjacent portion 300 (not visible due to the cover portion 813B in FIG. 15) when viewed in the axial direction.
  • the outer diameter of the sensor rotor 81B may be greater than or equal to the outer diameter of the second portion 302 (see FIG. 8) of the sensor adjacent portion 300. As shown in FIG.
  • the magnetic flux B1 from the sensing portion 82 causes the sensor adjacent portion 300 to
  • the magnitude of the eddy current that can occur in the sensor adjoining portion 300 has a substantially constant value due to the portion 304 (the portion having no irregularities or holes) radially outside the cover portion 813B.
  • the magnitude of the eddy current that may occur in the sensor adjacent portion 300 due to the magnetic flux B1 from the sensing portion 82 can be maintained at a substantially constant value regardless of the rotation angle of the rotor 30.
  • the sensor rotor 81B has a portion ( It has a small diameter portion 810 and a large diameter portion 812).
  • the cover portion 813B of the sensor rotor 81B directly faces the sensor coil 821 in the axial direction.
  • the magnitude of the current becomes a substantially constant value. This is because the outer diameter of the cover portion 813B is constant as described above.
  • the time-series waveform of the sensor output (electrical signal) generated by the sensing unit 82 is different from the waveform caused by the small diameter portion 810 and the large diameter portion 812 in the cover portion 813B and the portion 304.
  • the resulting waveform has a substantially constant amount of offset. Specifically, in this embodiment, as shown in FIG.
  • the sensor rotor 81B covers the second portion 302 in the axial direction with the cover portion 813B, the sensor output of the sensing portion 82 is not substantially affected by the second portion 302. . Therefore, instead of the sensor-adjacent portion 300, it may be applied to the sensor-adjacent portion that does not have the second portion 302 periodically. In particular, in the case of this embodiment, since the cover portion 813B is formed over the entire circumference, the second portion 302 may be formed at any position in the circumferential direction. Therefore, according to this embodiment, the degree of freedom in designing the sensor adjoining portion 300 can be effectively increased.
  • the senor rotor 81 has an outer diameter that changes periodically along the cycle. Instead of or in addition to the diameter, it may have a periodically varying thickness (axial thickness). In this case, the thickness of the sensor rotor 81 at the circumferential position facing the sensing portion 82 in the axial direction changes periodically every time the rotation angle of the rotor 30 changes by a predetermined angle.
  • Reference Signs List 1 motor (rotary electric machine), 10 motor housing (non-rotating portion), 30 rotor, 300 sensor adjacent portion, 301 first portion (base portion or specific portion, concave portion), 302 second portion (base portion or specific portion, convex portion), 81 sensor rotor, 810, 810A small diameter portion (part), 812, 812A large diameter portion ( part), 82 ... sensing part, 821 ... sensor coil (coil)

Abstract

Disclosed is a rotary electric machine comprising a rotor, a non-rotating section rotatably supporting the rotor, a sensor rotor which rotates together with the rotor, and a sensing unit having a coil opposite the sensor rotor in the axial direction. The outer circumferential section of the sensor rotor has a radial protruding section and a radial recessed section at each of predetermined angles, the rotor has a sensor-adjacent section adjacent in the axial direction to the sensor rotor from the opposite side from the sensing unit with respect to the sensor rotor, the sensor-adjacent section has base parts and specific parts having an uneven shape in the axial direction with respect to the base parts, the sensor rotor has magnetic shielding properties in which magnetic flux capable of passing through to the side opposite the sensor-adjacent section in the axial direction is blocked from the side opposite the sensing unit in the axial direction, and the base parts or the specific parts of the sensor-adjacent section are arranged in a periodic manner in the circumferential direction so as to overlap with the recessed sections at each of the predetermined angles or with the recessed sections at each of integral multiples of the predetermined angles in the circumferential direction among the recessed sections at each of the predetermined angles in the sensor rotor when viewed in the axial direction from the coil of the sensing unit.

Description

回転電機Rotating electric machine
 本開示は、回転電機に関する。 The present disclosure relates to rotating electric machines.
 センシング部のコイルで発生させた磁界によりセンサロータにおいて発生する渦電流を利用して、ロータの回転に係るパラメータ(例えば回転角度)の値に応じた電気信号をセンシング部にて生成する回転検出器が知られている。 A rotation detector that uses eddy currents generated in the sensor rotor by the magnetic field generated by the coil of the sensing unit to generate an electric signal in the sensing unit that corresponds to the value of a parameter (e.g., rotation angle) related to the rotation of the rotor. It has been known.
特開2012-231648号公報Japanese Unexamined Patent Application Publication No. 2012-231648
 回転電機においては、ケース内の限られた空間に多様な構成要素が配置されているので、センシング部の周辺にセンサロータ以外の金属部材が位置する場合も多い。従って、渦電流を利用するセンサの検出結果は、このような周辺の金属部材による影響を受けやすくなる。この点、周辺の金属部材のうちのロータは、センサロータに軸方向に隣接する部位が径方向外側に延在するため、センサの検出結果に対して影響を与えやすい。 In a rotating electric machine, various components are arranged in a limited space inside the case, so there are many cases where metal members other than the sensor rotor are located around the sensing part. Therefore, the detection result of a sensor that uses eddy currents is likely to be affected by such surrounding metal members. In this regard, the rotor, which is one of the peripheral metal members, is likely to affect the detection result of the sensor because the portion adjacent to the sensor rotor in the axial direction extends radially outward.
 そこで、1つの側面では、本開示は、回転電機において、渦電流を利用するセンサの検出結果に対するロータによる影響を低減することを目的とする。 Therefore, in one aspect, an object of the present disclosure is to reduce the influence of a rotor on the detection result of a sensor that uses eddy currents in a rotating electric machine.
 本開示の一局面によれば、ロータと、
 ロータを回転可能に支持する非回転部と、
 前記ロータと一体に回転するセンサロータと、
 前記センサロータに軸方向に対向するコイルを有するセンシング部と、を備え、
 前記センサロータは、外周部において所定角度ごとに径方向の凸部と径方向の凹部とを有し、
 前記ロータは、前記センサロータに対して前記センシング部とは逆側から軸方向に隣接するセンサ隣接部を有し、
 前記センサ隣接部は、ベース部位と、前記ベース部位に対して軸方向に凹凸する形態の特定部位とを含み、
 前記センサロータは、軸方向で前記センシング部に対向する側から、軸方向で前記センサ隣接部に対向する側へ透過しうる磁束を遮断する磁気シールド性を有し、
 前記センシング部の前記コイルから軸方向に視て、前記センサロータの前記所定角度ごとの前記凹部のうちの、前記所定角度ごと又は周方向の前記所定角度の整数倍の角度ごとの前記凹部に重なるように、前記センサ隣接部の前記ベース部位又は前記特定部位が周方向で周期的に配置される、回転電機が提供される。
According to one aspect of the present disclosure, a rotor;
a non-rotating portion that rotatably supports the rotor;
a sensor rotor that rotates integrally with the rotor;
a sensing unit having a coil axially facing the sensor rotor;
The sensor rotor has radial protrusions and radial recesses at predetermined angles on an outer peripheral portion,
The rotor has a sensor adjacent portion axially adjacent to the sensor rotor from a side opposite to the sensing portion,
The sensor-adjacent portion includes a base portion and a specific portion that is axially uneven with respect to the base portion,
The sensor rotor has a magnetic shielding property that blocks magnetic flux that can pass from the side facing the sensing portion in the axial direction to the side facing the sensor adjacent portion in the axial direction,
When viewed in the axial direction from the coil of the sensing unit, among the recesses of the sensor rotor at the predetermined angles, the recesses overlap the recesses at the predetermined angle or at integral multiples of the predetermined angle in the circumferential direction. Thus, a rotating electric machine is provided in which the base portion or the specific portion of the sensor adjacent portion is periodically arranged in the circumferential direction.
 本開示によれば、回転電機において、渦電流を利用するセンサの検出結果に対するロータによる影響を低減することが可能となる。 According to the present disclosure, in a rotating electric machine, it is possible to reduce the influence of the rotor on the detection results of sensors that use eddy currents.
本実施例によるモータの断面構造を概略的に示す断面図である。It is a sectional view showing roughly a section structure of a motor by a present Example. 図1AのQ1部の拡大図である。1B is an enlarged view of the Q1 portion of FIG. 1A; FIG. 本実施例による回転センサにおけるセンサロータとセンシング部を示す斜視図である。FIG. 4 is a perspective view showing a sensor rotor and a sensing section in the rotation sensor according to the embodiment; 本実施例による回転センサのセンシング部とセンサロータとの関係を示す図である。It is a figure which shows the relationship between the sensing part of a rotation sensor by a present Example, and a sensor rotor. 本実施例によるセンサロータにおけるセンシング部と軸方向に対向する部分を、軸方向に視て示す図である。FIG. 4 is a diagram showing a portion of the sensor rotor according to the present embodiment, which is axially opposed to the sensing section, viewed in the axial direction; 本実施例によるセンシング部により生成されるセンサ出力の波形を説明する概略図である。FIG. 4 is a schematic diagram illustrating waveforms of sensor outputs generated by the sensing unit according to the embodiment; 本実施例の構成の特徴を概念的に説明する説明図であり、センサロータとその周辺の一部(ロータの一部)をX1側から視た斜視図である。FIG. 2 is an explanatory diagram conceptually explaining the features of the configuration of the present embodiment, and is a perspective view of a sensor rotor and a part of its periphery (a part of the rotor) viewed from the X1 side. 図6からセンサロータを取り除いた斜視図である。FIG. 7 is a perspective view of FIG. 6 with the sensor rotor removed; 図6からセンサロータを取り除いた平面図である。FIG. 7 is a plan view of FIG. 6 with the sensor rotor removed; 図6を軸方向に視た平面図であり、回転軸よりも上側半分だけを示す図である。FIG. 7 is a plan view of FIG. 6 viewed in the axial direction, showing only a half above the rotation axis; ロータのセンサ隣接部によるセンサ出力への影響の説明図である。FIG. 10 is an explanatory diagram of the influence of the sensor adjacent portion of the rotor on the sensor output; センシング部により生成されるセンサ出力の波形であって、センサ隣接部により影響を受けたセンサ出力の波形を示す図である。FIG. 4 is a waveform of a sensor output generated by a sensing section, showing a waveform of a sensor output affected by a sensor adjacent section; 比較例によるセンサ隣接部とセンサロータとを概略的に示す軸方向の平面図である。FIG. 6 is an axial plan view schematically showing a sensor adjacent portion and a sensor rotor according to a comparative example; センシング部により生成されるセンサ出力の波形であって、比較例によるセンサ隣接部により影響を受けたセンサ出力の波形を示す図である。FIG. 10 is a waveform of a sensor output generated by a sensing unit, showing a waveform of a sensor output affected by a sensor adjacent portion according to a comparative example; 本実施例の更なる効果の説明図である。It is explanatory drawing of the further effect of a present Example. 実施例2によるモータにおけるセンサ隣接部とセンサロータとを概略的に示す軸方向の平面図である。FIG. 11 is an axial plan view schematically showing a sensor adjacent portion and a sensor rotor in the motor according to Example 2; 実施例3によるモータにおけるセンサ隣接部とセンサロータとを概略的に示す軸方向の平面図である。FIG. 11 is an axial plan view schematically showing a sensor adjacent portion and a sensor rotor in a motor according to Example 3; 実施例3によるセンサロータの斜視図である。FIG. 11 is a perspective view of a sensor rotor according to Example 3; 実施例3におけるセンシング部により生成されるセンサ出力の波形であって、センサ隣接部により影響を受けたセンサ出力の波形を示す図である。FIG. 10 is a waveform of the sensor output generated by the sensing unit in Example 3, and shows the waveform of the sensor output affected by the sensor adjacent portion.
 以下、添付図面を参照しながら各実施例について詳細に説明する。なお、図面の寸法比率はあくまでも一例であり、これに限定されるものではなく、また、図面内の形状等は、説明の都合上、部分的に誇張している場合がある。 Each embodiment will be described in detail below with reference to the accompanying drawings. Note that the dimensional ratios in the drawings are merely examples, and the present invention is not limited to these, and shapes and the like in the drawings may be partially exaggerated for convenience of explanation.
 [実施例1]
 図1Aは、本実施例によるモータ1の断面構造を概略的に示す断面図である。図1Bは、図1AのQ1部の拡大図である。
[Example 1]
FIG. 1A is a cross-sectional view schematically showing the cross-sectional structure of the motor 1 according to this embodiment. FIG. 1B is an enlarged view of the Q1 portion of FIG. 1A.
 図1Aには、モータ1の回転軸12が図示されている。以下の説明において、軸方向とは、モータ1の回転軸(回転中心)12が延在する方向を指し、径方向とは、回転軸12を中心とした径方向を指す。従って、径方向外側とは、回転軸12から離れる側を指し、径方向内側とは、回転軸12に向かう側を指す。また、周方向とは、回転軸12まわりの回転方向に対応する。 The rotating shaft 12 of the motor 1 is illustrated in FIG. 1A. In the following description, the axial direction refers to the direction in which the rotation shaft (rotation center) 12 of the motor 1 extends, and the radial direction refers to the radial direction around the rotation shaft 12 . Therefore, the radially outer side refers to the side away from the rotating shaft 12 , and the radially inner side refers to the side toward the rotating shaft 12 . Also, the circumferential direction corresponds to the direction of rotation about the rotating shaft 12 .
 また、図1Aには、回転軸12の方向(すなわち軸方向)に平行なX方向に沿ったX1側とX2側が定義されている。以下の説明において、X1側とX2側の各用語は、相対的な位置関係を表すために用いられる場合がある。 Also, in FIG. 1A, the X1 side and the X2 side along the X direction parallel to the direction of the rotating shaft 12 (that is, the axial direction) are defined. In the following description, the terms X1 side and X2 side may be used to express relative positional relationships.
 モータ1は、例えばハイブリッド車両や電気自動車で使用される車両駆動用のモータであってよい。ただし、モータ1は、他の任意の用途に使用されるものであってもよい。 The motor 1 may be a vehicle drive motor used in, for example, a hybrid vehicle or an electric vehicle. However, the motor 1 may be used for any other purpose.
 モータ1は、インナロータタイプであり、ステータ21がロータ30の径方向外側を囲繞するように設けられる。ステータ21は、径方向外側がモータハウジング10に固定される。ステータ21は、例えば円環状の磁性体の積層鋼板からなるステータコア211を備え、ステータコア211の径方向内側には、コイル22が巻回される複数のスロット(図示せず)が形成される。 The motor 1 is of the inner rotor type, and the stator 21 is provided so as to surround the radially outer side of the rotor 30 . The radially outer side of the stator 21 is fixed to the motor housing 10 . The stator 21 includes a stator core 211 made of, for example, an annular laminated magnetic steel plate, and a plurality of slots (not shown) around which the coils 22 are wound are formed radially inside the stator core 211 .
 ロータ30は、ステータ21の径方向内側に配置される。ロータ30は、ロータコア32と、ロータシャフト34とを備える。ロータコア32は、ロータシャフト34の径方向外側の表面に固定され、ロータシャフト34と一体となって回転する。ロータコア32は、ロータシャフト34に焼き嵌め又はその類により固定されてよい。ロータシャフト34は、モータハウジング10にベアリング14a、14bを介して回転可能に支持される。なお、ロータシャフト34は、モータ1の回転軸12を画成する。 The rotor 30 is arranged radially inside the stator 21 . The rotor 30 has a rotor core 32 and a rotor shaft 34 . The rotor core 32 is fixed to the radially outer surface of the rotor shaft 34 and rotates together with the rotor shaft 34 . Rotor core 32 may be secured to rotor shaft 34 by shrink fitting or the like. The rotor shaft 34 is rotatably supported by the motor housing 10 via bearings 14a and 14b. It should be noted that the rotor shaft 34 defines the rotating shaft 12 of the motor 1 .
 ロータコア32は、例えば円環状の磁性体の積層鋼板からなる。ロータコア32の磁石孔324には、永久磁石321が埋め込まれる。あるいは、永久磁石321のような永久磁石は、ロータコア32の外周面に埋め込まれてもよい。なお、永久磁石321の配列等は任意である。 The rotor core 32 is made of, for example, an annular magnetic layered steel plate. Permanent magnets 321 are embedded in the magnet holes 324 of the rotor core 32 . Alternatively, a permanent magnet such as permanent magnet 321 may be embedded in the outer peripheral surface of rotor core 32 . Note that the arrangement of the permanent magnets 321 and the like are arbitrary.
 ロータコア32の軸方向の両側には、エンドプレート35A、35Bが取り付けられる。エンドプレート35A、35Bは、ロータコア32の軸方向の端面を覆う。エンドプレート35A、35Bは、ロータコア32からの永久磁石321の離脱を防止する離脱防止機能の他、ロータ30のアンバランスの調整機能(切削等されることでアンバランスをなくす機能)を有してよい。 End plates 35A and 35B are attached to both sides of the rotor core 32 in the axial direction. End plates 35A and 35B cover axial end faces of rotor core 32 . The end plates 35A and 35B have a detachment prevention function to prevent the permanent magnets 321 from detaching from the rotor core 32, as well as a function to adjust the imbalance of the rotor 30 (a function to eliminate the imbalance by cutting or the like). good.
 エンドプレート35A、35Bは、非磁性材料により形成される。エンドプレート35A、35Bは、好ましくは、アルミにより形成される。この場合、切削が容易となり、エンドプレート35A、35Bによるロータ30のアンバランスの調整機能を効果的に実現できる。ただし、変形例では、エンドプレート35A、35Bは、ステンレス鋼等により形成されてもよい。 The end plates 35A, 35B are made of a non-magnetic material. The end plates 35A, 35B are preferably made of aluminum. In this case, cutting becomes easier, and the function of adjusting the imbalance of the rotor 30 by the end plates 35A, 35B can be effectively realized. However, in a modified example, the end plates 35A and 35B may be made of stainless steel or the like.
 ロータシャフト34は、図1Aに示すように、中空部34Aを有する。中空部34Aは、ロータシャフト34の軸方向の全長にわたり延在する。中空部34Aは、軸方向の両側で軸方向に開口してよい。中空部34Aは、冷却用の油が通る油路801として機能してもよい。 The rotor shaft 34 has a hollow portion 34A as shown in FIG. 1A. The hollow portion 34A extends over the entire length of the rotor shaft 34 in the axial direction. The hollow portion 34A may be axially open on both sides in the axial direction. The hollow portion 34A may function as an oil passage 801 through which cooling oil passes.
 なお、本実施例において、ロータコア32の磁極構成は、任意である。例えば、磁極数が8極又は8極以外であってもよいし、永久磁石321に代えて又は加えて、各磁極を形成する対の永久磁石が、径方向外側に向かうほど周方向の距離が広がる態様で配置されてもよい。また、ロータコア32は、フラックスバリアや油路等が形成されてもよい。 In this embodiment, the magnetic pole configuration of the rotor core 32 is arbitrary. For example, the number of magnetic poles may be 8 or other than 8, and instead of or in addition to the permanent magnet 321, the pair of permanent magnets forming each magnetic pole may be arranged so that the distance in the circumferential direction increases toward the outer side in the radial direction. It may be arranged in a spreading manner. Also, the rotor core 32 may be formed with a flux barrier, an oil passage, and the like.
 また、本実施例では、ロータシャフト34は、中空部34Aを有するが、中実であってよい。また、ロータシャフト34は、2パーツ以上が結合されることで形成されてもよい。また、モータ1は、油に代えて又は加えて、冷却水(例えばライフロングクーラント)により冷却されてもよい。また、本実施例では、モータ1は、インナロータタイプであるが、アウタロータタイプであってもよい。 Also, although the rotor shaft 34 has a hollow portion 34A in this embodiment, it may be solid. Alternatively, the rotor shaft 34 may be formed by joining two or more parts. Also, the motor 1 may be cooled by cooling water (for example, lifelong coolant) instead of or in addition to oil. Further, although the motor 1 is of the inner rotor type in this embodiment, it may be of the outer rotor type.
 本実施例では、モータ1は、ロータ30の回転に係るパラメータの値を検出する回転センサ80を有する。ロータ30の回転に係るパラメータは、任意であり、例えば、ロータ30の回転の有無や、ロータ30の所定基準角度からの回転角度、回転速度、磁極位置等であってよい。以下では、一例として、回転センサ80は、ロータ30の回転角度を検出するものとする。 In this embodiment, the motor 1 has a rotation sensor 80 that detects parameter values relating to the rotation of the rotor 30 . The parameters related to the rotation of the rotor 30 are arbitrary, and may be, for example, the presence or absence of rotation of the rotor 30, the rotation angle of the rotor 30 from a predetermined reference angle, the rotation speed, the magnetic pole position, and the like. As an example, the rotation sensor 80 detects the rotation angle of the rotor 30 below.
 回転センサ80は、ロータシャフト34の一端側に設けられる。本実施例では、回転センサ80は、図1Aに示すように、ロータシャフト34のX1側端部に設けられるが、X2側端部に設けられてもよい。 The rotation sensor 80 is provided on one end side of the rotor shaft 34 . In this embodiment, the rotation sensor 80 is provided at the X1 side end of the rotor shaft 34 as shown in FIG. 1A, but may be provided at the X2 side end.
 図2は、回転センサ80におけるセンサロータ81とセンシング部82をX1側から視て示す斜視図である。なお、図2(後出の図3も同様)には、センサ支持部84の図示が省略されている。 FIG. 2 is a perspective view showing the sensor rotor 81 and the sensing section 82 of the rotation sensor 80 as viewed from the X1 side. It should be noted that illustration of the sensor support portion 84 is omitted in FIG. 2 (as well as FIG. 3 described later).
 回転センサ80は、センサロータ81と、センシング部82と、センサ支持部84とを備える。 The rotation sensor 80 includes a sensor rotor 81 , a sensing section 82 and a sensor support section 84 .
 センサロータ81は、例えば導体により形成され、ロータ30と一体に回転する。センサロータ81は、回転軸12を中心とした円形状の中心孔811を有する円環状の形態である。センサロータ81は、その中心孔811にロータシャフト34が通されることで、ロータシャフト34とともに回転するように取り付けられてよい。例えば、センサロータ81は、ロータシャフト34に径方向の凹部又は凸部が形成され、センサロータ81の中心孔811の内周縁に、ロータシャフト34の径方向の凹部又は凸部に嵌合する径方向の凸部又は凹部が形成されてもよい。 The sensor rotor 81 is made of a conductor, for example, and rotates integrally with the rotor 30 . The sensor rotor 81 has an annular shape with a circular central hole 811 centered on the rotating shaft 12 . The sensor rotor 81 may be attached so as to rotate together with the rotor shaft 34 by passing the rotor shaft 34 through the center hole 811 thereof. For example, the sensor rotor 81 has a radial concave portion or convex portion formed in the rotor shaft 34 , and a diameter that fits into the radial concave portion or convex portion of the rotor shaft 34 on the inner peripheral edge of the center hole 811 of the sensor rotor 81 . Directional protrusions or recesses may be formed.
 センサロータ81は、周期的に変化する外径を有する。これにより、センサロータ81は、センシング部82と軸方向に対向する周方向位置での外径が、ロータ30の回転角度が所定角度変化するごとに周期的に変化する。所定角度は、設計時に、磁極数等に応じて適宜決定されてよい。本実施例では、センサロータ81は、1周あたり、8つの径方向の凸部と凹部とを交互に有する。この場合、センサロータ81は、センシング部82と軸方向に対向する周方向位置での外径が、ロータ30の回転角度が45度変化するごとに周期的に変化する。 The sensor rotor 81 has an outer diameter that changes periodically. As a result, the outer diameter of the sensor rotor 81 at the circumferential position facing the sensing portion 82 in the axial direction changes periodically each time the rotation angle of the rotor 30 changes by a predetermined angle. The predetermined angle may be appropriately determined according to the number of magnetic poles and the like at the time of design. In this embodiment, the sensor rotor 81 has eight radial protrusions and recesses alternately per turn. In this case, the outer diameter of the sensor rotor 81 at the circumferential position facing the sensing portion 82 in the axial direction changes periodically every time the rotation angle of the rotor 30 changes by 45 degrees.
 センサロータ81は、好ましくは、軸方向でセンシング部82に対向する側(X1側)から、軸方向でロータコア32(又は後述するセンサ隣接部300)に対向する側(X2側)へ透過しうる磁束を遮断する磁気シールド性を有する。例えば、センサロータ81は、かかる磁気シールド性を、比較的大きい厚みにより実現してもよいし、X2側の表面にシールド材料の層を有することにより実現してもよい。 The sensor rotor 81 is preferably permeable from the side (X1 side) facing the sensing section 82 in the axial direction to the side (X2 side) facing the rotor core 32 (or the sensor adjacent section 300 described later) in the axial direction. It has a magnetic shielding property that blocks magnetic flux. For example, the sensor rotor 81 may achieve such a magnetic shielding property by having a relatively large thickness, or by having a layer of shielding material on the surface on the X2 side.
 なお、変形例では、センサロータ81は、周期的に変化する外径に代えて又は加えて、周期的に変化する厚み(軸方向の厚み)を有してもよい。この場合、センサロータ81は、センシング部82と軸方向に対向する周方向位置での厚みが、ロータ30の回転角度が所定角度変化するごとに周期的に変化する。 Note that, in a modified example, the sensor rotor 81 may have a periodically changing thickness (axial thickness) instead of or in addition to the periodically changing outer diameter. In this case, the thickness of the sensor rotor 81 at the circumferential position facing the sensing portion 82 in the axial direction changes periodically every time the rotation angle of the rotor 30 changes by a predetermined angle.
 センシング部82は、基板820の形態であり、センサロータ81に軸方向に対向しつつ近接するように配置される。基板820は、図2に示すように、軸方向に視て円弧状であってよく、全周のうちの一部の周区間のみに延在してよい。また、基板820は円弧状だけでなく、全周に延在してもよい。センシング部82は、センサ支持部84(図1B参照)によりモータ1の非回転部(本実施例ではモータハウジング10)に支持される。 The sensing part 82 is in the form of a substrate 820 and is arranged so as to face the sensor rotor 81 in the axial direction and be close to it. As shown in FIG. 2, the substrate 820 may have an arcuate shape when viewed in the axial direction, and may extend only along a partial circumferential section of the entire circumference. Moreover, the substrate 820 may extend not only in an arc shape but also in the entire circumference. The sensing portion 82 is supported by a non-rotating portion (motor housing 10 in this embodiment) of the motor 1 by a sensor support portion 84 (see FIG. 1B).
 センシング部82は、渦電流を利用して、ロータ30の回転角度を検出する。図3から図5は、センシング部82による検出原理の説明図である。図3は、回転センサ80のセンシング部82とセンサロータ81との関係を示す図であり、図4は、センサロータ81におけるセンシング部82と軸方向に対向する部分を、軸方向に視て示す図である。図5は、センシング部82により生成されるセンサ出力(電気信号)の波形を説明する概略図である。図5では、横軸にロータ30の回転角度を取り、縦軸にセンサ出力の大きさを取り、センシング部82により生成されるセンサ出力(電気信号)の時系列波形が模式的に示されている。なお、図5では、ロータ30の回転角度における所定角度(本実施例では45度)分の時系列波形が模式的に示されている。 The sensing section 82 detects the rotation angle of the rotor 30 using eddy currents. 3 to 5 are explanatory diagrams of the principle of detection by the sensing section 82. FIG. 3 shows the relationship between the sensing portion 82 of the rotation sensor 80 and the sensor rotor 81, and FIG. 4 shows a portion of the sensor rotor 81 axially facing the sensing portion 82 as viewed in the axial direction. It is a diagram. FIG. 5 is a schematic diagram illustrating the waveform of the sensor output (electrical signal) generated by the sensing section 82. As shown in FIG. In FIG. 5, the horizontal axis represents the rotation angle of the rotor 30 and the vertical axis represents the magnitude of the sensor output, and the time-series waveform of the sensor output (electrical signal) generated by the sensing unit 82 is schematically shown. there is Note that FIG. 5 schematically shows time-series waveforms for a predetermined angle (45 degrees in this embodiment) in the rotation angle of the rotor 30 .
 センシング部82は、図2に示すように、センサコイル821及び処理回路部822が実装された基板820の形態であってよい。なお、処理回路部822の機能の一部又は全部は、外部の制御装置(図示せず)により実現されてもよい。 The sensing section 82 may be in the form of a substrate 820 on which a sensor coil 821 and a processing circuit section 822 are mounted, as shown in FIG. Some or all of the functions of the processing circuit section 822 may be realized by an external control device (not shown).
 センサコイル821は、例えば図3に示すように、基板820の両側の表面に形成されてもよい。なお、変形例では、センサコイル821は、基板820の両側の表面に代えて又は加えて、基板820の内層に形成されてもよい。センサコイル821は、例えばプリントされた導体により形成されてよい。センサコイル821は、X方向に平行な中心軸Oまわりに巻回されてなる。 The sensor coils 821 may be formed on both surfaces of the substrate 820 as shown in FIG. 3, for example. Note that, in a modification, the sensor coils 821 may be formed in the inner layer of the substrate 820 instead of or in addition to the surfaces on both sides of the substrate 820 . The sensor coil 821 may be formed by printed conductors, for example. The sensor coil 821 is wound around a central axis O parallel to the X direction.
 処理回路部822は、センサコイル821への通電によりセンサロータ81に渦電流を発生させる。具体的には、図3に模式的に示すように、センサコイル821が通電されると、センサコイル821を貫く磁束B1が発生する。センサコイル821を貫く磁束B1は、センサコイル821に軸方向に対向するセンサロータ81の表面に接触すると、センサロータ81の表面に渦電流が発生する。図4には、渦電流の発生態様が矢印Ieで模式的に示されている。なお、図4においては特定の向きの渦電流が模式的に示されているが、渦電流の向きは、センサコイル821を流れる電流の向きに応じて決まる。渦電流は、磁束B1を減らす磁束を発生させる向きに生じる。従って、渦電流に起因して、磁束B1を減らす磁束B2(図示せず)が発生する。磁束B2の大きさは、渦電流の大きさに比例する。渦電流の大きさは、センサコイル821に軸方向に対向するセンサロータ81の部位の表面積が増加するほど大きくなる。本実施例では、上述したようにセンサロータ81は、周期的に変化する外径を有するので、センサコイル821に軸方向に対向するセンサロータ81の部位の表面積は、ロータ30の回転角度が変化すると変化する。より具体的には、センサコイル821に軸方向に対向するセンサロータ81の部位の表面積は、ロータ30の回転角度が変化すると、正弦波状に変化する。このため、本実施例では、センシング部82により生成されるセンサ出力(電気信号)の時系列波形は、図5に示すように、ロータ30の回転角度が45度変化するごとに、1周期の正弦波を描く。従って、このようなセンサ出力(電気信号)に基づいて、ロータ30の回転角度を検出できる。 The processing circuit unit 822 causes the sensor rotor 81 to generate an eddy current by energizing the sensor coil 821 . Specifically, as schematically shown in FIG. 3, when the sensor coil 821 is energized, a magnetic flux B1 passing through the sensor coil 821 is generated. When the magnetic flux B1 penetrating the sensor coil 821 contacts the surface of the sensor rotor 81 facing the sensor coil 821 in the axial direction, an eddy current is generated on the surface of the sensor rotor 81 . In FIG. 4, the manner in which eddy currents are generated is schematically indicated by an arrow Ie. Although FIG. 4 schematically shows eddy currents in specific directions, the direction of the eddy currents is determined according to the direction of the current flowing through the sensor coil 821 . The eddy currents are oriented to generate a magnetic flux that reduces the magnetic flux B1. Therefore, due to the eddy currents, a magnetic flux B2 (not shown) is generated which reduces the magnetic flux B1. The magnitude of the magnetic flux B2 is proportional to the magnitude of the eddy current. The magnitude of the eddy current increases as the surface area of the portion of the sensor rotor 81 facing the sensor coil 821 in the axial direction increases. In this embodiment, as described above, the sensor rotor 81 has an outer diameter that changes periodically. Then it changes. More specifically, the surface area of the portion of the sensor rotor 81 axially facing the sensor coil 821 changes sinusoidally as the rotation angle of the rotor 30 changes. Therefore, in the present embodiment, the time-series waveform of the sensor output (electrical signal) generated by the sensing unit 82 has one cycle of Draw a sine wave. Therefore, the rotation angle of the rotor 30 can be detected based on such sensor output (electrical signal).
 センサ支持部84は、モータ1の非回転部(本実施例ではモータハウジング10)に固定され(図1A及び図1Bに模式的に図示)、センシング部82を支持する。センサ支持部84は、接着剤や固定具、嵌合のような任意の手段で、センシング部82を支持してもよい。本実施例では、一例として、センサ支持部84は、例えば、封止用のポッティング樹脂部86を介してセンシング部82を支持する。この場合、ポッティング樹脂部86は、センシング部82とセンサ支持部84とに接合することで、センシング部82とセンサ支持部84とを一体化する。この場合、センシング部82とセンサ支持部84とが別々の部品である場合に比べて、部品点数を低減できる。また、モータハウジング10にセンサ支持部84を組み付けることでセンシング部82の組み付けが実現されるので、センシング部82とセンサ支持部84とが別々の部品である場合に比べて、組付け性が良好である。ポッティング樹脂部86は、センサ支持部84のX2側の開口から充填されてよい。 The sensor support portion 84 is fixed to the non-rotating portion (motor housing 10 in this embodiment) of the motor 1 (schematically shown in FIGS. 1A and 1B) and supports the sensing portion 82 . The sensor support portion 84 may support the sensing portion 82 by any means such as adhesives, fasteners, or fitting. In this embodiment, as an example, the sensor support section 84 supports the sensing section 82 via a potting resin section 86 for sealing, for example. In this case, the potting resin portion 86 is joined to the sensing portion 82 and the sensor support portion 84 to integrate the sensing portion 82 and the sensor support portion 84 . In this case, the number of parts can be reduced compared to the case where the sensing section 82 and the sensor support section 84 are separate parts. In addition, since the sensing portion 82 is assembled by assembling the sensor support portion 84 to the motor housing 10, the assembly is easier than when the sensing portion 82 and the sensor support portion 84 are separate components. is. The potting resin portion 86 may be filled from the opening of the sensor support portion 84 on the X2 side.
 センサ支持部84は、好ましくは、センサロータ81にセンシング部82が軸方向に近接するようにセンシング部82を支持する。この場合、センサ支持部84は、センサロータ81とセンシング部82との間の軸方向の位置関係として、センサロータ81とセンシング部82との間の軸方向の隙間が、可動部と固定部との間に必要な最小クリアランスに対応するような位置関係を実現してもよい。 The sensor support portion 84 preferably supports the sensing portion 82 so that the sensing portion 82 is axially close to the sensor rotor 81 . In this case, the sensor support portion 84 is such that the axial positional relationship between the sensor rotor 81 and the sensing portion 82 is such that the axial gap between the sensor rotor 81 and the sensing portion 82 is between the movable portion and the fixed portion. A positional relationship may be achieved that corresponds to the minimum clearance required between.
 ここで、図6から図11を参照して、本実施例の構成の特徴を概念的に説明する。 Here, the features of the configuration of this embodiment will be conceptually described with reference to FIGS. 6 to 11. FIG.
 図6から図9は、本実施例の構成の特徴を概念的に説明する説明図であり、図6は、センサロータ81とその周辺の一部(ロータ30の一部)をX1側から視た斜視図であり、図7は、図6からセンサロータ81を取り除いた斜視図であり、図8は、図6からセンサロータ81を取り除いた平面図(軸方向に視た平面図)である。図9は、図6を軸方向に視た平面図であり、回転軸12よりも上側半分だけを示す図である。なお、図6から図9は、概念図であり、特にロータ30の構成は非常に概略的に示されている。図10は、ロータ30のセンサ隣接部300によるセンサ出力への影響の説明図であり、磁束の流れを模式的に示す図である。なお、図10で示す磁束の流れは、センサ隣接部300やセンサロータ81の影響を受ける前の状態で模式的に示されている。図11は、本実施例においてセンシング部82により生成されるセンサ出力(電気信号)の波形であって、センサ隣接部300により影響を受けたセンサ出力の波形を示す図である。図11では、横軸にロータ30の回転角度を取り、縦軸にセンサ出力の大きさを取り、センシング部82により生成されるセンサ出力(電気信号)の時系列波形が模式的に示されている。なお、図11(後出の図12B及び図17についても同様)では、ロータ30の回転角度における所定角度(本実施例では45度)の2倍分(2周期分)の時系列波形が模式的に示されている。 6 to 9 are explanatory diagrams for conceptually explaining the features of the configuration of this embodiment. FIG. 6 shows the sensor rotor 81 and a portion of its periphery (a portion of the rotor 30) viewed from the X1 side. 7 is a perspective view with the sensor rotor 81 removed from FIG. 6, and FIG. 8 is a plan view (plan view viewed in the axial direction) with the sensor rotor 81 removed from FIG. . 9 is a plan view of FIG. 6 viewed in the axial direction, showing only the upper half of the rotating shaft 12. As shown in FIG. 6 to 9 are conceptual diagrams, and in particular the configuration of the rotor 30 is shown very schematically. FIG. 10 is an explanatory diagram of the influence of the sensor adjacent portion 300 of the rotor 30 on the sensor output, and is a diagram schematically showing the flow of magnetic flux. Note that the flow of magnetic flux shown in FIG. 10 is schematically shown in a state before being affected by the sensor adjacent portion 300 and the sensor rotor 81 . FIG. 11 is a diagram showing the waveform of the sensor output (electrical signal) generated by the sensing section 82 in this embodiment, and showing the waveform of the sensor output affected by the sensor adjacent section 300. As shown in FIG. In FIG. 11, the horizontal axis represents the rotation angle of the rotor 30 and the vertical axis represents the magnitude of the sensor output, and the time-series waveform of the sensor output (electrical signal) generated by the sensing unit 82 is schematically shown. there is In FIG. 11 (the same applies to FIGS. 12B and 17 described later), time-series waveforms for twice (for two cycles) a predetermined angle (45 degrees in this embodiment) in the rotation angle of the rotor 30 are shown schematically. are shown.
 ロータ30は、センサロータ81に対してセンシング部82とは逆側(本実施例ではX2側)から軸方向に隣接するセンサ隣接部300を有する。センサ隣接部300は、ロータ30の任意の1つ以上の構成要素(ロータシャフト34とともに回転する構成要素)により実現されてよく、例えば図1Aに示す例では、ロータシャフト34のX1側端部、ロータコア32のX1側端部、エンドプレート35A、ワッシャ39等であってよい。なお、ワッシャ39は、軸方向でフランジ部346(ロータシャフト34のX1側端部の部位)とロータコア32との間に設けられ、フランジ部346からエンドプレート35A(及びエンドプレート35Aを介してロータコア32)に付与される軸力に起因してロータコア32に生じうる応力を低減する機能を有してよい。 The rotor 30 has a sensor adjacent portion 300 axially adjacent to the sensor rotor 81 from the side opposite to the sensing portion 82 (the X2 side in this embodiment). The sensor adjacent portion 300 may be realized by any one or more components of the rotor 30 (components that rotate together with the rotor shaft 34), for example, in the example shown in FIG. It may be the X1 side end of the rotor core 32, the end plate 35A, the washer 39, or the like. The washer 39 is provided between the flange portion 346 (a portion of the rotor shaft 34 on the X1 side) and the rotor core 32 in the axial direction. 32) may have the function of reducing the stress that may occur in the rotor core 32 due to the axial force applied to the rotor core 32).
 ところで、センサ隣接部300は、センサロータ81に対してセンシング部82とは逆側(本実施例ではX2側)に配置されるものの、センサロータ81の近傍に配置されかつセンサロータ81よりも径方向外側に延在するがゆえに、センサコイル821を貫く磁束B1(図10の磁束B1-1参照)に影響を与える可能性がある。すなわち、センサコイル821を貫く磁束B1に起因してセンサ隣接部300において渦電流が発生する可能性がある。かかる渦電流は、センサロータ81における渦電流と同様、磁束B1を減らす方向の磁束B3(図示せず)を発生する。 By the way, the sensor adjoining portion 300 is arranged on the opposite side of the sensor rotor 81 from the sensing portion 82 (the X2 side in this embodiment), but is arranged near the sensor rotor 81 and has a larger diameter than the sensor rotor 81. Since it extends in the outward direction, it may affect the magnetic flux B1 passing through the sensor coil 821 (see magnetic flux B1-1 in FIG. 10). That is, there is a possibility that an eddy current is generated in the sensor adjacent portion 300 due to the magnetic flux B1 penetrating the sensor coil 821 . Such eddy currents, like the eddy currents in the sensor rotor 81, generate a magnetic flux B3 (not shown) in a direction that reduces the magnetic flux B1.
 この点、本実施例では、センサ隣接部300は、センサ隣接部300における磁束B1により発生する渦電流の大きさが、ロータ30の回転角度が所定角度(本実施例では45度)変化するごとに周期的に変化するように、構成される。 In this regard, in this embodiment, the sensor adjacent portion 300 is such that the magnitude of the eddy current generated by the magnetic flux B1 in the sensor adjacent portion 300 changes every time the rotation angle of the rotor 30 changes by a predetermined angle (45 degrees in this embodiment). is configured to periodically change to
 具体的には、図6から図9に示すように、センサ隣接部300は、外径が一定の第1部位301と、第1部位301よりも外径が有意に大きい第2部位302とを周方向に沿って周期的に有する。すなわち、センサ隣接部300は、センサロータ81と同様の位相且つ周期で、周期的に変化する外径を有する。更に換言すると、センサロータ81は、第1部位301に対応する周方向位置に、小径部810を有し、センサロータ81は、第2部位302に対応する周方向位置に、大径部812を有する。この場合、大径部812の外径は、第2部位302の外径よりも有意に小さい(図9参照)。このようにして本実施例では、センサ隣接部300は、センシング部82と軸方向に対向する周方向位置での外径が、ロータ30の回転角度が所定角度(本実施例では45度)変化するごとに周期的に変化する。なお、本明細書において「2つの部位の一方の外径が他方よりも有意に大きい又は小さい」とは、一方の部位がセンサコイル821に軸方向に対向したときと他方の部位がセンサコイル821に軸方向に対向したときとの間で、センサ出力に有意な差(例えば、センサ出力の最小分解能を超えるような差)を生むような態様を指す。 Specifically, as shown in FIGS. 6 to 9, the sensor adjacent portion 300 includes a first portion 301 having a constant outer diameter and a second portion 302 having a significantly larger outer diameter than the first portion 301. It has periodically along the circumferential direction. That is, the sensor adjacent portion 300 has the same phase and period as the sensor rotor 81 and has an outer diameter that changes periodically. In other words, the sensor rotor 81 has a small diameter portion 810 at a circumferential position corresponding to the first portion 301 , and a large diameter portion 812 at a circumferential position corresponding to the second portion 302 . have. In this case, the outer diameter of the large diameter portion 812 is significantly smaller than the outer diameter of the second portion 302 (see FIG. 9). In this way, in this embodiment, the outer diameter of the sensor adjacent portion 300 at the circumferential position facing the sensing portion 82 in the axial direction changes the rotation angle of the rotor 30 by a predetermined angle (45 degrees in this embodiment). It changes periodically each time. In this specification, "the outer diameter of one of the two parts is significantly larger or smaller than that of the other" means that when one part faces the sensor coil 821 in the axial direction and when the other part faces the sensor coil 821 It refers to a mode that produces a significant difference in sensor output (for example, a difference that exceeds the minimum resolution of the sensor output) between when it is axially opposed to .
 ところで、センサ隣接部300における渦電流の大きさは、上述したセンサロータ81の場合と同様、センサコイル821に軸方向に直接的に対向するセンサ隣接部300の部位の表面積が増加するほど大きくなる。なお、センサ隣接部300がセンサコイル821に軸方向に直接的に対向するとは、センサコイル821から磁束B1がセンサロータ81により遮断されることなく到達できる位置関係を指す。本実施例では、上述したようにセンサ隣接部300は、周期的に変化する外径を有するので、センサコイル821に軸方向に直接的に対向するセンサロータ81の部位の表面積は、ロータ30の回転角度が変化すると変化する。より具体的には、センサコイル821に軸方向に対向するセンサ隣接部300の部位の表面積は、ロータ30の回転角度が45度変化するごとに、1周期分の正弦波、矩形波、三角波、又はその類に対応した変化態様で変化する。 By the way, the magnitude of the eddy current in the sensor adjacent portion 300 increases as the surface area of the portion of the sensor adjacent portion 300 that directly faces the sensor coil 821 in the axial direction increases, as in the case of the sensor rotor 81 described above. . The expression that the sensor adjacent portion 300 directly faces the sensor coil 821 in the axial direction indicates a positional relationship in which the magnetic flux B1 from the sensor coil 821 can reach without being blocked by the sensor rotor 81 . In this embodiment, as described above, the sensor adjacent portion 300 has an outer diameter that changes periodically. It changes when the rotation angle changes. More specifically, the surface area of the portion of the sensor adjacent portion 300 that axially faces the sensor coil 821 is changed by one cycle of a sine wave, rectangular wave, triangular wave, Or it changes in a change mode corresponding to the class.
 このため、本実施例では、磁束B1に起因してセンサ隣接部300において発生する渦電流は、ロータ30の回転角度が45度変化するごとに、1周期の正弦波又は矩形波若しくは三角波を描く態様で周期的に変化する。従って、このようなセンサ隣接部300において発生する渦電流に起因して生じる磁束B3も、ロータ30の回転角度が45度変化するごとに、1周期の正弦波、矩形波、三角波、又はその類を描く態様で周期的に変化する。 Therefore, in this embodiment, the eddy current generated in the sensor-adjacent portion 300 due to the magnetic flux B1 draws one cycle of a sine wave, a square wave, or a triangular wave every time the rotation angle of the rotor 30 changes by 45 degrees. cyclically change in mode. Therefore, the magnetic flux B3 generated due to the eddy currents generated in the sensor adjacent portion 300 also has one cycle of a sine wave, rectangular wave, triangular wave, or the like every time the rotation angle of the rotor 30 changes by 45 degrees. changes periodically in the manner of drawing
 また、本実施例においては、センサロータ81は、センシング部82と軸方向に対向する周方向位置での外径が、ロータ30の回転角度が45度変化するごとに周期的に変化する部位(小径部810及び大径部812)を有する。この結果、本実施例では、センシング部82により生成されるセンサ出力(電気信号)の時系列波形は、センサロータ81の小径部810及び大径部812に起因した基本波形に対して、センサ隣接部300(軸方向に視てセンサロータ81よりも径方向外側に延在する部位)に起因した略一定のオフセットを有する波形となる。具体的には、本実施例では、センシング部82により生成されるセンサ出力(電気信号)の時系列波形は、図11に示すように、図5に示した理想的な波形500に対して、磁束B3に対応する一定のオフセット量(図11のΔ1参照)だけオフセットする波形501となる。本実施例では、上述したように、磁束B3はロータ30の回転角度が所定角度(本実施例では45度)変化するごとに周期的に変化するので、オフセットする波形501も、ロータ30の回転角度が45度変化するごとに、周期的に変化する(図11では、正弦波を描く態様で周期的に変化する)。従って、このようなセンサ出力(電気信号)に基づいて、ロータ30の回転角度を精度良く検出できる。 Further, in this embodiment, the sensor rotor 81 has a portion ( It has a small diameter portion 810 and a large diameter portion 812). As a result, in this embodiment, the time-series waveform of the sensor output (electrical signal) generated by the sensing section 82 is different from the basic waveform caused by the small-diameter portion 810 and the large-diameter portion 812 of the sensor rotor 81. The waveform has a substantially constant offset due to the portion 300 (the portion extending radially outward from the sensor rotor 81 when viewed in the axial direction). Specifically, in this embodiment, as shown in FIG. 11, the time-series waveform of the sensor output (electrical signal) generated by the sensing unit 82 is different from the ideal waveform 500 shown in FIG. The waveform 501 is offset by a constant offset amount (see Δ1 in FIG. 11) corresponding to the magnetic flux B3. In this embodiment, as described above, the magnetic flux B3 changes periodically each time the rotation angle of the rotor 30 changes by a predetermined angle (45 degrees in this embodiment). Every time the angle changes by 45 degrees, it changes periodically (in FIG. 11, it changes periodically in a manner that draws a sine wave). Therefore, the rotation angle of the rotor 30 can be accurately detected based on such sensor output (electrical signal).
 なお、図6から図9に示す例では、第2部位302が第1部位301に対して径方向の凸部となり、第1部位301が第2部位302に対して径方向の凹部となる。この場合、第1部位301及び第2部位302のうちの、いずれか一方が、特許請求の範囲における「ベース部位」の一例であり、他方が、特許請求の範囲における「特定部位」の一例である。また、図6から図9に示す例では、第2部位302が第1部位301に対して径方向の凸部となり、第1部位301が第2部位302に対して径方向の凹部となるが、これに代えて又は加えて、軸方向の凹凸であってもよい。例えば、第1部位301が、ベースととして、軸方向の凹凸を有さない平坦(フラット)な部位であり、第2部位302が、平坦な部位に対して軸方向に凹凸する形態の部位である。これは、後述する実施例2や実施例3についても同様である。 In addition, in the examples shown in FIGS. 6 to 9, the second portion 302 is a radial protrusion with respect to the first portion 301, and the first portion 301 is a radial recess with respect to the second portion 302. In this case, one of the first part 301 and the second part 302 is an example of the "base part" in the claims, and the other is an example of the "specific part" in the claims. be. In addition, in the examples shown in FIGS. 6 to 9, the second portion 302 is a radial projection with respect to the first portion 301, and the first portion 301 is a radial recess with respect to the second portion 302. , alternatively or additionally, may be axial unevenness. For example, the first portion 301 is a flat portion that does not have unevenness in the axial direction as a base, and the second portion 302 is a portion that is uneven in the axial direction with respect to the flat portion. be. This also applies to the second and third embodiments, which will be described later.
 このようなセンサ隣接部300に係る凸部や凹部は、センサ隣接部300がエンドプレート35Aを含む場合、エンドプレート35Aに形成されうる油溝(油孔や油路等の形態を含む、以下同様)やバランス調整孔(ロータ30のアンバランスの調整用の孔)により実現されてもよい。また、エンドプレート35Aを設けない構成の場合、センサ隣接部300はロータコア32のX1側の端部を含んでよい。この場合、凸部や凹部は、ロータコア32のX1側の端部に形成されうる油溝やフラックスバリア、加締め部等により実現されてもよい。この場合、加締め部は、ロータシャフト34にロータシャフト34を固定するための加締め部であってよい。また、凸部や凹部は、センサ隣接部300がロータシャフト34(モータハブ)を含む場合、ロータシャフト34に形成されうる油溝や溶接部等により実現されてもよい。 When the sensor adjacent portion 300 includes the end plate 35A, the protrusions and recesses related to the sensor adjacent portion 300 include oil grooves (including forms such as oil holes and oil passages) formed in the end plate 35A. ) or a balance adjustment hole (a hole for adjusting the imbalance of the rotor 30). Moreover, in the case of a configuration in which the end plate 35A is not provided, the sensor adjacent portion 300 may include the end portion of the rotor core 32 on the X1 side. In this case, the protrusions and recesses may be realized by an oil groove, a flux barrier, a crimped portion, or the like that may be formed at the X1-side end of the rotor core 32 . In this case, the crimping portion may be a crimping portion for fixing the rotor shaft 34 to the rotor shaft 34 . Further, when the sensor adjacent portion 300 includes the rotor shaft 34 (motor hub), the protrusions and recesses may be realized by oil grooves, welded portions, or the like that may be formed in the rotor shaft 34 .
 ここで、図12A及び図12Bを参照して比較例と対比して、本実施例の効果を説明する。図12Aは、比較例によるセンサ隣接部300’とセンサロータ81とを概略的に示す軸方向の平面図であり、図9と同様、回転軸12よりも上側半分だけを示す図である。図12Bは、比較例においてセンシング部82により生成されるセンサ出力(電気信号)の波形であって、比較例によるセンサ隣接部300’により影響を受けたセンサ出力の波形を示す図である。図12Bでは、横軸にロータ30の回転角度を取り、縦軸にセンサ出力の大きさを取り、センシング部82により生成されるセンサ出力(電気信号)の時系列波形が模式的に示されている。 Here, the effects of this embodiment will be described in comparison with the comparative example with reference to FIGS. 12A and 12B. FIG. 12A is an axial plan view schematically showing a sensor adjacent portion 300 ′ and a sensor rotor 81 according to a comparative example, showing only the upper half of the rotating shaft 12 as in FIG. 9 . FIG. 12B is a waveform of the sensor output (electrical signal) generated by the sensing unit 82 in the comparative example, showing the waveform of the sensor output influenced by the sensor adjacent portion 300' according to the comparative example. In FIG. 12B, the horizontal axis represents the rotation angle of the rotor 30, and the vertical axis represents the sensor output magnitude. there is
 比較例によるセンサ隣接部300’は、図12Aに模式的に示すように、外径が一定の第1部位301’と、第1部位301’よりも外径が有意に大きい第2部位302’とを周方向に沿って不規則に有する。例えば、第2部位302’-1は、第2部位302’-2よりも周方向の延在範囲が広く、45度以上の角度にわたって連続的に延在している。このような不規則な構成では、図12Bに示すように、センシング部82により生成されるセンサ出力(電気信号)の時系列波形が、不規則となる。すなわち、比較例では、センサ出力は、ロータ30の回転角度が45度変化するごとに、1周期の正弦波を描くような規則性を有さない。図12Bに示す例では、ある一周期分の角度範囲A1では、センサ出力の中心値は、図12Bにおいて点線1300で示す理想的な中央値(例えば、図5に示した理想的な波形500に係る振幅の中心値)に対して上側にオフセット(矢印R1301参照)するのに対して、続く一周期分の角度範囲A2では、センサ出力の中心値は、理想的な中央値に対して下側(矢印R1302参照)にオフセットするといった具合に、オフセット量が一定とならない。このような場合、このようなセンサ出力(電気信号)に基づいて、ロータ30の回転角度を精度良く検出できない。例えば、センサ出力のオフセットを補正することが難しく、回転センサ80からのセンサ情報の信頼性が低下するおそれがある。 As schematically shown in FIG. 12A, the sensor adjacent portion 300' according to the comparative example includes a first portion 301' having a constant outer diameter and a second portion 302' having a significantly larger outer diameter than the first portion 301'. and irregularly along the circumferential direction. For example, the second portion 302'-1 has a wider circumferential extension range than the second portion 302'-2 and continuously extends over an angle of 45 degrees or more. In such an irregular configuration, as shown in FIG. 12B, the time-series waveform of the sensor output (electrical signal) generated by the sensing section 82 becomes irregular. That is, in the comparative example, the sensor output does not have the regularity of drawing a sine wave of one cycle each time the rotation angle of the rotor 30 changes by 45 degrees. In the example shown in FIG. 12B, in the angular range A1 for one cycle, the center value of the sensor output is the ideal median value indicated by the dotted line 1300 in FIG. 12B (for example, the ideal waveform 500 shown in FIG. The central value of the sensor output is offset upward (see arrow R1301) with respect to the central value of the amplitude), while the central value of the sensor output is lower than the ideal central value in the angle range A2 for one subsequent cycle. (see arrow R1302), the amount of offset is not constant. In such a case, the rotation angle of the rotor 30 cannot be accurately detected based on such sensor output (electrical signal). For example, it is difficult to correct the offset of the sensor output, and the reliability of the sensor information from the rotation sensor 80 may decrease.
 これに対して、本実施例によれば、上述したように、磁束B3に対応する一定のオフセット量だけオフセットする波形501(図11参照)のセンサ出力を得ることができる。従って、本実施例によれば、センサ隣接部300に起因して回転センサ80からのセンサ情報の信頼性が低下する可能性を、効果的に低減できる。 On the other hand, according to the present embodiment, as described above, it is possible to obtain the sensor output of the waveform 501 (see FIG. 11) offset by a constant offset amount corresponding to the magnetic flux B3. Therefore, according to this embodiment, it is possible to effectively reduce the possibility that the reliability of the sensor information from the rotation sensor 80 is lowered due to the sensor adjacent portion 300 .
 なお、本実施例では、センサ隣接部300は、上述したように、センサ隣接部300における磁束B1により発生する渦電流の大きさが、ロータ30の回転角度が所定角度(本実施例では45度)変化するごとに周期的に変化するように、構成されるが、これに限られない。例えば、変形例では、センサ隣接部300は、センサ隣接部300における磁束B1により発生する渦電流の大きさが、ロータ30の回転角度が所定角度の整数倍の角度(例えば90度)変化するごとに周期的に変化するように、構成されてもよい。この場合、オフセット量(図11のΔ1参照)は、一定とならないものの、センサロータ81の外径の変化周期(所定角度に対応する周期)の2以上の整数倍の周期で周期的に変化する。従って、この場合も、比較例に比べてロータ30の回転角度を精度良く検出可能なセンサ出力を得ることができる。 In this embodiment, as described above, in the sensor adjacent portion 300, the magnitude of the eddy current generated by the magnetic flux B1 in the sensor adjacent portion 300 is such that the rotation angle of the rotor 30 is a predetermined angle (45 degrees in this embodiment). ) is configured to change periodically each time it changes, but is not limited to this. For example, in the modified example, the sensor adjacent portion 300 is configured so that the magnitude of the eddy current generated by the magnetic flux B1 in the sensor adjacent portion 300 changes every time the rotation angle of the rotor 30 changes by an integral multiple of a predetermined angle (for example, 90 degrees). may be configured to change periodically to . In this case, although the offset amount (see Δ1 in FIG. 11) is not constant, it changes periodically with a period that is an integral multiple of two or more times the change period of the outer diameter of the sensor rotor 81 (the period corresponding to the predetermined angle). . Therefore, also in this case, it is possible to obtain a sensor output capable of detecting the rotation angle of the rotor 30 with higher accuracy than in the comparative example.
 図13は、本実施例の更なる効果の説明図であり、図9と同様の部分を示す平面図である。図13には、センシング部82のセンサコイル821の投影領域R130とともに、投影領域R13を360度、回転軸12まわりに回転したときの軌跡領域R131(軸方向に視た軌跡領域)が示されている。この場合、センサ隣接部300のうちの、軸方向に視て軌跡領域R131に重なる部分が実質的に回転センサ80からのセンサ情報に影響する。従って、本実施例によれば、センサ隣接部300のうちの、軸方向に視て軌跡領域R131に重なる部分以外の領域において、設計自由度を高めることができる。 FIG. 13 is an explanatory diagram of further effects of this embodiment, and is a plan view showing the same portion as in FIG. FIG. 13 shows a projection area R130 of the sensor coil 821 of the sensing unit 82 and a trajectory area R131 (a trajectory area viewed in the axial direction) when the projection area R13 is rotated 360 degrees around the rotation axis 12. there is In this case, the portion of the sensor adjacent portion 300 that overlaps the trajectory region R131 when viewed in the axial direction substantially affects the sensor information from the rotation sensor 80 . Therefore, according to the present embodiment, it is possible to increase the degree of design freedom in the area of the sensor adjacent portion 300 other than the portion overlapping the trajectory area R131 when viewed in the axial direction.
 [実施例2]
 以下の実施例2の説明において、上述した実施例1と同様であってよい構成要素については、同一の参照符号を付して説明を省略する場合がある。
[Example 2]
In the following description of the second embodiment, constituent elements that may be the same as those of the first embodiment described above may be given the same reference numerals, and the description thereof may be omitted.
 図14は、実施例2によるモータ1Aにおけるセンサ隣接部300とセンサロータ81Aとを概略的に示す軸方向の平面図であり、図9と同様、回転軸12よりも上側半分だけを示す図である。 FIG. 14 is an axial plan view schematically showing the sensor adjacent portion 300 and the sensor rotor 81A in the motor 1A according to the second embodiment. be.
 実施例2によるモータ1Aは、上述した実施例1によるモータ1に対して、センサロータ81がセンサロータ81Aで置換された点が異なる。 A motor 1A according to the second embodiment differs from the motor 1 according to the first embodiment described above in that the sensor rotor 81 is replaced with a sensor rotor 81A.
 上述した実施例1では、センシング部82からの磁束B1に起因してセンサ隣接部300において生じる渦電流の大きさを、センシング部82からの磁束B1に起因してセンサロータ81において生じる渦電流の大きさとともに、ロータ30の回転角度が所定角度変化するごとに周期的に変化させている。 In the first embodiment described above, the magnitude of the eddy current generated in the sensor adjacent portion 300 due to the magnetic flux B1 from the sensing portion 82 is defined as the magnitude of the eddy current generated in the sensor rotor 81 due to the magnetic flux B1 from the sensing portion 82. Along with the size, it is periodically changed each time the rotation angle of the rotor 30 changes by a predetermined angle.
 これに対して、本実施例では、センサロータ81Aの構成によって、センシング部82からの磁束B1に起因してセンサ隣接部300において生じうる渦電流の大きさを、ロータ30の回転角度とは無関係に略一定値に維持させることで、同様の効果を得る。 On the other hand, in the present embodiment, the magnitude of the eddy current that may occur in the sensor adjacent portion 300 due to the magnetic flux B1 from the sensing portion 82 is controlled by the structure of the sensor rotor 81A regardless of the rotation angle of the rotor 30. A similar effect can be obtained by maintaining a substantially constant value.
 具体的には、本実施例では、センサロータ81Aは、図14に示すように、軸方向に視て、センサ隣接部300の第1部位301及び第2部位302に重なるように配置される。センサロータ81Aは、第1部位301に対応する周方向位置に、小径部810Aを有し、センサロータ81Aは、第2部位302に対応する周方向位置に、大径部812Aを有し、小径部810Aの外径は、第1部位301の外径以上であり、かつ、大径部812Aの外径は、第2部位302の外径以上であってよい。なお、センサ隣接部300における第2部位302よりも径方向外側の部位304は、凹凸や孔等を有さない部位であり、センシング部82からの磁束B1に起因して生じうる渦電流が略一定となる部位である。 Specifically, in this embodiment, the sensor rotor 81A is arranged so as to overlap the first portion 301 and the second portion 302 of the sensor adjacent portion 300 when viewed in the axial direction, as shown in FIG. The sensor rotor 81A has a small diameter portion 810A at a circumferential position corresponding to the first portion 301, and a large diameter portion 812A at a circumferential position corresponding to the second portion 302. The outer diameter of the portion 810A may be equal to or greater than the outer diameter of the first portion 301, and the outer diameter of the large diameter portion 812A may be equal to or greater than the outer diameter of the second portion 302. Note that a portion 304 radially outward of the second portion 302 in the sensor adjacent portion 300 is a portion that does not have unevenness or holes, and an eddy current that may be caused by the magnetic flux B1 from the sensing portion 82 is substantially reduced. This is a constant part.
 この場合、センサ隣接部300の第1部位301及び第2部位302がセンサコイル821に軸方向に直接的に対向することがなくなるので、センシング部82からの磁束B1に起因してセンサ隣接部300において生じる渦電流の大きさは、センサ隣接部300における第2部位302よりも径方向外側の部位304(凹凸や孔等を有さない部位)に起因した略一定値となる。この結果、センシング部82からの磁束B1に起因してセンサ隣接部300において生じうる渦電流の大きさを、ロータ30の回転角度とは無関係に略一定値に維持できる。なお、略一定値とは、変動量の10%程度に収まる態様を含む概念である。 In this case, since the first portion 301 and the second portion 302 of the sensor adjacent portion 300 do not directly face the sensor coil 821 in the axial direction, the magnetic flux B1 from the sensing portion 82 causes the sensor adjacent portion 300 to The magnitude of the eddy current generated in the sensor-adjacent portion 300 has a substantially constant value due to the portion 304 (the portion having no irregularities, holes, etc.) radially outside the second portion 302 . As a result, the magnitude of the eddy current that may occur in the sensor adjacent portion 300 due to the magnetic flux B1 from the sensing portion 82 can be maintained at a substantially constant value regardless of the rotation angle of the rotor 30. FIG. It should be noted that the substantially constant value is a concept that includes a mode in which the amount of variation is within about 10%.
 また、本実施例においても、センサロータ81Aは、センシング部82と軸方向に対向する周方向位置での外径が、ロータ30の回転角度が所定角度変化するごとに周期的に変化する部位(小径部810A及び大径部812B)を有する。この結果、本実施例では、センシング部82により生成されるセンサ出力(電気信号)の時系列波形は、小径部810A及び大径部812Aに起因した波形に対して、センサ隣接部300における第2部位302よりも径方向外側の部位304(凹凸や孔等を有さない部位)に起因した略一定のオフセット量を有する波形となる。具体的には、本実施例では、センシング部82により生成されるセンサ出力(電気信号)の時系列波形は、図11に示した波形501と同様となる。従って、このようなセンサ出力(電気信号)に基づいて、ロータ30の回転角度を精度良く検出できる。 Also in this embodiment, the sensor rotor 81A has a portion ( It has a small diameter portion 810A and a large diameter portion 812B). As a result, in this embodiment, the time-series waveform of the sensor output (electrical signal) generated by the sensing section 82 is the second The waveform has a substantially constant amount of offset due to a portion 304 (a portion having no irregularities or holes) located radially outside the portion 302 . Specifically, in this embodiment, the time-series waveform of the sensor output (electrical signal) generated by the sensing section 82 is similar to the waveform 501 shown in FIG. Therefore, the rotation angle of the rotor 30 can be accurately detected based on such sensor output (electrical signal).
 なお、本実施例によるセンサロータ81Aは、第1部位301よりも外径が大きい第2部位302を軸方向で覆う形態であることから、上述した実施例1のような、第2部位302を軸方向で覆うことのないセンサロータ81よりも径方向外側まで延在する。すなわち、本実施例によるセンサロータ81Aの小径部810A及び大径部812Aは、上述した実施例1によるセンサロータ81の小径部810及び大径部812よりも、それぞれ外径が大きい。これに対応して、本実施例では、センシング部82は、上述した実施例1の搭載位置(図1A及び図1B参照)よりも径方向外側に配置されてよい。 Note that the sensor rotor 81A according to this embodiment covers the second portion 302, which has a larger outer diameter than the first portion 301, in the axial direction. It extends radially outward beyond the sensor rotor 81 that is not axially covered. That is, the small-diameter portion 810A and the large-diameter portion 812A of the sensor rotor 81A according to this embodiment have larger outer diameters than the small-diameter portion 810 and the large-diameter portion 812 of the sensor rotor 81 according to the first embodiment, respectively. Correspondingly, in this embodiment, the sensing unit 82 may be arranged radially outside the mounting position (see FIGS. 1A and 1B) of the first embodiment described above.
 また、本実施例によるセンサロータ81Aは、第2部位302を軸方向で覆う形態であることから、センシング部82のセンサ出力は、第2部位302による影響を実質的に受けない。従って、本実施例によるセンサロータ81Aは、センサ隣接部300に代えて、第2部位302を周期的に有さないセンサ隣接部に対して適用されてもよい。すなわち、本実施例の場合、センサ隣接部300における1つ以上の第2部位302は、センサロータ81Aの大径部812Aのいずれかに対応する径方向位置に配置されればよく、センサロータ81Aの大径部812Aのそれぞれに対して、1対1の対応関係で第2部位302が配置される必要はない。例えば、センサ隣接部は、8つに代えて、7つだけ第2部位302を有してもよく、この場合、7つの第2部位302のそれぞれが、センサロータ81Aの大径部812Aの対応する1つの径方向位置に配置されればよい。また、1つ以上の第2部位302のうちの、少なくとも1つが他とは異なる形態を有してもよく、形状自由度が高くなる。例えば、1つ以上の第2部位302のそれぞれは、他とは異なる軸方向の凹凸の形態を有してもよい。 In addition, since the sensor rotor 81A according to this embodiment covers the second portion 302 in the axial direction, the sensor output of the sensing portion 82 is not substantially affected by the second portion 302. Therefore, the sensor rotor 81A according to this embodiment may be applied to a sensor adjacent portion that does not periodically have the second portion 302 instead of the sensor adjacent portion 300. FIG. That is, in the case of this embodiment, one or more second portions 302 in the sensor adjacent portion 300 may be arranged at a radial position corresponding to one of the large diameter portions 812A of the sensor rotor 81A. It is not necessary to arrange the second part 302 in a one-to-one correspondence with each of the large diameter portions 812A. For example, the sensor adjacent portion may have seven second portions 302 instead of eight, in which case each of the seven second portions 302 corresponds to the large diameter portion 812A of the sensor rotor 81A. may be arranged at one radial position where Also, at least one of the one or more second parts 302 may have a shape different from the others, increasing the degree of freedom in shape. For example, each of the one or more second portions 302 may have a different axial relief configuration than the others.
 [実施例3]
 以下の実施例3の説明において、上述した実施例1と同様であってよい構成要素については、同一の参照符号を付して説明を省略する場合がある。
[Example 3]
In the following description of the third embodiment, constituent elements that may be the same as those of the first embodiment described above may be given the same reference numerals, and description thereof may be omitted.
 図15は、実施例3によるモータ1Bにおけるセンサ隣接部300とセンサロータ81Bとを概略的に示す軸方向の平面図であり、図9と同様、回転軸12よりも上側半分だけを示す図である。図16は、本実施例によるセンサロータ81Bの斜視図であり、図17は、本実施例においてセンシング部82により生成されるセンサ出力(電気信号)の波形であって、センサ隣接部300により影響を受けたセンサ出力の波形を示す図である。図17では、横軸にロータ30の回転角度を取り、縦軸にセンサ出力の大きさを取り、センシング部82により生成されるセンサ出力(電気信号)の時系列波形が模式的に示されている。 FIG. 15 is an axial plan view schematically showing the sensor adjacent portion 300 and the sensor rotor 81B in the motor 1B according to the third embodiment, showing only the upper half of the rotating shaft 12 as in FIG. be. FIG. 16 is a perspective view of the sensor rotor 81B according to this embodiment, and FIG. 17 shows the waveform of the sensor output (electrical signal) generated by the sensing section 82 in this embodiment, which is affected by the sensor adjacent section 300. FIG. 10 is a diagram showing waveforms of sensor outputs subjected to . In FIG. 17, the horizontal axis represents the rotation angle of the rotor 30 and the vertical axis represents the magnitude of the sensor output, and the time-series waveform of the sensor output (electrical signal) generated by the sensing unit 82 is schematically shown. there is
 実施例3によるモータ1Bは、上述した実施例1によるモータ1に対して、センサロータ81がセンサロータ81Bで置換された点が異なる。 The motor 1B according to the third embodiment differs from the motor 1 according to the first embodiment described above in that the sensor rotor 81 is replaced with a sensor rotor 81B.
 上述した実施例1では、センシング部82からの磁束B1に起因してセンサ隣接部300において生じる渦電流の大きさを、センシング部82からの磁束B1に起因してセンサロータ81において生じる渦電流の大きさとともに、ロータ30の回転角度が所定角度変化するごとに周期的に変化させている。 In the first embodiment described above, the magnitude of the eddy current generated in the sensor adjacent portion 300 due to the magnetic flux B1 from the sensing portion 82 is defined as the magnitude of the eddy current generated in the sensor rotor 81 due to the magnetic flux B1 from the sensing portion 82. Along with the size, it is periodically changed each time the rotation angle of the rotor 30 changes by a predetermined angle.
 これに対して、本実施例では、センサロータ81Bの構成によって、センシング部82からの磁束B1に起因してセンサ隣接部300において生じうる渦電流の大きさを、ロータ30の回転角度とは無関係に略一定値に維持させることで、同様の効果を得る。 On the other hand, in the present embodiment, the magnitude of the eddy current that can be generated in the sensor adjacent portion 300 due to the magnetic flux B1 from the sensing portion 82 is controlled by the structure of the sensor rotor 81B regardless of the rotation angle of the rotor 30. A similar effect can be obtained by maintaining a substantially constant value.
 具体的には、本実施例では、センサロータ81Bは、図15及び図16に示すように、小径部810及び大径部812のそれぞれの径方向外側に、カバー部813Bを有する。カバー部813Bは、小径部810及び大径部812のそれぞれよりも薄肉で形成されてよい。カバー部813Bは、小径部810及び大径部812と同じ材料により形成されるが、変形例では、小径部810及び大径部812とは異なる材料(例えば高透磁率材料)により形成されてもよい。カバー部813Bは、小径部810及び大径部812のそれぞれの径方向外側の縁部から連続し、センサロータ81B全体を外径が一定となるように径方向に延在する。この場合、センサロータ81Bの外径は、カバー部813Bの径方向外側縁部によって定まる。カバー部813Bは、軸方向に視て、センサ隣接部300の第2部位302(図15では、カバー部813Bにより可視でない)に重なるように径方向に延在する。センサロータ81Bの外径は、センサ隣接部300の第2部位302(図8参照)の外径以上であってよい。 Specifically, in this embodiment, the sensor rotor 81B has a cover portion 813B on the radially outer side of each of the small diameter portion 810 and the large diameter portion 812, as shown in FIGS. The cover portion 813B may be formed thinner than each of the small diameter portion 810 and the large diameter portion 812 . The cover portion 813B is made of the same material as the small-diameter portion 810 and the large-diameter portion 812, but in a modification, it may be made of a material different from that of the small-diameter portion 810 and the large-diameter portion 812 (for example, a high magnetic permeability material). good. The cover portion 813B is continuous from the radially outer edge portions of the small diameter portion 810 and the large diameter portion 812, and extends radially across the entire sensor rotor 81B so as to have a constant outer diameter. In this case, the outer diameter of the sensor rotor 81B is determined by the radial outer edge of the cover portion 813B. The cover portion 813B extends radially so as to overlap the second portion 302 of the sensor adjacent portion 300 (not visible due to the cover portion 813B in FIG. 15) when viewed in the axial direction. The outer diameter of the sensor rotor 81B may be greater than or equal to the outer diameter of the second portion 302 (see FIG. 8) of the sensor adjacent portion 300. As shown in FIG.
 この場合、センサ隣接部300の第1部位301及び第2部位302がセンサコイル821に軸方向に直接的に対向することがなくなるので、センシング部82からの磁束B1に起因してセンサ隣接部300において生じうる渦電流の大きさは、センサ隣接部300におけるカバー部813Bよりも径方向外側の部位304(凹凸や孔等を有さない部位)に起因した略一定値となる。この結果、センシング部82からの磁束B1に起因してセンサ隣接部300において生じうる渦電流の大きさを、ロータ30の回転角度とは無関係に略一定値に維持できる。 In this case, since the first portion 301 and the second portion 302 of the sensor adjacent portion 300 do not directly face the sensor coil 821 in the axial direction, the magnetic flux B1 from the sensing portion 82 causes the sensor adjacent portion 300 to The magnitude of the eddy current that can occur in the sensor adjoining portion 300 has a substantially constant value due to the portion 304 (the portion having no irregularities or holes) radially outside the cover portion 813B. As a result, the magnitude of the eddy current that may occur in the sensor adjacent portion 300 due to the magnetic flux B1 from the sensing portion 82 can be maintained at a substantially constant value regardless of the rotation angle of the rotor 30. FIG.
 また、本実施例においても、センサロータ81Bは、センシング部82と軸方向に対向する周方向位置での外径が、ロータ30の回転角度が所定角度変化するごとに周期的に変化する部位(小径部810及び大径部812)を有する。また、本実施例では、センサロータ81Bのカバー部813Bがセンサコイル821に軸方向に直接的に対向することになるが、センシング部82からの磁束B1に起因してカバー部813Bにおいて生じうる渦電流の大きさは、略一定値となる。これは、上述したように、カバー部813Bの外径は、一定であるためである。この結果、本実施例では、センシング部82により生成されるセンサ出力(電気信号)の時系列波形は、小径部810及び大径部812に起因した波形に対して、カバー部813B及び部位304に起因した略一定のオフセット量を有する波形となる。具体的には、本実施例では、図17に示すように、図5に示した理想的な波形500に対して略一定のオフセット量(図17のΔ2参照)を有する波形502となる。従って、このようなセンサ出力(電気信号)に基づいて、ロータ30の回転角度を精度良く検出できる。 Also in this embodiment, the sensor rotor 81B has a portion ( It has a small diameter portion 810 and a large diameter portion 812). In this embodiment, the cover portion 813B of the sensor rotor 81B directly faces the sensor coil 821 in the axial direction. The magnitude of the current becomes a substantially constant value. This is because the outer diameter of the cover portion 813B is constant as described above. As a result, in this embodiment, the time-series waveform of the sensor output (electrical signal) generated by the sensing unit 82 is different from the waveform caused by the small diameter portion 810 and the large diameter portion 812 in the cover portion 813B and the portion 304. The resulting waveform has a substantially constant amount of offset. Specifically, in this embodiment, as shown in FIG. 17, a waveform 502 having a substantially constant offset amount (see Δ2 in FIG. 17) with respect to the ideal waveform 500 shown in FIG. 5 is obtained. Therefore, the rotation angle of the rotor 30 can be accurately detected based on such sensor output (electrical signal).
 なお、本実施例によるセンサロータ81Bは、カバー部813Bにより第2部位302を軸方向で覆う形態であることから、センシング部82のセンサ出力は、第2部位302による影響を実質的に受けない。従って、センサ隣接部300に代えて、第2部位302を周期的に有さないセンサ隣接部に対して適用されてもよい。特に、本実施例の場合、カバー部813Bは全周にわたって形成されるので、第2部位302は、周方向の任意の位置に形成されてもよい。従って、本実施例によれば、センサ隣接部300の設計自由度を効果的に高めることができる。 Since the sensor rotor 81B according to this embodiment covers the second portion 302 in the axial direction with the cover portion 813B, the sensor output of the sensing portion 82 is not substantially affected by the second portion 302. . Therefore, instead of the sensor-adjacent portion 300, it may be applied to the sensor-adjacent portion that does not have the second portion 302 periodically. In particular, in the case of this embodiment, since the cover portion 813B is formed over the entire circumference, the second portion 302 may be formed at any position in the circumferential direction. Therefore, according to this embodiment, the degree of freedom in designing the sensor adjoining portion 300 can be effectively increased.
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。また、各実施例の効果のうちの、従属項に係る効果は、上位概念(独立項)とは区別した付加的効果である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes are possible within the scope described in the claims. It is also possible to combine all or more of the constituent elements of the above-described embodiments. Further, among the effects of each embodiment, the effects related to dependent claims are additional effects distinguished from generic concepts (independent claims).
 例えば、上述した実施例1(実施例2及び実施例3も同様)では、センサロータ81は、周期的に沿って周期的に変化する外径を有しているが、周期的に変化する外径に代えて又は加えて、周期的に変化する厚み(軸方向の厚み)を有してもよい。この場合、センサロータ81は、センシング部82と軸方向に対向する周方向位置での厚みが、ロータ30の回転角度が所定角度変化するごとに周期的に変化する。 For example, in the first embodiment described above (the same applies to the second and third embodiments), the sensor rotor 81 has an outer diameter that changes periodically along the cycle. Instead of or in addition to the diameter, it may have a periodically varying thickness (axial thickness). In this case, the thickness of the sensor rotor 81 at the circumferential position facing the sensing portion 82 in the axial direction changes periodically every time the rotation angle of the rotor 30 changes by a predetermined angle.
1・・・モータ(回転電機)、10・・・モータハウジング(非回転部)、30・・・ロータ、300・・・センサ隣接部、301・・・第1部位(ベース部位又は特定部位、凹部)、302・・・第2部位(ベース部位又は特定部位、凸部)、81・・・センサロータ、810、810A・・・小径部(部位)、812、812A・・・大径部(部位)、82・・・センシング部、821・・・センサコイル(コイル) Reference Signs List 1 motor (rotary electric machine), 10 motor housing (non-rotating portion), 30 rotor, 300 sensor adjacent portion, 301 first portion (base portion or specific portion, concave portion), 302 second portion (base portion or specific portion, convex portion), 81 sensor rotor, 810, 810A small diameter portion (part), 812, 812A large diameter portion ( part), 82 ... sensing part, 821 ... sensor coil (coil)

Claims (4)

  1.  ロータと、
     ロータを回転可能に支持する非回転部と、
     前記ロータと一体に回転するセンサロータと、
     前記センサロータに軸方向に対向するコイルを有するセンシング部と、を備え、
     前記センサロータは、外周部において所定角度ごとに径方向の凸部と径方向の凹部とを有し、
     前記ロータは、前記センサロータに対して前記センシング部とは逆側から軸方向に隣接するセンサ隣接部を有し、
     前記センサ隣接部は、ベース部位と、前記ベース部位に対して軸方向に凹凸する形態の特定部位とを含み、
     前記センサロータは、軸方向で前記センシング部に対向する側から、軸方向で前記センサ隣接部に対向する側へ透過しうる磁束を遮断する磁気シールド性を有し、
     前記センシング部の前記コイルから軸方向に視て、前記センサロータの前記所定角度ごとの前記凹部のうちの、前記所定角度ごと又は周方向の前記所定角度の整数倍の角度ごとの前記凹部に重なるように、前記センサ隣接部の前記ベース部位又は前記特定部位が周方向で周期的に配置される、回転電機。
    a rotor;
    a non-rotating portion that rotatably supports the rotor;
    a sensor rotor that rotates integrally with the rotor;
    a sensing unit having a coil axially facing the sensor rotor;
    The sensor rotor has radial protrusions and radial recesses at predetermined angles on an outer peripheral portion,
    The rotor has a sensor adjacent portion axially adjacent to the sensor rotor from a side opposite to the sensing portion,
    The sensor-adjacent portion includes a base portion and a specific portion that is axially uneven with respect to the base portion,
    The sensor rotor has a magnetic shielding property that blocks magnetic flux that can pass from the side facing the sensing portion in the axial direction to the side facing the sensor adjacent portion in the axial direction,
    When viewed in the axial direction from the coil of the sensing unit, among the recesses of the sensor rotor at the predetermined angles, the recesses overlap the recesses at the predetermined angle or at integral multiples of the predetermined angle in the circumferential direction. , the rotating electrical machine, wherein the base portion or the specific portion of the sensor adjacent portion is periodically arranged in the circumferential direction.
  2.  前記ロータが360度回転したときの、前記センサ隣接部における軸方向に視て前記センシング部の前記コイルに重なる円環状の領域において、前記センサ隣接部の前記ベース部位及び前記特定部位が、前記所定角度ごと又は周方向の前記所定角度の整数倍の角度ごとに周期的に配置される、請求項1に記載の回転電機。 When the rotor rotates 360 degrees, the base portion and the specific portion of the sensor adjacent portion are aligned with the predetermined The rotary electric machine according to claim 1, arranged periodically for each angle or for each integral multiple of the predetermined angle in the circumferential direction.
  3.  前記特定部位は、周方向の異なる位置に複数設けられ、
     前記センシング部の前記コイルから軸方向に視て、前記特定部位のそれぞれは、前記センサロータの凸部に重なる、請求項1に記載の回転電機。
    A plurality of the specific parts are provided at different positions in the circumferential direction,
    2. The rotating electric machine according to claim 1, wherein each of said specific portions overlaps a convex portion of said sensor rotor when viewed in the axial direction from said coil of said sensing portion.
  4.  複数の前記特定部位のうちの少なくとも1つは、他の前記特定部位に対して、軸方向に凹凸する前記形態が異なる、請求項3に記載の回転電機。 4. The electric rotating machine according to claim 3, wherein at least one of the plurality of specific parts differs from the other specific parts in the form of unevenness in the axial direction.
PCT/JP2022/014504 2021-05-19 2022-03-25 Rotary electric machine WO2022244471A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-084845 2021-05-19
JP2021084845 2021-05-19

Publications (1)

Publication Number Publication Date
WO2022244471A1 true WO2022244471A1 (en) 2022-11-24

Family

ID=84141204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014504 WO2022244471A1 (en) 2021-05-19 2022-03-25 Rotary electric machine

Country Status (1)

Country Link
WO (1) WO2022244471A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090277A1 (en) * 2022-10-28 2024-05-02 株式会社デンソー Position detection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107110A (en) * 2000-09-28 2002-04-10 Tadatoshi Goto Detector for relative rotational position
JP2003202240A (en) * 2001-11-01 2003-07-18 Furukawa Electric Co Ltd:The Rotary sensor and method for detecting rotation angle
JP2012231648A (en) * 2011-04-27 2012-11-22 Aisan Ind Co Ltd Motor rotor and motor
JP2017015696A (en) * 2015-06-26 2017-01-19 日本精工株式会社 Relative angle detection device, torque sensor, electrically-driven power steering device and vehicle
JP2018189485A (en) * 2017-05-02 2018-11-29 多摩川精機株式会社 Angle detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107110A (en) * 2000-09-28 2002-04-10 Tadatoshi Goto Detector for relative rotational position
JP2003202240A (en) * 2001-11-01 2003-07-18 Furukawa Electric Co Ltd:The Rotary sensor and method for detecting rotation angle
JP2012231648A (en) * 2011-04-27 2012-11-22 Aisan Ind Co Ltd Motor rotor and motor
JP2017015696A (en) * 2015-06-26 2017-01-19 日本精工株式会社 Relative angle detection device, torque sensor, electrically-driven power steering device and vehicle
JP2018189485A (en) * 2017-05-02 2018-11-29 多摩川精機株式会社 Angle detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090277A1 (en) * 2022-10-28 2024-05-02 株式会社デンソー Position detection device

Similar Documents

Publication Publication Date Title
EP1863150B1 (en) Permanent magnet rotor for motors
US10594196B2 (en) Dual shaft integrated motor
WO2022244471A1 (en) Rotary electric machine
JP2001298932A (en) Detector for motor magnetic pole position
US10958138B2 (en) Motor
JP5927891B2 (en) Rotation angle detector
WO2013084270A1 (en) Motor
JP2013165608A (en) Resolver stator
JP2020124075A (en) Motor and blower
JP5996443B2 (en) Brushless motor
JP5411084B2 (en) Rotation angle detector
JP2011024366A (en) Rotary electric machine
WO2020255682A1 (en) Rotation detector, and motor comprising same
JP6001428B2 (en) Rotor and brushless motor
JP2022178218A (en) Rotary electric machine
EP3402056B1 (en) Device for detecting position of rotor, and motor comprising same
US20220085670A1 (en) Motor
JP5988085B2 (en) Electric motor
JP2004219147A (en) Spindle device
JP2000116102A (en) Stepping motor
JP2019176588A (en) motor
JP5973370B2 (en) Rotor and brushless motor
JP2019184268A (en) Resolver structure
JPS58208667A (en) Speed detector for rotating shaft
KR20210078102A (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE