WO2022244156A1 - Measuring device, measuring method, and time synchronization system - Google Patents

Measuring device, measuring method, and time synchronization system Download PDF

Info

Publication number
WO2022244156A1
WO2022244156A1 PCT/JP2021/019032 JP2021019032W WO2022244156A1 WO 2022244156 A1 WO2022244156 A1 WO 2022244156A1 JP 2021019032 W JP2021019032 W JP 2021019032W WO 2022244156 A1 WO2022244156 A1 WO 2022244156A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
offset
internal
devices
processing unit
Prior art date
Application number
PCT/JP2021/019032
Other languages
French (fr)
Japanese (ja)
Inventor
佳祐 山形
豪 矢沢
隆 中西
慎一 吉原
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/019032 priority Critical patent/WO2022244156A1/en
Priority to JP2023522092A priority patent/JPWO2022244156A1/ja
Publication of WO2022244156A1 publication Critical patent/WO2022244156A1/en

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G5/00Setting, i.e. correcting or changing, the time-indication

Definitions

  • the present disclosure relates to measuring instruments, measuring methods, and time synchronization systems.
  • the PTP Precision Time Protocol
  • the IEEE-1588 standard is a protocol that synchronizes the time (device time) of computers on a LAN (Local Area Network) with high accuracy (see Non-Patent Document 1).
  • FIG. 15 is a diagram showing a configuration example of a conventional time synchronization system 1a that synchronizes the time of devices on a network using the PTP protocol.
  • the time synchronization system 1a shown in FIG. 15 includes a Grand Master Clock 100, a Boundary Clock 200, a client device 300, and a measuring device 400.
  • Grand Master Clock 100 and Boundary Clock 200 can communicate via a network such as a LAN.
  • the Boundary Clock 200 and the client device 300 can communicate via a network such as a LAN.
  • the Grand Master Clock 100 includes a GNSS antenna that receives signals (GNSS signals) from satellites of a global navigation satellite system (GNSS) such as GPS (Global Positioning System).
  • GNSS global navigation satellite system
  • the Grand Master Clock 100 receives GNSS signals via a GNSS antenna and obtains Universal Time Coordinated (UTC) from the received GNSS signals.
  • UTC Universal Time Coordinated
  • the Grand Master Clock 100 has a master function that distributes the acquired UTC as a reference time via a network.
  • the Boundary Clock 200 functions as a device with a slave function with respect to a higher-level device with a master function, and functions as a device with a master function with respect to a lower-level device with a slave function.
  • the Boundary Clock 200 functions as a device having a slave function to the Grand Master Clock 100 and functions as a device having a master function to the client device 300 . Therefore, the Boundary Clock 200 synchronizes the internal time of the Boundary Clock 200 with the time (reference time) distributed from the Grand Master Clock 100 by transmitting and receiving PTP packets to and from the Grand Master Clock 100 . Then, the Boundary Clock 200 distributes the internal device time to the client device 300 by transmitting and receiving PTP packets with the client device 300 .
  • the client device 300 has a slave function that synchronizes the internal time of the device with the time delivered from the device with the master function. In the time synchronization system 1a shown in FIG. 15, the client device 300 synchronizes the internal time of the device with the time distributed from the Boundary Clock 200.
  • FIG. The client device 300 is, for example, a base station device in a mobile phone network.
  • FIG. 15 in a time synchronization system 1a in which a plurality of devices synchronizes the time, as a measurement method for measuring the accuracy of the internal time of each device (Boundary Clock 200 and client device 300) having a slave function, FIG.
  • the measuring device 400 synchronized with GNSS (synchronized with the time delivered by GNSS) is connected to each device, and the signal quality of the timing reference signal such as the 1PPS (Pulse Per Second) signal output by each device and the time delivered by GNSS (for example, see Non-Patent Document 2).
  • the 1PPS signal is a signal output one pulse per second in synchronization with the internal time of the device.
  • the 1PPS signal is input from each device to the measuring device 400 by connecting the measuring device 400 and each device with a coaxial cable, for example. Therefore, the Boundary Clock 200 and the measuring device 400a connected to the Boundary Clock 200 need to be installed within a range where connection by coaxial cable is possible, for example, within the same building. Also, the client device 300 and the measuring device 400b connected to the client 300 need to be installed within a range where they can be connected by a coaxial cable, for example, within the same building.
  • IEEE Std 1588TM-2019 “IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems”
  • ITU-T G.8273/Y.1368 “Framework of phase and time clocks”
  • the conventional measurement method explained with reference to FIG. There is a constraint that the instrument 400 must be transported to the measurement site and the measurement performed before it is out of sync. Therefore, the conventional measurement method has the problem that prior preparation of the environment and a large amount of human labor are required in order to measure the accuracy of the time in the device. In addition, there is a problem that the measurement may be difficult due to the restriction that a GNSS antenna is required or the restriction that the measurement must be performed before the measuring device 400 is out of synchronization. In addition, it is necessary to connect the measuring device 400 to each device that measures the accuracy of the internal time, which is costly and time-consuming.
  • An object of the present disclosure which has been made in view of the above-described problems, is to provide a measuring instrument and a measuring method capable of relaxing the above-described restrictions and more easily measuring the accuracy of the internal time of a plurality of devices. and to provide a time synchronization system.
  • a measuring instrument is a measuring instrument that measures the accuracy of the internal time of each of the plurality of devices with respect to a reference time in a plurality of devices that synchronize the internal time of the device
  • the plurality of devices includes a first device, a second device, and a third device, and the first device synchronizes the device internal time with the reference time, and lowers the device internal time by transmitting and receiving packets.
  • the second device has a master function and a slave function for synchronizing the internal time of the device with the time delivered from the host device having the master function by packet transmission/reception.
  • the third device has the slave function of synchronizing the internal time of the device with the time delivered from the second device by packet transmission/reception, and a first acquisition unit that acquires the reference time from a satellite signal and a second acquisition unit that acquires time information related to the device internal time of the first device, the reference time acquired by the first acquisition unit, and the time information acquired by the second acquisition unit a first calculation processing unit for calculating a first offset, which is the difference between the reference time and the internal time of the first device, and time stamp information indicating the time when the packet was transmitted and received between the devices, based on and a second calculation processing unit that calculates a second offset that is a difference in device internal time between the devices based on the acquired time stamp information; and a third calculation processing unit that measures the accuracy of the internal time of each of the plurality of devices with respect to the reference time based on the offset.
  • a measurement method is a measurement method using a measuring device that measures the accuracy of the internal time of each of a plurality of devices with respect to a reference time in a plurality of devices that synchronize the internal time of the device.
  • the plurality of devices includes a first device, a second device, and a third device, and the first device synchronizes the internal time of the device with the reference time, and transmits and receives packets to the
  • the second device has a master function for distributing the internal time to a lower device, and the second device synchronizes the internal time with the time distributed from the higher device having the master function by transmitting and receiving packets with the master function.
  • the third device has the slave function of synchronizing the internal time of the device with the time delivered from the second device by packet transmission/reception, and acquires the reference time from the satellite signal.
  • obtaining time stamp information indicating the time when the packet was transmitted and received between the devices, and based on the obtained time stamp information, performing intra-device processing between the devices calculating a second offset that is a difference in time; measuring the accuracy of the internal time of each of the plurality of devices with respect to the reference time based on the first offset and the second offset; including.
  • the time synchronization system includes a plurality of devices that synchronize the device internal time, and the accuracy of the device internal time of each of the plurality of devices with respect to the reference time in the plurality of devices. and a measuring instrument for measuring, wherein the plurality of devices includes a first device, a second device and a third device, and the first device is within the device at the reference time
  • the second device has a master function for synchronizing the time and distributing the internal time to a lower device by packet transmission and reception, and the second device receives the master function and the upper device having the master function by packet transmission and reception.
  • said measuring instrument is a first acquisition unit that acquires the reference time from a satellite signal; a second acquisition unit that acquires time information related to internal time of the first device; and a reference time acquired by the first acquisition unit.
  • a first calculation processing unit that calculates a first offset that is a difference between the reference time and the device internal time of the first device; a second calculation for obtaining time stamp information indicating the time when the packet was transmitted and received between the devices, and calculating a second offset, which is a difference in device internal time between the devices, based on the obtained time stamp information; a processing unit; and a third calculation processing unit that measures the accuracy of the internal time of each of the plurality of devices with respect to the reference time based on the first offset and the second offset.
  • the measuring instrument measuring method, and time synchronization system according to the present disclosure, it is possible to more easily measure the accuracy of the internal time of multiple devices.
  • FIG. 1 is a diagram illustrating a configuration example of a time synchronization system according to an embodiment of the present disclosure
  • FIG. It is a figure which shows the more detailed example of a structure of the time synchronous system shown in FIG. It is a figure showing the example of composition of the time synchronous system concerning another one embodiment of this indication.
  • 4 is a diagram showing a more detailed configuration example of the time synchronization system shown in FIG. 3;
  • FIG. 3 is a flow chart showing an example of the operation of the measuring instrument shown in FIG. 2;
  • 6 is a diagram for explaining calculation of a GMC-BC offset by a GMC-BC offset calculation processing unit shown in FIG. 5;
  • FIG. 11 is a diagram showing a configuration example of a time synchronization system according to yet another embodiment of the present disclosure
  • 8 is a diagram showing a more detailed configuration example of the time synchronization system shown in FIG. 7
  • FIG. FIG. 11 is a diagram showing a configuration example of a time synchronization system according to yet another embodiment of the present disclosure
  • 10 is a diagram showing a more detailed configuration example of the time synchronization system shown in FIG. 9
  • FIG. 9 is a flow chart showing an example of the operation of the measuring device shown in FIG. 8
  • FIG. 9 is a diagram for explaining calculation of a GMC-BC offset by a GMC-BC offset calculation processing unit shown in FIG. 8;
  • FIG. 9 is a diagram for explaining transmission delay calculation by a transmission delay calculation processing unit shown in FIG. 8; It is a figure which shows an example of the hardware configuration of the measuring device which concerns on this indication. It is a figure which shows the structural example of the conventional time synchronous system.
  • FIG. 1 is a diagram showing a configuration example of a time synchronization system 1 according to an embodiment of the present disclosure.
  • the time synchronization system 1 includes a Grand Master Clock 110, a Boundary Clock 20, a client device 30, and a measuring device 40.
  • the Grand Master Clock 10 as the first device receives GNSS satellite signals (GNSS signals) via the GNSS antenna.
  • the Grand Master Clock 10 acquires UTC (reference time) from the received GNSS signal, and synchronizes the device internal time with the acquired UTC.
  • the Grand Master Clock 10 has a master function of distributing the device internal time by sending and receiving PTP packets via the network 2 .
  • the Grand Master Clock 10 distributes the device internal time to the Boundary Clock 20 .
  • the Grand Master Clock 10 outputs a pulse signal (1PPS signal) at 1PPS to the measuring device 40 in synchronization with the device internal time.
  • the Boundary Clock 20 as a second device functions as a device with a slave function for a higher-level device with a master function, and functions as a device with a master function for a lower-level device with a slave function.
  • the Boundary Clock 20 functions as a device having a slave function with respect to the Grand Master Clock 10 and functions as a device having a master function with respect to the client device 30 . Therefore, the Boundary Clock 20 synchronizes the internal time of the Boundary Clock 20 with the time (reference time) delivered from the Grand Master Clock 10 by sending and receiving PTP packets with the Grand Master Clock 10 . Then, the Boundary Clock 20 distributes the device internal time to the client device 30 by sending and receiving PTP packets with the client device 30 .
  • FIG. 1 shows an example in which one Boundary Clock 20 is provided between the Grand Master Clock 10 and the client device 30, it is not limited to this.
  • a plurality of Boundary Clocks 20 connected in series may be provided between the Grand Master Clock 10 and the client device 30 .
  • the Boundary Clock 20 synchronizes the device internal time with the time distributed from the upper device (Grand Master Clock 10 or other Boundary Clock 20), and the lower device (other Boundary Clock 20 or client device 30) Distribute the time.
  • the Boundary Clock 20 transmits time stamp information indicating the time when the PTP packet was transmitted and received between the Grand Master Clock 10 and the Boundary Clock 20 to the measuring instrument 40 via the network.
  • the client device 30 as the third device has a slave function. Specifically, the client device 30 synchronizes the device internal time with the time distributed from the Boundary Clock 20 by transmitting/receiving PTP packets to/from the Boundary Clock 20 . The client device 30 transmits time stamp information indicating the time when the PTP packet was transmitted and received between the Boundary Clock 20 and the client device 30 to the measuring device 40 via the network.
  • the measuring device 400 measures the accuracy of the internal time of each of the multiple devices that synchronize the internal time in the time synchronization system 1, that is, the Grand Master Clock 10, the Boundary Clock 20, and the client device 30. Specifically, the measuring device 40 acquires the reference time (UTC) from the GNSS signal received via the GNSS antenna. Also, the measuring instrument 40 acquires time information regarding the internal time of the Grand Master Clock 10 from the 1PPS signal output from the Grand Master Clock 10 . Also, the measuring device 40 acquires time stamp information transmitted from the Boundary Clock 20 and the client device 30 via the network. Based on the obtained reference time, time information, and time stamp information, the measuring device 40 measures the accuracy of the device internal time with respect to the reference time in each of the plurality of devices.
  • UTC reference time
  • the measuring instrument 40 acquires time information regarding the internal time of the Grand Master Clock 10 from the 1PPS signal output from the Grand Master Clock 10 .
  • time stamp information transmitted from the Boundary Clock 20 and the client device 30
  • the measuring device 40 acquires the 1PPS signal from the Grand Master Clock 10 and acquires time information from the acquired 1PPS signal. Therefore, the Grand Master Clock 10 and the measuring device 40 must be provided within a range where they can be connected by a coaxial cable that transmits a 1PPS signal, for example, within the same building.
  • the configuration of the Boundary Clock 20, the client device 30 and the measuring device 40 will be described with reference to FIG.
  • the configuration of the Grand Master Clock 10 is the same as that of a device with a general master function that acquires the reference time from the GNSS signal and synchronizes the time in the device with the acquired reference time, so the explanation is omitted. .
  • the Boundary Clock 20 includes packet transmission/reception units 21 and 22, a time synchronization processing unit 23, and a time stamp transmission unit 24.
  • the packet transmission/reception unit 21 transmits/receives PTP packets to/from the Grand Master Clock 10 .
  • the packet transmission/reception unit 22 transmits/receives PTP packets to/from the client device 30 .
  • the time synchronization processing unit 23 acquires the time delivered by the Grand Master Clock 10 from the PTP packets acquired from the Grand Master Clock 10 via the packet transmission/reception unit 21, and synchronizes the internal time of the Boundary Clock 20 with the acquired time.
  • the time stamp transmission unit 24 transmits time stamp information indicating the time when the PTP packet was transmitted and received between the packet transmission/reception unit 21 and the Grand Master Clock 10 to the measuring instrument 40 via the network.
  • the Grand Master Clock 10 also stores part of the time stamp information of the PTP packets transmitted and received between the Grand Master Clock 10 and the Boundary Clock 20 . Therefore, the Grand Master Clock 10 may transmit the timestamp information to be saved to the measuring device 40 . Also, both the Grand Master Clock 10 and the Boundary Clock 20 transmit time stamp information to the measuring instrument 40, and the measuring instrument 40 receives the time stamp information transmitted from the Grand Master Clock 10 and the time stamp information transmitted from the Boundary Clock 20. may be compared.
  • the client device 30 includes a packet transmission/reception section 31, a time synchronization processing section 32, and a time stamp transmission section 33.
  • the packet transmission/reception unit 31 transmits/receives PTP packets to/from the Boundary Clock 20 .
  • the time synchronization processing unit 32 acquires the time delivered by the Boundary Clock 20 from the PTP packets received from the Boundary Clock 20 via the packet transmission/reception unit 31, and synchronizes the internal time of the client device 30 with the acquired time.
  • the time stamp transmission unit 33 transmits time stamp information indicating the time when the PTP packet was transmitted and received between the Boundary Clock 20 and the packet transmission/reception unit 31 to the measuring instrument 40 via the network.
  • the time stamp information of the PTP packets transmitted and received between the Boundary Clock 20 and the client device 30 is partially stored in the Boundary Clock 20 as well. Therefore, the Boundary Clock 20 may transmit the timestamp information to be saved to the measuring device 40 .
  • both the Boundary Clock 20 and the client device 30 transmit time stamp information to the measuring device 40, and the measuring device 40 receives the time stamp information transmitted from the Boundary Clock 20 and the time stamp information transmitted from the client device 30. may be compared.
  • the measuring device 40 includes a UTC acquisition unit 41, a GMC time acquisition unit 42, a UTC-GMC offset calculation processing unit 43, a GMC-BC offset calculation processing unit 44, and a BC-client offset calculation unit.
  • a processing unit 45 and a time accuracy calculation processing unit 46 are provided.
  • the UTC acquisition unit 41 as a first acquisition unit receives GNSS signals, which are satellite signals transmitted from GNSS satellites, via GNSS antennas.
  • the UTC acquisition unit 41 acquires the reference time (UTC) from the received GNSS signal, and synchronizes the internal time of the measuring device 40 with the acquired time.
  • the UTC acquisition unit 41 outputs the acquired reference time to the UTC-GMC offset calculation processing unit 43 .
  • the GMC time acquisition unit 42 as the second acquisition unit acquires time information regarding the internal time of the Grand Master Clock 10 as the first device. Specifically, the GMC time acquisition unit 42 acquires the time information from the 1PPS signal output from the Grand Master Clock 10 and output at 1PPS in synchronization with the internal time of the Grand Master Clock 10 . The GMC time acquisition unit 42 outputs the acquired time information to the UTC-GMC offset calculation processing unit 43 .
  • the UTC-GMC offset calculation processing unit 43 as a first calculation processing unit, based on the reference time acquired by the UTC acquisition unit 41 and the time information acquired by the GMC time acquisition unit 42, the reference time (UTC) and Grand A UTC-GMC offset (first offset), which is the difference from the internal time of the master clock 10, is calculated.
  • the UTC-GMC offset calculation processing unit 43 outputs the calculated UTC-GMC offset to the time accuracy calculation processing unit 46 .
  • the GMC-BC offset calculation processing unit 44 as a second calculation processing unit is a time stamp indicating the time when the PTP packet was transmitted and received between the Grand Master Clock 10 and the Boundary Clock 20, which was transmitted from the Boundary Clock 10 via the network. Get information.
  • the GMC-BC offset calculation processing unit 44 calculates the GMC-BC offset (second offset), which is the difference between the internal device time of the Grand Master Clock 10 and the internal device time of the Boundary Clock 20, based on the acquired time stamp information. do.
  • the GMC-BC offset calculation processing unit 44 outputs the calculated GMC-BC offset to the time accuracy calculation processing unit 46 .
  • the BC-client offset calculation processing unit 45 as a second calculation processing unit is a time indicating the time when the PTP packet was transmitted and received between the Boundary Clock 20 and the client device 30, which is transmitted from the client device 30 via the network. Get stamp information.
  • the BC-client offset calculation processing unit 45 calculates the BC-CL offset (second offset), which is the difference between the internal device time of the Boundary Clock 20 and the internal device time of the client device 30, based on the acquired time stamp information. do.
  • the BC-client offset calculation processing unit 45 outputs the calculated BC-CL offset to the time accuracy calculation processing unit 46 .
  • the GMC-BC offset calculation processing unit 44 and the BC-client offset calculation processing unit 45 as the second calculation processing unit acquire time stamp information indicating the time when the PTP packet was transmitted and received between the devices, Based on the acquired time stamp information, a second offset (GMC-BC offset and BC-CL offset), which is the difference in device internal time between devices, is acquired.
  • a plurality of Boundary Clocks 20 may be provided between the Grand Master Clock 10 and the client device 30 .
  • an offset which is the difference in device time between the two Boundary Clocks 20, may be calculated based on time stamp information indicating the times at which PTP packets were transmitted and received between the Boundary Clocks 20.
  • the time accuracy calculation processing unit 46 as a third calculation processing unit uses the UTC-GMC offset output from the UTC-GMC offset calculation processing unit 43, the GMC-BC offset output from the GMC-BC offset calculation processing unit 44 Based on the offset and the BC-CL offset output from the BC-client offset calculation processing unit 45, measure the precision of the internal time of each device (Grand Master Clock 10, Boundary Clock 20 and client device 30) with respect to the reference time. do.
  • the measuring instrument 40 acquires the time stamp information from the Boundary Clock 20 and the client device 30, and uses the acquired time stamp information to calculate the internal time offset between the devices (the second offset ). Then, the measuring device 40 measures the accuracy of the device internal time of each device with respect to the reference time based on the UTC-GMC offset (first offset) and the device internal time offset (second offset) between the devices. . Therefore, it is not necessary to carry the measuring device 40 to the installation place of each device when performing the measurement. In addition, it is possible to alleviate restrictions such as the installation location of the GNSS antenna and bringing in the measuring instrument 400 synchronized with the reference time, as in the conventional time synchronization system 1a.
  • the measuring device 40 it is possible to more easily measure the accuracy of the device internal time of a plurality of devices.
  • the measuring instrument 40 according to the present disclosure it is possible to remotely measure the accuracy of the internal time of each device, so maintenance can be quickly performed when a time error occurs.
  • the measuring device 40 has been described using an example in which the time information of the Grand Master Clock 10 is obtained from the 1PPS signal, but it is not limited to this.
  • FIG. 3 is a diagram showing a configuration example of a time synchronization system 1A according to another embodiment of the present disclosure, which uses a different method of acquiring time information from the time synchronization system 1 shown in FIG.
  • the same components as in FIG. 1 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the time synchronization system 1A shown in FIG. 3 includes a Grand Master Clock 10A, a Boundary Clock 20, a client device 30, and a measuring device 40A.
  • the time synchronization system 1A shown in FIG. 3 differs from the time synchronization system 1 shown in FIG. 1 in that the Grand Master Clock 10 is changed to a Grand Master Clock 10A and the measuring device 40 is changed to a measuring device 40A. .
  • the Grand Master Clock 10A transmits and receives PTP packets to and from the measuring instrument 40 via the network instead of transmitting 1PPS signals.
  • the measuring instrument 40A acquires the time information of the Grand Master Clock 10 by sending and receiving PTP packets with the Grand Master Clock 10A.
  • the configuration of the measuring device 40A will be described with reference to FIG.
  • the same reference numerals are assigned to the same configurations as in FIG. 2, and the description thereof is omitted.
  • the measuring device 40A includes a UTC acquisition unit 41, a GMC time acquisition unit 42A, a UTC-GMC offset calculation processing unit 43, a GMC-BC offset calculation processing unit 44, and a BC-client offset calculation unit. It includes a processing unit 45 , a time accuracy calculation processing unit 46 and a packet transmission/reception unit 47 .
  • a measuring instrument 40A shown in FIG. 4 differs from the measuring instrument 40 shown in FIG.
  • the packet transmission/reception unit 47 transmits/receives PTP packets to/from the Grand Master Clock 10A via the network, and outputs the PTP packets received from the Grand Master Clock 10A to the GMC time acquisition unit 42A.
  • the GMC time acquisition unit 42A acquires time information from the PTP packet received by the packet transmission/reception unit 47.
  • the PTP packet contains a time stamp corresponding to the internal time of the Grand Master Clock 10A.
  • the GMC time acquisition unit 42A acquires time information based on the time stamp included in the acquired PTP packet. That is, the GMC time acquisition unit 42A as a second acquisition unit acquires a PTP packet including a time stamp corresponding to the internal time of the Grand Master Clock 10A from the Grand Master Clock 10A via the network, and from the acquired PTP packet Get time information.
  • the Grand Master Clock 10 and the measuring device 40 In the time synchronization system 1, since the measuring device 40 acquires time information from the 1PPS signal from the Grand Master Clock 10, the Grand Master Clock 10 and the measuring device 40 must be connected with a coaxial cable that transmits the 1PPS signal. Therefore, the Grand Master Clock 10 and the measuring device 40 need to be installed within a range where they can be connected with a coaxial cable, for example, within the same building. On the other hand, in the time synchronization system 1A, the Grand Master Clock 10A and the measuring device 40A should be able to transmit and receive PTP packets via the network. Therefore, it is possible to further relax the restrictions on the installation location and more easily measure the accuracy of the internal time of each of the plurality of devices.
  • FIG. 5 is a flowchart showing an example of the operation of the measuring device 40 according to this embodiment, and is a diagram for explaining the measuring method by the measuring device 40.
  • FIG. 5 is a flowchart showing an example of the operation of the measuring device 40 according to this embodiment, and is a diagram for explaining the measuring method by the measuring device 40.
  • the UTC acquisition unit 41 acquires the reference time (UTC) from the GNSS signal received from the satellite via the GNSS antenna (step S11).
  • the GMC time acquisition unit 42 acquires time information regarding the internal time of the Grand Master Clock 10 as the first device (step S12). In the time synchronization system 1 shown in FIG. 2 , the GMC time acquisition section 42 acquires time information from the 1PPS signal output from the Grand Master Clock 10 .
  • the UTC-GMC offset calculation processing unit 43 calculates the UTC-GMC offset (first offset) based on the reference time (UTC) obtained by the UTC obtaining unit 41 and the time information obtained by the GMC time obtaining unit 42. In the following it is assumed that the UTC-GMC offset is X seconds.
  • the GMC-BC offset calculation processing unit 44 acquires time stamp information indicating the time when the PTP packet was transmitted and received between the Grand Master Clock 10 and the Boundary Clock 20 from the Boundary Clock 20 via the network.
  • the GMC-BC offset calculation processing unit 44 calculates a GMC-BC offset (second offset) based on the acquired time stamp information (step S14). In the following, it is assumed that the GMC-BC offset is Y seconds. Details of the calculation of the GMC-BC offset will be described later.
  • the BC-client offset calculation processing unit 45 acquires time stamp information indicating the time when the PTP packet was transmitted and received between the Boundary Clock 20 and the client device 30 from the client device 30 via the network.
  • the BC-client offset calculation processing unit 45 calculates a BC-client offset (second offset) based on the acquired time stamp information (step S15). In the following, let the BC-client offset be Z seconds.
  • step S11 to step S13, the process of step S14, and the process of step S15 are described as branching, but in reality, these processes are branched. It is executed sequentially.
  • the time accuracy calculation processing unit 46 measures the accuracy of the internal time of each device with respect to the reference time based on the UTC-GMC offset, the GMC-BC offset, and the BC-client offset (step S16). For example, the time accuracy calculation processing unit 46 calculates the difference (offset) between the reference time and the internal time of the client device 20 as the accuracy of the internal time of the client device 30 with respect to the reference time. Specifically, the time accuracy calculation processing unit 46 calculates the sum of the UTC-GMC offset (X seconds), the GMC-BC offset (Y seconds), and the BC-client offset (Z seconds) (X+Y+Z) , the offset between the reference time and the internal time of the client device 30 is calculated.
  • a message sent and received between the Grand Master Clock 10 and the Boundary Clock 20 according to the PTP will be explained.
  • a message sent and received between the Grand Master Clock 10 and the Boundary Clock 20 consists of one or more PTP packets.
  • Grand Master Clock 10 first sends a Sync message to Boundary Clock 20 (step S21).
  • the Grand Master Clock 10 transmits to the Boundary Clock 20 a Sync message including a time stamp indicating time T1 (first time), which is the transmission time of the Sync message.
  • the Boundary Clock 20 When the Boundary Clock 20 receives the Sync message transmitted from the Grand Master Clock 10 at time T2 (second time), it transmits a Delay_Req message to the Boundary Clock 10 at time T3 in response to the Sync message (step S22). .
  • the time stamp transmission unit 24 holds a time stamp indicating the time T2 when the Sync message was received and a time stamp indicating the time T3 when the Delay_Req message was transmitted.
  • the Grand Master Clock 10 Upon receiving the Delay_Req message sent from the Boundary Clock 20 at time T4, the Grand Master Clock 10 sends a Delay_Resp message to the Boundary Clock 20 in response to the Delay_Req message (step S23).
  • the Grand Master Clock 10 transmits to the Boundary Clock 20 a Delay_Resp message including a time stamp indicating time T4 (fourth time) at which the Delay_Req message was received.
  • the timestamp transmission unit 24 acquires the timestamp of the time T1 when the Grand Master Clock 10 transmitted the Sync message, which is included in the Sync message. Further, as described above, the time stamp transmission unit 24 holds a time stamp indicating the time T2 when the Sync message was received and a time stamp indicating the time T3 when the Delay_Req message was transmitted. Also, the time stamp transmission unit 24 acquires the time stamp indicating the time T4 when the Grand Master Clock 10 received the Delay_Req message, which is included in the Delay_Resp message. The time stamp transmission unit 24 transmits the acquired time stamp information indicating times T1 to T4 to the measuring device 40 .
  • the time accuracy calculation processing unit 46 calculates the internal time of the Grand Master Clock 10 estimated from the GMC-BC offset and the actual Grand Master It can be determined that there is a large deviation from the internal time of the Clock 10 .
  • the time accuracy calculation processing unit 46 cannot determine which value among the times T1 to T4 is not a normal value.
  • the Grand Master Clock 10 can acquire the times T1, T3, and T4. Therefore, the Grand Master Clock 10 may compare the acquired times T1, T3, T4 with the times T1, T3, T4 indicated in the time stamp information, and output the result of the comparison to the measuring device 40. . Based on the result of comparison by the Grand Master Clock 10, the time accuracy calculation processing section 46 can determine which value among the times T1 to T4 is not a normal value.
  • the measuring instruments 40 and 40A are explained using an example of acquiring time stamp information from the Boundary Clock 20 and the client device 30, but the present invention is not limited to this.
  • FIG. 7 is a diagram showing a configuration example of a time synchronization system 1B according to yet another embodiment of the present disclosure.
  • the time synchronization system 1B shown in FIG. 7 includes a Grand Master Clock 10B, a Boundary Clock 20B, a client device 30B, and a measuring device 40B.
  • the Grand Master Clock 10B receives the GNSS signal via the GNSS antenna, acquires the reference time (UTC) from the received GNSS signal, and synchronizes the internal time with the acquired reference time.
  • the Grand Master Clock 10B distributes the acquired reference time to the Boundary Clock 20B by transmitting and receiving PTP packets to and from the Boundary Clock 20B. Also, the Grand Master Clock 10B outputs a 1PPS signal at 1PPS to the measuring device 40B in synchronization with the device internal time.
  • the Grand Master Clock 10B outputs the PTP packet transmission delay between the Grand Master Clock 10B and the Boundary Clock 20B and the PTP packet transmission delay between the Boundary Clock 20B and the client device 30B to the measuring device 40B.
  • Boundary Clock 20B synchronizes the internal time of Boundary Clock 20B with the time (reference time) distributed from Grand Master Clock 10B by sending and receiving PTP packets with Grand Master Clock 10B.
  • the Boundary Clock 20B distributes the device internal time to the client device 30B by transmitting and receiving PTP packets to and from the client device 30B.
  • the client device 30B synchronizes the internal time of the device with the time delivered from the Boundary Clock 20B by transmitting and receiving PTP packets to and from the Boundary Clock 20B.
  • the measuring instrument 40B acquires the 1PPS signal and transmission delay output from the Grand Master Clock 10B. Also, the measuring device 40B acquires a copy of the packets transmitted and received between the Grand Master Clock 10B and the Boundary Clock 20B. Also, the measuring device 40B obtains a copy of the PTP packets transmitted and received between the Boundary Clock 20B and the client device 30B. Therefore, in the time synchronization system 1B shown in FIG. 7, copy points for copying PTP packets are provided between the Grand Master Clock 10B and the Boundary Clock 20B and between the Boundary Clock 20B and the client device 30B. In the following, the acquisition of a copy of the PTP packet by the measuring device 40B via the copy point may simply be referred to as "acquiring the PTP packet.”
  • the measuring device 40B acquires the time information of the Grand Master Clock 10B from the 1PPS signal output from the Grand Master Clock 10B. Also, the measuring device 40B acquires time stamp information from the acquired PTP packet. The measuring device 40B measures the accuracy of the internal time of each device with respect to the reference time based on the acquired time information, time stamp information, and transmission delay.
  • the Grand Master Clock 10B includes a packet transmission/reception section 11, a 1PPS transmission section 12, a transmission delay measurement packet transmission/reception section 13, and a transmission delay calculation processing section .
  • the packet transmission/reception unit 11 transmits/receives PTP packets to/from the Boundary Clock 20B.
  • the 1PPS transmission section 12 outputs a pulse signal (1PPS signal) at 1PPS to the measuring device 40B in synchronization with the internal time of the Grand Master Clock 10B.
  • the transmission delay measuring packet transmitting/receiving unit 13 transmits/receives a packet (transmission delay measuring packet) for measuring the transmission delay between the Grand Master Clock 10B and the Boundary Clock 20B to/from the Boundary Clock 20B.
  • the transmission delay calculation processing unit 14 calculates the transmission delay between the Grand Master Clock 10B and the Boundary Clock 20B based on the transmission delay measuring packet transmitted and received by the transmission delay measuring packet transmitting/receiving unit 13.
  • the transmission delay calculation processing unit 14 transmits the calculation result of the transmission delay to the measuring device 40B via the network.
  • the transmission delay calculation processing unit 14 also transmits the calculation result of the transmission delay between the Boundary Clock 20B and the client device 30B, which is output from the Boundary Clock 20B described later, to the measuring device 40B via the network.
  • the Boundary Clock 20B includes packet transmission/reception units 21 and 22, a time synchronization processing unit 23, transmission delay measurement packet transmission/reception units 25 and 26, and a transmission delay calculation processing unit 27.
  • the Boundary Clock 20B shown in FIG. 8 is different from the Boundary Clock 20 shown in FIG. point is different.
  • the transmission delay measuring packet transmitting/receiving unit 25 transmits/receives the transmission delay measuring packet to/from the Grand Master Clock 10B.
  • the transmission delay measuring packet transmitting/receiving unit 26 transmits/receives a transmission delay measuring packet to/from the client device 30B.
  • the transmission delay calculation processing unit 27 calculates the transmission delay between the Boundary Clock 20B and the client device 30B based on the transmission delay measurement packet transmitted and received to and from the client device 30B by the transmission delay measurement packet transmission and reception unit 26. .
  • the transmission delay calculation processing unit 27 outputs the calculation result of the transmission delay to the Grand Master Clock 10B.
  • the client device 30B includes a packet transmission/reception section 31, a time synchronization processing section 32, a transmission delay measurement packet transmission/reception section 34, and a transmission delay calculation processing section 35.
  • the client device 30B shown in FIG. 8 is different from the client device 30 shown in FIG. Points are different.
  • the transmission delay measuring packet transmitting/receiving unit 34 transmits/receives the transmission delay measuring packet to/from the Boundary Clock 20B.
  • the transmission delay calculation processing unit 35 calculates the transmission delay between the Boundary Clock 20B and the client device 30B based on the transmission delay measurement packet transmitted/received between the Boundary Clock 20B and the Boundary Clock 20B by the transmission delay measurement packet transmission/reception unit 34.
  • the measuring device 40B includes a UTC acquisition unit 41, a GMC time acquisition unit 42, a UTC-GMC offset calculation processing unit 43, a GMC-BC offset calculation processing unit 44B, and a BC-client offset calculation unit.
  • a processing unit 45B and a time accuracy calculation processing unit 46 are provided.
  • the measuring instrument 40B shown in FIG. 8 is different from the measuring instrument 40 shown in FIG. The difference is that the unit 45 is changed to a BC-client offset calculation processing unit 45B.
  • the GMC-BC offset calculation processing unit 44B acquires a copy of the PTP packets transmitted and received between the Grand Master Clock 10B and Boundary Clock 20B. Also, the GMC-BC offset calculation processing unit 44B acquires the calculation result of the transmission delay between the Grand Master Clock 10B and the Boundary Clock 20B output from the Grand Master Clock 10B. The GMC-BC offset calculation processing unit 44B acquires time stamp information from the acquired PTP packet, and calculates the GMC-BC offset based on the acquired time stamp information and transmission delay.
  • the BC-client offset calculation processing unit 45B acquires a copy of the PTP packets transmitted and received between the Boundary Clock 20B and the client device 30B. Also, the BC-client offset calculation processing unit 45B obtains the calculation result of the transmission delay between the Boundary Clock 20B and the client device 30B, which is output from the Grand Master Clock 10B. The BC-client offset calculation processing unit 45B obtains time stamp information from the obtained PTP packet, and calculates the BC-client offset based on the obtained time stamp information and transmission delay.
  • the measuring device 40 has been described using an example in which the time information of the Grand Master Clock 10 is obtained from the 1PPS signal, but it is not limited to this.
  • FIG. 9 is a diagram showing a configuration example of a time synchronization system 1C according to yet another embodiment of the present disclosure, which uses a different method of acquiring time information from the time synchronization system 1B shown in FIG.
  • the same components as in FIG. 7 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • a time synchronization system 1C shown in FIG. 9 includes a Grand Master Clock 10C, a Boundary Clock 20B, a client device 30B, and a measuring device 40C.
  • the time synchronization system 1C shown in FIG. 9 differs from the time synchronization system 1B shown in FIG. 7 in that the Grand Master Clock 10B is changed to the Grand Master Clock 10C and the measuring device 40B is changed to the measuring device 40C. .
  • the Grand Master Clock 10C transmits and receives PTP packets to and from the measuring instrument 40C via the network.
  • the measuring instrument 40C acquires the time information of the Grand Master Clock 10C by transmitting and receiving PTP packets to and from the Grand Master Clock 10C.
  • the configurations of the Grand Master Clock 10C and measuring device 40C will be described with reference to FIG.
  • FIG. 10 the same components as in FIG. 8 are denoted by the same reference numerals, and the description thereof is omitted.
  • the Grand Master Clock 10C includes packet transmitting/receiving sections 11 and 15, a transmission delay measuring packet transmitting/receiving section 13, and a transmission delay calculation processing section .
  • Grand Master Clock 10C shown in FIG. 10 differs from Grand Master Clock 10B shown in FIG.
  • the packet transmitting/receiving unit 15 transmits/receives PTP packets to/from the measuring instrument 40C via the network.
  • the measuring device 40C includes a UTC acquisition unit 41, a GMC time acquisition unit 42C, a UTC-GMC offset calculation processing unit 43, a GMC-BC offset calculation processing unit 44B, and a BC-client offset calculation unit.
  • a processing unit 45B, a time accuracy calculation processing unit 46, and a packet transmission/reception unit 48 are provided.
  • a measuring instrument 40C shown in FIG. 10 differs from the measuring instrument 40B shown in FIG. 8 in that the GMC time acquiring section 42B is changed to a GMC time acquiring section 42C and a packet transmitting/receiving section 47 is added.
  • the packet transmission/reception unit 48 transmits/receives PTP packets to/from the Grand Master Clock 10C via the network, and outputs the PTP packets received from the Grand Master Clock 10C to the GMC time acquisition unit 42C.
  • the GMC time acquisition unit 42C acquires time information from the PTP packet received by the packet transmission/reception unit 48.
  • the PTP packet contains a time stamp corresponding to the internal time of the Grand Master Clock 10C.
  • 42 C of GMC time acquisition parts acquire time information based on the time stamp contained in the acquired PTP packet.
  • the measuring device 40B acquires time information from the 1PPS signal, so the Grand Master Clock 10B and the measuring device 40B must be connected with a coaxial cable that transmits the 1PPS signal. Therefore, the Grand Master Clock 10B and the measuring device 40B must be installed within a range where they can be connected with a coaxial cable, for example, within the same building.
  • the Grand Master Clock 10C and the measuring device 40C only need to be able to transmit and receive PTP packets via the network. Therefore, it is possible to further relax the restrictions on the installation location and more easily measure the accuracy of the internal time of each of the plurality of devices.
  • FIG. 11 is a flow chart showing an example of the operation of the measuring device 40B according to this embodiment, and is a diagram for explaining the measuring method by the measuring device 40B.
  • the same reference numerals are given to the same processes as in FIG. 5, and the description thereof is omitted.
  • the GMC-BC offset calculation processing unit 44B acquires a copy of the PTP packet transmitted and received between the Grand Master Clock 10B and the Boundary Clock 20B, and acquires time stamp information from the acquired PTP packet.
  • the GMC-BC offset calculation processing unit 44B calculates the GMC-BC offset based on the acquired time stamp information and the transmission delay between the Grand Master Clock 10B and the Boundary Clock 20B output from the Grand Master Clock 10B ( step S21). Details of the calculation of the GMC-BC offset will be described later.
  • the BC-client offset calculation processing unit 45B acquires a copy of the PTP packet transmitted and received between the Boundary Clock 20B and the client device 30B, and acquires time stamp information from the acquired PTP packet.
  • the BC-client offset calculation processing unit 45B calculates the BC-client offset based on the acquired time stamp information and the transmission delay between the Boundary Clock 20B and the client device 30 output from the Grand Master Clock 10B (step S22).
  • the accuracy of the internal time of each device with respect to the reference time can be measured. done.
  • step S11 to step S13 the process from step S11 to step S13, the process of step S21, and the process of step S22 are described as branching, but in reality, these processes are branched. are executed sequentially.
  • Grand Master Clock 10B first sends a Sync message to Boundary Clock 20B (step S31).
  • the Grand Master Clock 10B transmits a Sync message including a time stamp indicating time T1, which is the transmission time of the Sync message, to the Boundary Clock 20B.
  • Boundary Clock 20B When the Boundary Clock 20B receives the Sync message transmitted from the Grand Master Clock 10B at time T2, it transmits a Delay_Req message to the Grand Master Clock 10B at time T3 in response to the Sync message (step S32).
  • Boundary Clock 20B includes a time stamp indicating time T3, which is the transmission time of Delay_Req message, in Delay_Req message and transmits it to Grand Master Clock 10B.
  • the Grand Master Clock 10B When the Grand Master Clock 10B receives the Delay_Req message transmitted from the Boundary Clock 20B at time T4, it transmits a Delay_Resp message to the Boundary Clock 20B in response to the Delay_Req message (step S33).
  • the Grand Master Clock 10B transmits a Delay_Resp message including a time stamp indicating time T4, which is the reception time of the Delay_Req message, to the Boundary Clock 20B.
  • the GMC-BC offset calculation processing unit 44B obtains a copy of the PTP packet that constitutes the message sent and received between the Grand Master Clock 10B and the Boundary Clock 20B.
  • the GMC-BC offset calculation processing unit 44B acquires the PTP packet P1 that is a copy of the PTP packet that constitutes the Sync message.
  • the PTP packet P1 is a packet that is transmitted from the Grand Master Clock 10B to the Boundary Clock 20B and that includes the time T1 that is the transmission time of the packet.
  • the GMC-BC offset calculation processing unit 44B acquires the PTP packet P2 that constitutes the Delay_Req message.
  • the PTP packet P2 is a packet transmitted from the Boundary Clock 20B to the Grand Master Clock 10B, and is a packet containing the transmission time T3 of the packet.
  • the GMC-BC offset calculation processing unit 44B acquires the PTP packet P3 (third packet) that constitutes the Delay_Resp message.
  • the PTP packet P3 is a packet transmitted from the Grand Master Clock 10B to the Boundary Clock 20B, and is a packet containing the time T4, which is the reception time of the PTP packet P2 forming the Delay_Req message.
  • the GMC-BC offset calculation processing unit 44B acquires time T1 from PTP packet P1, acquires time T3 from PTP packet P2, and acquires time T4 from PTP packet P3.
  • the GMC-BC offset calculation processing unit 44B calculates the GMC-BC offset by the following equation (2) based on the times T1 to T4.
  • GMC-BC offset ((T2-T1)-(T4-T3))/2 Expression (2)
  • the GMC-BC offset calculation processing unit 44B can receive times T1, T3, and T4 from the obtained copy of the PTP packet.
  • the time T2 which is the reception time of the sync message by the Boundary Clock 20B, cannot be obtained from the PTP packet
  • the GMC-BC offset calculation processing section 44B needs to obtain the time T2 separately.
  • As a method of acquiring the time T2 there is a method of using the transmission delay between the master clock 10B and the boundary clock 20B.
  • the transmission delay between the master clock 10B and the boundary clock 20B is calculated by the transmission delay calculation processor 14 by transmitting and receiving transmission delay measurement packets between the master clock 10B and the boundary clock 20B. Calculation of the transmission delay by the transmission delay calculation processing unit 14 will be described below with reference to FIG.
  • ETH-DM is a delay measurement method specified in JT-Y1731 OAM functions and mechanisms for Ethernet based networks.
  • ETH-DM There are two types of ETH-DM, 1WAY ETH-DM and 2WYA ETH-DM, but the case of using 2WAY ETH-DM will be described below as an example.
  • the transmission delay measuring packet transmitting/receiving section 13 of the Master Clock 10B transmits the DMM frame to the Boundary Clock 20B (step S41).
  • the transmission delay measuring packet transmitter/receiver 25 of the Boundary Clock 20B transmits the DMR frame to the Master Clock 10B (step S42).
  • the DMM frame transmission time by the master clock 10B is Tx Time stampf
  • the DMM frame reception time by the Boundary Clock 20B is Rx Time stampf.
  • Tx Time stampb be the transmission time of the DMR frame by the Boundary Clock 20B
  • Rx Time stampb be the reception time of the DMR frame by the Master Clock 10B.
  • the Boundary Clock 20B includes the reception time Rx Time stampf of the DMM frame and the transmission time Tx Time stampb of the DMR frame in the DMR frame and transmits it to the Master Clock 10B.
  • the ETH-DM frame delay (time required for round trip between Master Clock 10B and Boundary Clock 20B) can be calculated by the following equation (3).
  • Frame delay (Rx Time stampb - Tx Time stampf) - (Tx Time stampb - Rx Time stampf) ... formula (3)
  • the transmission delay calculation processing unit 14 acquires Rx Time stampf and Tx Time stampb from the DMR frame received from the Boundary Clock 20B.
  • the transmission delay calculation processing unit 14 can acquire Tx Time stampf and Rx Time stampb from transmission of DMM frames and reception of DMR frames by the transmission delay measuring packet transmission/reception unit 13 . Therefore, the transmission delay calculation processing unit 14 can calculate the frame delay using equation (3).
  • the transmission delay calculation processing unit 14 outputs the transmission result of the transmission delay (frame delay) to the measuring device 40B.
  • the GMC-BC offset calculation processing unit 44B can calculate the time T2 based on the transmission delay calculated by the transmission delay calculation processing unit 14 and equation (4). Then, the GMC-BC offset calculation processing unit 44B calculates the GMC-BC offset based on the following equation (5).
  • GMC-BC offset ((T2-T1)-(T4-T3))/2 Expression (5)
  • the transmission delay calculation method described with reference to FIG. 13 is merely an example, and any method may be used as long as the transmission delay can be obtained.
  • the hardware configuration of the measuring instrument 40 will be described.
  • the measuring device 40 will be described below as an example, the same applies to the measuring devices 40A, 40B, and 40C.
  • FIG. 14 is a diagram showing an example hardware configuration of the measuring device 40 according to an embodiment of the present disclosure.
  • FIG. 14 shows an example of the hardware configuration of the measuring device 40 when the measuring device 40 is configured by a computer capable of executing program instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a workstation, a PC (Personal computer), an electronic notepad, or the like.
  • Program instructions may be program code, code segments, etc. for performing the required tasks.
  • the measuring instrument 40 includes a processor 410, a ROM (Read Only Memory) 420, a RAM (Random Access Memory) 430, a storage 440, an input section 450, a display section 460 and a communication interface (I/F) 470.
  • the processor 410 is specifically a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), etc. may be configured by a plurality of processors of
  • the processor 410 is a controller that controls each configuration and executes various arithmetic processing. That is, processor 410 reads a program from ROM 420 or storage 440 and executes the program using RAM 430 as a work area. The processor 410 performs control of the above components and various arithmetic processing according to programs stored in the ROM 420 or the storage 440 . In this embodiment, the ROM 420 or storage 440 stores a program for causing a computer to function as the measuring instrument 40 according to the present disclosure.
  • each configuration of the measuring instrument 40 that is, the UTC acquisition unit 41, the GMC time acquisition unit 42, the UTC-GMC offset calculation processing unit 43, the GMC-BC client offset A calculation processing unit 44, a BC-client offset calculation processing unit 45, and a time accuracy calculation processing unit 46 are realized.
  • Programs are stored in non-transitory storage media such as CD-ROM (Compact Disk Read Only Memory), DVD-ROM (Digital Versatile Disk Read Only Memory), USB (Universal Serial Bus) memory, etc. may be provided in Also, the program may be downloaded from an external device via a network.
  • CD-ROM Compact Disk Read Only Memory
  • DVD-ROM Digital Versatile Disk Read Only Memory
  • USB Universal Serial Bus
  • the ROM 420 stores various programs and various data.
  • RAM 430 temporarily stores programs or data as a work area.
  • the storage 440 is configured by a HDD (Hard Disk Drive) or SSD (Solid State Drive) and stores various programs including an operating system and various data.
  • the input unit 450 includes a pointing device such as a mouse and a keyboard, and is used for various inputs.
  • the display unit 460 is, for example, a liquid crystal display, and displays various information.
  • the display unit 460 may employ a touch panel method and function as the input unit 450 .
  • the communication interface 470 is an interface for communicating with other devices such as external devices (not shown), and uses standards such as Ethernet (registered trademark), FDDI, and Wi-Fi (registered trademark), for example.
  • a computer can be preferably used to function as each part of the measuring instrument 40 described above.
  • Such a computer is realized by storing a program describing the processing details for realizing the function of each part of the measuring instrument 40 in the memory of the computer, and reading and executing the program by the processor of the computer. be able to. That is, the program can cause the computer to function as the measuring instrument 40 described above. It is also possible to record the program on a non-temporary recording medium. It is also possible to provide the program via a network.
  • a measuring instrument for measuring the accuracy of the internal time of each of the plurality of devices with respect to a reference time in a plurality of devices that synchronize the device time, the plurality of devices includes a first device, a second device and a third device;
  • the first device has a master function for synchronizing the device time with the reference time and distributing the device time to a lower device by transmitting and receiving packets
  • the second device has the master function and a slave function for synchronizing the internal time of the device with the time delivered from the host device having the master function by packet transmission/reception
  • the third device has the slave function for synchronizing the internal time of the device with the time delivered from the second device by packet transmission/reception
  • the meter comprises a processor;
  • the processor obtaining the reference time from a satellite signal; Acquiring time information related to the internal device time of the first device; calculating a first offset, which is a difference between the reference time and the internal device time of the first device, based on the reference time and the acquired time information
  • the processor acquires a copy of a packet transmitted and received between the devices via a network, acquires the time stamp information from the acquired packet, and transmits the time stamp information and the packet between the devices. and a transmission delay of .
  • the first device has a master function for synchronizing the device time with the reference time and distributing the device time to a lower device by transmitting and receiving packets
  • the second device has the master function and a slave function for synchronizing the internal time of the device with the time delivered from the host device having the master function by packet transmission/reception
  • the third device has the slave function for synchronizing the internal time of the device with the time delivered from the second device by packet transmission/reception, obtaining the reference time from a satellite signal; Acquiring time information related to the internal device time of the first device; calculating a first offset, which is a difference between the reference time and the device internal time of the first device, based on the obtained reference time and the obtained time information; Obtaining time stamp
  • a time synchronization system comprising a measuring device that measures the accuracy of the internal time of each of the plurality of devices with respect to the reference time in the plurality of devices, the plurality of devices includes a first device, a second device and a third device;
  • the first device has a master function for synchronizing the device time with the reference time and distributing the device time to a lower device by transmitting and receiving packets
  • the second device has the master function and a slave function for synchronizing the internal time of the device with the time delivered from the host device having the master function by packet transmission/reception
  • the third device has the slave function for synchronizing the internal time of the device with the time delivered from the second device by packet transmission/reception
  • the meter comprises a processor, The processor obtaining the reference time from a satellite signal; Acquiring time information related to the internal device time of the first device; calculating a first offset, which is a difference between the reference time and the device internal time of the first device,
  • Time synchronization system 10 10A, 10B, 10C, 100 Grand Master Clock (first device) 11 packet transmitter/receiver 12 1PPS transmitter 13 packet transmitter/receiver for transmission delay measurement 14 transmission delay calculation processor 15 packet transmitter/receiver 20, 20B, 200 Boundary Clock (second device) 21, 22 packet transmission/reception unit 23 time synchronization processing unit 24 time stamp transmission unit 25, 26 transmission delay measurement packet transmission/reception unit 27 transmission delay calculation processing unit 30, 30B, 300 client device (third device) 31 packet transmission/reception unit 32 time synchronization processing unit 33 time stamp transmission unit 34 transmission delay measurement packet transmission/reception unit 35 transmission delay calculation processing unit 40, 40A, 40B, 40C, 400 measuring instrument 41 UTC acquisition unit (first acquisition unit) 42, 42A, 42C GMC time acquisition unit (second acquisition unit) 43 UTC-GMC offset calculation processing unit (first calculation processing unit) 44, 44B GMC-BC offset calculation processing unit (second calculation processing unit) 45, 45B BC-Client

Abstract

A measuring device (40) according to the present disclosure includes: a UTC acquisition unit (41) that acquires a reference time from a satellite signal; a GMC time acquisition unit (42) that acquires time information of an intra-device time of a first device having a master function; a UTC-GMC offset calculation processing unit (43) that calculates an offset between a UTC and a GMC; a GMC-BC offset calculation processing unit (44) that calculates an offset between the GMC and a BC; a BC-client offset calculation processing unit (45) that calculates an offset between the BC and a client; and a time accuracy calculation processing unit (46) that measures accuracy of the intra-device time of each of a plurality of devices on the basis of the offset between the UTC and the GMC, the offset between the GMC and the BC, and the offset between the BC and the client.

Description

測定器、測定方法および時刻同期システムMeasuring instrument, measuring method and time synchronization system
 本開示は、測定器、測定方法および時刻同期システムに関する。 The present disclosure relates to measuring instruments, measuring methods, and time synchronization systems.
 IEEE-1588規格で定義されたPTP(Precision Time Protocol)は、LAN(Local Area Network)上のコンピュータの時刻(装置内時刻)を高い精度で同期させるプロトコルである(非特許文献1参照)。図15は、PTPプロトコルを用いてネットワーク上の装置の時刻を同期させる、従来の時刻同期システム1aの構成例を示す図である。 The PTP (Precision Time Protocol) defined by the IEEE-1588 standard is a protocol that synchronizes the time (device time) of computers on a LAN (Local Area Network) with high accuracy (see Non-Patent Document 1). FIG. 15 is a diagram showing a configuration example of a conventional time synchronization system 1a that synchronizes the time of devices on a network using the PTP protocol.
 図15に示す時刻同期システム1aは、Grand Master Clock100と、Boundary Clock200と、クライアント装置300と、測定器400とを備える。Grand Master Clock100とBoundary Clock200とは、LANなどのネットワークを介して通信可能である。また、Boundary Clock200とクライアント装置300とは、LANなどのネットワークを介して通信可能である。 The time synchronization system 1a shown in FIG. 15 includes a Grand Master Clock 100, a Boundary Clock 200, a client device 300, and a measuring device 400. Grand Master Clock 100 and Boundary Clock 200 can communicate via a network such as a LAN. Also, the Boundary Clock 200 and the client device 300 can communicate via a network such as a LAN.
 Grand Master Clock100は、GPS(Global Positioning System)などの全球測位衛星システム(GNSS:Global Navigation Satellite System)の衛星からの信号(GNSS信号)を受信するGNSSアンテナを備える。Grand Master Clock100は、GNSSアンテナを介してGNSS信号を受信し、受信したGNSS信号から協定世界時(UTC:Universal Time Coordinated)を取得する。Grand Master Clock100は、ネットワークを介して、取得したUTCを基準時刻として配信するマスター機能を備える。 The Grand Master Clock 100 includes a GNSS antenna that receives signals (GNSS signals) from satellites of a global navigation satellite system (GNSS) such as GPS (Global Positioning System). The Grand Master Clock 100 receives GNSS signals via a GNSS antenna and obtains Universal Time Coordinated (UTC) from the received GNSS signals. The Grand Master Clock 100 has a master function that distributes the acquired UTC as a reference time via a network.
 Boundary Clock200は、マスター機能を備える上位の装置に対してはスレーブ機能を備える装置として機能し、スレーブ機能を備える下位の装置に対してはマスター機能を備える装置として機能する。本実施形態においては、Boundary Clock200は、Grand Master Clock100に対してはスレーブ機能を備える装置として機能し、クライアント装置300に対してはマスター機能を備える装置として機能する。したがって、Boundary Clock200は、Grand Master Clock100とのPTPパケットの送受信により、Grand Master Clock100から配信される時刻(基準時刻)に、Boundary Clock200の装置内時刻を同期させる。そして、Boundary Clock200は、クライアント装置300とのPTPパケットの送受信により、装置内時刻をクライアント装置300に配信する。 The Boundary Clock 200 functions as a device with a slave function with respect to a higher-level device with a master function, and functions as a device with a master function with respect to a lower-level device with a slave function. In this embodiment, the Boundary Clock 200 functions as a device having a slave function to the Grand Master Clock 100 and functions as a device having a master function to the client device 300 . Therefore, the Boundary Clock 200 synchronizes the internal time of the Boundary Clock 200 with the time (reference time) distributed from the Grand Master Clock 100 by transmitting and receiving PTP packets to and from the Grand Master Clock 100 . Then, the Boundary Clock 200 distributes the internal device time to the client device 300 by transmitting and receiving PTP packets with the client device 300 .
 クライアント装置300は、マスター機能を備える装置から配信された時刻に、装置内時刻を同期させるスレーブ機能を備える。図15に示す時刻同期システム1aでは、クライアント装置300は、Boundary Clock200から配信された時刻に、装置内時刻を同期させる。クライアント装置300は、例えば、携帯電話網における基地局装置である。 The client device 300 has a slave function that synchronizes the internal time of the device with the time delivered from the device with the master function. In the time synchronization system 1a shown in FIG. 15, the client device 300 synchronizes the internal time of the device with the time distributed from the Boundary Clock 200. FIG. The client device 300 is, for example, a base station device in a mobile phone network.
 図15に示すような、複数の装置が時刻を同期させる時刻同期システム1aにおいて、スレーブ機能を備える各装置(Boundary Clock200およびクライアント装置300)の装置内時刻の精度を測定する測定方法として、図15に示すように、GNSSに同期した(GNSSにより配信される時刻に同期した)測定器400を各装置に接続し、各装置が出力する1PPS(Pulse Per Second)信号などのタイミングリファレンス信号の信号品質と、GNSSにより配信される時刻とを比較する方法がある(例えば、非特許文献2参照。)。なお、1PPS信号とは、装置内時刻に同期して、1秒に1パルスずつ出力される信号である。1PPS信号は、例えば、同軸ケーブルにより測定器400と各装置とを繋ぐことで、各装置から測定器400に入力される。そのため、Boundary Clock200と、Boundary Clock200に接続された測定器400aとは、同軸ケーブルによる接続が可能な範囲、例えば、同じ建物内などに設置される必要がある。また、クライアント装置300と、クライアント300に接続された測定器400bとは、同軸ケーブルによる接続が可能な範囲、例えば、同じ建物内などに設置される必要がある。 As shown in FIG. 15, in a time synchronization system 1a in which a plurality of devices synchronizes the time, as a measurement method for measuring the accuracy of the internal time of each device (Boundary Clock 200 and client device 300) having a slave function, FIG. As shown in , the measuring device 400 synchronized with GNSS (synchronized with the time delivered by GNSS) is connected to each device, and the signal quality of the timing reference signal such as the 1PPS (Pulse Per Second) signal output by each device and the time delivered by GNSS (for example, see Non-Patent Document 2). The 1PPS signal is a signal output one pulse per second in synchronization with the internal time of the device. The 1PPS signal is input from each device to the measuring device 400 by connecting the measuring device 400 and each device with a coaxial cable, for example. Therefore, the Boundary Clock 200 and the measuring device 400a connected to the Boundary Clock 200 need to be installed within a range where connection by coaxial cable is possible, for example, within the same building. Also, the client device 300 and the measuring device 400b connected to the client 300 need to be installed within a range where they can be connected by a coaxial cable, for example, within the same building.
 図15を参照して説明した従来の測定方法では、測定場所にGNSS信号を受信可能なGNSSアンテナが必要になるという制約、あるいは、予めGNSS信号を十分な時間だけ受信し、GNSSに同期した測定器400を、同期が外れないうちに測定場所に運び、測定を行う必要があるという制約が生じてしまう。そのため、従来の測定方法には、装置内時刻の精度の測定を行うためには、事前の環境整備および多大な人的稼働が必要になるという問題がある。また、GNSSアンテナが必要であるという制約、あるいは、測定器400の同期が外れないうちに測定を行う必要があるという制約のため、測定が困難な場合があるといった問題がある。また、装置内時刻の精度の測定を行う装置ごとに測定器400を接続する必要があり、コストおよび手間がかかるという問題がある。 The conventional measurement method explained with reference to FIG. There is a constraint that the instrument 400 must be transported to the measurement site and the measurement performed before it is out of sync. Therefore, the conventional measurement method has the problem that prior preparation of the environment and a large amount of human labor are required in order to measure the accuracy of the time in the device. In addition, there is a problem that the measurement may be difficult due to the restriction that a GNSS antenna is required or the restriction that the measurement must be performed before the measuring device 400 is out of synchronization. In addition, it is necessary to connect the measuring device 400 to each device that measures the accuracy of the internal time, which is costly and time-consuming.
 上記のような問題点に鑑みてなされた本開示の目的は、上述したような制約を緩和し、より簡易に複数の装置の装置内時刻の精度の測定を行うことができる測定器、測定方法および時刻同期システムを提供することにある。 An object of the present disclosure, which has been made in view of the above-described problems, is to provide a measuring instrument and a measuring method capable of relaxing the above-described restrictions and more easily measuring the accuracy of the internal time of a plurality of devices. and to provide a time synchronization system.
 上記課題を解決するため、本開示に係る測定器は、装置内時刻を同期させる複数の装置における、基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する測定器であって、前記複数の装置は、第1の装置、第2の装置および第3の装置を含み、前記第1の装置は、前記基準時刻に装置内時刻を同期させ、パケットの送受信により前記装置内時刻を下位の装置に配信するマスター機能を備え、前記第2の装置は、前記マスター機能と、パケットの送受信により前記マスター機能を備える上位の装置から配信された時刻に装置内時刻を同期させるスレーブ機能とを備え、前記第3の装置は、パケットの送受信により前記第2の装置から配信された時刻に装置内時刻を同期させる前記スレーブ機能を備え、衛星信号から前記基準時刻を取得する第1の取得部と、前記第1の装置の装置内時刻に関する時刻情報を取得する第2の取得部と、前記第1の取得部が取得した基準時刻と、前記第2の取得部が取得した時刻情報とに基づき、前記基準時刻と前記第1の装置の装置内時刻との差である第1のオフセットを計算する第1の計算処理部と、装置間で前記パケットが送受信された時刻を示すタイムスタンプ情報を取得し、該取得したタイムスタンプ情報に基づき、前記装置間での装置内時刻の差である第2のオフセットを計算する第2の計算処理部と、前記第1のオフセットおよび前記第2のオフセットに基づき、前記基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する第3の計算処理部と、を備える。 In order to solve the above problems, a measuring instrument according to the present disclosure is a measuring instrument that measures the accuracy of the internal time of each of the plurality of devices with respect to a reference time in a plurality of devices that synchronize the internal time of the device, The plurality of devices includes a first device, a second device, and a third device, and the first device synchronizes the device internal time with the reference time, and lowers the device internal time by transmitting and receiving packets. and the second device has a master function and a slave function for synchronizing the internal time of the device with the time delivered from the host device having the master function by packet transmission/reception. wherein the third device has the slave function of synchronizing the internal time of the device with the time delivered from the second device by packet transmission/reception, and a first acquisition unit that acquires the reference time from a satellite signal and a second acquisition unit that acquires time information related to the device internal time of the first device, the reference time acquired by the first acquisition unit, and the time information acquired by the second acquisition unit a first calculation processing unit for calculating a first offset, which is the difference between the reference time and the internal time of the first device, and time stamp information indicating the time when the packet was transmitted and received between the devices, based on and a second calculation processing unit that calculates a second offset that is a difference in device internal time between the devices based on the acquired time stamp information; and a third calculation processing unit that measures the accuracy of the internal time of each of the plurality of devices with respect to the reference time based on the offset.
 また、上記課題を解決するため、本開示に係る測定方法は、装置内時刻を同期させる複数の装置における、基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する測定器による測定方法であって、前記複数の装置は、第1の装置、第2の装置および第3の装置を含み、前記第1の装置は、前記基準時刻に装置内時刻を同期させ、パケットの送受信により前記装置内時刻を下位の装置に配信するマスター機能を備え、前記第2の装置は、前記マスター機能と、パケットの送受信により前記マスター機能を備える上位の装置から配信された時刻に装置内時刻を同期させるスレーブ機能とを備え、前記第3の装置は、パケットの送受信により前記第2の装置から配信された時刻に装置内時刻を同期させる前記スレーブ機能を備え、衛星信号から前記基準時刻を取得するステップと、前記第1の装置の装置内時刻に関する時刻情報を取得するステップと、前記取得した基準時刻と、前記取得した時刻情報とに基づき、前記基準時刻と前記第1の装置の装置内時刻との差である第1のオフセットを計算するステップと、装置間で前記パケットが送受信された時刻を示すタイムスタンプ情報を取得し、該取得したタイムスタンプ情報に基づき、前記装置間での装置内時刻の差である第2のオフセットを計算するステップと、前記第1のオフセットおよび前記第2のオフセットに基づき、前記基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定するステップと、を含む。 Further, in order to solve the above problems, a measurement method according to the present disclosure is a measurement method using a measuring device that measures the accuracy of the internal time of each of a plurality of devices with respect to a reference time in a plurality of devices that synchronize the internal time of the device. wherein the plurality of devices includes a first device, a second device, and a third device, and the first device synchronizes the internal time of the device with the reference time, and transmits and receives packets to the The second device has a master function for distributing the internal time to a lower device, and the second device synchronizes the internal time with the time distributed from the higher device having the master function by transmitting and receiving packets with the master function. and the third device has the slave function of synchronizing the internal time of the device with the time delivered from the second device by packet transmission/reception, and acquires the reference time from the satellite signal. a step of obtaining time information relating to the internal time of the first device; and the reference time and the internal time of the first device based on the obtained reference time and the obtained time information. obtaining time stamp information indicating the time when the packet was transmitted and received between the devices, and based on the obtained time stamp information, performing intra-device processing between the devices calculating a second offset that is a difference in time; measuring the accuracy of the internal time of each of the plurality of devices with respect to the reference time based on the first offset and the second offset; including.
 また、上記課題を解決するため、本開示に係る時刻同期システムは、装置内時刻を同期させる複数の装置と、前記複数の装置における、基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する測定器とを備える時刻同期システムであって、前記複数の装置は、第1の装置、第2の装置および第3の装置を含み、前記第1の装置は、前記基準時刻に装置内時刻を同期させ、パケットの送受信により前記装置内時刻を下位の装置に配信するマスター機能を備え、前記第2の装置は、前記マスター機能と、パケットの送受信により前記マスター機能を備える上位の装置から配信された時刻に装置内時刻を同期させるスレーブ機能とを備え、前記第3の装置は、パケットの送受信により前記第2の装置から配信された時刻に装置内時刻を同期させる前記スレーブ機能を備え、前記測定器は、
 衛星信号から前記基準時刻を取得する第1の取得部と、前記第1の装置の装置内時刻に関する時刻情報を取得する第2の取得部と、前記第1の取得部が取得した基準時刻と、前記第2の取得部が取得した時刻情報とに基づき、前記基準時刻と前記第1の装置の装置内時刻との差である第1のオフセットを計算する第1の計算処理部と、装置間で前記パケットが送受信された時刻を示すタイムスタンプ情報を取得し、該取得したタイムスタンプ情報に基づき、前記装置間での装置内時刻の差である第2のオフセットを計算する第2の計算処理部と、前記第1のオフセットおよび前記第2のオフセットに基づき、前記基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する第3の計算処理部と、を備える。
Further, in order to solve the above problems, the time synchronization system according to the present disclosure includes a plurality of devices that synchronize the device internal time, and the accuracy of the device internal time of each of the plurality of devices with respect to the reference time in the plurality of devices. and a measuring instrument for measuring, wherein the plurality of devices includes a first device, a second device and a third device, and the first device is within the device at the reference time The second device has a master function for synchronizing the time and distributing the internal time to a lower device by packet transmission and reception, and the second device receives the master function and the upper device having the master function by packet transmission and reception. and a slave function for synchronizing the internal time with the distributed time, and the third device has the slave function for synchronizing the internal time with the time distributed from the second device by packet transmission/reception. , said measuring instrument is
a first acquisition unit that acquires the reference time from a satellite signal; a second acquisition unit that acquires time information related to internal time of the first device; and a reference time acquired by the first acquisition unit. , based on the time information acquired by the second acquisition unit, a first calculation processing unit that calculates a first offset that is a difference between the reference time and the device internal time of the first device; a second calculation for obtaining time stamp information indicating the time when the packet was transmitted and received between the devices, and calculating a second offset, which is a difference in device internal time between the devices, based on the obtained time stamp information; a processing unit; and a third calculation processing unit that measures the accuracy of the internal time of each of the plurality of devices with respect to the reference time based on the first offset and the second offset.
 本開示に係る測定器、測定方法および時刻同期システムによれば、より簡易に複数の装置の装置内時刻の精度の測定を行うことができる。 According to the measuring instrument, measuring method, and time synchronization system according to the present disclosure, it is possible to more easily measure the accuracy of the internal time of multiple devices.
本開示の一実施形態に係る時刻同期システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a time synchronization system according to an embodiment of the present disclosure; FIG. 図1に示す時刻同期システムのより詳細な構成例を示す図である。It is a figure which shows the more detailed example of a structure of the time synchronous system shown in FIG. 本開示の別の一実施形態に係る時刻同期システムの構成例を示す図である。It is a figure showing the example of composition of the time synchronous system concerning another one embodiment of this indication. 図3に示す時刻同期システムのより詳細な構成例を示す図である。4 is a diagram showing a more detailed configuration example of the time synchronization system shown in FIG. 3; FIG. 図2に示す測定器の動作の一例を示すフローチャートである。3 is a flow chart showing an example of the operation of the measuring instrument shown in FIG. 2; 図5に示すGMC-BCオフセット計算処理部によるGMC-BC間オフセットの計算について説明するための図である。6 is a diagram for explaining calculation of a GMC-BC offset by a GMC-BC offset calculation processing unit shown in FIG. 5; FIG. 本開示のさらに別の一実施形態に係る時刻同期システムの構成例を示す図である。FIG. 11 is a diagram showing a configuration example of a time synchronization system according to yet another embodiment of the present disclosure; 図7に示す時刻同期システムのより詳細な構成例を示す図である。8 is a diagram showing a more detailed configuration example of the time synchronization system shown in FIG. 7; FIG. 本開示のさらに別の一実施形態に係る時刻同期システムの構成例を示す図である。FIG. 11 is a diagram showing a configuration example of a time synchronization system according to yet another embodiment of the present disclosure; 図9に示す時刻同期システムのより詳細な構成例を示す図である。10 is a diagram showing a more detailed configuration example of the time synchronization system shown in FIG. 9; FIG. 図8に示す測定器の動作の一例を示すフローチャートである。9 is a flow chart showing an example of the operation of the measuring device shown in FIG. 8; 図8に示すGMC-BCオフセット計算処理部によるGMC-BC間オフセットの計算について説明するための図である。FIG. 9 is a diagram for explaining calculation of a GMC-BC offset by a GMC-BC offset calculation processing unit shown in FIG. 8; 図8に示す伝送遅延計算処理部による伝送遅延の計算について説明するための図である。FIG. 9 is a diagram for explaining transmission delay calculation by a transmission delay calculation processing unit shown in FIG. 8; 本開示に係る測定器のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware configuration of the measuring device which concerns on this indication. 従来の時刻同期システムの構成例を示す図である。It is a figure which shows the structural example of the conventional time synchronous system.
 以下、本開示の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
 図1は、本開示の一実施形態に係る時刻同期システム1の構成例を示す図である。 FIG. 1 is a diagram showing a configuration example of a time synchronization system 1 according to an embodiment of the present disclosure.
 図1に示すように、本実施形態に係る時刻同期システム1は、Grand Master Clock110と、Boundary Clock20と、クライアント装置30と、測定器40とを備える。 As shown in FIG. 1, the time synchronization system 1 according to this embodiment includes a Grand Master Clock 110, a Boundary Clock 20, a client device 30, and a measuring device 40.
 第1の装置としてのGrand Master Clock10は、GNSSアンテナを介して、GNSSの衛星信号(GNSS信号)を受信する。Grand Master Clock10は、受信したGNSS信号からUTC(基準時刻)を取得し、取得したUTCに装置内時刻を同期させる。Grand Master Clock10は、ネットワーク2を介したPTPパケットの送受信により、装置内時刻を配信するマスター機能を備える。図1に示す時刻同期システム1においては、Grand Master Clock10は、装置内時刻をBoundary Clock20に配信する。また、Grand Master Clock10は、装置内時刻に同期して、1PPSでパルス信号(1PPS信号)を測定器40に出力する。 The Grand Master Clock 10 as the first device receives GNSS satellite signals (GNSS signals) via the GNSS antenna. The Grand Master Clock 10 acquires UTC (reference time) from the received GNSS signal, and synchronizes the device internal time with the acquired UTC. The Grand Master Clock 10 has a master function of distributing the device internal time by sending and receiving PTP packets via the network 2 . In the time synchronization system 1 shown in FIG. 1, the Grand Master Clock 10 distributes the device internal time to the Boundary Clock 20 . Also, the Grand Master Clock 10 outputs a pulse signal (1PPS signal) at 1PPS to the measuring device 40 in synchronization with the device internal time.
 第2の装置としてのBoundary Clock20は、マスター機能を備える上位の装置に対してはスレーブ機能を備える装置として機能し、スレーブ機能を備える下位の装置に対してはマスター機能を備える装置として機能する。本実施形態においては、Boundary Clock20は、Grand Master Clock10に対してはスレーブ機能を備える装置として機能し、クライアント装置30に対してはマスター機能を備える装置として機能する。したがって、Boundary Clock20は、Grand Master Clock10とのPTPパケットの送受信により、Grand Master Clock10から配信される時刻(基準時刻)に、Boundary Clock20の装置内時刻を同期させる。そして、Boundary Clock20は、クライアント装置30とのPTPパケットの送受信により、装置内時刻をクライアント装置30に配信する。 The Boundary Clock 20 as a second device functions as a device with a slave function for a higher-level device with a master function, and functions as a device with a master function for a lower-level device with a slave function. In this embodiment, the Boundary Clock 20 functions as a device having a slave function with respect to the Grand Master Clock 10 and functions as a device having a master function with respect to the client device 30 . Therefore, the Boundary Clock 20 synchronizes the internal time of the Boundary Clock 20 with the time (reference time) delivered from the Grand Master Clock 10 by sending and receiving PTP packets with the Grand Master Clock 10 . Then, the Boundary Clock 20 distributes the device internal time to the client device 30 by sending and receiving PTP packets with the client device 30 .
 なお、図1においては、Grand Master Clock10とクライアント装置30との間に、Boundary Clock20が1つ設けられる例を示しているが、これに限られるものではない。Grand Master Clock10とクライアント装置30との間には、直列的に接続された複数のBoundary Clock20が設けられてもよい。この場合、Boundary Clock20は、上位の装置(Grand Master Clock10または他のBoundary Clock20)から配信された時刻に装置内時刻を同期させ、下位の装置(他のBoundary Clock20またはクライアント装置30)に、装置内時刻を配信する。 Although FIG. 1 shows an example in which one Boundary Clock 20 is provided between the Grand Master Clock 10 and the client device 30, it is not limited to this. A plurality of Boundary Clocks 20 connected in series may be provided between the Grand Master Clock 10 and the client device 30 . In this case, the Boundary Clock 20 synchronizes the device internal time with the time distributed from the upper device (Grand Master Clock 10 or other Boundary Clock 20), and the lower device (other Boundary Clock 20 or client device 30) Distribute the time.
 また、Boundary Clock20は、Grand Master Clock10とBoundary Clock20との間でPTPパケットが送受信された時刻を示すタイムスタンプ情報を、ネットワークを介して測定器40に送信する。 Also, the Boundary Clock 20 transmits time stamp information indicating the time when the PTP packet was transmitted and received between the Grand Master Clock 10 and the Boundary Clock 20 to the measuring instrument 40 via the network.
 第3の装置としてのクライアント装置30は、スレーブ機能を備える。具体的には、クライアント装置30は、Boundary Clock20との間のPTPパケットの送受信により、Boundary Clock20から配信された時刻に装置内時刻を同期させる。クライアント装置30は、Boundary Clock20とクライアント装置30との間でPTPパケットが送受信された時刻を示すタイムスタンプ情報を、ネットワークを介して測定器40に送信する。 The client device 30 as the third device has a slave function. Specifically, the client device 30 synchronizes the device internal time with the time distributed from the Boundary Clock 20 by transmitting/receiving PTP packets to/from the Boundary Clock 20 . The client device 30 transmits time stamp information indicating the time when the PTP packet was transmitted and received between the Boundary Clock 20 and the client device 30 to the measuring device 40 via the network.
 測定器400は、時刻同期システム1において装置内時刻を同期させる複数の装置、すなわち、Grand Master Clock10、Boundary Clock20およびクライアント装置30それぞれの装置内時刻の精度を測定する。具体的には、測定器40は、GNSSアンテナを介して受信したGNSS信号から基準時刻(UTC)を取得する。また、測定器40は、Grand Master Clock10から出力された1PPS信号から、Grand Master Clock10の装置内時刻に関する時刻情報を取得する。また、測定器40は、ネットワークを介してBoundary Clock20およびクライアント装置30から送信されてきたタイムスタンプ情報を取得する。測定器40は、取得した、基準時刻、時刻情報およびタイムスタンプ情報に基づき、複数の装置それぞれにおける、基準時刻に対する装置内時刻の精度の測定を行う。 The measuring device 400 measures the accuracy of the internal time of each of the multiple devices that synchronize the internal time in the time synchronization system 1, that is, the Grand Master Clock 10, the Boundary Clock 20, and the client device 30. Specifically, the measuring device 40 acquires the reference time (UTC) from the GNSS signal received via the GNSS antenna. Also, the measuring instrument 40 acquires time information regarding the internal time of the Grand Master Clock 10 from the 1PPS signal output from the Grand Master Clock 10 . Also, the measuring device 40 acquires time stamp information transmitted from the Boundary Clock 20 and the client device 30 via the network. Based on the obtained reference time, time information, and time stamp information, the measuring device 40 measures the accuracy of the device internal time with respect to the reference time in each of the plurality of devices.
 図1に示す時刻同期システム1においては、測定器40は、Grand Master Clock10から1PPS信号を取得し、取得した1PPS信号から時刻情報を取得する。そのため、Grand Master Clock10と測定器40とは、1PPS信号を伝送する同軸ケーブルで接続可能な範囲内、例えば、同じ建物内に設けられる必要がある。 In the time synchronization system 1 shown in FIG. 1, the measuring device 40 acquires the 1PPS signal from the Grand Master Clock 10 and acquires time information from the acquired 1PPS signal. Therefore, the Grand Master Clock 10 and the measuring device 40 must be provided within a range where they can be connected by a coaxial cable that transmits a 1PPS signal, for example, within the same building.
 次に、Boundary Clock20、クライアント装置30および測定器40の構成について、図2を参照して説明する。なお、Grand Master Clock10の構成は、GNSS信号から基準時刻を取得し、取得した基準時刻に装置内時刻を同期させる、一般的なマスター機能を備える装置の構成と同様であるため、説明を省略する。 Next, the configuration of the Boundary Clock 20, the client device 30 and the measuring device 40 will be described with reference to FIG. Note that the configuration of the Grand Master Clock 10 is the same as that of a device with a general master function that acquires the reference time from the GNSS signal and synchronizes the time in the device with the acquired reference time, so the explanation is omitted. .
 まず、Boundary Clock20の構成について説明する。 First, the configuration of the Boundary Clock 20 will be explained.
 図2に示すように、Boundary Clock20は、パケット送受信部21,22と、時刻同期処理部23と、タイムスタンプ送信部24とを備える。 As shown in FIG. 2, the Boundary Clock 20 includes packet transmission/ reception units 21 and 22, a time synchronization processing unit 23, and a time stamp transmission unit 24.
 パケット送受信部21は、Grand Master Clock10との間でPTPパケットの送受信を行う。パケット送受信部22は、クライアント装置30との間でPTPパケットの送受信を行う。 The packet transmission/reception unit 21 transmits/receives PTP packets to/from the Grand Master Clock 10 . The packet transmission/reception unit 22 transmits/receives PTP packets to/from the client device 30 .
 時刻同期処理部23は、パケット送受信部21を介してGrand Master Clock10から取得したPTPパケットから、Grand Master Clock10が配信する時刻を取得し、Boundary Clock20の装置内時刻を、取得した時刻に同期させる。 The time synchronization processing unit 23 acquires the time delivered by the Grand Master Clock 10 from the PTP packets acquired from the Grand Master Clock 10 via the packet transmission/reception unit 21, and synchronizes the internal time of the Boundary Clock 20 with the acquired time.
 タイムスタンプ送信部24は、パケット送受信部21とGrand Master Clock10との間でPTPパケットが送受信された時刻を示すタイムスタンプ情報を、ネットワークを介して測定器40に送信する。なお、Grand Master Clock10とBoundary Clock20との間で送受信されるPTPパケットのタイムスタンプ情報は、Grand Master Clock10でも一部が保存されている。そのため、Grand Master Clock10が、保存するタイムスタンプ情報を測定器40に送信してもよい。また、Grand Master Clock10およびBoundary Clock20の両方がタイムスタンプ情報を測定器40に送信し、測定器40が、Grand Master Clock10から送信されてきたタイムスタンプ情報とBoundary Clock20から送信されてきたタイムスタンプ情報とを比較してもよい。 The time stamp transmission unit 24 transmits time stamp information indicating the time when the PTP packet was transmitted and received between the packet transmission/reception unit 21 and the Grand Master Clock 10 to the measuring instrument 40 via the network. The Grand Master Clock 10 also stores part of the time stamp information of the PTP packets transmitted and received between the Grand Master Clock 10 and the Boundary Clock 20 . Therefore, the Grand Master Clock 10 may transmit the timestamp information to be saved to the measuring device 40 . Also, both the Grand Master Clock 10 and the Boundary Clock 20 transmit time stamp information to the measuring instrument 40, and the measuring instrument 40 receives the time stamp information transmitted from the Grand Master Clock 10 and the time stamp information transmitted from the Boundary Clock 20. may be compared.
 次に、クライアント装置30の構成について説明する。 Next, the configuration of the client device 30 will be described.
 図2に示すように、クライアント装置30は、パケット送受信部31と、時刻同期処理部32と、タイムスタンプ送信部33とを備える。 As shown in FIG. 2, the client device 30 includes a packet transmission/reception section 31, a time synchronization processing section 32, and a time stamp transmission section 33.
 パケット送受信部31は、Boundary Clock20との間でPTPパケットの送受信を行う。 The packet transmission/reception unit 31 transmits/receives PTP packets to/from the Boundary Clock 20 .
 時刻同期処理部32は、パケット送受信部31を介してBoundary Clock20から受信したPTPパケットから、Boundary Clock20が配信する時刻を取得し、クライアント装置30の装置内時刻を、取得した時刻に同期させる。 The time synchronization processing unit 32 acquires the time delivered by the Boundary Clock 20 from the PTP packets received from the Boundary Clock 20 via the packet transmission/reception unit 31, and synchronizes the internal time of the client device 30 with the acquired time.
 タイムスタンプ送信部33は、Boundary Clock20とパケット送受信部31との間でPTPパケットが送受信された時刻を示すタイムスタンプ情報を、ネットワークを介して測定器40に送信する。なお、Boundary Clock20とクライアント装置30との間で送受信されるPTPパケットのタイムスタンプ情報は、Boundary Clock20でも一部が保存されている。そのため、Boundary Clock20が、保存するタイムスタンプ情報を測定器40に送信してもよい。また、Boundary Clock20およびクライアント装置30の両方がタイムスタンプ情報を測定器40に送信し、測定器40が、Boundary Clock20から送信されてきたタイムスタンプ情報とクライアント装置30から送信されてきたタイムスタンプ情報とを比較してもよい。 The time stamp transmission unit 33 transmits time stamp information indicating the time when the PTP packet was transmitted and received between the Boundary Clock 20 and the packet transmission/reception unit 31 to the measuring instrument 40 via the network. The time stamp information of the PTP packets transmitted and received between the Boundary Clock 20 and the client device 30 is partially stored in the Boundary Clock 20 as well. Therefore, the Boundary Clock 20 may transmit the timestamp information to be saved to the measuring device 40 . Also, both the Boundary Clock 20 and the client device 30 transmit time stamp information to the measuring device 40, and the measuring device 40 receives the time stamp information transmitted from the Boundary Clock 20 and the time stamp information transmitted from the client device 30. may be compared.
 次に、測定器40の構成について説明する。 Next, the configuration of the measuring device 40 will be described.
 図2に示すように、測定器40は、UTC取得部41と、GMC時刻取得部42と、UTC-GMCオフセット計算処理部43と、GMC-BCオフセット計算処理部44と、BC-クライアントオフセット計算処理部45と、時刻精度計算処理部46とを備える。 As shown in FIG. 2, the measuring device 40 includes a UTC acquisition unit 41, a GMC time acquisition unit 42, a UTC-GMC offset calculation processing unit 43, a GMC-BC offset calculation processing unit 44, and a BC-client offset calculation unit. A processing unit 45 and a time accuracy calculation processing unit 46 are provided.
 第1の取得部としてのUTC取得部41は、GNSSアンテナを介して、GNSS衛星から送信された衛星信号であるGNSS信号を受信する。UTC取得部41は、受信したGNSS信号から、基準時刻(UTC)を取得し、測定器40の装置内時刻を取得した時刻に同期させる。UTC取得部41は、取得した基準時刻をUTC-GMCオフセット計算処理部43に出力する。 The UTC acquisition unit 41 as a first acquisition unit receives GNSS signals, which are satellite signals transmitted from GNSS satellites, via GNSS antennas. The UTC acquisition unit 41 acquires the reference time (UTC) from the received GNSS signal, and synchronizes the internal time of the measuring device 40 with the acquired time. The UTC acquisition unit 41 outputs the acquired reference time to the UTC-GMC offset calculation processing unit 43 .
 第2の取得部としてのGMC時刻取得部42は、第1の装置としてのGrand Master Clock10の装置内時刻に関する時刻情報を取得する。具体的には、GMC時刻取得部42は、Grand Master Clock10から出力された、Grand Master Clock10の装置内時刻に同期して1PPSで出力される1PPS信号から時刻情報を取得する。GMC時刻取得部42は、取得した時刻情報をUTC-GMCオフセット計算処理部43に出力する。 The GMC time acquisition unit 42 as the second acquisition unit acquires time information regarding the internal time of the Grand Master Clock 10 as the first device. Specifically, the GMC time acquisition unit 42 acquires the time information from the 1PPS signal output from the Grand Master Clock 10 and output at 1PPS in synchronization with the internal time of the Grand Master Clock 10 . The GMC time acquisition unit 42 outputs the acquired time information to the UTC-GMC offset calculation processing unit 43 .
 第1の計算処理部としてのUTC-GMCオフセット計算処理部43は、UTC取得部41が取得した基準時刻と、GMC時刻取得部42が取得した時刻情報とに基づき、基準時刻(UTC)とGrand Master Clock10の装置内時刻との差であるUTC-GMC間オフセット(第1のオフセット)を計算する。UTC-GMCオフセット計算処理部43は、計算したUTC-GMC間オフセットを時刻精度計算処理部46に出力する。 The UTC-GMC offset calculation processing unit 43 as a first calculation processing unit, based on the reference time acquired by the UTC acquisition unit 41 and the time information acquired by the GMC time acquisition unit 42, the reference time (UTC) and Grand A UTC-GMC offset (first offset), which is the difference from the internal time of the master clock 10, is calculated. The UTC-GMC offset calculation processing unit 43 outputs the calculated UTC-GMC offset to the time accuracy calculation processing unit 46 .
 第2の計算処理部としてのGMC-BCオフセット計算処理部44は、ネットワークを介してBoundary Clock10から送信された、Grand Master Clock10とBoundary Clock20との間でPTPパケットが送受信された時刻を示すタイムスタンプ情報を取得する。GMC-BCオフセット計算処理部44は、取得したタイムスタンプ情報に基づき、Grand Master Clock10の装置内時刻とBoundary Clock20の装置内時刻との差であるGMC-BC間オフセット(第2のオフセット)を計算する。GMC-BCオフセット計算処理部44は、計算したGMC-BC間オフセットを時刻精度計算処理部46に出力する。 The GMC-BC offset calculation processing unit 44 as a second calculation processing unit is a time stamp indicating the time when the PTP packet was transmitted and received between the Grand Master Clock 10 and the Boundary Clock 20, which was transmitted from the Boundary Clock 10 via the network. Get information. The GMC-BC offset calculation processing unit 44 calculates the GMC-BC offset (second offset), which is the difference between the internal device time of the Grand Master Clock 10 and the internal device time of the Boundary Clock 20, based on the acquired time stamp information. do. The GMC-BC offset calculation processing unit 44 outputs the calculated GMC-BC offset to the time accuracy calculation processing unit 46 .
 第2の計算処理部としてのBC-クライアントオフセット計算処理部45は、ネットワークを介してクライアント装置30から送信された、Boundary Clock20とクライアント装置30との間でPTPパケットが送受信された時刻を示すタイムスタンプ情報を取得する。BC-クライアントオフセット計算処理部45は、取得したタイムスタンプ情報に基づき、Boundary Clock20の装置内時刻とクライアント装置30の装置内時刻との差であるBC-CL間オフセット(第2のオフセット)を計算する。BC-クライアントオフセット計算処理部45は、計算したBC-CL間オフセットを時刻精度計算処理部46に出力する。 The BC-client offset calculation processing unit 45 as a second calculation processing unit is a time indicating the time when the PTP packet was transmitted and received between the Boundary Clock 20 and the client device 30, which is transmitted from the client device 30 via the network. Get stamp information. The BC-client offset calculation processing unit 45 calculates the BC-CL offset (second offset), which is the difference between the internal device time of the Boundary Clock 20 and the internal device time of the client device 30, based on the acquired time stamp information. do. The BC-client offset calculation processing unit 45 outputs the calculated BC-CL offset to the time accuracy calculation processing unit 46 .
 このように、第2の計算処理部としてのGMC-BCオフセット計算処理部44およびBC-クライアントオフセット計算処理部45は、装置間でPTPパケットが送受信された時刻を示すタイムスタンプ情報を取得し、取得したタイムスタンプ情報に基づき、装置間での装置内時刻の差である第2のオフセット(GMC-BC間オフセットおよびBC-CL間オフセット)を取得する。なお、上述したように、Grand Master Clock10とクライアント装置30との間に複数のBoundary Clock20が設けられる場合がある。この場合、Boundary Clock20同士の間でPTPパケットが送受信された時刻を示すタイムスタンプ情報に基づき、その2つのBoundary Clock20の間での装置内時刻の差であるオフセットが計算されてよい。 In this way, the GMC-BC offset calculation processing unit 44 and the BC-client offset calculation processing unit 45 as the second calculation processing unit acquire time stamp information indicating the time when the PTP packet was transmitted and received between the devices, Based on the acquired time stamp information, a second offset (GMC-BC offset and BC-CL offset), which is the difference in device internal time between devices, is acquired. In addition, as described above, a plurality of Boundary Clocks 20 may be provided between the Grand Master Clock 10 and the client device 30 . In this case, an offset, which is the difference in device time between the two Boundary Clocks 20, may be calculated based on time stamp information indicating the times at which PTP packets were transmitted and received between the Boundary Clocks 20.
 第3の計算処理部としての時刻精度計算処理部46は、UTC-GMCオフセット計算処理部43から出力されたUTC-GMC間オフセット、GMC-BCオフセット計算処理部44から出力されたGMC-BC間オフセットおよびBC-クライアントオフセット計算処理部45から出力されたBC-CL間オフセットに基づき、基準時刻に対する、複数の装置(Grand Master Clock10、Boundary Clock20およびクライアント装置30)それぞれの装置内時刻の精度を測定する。 The time accuracy calculation processing unit 46 as a third calculation processing unit uses the UTC-GMC offset output from the UTC-GMC offset calculation processing unit 43, the GMC-BC offset output from the GMC-BC offset calculation processing unit 44 Based on the offset and the BC-CL offset output from the BC-client offset calculation processing unit 45, measure the precision of the internal time of each device (Grand Master Clock 10, Boundary Clock 20 and client device 30) with respect to the reference time. do.
 このように本実施形態においては、測定器40は、Boundary Clock20およびクライアント装置30からタイムスタンプ情報を取得し、取得したタイムスタンプ情報を用いて、装置間の装置内時刻のオフセット(第2のオフセット)を計算する。そして、測定器40は、UTC-GMC間オフセット(第1のオフセット)および装置間の装置内時刻のオフセット(第2のオフセット)に基づき、基準時刻に対する各装置の装置内時刻の精度を測定する。そのため、測定を行う際に、測定器40を各装置の設置場所まで運ぶ必要がなくなる。また、従来の時刻同期システム1aのような、GNSSアンテナの設置場所および基準時刻と同期がとれた測定器400の持ち込みなどの制約を緩和することができる。そのため、本開示に係る測定器40によれば、より簡易に複数の装置の装置内時刻の精度の測定を行うことができる。また、本開示に係る測定器40によれば、遠隔から各装置の装置内時刻の精度の測定を行うことができるので、時刻誤差が発生した場合の保守対応を迅速に行うことができる。 As described above, in this embodiment, the measuring instrument 40 acquires the time stamp information from the Boundary Clock 20 and the client device 30, and uses the acquired time stamp information to calculate the internal time offset between the devices (the second offset ). Then, the measuring device 40 measures the accuracy of the device internal time of each device with respect to the reference time based on the UTC-GMC offset (first offset) and the device internal time offset (second offset) between the devices. . Therefore, it is not necessary to carry the measuring device 40 to the installation place of each device when performing the measurement. In addition, it is possible to alleviate restrictions such as the installation location of the GNSS antenna and bringing in the measuring instrument 400 synchronized with the reference time, as in the conventional time synchronization system 1a. Therefore, according to the measuring device 40 according to the present disclosure, it is possible to more easily measure the accuracy of the device internal time of a plurality of devices. In addition, according to the measuring instrument 40 according to the present disclosure, it is possible to remotely measure the accuracy of the internal time of each device, so maintenance can be quickly performed when a time error occurs.
 図1においては、測定器40は、1PPS信号からGrand Master Clock10の時刻情報を取得する例を用いて説明したが、これに限られるものではない。 In FIG. 1, the measuring device 40 has been described using an example in which the time information of the Grand Master Clock 10 is obtained from the 1PPS signal, but it is not limited to this.
 図3は、図1に示す時刻同期システム1とは時刻情報の取得方法が異なる、本開示の別の一実施形態に係る時刻同期システム1Aの構成例を示す図である。図3において、図1と同様の構成には同じ符号を付し、説明を省略する。 FIG. 3 is a diagram showing a configuration example of a time synchronization system 1A according to another embodiment of the present disclosure, which uses a different method of acquiring time information from the time synchronization system 1 shown in FIG. In FIG. 3, the same components as in FIG. 1 are denoted by the same reference numerals, and descriptions thereof are omitted.
 図3に示す時刻同期システム1Aは、Grand Master Clock10Aと、Boundary Clock20と、クライアント装置30と、測定器40Aとを備える。図3に示す時刻同期システム1Aは、図1に示す時刻同期システム1と比較して、Grand Master Clock10をGrand Master Clock10Aに変更した点と、測定器40を測定器40Aに変更した点とが異なる。 The time synchronization system 1A shown in FIG. 3 includes a Grand Master Clock 10A, a Boundary Clock 20, a client device 30, and a measuring device 40A. The time synchronization system 1A shown in FIG. 3 differs from the time synchronization system 1 shown in FIG. 1 in that the Grand Master Clock 10 is changed to a Grand Master Clock 10A and the measuring device 40 is changed to a measuring device 40A. .
 Grand Master Clock10Aは、1PPS信号を送信する代わりに、ネットワークを介して、PTPパケットを測定器40との間で送受信する。 The Grand Master Clock 10A transmits and receives PTP packets to and from the measuring instrument 40 via the network instead of transmitting 1PPS signals.
 測定器40Aは、Grand Master Clock10Aとの間でのPTPパケットの送受信により、Grand Master Clock10の時刻情報を取得する。測定器40Aの構成について、図4を参照して説明する。なお、図4において、図2と同様の構成には同じ符号を付し、説明を省略する。 The measuring instrument 40A acquires the time information of the Grand Master Clock 10 by sending and receiving PTP packets with the Grand Master Clock 10A. The configuration of the measuring device 40A will be described with reference to FIG. In addition, in FIG. 4, the same reference numerals are assigned to the same configurations as in FIG. 2, and the description thereof is omitted.
 図4に示すように、測定器40Aは、UTC取得部41と、GMC時刻取得部42Aと、UTC-GMCオフセット計算処理部43と、GMC-BCオフセット計算処理部44と、BC-クライアントオフセット計算処理部45と、時刻精度計算処理部46と、パケット送受信部47とを備える。図4に示す測定器40Aは、図2に示す測定器40と比較して、GMC時刻取得部42をGMC時刻取得部42Aに変更した点と、パケット送受信部47を追加した点とが異なる。 As shown in FIG. 4, the measuring device 40A includes a UTC acquisition unit 41, a GMC time acquisition unit 42A, a UTC-GMC offset calculation processing unit 43, a GMC-BC offset calculation processing unit 44, and a BC-client offset calculation unit. It includes a processing unit 45 , a time accuracy calculation processing unit 46 and a packet transmission/reception unit 47 . A measuring instrument 40A shown in FIG. 4 differs from the measuring instrument 40 shown in FIG.
 パケット送受信部47は、ネットワークを介して、Grand Master Clock10Aとの間でPTPパケットの送受信を行い、Grand Master Clock10Aから受信したPTPパケットをGMC時刻取得部42Aに出力する。 The packet transmission/reception unit 47 transmits/receives PTP packets to/from the Grand Master Clock 10A via the network, and outputs the PTP packets received from the Grand Master Clock 10A to the GMC time acquisition unit 42A.
 GMC時刻取得部42Aは、パケット送受信部47が受信したPTPパケットから時刻情報を取得する。PTPパケットには、Grand Master Clock10Aの装置内時刻に応じたタイムスタンプが含まれる。GMC時刻取得部42Aは、取得したPTPパケットに含まれるタイムスタンプに基づき、時刻情報を取得する。すなわち、第2の取得部としてのGMC時刻取得部42Aは、ネットワークを介してGrand Master Clock10Aから、Grand Master Clock10Aの装置内時刻に応じたタイムスタンプを含むPTPパケットを取得し、取得したPTPパケットから時刻情報を取得する。 The GMC time acquisition unit 42A acquires time information from the PTP packet received by the packet transmission/reception unit 47. The PTP packet contains a time stamp corresponding to the internal time of the Grand Master Clock 10A. The GMC time acquisition unit 42A acquires time information based on the time stamp included in the acquired PTP packet. That is, the GMC time acquisition unit 42A as a second acquisition unit acquires a PTP packet including a time stamp corresponding to the internal time of the Grand Master Clock 10A from the Grand Master Clock 10A via the network, and from the acquired PTP packet Get time information.
 時刻同期システム1においては、測定器40は、Grand Master Clock10から1PPS信号から時刻情報を取得するため、Grand Master Clock10と測定器40とは、1PPS信号を伝送する同軸ケーブルで接続する必要がある。そのため、Grand Master Clock10と測定器40とは、同軸ケーブルで接続可能な範囲、例えば、同じ建物内に設置する必要がある。一方、時刻同期システム1Aにおいては、Grand Master Clock10Aと測定器40Aとは、ネットワークを介してPTPパケットの送受信ができればよい。そのため、設置場所の制約をさらに緩和し、より簡易に複数の装置それぞれの装置内時刻の精度の測定を行うことができる。 In the time synchronization system 1, since the measuring device 40 acquires time information from the 1PPS signal from the Grand Master Clock 10, the Grand Master Clock 10 and the measuring device 40 must be connected with a coaxial cable that transmits the 1PPS signal. Therefore, the Grand Master Clock 10 and the measuring device 40 need to be installed within a range where they can be connected with a coaxial cable, for example, within the same building. On the other hand, in the time synchronization system 1A, the Grand Master Clock 10A and the measuring device 40A should be able to transmit and receive PTP packets via the network. Therefore, it is possible to further relax the restrictions on the installation location and more easily measure the accuracy of the internal time of each of the plurality of devices.
 次に、本実施形態に係る測定器40の動作について説明する。 Next, the operation of the measuring instrument 40 according to this embodiment will be described.
 図5は、本実施形態に係る測定器40の動作の一例を示すフローチャートであり、測定器40による測定方法を説明するための図である。 FIG. 5 is a flowchart showing an example of the operation of the measuring device 40 according to this embodiment, and is a diagram for explaining the measuring method by the measuring device 40. FIG.
 UTC取得部41は、GNSSアンテナを介して衛星から受信したGNSS信号から基準時刻(UTC)を取得する(ステップS11)。 The UTC acquisition unit 41 acquires the reference time (UTC) from the GNSS signal received from the satellite via the GNSS antenna (step S11).
 GMC時刻取得部42は、第1の装置としてのGrand Master Clock10の装置内時刻に関する時刻情報を取得する(ステップS12)。図2に示す時刻同期システム1においては、GMC時刻取得部42は、Grand Master Clock10から出力される1PPS信号から時刻情報を取得する。 The GMC time acquisition unit 42 acquires time information regarding the internal time of the Grand Master Clock 10 as the first device (step S12). In the time synchronization system 1 shown in FIG. 2 , the GMC time acquisition section 42 acquires time information from the 1PPS signal output from the Grand Master Clock 10 .
 UTC-GMCオフセット計算処理部43は、UTC取得部41が取得した基準時刻(UTC)と、GMC時刻取得部42が取得した時刻情報とに基づき、UTC-GMC間オフセット(第1のオフセット)。以下では、UTC-GMC間オフセットがX秒であるとする。 The UTC-GMC offset calculation processing unit 43 calculates the UTC-GMC offset (first offset) based on the reference time (UTC) obtained by the UTC obtaining unit 41 and the time information obtained by the GMC time obtaining unit 42. In the following it is assumed that the UTC-GMC offset is X seconds.
 GMC-BCオフセット計算処理部44は、Grand Master Clock10とBoundary Clock20との間でPTPパケットが送受信された時刻を示すタイムスタンプ情報を、ネットワークを介してBoundary Clock20から取得する。GMC-BCオフセット計算処理部44は、取得したタイムスタンプ情報に基づき、GMC-BC間オフセット(第2のオフセット)を計算する(ステップS14)。以下では、GMC-BC間オフセットがY秒であるとする。GMC-BC間オフセットの計算の詳細については後述する。 The GMC-BC offset calculation processing unit 44 acquires time stamp information indicating the time when the PTP packet was transmitted and received between the Grand Master Clock 10 and the Boundary Clock 20 from the Boundary Clock 20 via the network. The GMC-BC offset calculation processing unit 44 calculates a GMC-BC offset (second offset) based on the acquired time stamp information (step S14). In the following, it is assumed that the GMC-BC offset is Y seconds. Details of the calculation of the GMC-BC offset will be described later.
 BC-クライアントオフセット計算処理部45は、Boundary Clock20とクライアント装置30との間でPTPパケットが送受信された時刻を示すタイムスタンプ情報を、ネットワークを介してクライアント装置30から取得する。BC-クライアントオフセット計算処理部45は、取得したタイムスタンプ情報に基づき、BC-クライアント間オフセット(第2のオフセット)を計算する(ステップS15)。以下では、BC-クライアント間オフセットがZ秒であるとする。 The BC-client offset calculation processing unit 45 acquires time stamp information indicating the time when the PTP packet was transmitted and received between the Boundary Clock 20 and the client device 30 from the client device 30 via the network. The BC-client offset calculation processing unit 45 calculates a BC-client offset (second offset) based on the acquired time stamp information (step S15). In the following, let the BC-client offset be Z seconds.
 なお、図5においては、ステップS11からステップS13までの処理と、ステップS14の処理と、ステップS15の処理とが分岐しているように記載されているが、実際には、これらの処理が分岐しているわけではなく、逐次実行される。 In FIG. 5, the process from step S11 to step S13, the process of step S14, and the process of step S15 are described as branching, but in reality, these processes are branched. It is executed sequentially.
 時刻精度計算処理部46は、UTC-GMC間オフセットと、GMC-BC間オフセットと、BC-クライアント間オフセットとに基づき、基準時刻に対する各装置の装置内時刻の精度を測定する(ステップS16)。例えば、時刻精度計算処理部46は、基準時刻に対するクライアント装置30の装置内時刻の精度として、基準時刻とクライアント装置20の装置内時刻との差(オフセット)を計算する。具体的には、時刻精度計算処理部46は、UTC-GMC間オフセット(X秒)と、GMC-BC間オフセット(Y秒)と、BC-クライアント間オフセット(Z秒)との和(X+Y+Z)により、基準時刻とクライアント装置30の装置内時刻とのオフセットを計算する。 The time accuracy calculation processing unit 46 measures the accuracy of the internal time of each device with respect to the reference time based on the UTC-GMC offset, the GMC-BC offset, and the BC-client offset (step S16). For example, the time accuracy calculation processing unit 46 calculates the difference (offset) between the reference time and the internal time of the client device 20 as the accuracy of the internal time of the client device 30 with respect to the reference time. Specifically, the time accuracy calculation processing unit 46 calculates the sum of the UTC-GMC offset (X seconds), the GMC-BC offset (Y seconds), and the BC-client offset (Z seconds) (X+Y+Z) , the offset between the reference time and the internal time of the client device 30 is calculated.
 次に、GMC-BCオフセット計算処理部44によるGMC-BC間オフセットの計算について、図6を参照して説明する。なお、図6においては、GMC-BC間オフセットの計算を例として説明するが、BC-クライアント間オフセットも同様にして計算することができる。 Next, calculation of the GMC-BC offset by the GMC-BC offset calculation processing unit 44 will be described with reference to FIG. In FIG. 6, the calculation of the GMC-BC offset is described as an example, but the BC-client offset can be calculated in the same manner.
 まず、PTPに従って、Grand Master Clock10とBoundary Clock20との間で送受信されるメッセージについて説明する。Grand Master Clock10とBoundary Clock20との間で送受信されるメッセージは、1または複数のPTPパケットにより構成される。 First, the messages sent and received between the Grand Master Clock 10 and the Boundary Clock 20 according to the PTP will be explained. A message sent and received between the Grand Master Clock 10 and the Boundary Clock 20 consists of one or more PTP packets.
 図6に示すように、Grand Master Clock10はまず、Sync messageをBoundary Clock20に送信する(ステップS21)。Grand Master Clock10は、Sync messageの送信時刻である時刻T1(第1の時刻)を示すタイムスタンプを、Sync messageに含めてBoundary Clock20に送信する。 As shown in FIG. 6, Grand Master Clock 10 first sends a Sync message to Boundary Clock 20 (step S21). The Grand Master Clock 10 transmits to the Boundary Clock 20 a Sync message including a time stamp indicating time T1 (first time), which is the transmission time of the Sync message.
 Boundary Clock20は、時刻T2(第2の時刻)において、Grand Master Clock10から送信されてきたSync messageを受信すると、Sync messageに応じて、時刻T3において、Delay_Req messageをBoundary Clock10に送信する(ステップS22)。タイムスタンプ送信部24は、Sync messageを受信した時刻T2を示すタイムスタンプ、および、Delay_Req messageを送信した時刻T3を示すタイムスタンプを保持する。 When the Boundary Clock 20 receives the Sync message transmitted from the Grand Master Clock 10 at time T2 (second time), it transmits a Delay_Req message to the Boundary Clock 10 at time T3 in response to the Sync message (step S22). . The time stamp transmission unit 24 holds a time stamp indicating the time T2 when the Sync message was received and a time stamp indicating the time T3 when the Delay_Req message was transmitted.
 Grand Master Clock10は、時刻T4において、Boundary Clock20から送信されてきたDelay_Req messageを受信すると、Delay_Req messageに応じて、Delay_Resp messageをBoundary Clock20に送信する(ステップS23)。Grand Master Clock10は、Delay_Req messageの受信時刻である時刻T4(第4の時刻)を示すタイムスタンプを、Delay_Resp messageに含めてBoundary Clock20に送信する。 Upon receiving the Delay_Req message sent from the Boundary Clock 20 at time T4, the Grand Master Clock 10 sends a Delay_Resp message to the Boundary Clock 20 in response to the Delay_Req message (step S23). The Grand Master Clock 10 transmits to the Boundary Clock 20 a Delay_Resp message including a time stamp indicating time T4 (fourth time) at which the Delay_Req message was received.
 タイムスタンプ送信部24は、Sync messageに含まれる、Grand Master Clock10がSync messageを送信した時刻T1のタイムスタンプを取得する。また、上述したように、タイムスタンプ送信部24は、Sync messageを受信した時刻T2を示すタイムスタンプ、および、Delay_Req messageを送信した時刻T3を示すタイムスタンプを保持している。また、タイムスタンプ送信部24は、Delay_Resp messageに含まれる、Grand Master Clock10がDelay_Req messagewを受信した時刻T4を示すタイムスタンプを取得する。タイムスタンプ送信部24は、取得した、時刻T1~T4を示すタイムスタンプ情報を測定器40に送信する。 The timestamp transmission unit 24 acquires the timestamp of the time T1 when the Grand Master Clock 10 transmitted the Sync message, which is included in the Sync message. Further, as described above, the time stamp transmission unit 24 holds a time stamp indicating the time T2 when the Sync message was received and a time stamp indicating the time T3 when the Delay_Req message was transmitted. Also, the time stamp transmission unit 24 acquires the time stamp indicating the time T4 when the Grand Master Clock 10 received the Delay_Req message, which is included in the Delay_Resp message. The time stamp transmission unit 24 transmits the acquired time stamp information indicating times T1 to T4 to the measuring device 40 .
 GMC-BCオフセット計算処理部44は、Boundary Clock20から送信されてきたタイムスタンプ情報に基づき、GMC-BC間オフセットを計算する。具体的には、以下の式(1)により、GMC-BC間オフセットを計算する。
 GMC-BC間オフセット=((T2-T1)-(T4-T3))/2
The GMC-BC offset calculation processing unit 44 calculates the GMC-BC offset based on the time stamp information transmitted from the Boundary Clock 20 . Specifically, the GMC-BC offset is calculated by the following equation (1).
GMC-BC offset = ((T2-T1)-(T4-T3))/2
 なお、例えば、GMC-BC間オフセットが所定のしきい値よりも大きい場合、時刻精度計算処理部46は、GMC-BC間オフセットから推定されるGrand Master Clock10の装置内時刻と、実際のGrand Master Clock10の装置内時刻とには大きなずれがあると判定することができる。ただし、時刻精度計算処理部46は、時刻T1~T4のうち、どの値が正常な値でないかは判断することができない。ここで、時刻T1,T3,T4は、Grand Master Clock10が取得することができる。そこで、Grand Master Clock10は、取得している時刻T1,T3,T4と、タイムスタンプ情報に示される時刻T1,T3,T4とを比較し、その比較の結果を測定器40に出力してもよい。時刻精度計算処理部46は、Grand Master Clock10による比較の結果に基づき、時刻T1~T4のうち、どの値が正常な値でないかを判断することができる。 For example, if the GMC-BC offset is greater than a predetermined threshold, the time accuracy calculation processing unit 46 calculates the internal time of the Grand Master Clock 10 estimated from the GMC-BC offset and the actual Grand Master It can be determined that there is a large deviation from the internal time of the Clock 10 . However, the time accuracy calculation processing unit 46 cannot determine which value among the times T1 to T4 is not a normal value. Here, the Grand Master Clock 10 can acquire the times T1, T3, and T4. Therefore, the Grand Master Clock 10 may compare the acquired times T1, T3, T4 with the times T1, T3, T4 indicated in the time stamp information, and output the result of the comparison to the measuring device 40. . Based on the result of comparison by the Grand Master Clock 10, the time accuracy calculation processing section 46 can determine which value among the times T1 to T4 is not a normal value.
 上述した実施形態においては、測定器40,40Aは、Boundary Clock20およびクライアント装置30からタイムスタンプ情報を取得する例を用いて説明したが、これに限られない。 In the above-described embodiment, the measuring instruments 40 and 40A are explained using an example of acquiring time stamp information from the Boundary Clock 20 and the client device 30, but the present invention is not limited to this.
 図7は、本開示のさらに別の実施形態に係る時刻同期システム1Bの構成例を示す図である。 FIG. 7 is a diagram showing a configuration example of a time synchronization system 1B according to yet another embodiment of the present disclosure.
 図7に示す時刻同期システム1Bは、Grand Master Clock10Bと、Boundary Clock20Bと、クライアント装置30Bと、測定器40Bと備える。 The time synchronization system 1B shown in FIG. 7 includes a Grand Master Clock 10B, a Boundary Clock 20B, a client device 30B, and a measuring device 40B.
 Grand Master Clock10Bは、GNSSアンテナを介してGNSS信号を受信し、受信したGNSS信号から基準時刻(UTC)を取得し、装置内時刻を取得した基準時刻に同期させる。Grand Master Clock10Bは、Boundary Clock20Bとの間のPTPパケットの送受信により、取得した基準時刻をBoundary Clock20Bに配信する。また、Grand Master Clock10Bは、装置内時刻に同期して、1PPSで1PPS信号を測定器40Bに出力する。また、Grand Master Clock10Bは、Grand Master Clock10BとBoundary Clock20Bとの間でのPTPパケットの伝送遅延、および、Boundary Clock20Bとクライアント装置30Bとの間のPTPパケットの伝送遅延を、測定器40Bに出力する。 The Grand Master Clock 10B receives the GNSS signal via the GNSS antenna, acquires the reference time (UTC) from the received GNSS signal, and synchronizes the internal time with the acquired reference time. The Grand Master Clock 10B distributes the acquired reference time to the Boundary Clock 20B by transmitting and receiving PTP packets to and from the Boundary Clock 20B. Also, the Grand Master Clock 10B outputs a 1PPS signal at 1PPS to the measuring device 40B in synchronization with the device internal time. In addition, the Grand Master Clock 10B outputs the PTP packet transmission delay between the Grand Master Clock 10B and the Boundary Clock 20B and the PTP packet transmission delay between the Boundary Clock 20B and the client device 30B to the measuring device 40B.
 Boundary Clock20Bは、Grand Master Clock10BとのPTPパケットの送受信により、Grand Master Clock10Bから配信される時刻(基準時刻)に、Boundary Clock20Bの装置内時刻を同期させる。Boundary Clock20Bは、クライアント装置30BとのPTPパケットの送受信により、装置内時刻をクライアント装置30Bに配信する。 Boundary Clock 20B synchronizes the internal time of Boundary Clock 20B with the time (reference time) distributed from Grand Master Clock 10B by sending and receiving PTP packets with Grand Master Clock 10B. The Boundary Clock 20B distributes the device internal time to the client device 30B by transmitting and receiving PTP packets to and from the client device 30B.
 クライアント装置30Bは、Boundary Clock20BとのPTPパケットの送受信により、Boundary Clock20Bから配信された時刻に、装置内時刻を同期させる。 The client device 30B synchronizes the internal time of the device with the time delivered from the Boundary Clock 20B by transmitting and receiving PTP packets to and from the Boundary Clock 20B.
 測定器40Bは、Grand Master Clock10Bから出力された1PPS信号および伝送遅延を取得する。また、測定器40Bは、Grand Master Clock10BとBoundary Clock20Bとの間で送受信されるパケットのコピーを取得する。また、測定器40Bは、Boundary Clock20Bとクライアント装置30Bとの間で送受信されるPTPパケットのコピーを取得する。したがって、図7に示す時刻同期システム1Bにおいては、Grand Master Clock10BとBoundary Clock20Bとの間、および、Boundary Clock20Bとクライアント装置30Bとの間にそれぞれ、PTPパケットをコピーするためのコピーポイントが設けられる。以下では、測定器40Bが、コピーポイントを介してPTPパケットのコピーを取得することを単に、「PTPパケットを取得する」と記載することがある。 The measuring instrument 40B acquires the 1PPS signal and transmission delay output from the Grand Master Clock 10B. Also, the measuring device 40B acquires a copy of the packets transmitted and received between the Grand Master Clock 10B and the Boundary Clock 20B. Also, the measuring device 40B obtains a copy of the PTP packets transmitted and received between the Boundary Clock 20B and the client device 30B. Therefore, in the time synchronization system 1B shown in FIG. 7, copy points for copying PTP packets are provided between the Grand Master Clock 10B and the Boundary Clock 20B and between the Boundary Clock 20B and the client device 30B. In the following, the acquisition of a copy of the PTP packet by the measuring device 40B via the copy point may simply be referred to as "acquiring the PTP packet."
 測定器40Bは、Grand Master Clock10Bから出力された1PPS信号からGrand Master Clock10Bの時刻情報を取得する。また、測定器40Bは、取得したPTPパケットからタイムスタンプ情報を取得する。測定器40Bは、取得した時刻情報と、タイムスタンプ情報と、伝送遅延とに基づき、基準時刻に対する各装置の装置内時刻の精度を測定する。 The measuring device 40B acquires the time information of the Grand Master Clock 10B from the 1PPS signal output from the Grand Master Clock 10B. Also, the measuring device 40B acquires time stamp information from the acquired PTP packet. The measuring device 40B measures the accuracy of the internal time of each device with respect to the reference time based on the acquired time information, time stamp information, and transmission delay.
 次に、Grand Master Clock10B、Boundary Clock20B、クライアント装置30Bおよび測定器40Bの構成について、図8を参照して説明する。まず、Grand Master Clock10Bの構成について説明する。 Next, the configurations of the Grand Master Clock 10B, Boundary Clock 20B, client device 30B and measuring device 40B will be described with reference to FIG. First, the configuration of the Grand Master Clock 10B will be described.
 図8に示すように、Grand Master Clock10Bは、パケット送受信部11と、1PPS送信部12と、伝送遅延測定用パケット送受信部13と、伝送遅延計算処理部14とを備える。 As shown in FIG. 8, the Grand Master Clock 10B includes a packet transmission/reception section 11, a 1PPS transmission section 12, a transmission delay measurement packet transmission/reception section 13, and a transmission delay calculation processing section .
 パケット送受信部11は、Boundary Clock20Bとの間でPTPパケットの送受信を行う。 The packet transmission/reception unit 11 transmits/receives PTP packets to/from the Boundary Clock 20B.
 1PPS送信部12は、Grand Master Clock10Bの装置内時刻に同期して、1PPSでパルス信号(1PPS信号)を測定器40Bに出力する。 The 1PPS transmission section 12 outputs a pulse signal (1PPS signal) at 1PPS to the measuring device 40B in synchronization with the internal time of the Grand Master Clock 10B.
 伝送遅延測定用パケット送受信部13は、Boundary Clock20Bとの間で、Grand Master Clock10BとBoundary Clock20Bとの間の伝送遅延を測定するためのパケット(伝送遅延測定用パケット)の送受信を行う。 The transmission delay measuring packet transmitting/receiving unit 13 transmits/receives a packet (transmission delay measuring packet) for measuring the transmission delay between the Grand Master Clock 10B and the Boundary Clock 20B to/from the Boundary Clock 20B.
 伝送遅延計算処理部14は、伝送遅延測定用パケット送受信部13により送受信される伝送遅延測定用パケットに基づき、Grand Master Clock10BとBoundary Clock20Bとの間の伝送遅延を計算する。伝送遅延計算処理部14は、伝送遅延の計算結果を、ネットワークを介して測定器40Bに送信する。また、伝送遅延計算処理部14は、後述するBoundary Clock20Bから出力される、Boundary Clock20Bとクライアント装置30Bとの間の伝送遅延の計算結果を、ネットワークを介して測定器40Bに送信する。 The transmission delay calculation processing unit 14 calculates the transmission delay between the Grand Master Clock 10B and the Boundary Clock 20B based on the transmission delay measuring packet transmitted and received by the transmission delay measuring packet transmitting/receiving unit 13. The transmission delay calculation processing unit 14 transmits the calculation result of the transmission delay to the measuring device 40B via the network. The transmission delay calculation processing unit 14 also transmits the calculation result of the transmission delay between the Boundary Clock 20B and the client device 30B, which is output from the Boundary Clock 20B described later, to the measuring device 40B via the network.
 次に、Boundary Clock20Bの構成について説明する。 Next, the configuration of the Boundary Clock 20B will be explained.
 図8に示すように、Boundary Clock20Bは、パケット送受信部21,22と、時刻同期処理部23と、伝送遅延測定用パケット送受信部25,26と、伝送遅延計算処理部27とを備える。図8に示すBoundary Clock20Bは、図2に示すBoundary Clock20と比較して、タイムスタンプ送信部24を削除した点と、伝送遅延測定用パケット送受信部25,26および伝送遅延計算処理部27を追加した点とが異なる。 As shown in FIG. 8, the Boundary Clock 20B includes packet transmission/ reception units 21 and 22, a time synchronization processing unit 23, transmission delay measurement packet transmission/ reception units 25 and 26, and a transmission delay calculation processing unit 27. Compared to the Boundary Clock 20 shown in FIG. 2, the Boundary Clock 20B shown in FIG. 8 is different from the Boundary Clock 20 shown in FIG. point is different.
 伝送遅延測定用パケット送受信部25は、Grand Master Clock10Bとの間で、伝送遅延測定用パケットの送受信を行う。伝送遅延測定用パケット送受信部26は、クライアント装置30Bとの間で、伝送遅延測定用パケットの送受信を行う。 The transmission delay measuring packet transmitting/receiving unit 25 transmits/receives the transmission delay measuring packet to/from the Grand Master Clock 10B. The transmission delay measuring packet transmitting/receiving unit 26 transmits/receives a transmission delay measuring packet to/from the client device 30B.
 伝送遅延計算処理部27は、伝送遅延測定用パケット送受信部26によりクライアント装置30Bとの間で送受信される伝送遅延測定用パケットに基づき、Boundary Clock20Bとクライアント装置30Bとの間の伝送遅延を計算する。伝送遅延計算処理部27は、伝送遅延の計算結果をGrand Master Clock10Bに出力する。 The transmission delay calculation processing unit 27 calculates the transmission delay between the Boundary Clock 20B and the client device 30B based on the transmission delay measurement packet transmitted and received to and from the client device 30B by the transmission delay measurement packet transmission and reception unit 26. . The transmission delay calculation processing unit 27 outputs the calculation result of the transmission delay to the Grand Master Clock 10B.
 次に、クライアント装置30Bの構成について説明する。 Next, the configuration of the client device 30B will be described.
 図8に示すように、クライアント装置30Bは、パケット送受信部31と、時刻同期処理部32と、伝送遅延測定用パケット送受信部34と、伝送遅延計算処理部35とを備える。図8に示すクライアント装置30Bは、図2に示すクライアント装置30と比較して、タイムスタンプ送信部33を削除した点と、伝送遅延測定用パケット送受信部34および伝送遅延計算処理部35を追加した点が異なる。 As shown in FIG. 8, the client device 30B includes a packet transmission/reception section 31, a time synchronization processing section 32, a transmission delay measurement packet transmission/reception section 34, and a transmission delay calculation processing section 35. Compared to the client device 30 shown in FIG. 2, the client device 30B shown in FIG. 8 is different from the client device 30 shown in FIG. Points are different.
 伝送遅延測定用パケット送受信部34は、Boundary Clock20Bとの間で、伝送遅延測定用パケットの送受信を行う。 The transmission delay measuring packet transmitting/receiving unit 34 transmits/receives the transmission delay measuring packet to/from the Boundary Clock 20B.
 伝送遅延計算処理部35は、伝送遅延測定用パケット送受信部34によりBoundary Clock20Bとの間で送受信される伝送遅延測定用パケットに基づき、Boundary Clock20Bとクライアント装置30Bとの間の伝送遅延を計算する。 The transmission delay calculation processing unit 35 calculates the transmission delay between the Boundary Clock 20B and the client device 30B based on the transmission delay measurement packet transmitted/received between the Boundary Clock 20B and the Boundary Clock 20B by the transmission delay measurement packet transmission/reception unit 34.
 次に、測定器40Bの構成について説明する。 Next, the configuration of the measuring device 40B will be described.
 図8に示すように、測定器40Bは、UTC取得部41と、GMC時刻取得部42と、UTC-GMCオフセット計算処理部43と、GMC-BCオフセット計算処理部44Bと、BC-クライアントオフセット計算処理部45Bと、時刻精度計算処理部46とを備える。図8に示す測定器40Bは、図2に示す測定器40と比較して、GMC-BCオフセット計算処理部44をGMC-BCオフセット計算処理部44Bに変更した点と、BC-クライアントオフセット計算処理部45をBC-クライアントオフセット計算処理部45Bに変更した点とが異なる。 As shown in FIG. 8, the measuring device 40B includes a UTC acquisition unit 41, a GMC time acquisition unit 42, a UTC-GMC offset calculation processing unit 43, a GMC-BC offset calculation processing unit 44B, and a BC-client offset calculation unit. A processing unit 45B and a time accuracy calculation processing unit 46 are provided. Compared to the measuring instrument 40 shown in FIG. 2, the measuring instrument 40B shown in FIG. 8 is different from the measuring instrument 40 shown in FIG. The difference is that the unit 45 is changed to a BC-client offset calculation processing unit 45B.
 GMC-BCオフセット計算処理部44Bは、Grand Master Clock10BとBoundary Clock20Bとの間で送受信されるPTPパケットのコピーを取得する。また、GMC-BCオフセット計算処理部44Bは、Grand Master Clock10Bから出力された、Grand Master Clock10BとBoundary Clock20Bとの間の伝送遅延の計算結果を取得する。GMC-BCオフセット計算処理部44Bは、取得したPTPパケットからタイムスタンプ情報を取得し、取得したタイムスタンプ情報と伝送遅延とに基づき、GMC-BC間オフセットを計算する。 The GMC-BC offset calculation processing unit 44B acquires a copy of the PTP packets transmitted and received between the Grand Master Clock 10B and Boundary Clock 20B. Also, the GMC-BC offset calculation processing unit 44B acquires the calculation result of the transmission delay between the Grand Master Clock 10B and the Boundary Clock 20B output from the Grand Master Clock 10B. The GMC-BC offset calculation processing unit 44B acquires time stamp information from the acquired PTP packet, and calculates the GMC-BC offset based on the acquired time stamp information and transmission delay.
 BC-クライアントオフセット計算処理部45Bは、Boundary Clock20Bとクライアント装置30Bとの間で送受信されるPTPパケットのコピーを取得する。また、BC-クライアントオフセット計算処理部45Bは、Grand Master Clock10Bから出力された、Boundary Clock20Bとクライアント装置30Bとの間の伝送遅延の計算結果を取得する。BC-クライアントオフセット計算処理部45Bは、取得したPTPパケットからタイムスタンプ情報を取得し、取得したタイムスタンプ情報と伝送遅延とに基づき、BC-クライアント間オフセットを計算する。 The BC-client offset calculation processing unit 45B acquires a copy of the PTP packets transmitted and received between the Boundary Clock 20B and the client device 30B. Also, the BC-client offset calculation processing unit 45B obtains the calculation result of the transmission delay between the Boundary Clock 20B and the client device 30B, which is output from the Grand Master Clock 10B. The BC-client offset calculation processing unit 45B obtains time stamp information from the obtained PTP packet, and calculates the BC-client offset based on the obtained time stamp information and transmission delay.
 図7においては、測定器40は、1PPS信号からGrand Master Clock10の時刻情報を取得する例を用いて説明したが、これに限られるものではない。 In FIG. 7, the measuring device 40 has been described using an example in which the time information of the Grand Master Clock 10 is obtained from the 1PPS signal, but it is not limited to this.
 図9は、図7に示す時刻同期システム1Bとは時刻情報の取得方法が異なる、本開示のさらに別の一実施形態に係る時刻同期システム1Cの構成例を示す図である。図9において、図7と同様の構成には同じ符号を付し、説明を省略する。 FIG. 9 is a diagram showing a configuration example of a time synchronization system 1C according to yet another embodiment of the present disclosure, which uses a different method of acquiring time information from the time synchronization system 1B shown in FIG. In FIG. 9, the same components as in FIG. 7 are denoted by the same reference numerals, and descriptions thereof are omitted.
 図9に示す時刻同期システム1Cは、Grand Master Clock10Cと、Boundary Clock20Bと、クライアント装置30Bと、測定器40Cとを備える。図9に示す時刻同期システム1Cは、図7に示す時刻同期システム1Bと比較して、Grand Master Clock10BをGrand Master Clock10Cに変更した点と、測定器40Bを測定器40Cに変更した点とが異なる。 A time synchronization system 1C shown in FIG. 9 includes a Grand Master Clock 10C, a Boundary Clock 20B, a client device 30B, and a measuring device 40C. The time synchronization system 1C shown in FIG. 9 differs from the time synchronization system 1B shown in FIG. 7 in that the Grand Master Clock 10B is changed to the Grand Master Clock 10C and the measuring device 40B is changed to the measuring device 40C. .
 Grand Master Clock10Cは、1PPS信号を送信する代わりに、ネットワークを介して、PTPパケットを測定器40Cとの間で送受信する。 Instead of transmitting 1PPS signals, the Grand Master Clock 10C transmits and receives PTP packets to and from the measuring instrument 40C via the network.
 測定器40Cは、Grand Master Clock10Cとの間でのPTPパケットの送受信により、Grand Master Clock10Cの時刻情報を取得する。Grand Master Clock10Cおよび測定器40Cの構成について、図10を参照して説明する。なお、図10において、図8と同様の構成には同じ符号を付し、説明を省略する。 The measuring instrument 40C acquires the time information of the Grand Master Clock 10C by transmitting and receiving PTP packets to and from the Grand Master Clock 10C. The configurations of the Grand Master Clock 10C and measuring device 40C will be described with reference to FIG. In addition, in FIG. 10, the same components as in FIG. 8 are denoted by the same reference numerals, and the description thereof is omitted.
 図10に示すように、Grand Master Clock10Cは、パケット送受信部11,15と、伝送遅延測定用パケット送受信部13と、伝送遅延計算処理部14とを備える。図10に示すGrand Master Clock10Cは、図8に示すGrand Master Clock10Bと比較して、1PPS送信部12を削除し、パケット送受信部15を追加した点が異なる。 As shown in FIG. 10, the Grand Master Clock 10C includes packet transmitting/receiving sections 11 and 15, a transmission delay measuring packet transmitting/receiving section 13, and a transmission delay calculation processing section . Grand Master Clock 10C shown in FIG. 10 differs from Grand Master Clock 10B shown in FIG.
 パケット送受信部15は、ネットワークを介して、測定器40Cとの間でPTPパケットの送受信を行う。 The packet transmitting/receiving unit 15 transmits/receives PTP packets to/from the measuring instrument 40C via the network.
 次に、測定器40Cの構成について説明する。 Next, the configuration of the measuring instrument 40C will be described.
 図10に示すように、測定器40Cは、UTC取得部41と、GMC時刻取得部42Cと、UTC-GMCオフセット計算処理部43と、GMC-BCオフセット計算処理部44Bと、BC-クライアントオフセット計算処理部45Bと、時刻精度計算処理部46と、パケット送受信部48とを備える。図10に示す測定器40Cは、図8に示す測定器40Bと比較して、GMC時刻取得部42BをGMC時刻取得部42Cに変更した点と、パケット送受信部47を追加した点とが異なる。 As shown in FIG. 10, the measuring device 40C includes a UTC acquisition unit 41, a GMC time acquisition unit 42C, a UTC-GMC offset calculation processing unit 43, a GMC-BC offset calculation processing unit 44B, and a BC-client offset calculation unit. A processing unit 45B, a time accuracy calculation processing unit 46, and a packet transmission/reception unit 48 are provided. A measuring instrument 40C shown in FIG. 10 differs from the measuring instrument 40B shown in FIG. 8 in that the GMC time acquiring section 42B is changed to a GMC time acquiring section 42C and a packet transmitting/receiving section 47 is added.
 パケット送受信部48は、ネットワークを介して、Grand Master Clock10Cとの間でPTPパケットの送受信を行い、Grand Master Clock10Cから受信したPTPパケットをGMC時刻取得部42Cに出力する。 The packet transmission/reception unit 48 transmits/receives PTP packets to/from the Grand Master Clock 10C via the network, and outputs the PTP packets received from the Grand Master Clock 10C to the GMC time acquisition unit 42C.
 GMC時刻取得部42Cは、パケット送受信部48が受信したPTPパケットから時刻情報を取得する。PTPパケットには、Grand Master Clock10Cの装置内時刻に応じたタイムスタンプが含まれる。GMC時刻取得部42Cは、取得したPTPパケットに含まれるタイムスタンプに基づき、時刻情報を取得する。 The GMC time acquisition unit 42C acquires time information from the PTP packet received by the packet transmission/reception unit 48. The PTP packet contains a time stamp corresponding to the internal time of the Grand Master Clock 10C. 42 C of GMC time acquisition parts acquire time information based on the time stamp contained in the acquired PTP packet.
 時刻同期システム1Bにおいては、測定器40Bは、1PPS信号から時刻情報を取得するため、Grand Master Clock10Bと測定器40Bとは、1PPS信号を伝送する同軸ケーブルで接続する必要がある。そのため、Grand Master Clock10Bと測定器40Bとは、同軸ケーブルで接続可能な範囲、例えば、同じ建物内に設置する必要がある。一方、時刻同期システム1Cにおいては、Grand Master Clock10Cと測定器40Cとは、ネットワークを介してPTPパケットの送受信ができればよい。そのため、設置場所の制約をさらに緩和し、より簡易に複数の装置それぞれの装置内時刻の精度の測定を行うことができる。 In the time synchronization system 1B, the measuring device 40B acquires time information from the 1PPS signal, so the Grand Master Clock 10B and the measuring device 40B must be connected with a coaxial cable that transmits the 1PPS signal. Therefore, the Grand Master Clock 10B and the measuring device 40B must be installed within a range where they can be connected with a coaxial cable, for example, within the same building. On the other hand, in the time synchronization system 1C, the Grand Master Clock 10C and the measuring device 40C only need to be able to transmit and receive PTP packets via the network. Therefore, it is possible to further relax the restrictions on the installation location and more easily measure the accuracy of the internal time of each of the plurality of devices.
 次に、本実施形態に係る測定器40の動作について説明する。 Next, the operation of the measuring instrument 40 according to this embodiment will be described.
 図11は、本実施形態に係る測定器40Bの動作の一例を示すフローチャートであり、測定器40Bによる測定方法を説明するための図である。図11において、図5と同様の処理には同じ符号を付し、説明を省略する。 FIG. 11 is a flow chart showing an example of the operation of the measuring device 40B according to this embodiment, and is a diagram for explaining the measuring method by the measuring device 40B. In FIG. 11, the same reference numerals are given to the same processes as in FIG. 5, and the description thereof is omitted.
 GMC-BCオフセット計算処理部44Bは、Grand Master Clock10BとBoundary Clock20Bとの間で送受信されるPTPパケットのコピーを取得し、取得したPTPパケットからタイムスタンプ情報を取得する。GMC-BCオフセット計算処理部44Bは、取得したタイムスタンプ情報と、Grand Master Clock10Bから出力された、Grand Master Clock10BとBoundary Clock20Bとの間の伝送遅延とに基づき、GMC-BC間オフセットを計算する(ステップS21)。GMC-BC間オフセットの計算の詳細については後述する。 The GMC-BC offset calculation processing unit 44B acquires a copy of the PTP packet transmitted and received between the Grand Master Clock 10B and the Boundary Clock 20B, and acquires time stamp information from the acquired PTP packet. The GMC-BC offset calculation processing unit 44B calculates the GMC-BC offset based on the acquired time stamp information and the transmission delay between the Grand Master Clock 10B and the Boundary Clock 20B output from the Grand Master Clock 10B ( step S21). Details of the calculation of the GMC-BC offset will be described later.
 BC-クライアントオフセット計算処理部45Bは、Boundary Clock20Bとクライアント装置30Bとの間で送受信されるPTPパケットのコピーを取得し、取得したPTPパケットからタイムスタンプ情報を取得する。BC-クライアントオフセット計算処理部45Bは、取得したタイムスタンプ情報と、Grand Master Clock10Bから出力された、Boundary Clock20Bとクライアント装置30との間の伝送遅延とに基づき、BC-クライアント間オフセットを計算する(ステップS22)。 The BC-client offset calculation processing unit 45B acquires a copy of the PTP packet transmitted and received between the Boundary Clock 20B and the client device 30B, and acquires time stamp information from the acquired PTP packet. The BC-client offset calculation processing unit 45B calculates the BC-client offset based on the acquired time stamp information and the transmission delay between the Boundary Clock 20B and the client device 30 output from the Grand Master Clock 10B ( step S22).
 以下、図5を参照して説明したように、UTC-GMC間オフセットと、GMC-BC間オフセットと、BC-クライアント間オフセットとに基づき、基準時刻に対する各装置の装置内時刻の精度の測定が行われる。 As described below with reference to FIG. 5, based on the UTC-GMC offset, the GMC-BC offset, and the BC-client offset, the accuracy of the internal time of each device with respect to the reference time can be measured. done.
 なお、図11においては、ステップS11からステップS13までの処理と、ステップS21の処理と、ステップS22の処理が分岐しているように記載されているが、実際には、これらの処理が分岐しているわけではなく、逐次実行される。 In FIG. 11, the process from step S11 to step S13, the process of step S21, and the process of step S22 are described as branching, but in reality, these processes are branched. are executed sequentially.
 次に、GMC-BCオフセット計算処理部44BによるGMC-BC間オフセットの計算について、図12を参照して説明する。なお、以下では、GMC-BC間オフセットの計算を例として説明するが、BC-クライアント間オフセットも同様にして計算することができる。 Next, calculation of the GMC-BC offset by the GMC-BC offset calculation processing unit 44B will be described with reference to FIG. Although calculation of the GMC-BC offset will be described below as an example, the BC-client offset can be calculated in the same manner.
 図12に示すように、Grand Master Clock10Bはまず、Sync messageをBoundary Clock20Bに送信する(ステップS31)。Grand Master Clock10Bは、Sync messageの送信時刻である時刻T1を示すタイムスタンプを、Sync messageに含めてBoundary Clock20Bに送信する。 As shown in FIG. 12, Grand Master Clock 10B first sends a Sync message to Boundary Clock 20B (step S31). The Grand Master Clock 10B transmits a Sync message including a time stamp indicating time T1, which is the transmission time of the Sync message, to the Boundary Clock 20B.
 Boundary Clock20Bは、時刻T2において、Grand Master Clock10Bから送信されてきたSync messageを受信すると、Sync messageに応じて、時刻T3において、Delay_Req messageをGrand Master Clock10Bに送信する(ステップS32)。Boundary Clock20Bは、Delay_Req messageの送信時刻である時刻T3を示すタイムスタンプを、Delay_Req messageに含めてGrand Master Clock10Bに送信する。 When the Boundary Clock 20B receives the Sync message transmitted from the Grand Master Clock 10B at time T2, it transmits a Delay_Req message to the Grand Master Clock 10B at time T3 in response to the Sync message (step S32). Boundary Clock 20B includes a time stamp indicating time T3, which is the transmission time of Delay_Req message, in Delay_Req message and transmits it to Grand Master Clock 10B.
 Grand Master Clock10Bは、時刻T4において、Boundary Clock20Bから送信されてきたDelay_Req messageを受信すると、Delay_Req messageに応じて、Delay_Resp messageをBoundary Clock20Bに送信する(ステップS33)。Grand Master Clock10Bは、Delay_Req messageの受信時刻である時刻T4を示すタイムスタンプを、Delay_Resp messageに含めてBoundary Clock20Bに送信する。 When the Grand Master Clock 10B receives the Delay_Req message transmitted from the Boundary Clock 20B at time T4, it transmits a Delay_Resp message to the Boundary Clock 20B in response to the Delay_Req message (step S33). The Grand Master Clock 10B transmits a Delay_Resp message including a time stamp indicating time T4, which is the reception time of the Delay_Req message, to the Boundary Clock 20B.
 GMC-BCオフセット計算処理部44Bは、Grand Master Clock10BとBoundary Clock20Bとの間で送受信されるメッセージを構成するPTPパケットのコピーを取得する。 The GMC-BC offset calculation processing unit 44B obtains a copy of the PTP packet that constitutes the message sent and received between the Grand Master Clock 10B and the Boundary Clock 20B.
 すなわち、GMC-BCオフセット計算処理部44Bは、Sync messageを構成するPTPパケットをコピーしたPTPパケットP1を取得する。PTPパケットP1は、Grand Master Clock10BからBoundary Clock20Bに送信されるパケットであって、そのパケットの送信時刻である時刻T1を含むパケットである。 That is, the GMC-BC offset calculation processing unit 44B acquires the PTP packet P1 that is a copy of the PTP packet that constitutes the Sync message. The PTP packet P1 is a packet that is transmitted from the Grand Master Clock 10B to the Boundary Clock 20B and that includes the time T1 that is the transmission time of the packet.
 また、GMC-BCオフセット計算処理部44Bは、Delay_Req messageを構成するPTPパケットP2を取得する。PTPパケットP2は、Boundary Clock20BからGrand Master Clock10Bに送信されるパケットであって、そのパケットの送信時刻である時刻T3を含むパケットである。 Also, the GMC-BC offset calculation processing unit 44B acquires the PTP packet P2 that constitutes the Delay_Req message. The PTP packet P2 is a packet transmitted from the Boundary Clock 20B to the Grand Master Clock 10B, and is a packet containing the transmission time T3 of the packet.
 また、GMC-BCオフセット計算処理部44Bは、Delay_Resp messageを構成するPTPパケットP3(第3のパケット)を取得する。PTPパケットP3は、Grand Master Clock10BからBoundary Clock20Bに送信されるパケットであって、Delay_Req messageを構成するPTPパケットP2の受信時刻である時刻T4を含むパケットである。 Also, the GMC-BC offset calculation processing unit 44B acquires the PTP packet P3 (third packet) that constitutes the Delay_Resp message. The PTP packet P3 is a packet transmitted from the Grand Master Clock 10B to the Boundary Clock 20B, and is a packet containing the time T4, which is the reception time of the PTP packet P2 forming the Delay_Req message.
 GMC-BCオフセット計算処理部44Bは、PTPパケットP1から時刻T1を取得し、PTPパケットP2から時刻T3を取得し、PTPパケットP3から時刻T4を取得する。 The GMC-BC offset calculation processing unit 44B acquires time T1 from PTP packet P1, acquires time T3 from PTP packet P2, and acquires time T4 from PTP packet P3.
 GMC-BCオフセット計算処理部44Bは、時刻T1~T4に基づき、以下の式(2)によりGMC-BC間オフセットを計算する。
 GMC-BC間オフセット=((T2-T1)-(T4-T3))/2 ・・・式(2)
The GMC-BC offset calculation processing unit 44B calculates the GMC-BC offset by the following equation (2) based on the times T1 to T4.
GMC-BC offset=((T2-T1)-(T4-T3))/2 Expression (2)
 上述したように、GMC-BCオフセット計算処理部44Bは、取得したPTPパケットのコピーから、時刻T1,T3,T4を受信することができる。しかしながら、Boundary Clock20BによるSync messageの受信時刻である時刻T2はPTPパケットから取得することができないので、GMC-BCオフセット計算処理部44Bは、時刻T2を別途取得する必要がある。時刻T2を取得する方法としては、Master Clock10BとBoundary Clock20Bとの間の伝送遅延を用いる方法がある。Master Clock10BとBoundary Clock20Bとの間の伝送遅延は、Master Clock10BとBoundary Clock20Bとの間で伝送遅延測定用パケットを送受信することで、伝送遅延計算処理部14により計算される。以下では、伝送遅延計算処理部14による伝送遅延の計算について、図13を参照して説明する。 As described above, the GMC-BC offset calculation processing unit 44B can receive times T1, T3, and T4 from the obtained copy of the PTP packet. However, since the time T2, which is the reception time of the sync message by the Boundary Clock 20B, cannot be obtained from the PTP packet, the GMC-BC offset calculation processing section 44B needs to obtain the time T2 separately. As a method of acquiring the time T2, there is a method of using the transmission delay between the master clock 10B and the boundary clock 20B. The transmission delay between the master clock 10B and the boundary clock 20B is calculated by the transmission delay calculation processor 14 by transmitting and receiving transmission delay measurement packets between the master clock 10B and the boundary clock 20B. Calculation of the transmission delay by the transmission delay calculation processing unit 14 will be described below with reference to FIG.
 図13においては、ETH-DM(Ethernet(登録商標) Delay Measurement)を用いる方法について説明する。ETH-DMは、JT-Y1731 OAM functions and mechanisms for Ethernet based networksで規定されている遅延測定方法である。ETH-DMには、1WAY ETH-DMおよび2WYA ETH-DMの2種類の方法があるが、以下では、2WAY ETH-DMを用いる場合を例として説明する。 In FIG. 13, a method using ETH-DM (Ethernet (registered trademark) Delay Measurement) will be described. ETH-DM is a delay measurement method specified in JT-Y1731 OAM functions and mechanisms for Ethernet based networks. There are two types of ETH-DM, 1WAY ETH-DM and 2WYA ETH-DM, but the case of using 2WAY ETH-DM will be described below as an example.
 図13に示すように、Master Clock10Bの伝送遅延測定用パケット送受信部13は、DMM frameをBoundary Clock20Bに送信する(ステップS41)。Boundary Clock20Bの伝送遅延測定用パケット送受信部25は、DMM frameを受信すると、DMR frameをMaster Clock10Bに送信する(ステップS42)。以下では、Master Clock10BによるDMM frameの送信時刻をTx Time stampfとし、Boundary Clock20BによるDMM frameの受信時刻をRx Time stampfとする。また、Boundary Clock20BによるDMR frameの送信時刻をTx Time stampbとし、Master Clock10BによるDMR frameの受信時刻をRx Time stampbとする。Boundary Clock20Bは、DMM frameの受信時刻Rx Time stampfおよびDMR frameの送信時刻Tx Time stampbを、DMR frameに含めてMaster Clock10Bに送信する。 As shown in FIG. 13, the transmission delay measuring packet transmitting/receiving section 13 of the Master Clock 10B transmits the DMM frame to the Boundary Clock 20B (step S41). Upon receiving the DMM frame, the transmission delay measuring packet transmitter/receiver 25 of the Boundary Clock 20B transmits the DMR frame to the Master Clock 10B (step S42). Hereinafter, the DMM frame transmission time by the master clock 10B is Tx Time stampf, and the DMM frame reception time by the Boundary Clock 20B is Rx Time stampf. Let Tx Time stampb be the transmission time of the DMR frame by the Boundary Clock 20B, and Rx Time stampb be the reception time of the DMR frame by the Master Clock 10B. The Boundary Clock 20B includes the reception time Rx Time stampf of the DMM frame and the transmission time Tx Time stampb of the DMR frame in the DMR frame and transmits it to the Master Clock 10B.
 ETH-DMのフレーム遅延(Master Clock10BとBoundary Clock20Bとの間の往復に要した時間)は、以下の式(3)により計算することができる。
 フレーム遅延
=(Rx Time stampb-Tx Time stampf)-(Tx Time stampb-Rx Time stampf)
                                 ・・・式(3)
The ETH-DM frame delay (time required for round trip between Master Clock 10B and Boundary Clock 20B) can be calculated by the following equation (3).
Frame delay = (Rx Time stampb - Tx Time stampf) - (Tx Time stampb - Rx Time stampf)
... formula (3)
 伝送遅延計算処理部14は、Boundary Clock20Bから受信したDMR frameから、Rx Time stampfおよびTx Time stampbを取得する。伝送遅延計算処理部14は、伝送遅延測定用パケット送受信部13によるDMM frameの送信およびDMR frameの受信から、Tx Time stampfおよびRx Time stampbを取得することができる。したがって、伝送遅延計算処理部14は、式(3)よりフレーム遅延を計算することができる。伝送遅延計算処理部14は、伝送遅延(フレーム遅延)の伝送結果を測定器40Bに出力する。 The transmission delay calculation processing unit 14 acquires Rx Time stampf and Tx Time stampb from the DMR frame received from the Boundary Clock 20B. The transmission delay calculation processing unit 14 can acquire Tx Time stampf and Rx Time stampb from transmission of DMM frames and reception of DMR frames by the transmission delay measuring packet transmission/reception unit 13 . Therefore, the transmission delay calculation processing unit 14 can calculate the frame delay using equation (3). The transmission delay calculation processing unit 14 outputs the transmission result of the transmission delay (frame delay) to the measuring device 40B.
 Master Clock10BとBoundary Clock20Bとの間のPTPパケットの往復の伝送遅延は、図12を参照して説明した時刻T1~T4を用いて、以下の式(4)で計算することができる。
 往復の伝送遅延=(T2-T1)+(T4-T3) ・・・式(4)
The round-trip transmission delay of PTP packets between the master clock 10B and the boundary clock 20B can be calculated by the following equation (4) using times T1 to T4 described with reference to FIG.
Round-trip transmission delay=(T2-T1)+(T4-T3) Equation (4)
 GMC-BCオフセット計算処理部44Bは、伝送遅延計算処理部14により計算された伝送遅延と、式(4)とに基づき、時刻T2を計算することができる。そして、GMC-BCオフセット計算処理部44Bは、以下の式(5)に基づき、GMC-BC間オフセットを計算する。
 GMC-BC間オフセット=((T2-T1)-(T4-T3))/2 ・・・式(5)
The GMC-BC offset calculation processing unit 44B can calculate the time T2 based on the transmission delay calculated by the transmission delay calculation processing unit 14 and equation (4). Then, the GMC-BC offset calculation processing unit 44B calculates the GMC-BC offset based on the following equation (5).
GMC-BC offset=((T2-T1)-(T4-T3))/2 Expression (5)
 なお、図13を参照して説明した伝送遅延の計算方法はあくまでも一例であり、伝送遅延を求めることができれば、任意の方法を用いてよい。 It should be noted that the transmission delay calculation method described with reference to FIG. 13 is merely an example, and any method may be used as long as the transmission delay can be obtained.
 次に、本開示に係る測定器40のハードウェア構成について説明する。なお、以下では、測定器40を例として説明するが、測定器40A,40B,40Cも同様である。 Next, the hardware configuration of the measuring instrument 40 according to the present disclosure will be described. In addition, although the measuring device 40 will be described below as an example, the same applies to the measuring devices 40A, 40B, and 40C.
 図14は、本開示の一実施形態に係る測定器40のハードウェア構成の一例を示す図である。図14においては、測定器40がプログラム命令を実行可能なコンピュータにより構成される場合の、測定器40のハードウェア構成の一例を示している。ここで、コンピュータは、汎用コンピュータ、専用コンピュータ、ワークステーション、PC(Personal computer)、電子ノートパッドなどであってもよい。プログラム命令は、必要なタスクを実行するためのプログラムコード、コードセグメントなどであってもよい。 FIG. 14 is a diagram showing an example hardware configuration of the measuring device 40 according to an embodiment of the present disclosure. FIG. 14 shows an example of the hardware configuration of the measuring device 40 when the measuring device 40 is configured by a computer capable of executing program instructions. Here, the computer may be a general-purpose computer, a dedicated computer, a workstation, a PC (Personal computer), an electronic notepad, or the like. Program instructions may be program code, code segments, etc. for performing the required tasks.
 図14に示すように、測定器40は、プロセッサ410、ROM(Read Only Memory)420、RAM(Random Access Memory)430、ストレージ440、入力部450、表示部460および通信インタフェース(I/F)470を有する。各構成は、バス490を介して相互に通信可能に接続されている。プロセッサ410は、具体的にはCPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、SoC(System on a Chip)などであり、同種または異種の複数のプロセッサにより構成されてもよい。 As shown in FIG. 14, the measuring instrument 40 includes a processor 410, a ROM (Read Only Memory) 420, a RAM (Random Access Memory) 430, a storage 440, an input section 450, a display section 460 and a communication interface (I/F) 470. have Each component is communicatively connected to each other via a bus 490 . The processor 410 is specifically a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), etc. may be configured by a plurality of processors of
 プロセッサ410は、各構成の制御および各種の演算処理を実行するコントローラである。すなわち、プロセッサ410は、ROM420またはストレージ440からプログラムを読み出し、RAM430を作業領域としてプログラムを実行する。プロセッサ410は、ROM420あるいはストレージ440に記憶されているプログラムに従って、上記各構成の制御および各種の演算処理を行う。本実施形態では、ROM420またはストレージ440には、コンピュータを本開示に係る測定器40として機能させるためのプログラムが格納されている。当該プログラムがプロセッサ410により読み出されて実行されることで、測定器40の各構成、すなわち、UTC取得部41、GMC時刻取得部42、UTC-GMCオフセット計算処理部43、GMC-BCクライアントオフセット計算処理部44、BC-クライアントオフセット計算処理部45および時刻精度計算処理部46が実現される。 The processor 410 is a controller that controls each configuration and executes various arithmetic processing. That is, processor 410 reads a program from ROM 420 or storage 440 and executes the program using RAM 430 as a work area. The processor 410 performs control of the above components and various arithmetic processing according to programs stored in the ROM 420 or the storage 440 . In this embodiment, the ROM 420 or storage 440 stores a program for causing a computer to function as the measuring instrument 40 according to the present disclosure. By reading and executing the program by the processor 410, each configuration of the measuring instrument 40, that is, the UTC acquisition unit 41, the GMC time acquisition unit 42, the UTC-GMC offset calculation processing unit 43, the GMC-BC client offset A calculation processing unit 44, a BC-client offset calculation processing unit 45, and a time accuracy calculation processing unit 46 are realized.
 プログラムは、CD-ROM(Compact Disk Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、USB(Universal Serial Bus)メモリなどの非一時的(non-transitory)記憶媒体に記憶された形態で提供されてもよい。また、プログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 Programs are stored in non-transitory storage media such as CD-ROM (Compact Disk Read Only Memory), DVD-ROM (Digital Versatile Disk Read Only Memory), USB (Universal Serial Bus) memory, etc. may be provided in Also, the program may be downloaded from an external device via a network.
 ROM420は、各種プログラムおよび各種データを格納する。RAM430は、作業領域として一時的にプログラムまたはデータを記憶する。ストレージ440は、HDD(Hard Disk Drive)またはSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラムおよび各種データを格納する。 The ROM 420 stores various programs and various data. RAM 430 temporarily stores programs or data as a work area. The storage 440 is configured by a HDD (Hard Disk Drive) or SSD (Solid State Drive) and stores various programs including an operating system and various data.
 入力部450は、マウスなどのポインティングデバイス、およびキーボードを含み、各種の入力を行うために使用される。 The input unit 450 includes a pointing device such as a mouse and a keyboard, and is used for various inputs.
 表示部460は、例えば、液晶ディスプレイであり、各種の情報を表示する。表示部460は、タッチパネル方式を採用して、入力部450として機能してもよい。 The display unit 460 is, for example, a liquid crystal display, and displays various information. The display unit 460 may employ a touch panel method and function as the input unit 450 .
 通信インタフェース470は、外部装置(図示しない)などの他の機器と通信するためのインタフェースであり、例えば、イーサネット(登録商標)、FDDI、Wi-Fi(登録商標)などの規格が用いられる。 The communication interface 470 is an interface for communicating with other devices such as external devices (not shown), and uses standards such as Ethernet (registered trademark), FDDI, and Wi-Fi (registered trademark), for example.
 上述した測定器40の各部として機能させるためにコンピュータを好適に用いることが可能である。そのようなコンピュータは、測定器40の各部の機能を実現する処理内容を記述したプログラムを該コンピュータの記憶部に格納しておき、該コンピュータのプロセッサによってこのプログラムを読み出して実行させることで実現することができる。すなわち、当該プログラムは、コンピュータを、上述した測定器40として機能させることができる。また、当該プログラムを非一時的記録媒体に記録することも可能である。また、当該プログラムを、ネットワークを介して提供することも可能である。 A computer can be preferably used to function as each part of the measuring instrument 40 described above. Such a computer is realized by storing a program describing the processing details for realizing the function of each part of the measuring instrument 40 in the memory of the computer, and reading and executing the program by the processor of the computer. be able to. That is, the program can cause the computer to function as the measuring instrument 40 described above. It is also possible to record the program on a non-temporary recording medium. It is also possible to provide the program via a network.
 以上の実施形態に関し、更に以下の付記を開示する。 Regarding the above embodiments, the following additional remarks are disclosed.
 (付記項1)
 装置内時刻を同期させる複数の装置における、基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する測定器であって、
 前記複数の装置は、第1の装置、第2の装置および第3の装置を含み、
 前記第1の装置は、前記基準時刻に装置内時刻を同期させ、パケットの送受信により前記装置内時刻を下位の装置に配信するマスター機能を備え、
 前記第2の装置は、前記マスター機能と、パケットの送受信により前記マスター機能を備える上位の装置から配信された時刻に装置内時刻を同期させるスレーブ機能とを備え、
 前記第3の装置は、パケットの送受信により前記第2の装置から配信された時刻に装置内時刻を同期させる前記スレーブ機能を備え、
 前記測定器はプロセッサを備え、
 前記プロセッサは、
 衛星信号から前記基準時刻を取得し、
 前記第1の装置の装置内時刻に関する時刻情報を取得し、
 前記基準時刻と、前記取得した時刻情報とに基づき、前記基準時刻と前記第1の装置の装置内時刻との差である第1のオフセットを計算し、
 装置間で前記パケットが送受信された時刻を示すタイムスタンプ情報を取得し、該取得したタイムスタンプ情報に基づき、前記装置間での装置内時刻の差である第2のオフセットを計算し、
 前記第1のオフセットおよび前記第2のオフセットに基づき、前記基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する、測定器。
(Appendix 1)
A measuring instrument for measuring the accuracy of the internal time of each of the plurality of devices with respect to a reference time in a plurality of devices that synchronize the device time,
the plurality of devices includes a first device, a second device and a third device;
The first device has a master function for synchronizing the device time with the reference time and distributing the device time to a lower device by transmitting and receiving packets,
The second device has the master function and a slave function for synchronizing the internal time of the device with the time delivered from the host device having the master function by packet transmission/reception,
The third device has the slave function for synchronizing the internal time of the device with the time delivered from the second device by packet transmission/reception,
the meter comprises a processor;
The processor
obtaining the reference time from a satellite signal;
Acquiring time information related to the internal device time of the first device;
calculating a first offset, which is a difference between the reference time and the internal device time of the first device, based on the reference time and the acquired time information;
Obtaining time stamp information indicating the time when the packet was transmitted and received between devices, and calculating a second offset, which is a difference in device internal time between the devices, based on the obtained time stamp information;
A measuring device that measures the accuracy of the internal time of each of the plurality of devices with respect to the reference time based on the first offset and the second offset.
 (付記項2)
 付記項1に記載の測定器において、
 前記プロセッサは、前記第1の装置の装置内時刻に同期して1PPSで前記第1の装置から出力されるパルス信号から、前記時刻情報を取得する、測定器。
(Appendix 2)
In the measuring instrument according to item 1,
The measuring instrument, wherein the processor acquires the time information from a pulse signal output from the first device at 1 PPS in synchronization with the internal time of the first device.
 (付記項3)
 付記項1に記載の測定器において、
 前記プロセッサは、ネットワークを介して前記第1の装置から前記第1の装置内時刻に応じたタイムスタンプを含むパケットを取得し、該取得したパケットから前記時刻情報を取得する、測定器。
(Appendix 3)
In the measuring instrument according to item 1,
The measuring instrument, wherein the processor acquires a packet including a time stamp corresponding to the first internal time from the first device via a network, and acquires the time information from the acquired packet.
 (付記項4)
 付記項1に記載の測定器において、
 前記プロセッサは、ネットワークを介して前記第2の装置および前記第3の装置から送信されてきた前記タイムスタンプ情報を取得する、測定器。
(Appendix 4)
In the measuring instrument according to item 1,
The measuring instrument, wherein the processor obtains the timestamp information transmitted from the second device and the third device via a network.
 (付記項5)
 付記項1に記載の測定器において、
 前記プロセッサは、ネットワークを介して前記装置間で送受信されるパケットのコピーを取得し、前記取得したパケットから前記タイムスタンプ情報を取得し、前記取得したタイムスタンプ情報と、前記装置間での前記パケットの伝送遅延とに基づき、前記第2のオフセットを計算する、測定器。
(Appendix 5)
In the measuring instrument according to item 1,
The processor acquires a copy of a packet transmitted and received between the devices via a network, acquires the time stamp information from the acquired packet, and transmits the time stamp information and the packet between the devices. and a transmission delay of .
 (付記項7)
 装置内時刻を同期させる複数の装置における、基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する測定器による測定方法であって、
 前記複数の装置は、第1の装置、第2の装置および第3の装置を含み、
 前記第1の装置は、前記基準時刻に装置内時刻を同期させ、パケットの送受信により前記装置内時刻を下位の装置に配信するマスター機能を備え、
 前記第2の装置は、前記マスター機能と、パケットの送受信により前記マスター機能を備える上位の装置から配信された時刻に装置内時刻を同期させるスレーブ機能とを備え、
 前記第3の装置は、パケットの送受信により前記第2の装置から配信された時刻に装置内時刻を同期させる前記スレーブ機能を備え、
 衛星信号から前記基準時刻を取得し、
 前記第1の装置の装置内時刻に関する時刻情報を取得し、
 前記取得した基準時刻と、前記取得した時刻情報とに基づき、前記基準時刻と前記第1の装置の装置内時刻との差である第1のオフセットを計算し、
 装置間で前記パケットが送受信された時刻を示すタイムスタンプ情報を取得し、該取得したタイムスタンプ情報に基づき、前記装置間での装置内時刻の差である第2のオフセットを計算し、
 前記第1のオフセットおよび前記第2のオフセットに基づき、前記基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する、測定方法。
(Appendix 7)
A measurement method using a measuring device for measuring the accuracy of the internal time of each of the plurality of devices with respect to a reference time in a plurality of devices that synchronize the device time,
the plurality of devices includes a first device, a second device and a third device;
The first device has a master function for synchronizing the device time with the reference time and distributing the device time to a lower device by transmitting and receiving packets,
The second device has the master function and a slave function for synchronizing the internal time of the device with the time delivered from the host device having the master function by packet transmission/reception,
The third device has the slave function for synchronizing the internal time of the device with the time delivered from the second device by packet transmission/reception,
obtaining the reference time from a satellite signal;
Acquiring time information related to the internal device time of the first device;
calculating a first offset, which is a difference between the reference time and the device internal time of the first device, based on the obtained reference time and the obtained time information;
Obtaining time stamp information indicating the time when the packet was transmitted and received between devices, and calculating a second offset, which is a difference in device internal time between the devices, based on the obtained time stamp information;
A measurement method, comprising: measuring the accuracy of the internal time of each of the plurality of devices with respect to the reference time based on the first offset and the second offset.
 (付記項8)
 装置内時刻を同期させる複数の装置と、
 前記複数の装置における、基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する測定器とを備える時刻同期システムであって、
 前記複数の装置は、第1の装置、第2の装置および第3の装置を含み、
 前記第1の装置は、前記基準時刻に装置内時刻を同期させ、パケットの送受信により前記装置内時刻を下位の装置に配信するマスター機能を備え、
 前記第2の装置は、前記マスター機能と、パケットの送受信により前記マスター機能を備える上位の装置から配信された時刻に装置内時刻を同期させるスレーブ機能とを備え、
 前記第3の装置は、パケットの送受信により前記第2の装置から配信された時刻に装置内時刻を同期させる前記スレーブ機能を備え、
 前記測定器は、プロセッサを備え、
 前記プロセッサは、
 衛星信号から前記基準時刻を取得し、
 前記第1の装置の装置内時刻に関する時刻情報を取得し、
 前記取得した基準時刻と、前記取得した時刻情報とに基づき、前記基準時刻と前記第1の装置の装置内時刻との差である第1のオフセットを計算し、
 装置間で前記パケットが送受信された時刻を示すタイムスタンプ情報を取得し、該取得したタイムスタンプ情報に基づき、前記装置間での装置内時刻の差である第2のオフセットを計算し、
 前記第1のオフセットおよび前記第2のオフセットに基づき、前記基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する、時刻同期システム。
(Appendix 8)
a plurality of devices for synchronizing internal time;
A time synchronization system comprising a measuring device that measures the accuracy of the internal time of each of the plurality of devices with respect to the reference time in the plurality of devices,
the plurality of devices includes a first device, a second device and a third device;
The first device has a master function for synchronizing the device time with the reference time and distributing the device time to a lower device by transmitting and receiving packets,
The second device has the master function and a slave function for synchronizing the internal time of the device with the time delivered from the host device having the master function by packet transmission/reception,
The third device has the slave function for synchronizing the internal time of the device with the time delivered from the second device by packet transmission/reception,
The meter comprises a processor,
The processor
obtaining the reference time from a satellite signal;
Acquiring time information related to the internal device time of the first device;
calculating a first offset, which is a difference between the reference time and the device internal time of the first device, based on the obtained reference time and the obtained time information;
Obtaining time stamp information indicating the time when the packet was transmitted and received between devices, and calculating a second offset, which is a difference in device internal time between the devices, based on the obtained time stamp information;
A time synchronization system that measures accuracy of internal time of each of the plurality of devices with respect to the reference time based on the first offset and the second offset.
 上述の実施形態は代表的な例として説明したが、本開示の趣旨および範囲内で、多くの変更および置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、請求の範囲から逸脱することなく、種々の変形または変更が可能である。例えば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。 Although the above-described embodiments have been described as representative examples, it will be apparent to those skilled in the art that many modifications and substitutions can be made within the spirit and scope of the present disclosure. Therefore, this invention should not be construed as limited by the above-described embodiments, and various modifications and changes are possible without departing from the scope of the claims. For example, it is possible to combine a plurality of configuration blocks described in the configuration diagrams of the embodiments into one, or divide one configuration block.
 1,1A,1B,1C,1a  時刻同期システム
 10,10A,10B,10C,100  Grand Master Clock(第1の装置)
 11  パケット送受信部
 12  1PPS送信部
 13  伝送遅延測定用パケット送受信部
 14  伝送遅延計算処理部
 15  パケット送受信部
 20,20B,200  Boundary Clock(第2の装置)
 21,22  パケット送受信部
 23  時刻同期処理部
 24  タイムスタンプ送信部
 25,26  伝送遅延測定用パケット送受信部
 27  伝送遅延計算処理部
 30,30B,300  クライアント装置(第3の装置)
 31  パケット送受信部
 32  時刻同期処理部
 33  タイムスタンプ送信部
 34  伝送遅延測定用パケット送受信部
 35  伝送遅延計算処理部
 40,40A,40B,40C,400 測定器
 41  UTC取得部(第1の取得部)
 42,42A,42C  GMC時刻取得部(第2の取得部)
 43  UTC-GMCオフセット計算処理部(第1の計算処理部)
 44,44B  GMC-BCオフセット計算処理部(第2の計算処理部)
 45,45B  BC-クライアントオフセット計算処理部(第2の計算処理部)
 46  時刻精度計算処理部(第3の計算処理部)
 47,48  パケット送受信部
1, 1A, 1B, 1C, 1a Time synchronization system 10, 10A, 10B, 10C, 100 Grand Master Clock (first device)
11 packet transmitter/receiver 12 1PPS transmitter 13 packet transmitter/receiver for transmission delay measurement 14 transmission delay calculation processor 15 packet transmitter/ receiver 20, 20B, 200 Boundary Clock (second device)
21, 22 packet transmission/reception unit 23 time synchronization processing unit 24 time stamp transmission unit 25, 26 transmission delay measurement packet transmission/reception unit 27 transmission delay calculation processing unit 30, 30B, 300 client device (third device)
31 packet transmission/reception unit 32 time synchronization processing unit 33 time stamp transmission unit 34 transmission delay measurement packet transmission/reception unit 35 transmission delay calculation processing unit 40, 40A, 40B, 40C, 400 measuring instrument 41 UTC acquisition unit (first acquisition unit)
42, 42A, 42C GMC time acquisition unit (second acquisition unit)
43 UTC-GMC offset calculation processing unit (first calculation processing unit)
44, 44B GMC-BC offset calculation processing unit (second calculation processing unit)
45, 45B BC-Client Offset Calculation Processing Unit (Second Calculation Processing Unit)
46 time accuracy calculation processing unit (third calculation processing unit)
47, 48 packet transmitter/receiver

Claims (7)

  1.  装置内時刻を同期させる複数の装置における、基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する測定器であって、
     前記複数の装置は、第1の装置、第2の装置および第3の装置を含み、
     前記第1の装置は、前記基準時刻に装置内時刻を同期させ、パケットの送受信により前記装置内時刻を下位の装置に配信するマスター機能を備え、
     前記第2の装置は、前記マスター機能と、パケットの送受信により前記マスター機能を備える上位の装置から配信された時刻に装置内時刻を同期させるスレーブ機能とを備え、
     前記第3の装置は、パケットの送受信により前記第2の装置から配信された時刻に装置内時刻を同期させる前記スレーブ機能を備え、
     衛星信号から前記基準時刻を取得する第1の取得部と、
     前記第1の装置の装置内時刻に関する時刻情報を取得する第2の取得部と、
     前記第1の取得部が取得した基準時刻と、前記第2の取得部が取得した時刻情報とに基づき、前記基準時刻と前記第1の装置の装置内時刻との差である第1のオフセットを計算する第1の計算処理部と、
     装置間で前記パケットが送受信された時刻を示すタイムスタンプ情報を取得し、該取得したタイムスタンプ情報に基づき、前記装置間での装置内時刻の差である第2のオフセットを計算する第2の計算処理部と、
     前記第1のオフセットおよび前記第2のオフセットに基づき、前記基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する第3の計算処理部と、を備える測定器。
    A measuring instrument for measuring the accuracy of the internal time of each of the plurality of devices with respect to a reference time in a plurality of devices that synchronize the device time,
    the plurality of devices includes a first device, a second device and a third device;
    The first device has a master function for synchronizing the device time with the reference time and distributing the device time to a lower device by transmitting and receiving packets,
    The second device has the master function and a slave function for synchronizing the internal time of the device with the time delivered from the host device having the master function by packet transmission/reception,
    The third device has the slave function for synchronizing the internal time of the device with the time delivered from the second device by packet transmission/reception,
    a first acquisition unit that acquires the reference time from a satellite signal;
    a second acquisition unit that acquires time information related to the internal device time of the first device;
    A first offset, which is a difference between the reference time and the device internal time of the first device, based on the reference time acquired by the first acquisition unit and the time information acquired by the second acquisition unit a first calculation processing unit that calculates
    A second method for obtaining time stamp information indicating a time when the packet was transmitted and received between devices, and calculating a second offset, which is a difference in device internal time between the devices, based on the obtained time stamp information. a calculation processing unit;
    a third calculation processing unit that measures the accuracy of the internal time of each of the plurality of devices with respect to the reference time based on the first offset and the second offset.
  2.  請求項1に記載の測定器において、
     前記第2の取得部は、前記第1の装置の装置内時刻に同期して1PPSで前記第1の装置から出力されるパルス信号から、前記時刻情報を取得する、測定器。
    The measuring instrument according to claim 1,
    The measuring instrument, wherein the second acquiring unit acquires the time information from a pulse signal output from the first device at 1 PPS in synchronization with the internal time of the first device.
  3.  請求項1に記載の測定器において、
     前記第2の取得部は、ネットワークを介して前記第1の装置から前記第1の装置内時刻に応じたタイムスタンプを含むパケットを取得し、該取得したパケットから前記時刻情報を取得する、測定器。
    The measuring instrument according to claim 1,
    The second acquisition unit acquires a packet including a time stamp corresponding to the first internal time from the first device via a network, and acquires the time information from the acquired packet. vessel.
  4.  請求項1から3のいずれか一項に記載の測定器において、
     前記第2の計算処理部は、ネットワークを介して前記第2の装置および前記第3の装置から送信されてきた前記タイムスタンプ情報を取得する、測定器。
    In the measuring instrument according to any one of claims 1 to 3,
    The measuring instrument, wherein the second calculation processing unit acquires the time stamp information transmitted from the second device and the third device via a network.
  5.  請求項1から3のいずれか一項に記載の測定器において、
     前記第2の計算処理部は、ネットワークを介して前記装置間で送受信されるパケットのコピーを取得し、前記取得したパケットから前記タイムスタンプ情報を取得し、前記取得したタイムスタンプ情報と、前記装置間での前記パケットの伝送遅延とに基づき、前記第2のオフセットを計算する、測定器。
    In the measuring instrument according to any one of claims 1 to 3,
    The second calculation processing unit acquires a copy of a packet transmitted and received between the devices via a network, acquires the time stamp information from the acquired packet, and stores the acquired time stamp information and the device. calculating the second offset based on the transmission delay of the packet in between.
  6.  装置内時刻を同期させる複数の装置における、基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する測定器による測定方法であって、
     前記複数の装置は、第1の装置、第2の装置および第3の装置を含み、
     前記第1の装置は、前記基準時刻に装置内時刻を同期させ、パケットの送受信により前記装置内時刻を下位の装置に配信するマスター機能を備え、
     前記第2の装置は、前記マスター機能と、パケットの送受信により前記マスター機能を備える上位の装置から配信された時刻に装置内時刻を同期させるスレーブ機能とを備え、
     前記第3の装置は、パケットの送受信により前記第2の装置から配信された時刻に装置内時刻を同期させる前記スレーブ機能を備え、
     衛星信号から前記基準時刻を取得するステップと、
     前記第1の装置の装置内時刻に関する時刻情報を取得するステップと、
     前記取得した基準時刻と、前記取得した時刻情報とに基づき、前記基準時刻と前記第1の装置の装置内時刻との差である第1のオフセットを計算するステップと、
     装置間で前記パケットが送受信された時刻を示すタイムスタンプ情報を取得し、該取得したタイムスタンプ情報に基づき、前記装置間での装置内時刻の差である第2のオフセットを計算するステップと、
     前記第1のオフセットおよび前記第2のオフセットに基づき、前記基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定するステップと、を含む測定方法。
    A measurement method using a measuring device for measuring the accuracy of the internal time of each of the plurality of devices with respect to a reference time in a plurality of devices that synchronize the device time,
    the plurality of devices includes a first device, a second device and a third device;
    The first device has a master function for synchronizing the device time with the reference time and distributing the device time to a lower device by transmitting and receiving packets,
    The second device has the master function and a slave function for synchronizing the internal time of the device with the time delivered from the host device having the master function by packet transmission/reception,
    The third device has the slave function for synchronizing the internal time of the device with the time delivered from the second device by packet transmission/reception,
    obtaining the reference time from a satellite signal;
    a step of acquiring time information relating to the internal device time of the first device;
    calculating a first offset, which is a difference between the reference time and the internal device time of the first device, based on the obtained reference time and the obtained time information;
    obtaining time stamp information indicating the time when the packet was transmitted and received between devices, and calculating a second offset, which is a difference in device internal time between the devices, based on the obtained time stamp information;
    and measuring the accuracy of the internal time of each of the plurality of devices with respect to the reference time based on the first offset and the second offset.
  7.  装置内時刻を同期させる複数の装置と、
     前記複数の装置における、基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する測定器とを備える時刻同期システムであって、
     前記複数の装置は、第1の装置、第2の装置および第3の装置を含み、
     前記第1の装置は、前記基準時刻に装置内時刻を同期させ、パケットの送受信により前記装置内時刻を下位の装置に配信するマスター機能を備え、
     前記第2の装置は、前記マスター機能と、パケットの送受信により前記マスター機能を備える上位の装置から配信された時刻に装置内時刻を同期させるスレーブ機能とを備え、
     前記第3の装置は、パケットの送受信により前記第2の装置から配信された時刻に装置内時刻を同期させる前記スレーブ機能を備え、
     前記測定器は、
     衛星信号から前記基準時刻を取得する第1の取得部と、
     前記第1の装置の装置内時刻に関する時刻情報を取得する第2の取得部と、
     前記第1の取得部が取得した基準時刻と、前記第2の取得部が取得した時刻情報とに基づき、前記基準時刻と前記第1の装置の装置内時刻との差である第1のオフセットを計算する第1の計算処理部と、
     装置間で前記パケットが送受信された時刻を示すタイムスタンプ情報を取得し、該取得したタイムスタンプ情報に基づき、前記装置間での装置内時刻の差である第2のオフセットを計算する第2の計算処理部と、
     前記第1のオフセットおよび前記第2のオフセットに基づき、前記基準時刻に対する前記複数の装置それぞれの装置内時刻の精度を測定する第3の計算処理部と、を備える時刻同期システム。
     
     
    a plurality of devices for synchronizing internal time;
    A time synchronization system comprising a measuring device that measures the accuracy of the internal time of each of the plurality of devices with respect to the reference time in the plurality of devices,
    the plurality of devices includes a first device, a second device and a third device;
    The first device has a master function for synchronizing the device time with the reference time and distributing the device time to a lower device by transmitting and receiving packets,
    The second device has the master function and a slave function for synchronizing the internal time of the device with the time delivered from the host device having the master function by packet transmission/reception,
    The third device has the slave function for synchronizing the internal time of the device with the time delivered from the second device by packet transmission and reception,
    The measuring instrument
    a first acquisition unit that acquires the reference time from a satellite signal;
    a second acquisition unit that acquires time information related to the internal device time of the first device;
    A first offset, which is a difference between the reference time and the device internal time of the first device, based on the reference time acquired by the first acquisition unit and the time information acquired by the second acquisition unit a first calculation processing unit that calculates
    A second method for obtaining time stamp information indicating a time when the packet was transmitted and received between devices, and calculating a second offset, which is a difference in device internal time between the devices, based on the obtained time stamp information. a calculation processing unit;
    A time synchronization system comprising: a third calculation processing unit that measures the accuracy of the internal time of each of the plurality of devices with respect to the reference time based on the first offset and the second offset.

PCT/JP2021/019032 2021-05-19 2021-05-19 Measuring device, measuring method, and time synchronization system WO2022244156A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/019032 WO2022244156A1 (en) 2021-05-19 2021-05-19 Measuring device, measuring method, and time synchronization system
JP2023522092A JPWO2022244156A1 (en) 2021-05-19 2021-05-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019032 WO2022244156A1 (en) 2021-05-19 2021-05-19 Measuring device, measuring method, and time synchronization system

Publications (1)

Publication Number Publication Date
WO2022244156A1 true WO2022244156A1 (en) 2022-11-24

Family

ID=84141482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019032 WO2022244156A1 (en) 2021-05-19 2021-05-19 Measuring device, measuring method, and time synchronization system

Country Status (2)

Country Link
JP (1) JPWO2022244156A1 (en)
WO (1) WO2022244156A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146427A1 (en) * 2007-05-28 2008-12-04 Nihon University Propagation delay time measuring system
WO2012114517A1 (en) * 2011-02-25 2012-08-30 三菱電機株式会社 Master device and slave device and time synchronization method
WO2015033532A1 (en) * 2013-09-04 2015-03-12 富士電機株式会社 Time synchronization system
JP2016152489A (en) * 2015-02-17 2016-08-22 日本電信電話株式会社 Time synchronization method and time synchronization device
JP2017022645A (en) * 2015-07-14 2017-01-26 日本電信電話株式会社 Method and device for time synchronization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146427A1 (en) * 2007-05-28 2008-12-04 Nihon University Propagation delay time measuring system
WO2012114517A1 (en) * 2011-02-25 2012-08-30 三菱電機株式会社 Master device and slave device and time synchronization method
WO2015033532A1 (en) * 2013-09-04 2015-03-12 富士電機株式会社 Time synchronization system
JP2016152489A (en) * 2015-02-17 2016-08-22 日本電信電話株式会社 Time synchronization method and time synchronization device
JP2017022645A (en) * 2015-07-14 2017-01-26 日本電信電話株式会社 Method and device for time synchronization

Also Published As

Publication number Publication date
JPWO2022244156A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
US11838110B2 (en) Method of remotely monitoring the timing performance of a PTP slave
JP6079879B2 (en) Distribution apparatus, distribution system, and distribution method
JP5569299B2 (en) COMMUNICATION SYSTEM, COMMUNICATION INTERFACE DEVICE, AND SYNCHRONIZATION METHOD
US9671822B2 (en) Method and devices for time transfer using end-to-end transparent clocks
CN101388741B (en) Highly precised time synchronization device, system and method for computer network
JP5378601B2 (en) High precision synchronization method and system
JP5080202B2 (en) Time synchronization processing system, time information distribution device, time synchronization processing device, time information distribution program, and time synchronization processing program
KR20090032306A (en) Time synchronization system and method on the network
WO2016168063A1 (en) Methods, systems, and computer readable media for synchronizing timing among network interface cards (nics) in a network equipment test device
WO2016168064A1 (en) Methods, systems, and computer readable media for emulating network devices with different clocks
US20100293243A1 (en) method and apparatus for measuring directionally differentiated (one-way) network latency
US20110222561A1 (en) Systems and methods for providing time synchronization
CN103592843A (en) Timestamp circuit and implement method
CN112543078A (en) Network time server calibration method and device based on satellite common view
Kim et al. Synchronized sensing for wireless monitoring of large structures
JP2016527748A (en) Time synchronization control apparatus and method
EP3231110A1 (en) Method and devices for time transfer using end to end transparent clocks
WO2022244156A1 (en) Measuring device, measuring method, and time synchronization system
Liu et al. The research of ranging with timing over packet network for the mine safety application
WO2022244154A1 (en) Measuring instrument, measurement method, and time synchronization system
RU172628U1 (en) TIME SYNCHRONIZATION SERVER
KR20190072745A (en) Stable Network-based Time Synchronization Method
WO2023238203A1 (en) Time synchronization device, time synchronization system, and time synchronization method
Okabe et al. Avoiding year 2038 problem on 32-bit linux by rewinding time on clock synchronization
CN108401287B (en) Networking method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940772

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522092

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE