JP2002335201A - Communication equipment - Google Patents

Communication equipment

Info

Publication number
JP2002335201A
JP2002335201A JP2001138742A JP2001138742A JP2002335201A JP 2002335201 A JP2002335201 A JP 2002335201A JP 2001138742 A JP2001138742 A JP 2001138742A JP 2001138742 A JP2001138742 A JP 2001138742A JP 2002335201 A JP2002335201 A JP 2002335201A
Authority
JP
Japan
Prior art keywords
communication
radio
wireless communication
frequency
quasi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001138742A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Baba
光浩 馬場
Hideo Yokoyama
英夫 横山
Yukihide Mizumoto
幸秀 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001138742A priority Critical patent/JP2002335201A/en
Publication of JP2002335201A publication Critical patent/JP2002335201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To compensate the deterioration of communication quality caused by radio wave attenuation in the case of rainfall without limiting a transmission distance, enlarging an antenna or increasing transmission output in communication equipment to be used for the base station or subscriber station in a fixed radio access system, in which a radio frequency higher than sub-millimeter wave band is used. SOLUTION: This communication equipment is provided with a first radio communication means 22 with which radio communication is enabled in a first frequency band higher than sub-millimeter wave, a second radio communication means 25 with which radio communication is enabled in a second frequency band less liable to attenuation of ratio wave caused by rainfall, a route cut examining means 28 for examining whether a communication route is cut or not, and a radio frequency switching means 27 for selecting one of first and second radio communication means 22 and 25, transmitting/receiving radio signal, preferentially selecting the radio communication means 22 at ordinary time and automatically switching it to the second radio communication means 25 when the cut of the communication route is detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固定無線アクセス
システムなどに用いられる通信装置に関し、特に、準ミ
リ波以上の周波数帯の電波を用いて通信を行う基地局及
び加入者局に設けられる通信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a communication device used in a fixed wireless access system and the like, and more particularly, to a communication device provided in a base station and a subscriber station which perform communication using radio waves in a frequency band equal to or higher than a quasi-millimeter wave. Related to the device.

【0002】[0002]

【従来の技術】IP(Internet Protocol)網などのネ
ットワークへのアクセスサービスを提供するためのシス
テムとして、例えば固定無線アクセスシステムが用いら
れる。固定無線アクセスシステムでは、加入者局と基地
局との間が無線通信回線で接続される。加入者は任意の
端末から加入者局及び基地局を介してネットワークにア
クセスする。
2. Description of the Related Art As a system for providing an access service to a network such as an IP (Internet Protocol) network, for example, a fixed wireless access system is used. In a fixed wireless access system, a subscriber station and a base station are connected by a wireless communication line. The subscriber accesses the network from any terminal via the subscriber station and the base station.

【0003】ところで、準ミリ波以上の高い周波数帯
は、非常に広い帯域を確保することが可能であるため、
高速伝送を必要とする固定無線アクセスシステム等に対
して周波数の割り当てが行われている。準ミリ波以上の
高い周波数帯で無線通信することにより、無線通信回線
として広い帯域を確保し非常に高速なサービスを実現で
きる。
By the way, since a very wide band can be secured in a high frequency band above the quasi-millimeter wave,
Frequencies are allocated to fixed wireless access systems and the like that require high-speed transmission. By performing wireless communication in a high frequency band equal to or higher than the quasi-millimeter wave, a very high-speed service can be realized by securing a wide band as a wireless communication line.

【0004】しかし、準ミリ波以上の高い周波数帯を用
いる場合には、降雨や降雪の影響によって電波の減衰が
生じやすく、これを起因とする品質劣化の克服が大きな
過大になっている。そこで、従来より降雨による電波減
衰が発生した場合であっても通信品質を確保できるよう
に、伝送距離を制限したり、アンテナの大きさを拡大し
たり、送信出力を増大するように運用し、一定の降雨マ
ージンを得ていた。
[0004] However, when a high frequency band of quasi-millimeter waves or higher is used, attenuation of radio waves is apt to occur due to the effects of rainfall and snowfall, and overcoming quality degradation due to this is greatly excessive. Therefore, in order to ensure communication quality even when radio wave attenuation due to rainfall has occurred conventionally, the transmission distance is limited, the size of the antenna is enlarged, and the transmission output is increased to operate, He had a certain rainfall margin.

【0005】[0005]

【発明が解決しようとする課題】準ミリ波帯の周波数を
用いて無線通信する場合、伝送距離を短くすれば降雨や
降雪による電波減衰の影響を抑制することができる。し
かし、伝送距離を短く制限すると無線通信サービスを提
供可能なエリアが狭くなるので、必要とされるエリアの
全域でサービスを提供することが困難になる。
In the case of wireless communication using a frequency in the quasi-millimeter wave band, if the transmission distance is shortened, the influence of radio wave attenuation due to rainfall or snowfall can be suppressed. However, if the transmission distance is limited to a short distance, the area in which the wireless communication service can be provided becomes narrow, and it becomes difficult to provide the service in the entire required area.

【0006】また、大きな降雨マージンを得るために伝
送距離を短くすると、降雨時または降雪時であっても電
波の減衰に起因した回線品質の劣化が生じていない場合
や晴天時においては、無線回線で通信エラーが生じない
にも拘わらず必要以上に伝送距離を制限していることに
なり、通信システムの本来の能力に比べてサービスを提
供可能なエリアが狭くなる。
Further, if the transmission distance is shortened to obtain a large rainfall margin, the radio communication line is not degraded due to radio wave attenuation even during rainfall or snowfall or when the weather is fine. In this case, the transmission distance is unnecessarily limited even though a communication error does not occur, and the area in which a service can be provided becomes narrower than the original capability of the communication system.

【0007】また、伝送距離を制限しなくても、送信ア
ンテナや受信アンテナの大きさを大きくしたり、送信出
力を増大すれば降雨などによる電波の減衰の影響を緩和
することができる。しかし、固定無線アクセスシステム
の場合には、加入者局をユーザ宅に直接設置する必要が
あるので、加入者局のアンテナを大型化するのは外観上
好ましくないし施工費の増大にもつながる。
Further, even if the transmission distance is not limited, if the size of the transmission antenna or the reception antenna is increased or the transmission output is increased, the influence of the attenuation of radio waves due to rainfall or the like can be reduced. However, in the case of the fixed wireless access system, it is necessary to install the subscriber station directly at the user's house. Therefore, increasing the size of the antenna of the subscriber station is not preferable in appearance and leads to an increase in construction cost.

【0008】また、ミリ波帯のように高い周波数を利用
する無線装置では、送信出力を増大すると市販の量産可
能な部品が使用できなくなる可能性が高く、部品自体の
コストや高周波回路の調整にかかるコストがかさむこと
になり、加入者局の装置価格の高騰につながる。
Further, in a radio apparatus using a high frequency such as a millimeter wave band, if the transmission output is increased, there is a high possibility that a commercially available mass-producible component cannot be used, and the cost of the component itself and adjustment of a high-frequency circuit are reduced. Such costs are increased, leading to an increase in the price of the equipment of the subscriber station.

【0009】本発明は、準ミリ波帯以上の高い無線周波
数を利用する固定無線アクセスシステムの基地局や加入
者局などに用いられる通信装置において、伝送距離の制
限,アンテナの大型化,送信出力の増大などを行うこと
なく降雨時の電波減衰による通信品質劣化を補償するこ
とを目的とする。
The present invention relates to a communication device used for a base station or a subscriber station of a fixed radio access system using a radio frequency higher than the quasi-millimeter wave band, which limits the transmission distance, increases the size of the antenna, and increases the transmission output. An object of the present invention is to compensate for communication quality degradation due to radio wave attenuation at the time of rain without increasing the number of communications.

【0010】[0010]

【課題を解決するための手段】請求項1は、固定された
基地局と少なくとも1つの加入者局との間で無線通信を
行うために前記基地局又は加入者局に設けられる通信装
置であって、準ミリ波以上の周波数の第1の周波数帯を
用いて相手局との間で無線通信が可能な第1の無線通信
手段と、前記第1の周波数帯よりも周波数が低く降雨に
よる電波の減衰が少ない第2の周波数帯を用いて相手局
との間で無線通信が可能な第2の無線通信手段と、通信
相手もしくは通信経路上の中継装置との間で通信経路の
遮断の有無を検査する経路遮断検査手段と、前記第1の
無線通信手段及び第2の無線通信手段のいずれか一方を
選択的に用いて無線信号の送受信を行うとともに、定常
時には前記第1の無線通信手段を優先的に選択し、前記
経路遮断検査手段が通信経路の遮断を検出した場合には
前記第2の無線通信手段に自動的に切り替える無線周波
数切替手段とを設けたことを特徴とする。
A communication device is provided in a base station or a subscriber station for performing wireless communication between a fixed base station and at least one subscriber station. A first wireless communication means capable of performing wireless communication with a partner station using a first frequency band having a frequency equal to or higher than a quasi-millimeter wave, and a radio wave generated by rain having a lower frequency than the first frequency band. Whether or not the communication path is interrupted between the second wireless communication means capable of performing wireless communication with the other station using the second frequency band in which the attenuation of the communication path is small, and the communication partner or the relay device on the communication path For transmitting and receiving wireless signals by selectively using one of the first wireless communication means and the second wireless communication means, and performing the first wireless communication means in a normal state. Is selected preferentially, and the route cutoff inspection means is selected. When detecting the interruption of the communication path is characterized by comprising a radio frequency switching means for automatically switching to said second wireless communication means.

【0011】請求項1においては、第1の無線通信手段
及び第2の無線通信手段のいずれか一方を選択的に用い
て無線信号の送受信を行うことができる。第1の無線通
信手段を使用する場合には、準ミリ波以上の高い周波数
を用いるので高速の無線伝送を実現できる。一方、第2
の無線通信手段は第1の無線通信手段よりも低い周波数
を用いるので、伝送速度は低くなるが降雨による電波減
衰の影響は少ない。
According to the first aspect, transmission and reception of a radio signal can be performed by selectively using either one of the first radio communication means and the second radio communication means. When the first wireless communication means is used, a high frequency of quasi-millimeter waves or higher is used, so that high-speed wireless transmission can be realized. On the other hand, the second
Since the wireless communication means uses a lower frequency than the first wireless communication means, the transmission speed is low, but the influence of radio wave attenuation due to rainfall is small.

【0012】無線周波数切替手段は、定常時には前記第
1の無線通信手段を優先的に選択する。そして、降雨に
よる電波減衰が発生し、通信エラーによって正常な通信
ができなくなると経路遮断検査手段は通信経路が遮断さ
れたとみなす。通信経路が遮断された場合には、無線周
波数切替手段は第2の無線通信手段を自動的に選択す
る。
The radio frequency switching means preferentially selects the first radio communication means in a normal state. Then, when radio wave attenuation due to rainfall occurs and normal communication cannot be performed due to a communication error, the route cutoff inspecting unit determines that the communication route is cutoff. When the communication path is interrupted, the radio frequency switching means automatically selects the second radio communication means.

【0013】第2の無線通信手段を使用して通信する場
合には、降雨時や降雪時であっても電波が減衰すること
なく通信を継続することができる。もちろん、利用可能
な伝送速度は準ミリ波帯を使用する場合と比べて低くな
るが、通信ができない状態の発生は回避される。すなわ
ち、降雨によって通信品質が劣化するときには通信周波
数を下げることによって対処するので、準ミリ波帯の降
雨マージンを上げるために伝送距離の制限,アンテナの
大型化,送信出力の増大などを行う必要がない。
When communication is performed using the second wireless communication means, communication can be continued without attenuation of radio waves even during rainfall or snowfall. Of course, the available transmission rate is lower than in the case of using the quasi-millimeter wave band, but the occurrence of a state in which communication is not possible is avoided. In other words, when the communication quality is degraded by rainfall, it is necessary to reduce the communication frequency by lowering the communication frequency. Therefore, it is necessary to limit the transmission distance, enlarge the antenna, and increase the transmission output in order to increase the rainfall margin in the quasi-millimeter wave band. Absent.

【0014】なお、第2の無線通信手段が使用する周波
数としては、例えば2.4GHz帯に割り当てられた免
許が不要なISM(産業科学医療:Industrial, Scient
ificand Medical)バンドを利用するのが望ましい。請
求項2は、請求項1の通信装置において、前記経路遮断
検査手段は、通信相手もしくは通信経路上の中継装置と
の間で試験用のパケットを定期的に伝送するとともに、
前記パケットを所定時間以内に受信できない場合に通信
経路の遮断を認識することを特徴とする。
The frequency used by the second wireless communication means is, for example, an ISM (Industrial, Scientific and Medical: Industrial, Scientific and Medical) which does not require a license assigned to the 2.4 GHz band.
ificand Medical) bands are preferred. According to a second aspect of the present invention, in the communication device of the first aspect, the route cutoff inspection unit periodically transmits a test packet to and from a communication partner or a relay device on a communication route,
When the packet cannot be received within a predetermined time, it is recognized that the communication path is interrupted.

【0015】請求項2においては、ルータにおけるルー
ティングプロトコルと同様に、定期的に伝送される試験
用のパケットの受信の有無を調べることにより通信経路
の遮断を認識する。従って、ルータの機能を利用して周
波数の切替を制御することができる。請求項3は、固定
された基地局と少なくとも1つの加入者局との間で無線
通信を行うために前記基地局又は加入者局に設けられる
通信装置であって、準ミリ波以上の周波数の第1の周波
数帯を用いて相手局との間で無線通信が可能な第1の無
線通信手段と、前記第1の周波数帯よりも周波数が低く
降雨による電波の減衰が少ない第2の周波数帯を用いて
相手局との間で無線通信が可能な第2の無線通信手段
と、前記第1の無線通信手段の受信した信号のレベルを
検出する受信レベル検出手段と、前記第1の無線通信手
段及び第2の無線通信手段のいずれか一方を選択的に用
いて無線信号の送受信を行うとともに、定常時には前記
第1の無線通信手段を優先的に選択し、前記受信レベル
検出手段の検出した受信レベルが異常に低下した場合に
は、前記第2の無線通信手段に自動的に切り替える無線
周波数切替手段とを設けたことを特徴とする。
According to the second aspect, similarly to the routing protocol in the router, the interruption of the communication path is recognized by checking whether or not a test packet transmitted periodically is received. Therefore, the switching of the frequency can be controlled using the function of the router. A communication device provided in the base station or the subscriber station for performing wireless communication between a fixed base station and at least one subscriber station, wherein the communication device has a frequency of a quasi-millimeter wave or higher. A first wireless communication unit capable of performing wireless communication with a partner station using the first frequency band; and a second frequency band having a lower frequency than the first frequency band and having less attenuation of radio waves due to rainfall. A second wireless communication unit capable of performing wireless communication with a partner station using the first wireless communication unit, a reception level detection unit for detecting a level of a signal received by the first wireless communication unit, and the first wireless communication unit Means and the second wireless communication means are selectively used to transmit and receive wireless signals, and in a steady state, the first wireless communication means is preferentially selected and detected by the reception level detection means. If the reception level drops abnormally Characterized in that a radio frequency switching means for automatically switching to said second wireless communication means.

【0016】請求項3においては、第1の無線通信手段
及び第2の無線通信手段のいずれか一方を選択的に用い
て無線信号の送受信を行うことができる。第1の無線通
信手段を使用する場合には、準ミリ波以上の高い周波数
を用いるので高速の無線伝送を実現できる。一方、第2
の無線通信手段は第1の無線通信手段よりも低い周波数
を用いるので、伝送速度は低くなるが降雨による電波減
衰の影響は少ない。
According to the third aspect, the transmission and reception of the radio signal can be performed by selectively using one of the first radio communication means and the second radio communication means. When the first wireless communication means is used, a high frequency of quasi-millimeter waves or higher is used, so that high-speed wireless transmission can be realized. On the other hand, the second
Since the wireless communication means uses a lower frequency than the first wireless communication means, the transmission speed is low, but the influence of radio wave attenuation due to rainfall is small.

【0017】無線周波数切替手段は、定常時には前記第
1の無線通信手段を優先的に選択する。そして、降雨に
より電波減衰が発生し、第1の無線通信手段の受信信号
レベルが低くなると、無線周波数切替手段は第2の無線
通信手段を自動的に選択する。第2の無線通信手段を使
用して通信する場合には、降雨時や降雪時であっても電
波が減衰することなく通信を継続することができる。も
ちろん、利用可能な伝送速度は準ミリ波帯を使用する場
合と比べて低くなるが、通信ができない状態の発生は回
避される。
The radio frequency switching means preferentially selects the first radio communication means in a normal state. Then, when the radio wave attenuation occurs due to the rainfall and the received signal level of the first wireless communication means decreases, the wireless frequency switching means automatically selects the second wireless communication means. When communication is performed using the second wireless communication means, communication can be continued without attenuation of radio waves even during rainfall or snowfall. Of course, the available transmission rate is lower than in the case of using the quasi-millimeter wave band, but the occurrence of a state in which communication is not possible is avoided.

【0018】すなわち、降雨によって通信品質が劣化す
るときには通信周波数を下げることによって対処するの
で、準ミリ波帯の降雨マージンを上げるために伝送距離
の制限,アンテナの大型化,送信出力の増大などを行う
必要がない。請求項4は、請求項3の通信装置におい
て、前記無線周波数切替手段は、第2の無線通信手段を
選択した場合には、第1の無線通信手段の無線送信出力
を抑制もしくは遮断することを特徴とする。
That is, when the communication quality is degraded due to rainfall, the problem is dealt with by lowering the communication frequency. Therefore, in order to increase the rainfall margin in the quasi-millimeter wave band, the transmission distance is limited, the antenna is enlarged, the transmission output is increased, and the like. No need to do. According to a fourth aspect of the present invention, in the communication device of the third aspect, the radio frequency switching means suppresses or shuts off a radio transmission output of the first radio communication means when the second radio communication means is selected. Features.

【0019】請求項4においては、自局が低い周波数に
切り替えるときに、第1の無線通信手段の無線送信出力
を抑制もしくは遮断するので、相手局においても準ミリ
波帯の受信レベルが低下する。従って、相手局の通信装
置の構成が自局と同じ場合には、自局の周波数変更に伴
って相手局も自動的に周波数を変更することになる。
According to the fourth aspect, when the own station switches to a lower frequency, the wireless transmission output of the first wireless communication means is suppressed or cut off, so that the reception level of the quasi-millimeter wave band also decreases at the partner station. . Therefore, when the configuration of the communication device of the other station is the same as that of the own station, the other station automatically changes the frequency in accordance with the change of the frequency of the own station.

【0020】請求項5は、請求項3の通信装置におい
て、前記無線周波数切替手段は、第2の無線通信手段を
選択してから所定時間が経過すると、再び第1の無線通
信手段を選択して受信レベルを確認することを特徴とす
る。請求項5においては、通信周波数を低い周波数に切
り替えてから所定時間が経過すると、再び第1の無線通
信手段を選択して受信レベルを確認する。従って、天候
の回復などによって受信レベルが回復した場合には、通
信周波数を自動的に準ミリ波帯の周波数に戻して高速伝
送を行うことができる。
According to a fifth aspect of the present invention, in the communication device of the third aspect, the radio frequency switching means selects the first wireless communication means again when a predetermined time has elapsed after the selection of the second wireless communication means. And confirming the reception level by using this method. In a fifth aspect, when a predetermined time elapses after switching the communication frequency to a lower frequency, the first wireless communication means is selected again and the reception level is confirmed. Therefore, when the reception level is recovered due to the recovery of the weather or the like, it is possible to automatically return the communication frequency to the frequency in the quasi-millimeter wave band and perform high-speed transmission.

【0021】[0021]

【発明の実施の形態】(第1の実施の形態)本発明の通
信装置の1つの実施の形態について、図1及び図2を参
照しながら説明する。この形態は、請求項1及び請求項
2に対応する。図1はこの形態の通信システムの構成を
示すブロック図である。図2はこの形態の各局の動作を
示すフローチャートである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) One embodiment of a communication device according to the present invention will be described with reference to FIGS. This embodiment corresponds to claims 1 and 2. FIG. 1 is a block diagram showing the configuration of the communication system of this embodiment. FIG. 2 is a flowchart showing the operation of each station in this embodiment.

【0022】この形態では、請求項1の第1の無線通信
手段,第2の無線通信手段,経路遮断検査手段及び無線
周波数切替手段は、それぞれ準ミリ波帯送受信回路2
2,2.4GHz帯送受信回路25,通信回線診断部2
8及び経路選択回路27に対応する。この形態では、固
定無線アクセスサービスに利用される図1に示すような
通信システムに本発明を適用する場合を想定している。
すなわち、固定された基地局12がIP網13と有線で
接続されており、各家庭などに設置される加入者局11
と基地局12との間が無線通信回線で接続される。加入
者局11には例えばパソコンのような端末10が接続さ
れる。
In this embodiment, the first wireless communication means, the second wireless communication means, the path cutoff inspection means, and the radio frequency switching means of the first aspect are each a quasi-millimeter wave band transmission / reception circuit.
2, 2.4 GHz band transmission / reception circuit 25, communication line diagnostic unit 2
8 and the path selection circuit 27. In this embodiment, it is assumed that the present invention is applied to a communication system as shown in FIG. 1 used for a fixed wireless access service.
That is, the fixed base station 12 is connected to the IP network 13 by wire, and the subscriber station 11 installed in each home or the like is provided.
And the base station 12 are connected by a wireless communication line. A terminal 10 such as a personal computer is connected to the subscriber station 11.

【0023】図1の例では1つの加入者局11を示して
あるが、複数の加入者局11が1つの基地局12との間
で同時に無線通信を行うことができる。双方向の通信を
行うことを想定しているので、加入者局11と基地局1
2との間の無線通信の方式としては、TDD(Time Div
ision Duplex)あるいはFDD(Frequency DivisionDu
plex)を用いればよい。
Although one subscriber station 11 is shown in the example of FIG. 1, a plurality of subscriber stations 11 can perform radio communication with one base station 12 at the same time. Since it is assumed that bidirectional communication is performed, the subscriber station 11 and the base station 1
TDD (Time Div.)
ision Duplex) or FDD (Frequency Division Du)
plex) may be used.

【0024】この例では、加入者局11と基地局12と
は同じ構成要素を備えている。すなわち、加入者局11
及び基地局12のそれぞれには、準ミリ波帯変復調回路
21,準ミリ波帯送受信回路22,アンテナ23,2.
4GHz帯変復調回路24,2.4GHz帯送受信回路
25,アンテナ26,経路選択回路27及び通信回線診
断部28が備わっている。
In this example, the subscriber station 11 and the base station 12 have the same components. That is, the subscriber station 11
And the base station 12 respectively include a quasi-millimeter wave band modulation / demodulation circuit 21, a quasi-millimeter wave band transmission / reception circuit 22, antennas 23, 2,.
A 4 GHz band modulation / demodulation circuit 24, a 2.4 GHz band transmission / reception circuit 25, an antenna 26, a path selection circuit 27, and a communication line diagnosis unit 28 are provided.

【0025】加入者局11及び基地局12は、準ミリ波
帯変復調回路21,準ミリ波帯送受信回路22及びアン
テナ23を使用することにより、準ミリ波帯の周波数を
用いて無線通信を行うことができる。また、2.4GH
z帯変復調回路24,2.4GHz帯送受信回路25及
びアンテナ26を使用することにより、2.4GHz帯
の周波数を用いて無線通信を行うことができる。なお、
2.4GHz帯の周波数としては、無線免許が不要なI
SMバンドを利用するのが望ましい。
The subscriber station 11 and the base station 12 perform radio communication using the frequency in the quasi-millimeter wave band by using the quasi-millimeter wave band modulation / demodulation circuit 21, the quasi-millimeter wave band transmitting / receiving circuit 22, and the antenna 23. be able to. In addition, 2.4GH
By using the z-band modulation / demodulation circuit 24, the 2.4-GHz band transmission / reception circuit 25, and the antenna 26, wireless communication can be performed using the frequency of the 2.4-GHz band. In addition,
As a frequency in the 2.4 GHz band, a radio license is not required.
It is desirable to use the SM band.

【0026】準ミリ波帯の周波数を用いて無線通信を行
う場合には、広い帯域幅を確保できるので、高速通信が
可能になる。但し、周波数が高いので、降雨や降雪の場
合には電波の減衰によって通信品質が劣化しやすい。一
方、2.4GHz帯の周波数を用いて無線通信を行う場
合には、広い帯域幅を確保できないため、通信速度が遅
くなるのは避けられない。しかし、周波数が比較的低い
ため降雨や降雪の場合であっても電波の減衰は生じにく
く、高い通信品質を維持できる。
When wireless communication is performed using a frequency in the quasi-millimeter wave band, a wide bandwidth can be secured, so that high-speed communication becomes possible. However, since the frequency is high, in the case of rainfall or snowfall, the communication quality tends to deteriorate due to attenuation of radio waves. On the other hand, when wireless communication is performed using a frequency in the 2.4 GHz band, a wide bandwidth cannot be secured, so that a reduction in communication speed is inevitable. However, since the frequency is relatively low, even in the case of rainfall or snowfall, attenuation of radio waves hardly occurs, and high communication quality can be maintained.

【0027】経路選択回路27及び通信回線診断部28
は一般的なルータと類似した機能を提供する。経路選択
回路27は、端末10が送受信するパケットを、準ミリ
波帯変復調回路21,準ミリ波帯送受信回路22,アン
テナ23を通る経路と、2.4GHz帯変復調回路2
4,2.4GHz帯送受信回路25,アンテナ26を通
る経路とのいずれか一方に接続する。初期状態や定常時
には、経路選択回路27は前者の経路を選択するので、
準ミリ波帯の周波数で無線通信が行われる。
The path selection circuit 27 and the communication line diagnosis unit 28
Provides a function similar to a general router. The path selection circuit 27 transmits a packet transmitted / received by the terminal 10 to a path passing through the quasi-millimeter wave band modulation / demodulation circuit 21, the quasi-millimeter wave band transmission / reception circuit 22, and the antenna 23, and the 2.4 GHz band modulation / demodulation circuit 2
It is connected to either one of the path passing through the 4, 2.4 GHz band transmitting / receiving circuit 25 and the antenna 26. In an initial state or a steady state, the route selection circuit 27 selects the former route.
Wireless communication is performed at a frequency in the quasi-millimeter wave band.

【0028】経路選択回路27は、一般のルータと同様
に通信経路を管理する機能を有している。また、パケッ
ト単位で通信経路を切り替えることができる。通信回線
診断部28は、定期的に(例えば30秒に1回の周期
で)隣接するルータに対して公知のハローパケットを送
信する。また、通信回線診断部28は隣接するルータか
らのハローパケットの受信の有無を定期的に監視する。
The route selection circuit 27 has a function of managing a communication route like a general router. Further, the communication path can be switched on a packet basis. The communication line diagnosing unit 28 periodically (for example, once every 30 seconds) transmits a known hello packet to an adjacent router. Further, the communication line diagnosis unit 28 periodically monitors whether or not a hello packet is received from an adjacent router.

【0029】図1の例では、加入者局11の通信回線診
断部28に対する隣接ルータは基地局12の通信回線診
断部28に相当する。また、基地局12の通信回線診断
部28に対する隣接ルータは加入者局11の通信回線診
断部28に相当する。例えば、降雨や降雪によって準ミ
リ波帯の電波が減衰し、通信品質が劣化した場合には、
隣接ルータの送信したハローパケットが受信側の通信回
線診断部28に届かなくなるので、通信回線診断部28
は通信回線がとぎれたことを検出することができる。
In the example of FIG. 1, the adjacent router to the communication line diagnosis unit 28 of the subscriber station 11 corresponds to the communication line diagnosis unit 28 of the base station 12. A router adjacent to the communication line diagnosis unit 28 of the base station 12 corresponds to the communication line diagnosis unit 28 of the subscriber station 11. For example, if the radio wave of the quasi-millimeter wave band is attenuated due to rainfall or snowfall and the communication quality is deteriorated,
Since the hello packet transmitted by the adjacent router does not reach the communication line diagnostic unit 28 on the receiving side, the communication line diagnostic unit 28
Can detect that the communication line has been disconnected.

【0030】通信回線がとぎれたことを通信回線診断部
28が検出すると、経路選択回路27は2.4GHz帯
変復調回路24,2.4GHz帯送受信回路25,アン
テナ26を通る経路に通信経路を自動的に切り替える。
従って、パケットを伝送する無線回線の周波数が準ミリ
波帯から2.4GHz帯に切り替わる。2.4GHz帯
の周波数で無線通信する場合には、降雨や降雪による電
波の減衰が生じにくいので、準ミリ波帯で通信回線がと
ぎれた場合でも、2.4GHz帯の周波数で新たな通信
経路を確立し通信を継続できる。
When the communication line diagnostic unit 28 detects that the communication line has been disconnected, the path selection circuit 27 automatically sets the communication path to a path passing through the 2.4 GHz band modulation / demodulation circuit 24, the 2.4 GHz band transmission / reception circuit 25, and the antenna 26. Switch
Therefore, the frequency of the wireless line transmitting the packet is switched from the quasi-millimeter wave band to the 2.4 GHz band. When wireless communication is performed at a frequency of the 2.4 GHz band, attenuation of radio waves due to rainfall or snowfall does not easily occur. Therefore, even when a communication line is interrupted in the quasi-millimeter wave band, a new communication path is performed at a frequency of the 2.4 GHz band. Can be established and communication can be continued.

【0031】経路選択回路27は、準ミリ波帯の周波数
で無線通信を行う経路と2.4GHz帯の周波数で無線
通信を行う経路とのいずれか一方を選択してトラヒック
を端末10又はIP網13へ流す。
The route selection circuit 27 selects one of a route for performing wireless communication at a frequency in the quasi-millimeter wave band and a route for performing wireless communication at a frequency in the 2.4 GHz band to transfer traffic to the terminal 10 or the IP network. Flow to 13.

【0032】経路選択回路27及び通信回線診断部28
の働きにより、加入者局11及び基地局12の各局は図
2の動作を行う。最初にステップS11,S12が実行
されるので、初期状態では準ミリ波帯の無線回線を使用
する経路が優先的に選択される。定常状態では、ステッ
プS13,S14が定期的に繰り返し実行され、通信経
路が正常であることが確認されるので、初期状態と同じ
準ミリ波帯の無線回線を使用する経路で通信が継続され
る。
The path selection circuit 27 and the communication line diagnosis unit 28
, Each of the subscriber station 11 and the base station 12 performs the operation shown in FIG. Steps S11 and S12 are executed first, so that a path using a quasi-millimeter wave band wireless line is preferentially selected in the initial state. In the steady state, steps S13 and S14 are periodically repeated, and it is confirmed that the communication path is normal. Therefore, the communication is continued on the same path using the quasi-millimeter wave band wireless line as the initial state. .

【0033】一方、降雨や降雪により準ミリ波帯の電波
に大きな減衰が生じ、通信品質が劣化すると、隣接ルー
タから送信されるハローパケットが受信できなくなるの
で、ステップS14からS15に進む。ステップS15
では、2.4GHz帯の周波数を使う通信経路を経路選
択回路27が選択する。従って、降雨や降雪により通信
品質が劣化した場合には、2.4GHz帯の周波数の無
線回線に自動的に切り替わる。
On the other hand, if the radio wave of the quasi-millimeter wave band is greatly attenuated by rainfall or snowfall and the communication quality deteriorates, it becomes impossible to receive the hello packet transmitted from the adjacent router. Therefore, the process proceeds from step S14 to S15. Step S15
Then, the path selection circuit 27 selects a communication path using a frequency in the 2.4 GHz band. Therefore, when the communication quality is degraded due to rainfall or snowfall, the communication line is automatically switched to the wireless line of the 2.4 GHz band.

【0034】また、ステップS16で降雨等による受信
レベルの低下が解消し、準ミリ波帯の周波数を使った通
信経路からのハローパケットが正常に受信されるように
なると、再び準ミリ波帯の無線回線を使用する経路が選
択される。加入者局11及び基地局12では、2.4G
Hz帯システム,準ミリ波帯システムの双方へ常にトラ
ヒックを流し、受信側で送信側からのハローパケットを
受信して、通信品質の良好な伝送路へ切り替えるように
している。但し、デフォルトでは伝送容量の大きい準ミ
リ波帯を使った通信経路が選ばれる。
In step S16, when the reduction in the reception level due to rainfall or the like is resolved and the hello packet from the communication path using the frequency in the quasi-millimeter wave band is received normally, the quasi-millimeter wave band is again transmitted. A route using a wireless line is selected. In the subscriber station 11 and the base station 12, 2.4G
Traffic always flows to both the Hz band system and the quasi-millimeter wave band system, and the receiving side receives a hello packet from the transmitting side and switches to a transmission path with good communication quality. However, a communication path using a quasi-millimeter wave band having a large transmission capacity is selected by default.

【0035】(第2の実施の形態)本発明の通信装置の
もう1つの実施の形態について、図3及び図4を参照し
ながら説明する。この形態は、請求項3〜請求項5に対
応する。図3はこの形態の通信システムの構成を示すブ
ロック図である。図4はこの形態の各局の動作を示すフ
ローチャートである。
(Second Embodiment) Another embodiment of the communication apparatus of the present invention will be described with reference to FIGS. This embodiment corresponds to claims 3 to 5. FIG. 3 is a block diagram showing the configuration of the communication system of this embodiment. FIG. 4 is a flowchart showing the operation of each station in this embodiment.

【0036】この形態は、第1の実施の形態の変形例で
ある。図3において図1と対応する要素は同一の符号を
付けて示してある。第1の実施の形態と同一の要素につ
いては、以下の説明を省略する。この形態では、請求項
3の第1の無線通信手段,第2の無線通信手段,受信レ
ベル検出手段及び無線周波数切替手段は、それぞれ準ミ
リ波帯送受信回路22,2.4GHz帯送受信回路2
5,受信レベル検出部31及び経路選択回路27に対応
する。
This embodiment is a modification of the first embodiment. 3, elements corresponding to those in FIG. 1 are denoted by the same reference numerals. The description of the same elements as those in the first embodiment will be omitted. In this embodiment, the first wireless communication means, the second wireless communication means, the reception level detecting means and the wireless frequency switching means of the third aspect are respectively a quasi-millimeter wave band transmitting / receiving circuit 22 and a 2.4 GHz band transmitting / receiving circuit 2.
5, corresponding to the reception level detection unit 31 and the path selection circuit 27.

【0037】図3に示すように、準ミリ波帯送受信回路
22には受信レベル検出部31が接続されている。受信
レベル検出部31は、準ミリ波帯送受信回路22がアン
テナ23を介して受信した準ミリ波帯の電波の受信レベ
ルを検出する。通信回線診断部28は、受信レベル検出
部31の検出した受信レベルを予め定めた閾値Rvと比
較して通信経路が遮断されたか否かを識別する。
As shown in FIG. 3, a reception level detection unit 31 is connected to the quasi-millimeter wave band transmission / reception circuit 22. The reception level detector 31 detects the reception level of the quasi-millimeter wave band radio wave received by the quasi-millimeter wave band transmission / reception circuit 22 via the antenna 23. The communication line diagnosis unit 28 compares the reception level detected by the reception level detection unit 31 with a predetermined threshold Rv to identify whether or not the communication path has been interrupted.

【0038】すなわち、降雨や降雪の影響によって電波
の減衰が大きくなり、通信品質が劣化するときには、受
信レベル検出部31の検出する受信レベルが異常に低下
するので、受信レベルを閾値Rvと比較することにより
通信品質の劣化、すなわち通信回線の遮断を識別するこ
とができる。この形態では、加入者局11及び基地局1
2の各局は、経路選択回路27,通信回線診断部28及
び受信レベル検出部31の機能を用いて図4に示すよう
な動作を行う。
That is, when the attenuation of radio waves increases due to the influence of rainfall or snowfall, and the communication quality deteriorates, the reception level detected by the reception level detection unit 31 abnormally decreases. Therefore, the reception level is compared with the threshold value Rv. This makes it possible to identify the deterioration of the communication quality, that is, the interruption of the communication line. In this embodiment, the subscriber station 11 and the base station 1
Each station 2 performs the operation shown in FIG. 4 by using the functions of the path selection circuit 27, the communication line diagnosis unit 28, and the reception level detection unit 31.

【0039】図4に示すように、最初はステップS2
1,S22を実行するので、第1の実施の形態と同様
に、初期状態及び定常状態では準ミリ波帯変復調回路2
1,準ミリ波帯送受信回路22及びアンテナ23を通る
通信経路が端末10の通信に利用され、準ミリ波帯の周
波数を用いて通信を行う。ステップS23では、受信レ
ベル検出部31の検出した受信レベルを閾値Rvと比較
する。受信レベルが閾値Rv以上の場合には、そのまま
準ミリ波帯の周波数を用いて通信が継続される。
As shown in FIG. 4, initially, step S2
1 and S22, the quasi-millimeter wave band modulation / demodulation circuit 2 in the initial state and the steady state as in the first embodiment.
1, a communication path passing through the quasi-millimeter wave band transmitting / receiving circuit 22 and the antenna 23 is used for communication of the terminal 10, and communication is performed using frequencies in the quasi-millimeter wave band. In step S23, the reception level detected by the reception level detection unit 31 is compared with a threshold value Rv. When the reception level is equal to or higher than the threshold value Rv, communication is continued using the frequency in the quasi-millimeter wave band.

【0040】降雨や降雪の影響によって準ミリ波帯の電
波の受信レベルが低下し、受信レベルが閾値Rv未満に
なるとステップS23からS24に進む。そして、受信
レベルが閾値Rv未満になっている状態が予め定めた時
間Tmだけ継続すると、準ミリ波帯の無線回線を利用す
る通信経路が遮断されたものとみなし、ステップS24
からS25に進む。
The reception level of the radio wave in the quasi-millimeter wave band decreases due to the influence of rainfall or snowfall, and when the reception level falls below the threshold value Rv, the process proceeds from step S23 to S24. If the state in which the reception level is less than the threshold value Rv continues for a predetermined time Tm, it is considered that the communication path using the quasi-millimeter wave band wireless line has been interrupted, and step S24 is performed.
Then, the process proceeds to S25.

【0041】従って、降雨や降雪の影響により準ミリ波
帯の無線回線の通信品質が劣化するときには、2.4G
Hz帯の周波数の無線回線に自動的に切り替わる。この
ため、伝送速度は制限されるが通信品質の劣化を避ける
ことができる。また、2.4GHz帯の周波数の無線回
線に切り替えた場合であっても、予め定めた時間Tpが
経過するとステップS28からS21に戻り、準ミリ波
帯の無線回線に切り替えて受信レベルを確認するので、
天候の回復などによって準ミリ波帯の無線回線の通信品
質が良好になった場合には、自動的に準ミリ波帯の無線
回線に切り替わる。
Therefore, when the communication quality of the quasi-millimeter wave band radio line is degraded due to the influence of rainfall or snowfall, 2.4G
It automatically switches to a wireless line with a frequency in the Hz band. For this reason, although the transmission speed is limited, it is possible to avoid deterioration of communication quality. Further, even when the radio line is switched to the 2.4 GHz band radio line, when the predetermined time Tp elapses, the process returns from step S28 to S21, switches to the quasi-millimeter wave band radio line and checks the reception level. So
When the communication quality of the quasi-millimeter-wave band wireless line becomes better due to the recovery of the weather or the like, the wireless line is automatically switched to the quasi-millimeter wave band wireless line.

【0042】通信品質が劣化したままであれば、再びス
テップS23,S24を通ってS25に進むので、2.
4GHz帯の周波数の無線回線が通信に利用される。な
お、説明を省略した部分の構成及び動作については第1
の実施の形態と同様である。
If the communication quality remains degraded, the process proceeds to steps S23 and S24 again to step S25.
A wireless line of a frequency in the 4 GHz band is used for communication. It should be noted that the configuration and operation of the parts whose description is omitted are described in the first section.
This is the same as the embodiment.

【0043】[0043]

【発明の効果】本発明によれば、降雨や降雪により準ミ
リ波帯の電波の減衰が生じるときには、降雨や降雪の影
響を受けにくい2.4GHz帯などの低い周波数に自動
的に切り替えるので、通信品質の劣化を回避することが
できる。
According to the present invention, when radio waves in the quasi-millimeter wave band are attenuated by rainfall or snowfall, the frequency is automatically switched to a low frequency such as the 2.4 GHz band which is hardly affected by rainfall or snowfall. Deterioration of communication quality can be avoided.

【0044】従って、電波減衰を補償するために必要と
される降雨マージンを従来よりも低減することができ、
無線装置の価格の低廉化や小型化が可能になる。本発明
を実施する場合には、準ミリ波帯の他に2.4GHz帯
などの低い周波数を用いる通信装置を付加する必要があ
るが、市場に低廉な価格で流通している2.4GHz帯
の無線アクセスシステムをそのまま流用することもでき
るので、無線装置のコストを抑制できる。
Accordingly, the rainfall margin required for compensating for the radio wave attenuation can be reduced as compared with the conventional case.
It is possible to reduce the cost and size of the wireless device. In practicing the present invention, it is necessary to add a communication device using a low frequency such as the 2.4 GHz band in addition to the quasi-millimeter wave band, but the 2.4 GHz band which is distributed at a low price in the market. Since the wireless access system can be used as it is, the cost of the wireless device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態の通信システムの構成を示す
ブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a communication system according to a first embodiment.

【図2】第1の実施の形態の各局の動作を示すフローチ
ャートである。
FIG. 2 is a flowchart illustrating an operation of each station according to the first embodiment.

【図3】第2の実施の形態の通信システムの構成を示す
ブロック図である。
FIG. 3 is a block diagram illustrating a configuration of a communication system according to a second embodiment.

【図4】第2の実施の形態の各局の動作を示すフローチ
ャートである。
FIG. 4 is a flowchart illustrating an operation of each station according to the second embodiment.

【符号の説明】[Explanation of symbols]

10 端末 11 加入者局 12 基地局 13 IP網 21 準ミリ波帯変復調回路 22 準ミリ波帯送受信回路 23 アンテナ 24 2.4GHz帯変復調回路 25 2.4GHz帯送受信回路 26 アンテナ 27 経路選択回路 28 通信回線診断部 31 受信レベル検出部 Reference Signs List 10 terminal 11 subscriber station 12 base station 13 IP network 21 quasi-millimeter wave band modulation / demodulation circuit 22 quasi-millimeter wave band transmission / reception circuit 23 antenna 24 2.4 GHz band modulation / demodulation circuit 25 2.4 GHz band transmission / reception circuit 26 antenna 27 route selection circuit 28 communication Line diagnosis unit 31 Received level detection unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水本 幸秀 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5K067 AA01 DD44 EE06 EE10 GG01 GG11 KK11 LL01 LL02  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukihide Mizumoto 2-3-1 Otemachi, Chiyoda-ku, Tokyo F-term (reference) in Nippon Telegraph and Telephone Corporation 5K067 AA01 DD44 EE06 EE10 GG01 GG11 KK11 LL01 LL02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固定された基地局と少なくとも1つの加
入者局との間で無線通信を行うために前記基地局又は加
入者局に設けられる通信装置であって、 準ミリ波以上の周波数の第1の周波数帯を用いて相手局
との間で無線通信が可能な第1の無線通信手段と、 前記第1の周波数帯よりも周波数が低く降雨による電波
の減衰が少ない第2の周波数帯を用いて相手局との間で
無線通信が可能な第2の無線通信手段と、 通信相手もしくは通信経路上の中継装置との間で通信経
路の遮断の有無を検査する経路遮断検査手段と、 前記第1の無線通信手段及び第2の無線通信手段のいず
れか一方を選択的に用いて無線信号の送受信を行うとと
もに、定常時には前記第1の無線通信手段を優先的に選
択し、前記経路遮断検査手段が通信経路の遮断を検出し
た場合には前記第2の無線通信手段に自動的に切り替え
る無線周波数切替手段とを設けたことを特徴とする通信
装置。
1. A communication device provided in a base station or a subscriber station for performing wireless communication between a fixed base station and at least one subscriber station, wherein the communication device has a frequency of a quasi-millimeter wave or higher. A first wireless communication unit capable of performing wireless communication with a partner station using the first frequency band; and a second frequency band having a lower frequency than the first frequency band and having less attenuation of radio waves due to rainfall. A second wireless communication unit capable of performing wireless communication with a partner station by using a communication path, and a path cutoff check unit for checking whether a communication path is cut off with a communication partner or a relay device on a communication path, The radio signal is transmitted and received by selectively using one of the first radio communication means and the second radio communication means, and the first radio communication means is preferentially selected in a steady state, The interruption inspection means detects interruption of the communication path. Communication apparatus characterized by comprising a radio frequency switching means for automatically switching to said second wireless communication means when.
【請求項2】 請求項1の通信装置において、前記経路
遮断検査手段は、通信相手もしくは通信経路上の中継装
置との間で試験用のパケットを定期的に伝送するととも
に、前記パケットを所定時間以内に受信できない場合に
通信経路の遮断を認識することを特徴とする通信装置。
2. The communication apparatus according to claim 1, wherein the path cutoff inspection means periodically transmits a test packet to a communication partner or a relay apparatus on a communication path, and transmits the packet for a predetermined time. A communication device for recognizing interruption of a communication path when reception is not possible within a period of time.
【請求項3】 固定された基地局と少なくとも1つの加
入者局との間で無線通信を行うために前記基地局又は加
入者局に設けられる通信装置であって、 準ミリ波以上の周波数の第1の周波数帯を用いて相手局
との間で無線通信が可能な第1の無線通信手段と、 前記第1の周波数帯よりも周波数が低く降雨による電波
の減衰が少ない第2の周波数帯を用いて相手局との間で
無線通信が可能な第2の無線通信手段と、 前記第1の無線通信手段の受信した信号のレベルを検出
する受信レベル検出手段と、 前記第1の無線通信手段及び第2の無線通信手段のいず
れか一方を選択的に用いて無線信号の送受信を行うとと
もに、定常時には前記第1の無線通信手段を優先的に選
択し、前記受信レベル検出手段の検出した受信レベルが
異常に低下した場合には、前記第2の無線通信手段に自
動的に切り替える無線周波数切替手段とを設けたことを
特徴とする通信装置。
3. A communication device provided in a base station or a subscriber station for performing wireless communication between a fixed base station and at least one subscriber station, wherein the communication device has a frequency of a quasi-millimeter wave or higher. A first wireless communication unit capable of performing wireless communication with a partner station using the first frequency band; and a second frequency band having a lower frequency than the first frequency band and having less attenuation of radio waves due to rainfall. A second wireless communication unit capable of performing wireless communication with a partner station using the first wireless communication unit; a reception level detection unit configured to detect a level of a signal received by the first wireless communication unit; Means and the second wireless communication means are selectively used to transmit and receive wireless signals, and in a steady state, the first wireless communication means is preferentially selected and detected by the reception level detection means. When the reception level drops abnormally The communication apparatus according to claim automatically switched to the provision of a radio frequency switching means to the second wireless communication means.
【請求項4】 請求項3の通信装置において、前記無線
周波数切替手段は、第2の無線通信手段を選択した場合
には、第1の無線通信手段の無線送信出力を抑制もしく
は遮断することを特徴とする通信装置。
4. The communication device according to claim 3, wherein said radio frequency switching means suppresses or shuts off a radio transmission output of said first radio communication means when said second radio communication means is selected. Characteristic communication device.
【請求項5】 請求項3の通信装置において、前記無線
周波数切替手段は、第2の無線通信手段を選択してから
所定時間が経過すると、再び第1の無線通信手段を選択
して受信レベルを確認することを特徴とする通信装置。
5. The communication apparatus according to claim 3, wherein the radio frequency switching means selects the first wireless communication means again when a predetermined time has elapsed after selecting the second wireless communication means, and sets the reception level. A communication device characterized in that:
JP2001138742A 2001-05-09 2001-05-09 Communication equipment Pending JP2002335201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138742A JP2002335201A (en) 2001-05-09 2001-05-09 Communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138742A JP2002335201A (en) 2001-05-09 2001-05-09 Communication equipment

Publications (1)

Publication Number Publication Date
JP2002335201A true JP2002335201A (en) 2002-11-22

Family

ID=18985633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138742A Pending JP2002335201A (en) 2001-05-09 2001-05-09 Communication equipment

Country Status (1)

Country Link
JP (1) JP2002335201A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093375A1 (en) * 2003-04-15 2004-10-28 Sharp Kabushiki Kaisha Radio video transmission system and method
JP2006155061A (en) * 2004-11-26 2006-06-15 Hitachi Ltd Vehicle security system
JP2006187005A (en) * 2004-12-24 2006-07-13 Mitsubishi Electric Information Technology Centre Europa Bv Information transmitting method with sophisticated allocation of spectrum resource
JP2007037029A (en) * 2005-07-29 2007-02-08 Hitachi Kokusai Electric Inc Wireless communication system
JP2010187114A (en) * 2009-02-10 2010-08-26 Nippon Telegr & Teleph Corp <Ntt> Wireless communication system and method
JP2010272900A (en) * 2009-05-19 2010-12-02 Hitachi Ltd Transmitter-receiver
JP2013503586A (en) * 2009-09-01 2013-01-31 インテル コーポレイション Apparatus, system, communication session transition method and product having multiband wireless communication unit
JP2013511930A (en) * 2009-12-24 2013-04-04 インテル コーポレイション Multiband rate scaling method and system
US8599813B2 (en) 2010-04-26 2013-12-03 Intel Corporation Method, apparatus and system for fast session transfer for multiple frequency band wireless communication
JP2014068302A (en) * 2012-09-27 2014-04-17 Oki Data Corp Portable terminal, information processing system, controller for portable terminal, and control program
WO2014103243A1 (en) * 2012-12-27 2014-07-03 パナソニック株式会社 Frequency band transfer control method and radio communication apparatus
JP2017139784A (en) * 2017-03-14 2017-08-10 パナソニック株式会社 Radio communication device
JP2019054645A (en) * 2017-09-15 2019-04-04 三菱電機株式会社 Train communication system
KR101966207B1 (en) * 2019-01-16 2019-04-05 세기미래기술 주식회사 Village broadcasting system
CN115955674A (en) * 2023-03-10 2023-04-11 中国人民解放军军事科学院战争研究院 Mobile communication secrecy method and system for border prevention and control network

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100738727B1 (en) * 2003-04-15 2007-07-12 샤프 가부시키가이샤 Radio video transmission system and method
US7509090B2 (en) 2003-04-15 2009-03-24 Sharp Kabushiki Kaisha Radio video transmission system and method
CN1774882B (en) * 2003-04-15 2011-07-27 夏普株式会社 Radio video transmission system and method
WO2004093375A1 (en) * 2003-04-15 2004-10-28 Sharp Kabushiki Kaisha Radio video transmission system and method
JP2006155061A (en) * 2004-11-26 2006-06-15 Hitachi Ltd Vehicle security system
JP4511325B2 (en) * 2004-11-26 2010-07-28 日立オートモティブシステムズ株式会社 Vehicle security system
JP2006187005A (en) * 2004-12-24 2006-07-13 Mitsubishi Electric Information Technology Centre Europa Bv Information transmitting method with sophisticated allocation of spectrum resource
JP2013062836A (en) * 2004-12-24 2013-04-04 Mitsubishi Electric R&D Centre Europe B.V. Information transmitting method and device between at least two transceivers
JP2007037029A (en) * 2005-07-29 2007-02-08 Hitachi Kokusai Electric Inc Wireless communication system
JP2010187114A (en) * 2009-02-10 2010-08-26 Nippon Telegr & Teleph Corp <Ntt> Wireless communication system and method
US8514335B2 (en) 2009-05-19 2013-08-20 Hitachi, Ltd. Transceiver
JP2010272900A (en) * 2009-05-19 2010-12-02 Hitachi Ltd Transmitter-receiver
JP2013503586A (en) * 2009-09-01 2013-01-31 インテル コーポレイション Apparatus, system, communication session transition method and product having multiband wireless communication unit
US10122504B2 (en) 2009-09-01 2018-11-06 Intel Corporation Device, system and method of transferring a wireless communication session between wireless communication frequency bands
US8644772B2 (en) 2009-09-01 2014-02-04 Intel Corporation Device, system and method of transferring a wireless communication session between wireless communication frequency bands
US10027452B2 (en) 2009-09-01 2018-07-17 Intel Corporation Device, system and method of transferring a wireless communication session between wireless communication frequency bands
JP2014209779A (en) * 2009-09-01 2014-11-06 インテル コーポレイション Communication device, storage medium and communication method
US9525525B2 (en) 2009-09-01 2016-12-20 Intel Corporation Device, system and method of transferring a wireless communication session between wireless communication frequency bands
JP2013511930A (en) * 2009-12-24 2013-04-04 インテル コーポレイション Multiband rate scaling method and system
US9820167B2 (en) 2009-12-24 2017-11-14 Intel Corporation Method and apparatus of multiband communication
US8737368B2 (en) 2010-04-26 2014-05-27 Intel Corporation Method, apparatus and system for switching traffic streams among multiple frequency bands
US8599813B2 (en) 2010-04-26 2013-12-03 Intel Corporation Method, apparatus and system for fast session transfer for multiple frequency band wireless communication
US8885621B2 (en) 2010-04-26 2014-11-11 Intel Corporation Method, apparatus and system for switching traffic streams among multiple bands
US8654746B2 (en) 2010-04-26 2014-02-18 Intel Corporation Method, apparatus and system for fast session transfer for multiple frequency band wireless communication
JP2014068302A (en) * 2012-09-27 2014-04-17 Oki Data Corp Portable terminal, information processing system, controller for portable terminal, and control program
US9516646B2 (en) 2012-12-27 2016-12-06 Panasonic Corporation Control method of frequency band switching and wireless communication apparatus
US9743411B2 (en) 2012-12-27 2017-08-22 Panasonic Corporation Control method of frequency band switching and wireless communication apparatus
WO2014103243A1 (en) * 2012-12-27 2014-07-03 パナソニック株式会社 Frequency band transfer control method and radio communication apparatus
CN104067678B (en) * 2012-12-27 2018-03-16 松下电器产业株式会社 Frequency band method for handover control and radio communication device
CN104067678A (en) * 2012-12-27 2014-09-24 松下电器产业株式会社 Frequency band transfer control method and radio communication apparatus
JP2014127994A (en) * 2012-12-27 2014-07-07 Panasonic Corp Frequency band switching control method and radio communication device
US10129886B2 (en) 2012-12-27 2018-11-13 Panasonic Corporation Control method of frequency band switching and wireless communication apparatus
JP2017139784A (en) * 2017-03-14 2017-08-10 パナソニック株式会社 Radio communication device
JP2019054645A (en) * 2017-09-15 2019-04-04 三菱電機株式会社 Train communication system
KR101966207B1 (en) * 2019-01-16 2019-04-05 세기미래기술 주식회사 Village broadcasting system
CN115955674A (en) * 2023-03-10 2023-04-11 中国人民解放军军事科学院战争研究院 Mobile communication secrecy method and system for border prevention and control network

Similar Documents

Publication Publication Date Title
JP2002335201A (en) Communication equipment
JP3150869B2 (en) Multi-mode wireless telephone
JP5467158B2 (en) Coexistence method of a wireless communication system and a plurality of wireless communication modules
EP1891752B1 (en) Method and system for conveying backhaul link information for intelligent selection of a mesh access point
KR100452667B1 (en) Apparatuses and methods for signal strength measurement in a wireless communication system
EP1460779B1 (en) Radio base station receiving data transmission system for uplink site diversity of mobile communication system
WO2006114731A1 (en) Radio apparatus
US20030192055A1 (en) Access point for local area radio communication and radio communication system using the same
JPH05153041A (en) Digital-cullular-overlay-network
JP2006238158A (en) Radio communications system, base station control apparatus, radio terminal, and radio communications method
US20070222852A1 (en) Method for providing video communication service, and terminal and system therefor
JP3035497B2 (en) Mobile station mode switching method
US8077674B2 (en) Mobile wireless communication system and method of carrying out handover in the system
GB2396532A (en) Mobile communication base station and QoS control method
US20030002462A1 (en) CDMA system and method of detecting faulty mobile device
KR100453501B1 (en) Bnad selective repeater and method for signal relay in mobile network
JP4875404B2 (en) Antenna selection method
US9942827B2 (en) Dynamic crossband link method and wireless extender
JP3039637B2 (en) Radio base station apparatus and its transmission power control method
EP2127163A1 (en) A method and a device for finding imperfections in an rf path
US20160164567A1 (en) Methods, devices, and computer program products improving mobile communication
US20090143039A1 (en) Radio reception apparatus and radio reception method
JPH1127181A (en) Switching system to spare line
JP2003219464A (en) Communicating equipment for operating between different radio systems from each other
NO20001635L (en) Method of improving radio connection quality in a radio system