WO2022244152A1 - Communication system, communication method, and base station communication device - Google Patents

Communication system, communication method, and base station communication device Download PDF

Info

Publication number
WO2022244152A1
WO2022244152A1 PCT/JP2021/019022 JP2021019022W WO2022244152A1 WO 2022244152 A1 WO2022244152 A1 WO 2022244152A1 JP 2021019022 W JP2021019022 W JP 2021019022W WO 2022244152 A1 WO2022244152 A1 WO 2022244152A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
base station
delay
station
relay station
Prior art date
Application number
PCT/JP2021/019022
Other languages
French (fr)
Japanese (ja)
Inventor
満 西野
大樹 柴山
史洋 山下
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023522088A priority Critical patent/JPWO2022244152A1/ja
Priority to PCT/JP2021/019022 priority patent/WO2022244152A1/en
Publication of WO2022244152A1 publication Critical patent/WO2022244152A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present disclosure relates to communication technology for communicating between base stations and terminal stations via relay stations.
  • Non-Patent Document 1 discloses an infrastructure satellite communication system that is applied to disaster countermeasure services. Communication is performed between a base station and a terminal station via a communication satellite.
  • a relay station is, for example, a communication satellite.
  • a redundant configuration for base stations.
  • multiple base stations are installed in geographically separated locations. For example, base stations are installed at two geographically separated locations.
  • FIG. 1 is a conceptual diagram for explaining the first comparative example.
  • the communication system includes multiple base stations 1 , relay stations 2 and multiple terminal stations 3 .
  • the plurality of base stations 1 includes a first base station 1-1 and a second base station 1-2.
  • a first base station 1-1 is connected to a network 5 via a first signal processing device 4-1.
  • the second base station 1-2 is connected to the network 5 via the second signal processing device 4-2.
  • Each base station 1 communicates with the terminal station 3 via the relay station 2 , aggregates communications with many terminal stations 3 , and relays them to the network 5 .
  • first signal SG1 The transmission signal that the first base station 1-1 transmits to the relay station 2 is hereinafter referred to as "first signal SG1”.
  • second signal SG2 The transmission signal that the second base station 1-2 transmits to the relay station 2 is hereinafter referred to as "second signal SG2”.
  • the first base station 1-1 and the second base station 1-2 use the same frequency channel. However, both the first base station 1-1 and the second base station 1-2 do not communicate at the same time. This is because if both the first base station 1-1 and the second base station 1-2 communicate at the same time, interference will occur between the first signal SG1 and the second signal SG2 of the same frequency channel. While one of the first base station 1-1 and the second base station 1-2 communicates with the terminal station 3 via the relay station 2, the other stands by without communicating.
  • the quality of the first signal SG1 deteriorates while the first base station 1-1 is communicating with the terminal station 3 via the relay station 2. For example, due to rain or the like, the first signal SG1 is attenuated and the quality of the first signal SG1 is deteriorated.
  • the base station 1 communicating with the terminal station 3 is switched from the first base station 1-1 to the second base station 1-2. That is, triggered by the quality deterioration of the first signal SG1, the first base station 1-1 stops communication, and the second base station 1-2 starts communication instead.
  • the second base station 1-2 detects quality deterioration of the first signal SG1, instructs the first base station 1-1 to stop transmitting the first signal SG1, switches the connection to the network 5, and then , start transmitting the second signal SG2.
  • the quality of the first signal SG1 is degraded due to a disaster, failure, or the like.
  • signal quality deterioration triggers the switching of the base station 1 that communicates with the terminal station 3, and the connection to the network 5 is also changed. As a result of such switching processing, communication is temporarily disconnected (interrupted).
  • FIG. 2 is a conceptual diagram for explaining the second comparative example.
  • the first base station 1-1 and the second base station 1-2 use different frequency channels. Since the first signal SG1 and the second signal SG2 do not interfere with each other, both the first base station 1-1 and the second base station 1-2 are always set to the communication state.
  • the terminal station 3 selects either the first base station 1-1 or the second base station 1-2 as a communication partner.
  • the terminal station 3 selects the first base station 1-1 as the communication partner.
  • the terminal station 3 selects the second base station 1-2 as a communication partner. That is, the terminal station 3 switches the communication partner from the first base station 1-1 to the second base station 1-2.
  • the frequency band required for communication is doubled, increasing operating costs.
  • the relay station 2 is a communication satellite
  • the expensive satellite communication usage fee is doubled.
  • two communication circuits are required for the first base station 1-1 and the second base station 1-2. This leads to an increase in equipment cost of the terminal station 3 .
  • One object of the present disclosure is to enable appropriate continuation of communication when signal quality is degraded, without increasing costs, with respect to communication technology that performs communication between a base station and a terminal station via a relay station. It is to provide technology.
  • a first aspect relates to a communication system that communicates between a base station and a terminal station via a relay station.
  • a communication system is a first base station transmitting a first signal to the relay station; a second base station that transmits to the relay station a second signal having the same information as the first signal.
  • the relay station transmits the first signal and the second signal, or a composite signal obtained by combining the first signal and the second signal to the terminal station.
  • the first base station is configured to perform a delay process to delay transmission of the first signal by a first delay time.
  • the reception time difference is the difference between the timing at which the first signal reaches the relay station and the timing at which the second signal reaches the relay station when no delay processing is performed.
  • the first base station sets the first delay time based on the reception time difference information indicating the reception time difference so that the first signal and the second signal are received by the relay station in phase.
  • a second aspect relates to a communication method for communicating between a base station and a terminal station via a relay station.
  • Communication method a process of transmitting a first signal from the first base station to the relay station; a process of transmitting a second signal having the same information as the first signal from the second base station to the relay station; A process of transmitting a first signal and a second signal or a combined signal obtained by combining the first signal and the second signal from a relay station to a terminal station; and delaying the transmission of the first signal at the first base station by a first delay time.
  • the reception time difference is the difference between the timing at which the first signal reaches the relay station and the timing at which the second signal reaches the relay station when no delay processing is performed.
  • the delay processing includes processing for setting a first delay time based on reception time difference information indicating the reception time difference so that the first signal and the second signal are received by the relay station in phase.
  • a third aspect relates to a base station communication apparatus in a communication system in which communication is performed between a base station and a terminal station via a relay station.
  • a communication system is a first base station transmitting a first signal to the relay station; a second base station transmitting a second signal having the same information as the first signal to the relay station; a relay station that transmits a first signal and a second signal or a composite signal obtained by combining the first signal and the second signal to a terminal station.
  • the base station communication device of the first base station is configured to execute delay processing for delaying transmission of the first signal by a first delay time.
  • the reception time difference is the difference between the timing at which the first signal reaches the relay station and the timing at which the second signal reaches the relay station when no delay processing is performed.
  • the base station communication device of the first base station sets the first delay time based on the reception time difference information indicating the reception time difference so that the first signal and the second signal are received by the relay station in the same phase.
  • FIG. 5 is a conceptual diagram for explaining a first comparative example
  • FIG. 11 is a conceptual diagram for explaining a second comparative example
  • 1 is a conceptual diagram showing a configuration example of a communication system according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a conceptual diagram for explaining an outline of processing in a communication system according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a conceptual diagram for explaining an example of a reception time difference in a communication system according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a conceptual diagram showing another configuration example of a communication system according to an embodiment of the present disclosure
  • FIG. 4 is a conceptual diagram for explaining delay adjustment processing in the communication system according to the embodiment of the present disclosure
  • 4 is a flow chart summarizing processing related to delay processing and delay adjustment processing according to the embodiment of the present disclosure
  • 1 is a block diagram showing an example of a functional configuration of a base station communication device according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a block diagram showing another example of the functional configuration of the base station communication device according to the embodiment of the present disclosure
  • 1 is a block diagram showing a configuration example of a base station communication device according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a conceptual diagram for explaining signal strength adjustment processing according to an embodiment of the present disclosure
  • FIG. 4 is a conceptual diagram for explaining signal strength adjustment processing according to an embodiment of the present disclosure
  • 6 is a flowchart showing processing related to signal strength adjustment processing according to the embodiment of the present disclosure
  • FIG. 3 is a conceptual diagram showing a configuration example of a communication system according to this embodiment.
  • the communication system includes multiple base stations 10 , relay stations 20 , and multiple terminal stations 30 .
  • the base station 10 and terminal station 30 communicate with each other via the relay station 20 .
  • the relay station 20 is, for example, a communication satellite.
  • the terminal station 30 may include a personal computer, an IP telephone terminal, a smart phone, and the like.
  • the plurality of base stations 10 includes a first base station 10-1 and a second base station 10-2.
  • the first base station 10-1 and the second base station 10-2 are installed in geographically separated locations.
  • the first signal processing device 40-1 on the side of the first base station 10-1 is connected to the network 50. Also, the first signal processing device 40-1 on the first base station 10-1 side and the second signal processing device 40-2 on the second base station 10-2 side are connected so as to be able to communicate with each other.
  • the first base station 10-1 is connected to the network 50 via the first signal processing device 40-1.
  • the second base station 10-2 is connected to the network 50 via the second signal processing device 40-2 and the first signal processing device 40-1.
  • Each base station 10 communicates with the terminal station 30 via the relay station 20 , aggregates communications with many terminal stations 30 , and relays them to the network 50 .
  • FIG. 4 is a conceptual diagram for explaining the outline of processing in the communication system according to the present embodiment.
  • the first signal SG1 is a transmission signal that the first base station 10-1 transmits to the relay station 20.
  • FIG. The second signal SG2 is a transmission signal that the second base station 10-2 transmits to the relay station 20.
  • FIG. The first signal SG1 and the second signal SG2 have the same information.
  • the first base station 10-1 receives the first signal SG1 from the first signal processing device 40-1 and transmits the first signal SG1 to the terminal station 30 via the relay station 20.
  • the second base station 10-2 then transmits a second signal SG2 having the same information as the first signal SG1 to the terminal station 30 via the relay station 20.
  • FIG. 1 is a transmission signal that the first base station 10-1 transmit
  • the first base station 1-1 and the second base station 1-2 use the same frequency channel. Also, both the first base station 1-1 and the second base station 1-2 are always set to the communication state. Therefore, it is necessary to avoid interference between the first signal SG1 and the second signal SG2 in the relay station 20 and the like.
  • the relay station 20 should be able to receive the first signal SG1 and the second signal SG2 having the same information in the same phase. In other words, the first signal SG1 and the second signal SG2 having the same information should reach the relay station 20 in the same phase. In that case, the relay station 20 or the terminal station 30 can combine the first signal SG1 and the second signal SG2 without causing interference.
  • first base station 10-1 or second base station 10-2 can receive first signal SG1 and second signal SG2 in phase so that relay station 20 can receive first signal SG1 and second signal SG2 One of them performs "delay processing" to delay signal transmission.
  • delay processing A case where the first base station 10-1 performs delay processing will be described below. The same applies when the second base station 10-2 performs delay processing.
  • the first base station 10-1 delays transmission of the first signal SG1 by "first delay time D1".
  • the first base station 10-1 sets the first delay time D1 so that the first signal SG1 and the second signal SG2 are received by the relay station 20 in phase.
  • a specific method for setting and adjusting the first delay time D1 will be described in detail later.
  • the relay station 20 receives the first signal SG1 and the second signal SG2 in phase.
  • the relay station 20 transmits (transfers) the received first signal SG1 and second signal SG2 to the terminal station 30 .
  • the terminal station 30 combines and receives the in-phase first signal SG1 and second signal SG2 having the same information.
  • the relay station 20 combines the received first signal SG1 and second signal SG2 to generate a combined signal SGC.
  • the relay station 20 then transmits to the terminal station 30 a combined signal SGC obtained by combining the first signal SG1 and the second signal SG2.
  • Terminal station 30 receives combined signal SGC.
  • the quality of the first signal SG1 transmitted from the first base station 10-1 may deteriorate. For example, rain or the like may attenuate the first signal SG1 and degrade the quality of the first signal SG1. As another example, the quality of the first signal SG1 may be degraded due to a disaster, failure, or the like. According to the present embodiment, even if the quality of the first signal SG1 deteriorates, it is possible to appropriately continue communication by the second signal SG2 having the same information as the first signal SG1. Since the base station is not switched as in the first comparative example shown in FIG. 1, no communication disconnection occurs.
  • the quality of the second signal SG2 transmitted from the second base station 10-2 deteriorates. Even if the quality of the second signal SG2 deteriorates, it is possible to properly continue communication by means of the first signal SG1 having the same information as the second signal SG2. Since the base station is not switched as in the first comparative example shown in FIG. 1, no communication disconnection occurs.
  • the present embodiment unlike the case of the second comparative example shown in FIG. 2, separate frequency channels are used for the first base station 1-1 and the second base station 1-2. No need. Therefore, no increase in operating costs occurs. Further, in the transmitting/receiving device of the terminal station 30, two communication circuits for the first base station 10-1 and the second base station 10-2 are unnecessary. Therefore, the device cost of the terminal station 30 does not increase.
  • the signal quality can be improved without increasing the cost. It is possible to appropriately continue communication when deterioration occurs.
  • Delay Processing and Delay Adjustment Processing Delay processing and delay adjustment processing according to the present embodiment will be described in detail below.
  • Reception Time Difference Information It is assumed that delay processing is not executed in the first base station 1-1. In that case, the first signal SG1 and the second signal SG2 having the same information arrive at the relay station 20 at different timings. The difference between the timing at which the first signal SG1 reaches the relay station 20 and the timing at which the second signal SG2 reaches the relay station 20 when the delay processing is not executed is hereinafter referred to as "reception time difference ⁇ D".
  • FIG. 5 is a conceptual diagram for explaining an example of the reception time difference ⁇ D.
  • the first communication delay ⁇ is the round trip time of the signal between the first base station 10-1 and the relay station 20.
  • FIG. The second communication delay ⁇ is the signal transmission time on the communication route from the second base station 10-2 to the first base station 10-1 via the relay station 20.
  • FIG. The third communication delay ⁇ is the signal transmission time between the first base station 10-1 (first signal processing device 40-1) and the second base station 10-2 (second signal processing device 40-2). , which is the signal transmission time that does not pass through the relay station 20 .
  • the reception time difference ⁇ D is represented by " ⁇ + ⁇ - ⁇ ".
  • the communication delays ⁇ , ⁇ , ⁇ are measured or estimated in advance.
  • the reception time difference ⁇ D is calculated in advance based on the communication delays ⁇ , ⁇ and ⁇ .
  • Information indicating the reception time difference ⁇ D is provided in advance to the first base station 10-1.
  • the first base station 10-1 itself may measure the first communication delay ⁇ and the second communication delay ⁇ at the start of communication.
  • the first base station 10 - 1 transmits the first delay measurement signal to the relay station 20 .
  • the relay station 20 receives the first delay measurement signal and sends the first delay measurement signal back to the first base station 10-1.
  • the first base station 10-1 measures the first communication delay ⁇ based on the transmission timing and reception timing of the first delay measurement signal.
  • the first base station 10-1 stops signal transmission processing, and instead the second base station 10-2 transmits the second delay measurement signal to the first base station 10-1 via the relay station 20.
  • the first base station 10-1 receives the second delay measurement signal transmitted from the second base station 10-2.
  • the second delay measurement signal contains timing information transmitted from the second base station 10-2.
  • the first base station 10-1 measures the second communication delay ⁇ based on the transmission timing and reception timing of the second delay measurement signal. Information on the third communication delay ⁇ is given in advance.
  • the first base station 10-1 calculates the reception time difference ⁇ D based on the communication delays ⁇ , ⁇ , ⁇ .
  • FIG. 6 shows another configuration example of the communication system according to this embodiment.
  • one signal processing device 40 is installed at an intermediate point between the first base station 10-1 and the second base station 10-2. Both the first base station 10-1 and the second base station 10-2 are connected to the network 50 via their signal processors 40.
  • FIG. The first base station 10-1 and the second base station 10-2 receive the first signal SG1 and the second signal SG2 having the same information from the signal processing device 40, respectively.
  • the third communication delay ⁇ is the signal transmission time between the first base station 10-1 and the signal processing device 40 and the signal transmission time between the second base station 10-2 and the signal processing device 40. is defined as the difference between the signal transmission time of Even in this case, the reception time difference ⁇ D is represented by " ⁇ + ⁇ - ⁇ ". In the case of the configuration shown in FIG. 6, it is possible to minimize the third communication delay ⁇ .
  • the first base station 10-1 delays the transmission of the first signal SG1 by the "first delay time D1".
  • the first base station 10-1 acquires the information on the reception time difference ⁇ D, and sets the reception time difference ⁇ D as the initial value of the first delay time D1. Then, the first base station 10-1 starts delay processing using the initial value of the first delay time D1.
  • the first base station 10-1 may dynamically adjust the first delay time D1 after initializing the first delay time D1.
  • the process of dynamically adjusting the first delay time D1 is hereinafter referred to as "delay adjustment process”.
  • FIG. 7 is a conceptual diagram for explaining delay adjustment processing according to the present embodiment.
  • the relay station 20 receives a first signal SG1 transmitted from the first base station 10-1 and receives a second signal SG2 transmitted from the second base station 10-2.
  • the relay station 20 transmits the received first signal SG1 and second signal SG2 to the first base station 10-1.
  • the first base station 10-1 combines and receives the first signal SG1 and the second signal SG2.
  • the relay station 20 combines the received first signal SG1 and second signal SG2 to generate a combined signal SGC.
  • the relay station 20 then transmits a combined signal SGC obtained by combining the first signal SG1 and the second signal SG2 to the first base station 10-1.
  • the first base station 10-1 receives the combined signal SGC.
  • the first base station 10-1 demodulates the composite signal SGC obtained by combining the first signal SG1 and the second signal SG2. Then, the first base station 10-1 dynamically adjusts the first delay time D1 based on the demodulation result of the combined signal SGC.
  • the first base station 10-1 determines whether the demodulation result of the composite signal SGC satisfies a certain quality. More specifically, the first base station 10-1 acquires communication parameters reflecting the demodulation result of the combined signal SGC. For example, the communication parameter is Bit Error Rate (BER). The first base station 10-1 determines whether its communication parameters satisfy certain quality. If the communication parameters do not satisfy the constant quality, the first base station 10-1 changes the first delay time D1 until the communication parameters satisfy the constant quality. A feedback circuit, for example, is used for such adjustment of the first delay time D1.
  • BER Bit Error Rate
  • FIG. 8 is a flowchart schematically showing processing related to delay processing and delay adjustment processing according to the present embodiment.
  • the first base station 10-1 acquires information indicating the reception time difference ⁇ D.
  • Information indicating the reception time difference ⁇ D may be provided in advance to the first base station 10-1.
  • the first base station 10-1 may measure the first communication delay ⁇ and the second communication delay ⁇ , and calculate the reception time difference ⁇ D based on the first communication delay ⁇ and the second communication delay ⁇ .
  • step S110 the first base station 10-1 sets the reception time difference ⁇ D as the initial value of the first delay time D1.
  • step S120 the first base station 10-1 performs delay processing and transmission processing.
  • the first base station 10-1 delays the transmission of the first signal SG1 by the first delay time D1.
  • the first base station 10-1 transmits the first signal SG1 to the relay station 20.
  • FIG. The second base station 10-2 transmits to the relay station 20 a second signal SG2 having the same information as the first signal SG1.
  • step S130 the relay station 20 transmits the received first signal SG1 and second signal SG2 to the first base station 10-1.
  • the first base station 10-1 combines and receives the first signal SG1 and the second signal SG2.
  • the relay station 20 transmits a combined signal SGC obtained by combining the first signal SG1 and the second signal SG2 to the first base station 10-1.
  • the first base station 10-1 receives the combined signal SGC.
  • step S140 the first base station 10-1 determines whether the demodulation result of the combined signal SGC satisfies a certain quality. If the demodulation result of the synthesized signal SGC satisfies a certain level of quality (step S140; Yes), the process returns to step S120. On the other hand, if the demodulation result of the combined signal SGC does not satisfy the certain quality (step S140; No), the process proceeds to step S150.
  • step S150 the first base station 10-1 changes the first delay time D1. After that, the process returns to step S120. That is, the first base station 10-1 changes the first delay time D1 until the demodulation result of the combined signal SGC satisfies a certain quality.
  • a base station 10 according to the present embodiment includes a base station communication apparatus 100 that controls communication of the base station 10 .
  • a configuration example of the base station communication apparatus 100 of the first base station 10-1 will be described below.
  • FIG. 9 is a block diagram showing an example of the functional configuration of the base station communication device 100.
  • Base station communication apparatus 100 includes demodulator 110 , delay controller 120 , and transmitter 130 .
  • a received signal received by the first base station 10 - 1 from the relay station 20 is input to the demodulation unit 110 .
  • Demodulator 110 demodulates the received signal and outputs received data obtained by demodulation to signal processing device 40 .
  • Demodulator 110 also outputs demodulation result information indicating the demodulation result of the received signal to delay controller 120 .
  • the demodulation result information includes communication parameters reflecting the demodulation result of the received signal.
  • the communication parameter is bit error rate.
  • the delay control unit 120 holds reception time difference information 200 and delay setting information 300 .
  • the reception time difference information 200 indicates the reception time difference ⁇ D described above. In the example shown in FIG. 9, the reception time difference information 200 is provided to the base station communication device 100 in advance.
  • the delay setting information 300 indicates the first delay time D1 used in delay processing.
  • the delay control unit 120 sets the reception time difference ⁇ D indicated by the reception time difference information 200 as the initial value of the first delay time D1.
  • the delay control unit 120 registers the initial value of the first delay time D1 in the delay setting information 300.
  • the delay control section 120 notifies the transmission section 130 of the first delay time D1 indicated by the delay setting information 300 .
  • the delay control unit 120 performs delay adjustment processing. Specifically, delay control section 120 receives demodulation result information from demodulation section 110 and determines whether the demodulation result satisfies a certain level of quality. For example, the delay control unit 120 determines whether the bit error rate satisfies a certain quality. If the demodulation result does not satisfy a certain quality, the delay control section 120 changes the first delay time D1 and updates the delay setting information 300 . Then, the delay control section 120 notifies the transmission section 130 of the first delay time D1 indicated by the delay setting information 300 . The delay control section 120 changes the first delay time D1 until the demodulation result satisfies a certain quality. A feedback circuit, for example, is used for such adjustment of the first delay time D1.
  • the transmission unit 130 receives transmission data from the signal processing device 40 .
  • the transmitter 130 modulates transmission data to generate a first signal SG1 and transmits the first signal SG1.
  • the transmission section 130 performs delay processing based on the first delay time D ⁇ b>1 notified from the delay control section 120 .
  • the transmitter 130 has a delay circuit 135 .
  • the transmitter 130 uses the delay circuit 135, the transmitter 130 delays the transmission of the first signal SG1 by the first delay time D1.
  • FIG. 10 is a block diagram showing another example of the functional configuration of the base station communication device 100. As shown in FIG. Explanations that overlap with the example shown in FIG. 9 will be omitted as appropriate. In the example shown in FIG. 10, the base station communication device 100 generates the reception time difference information 200. FIG.
  • demodulation section 110 includes delay measurement section 115 .
  • the delay measurement unit 115 measures the first communication delay ⁇ and the second communication delay ⁇ . Specifically, when receiving the first delay measurement signal, the delay measurement unit 115 calculates the first communication delay ⁇ based on the transmission timing and the reception timing of the first delay measurement signal. Further, when receiving the second delay measurement signal, the delay measurement unit 115 calculates the second communication delay ⁇ based on the transmission timing and the reception timing of the second delay measurement signal.
  • the demodulator 110 notifies the delay controller 120 of the first communication delay ⁇ and the second communication delay ⁇ .
  • the delay control section 120 receives information on the first communication delay ⁇ and the second communication delay ⁇ from the demodulation section 110 . Information on the third communication delay ⁇ is given in advance.
  • the delay control unit 120 calculates the reception time difference ⁇ D based on the communication delays ⁇ , ⁇ , and ⁇ , and generates reception time difference information 200 . Others are the same as in the case of the example shown in FIG.
  • FIG. 11 is a block diagram showing a configuration example of base station communication apparatus 100 according to the present embodiment.
  • the base station communication device 100 includes an I/O interface 140, one or more processors 150 (hereinafter simply referred to as “processors 150"), and one or more storage devices 160 (hereinafter simply referred to as “storage devices 160"). ).
  • processors 150 hereinafter simply referred to as "processors 150”
  • storage devices 160 hereinafter simply referred to as “storage devices 160”).
  • the processor 150 performs various information processing.
  • processor 150 includes a CPU (Central Processing Unit).
  • CPU Central Processing Unit
  • the storage device 160 stores various information necessary for processing by the processor 150 .
  • the storage device 160 stores the reception time difference information 200 and the delay setting information 300 described above.
  • Examples of the storage device 160 include volatile memory, nonvolatile memory, HDD (Hard Disk Drive), SSD (Solid State Drive), and the like.
  • the control program 170 is a computer program executed by the processor 150.
  • the functions of the base station communication apparatus 100 are realized by the processor 150 executing the control program 170.
  • FIG. The functional blocks shown in FIGS. 9 and 10 may be implemented by cooperation between the processor 150 executing the control program 170 and the storage device 160.
  • FIG. The control program 170 is stored in the storage device 160 .
  • the control program 170 may be recorded on a computer-readable recording medium.
  • the control program 170 may be provided to the base station communication device 100 via a network.
  • the base station communication device 100 may be implemented using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • PLD Process
  • FPGA Field Programmable Gate Array
  • the first signal SG1 is transmitted from the first base station 10-1
  • the second signal SG2 is transmitted from the second base station 10-2
  • the first signal SG2 is transmitted from the second base station 10-2.
  • the signal SG1 and the second signal SG2 are combined in phase. Therefore, even if the signal transmission power per base station 10 is set to half of the conventional one, it is possible to ensure the same communication quality with the same signal-to-noise ratio as the conventional one. From this point of view, the signal transmission power in the first base station 10-1 and the second base station 10-2 may be positively reduced in order to reduce power consumption. For example, the signal transmission power in the first base station 10-1 and the second base station 10-2 is set to half of the conventional one.
  • the signal-to-noise ratio of the composite signal SGC is also degraded. Therefore, when quality deterioration of the first signal SG1 or the second signal SG2 is detected, the "signal strength adjustment process" described below may be performed.
  • FIG. 12 shows the frame structure of the transmission signal.
  • a frame of transmitted signals includes an identifying header and signaling data.
  • the value of the identification header of the frame of the first signal SG1 is "H1" representing the first base station 10-1.
  • the value of the identification header of the frame of the second signal SG2 is "H2" representing the second base station 10-2.
  • FIG. 13 shows a frame of a synthesized signal SGC obtained by synthesizing the first signal SG1 and the second signal SG2.
  • the value of the identification header of the frame of the combined signal SGC is "H1+H2”.
  • the second signal SG2 is degraded, the value of the identification header of the frame of the synthesized signal SGC becomes "H1”.
  • the first signal SG1 deteriorates, the value of the identification header of the frame of the combined signal SGC becomes "H2". Therefore, quality deterioration of the first signal SG1 or the second signal SG2 can be detected based on the value of the identification header of the frame of the synthesized signal SGC.
  • FIG. 14 is a flowchart showing processing related to signal strength adjustment processing according to the present embodiment.
  • step S200 the relay station 20 or the first base station 10-1 combines and receives the first signal SG1 and the second signal SG2.
  • step S210 the relay station 20 or the first base station 10-1 determines whether the quality of the first signal SG1 or the second signal SG2 has deteriorated. More specifically, relay station 20 or first base station 10-1 checks the value of the identification header of the frame of combined signal SGC.
  • step S220 the signal strengths of the first signal SG1 and the second signal SG2 are set to default values.
  • the first base station 10-1 transmitting unit 130
  • the second base station 10-2 sets the signal transmission power of the second signal SG2 to Set to half of the conventional setting.
  • the relay station 20 or the first base station 10-1 determines that the second signal SG2 has deteriorated. That is, quality deterioration of the second signal SG2 is detected. In this case, the process proceeds to step S230.
  • the first base station 10-1 or the relay station 20 increases the signal strength of the first signal SG1. For example, the first base station 10-1 (transmitting unit 130) or the relay station 20 sets the signal strength of the first signal SG1 to double the default value. By increasing the signal strength of the first signal SG1, quality deterioration of the second signal SG2 can be compensated.
  • step S240 the second base station 10-2 or relay station 20 increases the signal strength of the second signal SG2.
  • the second base station 10-2 or the relay station 20 sets the signal strength of the second signal SG2 to double the default value.
  • the signal strength adjustment processing described above makes it possible to ensure communication quality even when the first signal SG1 or the second signal SG2 is degraded. Also, in normal times when neither the first signal SG1 nor the second signal SG2 is degraded, the signal transmission power in the first base station 10-1 and the second base station 10-2 is actively reduced, and the power consumption as a whole is reduced. can be suppressed.
  • the first signal SG1 and the second signal SG2 are synthesized in the same phase. What is synthesized may be a radio frequency band (RF band) signal after modulation, an intermediate frequency band (IF band) signal, or a baseband signal before modulation. good too.
  • RF band radio frequency band
  • IF band intermediate frequency band
  • the duplex method for transmission and reception is arbitrary.
  • the duplex system may be frequency division duplex (FDD) or time division duplex (TDD).

Abstract

According to this communication system, communications are performed between base stations and terminal stations via a relay station. A first base station transmits a first signal to the relay station. A second base station transmits a second signal having the same information as the first signal to the relay station. The relay station transmits the first signal and the second signal or transmits a combined signal obtained by combining the first signal and the second signal to the terminal stations. The first base station executes delay processing that delays the transmission of the first signal by a first delay time. A reception time difference is the difference between a timing at which the first signal reaches the relay station and a timing at which the second signal reaches the relay station when the delay processing is not executed. On the basis of reception time difference information indicating the reception time difference, the first base station sets the first delay time such that the first signal and the second signal are received in phase with each other by the relay station.

Description

通信システム、通信方法、及び基地局通信装置Communication system, communication method, and base station communication device
 本開示は、中継局を経由して基地局と端末局との間で通信を行う通信技術に関する。 The present disclosure relates to communication technology for communicating between base stations and terminal stations via relay stations.
 非特許文献1は、災害対策サービスに適用されるインフラ衛星通信システムを開示している。通信衛星を経由して基地局と端末局との間で通信が行われる。 Non-Patent Document 1 discloses an infrastructure satellite communication system that is applied to disaster countermeasure services. Communication is performed between a base station and a terminal station via a communication satellite.
 中継局を経由して基地局と端末局との間で通信を行う通信システムについて考える。中継局は、例えば通信衛星である。地震等の災害発生時や、降雨による信号品質の低下時にも通信を継続させるために、基地局に関して冗長構成を採用することが考えられる。冗長構成の場合、複数の基地局が地理的に離れた場所に設置される。例えば、地理的に離れた2か所に基地局が設置される。 Consider a communication system that communicates between base stations and terminal stations via relay stations. A relay station is, for example, a communication satellite. In order to continue communication even when a disaster such as an earthquake occurs or when signal quality deteriorates due to rainfall, it is conceivable to employ a redundant configuration for base stations. In a redundant configuration, multiple base stations are installed in geographically separated locations. For example, base stations are installed at two geographically separated locations.
 図1は、第1の比較例を説明するための概念図である。通信システムは、複数の基地局1、中継局2、及び複数の端末局3を含んでいる。複数の基地局1は、第1基地局1-1と第2基地局1-2を含んでいる。第1基地局1-1は、第1信号処理装置4-1を介してネットワーク5に接続されている。第2基地局1-2は、第2信号処理装置4-2を介してネットワーク5に接続されている。各基地局1は、中継局2を経由して端末局3と通信を行い、多くの端末局3との通信を集約してネットワーク5へ中継する。 FIG. 1 is a conceptual diagram for explaining the first comparative example. The communication system includes multiple base stations 1 , relay stations 2 and multiple terminal stations 3 . The plurality of base stations 1 includes a first base station 1-1 and a second base station 1-2. A first base station 1-1 is connected to a network 5 via a first signal processing device 4-1. The second base station 1-2 is connected to the network 5 via the second signal processing device 4-2. Each base station 1 communicates with the terminal station 3 via the relay station 2 , aggregates communications with many terminal stations 3 , and relays them to the network 5 .
 第1基地局1-1が中継局2へ送信する送信信号を、以下、「第1信号SG1」と呼ぶ。同様に、第2基地局1-2が中継局2へ送信する送信信号を、以下、「第2信号SG2」と呼ぶ。 The transmission signal that the first base station 1-1 transmits to the relay station 2 is hereinafter referred to as "first signal SG1". Similarly, the transmission signal that the second base station 1-2 transmits to the relay station 2 is hereinafter referred to as "second signal SG2".
 図1に示される第1の比較例において、第1基地局1-1と第2基地局1-2は、同じ周波数チャネルを用いる。但し、第1基地局1-1と第2基地局1-2の両方が同時に通信を行うことはない。仮に第1基地局1-1と第2基地局1-2の両方が同時に通信を行うと、同じ周波数チャネルの第1信号SG1と第2信号SG2との干渉が発生するからである。第1基地局1-1と第2基地局1-2の一方が中継局2を経由して端末局3と通信を行っている間、他方は通信を行わず待機する。 In the first comparative example shown in FIG. 1, the first base station 1-1 and the second base station 1-2 use the same frequency channel. However, both the first base station 1-1 and the second base station 1-2 do not communicate at the same time. This is because if both the first base station 1-1 and the second base station 1-2 communicate at the same time, interference will occur between the first signal SG1 and the second signal SG2 of the same frequency channel. While one of the first base station 1-1 and the second base station 1-2 communicates with the terminal station 3 via the relay station 2, the other stands by without communicating.
 第1基地局1-1が中継局2を経由して端末局3と通信を行っている最中に、第1信号SG1の品質が劣化した場合について考える。例えば、降雨等により、第1信号SG1が減衰し、第1信号SG1の品質が劣化する。第1信号SG1の品質劣化が検知されると、端末局3と通信を行う基地局1が第1基地局1-1から第2基地局1-2に切り替えられる。つまり、第1信号SG1の品質劣化をトリガとして、第1基地局1-1は通信を停止し、その代わり第2基地局1-2が通信を開始する。例えば、第2基地局1-2が、第1信号SG1の品質劣化を検知し、第1基地局1-1に第1信号SG1の送信停止を指示し、ネットワーク5への接続を切り替え、その後、第2信号SG2の送信を開始する。災害、故障、等の発生により第1信号SG1の品質が劣化した場合も同様である。 Consider a case where the quality of the first signal SG1 deteriorates while the first base station 1-1 is communicating with the terminal station 3 via the relay station 2. For example, due to rain or the like, the first signal SG1 is attenuated and the quality of the first signal SG1 is deteriorated. When quality deterioration of the first signal SG1 is detected, the base station 1 communicating with the terminal station 3 is switched from the first base station 1-1 to the second base station 1-2. That is, triggered by the quality deterioration of the first signal SG1, the first base station 1-1 stops communication, and the second base station 1-2 starts communication instead. For example, the second base station 1-2 detects quality deterioration of the first signal SG1, instructs the first base station 1-1 to stop transmitting the first signal SG1, switches the connection to the network 5, and then , start transmitting the second signal SG2. The same applies when the quality of the first signal SG1 is degraded due to a disaster, failure, or the like.
 このように、図1に示される第1の比較例の場合、信号品質劣化をトリガとして、端末局3と通信を行う基地局1の切り替えが行われ、ネットワーク5への接続も変更される。このような切り替え処理の結果、通信が一時的に切断(中断)されてしまう。 Thus, in the case of the first comparative example shown in FIG. 1, signal quality deterioration triggers the switching of the base station 1 that communicates with the terminal station 3, and the connection to the network 5 is also changed. As a result of such switching processing, communication is temporarily disconnected (interrupted).
 図2は、第2の比較例を説明するための概念図である。第2の比較例では、第1基地局1-1と第2基地局1-2は、それぞれ異なる周波数チャネルを用いる。第1信号SG1と第2信号SG2が互いに干渉することはないため、第1基地局1-1と第2基地局1-2の両方が常に通信状態に設定される。端末局3は、通信相手として、第1基地局1-1と第2基地局1-2のいずれか一方を選択する。 FIG. 2 is a conceptual diagram for explaining the second comparative example. In the second comparative example, the first base station 1-1 and the second base station 1-2 use different frequency channels. Since the first signal SG1 and the second signal SG2 do not interfere with each other, both the first base station 1-1 and the second base station 1-2 are always set to the communication state. The terminal station 3 selects either the first base station 1-1 or the second base station 1-2 as a communication partner.
 端末局3が通信相手として第1基地局1-1を選択している状態において、第1信号SG1の品質が劣化した場合について考える。第1信号SG1の品質劣化が検知されると、端末局3は、通信相手として第2基地局1-2を選択する。すなわち、端末局3は、通信相手を第1基地局1-1から第2基地局1-2に切り替える。これにより、第1信号SG1の品質が劣化した場合においても、通信断なく通信を継続することが可能となる。 Consider a case where the quality of the first signal SG1 deteriorates while the terminal station 3 selects the first base station 1-1 as the communication partner. When quality deterioration of the first signal SG1 is detected, the terminal station 3 selects the second base station 1-2 as a communication partner. That is, the terminal station 3 switches the communication partner from the first base station 1-1 to the second base station 1-2. As a result, even when the quality of the first signal SG1 is degraded, communication can be continued without interruption.
 しかしながら、図2に示される第2の比較例の場合、通信に必要な周波数帯域が2倍となり、運用コストが増加する。特に中継局2が通信衛星の場合、高額な衛星通信利用料が2倍必要となる。また、端末局3の送受信装置において、第1基地局1-1用と第2基地局1-2用の2系統の通信回路が必要となる。このことは、端末局3の装置コストの増大を招く。 However, in the case of the second comparative example shown in FIG. 2, the frequency band required for communication is doubled, increasing operating costs. In particular, when the relay station 2 is a communication satellite, the expensive satellite communication usage fee is doubled. In addition, in the transmitting/receiving device of the terminal station 3, two communication circuits are required for the first base station 1-1 and the second base station 1-2. This leads to an increase in equipment cost of the terminal station 3 .
 本開示の1つの目的は、中継局を経由して基地局と端末局との間で通信を行う通信技術に関して、コスト増大を招くことなく、信号品質劣化時に通信を適切に継続することができる技術を提供することにある。 One object of the present disclosure is to enable appropriate continuation of communication when signal quality is degraded, without increasing costs, with respect to communication technology that performs communication between a base station and a terminal station via a relay station. It is to provide technology.
 第1の観点は、中継局を経由して基地局と端末局との間で通信を行う通信システムに関連する。
 通信システムは、
 第1信号を中継局に送信する第1基地局と、
 第1信号と同一の情報を有する第2信号を中継局に送信する第2基地局と
 を備える。
 中継局は、第1信号及び第2信号、あるいは、第1信号と第2信号を合成した合成信号を端末局に送信する。
 第1基地局は、第1信号の送信を第1遅延時間だけ遅延させる遅延処理を実行するように構成される。
 受信時間差は、遅延処理が実行されない場合における、第1信号が中継局に到達するタイミングと第2信号が中継局に到達するタイミングとの間の差である。
 第1基地局は、受信時間差を示す受信時間差情報に基づいて、第1信号と第2信号が同位相で中継局によって受信されるように第1遅延時間を設定する。
A first aspect relates to a communication system that communicates between a base station and a terminal station via a relay station.
A communication system is
a first base station transmitting a first signal to the relay station;
a second base station that transmits to the relay station a second signal having the same information as the first signal.
The relay station transmits the first signal and the second signal, or a composite signal obtained by combining the first signal and the second signal to the terminal station.
The first base station is configured to perform a delay process to delay transmission of the first signal by a first delay time.
The reception time difference is the difference between the timing at which the first signal reaches the relay station and the timing at which the second signal reaches the relay station when no delay processing is performed.
The first base station sets the first delay time based on the reception time difference information indicating the reception time difference so that the first signal and the second signal are received by the relay station in phase.
 第2の観点は、中継局を経由して基地局と端末局との間で通信を行う通信方法に関連する。
 通信方法は、
 第1基地局から中継局に第1信号を送信する処理と、
 第2基地局から中継局に第1信号と同一の情報を有する第2信号を送信する処理と、
 中継局から端末局に、第1信号及び第2信号、あるいは、第1信号と第2信号を合成した合成信号を送信する処理と、
 第1基地局において第1信号の送信を第1遅延時間だけ遅延させる遅延処理と
 を含む。
 受信時間差は、遅延処理が実行されない場合における、第1信号が中継局に到達するタイミングと第2信号が中継局に到達するタイミングとの間の差である。
 遅延処理は、受信時間差を示す受信時間差情報に基づいて、第1信号と第2信号が同位相で中継局によって受信されるように第1遅延時間を設定する処理を含む。
A second aspect relates to a communication method for communicating between a base station and a terminal station via a relay station.
Communication method
a process of transmitting a first signal from the first base station to the relay station;
a process of transmitting a second signal having the same information as the first signal from the second base station to the relay station;
A process of transmitting a first signal and a second signal or a combined signal obtained by combining the first signal and the second signal from a relay station to a terminal station;
and delaying the transmission of the first signal at the first base station by a first delay time.
The reception time difference is the difference between the timing at which the first signal reaches the relay station and the timing at which the second signal reaches the relay station when no delay processing is performed.
The delay processing includes processing for setting a first delay time based on reception time difference information indicating the reception time difference so that the first signal and the second signal are received by the relay station in phase.
 第3の観点は、中継局を経由して基地局と端末局との間で通信を行う通信システムにおける基地局通信装置に関連する。
 通信システムは、
 第1信号を中継局に送信する第1基地局と、
 第1信号と同一の情報を有する第2信号を中継局に送信する第2基地局と、
 第1信号及び第2信号、あるいは、第1信号と第2信号を合成した合成信号を端末局に送信する中継局と
 を含む。
 第1基地局の基地局通信装置は、第1信号の送信を第1遅延時間だけ遅延させる遅延処理を実行するように構成さる。
 受信時間差は、遅延処理が実行されない場合における、第1信号が中継局に到達するタイミングと第2信号が中継局に到達するタイミングとの間の差である。
 第1基地局の基地局通信装置は、受信時間差を示す受信時間差情報に基づいて、第1信号と第2信号が同位相で中継局によって受信されるように第1遅延時間を設定する。
A third aspect relates to a base station communication apparatus in a communication system in which communication is performed between a base station and a terminal station via a relay station.
A communication system is
a first base station transmitting a first signal to the relay station;
a second base station transmitting a second signal having the same information as the first signal to the relay station;
a relay station that transmits a first signal and a second signal or a composite signal obtained by combining the first signal and the second signal to a terminal station.
The base station communication device of the first base station is configured to execute delay processing for delaying transmission of the first signal by a first delay time.
The reception time difference is the difference between the timing at which the first signal reaches the relay station and the timing at which the second signal reaches the relay station when no delay processing is performed.
The base station communication device of the first base station sets the first delay time based on the reception time difference information indicating the reception time difference so that the first signal and the second signal are received by the relay station in the same phase.
 本開示によれば、中継局を経由して基地局と端末局との間で通信を行う通信システムにおいて、コスト増大を招くことなく、信号品質劣化時に通信を適切に継続することが可能となる。 According to the present disclosure, in a communication system in which communication is performed between a base station and a terminal station via a relay station, it is possible to appropriately continue communication when signal quality deteriorates without increasing costs. .
第1の比較例を説明するための概念図である。FIG. 5 is a conceptual diagram for explaining a first comparative example; 第2の比較例を説明するための概念図である。FIG. 11 is a conceptual diagram for explaining a second comparative example; 本開示の実施の形態に係る通信システムの構成例を示す概念図である。1 is a conceptual diagram showing a configuration example of a communication system according to an embodiment of the present disclosure; FIG. 本開示の実施の形態に係る通信システムにおける処理の概要を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining an outline of processing in a communication system according to an embodiment of the present disclosure; FIG. 本開示の実施の形態に係る通信システムにおける受信時間差の一例を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining an example of a reception time difference in a communication system according to an embodiment of the present disclosure; FIG. 本開示の実施の形態に係る通信システムの他の構成例を示す概念図である。FIG. 2 is a conceptual diagram showing another configuration example of a communication system according to an embodiment of the present disclosure; 本開示の実施の形態に係る通信システムにおける遅延調整処理を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining delay adjustment processing in the communication system according to the embodiment of the present disclosure; 本開示の実施の形態に係る遅延処理及び遅延調整処理に関連する処理を要約的に示すフローチャートである。4 is a flow chart summarizing processing related to delay processing and delay adjustment processing according to the embodiment of the present disclosure; 本開示の実施の形態に係る基地局通信装置の機能構成の一例を示すブロック図である。1 is a block diagram showing an example of a functional configuration of a base station communication device according to an embodiment of the present disclosure; FIG. 本開示の実施の形態に係る基地局通信装置の機能構成の他の例を示すブロック図である。FIG. 4 is a block diagram showing another example of the functional configuration of the base station communication device according to the embodiment of the present disclosure; 本開示の実施の形態に係る基地局通信装置の構成例を示すブロック図である。1 is a block diagram showing a configuration example of a base station communication device according to an embodiment of the present disclosure; FIG. 本開示の実施の形態に係る信号強度調整処理を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining signal strength adjustment processing according to an embodiment of the present disclosure; 本開示の実施の形態に係る信号強度調整処理を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining signal strength adjustment processing according to an embodiment of the present disclosure; 本開示の実施の形態に係る信号強度調整処理に関連する処理を示すフローチャートである。6 is a flowchart showing processing related to signal strength adjustment processing according to the embodiment of the present disclosure;
 添付図面を参照して、本開示の実施の形態を説明する。 Embodiments of the present disclosure will be described with reference to the accompanying drawings.
 1.概要
 図3は、本実施の形態に係る通信システムの構成例を示す概念図である。通信システムは、複数の基地局10、中継局20、及び複数の端末局30を含んでいる。基地局10と端末局30は、中継局20を経由して互いに通信を行う。中継局20は、例えば通信衛星である。端末局30は、パソコン、IP電話端末、スマートフォン、等を含んでいてもよい。
1. Overview FIG. 3 is a conceptual diagram showing a configuration example of a communication system according to this embodiment. The communication system includes multiple base stations 10 , relay stations 20 , and multiple terminal stations 30 . The base station 10 and terminal station 30 communicate with each other via the relay station 20 . The relay station 20 is, for example, a communication satellite. The terminal station 30 may include a personal computer, an IP telephone terminal, a smart phone, and the like.
 地震等の災害発生時や、降雨による信号品質の低下時にも通信を継続させるために、基地局10に関して冗長構成が採用される。複数の基地局10は、第1基地局10-1と第2基地局10-2を含んでいる。第1基地局10-1と第2基地局10-2は、地理的に離れた場所に設置されている。 A redundant configuration is adopted for the base station 10 in order to continue communication even when a disaster such as an earthquake occurs or when signal quality deteriorates due to rainfall. The plurality of base stations 10 includes a first base station 10-1 and a second base station 10-2. The first base station 10-1 and the second base station 10-2 are installed in geographically separated locations.
 第1基地局10-1側の第1信号処理装置40-1は、ネットワーク50に接続されている。また、第1基地局10-1側の第1信号処理装置40-1と第2基地局10-2側の第2信号処理装置40-2は、互いに通信可能に接続されている。第1基地局10-1は、第1信号処理装置40-1を介してネットワーク50に接続されている。第2基地局10-2は、第2信号処理装置40-2及び第1信号処理装置40-1を介して、ネットワーク50に接続されている。各基地局10は、中継局20を経由して端末局30と通信を行い、多くの端末局30との通信を集約してネットワーク50へ中継する。 The first signal processing device 40-1 on the side of the first base station 10-1 is connected to the network 50. Also, the first signal processing device 40-1 on the first base station 10-1 side and the second signal processing device 40-2 on the second base station 10-2 side are connected so as to be able to communicate with each other. The first base station 10-1 is connected to the network 50 via the first signal processing device 40-1. The second base station 10-2 is connected to the network 50 via the second signal processing device 40-2 and the first signal processing device 40-1. Each base station 10 communicates with the terminal station 30 via the relay station 20 , aggregates communications with many terminal stations 30 , and relays them to the network 50 .
 図4は、本実施の形態に係る通信システムにおける処理の概要を説明するための概念図である。第1信号SG1は、第1基地局10-1が中継局20へ送信する送信信号である。第2信号SG2は、第2基地局10-2が中継局20へ送信する送信信号である。第1信号SG1と第2信号SG2は、同一の情報を有する。第1基地局10-1は、第1信号処理装置40-1から第1信号SG1を受け取り、第1信号SG1を中継局20を経由して端末局30に送信する。第2基地局10-2は、第1信号処理装置40-1から第2信号処理装置40-2を介して第1信号SG1を第2信号SG2として受け取る(SG2=SG1)。そして、第2基地局10-2は、第1信号SG1と同一の情報を有する第2信号SG2を、中継局20を経由して端末局30に送信する。 FIG. 4 is a conceptual diagram for explaining the outline of processing in the communication system according to the present embodiment. The first signal SG1 is a transmission signal that the first base station 10-1 transmits to the relay station 20. FIG. The second signal SG2 is a transmission signal that the second base station 10-2 transmits to the relay station 20. FIG. The first signal SG1 and the second signal SG2 have the same information. The first base station 10-1 receives the first signal SG1 from the first signal processing device 40-1 and transmits the first signal SG1 to the terminal station 30 via the relay station 20. FIG. The second base station 10-2 receives the first signal SG1 as the second signal SG2 from the first signal processing device 40-1 via the second signal processing device 40-2 (SG2=SG1). The second base station 10-2 then transmits a second signal SG2 having the same information as the first signal SG1 to the terminal station 30 via the relay station 20. FIG.
 第1基地局1-1と第2基地局1-2は、同じ周波数チャネルを用いる。また、第1基地局1-1と第2基地局1-2の両方が常に通信状態に設定される。よって、中継局20等において第1信号SG1と第2信号SG2との干渉を回避する必要がある。そのためには、中継局20が、同一の情報を有する第1信号SG1と第2信号SG2を同位相で受信することができればよい。言い換えれば、同一の情報を有する第1信号SG1と第2信号SG2が同位相で中継局20に到達すればよい。その場合、中継局20あるいは端末局30において、干渉を発生させることなく、第1信号SG1と第2信号SG2を合成することが可能となる。 The first base station 1-1 and the second base station 1-2 use the same frequency channel. Also, both the first base station 1-1 and the second base station 1-2 are always set to the communication state. Therefore, it is necessary to avoid interference between the first signal SG1 and the second signal SG2 in the relay station 20 and the like. For that purpose, the relay station 20 should be able to receive the first signal SG1 and the second signal SG2 having the same information in the same phase. In other words, the first signal SG1 and the second signal SG2 having the same information should reach the relay station 20 in the same phase. In that case, the relay station 20 or the terminal station 30 can combine the first signal SG1 and the second signal SG2 without causing interference.
 本実施の形態によれば、中継局20が第1信号SG1と第2信号SG2を同位相で受信することができるように、第1基地局10-1と第2基地局10-2のいずれか一方が、信号送信を遅延させる「遅延処理」を行う。以下では、第1基地局10-1が遅延処理を行う場合について説明する。第2基地局10-2が遅延処理を行う場合も同様である。 According to the present embodiment, either first base station 10-1 or second base station 10-2 can receive first signal SG1 and second signal SG2 in phase so that relay station 20 can receive first signal SG1 and second signal SG2 One of them performs "delay processing" to delay signal transmission. A case where the first base station 10-1 performs delay processing will be described below. The same applies when the second base station 10-2 performs delay processing.
 遅延処理において、第1基地局10-1は、第1信号SG1の送信を「第1遅延時間D1」だけ遅延させる。第1基地局10-1は、第1信号SG1と第2信号SG2が同位相で中継局20によって受信されるように、その第1遅延時間D1を設定する。第1遅延時間D1の設定及び調整に関する具体的方法は、後に詳しく説明される。 In the delay process, the first base station 10-1 delays transmission of the first signal SG1 by "first delay time D1". The first base station 10-1 sets the first delay time D1 so that the first signal SG1 and the second signal SG2 are received by the relay station 20 in phase. A specific method for setting and adjusting the first delay time D1 will be described in detail later.
 中継局20は、第1信号SG1と第2信号SG2を同位相で受信する。中継局20は、受信した第1信号SG1及び第2信号SG2を端末局30に送信(転送)する。端末局30は、同一情報を有する同位相の第1信号SG1と第2信号SG2を合成受信する。あるいは、中継局20は、受信した第1信号SG1と第2信号SG2を合成して合成信号SGCを生成する。そして、中継局20は、第1信号SG1と第2信号SG2を合成した合成信号SGCを端末局30に送信する。端末局30は、合成信号SGCを受信する。 The relay station 20 receives the first signal SG1 and the second signal SG2 in phase. The relay station 20 transmits (transfers) the received first signal SG1 and second signal SG2 to the terminal station 30 . The terminal station 30 combines and receives the in-phase first signal SG1 and second signal SG2 having the same information. Alternatively, the relay station 20 combines the received first signal SG1 and second signal SG2 to generate a combined signal SGC. The relay station 20 then transmits to the terminal station 30 a combined signal SGC obtained by combining the first signal SG1 and the second signal SG2. Terminal station 30 receives combined signal SGC.
 第1基地局10-1から送信される第1信号SG1の品質が劣化する可能性がある。例えば、降雨等により、第1信号SG1が減衰し、第1信号SG1の品質が劣化する可能性がある。他の例として、災害、故障、等の発生により第1信号SG1の品質が劣化する可能性がある。本実施の形態によれば、第1信号SG1の品質が劣化したとしても、第1信号SG1と同じ情報を有する第2信号SG2によって通信を適切に継続することが可能である。図1で示された第1の比較例のような基地局切り替えは行われないため、通信断は発生しない。 The quality of the first signal SG1 transmitted from the first base station 10-1 may deteriorate. For example, rain or the like may attenuate the first signal SG1 and degrade the quality of the first signal SG1. As another example, the quality of the first signal SG1 may be degraded due to a disaster, failure, or the like. According to the present embodiment, even if the quality of the first signal SG1 deteriorates, it is possible to appropriately continue communication by the second signal SG2 having the same information as the first signal SG1. Since the base station is not switched as in the first comparative example shown in FIG. 1, no communication disconnection occurs.
 第2基地局10-2から送信される第2信号SG2の品質が劣化する場合も同様である。第2信号SG2の品質が劣化したとしても、第2信号SG2と同じ情報を有する第1信号SG1によって通信を適切に継続することが可能である。図1で示された第1の比較例のような基地局切り替えは行われないため、通信断は発生しない。 The same applies when the quality of the second signal SG2 transmitted from the second base station 10-2 deteriorates. Even if the quality of the second signal SG2 deteriorates, it is possible to properly continue communication by means of the first signal SG1 having the same information as the second signal SG2. Since the base station is not switched as in the first comparative example shown in FIG. 1, no communication disconnection occurs.
 更に、本実施の形態によれば、図2で示された第2の比較例の場合とは異なり、第1基地局1-1と第2基地局1-2とで別々の周波数チャネルを用いる必要がない。従って、運用コストの増加は発生しない。また、端末局30の送受信装置において、第1基地局10-1用と第2基地局10-2用の2系統の通信回路は不要である。従って、端末局30の装置コストの増大も発生しない。 Furthermore, according to the present embodiment, unlike the case of the second comparative example shown in FIG. 2, separate frequency channels are used for the first base station 1-1 and the second base station 1-2. No need. Therefore, no increase in operating costs occurs. Further, in the transmitting/receiving device of the terminal station 30, two communication circuits for the first base station 10-1 and the second base station 10-2 are unnecessary. Therefore, the device cost of the terminal station 30 does not increase.
 以上に説明されたように、本実施の形態によれば、中継局20を経由して基地局10と端末局30との間で通信を行う通信システムにおいて、コスト増大を招くことなく、信号品質劣化時に通信を適切に継続することが可能となる。 As described above, according to the present embodiment, in a communication system in which communication is performed between the base station 10 and the terminal station 30 via the relay station 20, the signal quality can be improved without increasing the cost. It is possible to appropriately continue communication when deterioration occurs.
 2.遅延処理及び遅延調整処理
 以下、本実施の形態に係る遅延処理及び遅延調整処理について詳しく説明する。
2. Delay Processing and Delay Adjustment Processing Delay processing and delay adjustment processing according to the present embodiment will be described in detail below.
 2-1.受信時間差情報
 仮に、第1基地局1-1において遅延処理が実行されないとする。その場合、同一の情報を有する第1信号SG1と第2信号SG2は、異なるタイミングで中継局20に到達する。遅延処理が実行されない場合における、第1信号SG1が中継局20に到達するタイミングと第2信号SG2が中継局20に到達するタイミングとの間の差を、以下、「受信時間差ΔD」と呼ぶ。
2-1. Reception Time Difference Information It is assumed that delay processing is not executed in the first base station 1-1. In that case, the first signal SG1 and the second signal SG2 having the same information arrive at the relay station 20 at different timings. The difference between the timing at which the first signal SG1 reaches the relay station 20 and the timing at which the second signal SG2 reaches the relay station 20 when the delay processing is not executed is hereinafter referred to as "reception time difference ΔD".
 図5は、受信時間差ΔDの一例を説明するための概念図である。第1通信遅延αは、第1基地局10-1と中継局20との間の信号の往復時間である。第2通信遅延βは、第2基地局10-2から中継局20を経由して第1基地局10-1へ到達する通信ルートにおける信号伝送時間である。第3通信遅延γは、第1基地局10-1(第1信号処理装置40-1)と第2基地局10-2(第2信号処理装置40-2)との間の信号伝送時間であり、中継局20を経由しない信号伝送時間である。この場合、受信時間差ΔDは、「β+γ-α」で表される。 FIG. 5 is a conceptual diagram for explaining an example of the reception time difference ΔD. The first communication delay α is the round trip time of the signal between the first base station 10-1 and the relay station 20. FIG. The second communication delay β is the signal transmission time on the communication route from the second base station 10-2 to the first base station 10-1 via the relay station 20. FIG. The third communication delay γ is the signal transmission time between the first base station 10-1 (first signal processing device 40-1) and the second base station 10-2 (second signal processing device 40-2). , which is the signal transmission time that does not pass through the relay station 20 . In this case, the reception time difference ΔD is represented by "β+γ-α".
 通信遅延α、β、γは、あらかじめ計測又は推定される。受信時間差ΔDは、それら通信遅延α、β、γに基づいてあらかじめ算出される。そして、受信時間差ΔDを示す情報が、あらかじめ第1基地局10-1に提供される。 The communication delays α, β, γ are measured or estimated in advance. The reception time difference ΔD is calculated in advance based on the communication delays α, β and γ. Information indicating the reception time difference ΔD is provided in advance to the first base station 10-1.
 あるいは、通信開始時に、第1基地局10-1自身が第1通信遅延α及び第2通信遅延βを計測してもよい。例えば、第1基地局10-1は、第1遅延計測信号を中継局20に送信する。中継局20は、第1遅延計測信号を受信し、その第1遅延計測信号を第1基地局10-1に送り返す。第1基地局10-1は、第1遅延計測信号の送信タイミングと受信タイミングに基づいて、第1通信遅延αを計測する。続いて、第1基地局10-1は信号送信処理を停止し、代わりに、第2基地局10-2が第2遅延計測信号を中継局20を経由して第1基地局10-1に送信する。第1基地局10-1は、第2基地局10-2から送信された第2遅延計測信号を受信する。第2遅延計測信号は、第2基地局10-2から送信されたタイミングに関する情報を含んでいる。第1基地局10-1は、第2遅延計測信号の送信タイミングと受信タイミングに基づいて、第2通信遅延βを計測する。第3通信遅延γの情報は、あらかじめ与えられる。第1基地局10-1は、通信遅延α、β、γに基づいて、受信時間差ΔDを算出する。 Alternatively, the first base station 10-1 itself may measure the first communication delay α and the second communication delay β at the start of communication. For example, the first base station 10 - 1 transmits the first delay measurement signal to the relay station 20 . The relay station 20 receives the first delay measurement signal and sends the first delay measurement signal back to the first base station 10-1. The first base station 10-1 measures the first communication delay α based on the transmission timing and reception timing of the first delay measurement signal. Subsequently, the first base station 10-1 stops signal transmission processing, and instead the second base station 10-2 transmits the second delay measurement signal to the first base station 10-1 via the relay station 20. Send. The first base station 10-1 receives the second delay measurement signal transmitted from the second base station 10-2. The second delay measurement signal contains timing information transmitted from the second base station 10-2. The first base station 10-1 measures the second communication delay β based on the transmission timing and reception timing of the second delay measurement signal. Information on the third communication delay γ is given in advance. The first base station 10-1 calculates the reception time difference ΔD based on the communication delays α, β, γ.
 図6は、本実施の形態に係る通信システムの他の構成例を示している。図6に示される例では、1台の信号処理装置40が第1基地局10-1と第2基地局10-2の中間地点に設置されている。第1基地局10-1と第2基地局10-2は共に、その信号処理装置40を介してネットワーク50に接続されている。第1基地局10-1と第2基地局10-2は、信号処理装置40から、同じ情報を有する第1信号SG1と第2信号SG2のそれぞれを受け取る。図6に示される例では、第3通信遅延γは、第1基地局10-1と信号処理装置40との間の信号伝送時間と第2基地局10-2と信号処理装置40との間の信号伝送時間との間の差として定義される。この場合でも、受信時間差ΔDは、「β+γ-α」で表される。図6で示される構成の場合、第3通信遅延γを最小化することが可能となる。 FIG. 6 shows another configuration example of the communication system according to this embodiment. In the example shown in FIG. 6, one signal processing device 40 is installed at an intermediate point between the first base station 10-1 and the second base station 10-2. Both the first base station 10-1 and the second base station 10-2 are connected to the network 50 via their signal processors 40. FIG. The first base station 10-1 and the second base station 10-2 receive the first signal SG1 and the second signal SG2 having the same information from the signal processing device 40, respectively. In the example shown in FIG. 6, the third communication delay γ is the signal transmission time between the first base station 10-1 and the signal processing device 40 and the signal transmission time between the second base station 10-2 and the signal processing device 40. is defined as the difference between the signal transmission time of Even in this case, the reception time difference ΔD is represented by "β+γ-α". In the case of the configuration shown in FIG. 6, it is possible to minimize the third communication delay γ.
 2-2.遅延時間の初期化
 上述の通り、遅延処理において、第1基地局10-1は、第1信号SG1の送信を「第1遅延時間D1」だけ遅延させる。第1基地局10-1は、上述の受信時間差ΔDの情報を取得し、その受信時間差ΔDを第1遅延時間D1の初期値として設定する。そして、第1基地局10-1は、第1遅延時間D1の初期値を用いて遅延処理を開始する。
2-2. Initialization of Delay Time As described above, in the delay process, the first base station 10-1 delays the transmission of the first signal SG1 by the "first delay time D1". The first base station 10-1 acquires the information on the reception time difference ΔD, and sets the reception time difference ΔD as the initial value of the first delay time D1. Then, the first base station 10-1 starts delay processing using the initial value of the first delay time D1.
 2-3.遅延調整処理
 各装置の通信回路には個体差が存在し得る。また、信号伝送時間の揺らぎにより、遅延変動が継続的に発生し得る。そのような個体差や遅延変動に対処するため、第1基地局10-1は、第1遅延時間D1を初期化した後に第1遅延時間D1を動的に調整してもよい。第1遅延時間D1を動的に調整する処理を、以下、「遅延調整処理」と呼ぶ。
2-3. Delay Adjustment Processing There may be individual differences in the communication circuits of each device. In addition, fluctuations in signal transmission time can cause continuous delay fluctuations. In order to cope with such individual differences and delay variations, the first base station 10-1 may dynamically adjust the first delay time D1 after initializing the first delay time D1. The process of dynamically adjusting the first delay time D1 is hereinafter referred to as "delay adjustment process".
 図7は、本実施の形態に係る遅延調整処理を説明するための概念図である。中継局20は、第1基地局10-1から送信される第1信号SG1を受信し、第2基地局10-2から送信される第2信号SG2を受信する。中継局20は、受信した第1信号SG1及び第2信号SG2を第1基地局10-1に送信する。第1基地局10-1は、第1信号SG1と第2信号SG2を合成受信する。あるいは、中継局20は、受信した第1信号SG1と第2信号SG2を合成して合成信号SGCを生成する。そして、中継局20は、第1信号SG1と第2信号SG2を合成した合成信号SGCを第1基地局10-1に送信する。第1基地局10-1は、合成信号SGCを受信する。 FIG. 7 is a conceptual diagram for explaining delay adjustment processing according to the present embodiment. The relay station 20 receives a first signal SG1 transmitted from the first base station 10-1 and receives a second signal SG2 transmitted from the second base station 10-2. The relay station 20 transmits the received first signal SG1 and second signal SG2 to the first base station 10-1. The first base station 10-1 combines and receives the first signal SG1 and the second signal SG2. Alternatively, the relay station 20 combines the received first signal SG1 and second signal SG2 to generate a combined signal SGC. The relay station 20 then transmits a combined signal SGC obtained by combining the first signal SG1 and the second signal SG2 to the first base station 10-1. The first base station 10-1 receives the combined signal SGC.
 第1基地局10-1は、第1信号SG1と第2信号SG2を合成した合成信号SGCを復調する。そして、第1基地局10-1は、合成信号SGCの復調結果に基づいて、第1遅延時間D1を動的に調整する。 The first base station 10-1 demodulates the composite signal SGC obtained by combining the first signal SG1 and the second signal SG2. Then, the first base station 10-1 dynamically adjusts the first delay time D1 based on the demodulation result of the combined signal SGC.
 例えば、第1基地局10-1は、合成信号SGCの復調結果が一定の品質を満たすか否かを判定する。より詳細には、第1基地局10-1は、合成信号SGCの復調結果を反映した通信パラメータを取得する。例えば、通信パラメータは、ビットエラーレート(BER: Bit Error Rate)である。第1基地局10-1は、その通信パラメータが一定の品質を満たすか否かを判定する。通信パラメータが一定の品質を満たさない場合、第1基地局10-1は、通信パラメータが一定の品質を満たすまで第1遅延時間D1を変化させる。このような第1遅延時間D1の調整には、例えば、フィードバック回路が用いられる。 For example, the first base station 10-1 determines whether the demodulation result of the composite signal SGC satisfies a certain quality. More specifically, the first base station 10-1 acquires communication parameters reflecting the demodulation result of the combined signal SGC. For example, the communication parameter is Bit Error Rate (BER). The first base station 10-1 determines whether its communication parameters satisfy certain quality. If the communication parameters do not satisfy the constant quality, the first base station 10-1 changes the first delay time D1 until the communication parameters satisfy the constant quality. A feedback circuit, for example, is used for such adjustment of the first delay time D1.
 2-4.処理フロー
 図8は、本実施の形態に係る遅延処理及び遅延調整処理に関連する処理を要約的に示すフローチャートである。
2-4. Processing Flow FIG. 8 is a flowchart schematically showing processing related to delay processing and delay adjustment processing according to the present embodiment.
 ステップS100において、第1基地局10-1は、受信時間差ΔDを示す情報を取得する。受信時間差ΔDを示す情報は、あらかじめ第1基地局10-1に提供されてもよい。あるいは、第1基地局10-1が、第1通信遅延αと第2通信遅延βを計測し、第1通信遅延αと第2通信遅延βに基づいて受信時間差ΔDを算出してもよい。 In step S100, the first base station 10-1 acquires information indicating the reception time difference ΔD. Information indicating the reception time difference ΔD may be provided in advance to the first base station 10-1. Alternatively, the first base station 10-1 may measure the first communication delay α and the second communication delay β, and calculate the reception time difference ΔD based on the first communication delay α and the second communication delay β.
 ステップS110において、第1基地局10-1は、受信時間差ΔDを第1遅延時間D1の初期値として設定する。 In step S110, the first base station 10-1 sets the reception time difference ΔD as the initial value of the first delay time D1.
 ステップS120において、第1基地局10-1は、遅延処理及び送信処理を行う。遅延処理において、第1基地局10-1は、第1信号SG1の送信を第1遅延時間D1だけ遅延させる。そして、第1基地局10-1は、第1信号SG1を中継局20に送信する。第2基地局10-2は、第1信号SG1と同じ情報を有する第2信号SG2を中継局20に送信する。 In step S120, the first base station 10-1 performs delay processing and transmission processing. In the delay process, the first base station 10-1 delays the transmission of the first signal SG1 by the first delay time D1. Then, the first base station 10-1 transmits the first signal SG1 to the relay station 20. FIG. The second base station 10-2 transmits to the relay station 20 a second signal SG2 having the same information as the first signal SG1.
 ステップS130において、中継局20は、受信した第1信号SG1及び第2信号SG2を第1基地局10-1に送信する。第1基地局10-1は、第1信号SG1と第2信号SG2を合成受信する。あるいは、中継局20は、第1信号SG1と第2信号SG2を合成した合成信号SGCを第1基地局10-1に送信する。第1基地局10-1は、合成信号SGCを受信する。 In step S130, the relay station 20 transmits the received first signal SG1 and second signal SG2 to the first base station 10-1. The first base station 10-1 combines and receives the first signal SG1 and the second signal SG2. Alternatively, the relay station 20 transmits a combined signal SGC obtained by combining the first signal SG1 and the second signal SG2 to the first base station 10-1. The first base station 10-1 receives the combined signal SGC.
 ステップS140において、第1基地局10-1は、合成信号SGCの復調結果が一定の品質を満たすか否かを判定する。合成信号SGCの復調結果が一定の品質を満たす場合(ステップS140;Yes)、処理は、ステップS120に戻る。一方、合成信号SGCの復調結果が一定の品質を満たさない場合(ステップS140;No)、処理は、ステップS150に進む。 In step S140, the first base station 10-1 determines whether the demodulation result of the combined signal SGC satisfies a certain quality. If the demodulation result of the synthesized signal SGC satisfies a certain level of quality (step S140; Yes), the process returns to step S120. On the other hand, if the demodulation result of the combined signal SGC does not satisfy the certain quality (step S140; No), the process proceeds to step S150.
 ステップS150において、第1基地局10-1は、第1遅延時間D1を変化させる。その後、処理は、ステップS120に戻る。つまり、第1基地局10-1は、合成信号SGCの復調結果が一定の品質を満たすまで、第1遅延時間D1を変化させる。 In step S150, the first base station 10-1 changes the first delay time D1. After that, the process returns to step S120. That is, the first base station 10-1 changes the first delay time D1 until the demodulation result of the combined signal SGC satisfies a certain quality.
 以上に説明された遅延調整処理により、第1遅延時間D1を状況に応じて動的に調整し、第1信号SG1と第2信号SG2の干渉を更に抑制することが可能となる。その結果、通信品質が向上する。 By the delay adjustment processing described above, it is possible to dynamically adjust the first delay time D1 according to the situation and further suppress interference between the first signal SG1 and the second signal SG2. As a result, communication quality is improved.
 3.構成例
 本実施の形態に係る基地局10は、基地局10の通信を制御する基地局通信装置100を備える。以下、第1基地局10-1の基地局通信装置100の構成例について説明する。
3. Configuration Example A base station 10 according to the present embodiment includes a base station communication apparatus 100 that controls communication of the base station 10 . A configuration example of the base station communication apparatus 100 of the first base station 10-1 will be described below.
 図9は、基地局通信装置100の機能構成の一例を示すブロック図である。基地局通信装置100は、復調部110、遅延制御部120、及び送信部130を含んでいる。 FIG. 9 is a block diagram showing an example of the functional configuration of the base station communication device 100. As shown in FIG. Base station communication apparatus 100 includes demodulator 110 , delay controller 120 , and transmitter 130 .
 復調部110には、第1基地局10-1が中継局20から受信した受信信号が入力される。復調部110は、受信信号を復調し、復調により得られた受信データを信号処理装置40に出力する。また、復調部110は、受信信号の復調結果を示す復調結果情報を遅延制御部120に出力する。復調結果情報は、受信信号の復調結果を反映した通信パラメータを含む。例えば、通信パラメータは、ビットエラーレートである。 A received signal received by the first base station 10 - 1 from the relay station 20 is input to the demodulation unit 110 . Demodulator 110 demodulates the received signal and outputs received data obtained by demodulation to signal processing device 40 . Demodulator 110 also outputs demodulation result information indicating the demodulation result of the received signal to delay controller 120 . The demodulation result information includes communication parameters reflecting the demodulation result of the received signal. For example, the communication parameter is bit error rate.
 遅延制御部120は、受信時間差情報200と遅延設定情報300を保持している。受信時間差情報200は、上述の受信時間差ΔDを示す。図9に示される例では、受信時間差情報200は、あらかじめ基地局通信装置100に提供される。遅延設定情報300は、遅延処理において用いられる第1遅延時間D1を示す。 The delay control unit 120 holds reception time difference information 200 and delay setting information 300 . The reception time difference information 200 indicates the reception time difference ΔD described above. In the example shown in FIG. 9, the reception time difference information 200 is provided to the base station communication device 100 in advance. The delay setting information 300 indicates the first delay time D1 used in delay processing.
 遅延制御部120は、受信時間差情報200で示される受信時間差ΔDを第1遅延時間D1の初期値として設定する。遅延制御部120は、遅延設定情報300に第1遅延時間D1の初期値を登録する。そして、遅延制御部120は、遅延設定情報300で示される第1遅延時間D1を送信部130に通知する。 The delay control unit 120 sets the reception time difference ΔD indicated by the reception time difference information 200 as the initial value of the first delay time D1. The delay control unit 120 registers the initial value of the first delay time D1 in the delay setting information 300. FIG. Then, the delay control section 120 notifies the transmission section 130 of the first delay time D1 indicated by the delay setting information 300 .
 また、遅延制御部120は、遅延調整処理を行う。具体的には、遅延制御部120は、復調部110から復調結果情報を受け取り、復調結果が一定の品質を満たすか否かを判定する。例えば、遅延制御部120は、ビットエラーレートが一定の品質を満たすか否かを判定する。復調結果が一定の品質を満たさない場合、遅延制御部120は、第1遅延時間D1を変化させ、遅延設定情報300を更新する。そして、遅延制御部120は、遅延設定情報300で示される第1遅延時間D1を送信部130に通知する。遅延制御部120は、復調結果が一定の品質を満たすまで、第1遅延時間D1を変化させる。このような第1遅延時間D1の調整には、例えば、フィードバック回路が用いられる。 Also, the delay control unit 120 performs delay adjustment processing. Specifically, delay control section 120 receives demodulation result information from demodulation section 110 and determines whether the demodulation result satisfies a certain level of quality. For example, the delay control unit 120 determines whether the bit error rate satisfies a certain quality. If the demodulation result does not satisfy a certain quality, the delay control section 120 changes the first delay time D1 and updates the delay setting information 300 . Then, the delay control section 120 notifies the transmission section 130 of the first delay time D1 indicated by the delay setting information 300 . The delay control section 120 changes the first delay time D1 until the demodulation result satisfies a certain quality. A feedback circuit, for example, is used for such adjustment of the first delay time D1.
 送信部130は、信号処理装置40から送信データを受け取る。送信部130は、送信データの変調を行い、第1信号SG1を生成し、第1信号SG1を送信する。このとき、送信部130は、遅延制御部120から通知される第1遅延時間D1に基づいて遅延処理を行う。具体的には、送信部130は、遅延回路135を有している。送信部130は、その遅延回路135を用いて、第1信号SG1の送信を第1遅延時間D1だけ遅延させる。 The transmission unit 130 receives transmission data from the signal processing device 40 . The transmitter 130 modulates transmission data to generate a first signal SG1 and transmits the first signal SG1. At this time, the transmission section 130 performs delay processing based on the first delay time D<b>1 notified from the delay control section 120 . Specifically, the transmitter 130 has a delay circuit 135 . Using the delay circuit 135, the transmitter 130 delays the transmission of the first signal SG1 by the first delay time D1.
 図10は、基地局通信装置100の機能構成の他の例を示すブロック図である。上記図9で示された例と重複する説明は適宜省略する。図10に示される例では、基地局通信装置100が、受信時間差情報200を生成する。 FIG. 10 is a block diagram showing another example of the functional configuration of the base station communication device 100. As shown in FIG. Explanations that overlap with the example shown in FIG. 9 will be omitted as appropriate. In the example shown in FIG. 10, the base station communication device 100 generates the reception time difference information 200. FIG.
 より詳細には、復調部110は、遅延測定部115を含んでいる。遅延測定部115は、第1通信遅延α及び第2通信遅延βを測定する。具体的には、遅延測定部115は、第1遅延計測信号を受け取ると、第1遅延計測信号の送信タイミングと受信タイミングに基づいて第1通信遅延αを算出する。また、遅延測定部115は、第2遅延計測信号を受け取ると、第2遅延計測信号の送信タイミングと受信タイミングに基づいて第2通信遅延βを算出する。復調部110は、第1通信遅延αと第2通信遅延βを遅延制御部120に通知する。 More specifically, demodulation section 110 includes delay measurement section 115 . The delay measurement unit 115 measures the first communication delay α and the second communication delay β. Specifically, when receiving the first delay measurement signal, the delay measurement unit 115 calculates the first communication delay α based on the transmission timing and the reception timing of the first delay measurement signal. Further, when receiving the second delay measurement signal, the delay measurement unit 115 calculates the second communication delay β based on the transmission timing and the reception timing of the second delay measurement signal. The demodulator 110 notifies the delay controller 120 of the first communication delay α and the second communication delay β.
 遅延制御部120は、復調部110から第1通信遅延αと第2通信遅延βの情報を受け取る。第3通信遅延γの情報は、あらかじめ与えられる。遅延制御部120は、通信遅延α、β、γに基づいて、受信時間差ΔDを算出し、受信時間差情報200を生成する。その他は図9で示された例の場合と同様である。 The delay control section 120 receives information on the first communication delay α and the second communication delay β from the demodulation section 110 . Information on the third communication delay γ is given in advance. The delay control unit 120 calculates the reception time difference ΔD based on the communication delays α, β, and γ, and generates reception time difference information 200 . Others are the same as in the case of the example shown in FIG.
 図11は、本実施の形態に係る基地局通信装置100の構成例を示すブロック図である。基地局通信装置100は、I/Oインタフェース140、1又は複数のプロセッサ150(以下、単に「プロセッサ150」と呼ぶ)、及び1又は複数の記憶装置160(以下、単に「記憶装置160」と呼ぶ)を含んでいる。 FIG. 11 is a block diagram showing a configuration example of base station communication apparatus 100 according to the present embodiment. The base station communication device 100 includes an I/O interface 140, one or more processors 150 (hereinafter simply referred to as "processors 150"), and one or more storage devices 160 (hereinafter simply referred to as "storage devices 160"). ).
 プロセッサ150は、各種情報処理を行う。例えば、プロセッサ150は、CPU(Central Processing Unit)を含んでいる。 The processor 150 performs various information processing. For example, processor 150 includes a CPU (Central Processing Unit).
 記憶装置160は、プロセッサ150による処理に必要な各種情報を格納する。例えば、記憶装置160は、上述の受信時間差情報200及び遅延設定情報300を格納する。記憶装置160としては、揮発性メモリ、不揮発性メモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、等が例示される。 The storage device 160 stores various information necessary for processing by the processor 150 . For example, the storage device 160 stores the reception time difference information 200 and the delay setting information 300 described above. Examples of the storage device 160 include volatile memory, nonvolatile memory, HDD (Hard Disk Drive), SSD (Solid State Drive), and the like.
 制御プログラム170は、プロセッサ150によって実行されるコンピュータプログラムである。プロセッサ150が制御プログラム170を実行することによって、基地局通信装置100(プロセッサ150)の機能が実現される。図9及び図10で示された機能ブロックは、制御プログラム170を実行するプロセッサ150と記憶装置160との協働により実現されてもよい。制御プログラム170は、記憶装置160に格納される。制御プログラム170は、コンピュータ読み取り可能な記録媒体に記録されてもよい。制御プログラム170は、ネットワーク経由で基地局通信装置100に提供されてもよい。 The control program 170 is a computer program executed by the processor 150. The functions of the base station communication apparatus 100 (processor 150) are realized by the processor 150 executing the control program 170. FIG. The functional blocks shown in FIGS. 9 and 10 may be implemented by cooperation between the processor 150 executing the control program 170 and the storage device 160. FIG. The control program 170 is stored in the storage device 160 . The control program 170 may be recorded on a computer-readable recording medium. The control program 170 may be provided to the base station communication device 100 via a network.
 基地局通信装置100は、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。 The base station communication device 100 may be implemented using hardware such as ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), and FPGA (Field Programmable Gate Array).
 4.信号強度調整処理
 上述の通り、本実施の形態によれば、第1基地局10-1から第1信号SG1が送信され、第2基地局10-2から第2信号SG2が送信され、第1信号SG1と第2信号SG2が同位相で合成される。よって、基地局10当たりの信号送信電力が従来の半分に設定されても、従来と同等の信号対雑音比で同等の通信品質を確保することができる。この観点から、電力消費を抑えるために、第1基地局10-1と第2基地局10-2における信号送信電力を積極的に低下させてもよい。例えば、第1基地局10-1と第2基地局10-2における信号送信電力は、従来の半分に設定される。
4. Signal Strength Adjustment Processing As described above, according to the present embodiment, the first signal SG1 is transmitted from the first base station 10-1, the second signal SG2 is transmitted from the second base station 10-2, and the first signal SG2 is transmitted from the second base station 10-2. The signal SG1 and the second signal SG2 are combined in phase. Therefore, even if the signal transmission power per base station 10 is set to half of the conventional one, it is possible to ensure the same communication quality with the same signal-to-noise ratio as the conventional one. From this point of view, the signal transmission power in the first base station 10-1 and the second base station 10-2 may be positively reduced in order to reduce power consumption. For example, the signal transmission power in the first base station 10-1 and the second base station 10-2 is set to half of the conventional one.
 但し、第1信号SG1あるいは第2信号SG2の品質が劣化した場合には、合成信号SGCの信号対雑音比も低下してしまう。そこで、第1信号SG1あるいは第2信号SG2の品質劣化が検知された場合には、以下に説明される「信号強度調整処理」が行われてもよい。 However, if the quality of the first signal SG1 or the second signal SG2 is degraded, the signal-to-noise ratio of the composite signal SGC is also degraded. Therefore, when quality deterioration of the first signal SG1 or the second signal SG2 is detected, the "signal strength adjustment process" described below may be performed.
 図12は、送信信号のフレーム構成を示している。送信信号のフレームは、識別ヘッダと信号データを含んでいる。第1信号SG1のフレームの識別ヘッダの値は、第1基地局10-1を表す「H1」である。第2信号SG2のフレームの識別ヘッダの値は、第2基地局10-2を表す「H2」である。 FIG. 12 shows the frame structure of the transmission signal. A frame of transmitted signals includes an identifying header and signaling data. The value of the identification header of the frame of the first signal SG1 is "H1" representing the first base station 10-1. The value of the identification header of the frame of the second signal SG2 is "H2" representing the second base station 10-2.
 図13は、第1信号SG1と第2信号SG2を合成した合成信号SGCのフレームを示している。第1信号SG1も第2信号SG2も劣化していない通常時、合成信号SGCのフレームの識別ヘッダの値は「H1+H2」である。第2信号SG2が劣化した場合、合成信号SGCのフレームの識別ヘッダの値は「H1」となる。一方、第1信号SG1が劣化した場合、合成信号SGCのフレームの識別ヘッダの値は「H2」となる。よって、合成信号SGCのフレームの識別ヘッダの値に基づいて、第1信号SG1あるいは第2信号SG2の品質劣化を検知することができる。 FIG. 13 shows a frame of a synthesized signal SGC obtained by synthesizing the first signal SG1 and the second signal SG2. When neither the first signal SG1 nor the second signal SG2 is degraded, the value of the identification header of the frame of the combined signal SGC is "H1+H2". When the second signal SG2 is degraded, the value of the identification header of the frame of the synthesized signal SGC becomes "H1". On the other hand, when the first signal SG1 deteriorates, the value of the identification header of the frame of the combined signal SGC becomes "H2". Therefore, quality deterioration of the first signal SG1 or the second signal SG2 can be detected based on the value of the identification header of the frame of the synthesized signal SGC.
 図14は、本実施の形態に係る信号強度調整処理に関連する処理を示すフローチャートである。 FIG. 14 is a flowchart showing processing related to signal strength adjustment processing according to the present embodiment.
 ステップS200において、中継局20あるいは第1基地局10-1は、第1信号SG1及び第2信号SG2を合成受信する。 In step S200, the relay station 20 or the first base station 10-1 combines and receives the first signal SG1 and the second signal SG2.
 ステップS210において、中継局20あるいは第1基地局10-1は、第1信号SG1あるいは第2信号SG2の品質劣化が発生しているか否かを判定する。より詳細には、中継局20あるいは第1基地局10-1は、合成信号SGCのフレームの識別ヘッダの値を確認する。 In step S210, the relay station 20 or the first base station 10-1 determines whether the quality of the first signal SG1 or the second signal SG2 has deteriorated. More specifically, relay station 20 or first base station 10-1 checks the value of the identification header of the frame of combined signal SGC.
 識別ヘッダの値が「H1+H2」である場合、中継局20あるいは第1基地局10-1は、第1信号SG1も第2信号SG2も劣化していないと判断する。この場合、処理は、ステップS220に進む。ステップS220において、第1信号SG1と第2信号SG2の信号強度はデフォルト値に設定される。例えば、第1基地局10-1(送信部130)は、第1信号SG1の信号送信電力を従来の半分に設定し、第2基地局10-2は、第2信号SG2の信号送信電力を従来の半分に設定する。 When the value of the identification header is "H1+H2", the relay station 20 or the first base station 10-1 determines that neither the first signal SG1 nor the second signal SG2 has deteriorated. In this case, the process proceeds to step S220. In step S220, the signal strengths of the first signal SG1 and the second signal SG2 are set to default values. For example, the first base station 10-1 (transmitting unit 130) sets the signal transmission power of the first signal SG1 to half of the conventional one, and the second base station 10-2 sets the signal transmission power of the second signal SG2 to Set to half of the conventional setting.
 識別ヘッダの値が「H1」である場合、中継局20あるいは第1基地局10-1は、第2信号SG2が劣化したと判断する。つまり、第2信号SG2の品質劣化が検知される。この場合、処理は、ステップS230に進む。ステップS230において、第1基地局10-1あるいは中継局20は、第1信号SG1の信号強度を増加させる。例えば、第1基地局10-1(送信部130)あるいは中継局20は、第1信号SG1の信号強度をデフォルト値の倍に設定する。第1信号SG1の信号強度を増加させることにより、第2信号SG2の品質劣化を補償することができる。 When the value of the identification header is "H1", the relay station 20 or the first base station 10-1 determines that the second signal SG2 has deteriorated. That is, quality deterioration of the second signal SG2 is detected. In this case, the process proceeds to step S230. At step S230, the first base station 10-1 or the relay station 20 increases the signal strength of the first signal SG1. For example, the first base station 10-1 (transmitting unit 130) or the relay station 20 sets the signal strength of the first signal SG1 to double the default value. By increasing the signal strength of the first signal SG1, quality deterioration of the second signal SG2 can be compensated.
 一方、識別ヘッダの値が「H2」である場合、中継局20あるいは第1基地局10-1は、第1信号SG1が劣化したと判断する。つまり、第1信号SG1の品質劣化が検知される。この場合、処理は、ステップS240に進む。ステップS240において、第2基地局10-2あるいは中継局20は、第2信号SG2の信号強度を増加させる。例えば、第2基地局10-2あるいは中継局20は、第2信号SG2の信号強度をデフォルト値の倍に設定する。第2信号SG2の信号強度を増加させることにより、第1信号SG1の品質劣化を補償することができる。 On the other hand, if the value of the identification header is "H2", the relay station 20 or the first base station 10-1 determines that the first signal SG1 has deteriorated. That is, quality deterioration of the first signal SG1 is detected. In this case, the process proceeds to step S240. In step S240, the second base station 10-2 or relay station 20 increases the signal strength of the second signal SG2. For example, the second base station 10-2 or the relay station 20 sets the signal strength of the second signal SG2 to double the default value. By increasing the signal strength of the second signal SG2, quality deterioration of the first signal SG1 can be compensated.
 以上に説明された信号強度調整処理により、第1信号SG1あるいは第2信号SG2が劣化した場合においても、通信品質を確保することが可能となる。また、第1信号SG1も第2信号SG2も劣化していない通常時には、第1基地局10-1と第2基地局10-2における信号送信電力を積極的に低下させ、全体としての電力消費を抑えることが可能となる。 The signal strength adjustment processing described above makes it possible to ensure communication quality even when the first signal SG1 or the second signal SG2 is degraded. Also, in normal times when neither the first signal SG1 nor the second signal SG2 is degraded, the signal transmission power in the first base station 10-1 and the second base station 10-2 is actively reduced, and the power consumption as a whole is reduced. can be suppressed.
 5.その他
 本実施の形態によれば、第1信号SG1と第2信号SG2が同位相で合成される。合成されるのは、変調後の無線周波数帯(RF帯)の信号であってもよいし、中間周波数帯(IF帯)の信号であってもよいし、変調前のベースバンド信号であってもよい。
5. Others According to the present embodiment, the first signal SG1 and the second signal SG2 are synthesized in the same phase. What is synthesized may be a radio frequency band (RF band) signal after modulation, an intermediate frequency band (IF band) signal, or a baseband signal before modulation. good too.
 本実施の形態において、送信と受信の複信方式は任意である。複信方式は、周波数分割複信(Frequency Division Duplex: FDD)であってもよいし、時分割複信(Time Division Duplex: TDD)であってもよい。 In the present embodiment, the duplex method for transmission and reception is arbitrary. The duplex system may be frequency division duplex (FDD) or time division duplex (TDD).
 10…基地局, 10-1…第1基地局, 10-2…第2基地局, 20…中継局, 30…端末局, 40…信号処理装置, 40-1…第1信号処理装置, 40-2…第2信号処理装置, 50…ネットワーク, 100…基地局通信装置, 110…復調部, 115…遅延測定部, 120…遅延制御部, 130…送信部, 135…遅延回路, 140…I/Oインタフェース, 150…プロセッサ, 160…記憶装置, 170…制御プログラム, 200…受信時間差情報, 300…遅延設定情報, SG1…第1信号, SG2…第2信号, SGC…合成信号 10... base station, 10-1... first base station, 10-2... second base station, 20... relay station, 30... terminal station, 40... signal processing device, 40-1... first signal processing device, 40 -2... second signal processing device, 50... network, 100... base station communication device, 110... demodulation unit, 115... delay measurement unit, 120... delay control unit, 130... transmission unit, 135... delay circuit, 140... I /O interface, 150... processor, 160... storage device, 170... control program, 200... reception time difference information, 300... delay setting information, SG1... first signal, SG2... second signal, SGC... combined signal

Claims (8)

  1.  中継局を経由して基地局と端末局との間で通信を行う通信システムであって、
     第1信号を前記中継局に送信する第1基地局と、
     前記第1信号と同一の情報を有する第2信号を前記中継局に送信する第2基地局と
     を備え、
     前記中継局は、前記第1信号及び前記第2信号、あるいは、前記第1信号と前記第2信号を合成した合成信号を前記端末局に送信し、
     前記第1基地局は、前記第1信号の送信を第1遅延時間だけ遅延させる遅延処理を実行するように構成され、
     受信時間差は、前記遅延処理が実行されない場合における、前記第1信号が前記中継局に到達するタイミングと前記第2信号が前記中継局に到達するタイミングとの間の差であり、
     前記第1基地局は、前記受信時間差を示す受信時間差情報に基づいて、前記第1信号と前記第2信号が同位相で前記中継局によって受信されるように前記第1遅延時間を設定する
     通信システム。
    A communication system for communicating between a base station and a terminal station via a relay station,
    a first base station that transmits a first signal to the relay station;
    a second base station that transmits a second signal having the same information as the first signal to the relay station;
    The relay station transmits to the terminal station the first signal and the second signal, or a combined signal obtained by combining the first signal and the second signal,
    The first base station is configured to perform delay processing for delaying transmission of the first signal by a first delay time,
    the reception time difference is the difference between the timing at which the first signal reaches the relay station and the timing at which the second signal reaches the relay station when the delay processing is not performed;
    The first base station sets the first delay time based on reception time difference information indicating the reception time difference so that the first signal and the second signal are received by the relay station in phase. system.
  2.  請求項1に記載の通信システムであって、
     前記第1基地局は、前記受信時間差情報で示される前記受信時間差を前記第1遅延時間の初期値として設定し、前記第1遅延時間の前記初期値を用いて前記遅延処理を開始する
     通信システム。
    A communication system according to claim 1,
    The first base station sets the reception time difference indicated by the reception time difference information as an initial value of the first delay time, and starts the delay processing using the initial value of the first delay time. Communication system .
  3.  請求項1又は2に記載の通信システムであって、
     前記中継局は、前記第1信号及び前記第2信号、あるいは、前記合成信号を前記第1基地局に送信し、
     前記第1基地局は、
      前記第1信号と前記第2信号を合成した前記合成信号を復調し、
      前記合成信号の復調結果に基づいて前記第1遅延時間を動的に調整する
     通信システム。
    A communication system according to claim 1 or 2,
    The relay station transmits the first signal and the second signal or the combined signal to the first base station;
    The first base station is
    demodulating the synthesized signal obtained by synthesizing the first signal and the second signal;
    A communication system that dynamically adjusts the first delay time based on a demodulation result of the combined signal.
  4.  請求項3に記載の通信システムであって、
     前記第1基地局は、
      前記合成信号の前記復調結果が一定の品質を満たすか否かを判定し、
      前記合成信号の前記復調結果が前記一定の品質を満たさない場合、前記合成信号の前記復調結果が前記一定の品質を満たすまで前記第1遅延時間を変化させる
     通信システム。
    A communication system according to claim 3,
    The first base station is
    determining whether the demodulation result of the combined signal satisfies a certain quality;
    When the demodulation result of the composite signal does not satisfy the given quality, the first delay time is changed until the demodulation result of the composite signal satisfies the given quality.
  5.  請求項1乃至4のいずれか一項に記載の通信システムであって、
     第1通信遅延は、前記第1基地局と前記中継局との間の信号の往復時間であり、
     第2通信遅延は、前記第2基地局から前記中継局を経由して前記第1基地局へ到達する通信ルートにおける信号伝送時間であり、
     前記受信時間差は、前記第1通信遅延と前記第2通信遅延に基づいて算出される
     通信システム。
    A communication system according to any one of claims 1 to 4,
    the first communication delay is the round trip time of a signal between the first base station and the relay station;
    A second communication delay is a signal transmission time in a communication route from the second base station to the first base station via the relay station,
    The communication system, wherein the reception time difference is calculated based on the first communication delay and the second communication delay.
  6.  請求項1乃至5のいずれか一項に記載の通信システムであって、
     前記第1信号の品質劣化が検知された場合、前記第2基地局あるいは前記中継局は、前記第2信号の信号強度を増加させ、
     前記第2信号の品質劣化が検知された場合、前記第1基地局あるいは前記中継局は、前記第1信号の信号強度を増加させる
     通信システム。
    A communication system according to any one of claims 1 to 5,
    When quality deterioration of the first signal is detected, the second base station or the relay station increases the signal strength of the second signal,
    The communication system, wherein the first base station or the relay station increases the signal strength of the first signal when quality deterioration of the second signal is detected.
  7.  中継局を経由して基地局と端末局との間で通信を行う通信方法であって、
     第1基地局から前記中継局に第1信号を送信する処理と、
     第2基地局から前記中継局に前記第1信号と同一の情報を有する第2信号を送信する処理と、
     前記中継局から前記端末局に、前記第1信号及び前記第2信号、あるいは、前記第1信号と前記第2信号を合成した合成信号を送信する処理と、
     前記第1基地局において前記第1信号の送信を第1遅延時間だけ遅延させる遅延処理と
     を含み、
     受信時間差は、前記遅延処理が実行されない場合における、前記第1信号が前記中継局に到達するタイミングと前記第2信号が前記中継局に到達するタイミングとの間の差であり、
     前記遅延処理は、前記受信時間差を示す受信時間差情報に基づいて、前記第1信号と前記第2信号が同位相で前記中継局によって受信されるように前記第1遅延時間を設定する処理を含む
     通信方法。
    A communication method for communicating between a base station and a terminal station via a relay station,
    a process of transmitting a first signal from a first base station to the relay station;
    a process of transmitting a second signal having the same information as the first signal from a second base station to the relay station;
    a process of transmitting the first signal and the second signal or a combined signal obtained by combining the first signal and the second signal from the relay station to the terminal station;
    a delay process for delaying transmission of the first signal in the first base station by a first delay time;
    the reception time difference is the difference between the timing at which the first signal reaches the relay station and the timing at which the second signal reaches the relay station when the delay processing is not performed;
    The delay processing includes processing for setting the first delay time based on reception time difference information indicating the reception time difference so that the first signal and the second signal are received by the relay station in phase. Communication method.
  8.  中継局を経由して基地局と端末局との間で通信を行う通信システムにおける基地局通信装置であって、
     前記通信システムは、
      第1信号を前記中継局に送信する第1基地局と、
      前記第1信号と同一の情報を有する第2信号を前記中継局に送信する第2基地局と、
      前記第1信号及び前記第2信号、あるいは、前記第1信号と前記第2信号を合成した合成信号を前記端末局に送信する前記中継局と
     を含み、
     前記第1基地局の前記基地局通信装置は、前記第1信号の送信を第1遅延時間だけ遅延させる遅延処理を実行するように構成され、
     受信時間差は、前記遅延処理が実行されない場合における、前記第1信号が前記中継局に到達するタイミングと前記第2信号が前記中継局に到達するタイミングとの間の差であり、
     前記第1基地局の前記基地局通信装置は、前記受信時間差を示す受信時間差情報に基づいて、前記第1信号と前記第2信号が同位相で前記中継局によって受信されるように前記第1遅延時間を設定する
     基地局通信装置。
    A base station communication device in a communication system that communicates between a base station and a terminal station via a relay station,
    The communication system is
    a first base station that transmits a first signal to the relay station;
    a second base station that transmits a second signal having the same information as the first signal to the relay station;
    the relay station transmitting the first signal and the second signal, or a combined signal obtained by combining the first signal and the second signal, to the terminal station;
    The base station communication device of the first base station is configured to execute delay processing for delaying transmission of the first signal by a first delay time,
    the reception time difference is the difference between the timing at which the first signal reaches the relay station and the timing at which the second signal reaches the relay station when the delay processing is not performed;
    Based on reception time difference information indicating the reception time difference, the base station communication device of the first base station controls the first signal so that the first signal and the second signal are received by the relay station in the same phase. A base station communication device that sets the delay time.
PCT/JP2021/019022 2021-05-19 2021-05-19 Communication system, communication method, and base station communication device WO2022244152A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023522088A JPWO2022244152A1 (en) 2021-05-19 2021-05-19
PCT/JP2021/019022 WO2022244152A1 (en) 2021-05-19 2021-05-19 Communication system, communication method, and base station communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/019022 WO2022244152A1 (en) 2021-05-19 2021-05-19 Communication system, communication method, and base station communication device

Publications (1)

Publication Number Publication Date
WO2022244152A1 true WO2022244152A1 (en) 2022-11-24

Family

ID=84141455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019022 WO2022244152A1 (en) 2021-05-19 2021-05-19 Communication system, communication method, and base station communication device

Country Status (2)

Country Link
JP (1) JPWO2022244152A1 (en)
WO (1) WO2022244152A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324960A (en) * 2006-06-01 2007-12-13 National Institute Of Information & Communication Technology Satellite communication method and system
JP2011250014A (en) * 2010-05-25 2011-12-08 Nippon Telegr & Teleph Corp <Ntt> Radio relay system, relay station device and radio relay method
JP2019121909A (en) * 2018-01-04 2019-07-22 ソフトバンク株式会社 Site-to-site transmission and propagation delay correction in feeder link of haps

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324960A (en) * 2006-06-01 2007-12-13 National Institute Of Information & Communication Technology Satellite communication method and system
JP2011250014A (en) * 2010-05-25 2011-12-08 Nippon Telegr & Teleph Corp <Ntt> Radio relay system, relay station device and radio relay method
JP2019121909A (en) * 2018-01-04 2019-07-22 ソフトバンク株式会社 Site-to-site transmission and propagation delay correction in feeder link of haps

Also Published As

Publication number Publication date
JPWO2022244152A1 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
WO2020220871A1 (en) Beam switching method and apparatus
US11005544B2 (en) Communication device and method for performing radio communication
JP6133389B2 (en) Reuse of orthogonal resources by SDMA beam
US8611259B2 (en) Method and system for providing channel state information feedback in a wireless communication system
JP5384676B2 (en) Techniques for receiver beamforming and abandonment threshold adjustment in peer-to-peer networks
US9225415B2 (en) Power control at a relay station in a wireless network
KR100999823B1 (en) Centralized-scheduler relay station for mmr extended 802.16e system
JP4480277B2 (en) Wireless communication system
US9467210B2 (en) Transmission parameter adaptation in cooperative signal communication
JP4915171B2 (en) Communication terminal device and communication method
JP4850244B2 (en) Method for controlling transmission rate in a wireless communication system
JP6668479B2 (en) Transceiver device supporting antenna selection and method of processing received signal
US20120099512A1 (en) Radio communication system, radio base station, and radio communication method
KR20080009146A (en) Using assignment messages for efficient signaling of handoff
US20140056267A1 (en) Power compensating method, user equipment and base station
JP2002335201A (en) Communication equipment
JP2000069522A (en) Hand-off method, base station and communication system
WO2022244152A1 (en) Communication system, communication method, and base station communication device
JP3898018B2 (en) Transmission power control method and mobile station
JP5275270B2 (en) Base station, terminal, base station transmission control method, and terminal transmission control method
WO2021160075A1 (en) Carrier frequency tracking method, signal transmission method, and related apparatus
US20160164567A1 (en) Methods, devices, and computer program products improving mobile communication
JPH0613947A (en) Radio equipment for multi-path communication
US20110110247A1 (en) Routing Node and Terminal for an FDD Communication Network and Method for Operating Them
JP2015226252A (en) Radio communication system, radio communication method and radio communication program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522088

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE